The Body Center Cubic Quark Lattice Model
Lin Xu, Jiao
2004-01-01
The Standard Model while successful in many ways is incomplete; many questions remain. The origin of quark masses and hadronization of quarks are awaiting an answer. From the Dirac sea concept, we infer that two kinds of elementary quarks (u(0) and d(0)) constitute a body center cubic (BCC) quark lattice with a lattice constant a < $10^{-18}$m in the vacuum. Using energy band theory and the BCC quark lattice, we can deduce the rest masses and the intrinsic quantum numbers (I, S, C, b and Q) of quarks. With the quark spectrum, we deduce a baryon spectrum. The theoretical spectrum is in agreement well with the experimental results. Not only will this paper provide a physical basis for the Quark Model, but also it will open a door to study the more fundamental nature at distance scales <$10^{-18}$m. This paper predicts some new quarks $u_{c}$(6490) and d$_{b}$(9950), and new baryons $\\Lambda_{c}^{+}$(6500), $\\Lambda_{b}^{0}$(9960).
Ytterbium: Transition at High Pressure from Face-Centered Cubic to Body-Centered Cubic Structure.
Hall, H T; Barnett, J D; Merrill, L
1963-01-11
Pressure of 40,000 atmospheres at 25 degrees C induces a phase transformation in ytterbium metal; the face-centered cubic structure changes to body-centered cubic. The radius of the atom changes from 1.82 to 1.75 A. At the same time the atom's volume decreases by 11 percent and the volume, observed macroscopically, decreases 3.2 percent.
Body-centered-cubic Ni and its magnetic properties.
Tian, C S; Qian, D; Wu, D; He, R H; Wu, Y Z; Tang, W X; Yin, L F; Shi, Y S; Dong, G S; Jin, X F; Jiang, X M; Liu, F Q; Qian, H J; Sun, K; Wang, L M; Rossi, G; Qiu, Z Q; Shi, J
2005-04-08
The body-centered-cubic (bcc) phase of Ni, which does not exist in nature, has been achieved as a thin film on GaAs(001) at 170 K via molecular beam epitaxy. The bcc Ni is ferromagnetic with a Curie temperature of 456 K and possesses a magnetic moment of 0.52+/-0.08 micro(B)/atom. The cubic magnetocrystalline anisotropy of bcc Ni is determined to be +4.0x10(5) ergs x cm(-3), as opposed to -5.7x10(4) ergs x cm(-3) for the naturally occurring face-centered-cubic (fcc) Ni. This sharp contrast in the magnetic anisotropy is attributed to the different electronic band structures between bcc Ni and fcc Ni, which are determined using angle-resolved photoemission with synchrotron radiation.
Infinite Body Centered Cubic Network of Identical Resistors
Asad, J H
2013-01-01
We express the equivalent resistance between the origin and any other lattice site in an infinite Body Centered Cubic (BCC) network consisting of identical resistors each of resistance R rationally in terms of known values and . The equivalent resistance is then calculated. Finally, for large separation between the origin and the lattice site two asymptotic formulas for the resistance are presented and some numerical results with analysis are given.
Observation of Body-Centered Cubic Gold Nanocluster.
Liu, Chao; Li, Tao; Li, Gao; Nobusada, Katsuyuki; Zeng, Chenjie; Pang, Guangsheng; Rosi, Nathaniel L; Jin, Rongchao
2015-08-17
The structure of nanoparticles plays a critical role in dictating their material properties. Gold is well known to adopt face-centered cubic (fcc) structure. Herein we report the first observation of a body-centered cubic (bcc) gold nanocluster composed of 38 gold atoms protected by 20 adamantanethiolate ligands and two sulfido atoms ([Au38S2(SR)20], where R=C10H15) as revealed by single-crystal X-ray crystallography. This bcc structure is in striking contrast with the fcc structure of bulk gold and conventional Au nanoparticles, as well as the bi-icosahedral structure of [Au38(SCH2CH2Ph)24]. The bcc nanocluster has a distinct HOMO-LUMO gap of ca. 1.5 eV, much larger than the gap (0.9 eV) of the bi-icosahedral [Au38(SCH2CH2Ph)24]. The unique structure of the bcc gold nanocluster may be promising in catalytic applications.
Assembly of body-centered cubic crystals in hard spheres.
Xu, W-S; Sun, Z-Y; An, L-J
2011-05-01
We investigate the crystallization of monodisperse hard spheres confined by two square patterned substrates (possessing the basic character of the body-centered cubic (bcc) crystal structure) at varying substrate separations via molecular dynamics simulation. Through slowly increasing the density of the system, we find that crystallization under the influence of square patterned substrates can set in at lower densities compared with the homogeneous crystallization. As the substrate separation decreases, the density, where crystallization occurs (i.e., pressure drops), becomes small. Moreover, two distinct regimes are identified in the plane of bcc particle fraction and density for the separation range investigated. For large substrate separations, the bcc particle fraction displays a local maximum as the density is increased, and the resulting formed crystals have a polycrystalline structure. However, and more importantly, another situation emerges for small substrate separations: the capillary effects (stemming from the presence of two substrates) overwhelm the bulk driving forces (stemming from the spontaneous thermal fluctuations in the bulk) during the densification, eventually resulting in the formation of a defect-free bcc crystal (unstable with respect to the bulk hard-sphere crystals) by using two square patterned substrates.
Stability of the high-pressure body-centered-cubic phase of helium
Frenkel, D.
1986-01-01
This paper report absolute free-energy calculations of the fluid, body-centered-cubic, and face-centered-cubic phases of helium at T=327.04 K. We find that at and around this temperature the model potential proposed by Aziz et al. doe not yield a stable bcc phase. Quantum corrections do not alter th
Stability of the high-pressure body-centered-cubic phase of helium
Frenkel, D.
1987-01-01
This paper report absolute free-energy calculations of the fluid, body-centered-cubic, and face-centered-cubic phases of helium at T=327.04 K. We find that at and around this temperature the model potential proposed by Aziz et al. doe not yield a stable bcc phase. Quantum corrections do not alter this conclusion
Mechanism of the body-centered cubic--hexagonal close-packed phase transition in iron.
Bassett, W A; Huang, E
1987-11-06
The transition from body-centered cubic to hexagonal close-packed phase in iron has been studied in a diamond anvil cell with synchrotron radiation. The hexagonal close-packed phase, when it first appears, has a ratio of lattice parameters that is significantly larger than normal. This is attributed to a displacive mechanism that causes a distortion of the hexagonal close-packed structure in a body-centered cubic matrix. The hexagonal close-packed phase adjacent to a boundary with the body-centered cubic phase is stretched in the c direction and compressed in the a direction when it first forms.
Formation Mechanism and Binding Energy for Body-Centered Cubic Structure of He+9 Cluster
Institute of Scientific and Technical Information of China (English)
ZHANG Jian-Ping; GOU Qing-Quan; LI Ping
2004-01-01
The formation mechanism for the body-centered cubic structure of He+9 cluster is proposed and its total energy curve is calculated by the method of a Modified Arrangement Channel Quantum Mechanics. The energy is the function of separation R between the nuclei at the center and an apex of the body-centered cubic structure. The result of the calculation shows that the curve has a minimal energy -25.6669 (a.u.) at R = 2.550ao. The binding energy of He+9 with respect to He+ + 8He was calculated to be 0.8857 a.u. This means that the cluster of He+9 may be formed in the body-centered cubic structure of R = 2.55a0.
Tlidi, M; Pieroux, D; Mandel, Paul
2003-09-15
We show that coupling diffraction and chromatic dispersion lead to body-centered cubic and hexagonally packed cylinders of dissipative optical crystals in a degenerate optical parametric oscillator. The stabilization of these crystals is a direct consequence of the interaction between the modulational and the quasi-neutral modes.
Maximal independent set graph partitions for representations of body-centered cubic lattices
DEFF Research Database (Denmark)
Erleben, Kenny
2009-01-01
A maximal independent set graph data structure for a body-centered cubic lattice is presented. Refinement and coarsening operations are defined in terms of set-operations resulting in robust and easy implementation compared to a quad-tree-based implementation. The graph only stores information...
Thermodynamic Functions for Body Centered Cubic Lattice- Application on Lattice Green's Function
Asad, J. H.
2011-01-01
Thermodynamic functions of ionic systems were evaluated analytically using the Green's Function for Body Centered Cubic Lattices. The free energy density, chemical potential, pressure, spinodals, and coulomb ionic potentials are expressed in terms of hyper geometric functions 3F2 and complete elliptic integrals
Structure of the body-centered cubic phase of lipid systems.
Saludjian, P; Reiss-Husson, F
1980-12-01
A new model is proposed for the structure of the body-centered cubic phase of lipid systems. Infinite rods of polar groups (and water) are arranged with axes parallel to the four cubic [unk]1 1 1[unk] directions. The hydrocarbon chains fill the space between the rods to form a continuous matrix. With this unified topology, the model explains satisfactorily the x-ray diffraction patterns of strontium soaps, lecithin, galactolipids, potassium soaps, and hexadecyltrimethylammonium bromide and explains the transition between cubic/H(II) phases. The paradoxical thermal effects on the lipid cubic phase, in particular the decrease of unit cell dimensions with increasing temperature, can be explained with the proposed model by mechanisms similar to those used for the monodimensional and bidimensional (mesomorphic) phases.
Phonon-magnon interactions in body centered cubic iron: A combined molecular and spin dynamics study
Energy Technology Data Exchange (ETDEWEB)
Perera, Dilina, E-mail: dilinanp@physast.uga.edu; Landau, David P. [Center for Simulational Physics, The University of Georgia, Georgia 30602 (United States); Nicholson, Don M.; Malcolm Stocks, G.; Eisenbach, Markus; Yin, Junqi [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Brown, Gregory [Florida State University, Tallahassee, Florida 32306 (United States)
2014-05-07
Combining an atomistic many-body potential with a classical spin Hamiltonian parameterized by first principles calculations, molecular-spin dynamics computer simulations were performed to investigate phonon-magnon interactions in body centered cubic iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, additional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.
Kudryavtsev, Y. V.; Perekos, A. E.; Uvarov, N. V.; Kolchiba, M. R.; Synoradzki, K.; Dubowik, J.
2016-05-01
Magnetic and transport properties of near stoichiometric metastable FexMnyGaz alloys (46 ≤ x ≤ 52, 17 ≤ y ≤ 25, 26 ≤ z ≤ 30) with face-centered cubic (FCC), body-centered cubic (BCC), and two-phase (FCC + BCC) structures are investigated. The experimental results are analyzed in terms of first-principles calculations of stoichiometric Fe2MnGa alloy with the L21, L12, and the tetragonally distorted L21 structural orderings. It is shown that the pure BCC and FCC phases have distinct magnetic and transport properties. Two-phase Fe2MnGa alloys have magnetic and transport properties typical of the mixed BCC and FCC phases. Among the investigated alloys, Fe46Mn24Ga30 has a martensitic transformation accompanied with significant changes of its magnetic and transport properties.
Luzzati, Vittorio; Tardieu, Annette; Gulik-Krzywicki, Tadeusz
1981-01-01
The observed intensities of the reflections from the body-centered cubic phase of lipid systems are shown to be incompatible with a recently reported model consisting of straight, indefinitely long rods.
Dislocation kink-pair energetics and pencil glide in body-centered-cubic crystals.
Ngan, A H; Wen, M
2001-08-13
When body-centered-cubic crystals undergo plastic deformation, the slip planes are often noncrystallographic. By performing atomistic simulation on the activation pathway of dislocation jumps in bcc iron, we show that the main reason for bcc crystals to exhibit this phenomenon is that one type of kink pair has significantly lower energy than all the other types on the same slip plane. Dislocation motion therefore cannot continue on the same slip plane, and the dislocation has to cross slip onto an intersecting slip plane after each atomic jump. Thus in the long run, the average slip plane would be zigzag and noncrystallographic.
Goodfellow, Brian W; Yu, Yixuan; Bosoy, Christian A; Smilgies, Detlef-M; Korgel, Brian A
2015-07-02
This paper addresses the assembly of body centered-cubic (bcc) superlattices of organic ligand-coated nanocrystals. First, examples of bcc superlattices of dodecanethiol-capped Au nanocrystals and oleic acid-capped PbS and PbSe nanocrystals are presented and examined by transmission electron microscopy (TEM) and grazing incidence small-angle X-ray scattering (GISAXS). These superlattices tend to orient on their densest (110) superlattice planes and exhibit a significant amount of {112} twinning. The same nanocrystals deposit as monolayers with hexagonal packing, and these thin films can coexist with thicker bcc superlattice layers, even though there is no hexagonal plane in a bcc lattice. Both the preference of bcc in bulk films over the denser face-centered cubic (fcc) superlattice structure and the transition to hexagonal monolayers can be rationalized in terms of packing frustration of the ligands. A model is presented to calculate the difference in entropy associated with capping ligand packing frustration in bcc and fcc superlattices.
BDA: A novel method for identifying defects in body-centered cubic crystals.
Möller, Johannes J; Bitzek, Erik
2016-01-01
The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].
Xu, J L
2002-01-01
We assume that the u quarks and the d quarks constitute a body center cubic quark lattice in the vacuum. Using energy band theory, we deduce an excited quark spectrum (from the quark lattice). Using the accompanying excitation concept, we deduce a baryon spectrum (including S, C, b, I, Q, and mass) from the quark spectrum. With a phenomenological binding energy formula, we deduce a meson spectrum (including S, C, b, I, Q, and mass) from the quark spectrum. The baryon and meson spectra agree well with experimental results. The BCC Quark Model predicts many new quarks (u'(3), d'(6)), baryons ($\\Lambda^0(4280)$, $\\Lambda_{C}^{+}(6600)$, $\\Lambda_{b}^{0}(9960))$, and mesons (K(3597), D(5996), B(9504), $\\eta(5926)$, $\\Upsilon(17805)$, T(1603) with I=2). The quarks u'(3) and d'(6) and the meson T(1603) have already been discovered.
Superionic-Superionic Phase Transitions in Body-Centered Cubic H2O Ice
Hernandez, Jean-Alexis; Caracas, Razvan
2016-09-01
From first-principles molecular dynamics, we investigate the relation between the superionic proton conduction and the behavior of the O - H ⋯O bond (ice VII' to ice X transition) in body-centered-cubic (bcc) H2O ice between 1300 and 2000 K and up to 300 GPa. We bring evidence that there are three distinct phases in the superionic bcc stability field. A first superionic phase characterized by extremely fast diffusion of highly delocalized protons (denoted VII'' hereinafter) is stable at low pressures. A first-order transition separates this phase from a superionic VII' , characterized by a finite degree of localization of protons along the nonsymmetric O - H ⋯O bonds. The transition is identified in structural, energetic, and elastic analysis. Upon further compression a second-order phase transition leads to the superionic ice X with symmetric O - H - O bonds.
Body-centered cubic iron-nickel alloy in Earth's core.
Dubrovinsky, L; Dubrovinskaia, N; Narygina, O; Kantor, I; Kuznetzov, A; Prakapenka, V B; Vitos, L; Johansson, B; Mikhaylushkin, A S; Simak, S I; Abrikosov, I A
2007-06-29
Cosmochemical, geochemical, and geophysical studies provide evidence that Earth's core contains iron with substantial (5 to 15%) amounts of nickel. The iron-nickel alloy Fe(0.9)Ni(0.1) has been studied in situ by means of angle-dispersive x-ray diffraction in internally heated diamond anvil cells (DACs), and its resistance has been measured as a function of pressure and temperature. At pressures above 225 gigapascals and temperatures over 3400 kelvin, Fe(0.9)Ni(0.1) adopts a body-centered cubic structure. Our experimental and theoretical results not only support the interpretation of shockwave data on pure iron as showing a solid-solid phase transition above about 200 gigapascals, but also suggest that iron alloys with geochemically reasonable compositions (that is, with substantial nickel, sulfur, or silicon content) adopt the bcc structure in Earth's inner core.
Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron
Beeler, Benjamin; Asta, Mark; Hosemann, Peter; Grønbech-Jensen, Niels
2016-06-01
The threshold displacement energy (TDE) is the minimum amount of kinetic energy required to displace an atom from its lattice site. The magnitude of the TDE displays significant variance as a function of the crystallographic direction, system temperature and applied strain, among a variety of other factors. It is critically important to determine an accurate value of the TDE in order to calculate the total number of displacements due to a given irradiation condition, and thus to understand the materials response to irradiation. In this study, molecular dynamics simulations have been performed to calculate the threshold displacement energy in body-centered cubic iron as a function of strain and temperature. With applied strain, a decrease of the TDE of up to approximately 14 eV was observed. A temperature increase from 300 K to 500 K can result in an increase of the TDE of up to approximately 9 eV.
Superionic-Superionic Phase Transitions in Body-Centered Cubic H_{2}O Ice.
Hernandez, Jean-Alexis; Caracas, Razvan
2016-09-23
From first-principles molecular dynamics, we investigate the relation between the superionic proton conduction and the behavior of the O─H⋯O bond (ice VII^{'} to ice X transition) in body-centered-cubic (bcc) H_{2}O ice between 1300 and 2000 K and up to 300 GPa. We bring evidence that there are three distinct phases in the superionic bcc stability field. A first superionic phase characterized by extremely fast diffusion of highly delocalized protons (denoted VII^{''} hereinafter) is stable at low pressures. A first-order transition separates this phase from a superionic VII^{'}, characterized by a finite degree of localization of protons along the nonsymmetric O─H⋯O bonds. The transition is identified in structural, energetic, and elastic analysis. Upon further compression a second-order phase transition leads to the superionic ice X with symmetric O─H─O bonds.
Rotation-limited growth of three-dimensional body-centered-cubic crystals.
Tarp, Jens M; Mathiesen, Joachim
2015-07-01
According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.
Dislocations near elastic instability in high-pressure body-centered-cubic magnesium
Winter, I. S.; Poschmann, M.; Tsuru, T.; Chrzan, D. C.
2017-02-01
At high pressure, Mg is expected to transform to the body-centered-cubic (BCC) phase. We use density functional theory to explore the structure of -type dislocation cores in BCC Mg as a function of pressure. As the pressure is reduced from the region of absolute stability for the BCC phase, the dislocation cores spread. When dislocation cores overlap the displacements of columns of atoms resemble the nanodisturbances observed in TiNb alloys known as gum metal. As the pressure is lowered further, these regions transform into the hexagonal close-packed phase. The ideal tensile strength of BCC Mg is also computed as a function of pressure. Despite its low shear modulus, BCC Mg is predicted to be intrinsically brittle at absolute zero.
Energy Technology Data Exchange (ETDEWEB)
Wang, H. L.; Shah, S. A. A.; Hao, Y. L.; Prima, F.; Li, T.; Cairney, J. M.; Wang, Y. D.; Wang, Y.; Obbard, E. G.; Li, S. J.; Yang, R.
2017-04-01
It is well-known that the body centered cubic (bcc) crystal in titanium alloys reaches its stability limit as the electron-to-atom (e/a) ratio of the alloy drops down to ~4.24. This critical value, however, is much higher than that of a multifunctional bcc type alloy (e/a = 4.15). Here we demonstrate that a nano-scale concentration modulation created by spinodal decomposition is what stabilizes the bcc crystal of the alloy. Aided by such a nano-scale concentration heterogeneity, unexpected properties from its chemically homogeneous counterpart are obtained. This provides a new strategy to design functional titanium alloys by tuning the spinodal decomposition.
Diffusion spectrum MRI using body-centered-cubic and half-sphere sampling schemes.
Kuo, Li-Wei; Chiang, Wen-Yang; Yeh, Fang-Cheng; Wedeen, Van Jay; Tseng, Wen-Yih Isaac
2013-01-15
The optimum sequence parameters of diffusion spectrum MRI (DSI) on clinical scanners were investigated previously. However, the scan time of approximately 30 min is still too long for patient studies. Additionally, relatively large sampling interval in the diffusion-encoding space may cause aliasing artifact in the probability density function when Fourier transform is undertaken, leading to estimation error in fiber orientations. Therefore, this study proposed a non-Cartesian sampling scheme, body-centered-cubic (BCC), to avoid the aliasing artifact as compared to the conventional Cartesian grid sampling scheme (GRID). Furthermore, the accuracy of DSI with the use of half-sphere sampling schemes, i.e. GRID102 and BCC91, was investigated by comparing to their full-sphere sampling schemes, GRID203 and BCC181, respectively. In results, smaller deviation angle and lower angular dispersion were obtained by using the BCC sampling scheme. The half-sphere sampling schemes yielded angular precision and accuracy comparable to the full-sphere sampling schemes. The optimum b(max) was approximately 4750 s/mm(2) for GRID and 4500 s/mm(2) for BCC. In conclusion, the BCC sampling scheme could be implemented as a useful alternative to the GRID sampling scheme. Combination of BCC and half-sphere sampling schemes, that is BCC91, may potentially reduce the scan time of DSI from 30 min to approximately 14 min while maintaining its precision and accuracy.
Stability of body-centered cubic iron-magnesium alloys in the Earth's inner core.
Kádas, Krisztina; Vitos, Levente; Johansson, Börje; Ahuja, Rajeev
2009-09-15
The composition and the structure of the Earth's solid inner core are still unknown. Iron is accepted to be the main component of the core. Lately, the body-centered cubic (bcc) phase of iron was suggested to be present in the inner core, although its stability at core conditions is still in discussion. The higher density of pure iron compared with that of the Earth's core indicates the presence of light element(s) in this region, which could be responsible for the stability of the bcc phase. However, so far, none of the proposed composition models were in full agreement with seismic observations. The solubility of magnesium in hexagonal Fe has been found to increase significantly with increasing pressure, suggesting that Mg can also be an important element in the core. Here, we report a first-principles density functional study of bcc Fe-Mg alloys at core pressures and temperatures. We show that at core conditions, 5-10 atomic percent Mg stabilizes the bcc Fe both dynamically and thermodynamically. Our calculated density, elastic moduli, and sound velocities of bcc Fe-Mg alloys are consistent with those obtained from seismology, indicating that the bcc-structured Fe-Mg alloy is a possible model for the Earth's inner core.
Singular orientations and faceted motion of dislocations in body-centered cubic crystals.
Kang, Keonwook; Bulatov, Vasily V; Cai, Wei
2012-09-18
Dislocation mobility is a fundamental material property that controls strength and ductility of crystals. An important measure of dislocation mobility is its Peierls stress, i.e., the minimal stress required to move a dislocation at zero temperature. Here we report that, in the body-centered cubic metal tantalum, the Peierls stress as a function of dislocation orientation exhibits fine structure with several singular orientations of high Peierls stress-stress spikes-surrounded by vicinal plateau regions. While the classical Peierls-Nabarro model captures the high Peierls stress of singular orientations, an extension that allows dislocations to bend is necessary to account for the plateau regions. Our results clarify the notion of dislocation kinks as meaningful only for orientations within the plateau regions vicinal to the Peierls stress spikes. These observations lead us to propose a Read-Shockley type classification of dislocation orientations into three distinct classes-special, vicinal, and general-with respect to their Peierls stress and motion mechanisms. We predict that dislocation loops expanding under stress at sufficiently low temperatures, should develop well defined facets corresponding to two special orientations of highest Peierls stress, the screw and the M111 orientations, both moving by kink mechanism. We propose that both the screw and the M111 dislocations are jointly responsible for the yield behavior of BCC metals at low temperatures.
Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer.
Zhou, Guangyong; Ventura, Michael; Gu, Min; Matthews, Aaron; Kivshar, Yuri
2005-06-13
We report on the fabrication and characterization of void-based body-centered-cubic (bcc) photonic crystals in a solidified transparent polymer by the use of a femtosecond laser-driven microexplosion method. The change in the refractive index in the region surrounding the void dots that form the bcc structures is verified by presenting confocal microscope images, and the bandgap properties are characterized by using a Fourier transform infrared spectrometer. The effect of the angle of incidence on the photonic bandgaps is also studied. We observe multiple stop gaps with a suppression rate of the main gap of 47% for a bcc structure with a lattice constant of 2.77 microm, where the first and second stop gaps are located at 3.7 microm and 2.2 microm, respectively. We also present a theoretical approach to characterize the refractive index of the material for calculating the bandgap spectra, and confirm that the wavelengths of the observed bandgaps are in good correlation with the analytical predictions.
The effect of voids on the hardening of body-centered cubic Fe
Nakai, Ryosuke; Yabuuchi, Kiyohiro; Nogami, Shuhei; Hasegawa, Akira
2016-04-01
The mechanical properties of metals are affected by various types of defects. Hardening is usually described through the interaction between dislocations and obstacles, in the so-called line tension theory. The strength factor in the line tension theory represents the resistance of a defect against the dislocation motion. In order to understand hardening from the viewpoint of the microstructure, an accurate determination of the strength factor of different types of defects is essential. In the present study, the strength factor of voids in body-centered cubic (BCC) Fe was investigated by two different approaches: one based on the Orowan equation to link the measured hardness with the average size and density of voids, and the other involving direct observation of the interaction between dislocations and voids by transmission electron microscope (TEM). The strength factor of voids induced by ion irradiation estimated by the Orowan equation was 0.6, whereas the strength factor estimated by the direct TEM approach was 0.8. The difference in the strength factors measured by the two approaches is due to the positional relationship between dislocations and voids: the central region of a void is stronger than the tip. Moreover, the gliding plane and the direction of dislocation may also affect the strength factor of voids. This study determined the strength factor of voids in BCC Fe accurately, and suggested that the contribution of voids to the irradiation hardening is larger than that of dislocation loops and Cu-rich precipitates.
Bond-order potential for magnetic body-centered-cubic iron and its transferability
Lin, Yi-Shen; Mrovec, M.; Vitek, V.
2016-06-01
We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to
Segregation and H2 transport rate control in body-centered cubic PdCu membranes.
Yuan, Lixiang; Goldbach, Andreas; Xu, Hengyong
2007-09-20
The H2 permeation of a supported 2 microm thick Pd48Cu52 membrane was investigated between 373 and 909 K at DeltaP=0.1 MPa. The initial H2 flux was 0.3 mol.m(-2).s(-1) at 723 K with an ideal H2/N2 selectivity better than 5000. The membrane underwent a bcc-fcc (body-centered cubic to face-centered cubic) phase transition between 723 and 873 K resulting in compositional segregation. After reannealing at 723 K the alloy layer reverted to a bcc structure although a small fcc fraction remained behind. The mixed-phase morphology was analyzed combining X-ray diffraction with scanning electron microscopy-energy-dispersive spectroscopic analysis (SEM-EDS) measurements, which revealed micrometer-scale Cu-enriched bcc and Cu-depleted fcc domains. The H2 flux JH2 of the fcc Pd48Cu52 single phase layer prevailing above 873 K could be described by an Arrhenius law with JH2=(7.6+/-4.9) mol.m(-2).s(-1) exp[(-32.9+/-4.5) kJ.mol(-1)/(RT)]. The characterization of the H2 flux in the mixed-phase region required two Arrhenius laws, i.e., JH2=(1.35+/-0.14) mol.m(-2).s(-1) exp[(-10.3+/-0.5) kJ.mol(-1)/(RT)] between 523 and ca. 700 K and JH2=(56.1+/-9.3) mol.m(-2).s(-1) exp[(-25.3+/-0.6) kJ.mol(-1)/(RT)] below 454 K. The H2 flux exhibited a square root pressure dependence above 523 K, but the pressure exponent gradually increased to 0.77 upon cooling to 373 K. The activation energy and pressure dependence in the intermediate temperature range are consistent with a diffusion-limited H2 transport, while the changes of these characteristics at lower temperatures indicate a desorption-limited H2 flux. The prevalence of desorption as the permeation rate-limiting step below 454 K is attributed to the pairing of an extraordinarily high hydrogen diffusivity with a marginal hydrogen solubility in bcc PdCu alloys. These result in an acceleration of the bulk diffusion rate and a deceleration of the desorption rate, respectively, allowing the bulk diffusion rate to surpass the desorption rate up to
Deformation behaviour of body centered cubic iron nanopillars containing coherent twin boundaries
Sainath, G.; Choudhary, B. K.
2016-01-01
Molecular dynamics simulations were performed to understand the role of twin boundaries on deformation behaviour of body-centred cubic (BCC) iron (Fe) nanopillars. The twin boundaries varying from one to five providing twin boundary spacing in the range 8.5 - 2.8 nm were introduced perpendicular to the loading direction. The simulation results indicated that the twin boundaries in BCC Fe play a contrasting role during deformation under tensile and compressive loadings. During tensile deformat...
Wang, Shuai; Takahashi, Keisuke; Hashimoto, Naoyuki; Isobe, Shigehito; Ohnuki, Somei
2013-01-01
Effect of hydrogen in body-centered cubic iron is explored by using the density function theory. Hydrogen atoms increase the concentration of free electrons in the simulation cell and have bonding interaction with Fe atom. Caused by anisotropic strain components of hydrogen atoms in the tetrahedral sites, elastic interaction for hydrogen with screw dislocation has been found. The dependence of hydrogen-screw dislocation interaction on hydrogen concentration is confirmed by repeated stress rel...
Energy Technology Data Exchange (ETDEWEB)
Souvatzis, P; Rudin, S P [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bjoerkman, T; Eriksson, O [Department of Physics, Uppsala University, Box 530, SE-75121, Uppsala (Sweden); Andersson, P [FOI, Swedish Defence Research Agency, SE-164 90 Stockholm (Sweden); Katsnelson, M I [Institute for Molecules and Materials, Radboud University Nijmegen, NL-6525 ED, Nijmegen (Netherlands)], E-mail: petros.souvatzis@gmail.com
2009-04-29
A recently developed self-consistent ab initio lattice dynamical method has been applied to the high temperature body centered cubic (bcc) phase of La and Th, which are dynamically unstable at low temperatures. The bcc phase of these metals is found to be stabilized by phonon-phonon interactions. The calculated high temperature phonon frequencies for La are found to be in good agreement with the corresponding experimental data.
Equilibrium shapes and faceting for ionic crystals of body-centered cubic type
Carlon, E.; van Beijeren, H.
2000-01-01
A mean-field theory is developed for a calculation of the surface free energy of the staggered body-centered solid-on-solid (or six vertex) model as function of the surface orientation and temperature. The model approximately describes surfaces of crystals with nearest neighbor attractions, and next
Computational prediction of body-centered cubic carbon in an all-s p3 six-member ring configuration
Li, Zhen-Zhen; Lian, Chao-Sheng; Xu, Jing; Xu, Li-Fang; Wang, Jian-Tao; Chen, Changfeng
2015-06-01
Recent shock compression experiments produced clear evidence of a new carbon phase, but a full structural identification has remained elusive. Here we establish by ab initio calculations a body-centered cubic carbon phase in I a 3 ¯d (Oh10) symmetry, which contains twelve atoms in its primitive cell, thus termed BC12, and comprises all-s p3 six-membered rings. This structural configuration places BC12 carbon in the same bonding type as cubic diamond, and its stability is verified by phonon mode analysis. Simulated x-ray diffraction patterns provide an excellent match to the previously unexplained distinct diffraction peak found in shock compression experiments. Electronic band and density of states calculations reveal that BC12 is a semiconductor with a direct band gap of ˜2.97 eV . These results provide a solid foundation for further exploration of this new carbon allotrope.
Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys
Directory of Open Access Journals (Sweden)
Hao-Ting Shen
2016-06-01
Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.
The thermal expansion of a face-centered cubic lattice with central two-body interactions
Bicknese, V.
1965-01-01
The thermal expansion e is calculated by minimizing the free energy, including the cubic and quartic phonon-interaction terms. The free energy is expanded to third order in e. The work is closely related to that of Maradudin and Maradudin, Flinn and Coldwell-Horsfall. The resulting formulas are appl
Equilibrium shapes and faceting for ionic crystals of body-centered-cubic type
Carlon; van Beijeren H
2000-12-01
A mean-field theory is developed for a calculation of the surface free energy of the staggered body-centered solid-on-solid (or six vertex) model as function of the surface orientation and temperature. The model approximately describes surfaces of crystals with nearest neighbor attractions, and next nearest neighbor repulsions. The mean-field free energy is calculated by expressing the model in terms of interacting directed walks on a lattice. The resulting equilibrium shape is very rich with facet boundaries and boundaries between reconstructed and unreconstructed regions, which can be either sharp (first order) or smooth (continuous). In addition, there are tricritical points where a smooth boundary changes into a sharp one, and triple points where three sharp boundaries meet. Finally our numerical results strongly suggest the existence of conical points, at which tangent planes of a finite range of orientations all intersect each other. The thermal evolution of the equilibrium shape in this model shows a strong similarity to that seen experimentally for ionic crystals.
Directory of Open Access Journals (Sweden)
C. P. Chui
2014-08-01
Full Text Available The understanding of the magnetovolume effect lacks explicit consideration of spin-lattice coupling at the atomic level, despite abundant theoretical and experimental studies throughout the years. This research gap is filled by the recently developed spin-lattice dynamics technique implemented in this study, which investigates the magnetovolume effect of isotropic body-centered-cubic (BCC iron, a topic that has previously been subject to macroscopic analysis only. This approach demonstrates the magnetic anomaly followed by the volumetric changes associated with the effect, each characterized by the corresponding field-induced inflection temperature. The temperature of the heat capacity peaks is useful in determining the temperature for retarding the atomic volume increase. Moreover, this work shows the correlation between the effects of temperature and field strength in determining the equilibrium atomic volume of a ferromagnetic material under a magnetic field.
Hao, Zheng-Ming; Fang, Rui-Qin; Wu, Hai-Shun; Zhang, Xian-Ming
2008-09-15
Hydrothermal reaction of Cu(MeCO2)2, (4-pyridylthio)acetic acid and NH4SCN resulted in a twelve-connected face-centered cubic topological metal-organic framework [Cu3(pdt)2(CN)] (pdt = pyridinethiolate) in which Cu6S4 clusters act as twelve-connected nodes and pyridine rings and cyanides act as connectors. As an extension, an unprecedented fourteen-connected body-centered cubic coordination polymer [Cu19I4(pdt)12(SH)3] has been synthesized by three methods, in which nanosized chiral Cu19I4S12 clusters act as fourteen-connected nodes and triple pyridine rings and hydrosulfides act as connectors. The in situ S-C(sp(3)), S-C(sp(2)), and S-C(sp) cleavage reactions have been observed in the work.
Csébfalvi, Balázs
2010-01-01
In this paper, we demonstrate that quasi-interpolation of orders two and four can be efficiently implemented on the Body-Centered Cubic (BCC) lattice by using tensor-product B-splines combined with appropriate discrete prefilters. Unlike the nonseparable box-spline reconstruction previously proposed for the BCC lattice, the prefiltered B-spline reconstruction can utilize the fast trilinear texture-fetching capability of the recent graphics cards. Therefore, it can be applied for rendering BCC-sampled volumetric data interactively. Furthermore, we show that a separable B-spline filter can suppress the postaliasing effect much more isotropically than a nonseparable box-spline filter of the same approximation power. Although prefilters that make the B-splines interpolating on the BCC lattice do not exist, we demonstrate that quasi-interpolating prefiltered linear and cubic B-spline reconstructions can still provide similar or higher image quality than the interpolating linear box-spline and prefiltered quintic box-spline reconstructions, respectively.
Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices
Farnell, D. J. J.; Götze, O.; Richter, J.
2016-06-01
The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.
Collective dynamics and self-diffusion in a diblock copolymer melt in the body-centered cubic phase.
Papadakis, C M; Rittig, F; Almdal, K; Mortensen, K; Stĕpánek, P
2004-12-01
The structure and dynamics of a strongly asymmetric poly(ethylene propylene)-poly(dimethylsiloxane) (PEP-PDMS) diblock copolymer in the melt have been studied over a wide temperature range. Small-angle neutron scattering reveals that the sample exhibits two stable phases in this temperature range: Above the order-to-disorder transition temperature, it is disordered, whereas the domain structure is body-centered cubic (bcc) below, being stable down to the lowest temperatures measured. In the disordered state, dynamic light scattering (DLS) in the polarized geometry reveals the heterogeneity mode and the cluster mode. In the bcc phase, the PEP and the PDMS blocks form the micellar cores and the matrix, respectively. Here, two modes are observed in DLS, and the diffusion coefficients measured using pulsed field gradient (PFG) NMR are broadly distributed with the most probable diffusion coefficient coinciding with the slow DLS mode. We attribute the fast process in the bcc state to concentration fluctuations of the micellar cores (PEP), relaxing by mutual diffusion of the micelles with copolymers dissolved in the PDMS matrix. The slower process in the bcc state is ascribed to activated long-range self-diffusion of single copolymers from micelle to micelle through the PDMS matrix. This assignment is corroborated by the good coincidence of the reduced diffusivities with the ones from the literature. However, this mode may also be assigned to the rearrangement of entire micelles.
Torija, Maria A; Choi, Soo-Hyung; Lodge, Timothy P; Bates, Frank S
2011-05-19
Small-angle X-ray diffraction experiments have uncovered a remarkable mechanism of grain alignment during plastic deformation of ordered sphere-forming diblock copolymer micelles when subjected to large amplitude dynamic shearing. A nearly monodisperse poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymer with block molecular weights of 42,000 and 60,000 was mixed with squalane (C(30)H(62)), an EP selective solvent, at a concentration of 10 wt%. After high temperature annealing, the sample formed an ordered polydomain morphology containing glassy S cores at room temperature. SAXS powder patterns confirm body-centered cubic (BCC) symmetry and reveal the development of a complex array of two-dimensionally resolved Bragg reflections following the application, and cessation, of oscillatory shearing. These diffraction results are interpreted on the basis of the classic mechanism of crystalline slip, which accounts for plastic deformation of ductile materials such as metals. Four distinct slip systems are shown to be active in this work, suggesting a robust basis for deforming and mixing of soft ordered solids.
Mi, Bin-Zhou
2017-02-01
The magnetic and thermodynamic properties of anisotropic frustrated spin-1 Heisenberg antiferromagnet on a body-centered cubic lattice for Néel phase (the region of weak frustration) are systematically investigated by use of the double-time Green's function method within the random phase approximation and the Anderson and Callen's decoupling. The zero-temperature sublattice magnetization and Néel temperature increase with spin anisotropy strength and single-ion anisotropy strength, and decrease with frustration strength. This indicates that quantum fluctuation is suppressed by spin anisotropy and single-ion anisotropy, by contrast, is strengthened by frustration. It is possible to tune the quantum fluctuations by the competition of anisotropy strength and frustration strength to change the ground state properties of magnetic materials. Although we find that both the spin anisotropy and the single-ion anisotropy suppress the quantum fluctuations, but their respective effects on the thermodynamic quantities, especially the internal energy and free energy, are different at zero temperature and finite temperature. Furthermore, when these two kinds of anisotropic coexist, the effect of the spin anisotropy on the sublattice magnetization and internal energy is larger than that of the single-ion anisotropy.
Energy Technology Data Exchange (ETDEWEB)
Torija, Maria A.; Choi, Soo-Hyung; Lodge, Timothy P.; Bates, Frank S. (UMM)
2013-03-07
Small-angle X-ray diffraction experiments have uncovered a remarkable mechanism of grain alignment during plastic deformation of ordered sphere-forming diblock copolymer micelles when subjected to large amplitude dynamic shearing. A nearly monodisperse poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymer with block molecular weights of 42,000 and 60,000 was mixed with squalane (C{sub 30}H{sub 62}), an EP selective solvent, at a concentration of 10 wt %. After high temperature annealing, the sample formed an ordered polydomain morphology containing glassy S cores at room temperature. SAXS powder patterns confirm body-centered cubic (BCC) symmetry and reveal the development of a complex array of two-dimensionally resolved Bragg reflections following the application, and cessation, of oscillatory shearing. These diffraction results are interpreted on the basis of the classic mechanism of crystalline slip, which accounts for plastic deformation of ductile materials such as metals. Four distinct slip systems are shown to be active in this work, suggesting a robust basis for deforming and mixing of soft ordered solids.
Pauling, L
1989-11-01
The twofold-axis electron-diffraction photographs of icosahedral quasicrystals are of three kinds, reflecting three different structures of the cubic crystals that by icosahedral twinning form the quasicrystals. The first kind, represented by Al(13)Cu(4)Fe(3), contains two very large icosahedral complexes, each of about 4680 atoms, in the body-centered arrangement, with six smaller icosahedral complexes (104 atoms each) in the principal interstices. The second kind, represented by Al(5)Mn, contains four of the very large complexes in the face-centered arrangement (cubic close packing), with four of the smaller clusters in the interstices. The third kind, represented by Al(6)CuLi(3), contains eight icosahedral complexes, each of about 1350 atoms, in the beta-W arrangement. The supporting evidence for these cubic structures is discussed as well as other evidence showing that the simple quasicrystal theory, which states that quasicrystals do not involve any translational identity operations, has to be modified.
Majumdar, Kingshuk; Datta, Trinanjan
2009-10-07
At zero temperature the sublattice magnetization of the quantum spin- 1/2 Heisenberg antiferromagnet on a body-centered cubic lattice with competing first and second neighbor exchange (J(1) and J(2)) is investigated using the non-linear spin wave theory. The zero temperature phases of the model consist of a two sublattice Néel phase for small J(2) (AF(1)) and a collinear phase at large J(2) (AF(2)). We show that quartic corrections due to spin wave interactions enhance the sublattice magnetization in both the AF(1) and the AF(2) phase. The magnetization corrections are prominent near the classical transition point of the model and in the J(2)>J(1) regime. The ground state energy with quartic interactions is also calculated. It is found that up to quartic corrections the first order phase transition (previously observed in this model) between the AF(1) and the AF(2) phase survives.
Institute of Scientific and Technical Information of China (English)
YANG Lin-Hong; DONG Hong-Xing; SUN Zheng; SUN Liao-Xin; SHEN Xue-Chu; CHEN Zhang-Hai
2011-01-01
@@ We report an experimental study on the temperature-induced phase transition of three-dimensional nanosheetbased flower-like microspheres(NBFMs)of In2O3.Using InOOH as precursor, rhombohedral-In2O3 NBFMs are fabricated.Temperature-induced phase transition of In2O3 NBFMs from a rhombohedral(rh) structure to a body-centered cubic(bcc) structure is examined by Raman spectroscopy and x-ray diffraction.The critical phase transition temperature is found to be about 500℃.Photoluminescence(PL)spectra of In2O3 are measured before annealing and after annealing at different temperatures.The PL spectral results provide further evidence for the phase transition, confirming the fabrication of bcc-In2O3 NBFMs via a simple annealing method.
Sahara, Ryoji; Emura, Satoshi; Ii, Seiichiro; Ueda, Shigenori; Tsuchiya, Koichi
2014-06-01
The electronic structures and structural properties of body-centered cubic Ti-Mo alloys were studied by first-principles calculations. The special quasirandom structures (SQS) model was adopted to emulate the solid solution state of the alloys. The valence band electronic structures of Ti-Mo and Ti-Mo-Fe alloys were measured by hard x-ray photoelectron spectroscopy. The structural parameters and valence band photoelectron spectra were calculated using first-principles calculations. The results obtained with the SQS models showed better agreement with the experimental results than those obtained using the conventional ordered structure models. This indicates that the SQS model is effective for predicting the various properties of solid solution alloys by means of first-principles calculations.
Goodfellow, Brian W; Patel, Reken N; Panthani, Matthew G; Smilgies, Detlef-M; Korgel, Brian A
2011-04-14
The structural evolution of a body-centered cubic (bcc) superlattice of 6.6 nm diameter organic ligand-coated PbSe nanocrystals was studied in situ by small angle X-ray scattering (SAXS) as it was heated in air from room temperature to 350°C. As it was heated above room temperature, the superlattice contracted slightly, but maintained bcc structure up to 110°C. Once the temperature rose above 110°C, the superlattice began to disorder, by first losing long-range translational order and then local positional order. At temperatures exceeding 168°C, the nanocrystals sintered and oxidized, transforming into PbSeO(3) nanorods.
Csébfalvi, Balázs
2013-09-01
In this paper, Cosine-Weighted B-spline (CWB) filters are proposed for interpolation on the optimal Body-Centered Cubic (BCC) lattice. We demonstrate that our CWB filters can well exploit the fast trilinear texture-fetching capability of modern GPUs, and outperform the state-of-the-art box-spline filters not just in terms of efficiency, but in terms of visual quality and numerical accuracy as well. Furthermore, we rigorously show that the CWB filters are better tailored to the BCC lattice than the previously proposed quasi-interpolating BCC B-spline filters, because they form a Riesz basis; exactly reproduce the original signal at the lattice points; but still provide the same approximation order.
Directory of Open Access Journals (Sweden)
Shinichi Sakurai
2010-12-01
Full Text Available Block copolymers forming glassy spheres in the matrix of rubbery chains can exhibit elastomeric properties. It is well known that the spherical microdomains are arranged in the body-center cubic (bcc lattice. However, recently, we have found packing in the face-centered cubic (fcc lattice, which is easily transformed into the bcc lattice upon uniaxial stretching. In the same time, the packing regularity of the spheres in the bcc lattice was found to be enhanced for samples completely recovered from the stretched state. This reminds us that a cycle of stretching-and-releasing plays an important role from analogy of densification of the packing in granules upon shaking. In the current paper, we quantify the enhancement of packing regularity of spherical microdomains in the bcc lattice upon uniaxial stretching of the same elastomeric triblock copolymer as used in our previous work by conducting small-angle X-ray scattering (SAXS measurements using high brilliant synchrotron radiation. Isotropically circular rings of the lattice peaks observed for the unstretched sample turned into deformed ellipsoidal rings upon the uniaxial stretching, with sharpening of the peaks in the direction parallel to the stretching direction and almost disappearing of the peaks in the perpendicular direction. By quantitatively analyzing the SAXS results, it was found that the packing regularity of the spherical microdomains was enhanced in the parallel direction while it was spoiled in the perpendicular direction under the stretched state. The enhanced regularity of packing was unchanged even if the stretching load was completely removed.
Rood, Jeffrey A; Boggess, William C; Noll, Bruce C; Henderson, Kenneth W
2007-11-07
Reaction of Mg(NO3)2.6H2O with (+)-camphoric acid (H2cam) in acetonitrile results in the immediate formation of soluble, dimetallic [Mg2(Hcam)3]+ cations. The formation of these stable cations in solution was determined by electrospray ionization mass spectrometry (ESI-MS). These dimers are 3-fold paddle-wheels, which associate together through the neutral acid units to build the metal-organic framework [Mg2(Hcam)3.3H2O].NO3.MeCN, 1. The network consists of a series of fused Mg12 cages that have 12 water molecules at their centers, creating isolated 0D cavities within the structure. Overall, the extended structure of 1 is a body-centered cubic (bcu) lattice, with the Mg12 cages being utilized as eight-connected nodes. The framework of 1 is chiral and adopts the very unusual space group I23. Use of 1,3-propanediol as an additive results in the formation of the simple 1D polymer [Mg(cam){HO(CH2)3OH}2], 2. In 2, each carboxylate-bridged metal center is chelated by two diols. ESI-MS studies confirm the formation of new ions in these solutions. The identities of 1 and 2 were confirmed by a combination of single-crystal X-ray diffraction, elemental analyses, IR, NMR, themogravimetric analyses, and ESI-MS data. ESI-MS has proven to be a valuable technique in the identification of stable SBUs in solution prior to network formation.
Sahara, Ryoji; Matsunaga, Tetsuya; Hongo, Hiromichi; Tabuchi, Masaaki
2016-05-01
Small amounts of boron improve the mechanical properties in high-chromium ferritic heat-resistant steels. In this work, the stabilizing mechanism by boron in body-centered cubic iron (bcc Fe) through (Fe,Cr)23(C,B)6 precipitates was investigated by first-principles calculations. Formation energy analysis of (Fe,Cr)23(C,B)6 reveals that the compounds become more stable to elemental solids as the boron concentration increases. Furthermore, the interface energy of bcc Fe(110) || Fe23(C,B)6(111) also decreases with boron concentration in the compounds. The decreased interface energy caused by boron addition is explained by the balance between the change in the phase stability of the precipitates and the change in the misfit parameter for the bcc Fe matrix and the precipitates. These results show that boron stabilizes the microstructure of heat-resistant steels, which is important for understanding the origins of the creep strength in ferritic steels.
Wang, H B; Wang, Q; Dong, C; Yuan, L; Xu, F; Sun, L X
2008-03-19
This paper analyzes the characteristics of alloy compositions with large hydrogen storage capacities in Laves phase-related body-centered cubic (bcc) solid solution alloy systems using the cluster line approach. Since a dense-packed icosahedral cluster A(6)B(7) characterizes the local structure of AB(2) Laves phases, in an A-B-C ternary system, such as Ti-Cr (Mn, Fe)-V, where A-B forms AB(2) Laves phases while A-C and B-C tend to form solid solutions, a cluster line A(6)B(7)-C is constructed by linking A(6)B(7) to C. The alloy compositions with large hydrogen storage capacities are generally located near this line and are approximately expressed with the cluster-plus-glue-atom model. The cluster line alloys (Ti(6)Cr(7))(100-x)V(x) (x = 2.5-70 at.%) exhibit different structures and hence different hydrogen storage capacities with increasing V content. The alloys (Ti(6)Cr(7))(95)V(5) and Ti(30)Cr(40)V(30) with bcc solid solution structure satisfy the cluster-plus-glue-atom model.
Wang, Yu; Su, Haifeng; Ren, Liting; Malola, Sami; Lin, Shuichao; Teo, Boon K; Häkkinen, Hannu; Zheng, Nanfeng
2016-11-21
The synthesis, structure, substitution chemistry, and optical properties of the gold-centered cubic monocationic cluster [Au@Ag8 @Au6 (C≡C(t) Bu)12 ](+) are reported. The metal framework of this cluster can be described as a fragment of a body-centered cubic (bcc) lattice with the silver and gold atoms occupying the vertices and the body center of the cube, respectively. The incorporation of alkali metal atoms gave rise to [Mn Ag8-n Au7 (C≡C(t) Bu)12 ](+) clusters (n=1 for M=Na, K, Rb, Cs and n=2 for M=K, Rb), with the alkali metal ion(s) presumably occupying the vertex site(s), whereas the incorporation of copper atoms produced [Cun Ag8 Au7-n (C≡C(t) Bu)12 ](+) clusters (n=1-6), with the Cu atom(s) presumably occupying the capping site(s). The parent cluster exhibited strong emission in the near-IR region (λmax =818 nm) with a quantum yield of 2 % upon excitation at λ=482 nm. Its photoluminescence was quenched upon substitution with a Na(+) ion. DFT calculations confirmed the superatom characteristics of the title compound and the sodium-substituted derivatives.
Face-Centered-Cubic Nanostructured Polymer Foams
Cui, C.; Baughman, R. H.; Liu, L. M.; Zakhidov, A. A.; Khayrullin, I. I.
1998-03-01
Beautifully iridescent polymer foams having Fm-3m cubic symmetry and periodicities on the scale of the wavelength of light have been synthesized by the templating of porous synthetic opals. These fabrication processes involve the filling of porous SiO2 opals (with typical cubic lattice parameters of 250 nm) with either polymers or polymer precursors, polymerization of the precursors if necessary, and removal of the fcc array of SiO2 balls to provide an all-polymer structure. The structures of these foams are similar to periodic minimal surfaces, although the Gaussian curvature can have both positive and negative values. Depending upon whether the internal surfaces of the opal are polymer filled or polymer coated, the polymer replica has either one or two sets of independent channels. We fill these channels with semiconductors, metals, or superconductors to provide electronic and optical materials with novel properties dependent on the nanoscale periodicity.
Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters
Souza, T. X. R.; Macedo, C. A.
2016-01-01
In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh’s conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653
The Symmetry and Packing Fraction of The Body Centered Tetragonal Structure
Dunlap, Richard
2012-01-01
It is shown that for different ratios of lattice parameters, c/a, the body centered tetragonal structure may be view as body centered tetragonal, body centered cubic, face centered cubic or hexagonal. This illustrates that the apparent symmetry of a lattice depends on the choice of the conventional unit cell.
The Symmetry and Packing Fraction of the Body Centered Tetragonal Structure
Dunlap, Richard A.
2012-01-01
It is shown that for different ratios of lattice parameters, "c/a," the body centered tetragonal structure may be view as body centered tetragonal, body centered cubic, face centered cubic or hexagonal. This illustrates that the apparent symmetry of a lattice depends on the choice of the conventional unit cell.
Magnetic and thermodynamic properties of face-centered cubic Fe-Ni alloys.
Lavrentiev, M Yu; Wróbel, J S; Nguyen-Manh, D; Dudarev, S L
2014-08-14
A model lattice ab initio parameterized Heisenberg-Landau magnetic cluster expansion Hamiltonian spanning a broad range of alloy compositions and a large variety of chemical and magnetic configurations has been developed for face-centered cubic Fe-Ni alloys. The thermodynamic and magnetic properties of the alloys are explored using configuration and magnetic Monte Carlo simulations over a temperature range extending well over 1000 K. The predicted face-centered cubic-body-centered cubic coexistence curve, the phase stability of ordered Fe3Ni, FeNi, and FeNi3 intermetallic compounds, and the predicted temperatures of magnetic transitions simulated as functions of alloy composition agree well with experimental observations. Simulations show that magnetic interactions stabilize the face-centered cubic phase of Fe-Ni alloys. Both the model Hamiltonian simulations and ab initio data exhibit a particularly large number of magnetic configurations in a relatively narrow range of alloy compositions corresponding to the occurrence of the Invar effect.
nanocomposites with body- centered cubic structure%一步法制备体心立方结构的介孔碳／氧化硅纳米复合材料
Institute of Scientific and Technical Information of China (English)
刘玉荣; 涂铭旌; 张进
2012-01-01
以酚醛树脂预聚体（Res01）为碳源前驱体，嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯（PEO-PPO-PEO，F127）和聚二甲基硅氧烷-聚氧乙烯（PDMS-PEO）为混合模板剂，采用溶剂挥发诱导自组装（EISA）方法制备了有序介孔碳-氧化硅纳米复合材料，并进一步采用小角X射线散射（SAXS）、透射电子显微镜（TEM）和氮气吸脱附分析对所制备样品的结构和组成进行表征．结果表明，所制备的介孔碳／氧化硅纳米复合材料具有体心立方Im3m结构，其BET比表面积、总孔容和孔径分别为l410m^2／g，1．12cm^3／g和5．4nm．%Mixed amphiphilic block copolymers of poly （ethylene oxide） - poly （propylene oxide） -poly （ethylene oxide） （ PEO - PPO - PEO） and polydimethylsiloxane poly （ ethylene oxide ） （ PDMS - PEO） have been successfully used as cotemplates to prepare ordered mesoporous carbon/silica nanocomposites by using phenolic resol polymer as a carbon precursor via the strategy of evaporation induced selfassembly （EISA）. The structure and compositions of the samples have been characterized by smallangle X- ray scattering （SAXS）, transmission electron microscopy （TEM） and nitrogen- sorption measurements. Experiments show that body - centered cubic （ space group lm＇3m） mesoporous carbon/silica nanocomposite have been obtained. The BET surface areas, total pore sizes and pore volumes of mesoporous car- bon/silica nanocomposite are 1 410 m^2/g, 1. 12 cm^3/g and 5.4 nm,respectively.
Institute of Scientific and Technical Information of China (English)
朱俊; 曹乐千
2001-01-01
The simple oxygen wave functions are chosen as the electronic wave function of the H+9 cluster with one center spherical model approximation. The energy curve of the body-centered cubic structure of the H+9 cluster is calculated by means of variational method. The result of the calculation shows that the curve has a minimal energy -4.376 h0 at R=1.97a0 (a0=0.529 177×10-10 m, h0=27.2 eV). This means that the body-centered cubic structure of the H+9 cluster is stable and the cluster of H+9 may exist.%在单中心球模型近似下，选用类O原子解析函数，用变分法计算了H+9团簇体心立方结构与能量。结果表明当中心氢原子核到顶角氢原子核之间的距离R=1.97a0时，体系能量有一极小值E=-4.376 h0(a0=0.529 177×10-10m, h0=27.2 eV)。这表明H+9团簇的体心立方结构是稳定的结构，H+9团簇是存在的。
Deformation-induced structural transition in body-centred cubic molybdenum.
Wang, S J; Wang, H; Du, K; Zhang, W; Sui, M L; Mao, S X
2014-03-07
Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original -oriented body-centred cubic structure to a -oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into -oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama-Wassermann and Kurdjumov-Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions.
High pressure-induced distortion in face-centered cubic phase of thallium
Kotmool, Komsilp; Li, Bing; Chakraborty, Sudip; Bovornratanaraks, Thiti; Luo, Wei; Mao, Ho-kwang; Ahuja, Rajeev
2016-10-01
The complex and unusual high-pressure phase transition of III-A (i.e. Al, Ga, and In) metals have been investigated in the last several decades because of their interesting periodic table position between the elements having metallic and covalent bonding. Our present first principles-based electronic structure calculations and experimental investigation have revealed the unusual distortion in face-centered cubic (f.c.c.) phase of the heavy element thallium (Tl) induced by the high pressure. We have predicted body-centered tetragonal (b.c.t) phase at 83 GPa using an evolutionary algorithm coupled with ab initio calculations, and this prediction has been confirmed with a slightly distorted parameter (2 × a - c)/c lowered by 1% using an angle-dispersive X-ray diffraction technique. The density functional theory (DFT)-based calculations suggest that s-p mixing states and the valence-core overlapping of 6s and 5d states play the most important roles for the phase transitions along the pathway h.c.p→b.c.t.
CENTER CONDITIONS AND CYCLICITY FOR A FAMILY OF CUBIC SYSTEMS: COMPUTER ALGEBRA APPROACH.
Ferčec, Brigita; Mahdi, Adam
2013-01-01
Using methods of computational algebra we obtain an upper bound for the cyclicity of a family of cubic systems. We overcame the problem of nonradicality of the associated Bautin ideal by moving from the ring of polynomials to a coordinate ring. Finally, we determine the number of limit cycles bifurcating from each component of the center variety.
Exact Evaluation of The Resistance in an Infinite Face- Centered Cubic Network
Asad, Jihad H
2012-01-01
The equivalent resistance between the origin and the lattice site (2n,0,0), in an infinite Face Centered Cubic network consisting from identical resistors each of resistance R, has been expressed in terms of the complete elliptic integral of the first kind, and . The asymptotic behavior is investigated, and some numerical values for the equivalent resistance are presented.
Hilhorst, J.; Wolters, J. R.; Petukhov, A.V.
2010-01-01
Hard sphere crystal growth is a delicate interplay between kinetics and thermodynamics, where the former is commonly thought to favour a random hexagonal close packed structure and the latter leads to a face centered cubic crystal. In this article, we discuss the influence of slanted stacking faults
Direct Numerical Simulation of turbulent flow in a porous, face centered cubic cell
He, Xiaoliang; Apte, Sourabh; Wood, Brian
2014-11-01
DNS of flow through a 3D, periodic, face centered cubic (FCC) unit cell geometry at Re = 300 , 550, and 950 based on diameter is performed. This low porosity arrangement of spheres is characterized by rapid flow expansions and contractions, and thus features an early onset to turbulence. The simulations are performed using a fictitious domain approach [Apte et al., J. Comp. Physics 2009], which uses non-body conforming Cartesian grids, with resolution up to D / Δ = 250 (3543 cells total). The results are used to investigate the structure of turbulence in the Eulerian and Lagrangian frames, the distribution and budget of turbulent kinetic energy, and the characteristics of the energy spectrum in complex packed beds and porous media. The porescale flow physics, which are important to properties such as bulk mixing performance and permeability, are investigated. Specifically, the data generated is being used to understand the important turbulence characteristics in low porosity packed beds of relevance for heat tranfer applications in chemical/nuclear reactors. Funding: NSF Project Number 1336983.
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-07-01
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-07-19
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.
Accurate quantum mechanical treatment of phonon instability: body-centred cubic zirconium
Wang, Y; Qian, M C; Johansson, B
2002-01-01
The T sub 1 N point and omega point phonon anomalies for body-centred cubic (bcc) Zr are studied using an approach which goes beyond the traditional quasi-harmonic approximation and perturbation theory. We are able to reproduce, for the first time, the anomalous phonon behaviour in bcc Zr. (letter to the editor)
Institute of Scientific and Technical Information of China (English)
刘静; 张建民
2008-01-01
采用改进分析型嵌入原子法(modified analytical embedded atom method,MAEAM),从原子尺度对体心立方(body-centered cubic,BCC)金属Li在以[001]为旋转轴的对称倾斜晶界(symmetrical tilt grain boundary,STGB)中的结构和能量进行了计算机模拟.结果表明,刚性结合的对称倾斜晶界面附近的原子距离非常近,从而导致能量异常高.所研究的27个晶界面两晶粒间的相对平移均可降低晶界能,最小晶界能出现在特定的平移距离处,且随重合密度倒数∑增加而振荡增加,随相对面间距d/a增加而减小,3个最低能量的晶界面依次对应于(310)、(530)和(510).由能量最小化原理知这些晶界面将依次择优出现.
Low-temperature softening in body-centered cubic alloys
Pink, E.; Arsenault, R. J.
1979-01-01
In the low-temperature range, bcc alloys exhibit a lower stress-temperature dependence than the pure base metals. This effect often leads to a phenomenon that is called 'alloy softening': at low temperatures, the yield stress of an alloy may be lower than that of the base metal. Various theories are reviewed; the most promising are based either on extrinsic or intrinsic models of low-temperature deformation. Some other aspects of alloy softening are discussed, among them the effects on the ductile-brittle transition temperature.
Vibrational Properties of Body-Centered Tetragonal C4
Institute of Scientific and Technical Information of China (English)
L(U) Zhen-Long; YOU Jing-Han; ZHAO Yuan-Yuan; WANG Hui
2011-01-01
Body-centered tetragonal C4 (bct C4) is a new form of crystalline sp3 carbon, which is found to be transparent, dynamically stable at zero pressure and more stable than graphite beyond 18.6 GPa.Symmetry analysis of the vibrational modes of bct C4 at Brillouin zone center is performed, Raman and infrared active modes are identified.The analysis results show that, different from cubic diamond and hexagonal diamond, there is an infrared active mode in bct C4.Based on first-principle method within the local density approximation, vibrational frequencies, Born effective charge tensors, and infrared absorption intensity of bct C4 are obtained.The vibrational modes of bct C4 are presented and compared with those of cubic diamond and hexagonal diamond in detail.
Institute of Scientific and Technical Information of China (English)
陆怀宝; 黎军顽; 倪玉山; 梅继法; 王洪生
2011-01-01
本文采用多尺度准连续介质法（quasi-continuum method,QC）模拟体心立方（body-centered-cubic,bcc）金属钽（Ta）Ⅱ型裂纹尖端位错的形核与发射过程,获得位错发射位置与应力强度因子关系曲线,分析裂纹尖端缺陷萌生过程,研究全位错分解以及扩展位错形成机理.位错活动在不同阶段表现出不一致的特征,新位错的发射对于位错运动具有促进作用.研究表明,裂纹扩展初始阶段首先萌生点缺陷,点缺陷随着加载强度增加会萌生新的点缺陷,点缺陷最终运动到边界,导致Ⅱ型断裂破坏.在全位错发射之前有不全位错的形核与发射表明全位错的分解分步进行,从势能曲线上来看,也就是两个极小值点的形成机理不同.%The quasi-continuum method（QC）,a multiscale method,is used to analyze body-centered-cubic（bcc） metal tantalum（tantalum,Ta） type Ⅱ crack-tip dislocation nucleation.Based on the relationship curves between dislocations emission position and stress intensity factor,the processes of dislocation defect initiation and development are investigated.Dislocation travels forward with different characteristics in different stages and the new nucleated dislocations expedite the already nucleated dislocation to move away from the crack tip.The analysis of initiation of the crack tip defects shows that they are the local defects that first appear,and with loading,more local defects emerge,which eventually move to the boundary,and lead to the type Ⅱ fracture.Furthermore,dislocation dissociation as well as extended dislocation is discussed.The partial dislocation nucleating before the perfect dislocation nucleation and emission is full proof that the dissociation of perfect dislocation takes place step by step,which means that the two minimum points on the energy curve have different formation mechanisms.
Hybrid DFT calculations of the F centers in cubic ABO{sub 3} perovskites
Energy Technology Data Exchange (ETDEWEB)
Kotomin, E A; Zhukovskii, Y F; Piskunov, S [Institute for Solid State Physics, University of Latvia, Kengaraga 8, Riga LV-1063 (Latvia); Ellis, D E [Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 (United States)], E-mail: kotomin@latnet.lv
2008-06-01
We employed the hybrid DFT-LCAO approach as implemented in the CRYSTAL code for 135 atom supercell calculations of O vacancies with trapped electrons (known as the F centers) in three cubic perovskite crystals: SrTiO{sub 3}, PbTiO{sub 3} and PbZrO{sub 3}. The local lattice relaxation, charge redistribution and defect energy levels in the optical gap are compared. We demonstrate how difference in a chemical composition of host materials leads to quite different defect properties.
Void nucleation in biaxially strained ultrathin films of face-centered cubic metals
Kolluri, Kedarnath; Gungor, M. Rauf; Maroudas, Dimitrios
2007-05-01
We report an analysis of void nucleation as a relaxation mechanism in freestanding biaxially strained ultrathin films of face-centered cubic metals based on large-scale molecular-dynamics simulations. Above a critical strain level, multiple threading dislocations are emitted from the film surface. The surface step traces formed by gliding dislocations on intersecting and on adjacent parallel glide planes lead to formation and growth of surface pits and grooves, while vacancies form due to gliding of jogged dislocations and dislocation intersections. Coalescence of the surface pits with vacancy clusters is the precursor to the formation of a larger void extending across the film.
Carl Rogers: Body-Centered Counselor.
Fernald, Peter S.
2000-01-01
C. R. Rogers' approach is examined in the context of person-centered theories of personality and counseling. Identifies similarities between Rogers' thinking and W. Reich's theories in body-oriented psychotherapy. Discusses film-recorded interview conducted by Rogers, which demonstrates his body-centered approach. (Author/JDM)
Molecular dynamics simulation of kink in 《100》 edge dislocation in body centred cubic iron
Institute of Scientific and Technical Information of China (English)
CHEN LiQun; WANG ChongYu; YU Tao
2007-01-01
Using the molecular dynamics method, we have constructed two kink models corresponding to the {010} and {011} edge dislocations (EDs) in body centred cubic (bcc) Fe.It is found that the geometric structure of a kink depends on the type of edge dislocation and the structural energies of the atoms sites in the dislocation core region.The formation energies, migration energies and widths of the kinks in different types of EDs are calculated.The results show that formation and migration of the kink in the {010} edge dislocation are difficult.The {011} edge dislocation moves primarily through kink nucleation, rather than kink migration.
Consistent Analytic Embedded Atom Potential for Face-Centered Cubic Metals and Alloys
Institute of Scientific and Technical Information of China (English)
Iyad A. Hijazi; Young Ho Park
2009-01-01
A consistent empirical embedded-atom potential that includes a long range force was developed for fcc (face-centered cubic) metals and alloys. The proposed potential for pure metals does not require modification of the initial function form when being applied to alloy systems. The potential parameters of this model were determined by fitting lattice constant, three elastic constants, cohesive energy, and vacancy formation energies of the pure metals and the heats of solution of the binary alloys via an optimization technique. Parameters for Ag, Al, Au, Cu, Ni, Pd and Pt were obtained. The obtained parameters were used to calculate the bulk modulus, divacancy formation energy, crystal stability, stacking fault energy, vacancy migration energy, and melting point for each pure metal and the heats of formation and lattice constants for binary alloys. The predicted values were in good agreement with experimental results.
A Face Centered Cubic Key Agreement Mechanism for Mobile Ad Hoc Networks
Askoxylakis, Ioannis G.; Markantonakis, Konstantinos; Tryfonas, Theo; May, John; Traganitis, Apostolos
Mobile ad hoc networking is an operating mode for rapid mobile node networking. Each node relies on adjacent nodes in order to achieve and maintain connectivity and functionality. Security is considered among the main issues for the successful deployment of mobile ad hoc networks (MANETs). In this paper we introduce a weak to strong authentication mechanism associated with a multiparty contributory key establishment method. The latter is designed for MANETs with dynamic changing topologies, due to continuous flow of incoming and departing nodes. We introduce a new cube algorithm based on the face-centered cubic (FCC) structure. The proposed architecture employs elliptic curve cryptography, which is considered more efficient for thin clients where processing power and energy consumption are significant constraints.
First principles simulations of F centers in cubic SrTiO{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Carrasco, J.; Illas, F.; Lopez, N. [Dept. Quimica Fisica, Universitat de Barcelona, C/ Marti i Franques 1, 08028 Barcelona (Spain); Kotomin, E.A. [Institute of Solid State Physics, University of Latvia, Kengaraga 8, 1063 Riga (Latvia); Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Zhukovskii, Yu.F.; Piskunov, S. [Institute of Solid State Physics, University of Latvia, Kengaraga 8, 1063 Riga (Latvia); Maier, J. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Hermansson, K. [Aangstroemlaboratoriet, Uppsala Universitet, Laegerhyddsvaegen 1, 751 21 Uppsala (Sweden)
2005-01-01
Atomic and electronic structure of regular and O-deficient SrTiO{sub 3} have been studied. Several types of first principles atomistic simulations: Hartree-Fock method, Density Functional Theory, and hybrid HF-DFT functionals, have been applied to periodic models that consider supercells of different sizes (ranging between 40 and 240 atoms). We confirm the ionic character of the Sr-O bonds and the high covalency of the Ti-O{sub 2} substructure. For the stoichiometric cubic crystal; the lattice constant and bulk modulus correctly reproduce the experimental data whereas the band gap is only properly obtained by the B3PW functional. The relaxed geometry around the F center shows a large expansion of the two nearest Ti ions. Moreover, the vacancy formation energy is extremely sensitive to the size and the shape of the supercell as well as the calculation method. The electronic density map indicates the redistribution of two electrons of the missing O atom between the vacancy and 3d atomic orbitals of the two nearest Ti ions, in contrast to the F centers in ionic oxides where the charge centroid does not change. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Formation mechanism of fivefold deformation twins in a face-centered cubic alloy.
Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming
2017-03-28
The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins.
Formation mechanism of fivefold deformation twins in a face-centered cubic alloy
Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming
2017-01-01
The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins. PMID:28349995
Institute of Scientific and Technical Information of China (English)
梅继法; 黎军顽; 倪玉山; 王华滔
2011-01-01
The generalized planar fault energy, including the generalized stacking fault ( GSF) and the generalized twinning fault energy (GTF) of body-centered cubic metal Ta are investigated based on the embedded atom potential. The GSF of Ta, much different from that of fcc metal, reveals that no evident energy minimum is observed in the energy curve. This implies that only full dislocations are possibly emitted in the { 112 } slip plane. From the GTF it is predicted that the minimum thickness of a metastable twin is as large as four layers and the five-layer twin is more stable. The incipient twin Ta tends to grow thicker once it is created. To confirm the significance of the GSF and GTF in revealing incipient plasticity, quasicontinuum method is used to simulate the mode II crack of single Ta crystal. The results show that deformation twin and full dislocation along direction in {112} plane are two co-existing mechanisms of crack tip plastic deformation. The initial four-layer twin quickly extends into five-layer and more-layer twins with further loading. A full dislocation is emitted into the front of the crack tip in { 112 } plane. These two plastic deformation mechanisms are well explained by the GTF and the GSF respectively.%基于嵌入原子势考察体心立方(bcc)金属Ta的广义层错能和广义孪晶能并获得广义层错能和广义孪晶能曲线.研究表明,bcc Ta的广义层错能曲线与面心立方金属的广义层错能曲线有明显差异,Ta的广义层错能曲线不存在明显的能量极小值,位错主要以全位错的形式发射.不同原子厚度的广义孪晶能曲线表明4个原子层的孪晶能曲线开始出现亚稳定的能量极小值,5个原子层的孪晶能曲线出现稳定的能量极小值.为进一步验证广义层错能和广义孪晶能曲线揭示的塑性变形机理,采用准连续介质力学多尺度方法研究Ⅱ型裂纹尖端的初始塑性变形过程.结果表明,变形孪晶和全位错发射同为Ⅱ
Numerical Modeling of the Stability of Face-Centered Cubic Metals with High Vacancy Concentration
Energy Technology Data Exchange (ETDEWEB)
Brian P. Somerday; M. I. Baskes
1998-12-01
The objective of this research is to assess the possibility of forming an atomically porous structure in a low-density metal, e.g., Al with vacancies up to 0.20/lattice site; and to examine the effects of hydrogen and vacancy concentration on the stability of an atomically porous structure that has been experimentally produced in nickel. The approach involves numerical modeling using the Embedded-Atom Method (EAM). High vacancy concentrations cause the Al lattice to disorder at 300K. In contrast, Ni retains the face-centered-cubic structure at 300K for vacancy concentrations up to 0.15 Vac/lattice site. Unexpectedly, the lattice with 0.15 Vac/lattice site is more stable than the lattice with 0.10 or 0.20 Vac/lattice site. The Ni systems with 0.10 and 0.15 Vac/lattice site exhibit domains consisting of uniform lattice rotations. The Ni lattice with 0.15 Vac/lattice site is more stable with an initial distribution of random vacancies compared to ordered vacancies. The equilibrium lattice structures of Ni a d Al containing vacancies and H are less ordered to structures with vacancies only at 300K.
Institute of Scientific and Technical Information of China (English)
Feng LI; Yi Rong LIU; Yin Lai JIN
2012-01-01
In this paper,bifurcations of limit cycles at three fine focuses for a class of Z2-equivariant non-analytic cubic planar differential systems are studied.By a transformation,we first transform nonanalytic systems into analytic systems.Then sufficient and necessary conditions for critical points of the systems being centers are obtained.The fact that there exist 12 small amplitude limit cycles created from the critical points is also proved.Henceforth we give a lower bound of cyclicity of Z2-equivariant non-analytic cubic differential systems.
Wang-Landau sampling in face-centered-cubic hydrophobic-hydrophilic lattice model proteins.
Liu, Jingfa; Song, Beibei; Yao, Yonglei; Xue, Yu; Liu, Wenjie; Liu, Zhaoxia
2014-10-01
Finding the global minimum-energy structure is one of the main problems of protein structure prediction. The face-centered-cubic (fcc) hydrophobic-hydrophilic (HP) lattice model can reach high approximation ratios of real protein structures, so the fcc lattice model is a good choice to predict the protein structures. The lacking of an effective global optimization method is the key obstacle in solving this problem. The Wang-Landau sampling method is especially useful for complex systems with a rough energy landscape and has been successfully applied to solving many optimization problems. We apply the improved Wang-Landau (IWL) sampling method, which incorporates the generation of an initial conformation based on the greedy strategy and the neighborhood strategy based on pull moves into the Wang-Landau sampling method to predict the protein structures on the fcc HP lattice model. Unlike conventional Monte Carlo simulations that generate a probability distribution at a given temperature, the Wang-Landau sampling method can estimate the density of states accurately via a random walk, which produces a flat histogram in energy space. We test 12 general benchmark instances on both two-dimensional and three-dimensional (3D) fcc HP lattice models. The lowest energies by the IWL sampling method are as good as or better than those of other methods in the literature for all instances. We then test five sets of larger-scale instances, denoted by the S, R, F90, F180, and CASP target instances on the 3D fcc HP lattice model. The numerical results show that our algorithm performs better than the other five methods in the literature on both the lowest energies and the average lowest energies in all runs. The IWL sampling method turns out to be a powerful tool to study the structure prediction of the fcc HP lattice model proteins.
Perceptual centering effects in body orientation.
Hanes, D A
2006-04-01
This study mathematically characterizes the results of DiZio and Lackner (Percept Psychphys 39(1): 39-46) on the perception of self-orientation during circular vection induced by an optokinetic stimulus. Using the hypothesis of perceptual centering, it is shown that five basic centering transformations can logically account for the full range of illusions reported by the subjects. All five of these transformations center the perceived orientations of body components, the rotating disk, and gravity : two align the perceived visual and inertial rotation axes, one centers the perceived axis of visual rotation in front of the head, and two straighten the perceived neck angle. These transformations generate a mathematical semigroup. Application of the semigroup to an actual stimulus condition generates an orbit of predicted illusions. The semigroup analysis of perceptual centering predicts all of the illusions observed in the experiments of DiZio and Lackner (Percept Psychphys 39(1): 39-46). Moreover, the structure of perceptual centering (1) provides a logical explanation for the occurrence of those misperceptions; and (2) predicts the complete set of perceptions that are expected to occur in a larger sample. In addition, our analysis predicts illusions in experimental conditions not yet investigated.
Zhu, Yong-zheng; Cao, Yan-ling; Li, Zhi-hui; Ding, Juan; Liu, Jun-song; Chi, Yuan-bin
2007-02-01
With the help of self-assembly, thermal sintering, selective etching techniques and sol-gel process, the non-close packed (ncp) face-centered cubic (fcc) photonic crystals of titanium dioxide (TiO2) hollow spheres connected by TiO2 cylindrical tubes have been fabricated using silica template. The photonic bandgap calculations indicate that the ncp structure of TiO2 hollow spheres was easier to open the pseudogaps than close packed system at the lowest energy.
Comment on `Magic strains in face-centered and body-centered cubic lattices'
Waal, van de Benjamin W.
1990-01-01
The six symmetry-related so-called magic strain tensors that transform a f.c.c. lattice (or a b.c.c. lattice) into itself, which have been reported recently by Boyer [Acta Cryst. (1989), A45, FC29-FC32] are not unique: an infinite number of displacement tensors can be constructed that transform one
Institute of Scientific and Technical Information of China (English)
A. U. Qaisrani; M. Khalid; M. K.Khan
2005-01-01
@@ The CO-NO catalytic reaction on body-centred cubic (bcc) lattice is studied by Monte Carlo simulation. The simple Langmuir-Hinshelwood (LH) mechanism yields a steady reactive window, which is separated by continuous and discontinuous irreversible phase transitions. The effect of precursor mechanism on the phase diagram of the system is also studied. According to this mechanism, the precursor motion of CO molecules is considered only on the surface of bcc lattice. Some interesting observations are reported.
Kusada, Kohei; Kobayashi, Hirokazu; Yamamoto, Tomokazu; Matsumura, Syo; Sumi, Naoya; Sato, Katsutoshi; Nagaoka, Katsutoshi; Kubota, Yoshiki; Kitagawa, Hiroshi
2013-04-17
We report the first discovery of pure face-centered-cubic (fcc) Ru nanoparticles. Although the fcc structure does not exist in the bulk Ru phase diagram, fcc Ru was obtained at room temperature because of the nanosize effect. We succeeded in separately synthesizing uniformly sized nanoparticles of both fcc and hcp Ru having diameters of 2-5.5 nm by simple chemical reduction methods with different metal precursors. The prepared fcc and hcp nanoparticles were both supported on γ-Al2O3, and their catalytic activities in CO oxidation were investigated and found to depend on their structure and size.
Effects of stacking fault energy on defect formation process in face-centered cubic metals
Okita, Taira; Yang, Yingjuan; Hirabayashi, Junichi; Itakura, Mitsuhiro; Suzuki, Katsuyuki
2016-05-01
To elucidate the effect of stacking fault energies (SFEs) on defect formation by the collision cascade process for face-centred cubic metals, we used six sets of interatomic potentials with different SFEs while keeping the other properties almost identical. Molecular dynamic simulations of the collision cascade were carried out using these potentials with primary knock-on atom energies (EPKA) of 10 and 20 keV at 100 K. Neither the number of residual defects nor the size distributions for both self-interstitial atom (SIA) type and vacancy type clusters were affected by the difference in the SFE. In the case of EPKA = 20 keV, the ratio of glissile SIA clusters increased as the SFE decreased, which was not expected by a prediction based on the classical dislocation theory. The trend did not change after annealing at 1100 K for 100 ps. For vacancy clusters, few stacking fault tetrahedrons (SFTs) formed before the annealing. However, lower SFEs tended to increase the SFT fraction after the annealing, where large vacancy clusters formed at considerable densities. The findings of this study can be used to characterise the defect formation process in low SFE metals such as austenitic stainless steels.
Energy Technology Data Exchange (ETDEWEB)
Ao, B.Y., E-mail: aobingyun24@yahoo.com.cn [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Wang, X.L.; Shi, P.; Chen, P.H.; Ye, X.Q.; Lai, X.C. [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Gao, T., E-mail: gaotao@scu.edu.cn [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)
2012-05-15
Plutonium metal can be loaded with hydrogen, which forms complicated solid solutions and compounds, and leads to significant changes in electronic structure. A first-principles pseudopotential plane wave method with added Hubbard parameter U was employed to investigate the electronic and structural properties of face-centered cubic Pu hydrides (PuH{sub x}, x = 2, 2.25, and 3). The decrease in calculated lattice parameters with increasing x is in reasonable agreement with experimental findings. Comparative analysis of the electronic-structure results for a series of PuH{sub x} compositions reveals that lattice contraction occurs due to enhanced chemical bonding and the size effects involving interstitial atoms. We find that the size effects are the driving force for the abnormal lattice contraction.
Li, Minghai; Bansil, Rama
2010-01-01
The kinetics of the transformation from the hexagonal packed cylinder (HEX) phase to the face-centered-cubic (FCC) phase was simulated using Brownian Dynamics for an ABA triblock copolymer in a selective solvent for the A block. The kinetics was obtained by instantaneously changing either the temperature of the system or the well-depth of the Lennard-Jones potential. Detailed analysis showed that the transformation occurred via a rippling mechanism. The simulation results indicated that the order-order transformation (OOT) was a nucleation and growth process when the temperature of the system instantly jumped from 0.8 to 0.5. The time evolution of the structure factor obtained by Fourier Transformation showed that the peak intensities of the HEX and FCC phases could be fit well by an Avrami equation.
Maurer-Groeli, Y
1996-03-01
Body centered Psychotherapy IKP is treated in this article under the aspect of a holistic approach. First the theory and the system of science are summarised and shown as to which amount they are changing concerning knowledge of details and wholeness. It is pointed out that the actual paradigma "to the depth" has to be completed by that of "wideness". The way of holistic-multirelational thinking, stating a diagnosis and doing therapy is demonstrated along a case study going on at the background of a therapeutic encounter-relationship which is emotionally warm (Gestalt-approach).
Kong, Bo; Zhang, Yachao
2016-07-01
The electronic structures of the cubic GdH3 are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G0W0 calculations give a fundamental band gap of 1.72 eV, while GGA+ GW0 or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn-Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH3 can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G0W0 calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW0 and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G0W0 calculations in the 4f-core case is the closest to the real result. By G0W0 calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH3 occurs around 40 GPa, which might be a satisfied prediction.
Perceptual centering of body segment orientation.
Hanes, Douglas A
2007-01-01
It has been shown experimentally that under certain combinations of sensory stimuli, human subjects can perceive one of several distinct illusions about their overall orientation in or movement through space. In at least some cases, the structure of such multistable illusory perceptions of orientation can be efficiently described by perceptual transformations that act on a current orientation estimate to yield an updated perceptual construct. Repeated application of identified generating transformations yields a limited set of predicted illusions for a given sensory environment. This approach is especially valuable for perceptual data that exhibits discretely differing classes of illusions between subjects or trials. In a previous study, application of a semigroup of perceptual centering transformations has succeeded in reproducing and simplifying data from an experiment in which subjects experiencing visual vection reported a range of illusions about the orientations of their gaze, head, and torso to gravity. After reviewing previously obtained results on perceptual centering, this article generalizes the approach, presenting the mathematics required to characterize perceptual transformations. The developed framework should be widely applicable in the understanding of perceptual illusions, particularly when these are guided by alignment with preferred constructs. Secondly, the article reveals the nontrivial mathematical process of perceptual semigroup formation and evaluation, deducing the complete description of the semigroup constructed in the previous study. Perceptual centering transformations identified in terrestrial experiments may predict illusions to be expected in spaceflight. For example, our results indicate that under certain conditions, many astronauts will misperceive a visual rotation axis to be centered in front of the head or even the torso.
Kimizuka, Hajime; Ogata, Shigenobu
We investigated the H diffusivity in face-centered cubic Pd and Al by performing path-integral molecular dynamics (PIMD) modeling in the framework of density functional theory (DFT); in our calculations, we took nuclear quantum effects into consideration. The DFT results showed that the H-migration barriers (Em) in Pd and Al exhibited similar values (approximately 0.16 eV), while the H atoms were stable at octahedral (O) sites for Pd and at tetrahedral (T) sites for Al. The PIMD-based free-energy profiles for H migration between the O-site and T-site were evaluated using the thermodynamic integration of the centroid forces at 150-600 K. We confirmed that the quantum effects significantly affected the Em and the difference between the energies of the H atom at the O-site and the T-site (EO - T); The Em and EO - T values in Pd at 300 K increased by 32% and 98%, respectively, relative to the classical limit. On the other hand, the Em and ET - O (i.e., -EO - T) values in Al at 300 K decreased by 3% and 41%, respectively. This suggested that the quantum nature of H nuclei was essential for understanding the H-diffusion kinetics in these metals even above ambient temperature.
Magnetic phase transformations of face-centered cubic and hexagonal close-packed Co at zero Kelvin.
Saal, James E; Shang, ShunLi; Wang, Yi; Liu, Zi-Kui
2010-03-10
The 0 K pressure-induced magnetic phase transformations of face-centered cubic (FCC) and hexagonal close packed (HCP) Co have been examined using first-principles calculations. Issues of fitting an equation of state to the first-principles energy versus volume data points containing a magnetic transformation and comparing to experimental phase equilibria are discussed. It is found that a fitting scheme employing only data where the magnetic moment decreases linearly with volume offers a physically meaningful behavior for the equation of state at metastable volumes. From this fitting, the ferromagnetic to nonmagnetic transformations with increasing pressure at 0 K are at 77 GPa and 123 GPa for FCC and HCP, respectively, and are first order and second order, respectively, on the basis of an unambiguous measure proposed in the paper. In addition to the HCP/FCC structure transformation at 99 GPa, another transformation at negative pressures is predicted, at - 31 GPa. These results are shown to be consistent with the extrapolations of the experimental pressure-temperature phase diagram to 0 K.
Magnetic phase transformations of face-centered cubic and hexagonal close-packed Co at zero Kelvin
Energy Technology Data Exchange (ETDEWEB)
Saal, James E; Shang Shunli; Wang Yi; Liu Zikui, E-mail: jes531@psu.ed [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2010-03-10
The 0 K pressure-induced magnetic phase transformations of face-centered cubic (FCC) and hexagonal close packed (HCP) Co have been examined using first-principles calculations. Issues of fitting an equation of state to the first-principles energy versus volume data points containing a magnetic transformation and comparing to experimental phase equilibria are discussed. It is found that a fitting scheme employing only data where the magnetic moment decreases linearly with volume offers a physically meaningful behavior for the equation of state at metastable volumes. From this fitting, the ferromagnetic to nonmagnetic transformations with increasing pressure at 0 K are at 77 GPa and 123 GPa for FCC and HCP, respectively, and are first order and second order, respectively, on the basis of an unambiguous measure proposed in the paper. In addition to the HCP/FCC structure transformation at 99 GPa, another transformation at negative pressures is predicted, at - 31 GPa. These results are shown to be consistent with the extrapolations of the experimental pressure-temperature phase diagram to 0 K.
Energy Technology Data Exchange (ETDEWEB)
Terentyev, Dmitry [Belgian Nuclear Research Centre, SCK-CEN; Osetskiy, Yury N [ORNL; Bacon, David J [University of Liverpool
2010-01-01
Dislocation segments with Burgers vector b = <1 0 0> are formed during deformation of body-centred-cubic (bcc) metals by the interaction between dislocations with b = 1/2<1 1 1>. Such segments are also created by reactions between dislocations and dislocation loops in irradiated bcc metals. The obstacle resistance produced by these segments on gliding dislocations is controlled by their mobility, which is determined in turn by the atomic structure of their cores. The core structure of a straight <1 0 0> edge dislocation is investigated here by atomic-scale computer simulation for {alpha}-iron using three different interatomic potentials. At low temperature the dislocation has a non-planar core consisting of two 1/2<1 1 1> fractional dislocations with atomic disregistry spread on planes inclined to the main glide plane. Increasing temperature modifies this core structure and so reduces the critical applied shear stress for glide of the <1 0 0> dislocation. It is concluded that the response of the <1 0 0> edge dislocation to temperature or applied stress determines specific reaction pathways occurring between a moving dislocation and 1/2<1 1 1> dislocation loops. The implications of this for plastic flow in unirradiated and irradiated ferritic materials are discussed and demonstrated by examples.
Energy Technology Data Exchange (ETDEWEB)
Terentyev, D.A., E-mail: dterenty@sckcen.be [Nuclear Materials Science Institute, SCK CEN, Boeretang 200, B-2400, Mol (Belgium); Osetsky, Yu. N. [Materials Sciences and Technology, ORNL, Oak Ridge, TN 37831 (United States); Bacon, D.J. [Department of Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH (United Kingdom)
2010-04-15
Dislocation segments with Burgers vector b = <1 0 0> are formed during deformation of body-centred-cubic (bcc) metals by the interaction between dislocations with b = 1/2<1 1 1>. Such segments are also created by reactions between dislocations and dislocation loops in irradiated bcc metals. The obstacle resistance produced by these segments on gliding dislocations is controlled by their mobility, which is determined in turn by the atomic structure of their cores. The core structure of a straight <1 0 0> edge dislocation is investigated here by atomic-scale computer simulation for {alpha}-iron using three different interatomic potentials. At low temperature the dislocation has a non-planar core consisting of two 1/2<1 1 1> fractional dislocations with atomic disregistry spread on planes inclined to the main glide plane. Increasing temperature modifies this core structure and so reduces the critical applied shear stress for glide of the <1 0 0> dislocation. It is concluded that the response of the <1 0 0> edge dislocation to temperature or applied stress determines specific reaction pathways occurring between a moving dislocation and 1/2<1 1 1> dislocation loops. The implications of this for plastic flow in unirradiated and irradiated ferritic materials are discussed and demonstrated by examples.
Kumara, L S R; Sakata, Osami; Kohara, Shinji; Yang, Anli; Song, Chulho; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi
2016-11-09
The 3-dimensional (3D) atomic-scale structure of newly discovered face-centered cubic (fcc) and conventional hexagonal close packed (hcp) type ruthenium (Ru) nanoparticles (NPs) of 2.2 to 5.4 nm diameter were studied using X-ray pair distribution function (PDF) analysis and reverse Monte Carlo (RMC) modeling. Atomic PDF based high-energy X-ray diffraction measurements show highly diffuse X-ray diffraction patterns for fcc- and hcp-type Ru NPs. We here report the atomic-scale structure of Ru NPs in terms of the total structure factor and Fourier-transformed PDF. It is found that the respective NPs have substantial structural disorder over short- to medium-range order atomic distances from the PDF analysis. The first-nearest-neighbor peak analyses show a significant size dependence for the fcc-type Ru NPs demonstrating the increase in the peak height due to an increase in the number density as a function of particle size. The bond angle and coordination number (CN) distribution for the RMC-simulated fcc- and hcp-type Ru NP models indicated inherited structural features from their bulk counterparts. The CN analysis of the whole NP and surface of each RMC model of Ru NPs show the low activation energy packing sites on the fcc-type Ru NP surface atoms. Finally, our newly defined order parameters for RMC simulated Ru NP models suggested that the enhancement of the CO oxidation activity of fcc-type NPs was due to a decrease in the close packing ordering that resulted from the increased NP size. These structural findings could be positively supported for synthesized low-cost and high performance nano-sized catalysts and have potential application in fuel-cell systems and organic synthesis.
Pham, M. S.; Creuziger, A.; Iadicola, M.; Rollett, A. D.
2017-02-01
This study investigates the joint impact of preferred texture and latent hardening on the plastic anisotropy of face centered cubic (FCC) materials. The main result is that both aspects have significant impact on the anisotropy, but the two can either counteract each other or synergistically reinforce each other to maximize anisotropy. Preferred texture results in significant anisotropy in plastic yielding. However, the latent hardening significantly alters the texture-induced anisotropy. In addition, one latent hardening type can cancel out the anisotropy of another type. Consequently, if all dislocation-based latent hardening types are included at the same level as the self-hardening, the result might not reveal the complexity of plastic anisotropy. The present study of the synergistic influence of detailed latent hardening and texture presented helps provide new insights into the complex anisotropic behavior of FCC materials during multi-axial forming. the stress at which the material initially yields is not a function of material orientation with respect to the frame of the test (i.e., isotropic yielding); there exists a multi-axial yield locus that is described by a single value of stress that corresponds to yield in uniaxial tension (i.e., stress equivalency); on hardening, the multi-axial yield locus expands by the same amount in every direction in the π-plane, which is the plane that has its normal parallel to [111] in the deviatoric stress space (i.e., isotropic hardening); there is an associated flow rule, i.e., the strain increment is normal to the yield locus.
Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals
Soer, WA; Aifantis, KE; De Hosson, JTM
2005-01-01
The mechanical response to nanoinclentation near grain boundaries has been investigated in an Fe-14%Si bicrystal with a general grain boundary and two Mo bicrystals with symmetric tilt boundaries, In particular, the indentations performed on the Fe-14%Si show that as the grain boundary is approached
Calculation of body-centered-cubic lattice sums with an application to ferromagnetism.
Wintucky, E. G.
1972-01-01
The lattice sums for the bcc lattice are recalculated using the method of Flax and Raich to obtain more general expressions, valid for all temperatures, in terms of a Langevin function and its derivatives. Formulas are presented which enable easy numerical evaluation. A comparison with well-known low-temperature expansions and with the results of direct numerical integration demonstrates the validity at low temperatures of the more general expressions calculated here.
DEFF Research Database (Denmark)
Redanz, Pia; McMeeking, R. M.
2003-01-01
diffusion have been considered. At low relative densities, the evolution of particle radius, interparticle junction radius and shrinkage predicted by the bee model are rather similar to sintering of a simple row of particles. At higher densities, the porosity closes up; that is, the junctions start...
Institute of Scientific and Technical Information of China (English)
K.Iqbal; A.Basit
2011-01-01
@@ The presence of oxygen in the subsurface in monomer-dimer reactions(CO-O2 and NO-CO)is observed experimentally.The effect of subsurface oxygen on a CO-O2 catalytic reaction on a face-centered cubic(FCC)lattice is studied using Monte Carlo simulation.The effect of adding subsurface neighbours on the phase diagram is also extensively explored.It is observed that the subsurface oxygen totally eliminates the typical second order phase transition.It is also shown that the introduction of the diffusion of O atoms and the subsurface of the FCC lattice shifts the single transition point towards the stoichiometric ratio.%The presence of oxygen in the subsurface in monomer-dimer reactions (CO-O2 and NO-CO) is observed experimentally. The effect of subsurface oxygen on a CO-O2 catalytic reaction on a face-centered cubic (FCC) lattice is studied using Monte Carlo simulation. The effect of adding subsurface neighbours on the phase diagram is also extensively explored. It is observed that the subsurface oxygen totally eliminates the typical second order phase transition. It is also shown that the introduction of the diffusion of O atoms and the subsurface of the FCC lattice shifts the single transition point towards the stoichiometric ratio.
Analysis of a Hybrid Wing Body Center Section Test Article
Wu, Hsi-Yung T.; Shaw, Peter; Przekop, Adam
2013-01-01
The hybrid wing body center section test article is an all-composite structure made of crown, floor, keel, bulkhead, and rib panels utilizing the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) design concept. The primary goal of this test article is to prove that PRSEUS components are capable of carrying combined loads that are representative of a hybrid wing body pressure cabin design regime. This paper summarizes the analytical approach, analysis results, and failure predictions of the test article. A global finite element model of composite panels, metallic fittings, mechanical fasteners, and the Combined Loads Test System (COLTS) test fixture was used to conduct linear structural strength and stability analyses to validate the specimen under the most critical combination of bending and pressure loading conditions found in the hybrid wing body pressure cabin. Local detail analyses were also performed at locations with high stress concentrations, at Tee-cap noodle interfaces with surrounding laminates, and at fastener locations with high bearing/bypass loads. Failure predictions for different composite and metallic failure modes were made, and nonlinear analyses were also performed to study the structural response of the test article under combined bending and pressure loading. This large-scale specimen test will be conducted at the COLTS facility at the NASA Langley Research Center.
Energy Technology Data Exchange (ETDEWEB)
Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling, E-mail: silingwang@syphu.edu.cn
2014-01-01
The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0 nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7 nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug–silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0 nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0 nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0 nm increased, the dissolution rate of CEL from FMS gradually increased. - Highlights: • Exploitation of 3D cubic mesoporous silica (16 nm) as a carrier was completed. • The release rate of CEL increased on increasing the pore size of carriers. • The crystallinity
Comparison of Dust Lattice Waves in Three-Dimensional Cubic Configurations
Institute of Scientific and Technical Information of China (English)
B. Farokhi; A. Hameditabar
2012-01-01
A three-dimensional (3D) dusty plasma crystalline with cubic configurations is considered. We calculate the interaction between particles up to distance √2a, implying the second-neighbor interactions for the simple cubic structure, the third-neighbor interactions for the body-centered cubic structure, and the forth-neighbor interactions the for face-centered cubic structure. Longitudinal and transverse dispersion relations are derived in arbitrary directions. The dispersion relations are studied in special directions, I.e. (1,0,0), (l,l,0)/√2, and (1,1, l)/√3- Study of dispersion relations with more neighbor interactions show that in some cases the results change physically.%A three-dimensional (3D) dusty plasma crystalline with cubic configurations is considered.We calculate the interaction between particles up to distance (√2)a,implying the second-neighbor interactions for the simple cubic structure,the third-neighbor interactions for the body-centered cubic structure,and the forth-neighbor interactions the for face-centered cubic structure.Longitudinal and transverse dispersion relations are derived in arbitrary directions.The dispersion relations are studied in special directions,i.e.(1,0,0),(1,1,0)/(√2),and (1,1,1)/(√3).Study of dispersion relations with more neighbor interactions show that in some cases the results change physically.
Possible form of multi-polar interaction in cubic lattice
Energy Technology Data Exchange (ETDEWEB)
Sakai, Osamu; Shiina, Ryousuke; Shiba, Hiroyuki
2003-05-01
The invariant form of interaction between multi-poles, including the octupole, is studied for the simple cubic (SC), body centered and face centered cubic lattices. The coupling terms can be arranged in a way similar to that of the hopping matrix between the LCAO's. A table for SC by Shiina et al. (J. Phys. Soc. Japan 66 (1997) 1741) is generalized for the general wave number case of the three types of lattice. Recent experimental result of TmTe is thereby analyzed. The development of the ferromagnetic moment below the anti-ferromagnetic transition under the anti-ferro quadrupolar order phase is discussed in this connection.
Possible form of multi-polar interaction in cubic lattice
Sakai, Osamu; Shiina, Ryousuke; Shiba, Hiroyuki
2003-05-01
The invariant form of interaction between multi-poles, including the octupole, is studied for the simple cubic (SC), body centered and face centered cubic lattices. The coupling terms can be arranged in a way similar to that of the hopping matrix between the LCAO's. A table for SC by Shiina et al. (J. Phys. Soc. Japan 66 (1997) 1741) is generalized for the general wave number case of the three types of lattice. Recent experimental result of TmTe is thereby analyzed. The development of the ferromagnetic moment below the anti-ferromagnetic transition under the anti-ferro quadrupolar order phase is discussed in this connection.
Fan, Zhanxi
2015-03-17
The synthesis of ultrathin face-centered-cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal-close-packed (hcp) Au square sheets (AuSSs). The Pt-layer growth results in a hcp-to-fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)
Engl, K; Zweck, J
2002-01-01
Rare-earth/iron multilayered thin films were magnetron sputtered to investigate the thickness-dependent transition from amorphous iron to polycrystalline body-centred-cubic iron. To characterize this transition it is necessary to get information about the average short-range order (SRO) in the multilayers. A unique technique for measuring this SRO is calculating pair distribution functions (PDFs) from reduced intensity functions by using high-energy electron diffraction in a 300 kV transmission electron microscope. With a maximum resolution in the PDFs of 0.024 nm, this method offers a high sensitivity for the investigation of the SRO. Due to the planar probing characteristics of the experiment, one gets structure information on interfaces rather than from the bulk structure. A further advantage of this method is that no specimen preparation is necessary. Therefore preparation artefacts can be excluded.
Jin, Shan; Wang, Shuxin; Song, Yongbo; Zhou, Meng; Zhong, Juan; Zhang, Jun; Xia, Andong; Pei, Yong; Chen, Man; Li, Peng; Zhu, Manzhou
2014-11-05
The crystal structure of the [Ag62S12(SBu(t))32](2+) nanocluster (denoted as NC-I) has been successfully determined, and it shows a complete face-centered-cubic (FCC) Ag14 core structure with a Ag48(SBu(t))32 shell configuration interconnected by 12 sulfide ions, which is similar to the [Ag62S13(SBu(t))32](4+) structure (denoted as NC-II for short) reported by Wang. Interestingly, NC-I exhibits prominent differences in the optical properties in comparison with the case of the NC-II nanocluster. We employed femtosecond transient absorption spectroscopy to further identify the differences between the two nanoclusters. The results show that the quenching of photoluminescence in NC-I in comparison to that of NC-II is caused by the free valence electrons, which dramatically change the ligand to metal charge transfer (LMCT, S 3p → Ag 5s). To get further insight into these, we carried out time-dependent density functional theory (TDDFT) calculations on the electronic structure and optical absorption spectra of NC-I and NC-II. These findings offer a new insight into the structure and property evolution of silver cluster materials.
Papaioannou, E Th; Angelakeris, M; Poulopoulos, P; Tsiaoussis, I; Rüdt, C; Fumagalli, P; Flevaris, N K
2007-12-01
Co70Cr30 alloyed layers are combined with extremely thin Pt layers in order to produce novel face-centered-cubic multilayered films to be considered as a potential perpendicular magnetic recording medium. The films were grown on Si, glass and polyimide substrates by e-beam evaporation at a temperature slightly higher than room temperature. The multilayered structure of the films was verified by X-ray diffraction experiments. Plane-view transmission electron microscopy images have revealed the formation of very small grains in the range of 7-9 nm. Hysteresis loops as a function of temperature were recorded via the magneto-optic Kerr effect in the polar geometry configuration. The system exhibits perpendicular magnetic anisotropy, which enhances with decreasing temperature. Hysteresis loops with a squareness of 1 and a coercivity of 1.45 kOe were obtained at 10 K. Furthermore, complete magneto-optic spectra of the films are recorded, showing a strong magneto-optic enhancement in the ultraviolet region at around 4.5 eV.
Jeong, Youngung; Pham, Minh-Son; Iadicola, Mark; Creuziger, Adam; Foecke, Timothy
2016-06-01
A rate-dependent self-consistent crystal plasticity model was incorporated with the Marciniak-Kuczyński model in order to study the effects of anisotropy on the forming limits of BCC materials. The computational speed of the model was improved by a factor of 24 when running the simulations for several strain paths in parallel. This speed-up enabled a comprehensive investigation of the forming limits of various BCC textures, such as γ , σ , α , η and ɛ fibers and a uniform (random) texture. These simulations demonstrate that the crystallographic texture has significant (both positive and negative) effects on the resulting forming limit diagrams. For example, the γ fiber texture, which is often sought through thermo-mechanical processing due to a high r-value, had the highest forming limit in the balanced biaxial strain path but the lowest forming limit under the plane strain path among the textures under consideration. A systematic investigation based on the results produced by the current model, referred to as ‘VPSC-FLD’, suggests that the r-value does not serve as a good measure of forming limit strain. However, model predictions show a degree of correlation between the r-value and the forming limit stress.
Ohta, Yusuke; Demura, Akimitsu; Okamoto, Takuya; Hitomi, Haruko; Nagaoka, Masataka
2006-06-29
The methyllithium tetramer (CH3Li)4 structure in the bcc crystal has been theoretically optimized with the use of density functional theory calculations under the periodic boundary condition. The X-ray structure shows that the methyl-group conformation in tetramer in crystal takes the staggered form rather than the eclipsed form that is taken in the isolated tetramer, i.e., the crystal packing effect, and this has been reproduced for the first time. It is concluded that the staggered form is advantageous in crystal, as a whole, due to the larger electrostatic stabilization via the induced intratetramer multipolarization, although it should cause, simultaneously, smaller destabilization in intratetramer electronic energy.
Whalen, R. T.; Gonzalez-Doncel, G.; Robinson, S. L.; Sherby, O. D.
1989-01-01
The effect of substituting the Mg metal in Mg-B composites by a Mg-14 wt pct Li solid solution on the ductility of the resulting composite was investigated using elastic modulus measurements on the P/M composite material prepared with a dispersion of B particles (in a vol pct range of 0-30) in a matrix of Mg-14 wt pct Li-1.5 wt pct Al. It was found that the elastic modulus of the composites increased rapidly with increasing boron, with specific stiffness values reaching about two times that of most structural materials. The values of the compression and tensile strengths increased significantly with boron additions. Good tensile ductility was achieved at the level of 10 vol pct B. However, at 20 vol pct B, the Mg-Li composite exhibited only limited tensile ductility (about 2 percent total elongation).
Collective dynamics and self-diffusion in a diblock copolymer melt in the body-centered cubic phase
DEFF Research Database (Denmark)
Papadakis, C.M.; Rittig, F.; Almdal, K.;
2004-01-01
The structure and dynamics of a strongly asymmetric poly(ethylene propylene)poly (dimethylsiloxane) (PEP-PDMS) diblock copolymer in the melt have been studied over a wide temperature range. Small-angle neutron scattering reveals that the sample exhibits two stable phases in this temperature range...
Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling
2014-01-01
The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug-silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0nm increased, the dissolution rate of CEL from FMS gradually increased.
Anisotropic cubic curvature couplings
Bailey, Quentin G
2016-01-01
To complement recent work on tests of spacetime symmetry in gravity, cubic curvature couplings are studied using an effective field theory description of spacetime-symmetry breaking. The associated mass dimension 8 coefficients for Lorentz violation studied do not result in any linearized gravity modifications and instead are revealed in the first nonlinear terms in an expansion of spacetime around a flat background. We consider effects on gravitational radiation through the energy loss of a binary system and we study two-body orbital perturbations using the post-Newtonian metric. Some effects depend on the internal structure of the source and test bodies, thereby breaking the Weak Equivalence Principle for self-gravitating bodies. These coefficients can be measured in solar-system tests, while binary-pulsar systems and short-range gravity tests are particularly sensitive.
Building "Bob": A Project Exploring the Human Body at Western Illinois University Preschool Center
Brouette, Scott
2008-01-01
When the children at Western Illinois University Preschool Center embarked on a study of human bodies, they decided to build a life-size model of a body, organ by organ from the inside out, to represent some of the things they were learning. This article describes the building of "Bob," the human body model, highlighting the children's…
Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu
2014-10-01
20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.
For an Aesthetics of Sensations: intense body of Bartenieff Fundamentals and Body-Mind Centering
Directory of Open Access Journals (Sweden)
Patrícia de Lima
2014-12-01
Full Text Available This paper discusses concepts and methodological proposals that approach the theoretical and practical study concerning the body, understanding it as an expressive subject in constant mutation and process of reinvention. For this reason, the study approximates two somatic approaches: Bartenieff Fundamentals™ and Body-Mind Centering™. The aim was to perceive how these somatic approaches allow the construction of an intensive body that engenders an aesthetics of sensations.
Anterior and posterior centers jointly regulate Bombyx embryo body segmentation.
Nakao, Hajime
2012-11-15
Insect embryo segmentation is largely divided into long and short germ types. In the long germ type, each segment primordium is represented on a large embryonic rudiment of the blastoderm, and segmental patterning occurs nearly simultaneously in the syncytium. In the short germ type, however, only anterior segments are represented in the small embryonic rudiment, usually located on the egg posterior, and the rest of the segments are added sequentially from the posterior growth zone in a cellular context. The long germ type is thought to have evolved from the short germ type. It is proposed that this transition, which appears to have occurred multiple times over the course of evolution, was realized through the acquisition of a localized anterior instruction center. Here, I examined the early segmentation process in the silkmoth Bombyx mori, a lepidopteran insect, in which the mechanisms of anterior-posterior (AP) axis formation have not been well analyzed. In this insect, both the long germ and short germ features have been reported. The mRNAs for two key genes involved in insect AP axis formation, orthodenticle (Bm-otd) and caudal (Bm-cad), are localized maternally in the germ anlage, where they act as anterior and posterior instruction centers, respectively. RNAi studies indicate that, while Bm-cad affects the formation of all the even skipped (Bm-eve) stripes, there is also anterior Bm-eve stripe formation activity that involves Bm-otd. Thus, there is redundancy in Bm-eve stripe formation activity that must be coordinated. Some genetic interactions, identified either experimentally or hypothetically, are also introduced, which might enable robust AP formation in this organism.
Cubic ideal ferromagnets at low temperature and weak magnetic field
Hofmann, Christoph P.
2017-04-01
The low-temperature series for the free energy density, pressure, magnetization and susceptibility of cubic ideal ferromagnets in weak external magnetic fields are discussed within the effective Lagrangian framework up to three loops. The structure of the simple, body-centered, and face-centered cubic lattice is taken into account explicitly. The expansion involves integer and half-integer powers of the temperature. The corresponding coefficients depend on the magnetic field and on low-energy effective constants that can be expressed in terms of microscopic quantities. Our formulas may also serve as efficiency or consistency check for other techniques like Green's function methods, where spurious terms in the low-temperature expansion have appeared. We explore the sign and magnitude of the spin-wave interaction in the pressure, magnetization and susceptibility, and emphasize that our effective field theory approach is fully systematic and rigorous.
[Approaches to setting up the Center for identification of exhumed bodies in Chechen Republic].
Klevno, V A; Ivanov, P L
2007-01-01
The authors participated in the activity of a group of European experts who visited Moscow, Rostov-on-Don and Grozny in September 2005 to clarify situation with identification of exhumed unknown dead bodies of the civil population. The European experts recommend to set up Center for Identification in Chechen Republic (in Grozny). The authors propose to make DNA identification tests in the Russian Federation Center for Forensic Medical Evaluation in Moscow which has much experience and staff skilled in identification of unknown exhumed bodies and can solve the problem of genetic identification of unidentified bodies of people missed in the Chechen Republic more effectively.
Non-Collision Singularities in the Planar Two-Center-Two-Body Problem
Xue, Jinxin; Dolgopyat, Dmitry
2016-08-01
In this paper, we study a restricted four-body problem called the planar two-center-two-body problem. In the plane, we have two fixed centers Q 1 and Q 2 of masses 1, and two moving bodies Q 3 and Q 4 of masses {μ≪ 1}. They interact via Newtonian potential. Q 3 is captured by Q 2, and Q 4 travels back and forth between two centers. Based on a model of Gerver, we prove that there is a Cantor set of initial conditions that lead to solutions of the Hamiltonian system whose velocities are accelerated to infinity within finite time avoiding all earlier collisions. This problem is a simplified model for the planar four-body problem case of the Painlevé conjecture.
Mixed body- and gaze-centered coding of proprioceptive reach targets after effector movement.
Mueller, Stefanie; Fiehler, Katja
2016-07-01
Previous studies demonstrated that an effector movement intervening between encoding and reaching to a proprioceptive target determines the underlying reference frame: proprioceptive reach targets are represented in a gaze-independent reference frame if no movement occurs but are represented with respect to gaze after an effector movement (Mueller and Fiehler, 2014a). The present experiment explores whether an effector movement leads to a switch from a gaze-independent, body-centered reference frame to a gaze-dependent reference frame or whether a gaze-dependent reference frame is employed in addition to a gaze-independent, body-centered reference frame. Human participants were asked to reach in complete darkness to an unseen finger (proprioceptive target) of their left target hand indicated by a touch. They completed 2 conditions in which the target hand remained either stationary at the target location (stationary condition) or was actively moved to the target location, received a touch and was moved back before reaching to the target (moved condition). We dissociated the location of the movement vector relative to the body midline and to the gaze direction. Using correlation and regression analyses, we estimated the contribution of each reference frame based on horizontal reach errors in the stationary and moved conditions. Gaze-centered coding was only found in the moved condition, replicating our previous results. Body-centered coding dominated in the stationary condition while body- and gaze-centered coding contributed equally strong in the moved condition. Our results indicate a shift from body-centered to combined body- and gaze-centered coding due to an effector movement before reaching towards proprioceptive targets.
Aref'eva, L. P.; Shebzukhova, I. G.
2016-07-01
A technique for the evaluation of the electron work function of metallic single crystals and the electron work function anisotropy has been developed in the framework of the electron-statistical method. The surface energy and the electron work function have been calculated for crystal faces of allotropic modifications of 4 d- and 5 d-metals. A change in the electron work function due to the allotropic transformations has been estimated, and the periodic dependence of the electron work function has been determined. It has been shown that the results obtained using the proposed technique correlate with the available experimental data for polycrystals.
Institute of Scientific and Technical Information of China (English)
宋祥磊; 张晓军; 张建民; 徐可为
2005-01-01
From the system energy minimization, the stable configuration and the rule of migration of mono-vacancy, di-vacancy and a single self-interstitial atom are analyzed using the modified analytical embedded atom method (MAEAM) combined with the molecular dynamics simulation in Al, Ni, Cu,Ag, Au and Pb. The results show that only the first-nearest neighbor di-vacancy is the stable configuration of di-vacancy. Compared with the mono-vacancy, the first-nearest neighbor di-vacancy is Ni, Cu, Ag and Au, but the body-centered configuration is favorable in Al and Pb. However compared with mono-vacancy, the single self-interstitial atom is also difficult to form.%将改进分析型嵌入原子法(MAEAM)模型与分子动力学模拟方法相结合,用能量最小化原理分析了面心立方金属Al、Ni、Cu、Ag、Au和Pb中的单空位、双空位及单自间隙原子3种点缺陷的稳定构型及其迁移规律.结果表明:最近邻双空位是双空位中惟一能够存在的构型,而且比单空位还容易迁移;尽管在4种构型的自间隙原子中,〈110〉哑铃状自间隙构型容易在Ni、Cu、Ag和Au中形成,体心自间隙构型也容易在Al和Pb中形成,但和单空位相比较还是较难形成的.
Institute of Scientific and Technical Information of China (English)
黄宝歆
2016-01-01
本文通过先分解再组合的方法给出面心立方和体心立方晶格第一布里渊区的立体结构,即先确定出一个1/8倒格子晶胞空间对应的第一布里渊区,再将其与另外7个小倒格子晶胞的第一布里渊区空间进行组合,最终标识出完整的第一布里渊区结构.分别计算了其体积的大小,为同学们学习相关知识提供一个借鉴.
Body, stress and nursing: ethnography of an Intensive Care and Surgical Center
Martins, Maria das Graças Teles [UNIFESP; Castro, Odilon; Pereira,Pedro Paulo Gomes
2013-01-01
This text seeks to reflect on the concepts of stress among nurses that work in the Surgical and Intensive Care Centers of a teaching hospital in the State of Paraíba. Qualitative ethnographic research allowed us to perceive that when talking about stress, these professionals mentioned their bodies and bodily manifestations. The research undertaken allowed us to understand the intimate relationships between the body, stress and nursing.
Interaction in equilibrium plasmas of charged macroparticles located in nodes of cubic lattices
Filippov, A. V.
2016-11-01
Interaction of two charged pointlike macroparticles located at nodes of simple cubic (sc), body-centered cubic (bcc) and face-centered cubic (fcc) lattices in an equilibrium plasma is studied within the linearized Poisson-Boltzmann model. It is shown that the boundary shape has a strong influence on the electrostatic interaction between two macroparticles, which switches from repulsion at small interparticle distances to attraction as it approaches the halflength of a computational cell. It is found that in a case of dust particles arranged in the nodes of the sc, bcc and fcc lattices, the electrostatic force acting on them is equal to zero and the nature of the interaction changes from repulsion to attraction; hence, the infinite sc, bcc and fcc lattices of charged dust particles are thermodynamically stable at rather low temperatures.
Instabilities on crystal surfaces: The two-component body-centered solid-on-solid model
Carlon, E.; van Beijeren, H.; Mazzeo, G.
1996-01-01
The free energy of crystal surfaces that can be described by the two-component body-centered solid-on-solid model has been calculated in a mean-field approximation. The system may model ionic crystals with a bcc lattice structure (for instance CsCl). Crossings between steps are energetically favored
The Woven Body: Embodying Text in Performance Art and the Writing Center
Rifenburg, J. Michael; Allgood, Lindsey
2015-01-01
Drawing on Lindsey Allgood's scripts, journal entries, and images of a specific participatory performance piece she executed, we argue for seeing performance art as a form of embodied text. Such an assertion is particularly pertinent for postsecondary writing center praxis as it allows for the mindful intersections of the body and writing during…
Energy Technology Data Exchange (ETDEWEB)
Tatarenko, V.A.; Tsysman, C.L.; Oltarzhevskaya, Y.T. [Institute for Metal Physics, Kiev (Ukraine)
1994-12-31
The calculations in a majority of previous works for the fulleride (AqC{sub 60}) crystals were performed within the framework of the rigid-lattice model, neglecting the distoration relaxation of the host fullerene (C{sub 60}) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distoration field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. This paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of statistic concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method. In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the statistic inherent reorientation and/or displacements of the solvent molecules from the average-lattice sites as well as on the lattice parameter a of the elastically-anysotropic cubic C{sub 60} crystal are taken into account.
Energy Technology Data Exchange (ETDEWEB)
Tatarenko, V.A.; Tsysman, C.L.; Oltarzhevskaya, Y.T.
1995-04-01
The calculations in a majority of previous works for the fulleride (AqC-60) crystals were performed within the framework of the rigid-lattice model, neglecting the distortion relaxation of the host fullerene (C-60) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distortion field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. The given paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of static concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method. In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the static inherent reorientation and/or displacements of the solvent molecules from the `average-lattice` sites` as well as on the lattice parameter a of an elastically-anysotropic `cubic` C-60 crystal are taken into account.
Tatarenko, Valentine A.; Tsysman, Constantin L.; Oltarzhevskaya, Yelena T.
1995-01-01
The calculations in a majority of previous works for the fulleride (AqC-60) crystals were performed within the framework of the rigid-lattice model, neglecting the distortion relaxation of the host fullerene (C-60) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distortion field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. The given paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of static concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method(*). In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the static inherent reorientation and/or displacements of the solvent molecules from the 'average-lattice' sites' as well as on the lattice parameter a of a elastically-anysotropic 'cubic' C-60 crystal are taken into account.
Eating behavior and body image perception of pregnant women attending a high-risk outpatient center
Directory of Open Access Journals (Sweden)
Raquel Guimarães Nobre
2014-06-01
Full Text Available Objective: To investigate the eating behavior and body image perception in pregnant women attending a high-risk outpatient center. Methods: A quantitative, cross-sectional, observational study conducted with 28 overweight pregnant women attending the first consultation in the nutrition outpatient center of a maternity hospital in Fortaleza-CE, from December 2010 to February 2011. It has been used a pre-established form containing data on the characterization of the sample (socioeconomic, obstetric, and nutritional, the BES (Binge Eating Scale to assess binge eating and BSQ (Body Shape Questionnaire to assess the severity or absence of body image disorder. The variables were presented as mean ± standard deviation and simple frequency and percentage. The Pearson’s correlation was used to verify the relation between body image and binge eating, considering p <0.05. Results: The pregnant women studied had a mean age of 29.4 ± 6.3 years and mean gestational age of 24.6 ± 8.2 weeks. It was found a prevalence of 71.5% (n=20 of body image disorder and 17.8% (n=5 of binge eating. It was also observed a direct and significant correlation between the body image perception and the degree of binge eating (r=0.4358, p=0.020. Conclusion: The high rate of body image disorder positively related to a significant binge eating indicates an unfavorable adjustment of this group of pregnant women to alterations in weight and body shape and size, which are inherent to pregnancy, standing out as group that needs special attention by the professional team. doi:10.5020/18061230.2014.p256
Institute of Scientific and Technical Information of China (English)
LI Guang-zheng; HUANG Jian-chun
2005-01-01
Numerical simulations are performed for laminar natural convection heat transfer from a centered conducting body enclosed in a square cavity. A high accuracy unsteady numerical method is used, combining the unique condition of the pressure, the convergent solutions and the stream-function value of the inside heat-conducting body are given simultaneously. Two examples are simulated with this numerical method and compared with the experimental results. The results of the numerical solutions are consistent with the experimental results. It shows that the numerical method is valid and feasible.
Cubic Subalgebras and Cubic Closed Ideals of B-algebras
Directory of Open Access Journals (Sweden)
Tapan Senapati
2015-06-01
Full Text Available In this paper, the concept of cubic set to subalgebras, ideals and closed ideals of B-algebras are introduced. Relations among cubic subalgebras with cubic ideals and cubic closed ideals of B-algebras investigated. The homomorphic image and inverse image of cubic subalgebras, ideals are studied and some related properties are investigated. Also, the product of cubic B-algebras are investigated.
SU(2) quark potential on a body-centered-hypercubic lattice
Celmaster, William; Moriarty, K. J. M.
1986-06-01
Wilson loops are computed in SU(2) gauge theory on a 144 body-centered-hypercubic lattice. From these, the interquark potential is extracted as a function of β. The string tension does not follow the asymptotic scaling curve. Nevertheless, by comparing the trajectory to previous data on high-temperature deconfinement we find compelling evidence for scaling and universality up to a lattice spacing a=0.77/ √σ .
Ogaya, Shinya; Okita, Yusuke; Fuchioka, Satoshi
2016-10-03
Humans employ two distinct strategies to maintain balance during standing: the ankle and hip strategies. People with a high fall risk tend to alter their motion patterns during forward body tilting from a hip to an ankle strategy. Improved knowledge regarding how muscles control the center of mass (COM) during balancing would facilitate clinical assessment. The present study aimed to investigate individual muscle contributions to COM motion during forward body tilting with both ankle and hip strategies in 16 healthy adults. While standing, participants were instructed to oscillate their bodies and touch anterior and posterior targets at 0.5Hz. The anterior target was positioned at the sternum height level in a HIGH and 5% lower in a LOW condition to induce ankle and hip strategies, respectively. The muscle tension force was calculated from measured angle data using a two-dimensional, muscle-driven forward simulation model. Muscle contributions to COM acceleration during forward body tilting were calculated via induced acceleration analysis. Long hamstrings were found to increase upward-contributing action and forward COM acceleration in the LOW condition during forward tilting. In contrast, the contribution of the soleus to backward COM acceleration was reduced. These results imply that the contribution of hamstrings to forward COM acceleration is disadvantageous to fore-aft COM control and balance recovery during forward body tilting.
Bueno, Pablo; Cano, Pablo A.
2016-11-01
We drastically simplify the problem of linearizing a general higher-order theory of gravity. We reduce it to the evaluation of its Lagrangian on a particular Riemann tensor depending on two parameters, and the computation of two derivatives with respect to one of those parameters. We use our method to construct a D -dimensional cubic theory of gravity which satisfies the following properties: (1) it shares the spectrum of Einstein gravity, i.e., it only propagates a transverse and massless graviton on a maximally symmetric background; (2) it is defined in the same way in general dimensions; (3) it is neither trivial nor topological in four dimensions. Up to cubic order in curvature, the only previously known theories satisfying the first two requirements are the Lovelock ones. We show that, up to cubic order, there exists only one additional theory satisfying requirements (1) and (2). Interestingly, this theory is, along with Einstein gravity, the only one which also satisfies (3).
Shi, Xiaobo; Li, Wei; Song, Jeungeun; Hossain, M Shamim; Mizanur Rahman, Sk Md; Alelaiwi, Abdulhameed
2016-10-01
With the development of IoT (Internet of Thing), big data analysis and cloud computing, traditional medical information system integrates with these new technologies. The establishment of cloud-based smart healthcare application gets more and more attention. In this paper, semi-physical simulation technology is applied to cloud-based smart healthcare system. The Body sensor network (BSN) of system transmit has two ways of data collection and transmission. The one is using practical BSN to collect data and transmitting it to the data center. The other is transmitting real medical data to practical data center by simulating BSN. In order to transmit real medical data to practical data center by simulating BSN under semi-physical simulation environment, this paper designs an OPNET packet structure, defines a gateway node model between simulating BSN and practical data center and builds a custom protocol stack. Moreover, this paper conducts a large amount of simulation on the real data transmission through simulation network connecting with practical network. The simulation result can provides a reference for parameter settings of fully practical network and reduces the cost of devices and personnel involved.
Filippov, A. V.
2016-10-01
The interaction of two charged point macroparticles located in Wigner-Seitz cells of simple cubic (SC), body-centered cubic (BCC), or face-centered cubic (FCC) lattices in an equilibrium plasma has been studied within the Debye approximation or, more specifically, based on the linearized Poisson-Boltzmann model. The shape of the outer boundary is shown to exert a strong influence on the pattern of electrostatic interaction between the two macroparticles, which transforms from repulsion at small interparticle distances to attraction as the interparticle distance approaches half the length of the computational cell. The macroparticle pair interaction potential in an equilibrium plasma is shown to be nevertheless the Debye one and purely repulsive for likely charged macroparticles.
Nonlinear Analysis and Preliminary Testing Results of a Hybrid Wing Body Center Section Test Article
Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.; Wu, Hsi-Yung T.
2015-01-01
A large test article was recently designed, analyzed, fabricated, and successfully tested up to the representative design ultimate loads to demonstrate that stiffened composite panels with through-the-thickness reinforcement are a viable option for the next generation large transport category aircraft, including non-conventional configurations such as the hybrid wing body. This paper focuses on finite element analysis and test data correlation of the hybrid wing body center section test article under mechanical, pressure and combined load conditions. Good agreement between predictive nonlinear finite element analysis and test data is found. Results indicate that a geometrically nonlinear analysis is needed to accurately capture the behavior of the non-circular pressurized and highly-stressed structure when the design approach permits local buckling.
Center-of-mass corrections revisited a many-body expansion approach
Mihaila, B; Mihaila, Bogdan; Heisenberg, Jochen H.
1999-01-01
A many-body expansion for the computation of the charge form factor in the center-of-mass system is proposed. For convergence testing purposes, we apply our formalism to the case of the harmonic oscillator shell model, where an exact solution exists. We also work out the details of the calculation involving realistic nuclear wave functions. Results obtained for the Argonne $v$18 two-nucleon and Urbana-IX three-nucleon interactions are reported. No corrections due to the meson-exchange charge density are taken into account.
Center-of-mass corrections reexamined: A many-body expansion approach
Mihaila, Bogdan; Heisenberg, Jochen H.
1999-11-01
A many-body expansion for the computation of the charge form factor in the center-of-mass system is proposed. For convergence testing purposes, we apply our formalism to the case of the harmonic oscillator shell model, where an exact solution exists. We also work out the details of the calculation involving realistic nuclear wave functions. Results obtained for the Argonne v18 two-nucleon and Urbana-IX three-nucleon interactions are reported. No corrections due to the meson-exchange charge density are taken into account.
Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.
2016-01-01
This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.
Li, Carey Fei; Pontes, Olga; El-Shami, Mahmoud; Henderson, Ian R; Bernatavichute, Yana V; Chan, Simon W-L; Lagrange, Thierry; Pikaard, Craig S; Jacobsen, Steven E
2006-07-14
ARGONAUTE4 (AGO4) and RNA polymerase IV (Pol IV) are required for DNA methylation guided by 24 nucleotide small interfering RNAs (siRNAs) in Arabidopsis thaliana. Here we show that AGO4 localizes to nucleolus-associated bodies along with the Pol IV subunit NRPD1b; the small nuclear RNA (snRNA) binding protein SmD3; and two markers of Cajal bodies, trimethylguanosine-capped snRNAs and the U2 snRNA binding protein U2B''. AGO4 interacts with the C-terminal domain of NRPD1b, and AGO4 protein stability depends on upstream factors that synthesize siRNAs. AGO4 is also found, along with the DNA methyltransferase DRM2, throughout the nucleus at presumed DNA methylation target sites. Cajal bodies are conserved sites for the maturation of ribonucleoprotein complexes. Our results suggest a function for Cajal bodies as a center for the assembly of an AGO4/NRPD1b/siRNA complex, facilitating its function in RNA-directed gene silencing at target loci.
DEFF Research Database (Denmark)
Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald;
2016-01-01
This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with co...
DEFF Research Database (Denmark)
Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald;
2016-01-01
This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, is conjectured to have decidable type checking, and has an implemented type-checker. Our new type theory, called guarded cubical type theory, provides a computational interpretation of extensionality for guarded recursive...
DEFF Research Database (Denmark)
Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald;
2016-01-01
This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...... terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality...
Butera, P
2000-01-01
Using a renormalized linked-cluster-expansion method, we extend to order $\\beta^{23}$ the high-temperature series for the susceptibility $\\chi$ and the second-moment correlation length $\\xi$ of the spin-1/2 Ising models on the sc and the bcc lattices. A study of these expansions yields updated direct estimates of universal parameters, such as exponents and amplitude ratios, which characterize the critical behavior of $\\chi$ and $\\xi$. Our best estimates for the inverse critical temperatures are $\\beta^{sc}_c=0.221654(1)$ and $\\beta^{bcc}_c=0.1573725(6)$. For the susceptibility exponent we get $\\gamma=1.2375(6)$ and for the correlation length exponent $\
Superhard BC(3) in cubic diamond structure.
Zhang, Miao; Liu, Hanyu; Li, Quan; Gao, Bo; Wang, Yanchao; Li, Hongdong; Chen, Changfeng; Ma, Yanming
2015-01-01
We solve the crystal structure of recently synthesized cubic BC(3) using an unbiased swarm structure search, which identifies a highly symmetric BC(3) phase in the cubic diamond structure (d-BC(3)) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d-BC(3) are in excellent agreement with experimental data. Calculated stress-strain relations of d-BC(3) demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. The present results establish the first boron carbide in the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.
Body-Centered Orthorhombic C16 : A Novel Topological Node-Line Semimetal
Wang, Jian-Tao; Weng, Hongming; Nie, Simin; Fang, Zhong; Kawazoe, Yoshiyuki; Chen, Changfeng
2016-05-01
We identify by ab initio calculations a novel topological semimetal carbon phase in all-s p2 bonding networks with a 16-atom body-centered orthorhombic unit cell, termed bco-C16. Total-energy calculations show that bco-C16 is comparable to solid fcc-C60 in energetic stability, and phonon and molecular dynamics simulations confirm its dynamical stability. This all-s p2 carbon allotrope can be regarded as a three-dimensional modification of graphite, and its simulated x-ray diffraction (XRD) pattern matches well a previously unexplained diffraction peak in measured XRD spectra of detonation and chimney soot, indicating its presence in the specimen. Electronic band structure calculations reveal that bco-C16 is a topological node-line semimetal with a single nodal ring. These findings establish a novel carbon phase with intriguing structural and electronic properties of fundamental significance and practical interest.
An Analysis of Body Center of Mass Movement during Walking for Power Asisst of Paraplegic Gait
Kagawa, Takahiro; Yamashina, Hideki; Uno, Yoji
An efficient and stable gait control is an essential problem to develop a legged locomotor device for paraplegics. In this study, we investigate a necessary condition of the ballistic walking to avoid a backward balance loss. The condition derived by an inverted pendulum model is represented as a simple relationship between a position and velocity of a body center of mass at toe-off. The condition was validated through simulation experiments of a 7-link musculoskeletal model and gait measurement experiments of normal and paraplegic subjects. The results of the model simulation showed a good agreement with some predictions of the inverted pendulum model. The measured center of mass trajectories of normal and paraplegic gaits were satisfied with the necessary condition. These results suggest that the necessary condition is effective to avoid a backward falling during walking. In addition, energy input was required in a double support phase while the trajectory followed the ballistic movement of the inverted pendulum in a single support phase for a normal subject. These results suggest that a power assist control to be satisfied with the necessary condition during a double support phase and a ballistic gait generation during a single support phase are required for a paraplegic locomotor with efficiency and stability.
Mechanism of Microband Formation in Cold Rolled Body Center Cubic Metal%冷轧体心立方金属中微带的形成机制
Institute of Scientific and Technical Information of China (English)
沈凯; Duggan Brian John
2006-01-01
该文对冷轧体心立方金属中微带的形成机制进行了探讨,利用塑性形变理论对轧制板材中晶粒的滑移系上的切应变进行了计祘,结果表明:当晶粒的《110》或《111》方向平行于轧制横向,轧制方向平行于某一特定方向时,大部份切变聚集在某一滑移面上,这样在该滑移面上便能形成微带,而这时微带与轧制方向之间的夹角约30°.计祘结果还表明:当轧制横向平行于晶粒的《110》或《111》方向时,晶粒在轧制时可能绕横向转动,这样,2套微带就可能形成.又由于双交滑移的存在,微带便呈现由双位错壁组成的片状结构.透射电子显微镜对微带的观察证实了这一结果.
Pinto, Gabriel
2012-01-01
When students are introduced to the ways in which atoms are arranged in crystal structures, transposing the textbook illustrations into three-dimensional structures is difficult for some of them. To facilitate this transition, this article describes an approach to the study of the structure of solids through a well-known monument, the Atomium in…
Ma, Zhongyun; Wang, Pu; Pei, Yong
2016-09-29
Based on the recently reported atomic structures of thiolate-protected Au28(SR)20, Au36(SR)24, Au44(SR)28, and Au52(SR)32 clusters, a family of homogeneous, linear, thiolate-protected gold superstructures containing novel quasi-face-centered-cubic (quasi-fcc) Au-cores is theoretically envisioned, denoted as the Au20+8N(SR)16+4N cluster. By means of density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, a unified view of the geometric structure, electronic structure, magic stable size and size-dependent NIR absorption properties of Au20+8N(SR)16+4N clusters is provided. We find that the Au20+8N(SR)16+4N clusters demonstrate oscillating transformation energies dependent on N. The odd-N clusters show more favorable (negative) reaction energies than the even-N clusters. The magic stability of recently reported Au28(SR)20, Au36(SR)24, Au44(SR)28, Au52(SR)32 and Au76(SR)44 clusters can be addressed from the relative reaction energies and geometric distortion of Au-cores. A novel 4N + 4 magic electron-number is suggested for the Au20+8N(SR)16+4N cluster. Using the polyhedral skeletal electron pair theory (PSEPT) and the extended Hückel molecular orbital (EHMO) calculations, we suggest that the magic 4N + 4 electron number is correlated with the quasi-fcc Au-cores, which can be viewed as double helical tetrahedron-Au4 chains. The size-dependent optical absorption properties of Au20+8N(SR)16+4N clusters are revealed based on TD-DFT calculations. We propose that these clusters are potential candidates for the experimental synthesis of atomically precise one-dimensional ligand protected gold superstructures with tunable NIR absorption properties.
Avgin, I.; Boukahil, A.; Huber, D. L.
2015-11-01
Using the coherent potential approximation, we investigate the optical absorption and the density of states of Frenkel exciton systems on simple, body centered, and face centered cubic lattices with nearest-neighbor interactions and a Gaussian distribution of transition frequencies (i.e. Gaussian diagonal disorder). The analysis is based on an elliptic integral approach with a variety of variances. The results for the simple cubic lattice are in good agreement with the finite array calculations of Schreiber and Toyozawa. Our findings suggest that the coherent potential approximation can be useful in interpreting the optical properties of cubic crystals where the optically excited states are Frenkel excitons with the dominant interactions limited to nearest-neighbors.
Energy Technology Data Exchange (ETDEWEB)
Avgin, I. [Department of Electrical and Electronics Engineering, Ege University, Bornova 35100, Izmir (Turkey); Boukahil, A. [Physics Department, University of Wisconsin-Whitewater, Whitewater, WI 53190 (United States); Huber, D.L., E-mail: dhuber@src.wisc.edu [Physics Department, University of Wisconsin-Madison, Madison, WI 53706 (United States)
2015-11-15
Using the coherent potential approximation, we investigate the optical absorption and the density of states of Frenkel exciton systems on simple, body centered, and face centered cubic lattices with nearest-neighbor interactions and a Gaussian distribution of transition frequencies (i.e. Gaussian diagonal disorder). The analysis is based on an elliptic integral approach with a variety of variances. The results for the simple cubic lattice are in good agreement with the finite array calculations of Schreiber and Toyozawa. Our findings suggest that the coherent potential approximation can be useful in interpreting the optical properties of cubic crystals where the optically excited states are Frenkel excitons with the dominant interactions limited to nearest-neighbors.
Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.
2008-01-01
One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…
Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure
Liu, Jinming; Wu, Kai; Wang, Jian-Ping
2016-05-01
Cubic FeCo alloy nanoparticles (NPs) with body-centered cubic (bcc) phase were prepared using sputter based gas-condensation method. When the NPs formed long chain assemblies, the magnetic properties were quite different from that of well-dispersed NPs. Most of the well-dispersed NPs were superparamagnetic at room temperature while the long chain NP assemblies were ferromagnetic with coercivities around 765 Oe, which displayed quite different magnetic properties. The ferromagnetism of long chain NPs was from the exchange coupling between NPs, which eventually led to the transition from superparamagnetism (SPM) to superferromagetism (SFM). Zero-field-cooled (ZFC) and field-cooled (FC) curves were obtained and long chain NP assemblies displayed ferromagnetism at the temperature ranging from 10 K to 400 K. Time-dependent remanent magnetic moment curves also indicated that the long chain structure had better thermal stability due to the strong exchange coupling.
Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure
Directory of Open Access Journals (Sweden)
Jinming Liu
2016-05-01
Full Text Available Cubic FeCo alloy nanoparticles (NPs with body-centered cubic (bcc phase were prepared using sputter based gas-condensation method. When the NPs formed long chain assemblies, the magnetic properties were quite different from that of well-dispersed NPs. Most of the well-dispersed NPs were superparamagnetic at room temperature while the long chain NP assemblies were ferromagnetic with coercivities around 765 Oe, which displayed quite different magnetic properties. The ferromagnetism of long chain NPs was from the exchange coupling between NPs, which eventually led to the transition from superparamagnetism (SPM to superferromagetism (SFM. Zero-field-cooled (ZFC and field-cooled (FC curves were obtained and long chain NP assemblies displayed ferromagnetism at the temperature ranging from 10 K to 400 K. Time-dependent remanent magnetic moment curves also indicated that the long chain structure had better thermal stability due to the strong exchange coupling.
Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals
Yoshida, Hiroyuki; Anucha, Konkanok; Ogawa, Yasuhiro; Kawata, Yuto; Ozaki, Masanori; Fukuda, Jun-ichi; Kikuchi, Hirotsugu
2016-10-01
The Bragg reflection band width and optical rotatory dispersion of liquid crystalline cholesteric blue phases (BPs) I and II are compared by numerical simulations. Attention is paid to the wavelength regions for which the reflection bands with lowest photon energies appear, i.e., the [110 ] direction for BP I and the [100 ] direction for BP II. Finite difference time domain and 4 ×4 matrix calculations performed on the theoretical director tensor distribution of BPs with the same material parameters show that BP II, which has simple cubic symmetry, has a wider photonic band gap than BP I, which has body centered cubic symmetry, possibly due to the fact that the density of the double-twist cylinders in BP II are twice that in BP I. The theoretical results on the Bragg reflection band width are supported by reflectance measurements performed on BPs I and II for light incident along the [110 ] and [100 ] directions, respectively.
Kim, Youngkyoo; Nelson, Jenny; Zhang, Tong; Cook, Steffan; Durrant, James R; Kim, Hwajeong; Park, Jiho; Shin, Minjung; Nam, Sungho; Heeney, Martin; McCulloch, Iain; Ha, Chang-Sik; Bradley, Donal D C
2009-09-22
We found that 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C(61) (PCBM) molecules make a distorted asymmetric body-centered cubic crystal nanostructure in the bulk heterojunction films of reigoregular poly(3-hexylthiophene) and PCBM. The wider angle of distortion in the PCBM nanocrystals was approximately 96 degrees , which can be assigned to the influence of the attached side group to the fullerene ball of PCBM to bestow solubility. Atom concentration analysis showed that after thermal annealing the PCBM nanocrystals do preferentially distribute above the layer of P3HT nanocrystals inside devices.
Institute of Scientific and Technical Information of China (English)
郭灿; 王锦程; 王志军; 李俊杰; 郭耀麟; 唐赛
2015-01-01
通过在自由能泛函中引入各向异性参数得到了一个基于高斯内核的改进晶体相场模型，并采用该模型研究了体心立方结构(BCC)枝晶生长的原子堆垛过程。结果表明，在BCC由正十二面体平衡形貌演化为枝晶组织过程中，形核位置经历了由面心({110}面)到尖端(⟨100⟩取向)的转移，进而发生界面失稳形成枝晶组织；枝晶生长过程中，新的固相原子首先在枝晶尖端附近形核，并快速向尖端及根部生长，枝晶尖端被新原子完全包覆后将再次诱发液相原子附着形核及生长；随初始液相密度的增加，固-液界面移动速率增加，速率系数的各向异性也增强。%On the basis of the Gaussian kernel phase field crystal model (PFC), we propose a modified PFC model. The atom-attaching process of three-dimensional body-center-cubic (BCC) dendritic growth is examined by using the modified PFC model. Our simulations indicate that in the process of the morphology evolution from regular dodecahedron to dendrite shape, the nucleation position of new layer is transferred from the center of {110} planes into the region of{110}plane near the⟨100⟩tips, and then the BCC dendritic morphology is obtained. In the process of dendritic growth, first, new solid atom absorption takes place near dendrite tips, then liquid atoms start to grow up on the existing solid phase rapidly. After the dendrite tips are completely occupied by new atoms, new nuclei begin to form again. Increasing the initial atom density n will increase the velocity coeﬃcient C and the anisotropy of C.
Social Inequalities in Body Weight and Physical Activity: Exploring the Role of Fitness Centers
McLaren, Lindsay; Rock, Melanie J.; McElgunn, Jamie
2012-01-01
Fitness centers are a viable option for physical activity, particularly in climates with significant weather variation. Due to variation in economic and social expressions of exclusivity, fitness centers may have some relation to social inequalities in physical inactivity and related health outcomes; thus, our objective was to explore this…
Fractal Symmetries: Ungauging the Cubic Code
Williamson, Dominic J
2016-01-01
Gauging is a ubiquitous tool in many-body physics. It allows one to construct highly entangled topological phases of matter from relatively simple phases and to relate certain characteristics of the two. Here we develop a gauging procedure for general submanifold symmetries of Pauli Hamiltonians, including symmetries of fractal type. We show a relation between the pre- and post- gauging models and use this to construct short range entangled phases with fractal like symmetries, one of which is mapped to the cubic code by the gauging.
Gaze-centered updating of remembered visual space during active whole-body translation
Pelt, S. van; Medendorp, W.P.
2007-01-01
Various cortical and sub-cortical brain structures update the gaze-centered coordinates of remembered stimuli to maintain an accurate representation of visual space across eyes rotations and to produce suitable motor plans. A major challenge for the computations by these structures is updating acros
Structure and Luminescence Properties of Eu3+-Doped Cubic Mesoporous Silica Thin Films
Directory of Open Access Journals (Sweden)
Lu Qingshan
2010-01-01
Full Text Available Abstract Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol–gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. With the Eu/Si molar ratio increasing to 3.41%, the luminescence intensity of the Eu3+ ions-doped mesoporous silica thin films increases linearly with increasing Eu3+ concentration.
Structure and luminescence properties of eu3+-doped cubic mesoporous silica thin films.
Lu, Qingshan; Wang, Zhongying; Wang, Peiyu; Li, Jiangong
2010-02-11
Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol-gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. With the Eu/Si molar ratio increasing to 3.41%, the luminescence intensity of the Eu3+ ions-doped mesoporous silica thin films increases linearly with increasing Eu3+ concentration.
Body area network--a key infrastructure element for patient-centered telemedicine.
Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas
2004-01-01
The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.
Knott, Gary D
2000-01-01
A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline func...
Magnetization and Coercivity in Ferromagnetic Films with Cubic Lattices%具有立方格点结构的铁磁薄膜的磁化强度和矫顽力
Institute of Scientific and Technical Information of China (English)
袁敏; 张君霞; 陈洪
2005-01-01
Using the variational cumulant expansion, the authors examine the magnetization and coercivity for spin1/2 ferromagnetic films of simple cubic, body-centered-cubic and face-centered-cubic lattices. It is shown that the magnetization and coercivity depend on the lattice structures as well as the temperature and the number of spin layers in the film.%使用变分累积展开法.计算了简单立方、体心立方、面心立方格点上自旋1/2的铁磁薄膜的磁化强度和矫玩力.显示磁化强度和矫顽力不仅依赖于温度和自旋层数,而且还依赖于格点结构.
Universal Reconfiguration of (Hyper-)cubic Robots
Abel, Zachary; Kominers, Scott D.
2008-01-01
We study a simple reconfigurable robot model which has not been previously examined: cubic robots comprised of three-dimensional cubic modules which can slide across each other and rotate about each others' edges. We demonstrate that the cubic robot model is universal, i.e., that an n-module cubic robot can reconfigure itself into any specified n-module configuration. Additionally, we provide an algorithm that efficiently plans and executes cubic robot motion. Our results directly extend to a...
Cubic-to-Tetragonal Phase Transitions in Ag–Cu Nanorods
Directory of Open Access Journals (Sweden)
Francesco Delogu
2012-01-01
Full Text Available Molecular dynamics simulations have been used to investigate the structural behavior of nanorods with square cross section. The nanorods consist of pure Ag and Cu phases or of three Ag and Cu domains in the sequence Ag–Cu–Ag or Cu–Ag–Cu. Ag and Cu domains are separated by coherent interfaces. Depending on the side length and the size of individual domains, Ag and Cu can undergo a transition from the usual face-centered cubic structure to a body-centered tetragonal one. Such transition can involve the whole nanorod, or only the Ag domains. In the latter case, the transition is accompanied by a loss of coherency at the Ag–Cu interfaces, with a consequent release of elastic energy. The observed behaviors are connected with the stresses developed at the nanorod surfaces.
The effect of stratification on premixed swirl-flame flashback by using porous center-body injection
McCaslin, Andrew; Ranjan, Rakesh; Clemens, Noel
2016-11-01
Boundary layer flashback must be prevented in order to stably operate stationary gas turbines. One strategy to avoid flashback is to create equivalence-ratio stratification, such as by reducing the fuel/air ratio in the boundary layer below the flammability limit. Typically, stratification is achieved by using radially non-uniform fuel injection. The goal of the current study is to reduce the propensity of flashback in a premixed annular swirl combustor that uses a premix section with center-body. A porous metal center-body (10 micron pore size) is used to bleed air directly into the boundary layer and thus locally reduce the equivalence ratio. Planar laser-induced fluorescence imaging of anisole-seeded flow is carried out to assess the stratification in the flow. Time-resolved PIV and chemiluminescence imaging are used to investigate flashback at atmospheric pressure conditions. A comparative study between fully premixed and stratified flame flashback is conducted to determine how stratification influences flashback physics. This work was sponsored by the DOE NETL under Grant DEFC2611-FE0007107. This source of funding is gratefully acknowledged.
IMPROVEMENT OF BODY SHOP MANAGING AS A PART OF VEHICLE IMPORTERS CENTER
Directory of Open Access Journals (Sweden)
Vasil Stamboliski
2014-12-01
Full Text Available The dynamic rhythm of living in today’s contemporary surroundings can not be considered without the use of personal and commercial vehicles, for transport of passengers and cargo. This means that every manufacturer in this segment, in their departments for development, find a way to increase their participation in the market. Since the race with time, for promoting new models on the market, not always is in positive relation with the profit which the manufacturer plans to achieve, issues the manufacturer’s focus in the after-sale activities. The body shop with its service, as part of the after-sale activities, brings the client satisfaction to a higher level and of course contributes to realization of higher profit of the company. The setting of the equipment and the staff management, the analysis of the number of entries and realized working hours in the body shop of an importer centre are the central topic/main subject for the author in this paper work. Finding the key factors, as well as the possibility for implementation of the key factors, would reflect increased number of entries, increased number of realized working hours and possibility for improving of the existing system of managing.
Sankhagowit, Shalene; Lee, Ernest Y; Wong, Gerard C L; Malmstadt, Noah
2016-03-15
Oxidation is associated with conditions related to chronic inflammations and aging. Cubic structures have been observed in the smooth endoplasmic reticulum and mitochondrial membranes of cells under oxidative stress (e.g., tumor cells and virus-infected cells). It has been previously suspected that oxidation can result in the rearrangement of lipids from a fluid lamellar phase to a cubic structure in organelles containing membranes enriched with amphiphiles that have nonzero intrinsic curvature, such as phosphatidylethanolamine (PE) and cardiolipin. This study focuses on the oxidation of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), a lipid that natively forms an inverted hexagonal phase at physiological conditions. The oxidized samples contain an approximately 3:2 molar ratio of nonoxidized to oxidized DOPE. Optical microscopy images collected during the hydration of this mixture from a dried film suggest that the system evolves into a coexistence of a stable fluid lamellar phase and transient square lattice structures with unit cell sizes of 500-600 nm. Small-angle X-ray scattering of the same lipid mixture yielded a body-centered Im3m cubic phase with the lattice parameter of 14.04 nm. On average, the effective packing parameter of the oxidized DOPE species was estimated to be 0.657 ± 0.069 (standard deviation). This suggests that the oxidation of PE leads to a group of species with inverted molecular intrinsic curvature. Oxidation can create amphiphilic subpopulations that potently impact the integrity of the membrane, since negative Gaussian curvature intrinsic to cubic phases can enable membrane destabilization processes.
The diagonalization of cubic matrices
Cocolicchio, D.; Viggiano, M.
2000-08-01
This paper is devoted to analysing the problem of the diagonalization of cubic matrices. We extend the familiar algebraic approach which is based on the Cardano formulae. We rewrite the complex roots of the associated resolvent secular equation in terms of transcendental functions and we derive the diagonalizing matrix.
Cryptographic Analysis in Cubic Time
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis; Seidl, H.
2004-01-01
The spi-calculus is a variant of the polyadic pi-calculus that admits symmetric cryptography and that admits expressing communication protocols in a precise though still abstract way. This paper shows that context-independent control flow analysis can be calculated in cubic time despite the fact ...
Right-left confusion in Gerstmann's syndrome: a model of body centered spatial orientation.
Gold, M; Adair, J C; Jacobs, D H; Heilman, K M
1995-06-01
Gerstmann's syndrome encompasses the tetrad of finger agnosia, agraphia, acalculia and right-left confusion and is associated with lesions of the dominant angular gyrus. The localizing value of this syndrome has been questioned because multiple mechanisms can account for each of the components of the syndrome. We present the case of a man who developed Gerstmann's syndrome following a focal infarct of the left angular gyrus. The patient's right-left confusion could not be accounted for by either an aphasia or a degraded body schema. A series of experiments that investigated the patient's spatial mapping system by progressively restricting the degrees of freedom for spatial rotation revealed an isolated defect in deriving the relative position of an object along the horizontal axis. Defective horizontal mapping can account for the other components of Gerstmann's syndrome because they all share a common dependency on relative horizontal positioning.
Ke, Fengfeng; Kwak, Dean
2013-01-01
The present study investigated the relationships between constructs of web-based student-centered learning and the learning satisfaction of a diverse online student body. Hypotheses on the constructs of student-centered learning were tested using structural equation modeling. The results indicated that five key constructs of student-centered…
Rheological properties of Cubic colloidal suspensions
Boromand, Arman; Maia, Joao
2016-11-01
Colloidal and non-colloidal suspensions are ubiquitous in many industrial application. There are numerous studies on these systems to understand and relate their complex rheological properties to their microstructural evolution under deformation. Although most of the experimental and simulation studies are centered on spherical particles, in most of the industrial applications the geometry of the colloidal particles deviate from the simple hard sphere and more complex geometries exist. Recent advances in microfabrication paved the way to fabricate colloidal particles with complex geometries for applications in different areas such as drug delivery where the fundamental understanding of their dynamics has remained unexplored. In this study, using dissipative particle dynamics, we investigate the rheological properties of cubic (superball) particles which are modeled as the cluster of core-modified DPD particles. Explicit representation of solvent particles in the DPD scheme will conserve the full hydrodynamic interactions between colloidal particles. Rheological properties of these cubic suspensions are investigated in the dilute and semi-dilute regimes. The Einstein and Huggins coefficients for these particles with different superball exponent will be calculate which represent the effect of single particle's geometry and multibody interactions on viscosity, respectively. The response of these suspensions is investigated under simple shear and oscillatory shear where it is shown that under oscillation these particles tend to form crystalline structure giving rise to stronger shear-thinning behavior recently measured experimentally.
School-Based Health Center Intervention Improves Body Mass Index in Overweight and Obese Adolescents
Directory of Open Access Journals (Sweden)
Alberta S. Kong
2013-01-01
Full Text Available Adolescents Committed to Improvement of Nutrition and Physical Activity (ACTION was undertaken to determine feasibility of a school-based health center (SBHC weight management program. Two urban New Mexico SBHCs were randomized to deliver ACTION or standard care. ACTION consisted of eight visits using motivational interviewing to improve eating and physical activity behavior. An educational nutrition and physical activity DVD for students and a clinician toolkit were created for use as menu of options. Standard care consisted of one visit with the SBHC provider who prescribed recommendations for healthy weight. Sixty nondiabetic overweight/obese adolescents were enrolled. Measures included BMI percentile, waist circumference, insulin resistance by homeostasis model assessment (HOMA-IR, blood pressure, triglycerides, and HDL-C levels. Pre- to postchanges for participants were compared between groups. Fifty-one students (mean age 15 years, 62% female, 75% Hispanic completed pre- and postmeasures. ACTION students (n=28 had improvements in BMI percentile (P=0.04 and waist circumference (P=0.04 as compared with students receiving standard care (n=23. No differences were found between the two groups in blood pressure, HOMA-IR, triglycerides, and HDL-C. The ACTION SBHC weight management program was feasible and demonstrated improved outcomes in BMI percentile and waist circumference.
Balakrishnan, S.; Thornton-Trump, A. B.; Brodland, G. W.
1983-07-01
Traditional locomotion analysis considers motion in a translating coordinate frame and the analysis is performed primarily in the sagittal plane. The results of several studies in the present work have shown that the aspect of symmetry is rarely present in pathological gait. Loss of function in one plane of movement gives rise to larger motions in other planes. This brings into focus the necessity for three dimensional measurement for adequately representing pathological gait. Description of quantities associated with gait in the appropriate moving frame of each segment would be closer to joint angulation of limb segments. Although this description has been attempted by a few researchers, the assumption of small angle theory and vectorial addition of rotation angles commonly employed for defining the rotation matrices is not applicable to pathological gait. The present work illustrates the use of biplane photography for displacement measurement in human movement. Transformations based on Eulerian angle rotations are derived based on biplane measurements. From the three dimensional ground reaction forces measured by a force plate, moments about the moving upper body coordinate axes are computed through a three dimensional mathematical model.
Mapelli, Andrea; Zago, Matteo; Fusini, Laura; Galante, Domenico; Colombo, Andrea; Sforza, Chiarella
2014-01-01
Since strictly related to balance and stability control, body center of mass (CoM) kinematics is a relevant quantity in sport surveys. Many methods have been proposed to estimate CoM displacement. Among them, segmental method appears to be suitable to investigate CoM kinematics in sport: human body is assumed as a system of rigid bodies, hence the whole-body CoM is calculated as the weighted average of the CoM of each segment. The number of landmarks represents a crucial choice in the protocol design process: one have to find the proper compromise between accuracy and invasivity. In this study, using a motion analysis system, a protocol based upon the segmental method is validated, adopting an anatomical model comprising 14 landmarks. Two sets of experiments were conducted. Firstly, our protocol was compared to the ground reaction force method (GRF), accounted as a standard in CoM estimation. In the second experiment, we investigated the aerial phase typical of many disciplines, comparing our protocol with: (1) an absolute reference, the parabolic regression of the vertical CoM trajectory during the time of flight; (2) two common approaches to estimate CoM kinematics in gait, known as sacrum and reconstructed pelvis methods. Recognized accuracy indexes proved that the results obtained were comparable to the GRF; what is more, during the aerial phases our protocol showed to be significantly more accurate than the two other methods. The protocol assessed can therefore be adopted as a reliable tool for CoM kinematics estimation in further sport researches.
Cubication of conservative nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Belendez, Augusto; Alvarez, Mariela L [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, Elena; Pascual, Inmaculada [Departamento de Optica, FarmacologIa y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es
2009-09-15
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.
Numbers for reducible cubic scrolls
Directory of Open Access Journals (Sweden)
Israel Vainsencher
2004-12-01
Full Text Available We show how to compute the number of reducible cubic scrolls of codimension 2 in (math blackboard symbol Pn incident to the appropriate number of linear spaces.Mostramos como calcular o número de rolos cúbicos redutíveis de codimensão 2 em (math blackboard symbol Pn incidentes a espaços lineares apropriados.
Cubic Matrix, Nambu Mechanics and Beyond
Kawamura, Y
2002-01-01
We propose a generalization of cubic matrix mechanics by introducing a canonical triplet and study its relation to Nambu mechanics. The generalized cubic matrix mechanics we consider can be interpreted as a “quantum” generalization of Nambu mechanics.
Cubical sets and the topological topos
DEFF Research Database (Denmark)
Spitters, Bas
2016-01-01
Coquand's cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. This paper contributes to the understanding of this model. We make three contributions...... show that it can also be a target for cubical realization by showing that Coquand's cubical sets classify the geometric theory of flat distributive lattices. As a side result, we obtain a simplicial realization of a cubical set. 2. Using the internal `interval' in the topos of cubical sets, we...... construct a Moore path model of identity types. 3. We construct a premodel structure internally in the cubical type theory and hence on the fibrant objects in cubical sets....
Solving Cubic Equations by Polynomial Decomposition
Kulkarni, Raghavendra G.
2011-01-01
Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…
Cubic Icosahedra? A Problem in Assigning Symmetry
Lloyd, D. R.
2010-01-01
There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…
Cubic colloids : Synthesis, functionalization and applications
Castillo, S.I.R.
2015-01-01
This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when
Brennan, Marie-Luise; Adam, Margaret P; Seaver, Laurie H; Myers, Angela; Schelley, Susan; Zadeh, Neda; Hudgins, Louanne; Bernstein, Jonathan A
2015-01-01
The diagnosis of Angelman syndrome (AS) is based on clinical features and genetic testing. Developmental delay, severe speech impairment, ataxia, atypical behavior and microcephaly by two years of age are typical. Feeding difficulties in young infants and obesity in late childhood can also be seen. The NIH Angelman-Rett-Prader-Willi Consortium and others have documented genotype-phenotype associations including an increased body mass index in children with uniparental disomy (UPD) or imprinting center (IC) defects. We recently encountered four cases of infantile obesity in non-deletion AS cases, and therefore examined body mass measures in a cohort of non-deletion AS cases. We report on 16 infants and toddlers (ages 6 to 44 months; 6 female, and 10 male) with severe developmental delay. Birth weights were appropriate for gestational age in most cases, >97th% in one case and not available in four cases. The molecular subclass case distribution consisted of: UPD (n = 2), IC defect (n = 3), UPD or IC defect (n = 3), and UBE3A mutation (n = 8). Almost all (7 out of 8) UPD, IC and UPD/IC cases went on to exhibit >90th% age- and gender-appropriate weight for height or BMI within the first 44 months. In contrast, no UBE3A mutation cases exhibited obesity or pre-obesity measures (percentiles ranged from <3% to 55%). These findings demonstrate that increased body mass may be evident as early as the first year of life and highlight the utility of considering the diagnosis of AS in the obese infant or toddler with developmental delay, especially when severe. Although a mechanism explaining the association of UPD, and IC defects with obesity has not been identified, recognition of this correlation may inform investigation of imprinting at the PWS/AS locus and obesity.
Cubic metaplectic forms and theta functions
Proskurin, Nikolai
1998-01-01
The book is an introduction to the theory of cubic metaplectic forms on the 3-dimensional hyperbolic space and the author's research on cubic metaplectic forms on special linear and symplectic groups of rank 2. The topics include: Kubota and Bass-Milnor-Serre homomorphisms, cubic metaplectic Eisenstein series, cubic theta functions, Whittaker functions. A special method is developed and applied to find Fourier coefficients of the Eisenstein series and cubic theta functions. The book is intended for readers, with beginning graduate-level background, interested in further research in the theory of metaplectic forms and in possible applications.
González, Alejandro; Hayashibe, Mitsuhiro; Bonnet, Vincent; Fraisse, Philippe
2014-01-01
The trajectory of the whole body center of mass (CoM) is useful as a reliable metric of postural stability. If the evaluation of a subject-specific CoM were available outside of the laboratory environment, it would improve the assessment of the effects of physical rehabilitation. This paper develops a method that enables tracking CoM position using low-cost sensors that can be moved around by a therapist or easily installed inside a patient's home. Here, we compare the accuracy of a personalized CoM estimation using the statically equivalent serial chain (SESC) method and measurements obtained with the Kinect to the case of a SESC obtained with high-end equipment (Vicon). We also compare these estimates to literature-based ones for both sensors. The method was validated with seven able-bodied volunteers for whom the SESC was identified using 40 static postures. The literature-based estimation with Vicon measurements had a average error 24.9 ± 3.7 mm; this error was reduced to 12.8 ± 9.1 mm with the SESC identification. When using Kinect measurements, the literature-based estimate had an error of 118.4 ± 50.0 mm, while the SESC error was 26.6 ± 6.0 mm. The subject-specific SESC estimate using low-cost sensors has an equivalent performance as the literature-based one with high-end sensors. The SESC method can improve CoM estimation of elderly and neurologically impaired subjects by considering variations in their mass distribution. PMID:25215943
Directory of Open Access Journals (Sweden)
Alejandro González
2014-09-01
Full Text Available The trajectory of the whole body center of mass (CoM is useful as a reliable metric of postural stability. If the evaluation of a subject-specific CoM were available outside of the laboratory environment, it would improve the assessment of the effects of physical rehabilitation. This paper develops a method that enables tracking CoM position using low-cost sensors that can be moved around by a therapist or easily installed inside a patient’s home. Here, we compare the accuracy of a personalized CoM estimation using the statically equivalent serial chain (SESC method and measurements obtained with the Kinect to the case of a SESC obtained with high-end equipment (Vicon. We also compare these estimates to literature-based ones for both sensors. The method was validated with seven able-bodied volunteers for whom the SESC was identified using 40 static postures. The literature-based estimation with Vicon measurements had a average error 24.9 ± 3.7 mm; this error was reduced to 12.8 ± 9.1 mm with the SESC identification. When using Kinect measurements, the literature-based estimate had an error of 118.4 ± 50.0 mm, while the SESC error was 26.6 ± 6.0 mm. The subject-specific SESC estimate using low-cost sensors has an equivalent performance as the literature-based one with high-end sensors. The SESC method can improve CoM estimation of elderly and neurologically impaired subjects by considering variations in their mass distribution.
Transparent polycrystalline cubic silicon nitride
Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo
2017-01-01
Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948
Directory of Open Access Journals (Sweden)
Oyewole Ezekiel O
2011-04-01
Full Text Available Abstract Introduction A retropharyngeal abscess is a potentially life-threatening infection in the deep space of the neck, which can compromise the airway. Its management requires highly specialized care, including surgery and intensive care, to reduce mortality. This is the first case of a gas-forming abscess reported from this region, but not the first such report in the literature. Case presentation We present a case of a 16-month-old Yoruba baby girl with a gas-forming retropharyngeal abscess secondary to fish bone foreign body with laryngeal spasm that was managed in the recovery room. We highlight specific problems encountered in the management of this case in a resource-challenged center such as ours. Conclusion We describe an unusual presentation of a gas-forming organism causing a retropharyngeal abscess in a child. The patient's condition was treated despite the challenges of inadequate resources for its management. We recommend early recognition through adequate evaluation of any oropharyngeal injuries or infection and early referral to the specialist with prompt surgical intervention.
Directory of Open Access Journals (Sweden)
Haibo Wang
2013-01-01
Full Text Available Highly crystalline body-centered cubic structure Y2O3 with lanthanide (Ln codopants (Ln = Yb3+/Er3+ and Yb3+/Ho3+ has been synthesized via a moderate hydrothermal method in combination with a subsequent calcination. The structure and morphology of Y(OH3 precursors and Y2O3 nanoparticles were characterized by X-ray diffraction and transmission electron microscopy. The results reveal that the Y2O3 nanoparticles possess cubic phase and form the quasispherical structure. The upconversion luminescence properties of Y2O3 nanoparticles doped with different Ln3+ (Yb3+/ Er3+ and Yb3+/ Ho3+ ions were well investigated under the 980 nm excitation. The results show that the Yb3+/Er3+ and Yb3+/Ho3+ codoped Y2O3 nanoparticles exhibit strong red and light yellow upconversion emissions, respectively. It is expected that these Y2O3 nanoparticles with tunable multicolor output and intense red upconversion emission may have potential application in color displays and biolabels.
Center of Mass of Two or More Celestial Bodies as a Basis of Comets and «Black Holes» Mechanism
Eugeny F. Orlov
2012-01-01
The article considers the questions, arising during rendezvous of two celestial bodies with equal mass, one of which is the Earth and the consequences of such rendezvous to modern civilization, suggests the idea of centers of galaxies mass with anomalously large values of the gravitational fields, which allows to divide them into two types – material filled and hollow.
Center of Mass of Two or More Celestial Bodies as a Basis of Comets and «Black Holes» Mechanism
Directory of Open Access Journals (Sweden)
Eugeny F. Orlov
2012-04-01
Full Text Available The article considers the questions, arising during rendezvous of two celestial bodies with equal mass, one of which is the Earth and the consequences of such rendezvous to modern civilization, suggests the idea of centers of galaxies mass with anomalously large values of the gravitational fields, which allows to divide them into two types – material filled and hollow.
Tame Kernels of Pure Cubic Fields
Institute of Scientific and Technical Information of China (English)
Xiao Yun CHENG
2012-01-01
In this paper,we study the p-rank of the tame kernels of pure cubic fields.In particular,we prove that for a fixed positive integer m,there exist infinitely many pure cubic fields whose 3-rank of the tame kernel equal to m.As an application,we determine the 3-rank of their tame kernels for some special pure cubic fields.
Jain, Avni; Errington, Jeffrey R; Truskett, Thomas M
2013-10-14
We use molecular simulation to construct equilibrium phase diagrams for two recently introduced model materials with isotropic, soft-repulsive pair interactions designed to favor diamond and simple cubic lattice ground states, respectively, over a wide range of densities [Jain et al., Soft Matter 9, 3866 (2013)]. We employ free energy based Monte Carlo simulation techniques to precisely trace the inter-crystal and fluid-crystal coexistence curves. We find that both model materials display rich polymorphic phase behavior featuring stable crystals corresponding to the target ground-state structures, as well as a variety of other crystalline (e.g., hexagonal and body-centered cubic) phases and multiple reentrant melting transitions.
Energy Technology Data Exchange (ETDEWEB)
Taremi, Mojgan, E-mail: mojgan.taremi@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada); Department of Radiation Oncology, University Health Network, Toronto, ON (Canada); Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Hope, Andrew [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada); Department of Radiation Oncology, University Health Network, Toronto, ON (Canada); Dahele, Max [Department of Radiation Oncology, Stronach Regional Cancer Center, Newmarket, ON (Canada); Pearson, Shannon [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada); Fung, Sharon [Department of Biostatistics, Princess Margaret Hospital, Toronto, ON (Canada); Purdie, Thomas [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada); Brade, Anthony [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada); Department of Radiation Oncology, University Health Network, Toronto, ON (Canada); Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Cho, John; Sun, Alexander; Bissonnette, Jean-Pierre; Bezjak, Andrea [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada); Department of Radiation Oncology, University Health Network, Toronto, ON (Canada)
2012-02-01
Purpose: To present the results of stereotactic body radiotherapy (SBRT) for medically inoperable patients with Stage I non-small-cell lung cancer (NSCLC) and contrast outcomes in patients with and without a pathologic diagnosis. Methods and Materials: Between December 2004 and October 2008, 108 patients (114 tumors) underwent treatment according to the prospective research ethics board-approved SBRT protocols at our cancer center. Of the 108 patients, 88 (81.5%) had undergone pretreatment whole-body [18F]-fluorodeoxyglucose positron emission tomography/computed tomography. A pathologic diagnosis was unavailable for 33 (28.9%) of the 114 lesions. The SBRT schedules included 48 Gy in 4 fractions or 54-60 Gy in 3 fractions for peripheral lesions and 50-60 Gy in 8-10 fractions for central lesions. Toxicity and radiologic response were assessed at the 3-6-month follow-up visits using conventional criteria. Results: The mean tumor diameter was 2.4-cm (range, 0.9-5.7). The median follow-up was 19.1 months (range, 1-55.7). The estimated local control rate at 1 and 4 years was 92% (95% confidence interval [CI], 86-97%) and 89% (95% CI, 81-96%). The cause-specific survival rate at 1 and 4 years was 92% (95% CI, 87-98%) and 77% (95% CI, 64-89%), respectively. No statistically significant difference was found in the local, regional, and distant control between patients with and without pathologically confirmed NSCLC. The most common acute toxicity was Grade 1 or 2 fatigue (53 of 108 patients). No toxicities of Grade 4 or greater were identified. Conclusions: Lung SBRT for early-stage NSCLC resulted in excellent local control and cause-specific survival with minimal toxicity. The disease-specific outcomes were comparable for patients with and without a pathologic diagnosis. SBRT can be considered an option for selected patients with proven or presumed early-stage NSCLC.
Cubical local partial orders on cubically subdivided spaces - Existence and construction
DEFF Research Database (Denmark)
Fajstrup, Lisbeth
2006-01-01
The geometric models of higher dimensional automata (HDA) and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes...
Cubical local partial orders on cubically subdivided spaces - existence and construction
DEFF Research Database (Denmark)
Fajstrup, Lisbeth
The geometric models of Higher Dimensional Automata and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes...
CLASSIFICATION OF CUBIC PARAMETERIZED HOMOGENEOUS VECTOR FIELDS
Institute of Scientific and Technical Information of China (English)
Karnal H.Yasir; TANG Yun
2002-01-01
In this paper the cubic homogeneous parameterized vector fields are studied.The classification of the phase portrait near the critical point is presented. This classification is an extension of the result given by Takens to the cubic homogeneous parameterized vector fields with six parameters.
CLASSIFICATION OF CUBIC PARAMETERIZED HOMOGENEOUS VECTOR FIELDS
Institute of Scientific and Technical Information of China (English)
KamalH.Yasir; TNAGYun
2002-01-01
In this paper the cubic homogeneous parameterized vector fields are studied.The classification of the phase portrait near the critical point is presented.This classification is an extension of the result given by takens to the cubic homogeneous parameterized vector fields with six parameters.
Cubic Composite Sensor with Photodiodes for Tracking Solar Orientation
Directory of Open Access Journals (Sweden)
Yong-Nong Chang
2013-01-01
Full Text Available A cubic composite solar sensor with photo diode is proposed for tracking the relative solar orientation. The proposed solar sensor composes of five photodiode detectors which are placed on the front, rear, left, right, and horizontal facets in a cubic body, respectively. The solar detectors placed on five facets can detect solar power of different facets. Based on the geometric coordinate transformation principle, the relationship equations of solar light orientation between measured powers with respect to various facets can be conducted. As a result, the solar orientation can be precisely achieved without needing any assistance of electronic compass and extra orientation angle corrector. Eventually, the relative solar light orientation, the elevation angle, and azimuth angle of the solar light can be measured precisely.
Carbon coated face-centered cubic Ru-C nanoalloys.
Zhao, Zhisheng; Meng, Chuanmin; Li, Peifang; Zhu, Wenjun; Wang, Qianqian; Ma, Yanming; Shen, Guoyin; Bai, Ligang; He, Hongliang; He, Duanwei; Yu, Dongli; He, Julong; Xu, Bo; Tian, Yongjun
2014-09-07
Carbon-encapsulated ruthenium-carbon (Ru-C) nanoalloys were synthesized by dynamic shocks. The Ru-C alloy shows a new fcc structure different from the original hcp structure of metal Ru. This fcc phase is assigned to a Ru32C4 solid solution with a lattice parameter of 3.868(2) Å and a bulk modulus KT0 of 272(12) GPa. The small amount of carbon in the solid solution enhances the thermodynamic and chemical stabilities with respect to pure Ru, as well as induces changes in the electronic properties, which have direct applications in improving the material's catalytic activity and selectivity.
Ultrahard nanotwinned cubic boron nitride.
Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan
2013-01-17
Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.
Cubic III-nitrides: potential photonic materials
Onabe, K.; Sanorpim, S.; Kato, H.; Kakuda, M.; Nakamura, T.; Nakamura, K.; Kuboya, S.; Katayama, R.
2011-01-01
The growth and characterization of some cubic III-nitride films on suitable cubic substrates have been done, namely, c- GaN on GaAs by MOVPE, c-GaN and c-AlGaN on MgO by RF-MBE, and c-InN and c-InGaN (In-rich) on YSZ by RFMBE. This series of study has been much focused on the cubic-phase purity as dependent on the respective growth conditions and resulting electrical and optical properties. For c-GaN and c-InN films, a cubic-phase purity higher than 95% is attained in spite of the metastable nature of the cubic III-nitrides. However, for c-AlGaN and c-InGaN films, the cubic-phase purity is rapidly degraded with significant incorporation of the hexagonal phase through stacking faults on cubic {111} faces which may be exposed on the roughened growing or substrate surface. It has been shown that the electron mobilities in c-GaN and c-AlGaN films are much related to phase purity.
Sun, H; Chénier, Eric; Lauriat, Guy
2011-01-01
Abstract The physical model considered in the present numerical work is a square air-filled cavity cooled from below and above, with a heated square body located at the cavity center. The aim is to establish the effects of radiation interchanges amongst surfaces on the transition from steady, symmetric flows about the cavity centerline to complex periodic flows. Owing to the low temperature differences involved (1 K ? ?T ? 5 K), the two-dimensional model is based on the Boussinesq ...
Cubic Curves, Finite Geometry and Cryptography
Bruen, A A; Wehlau, D L
2011-01-01
Some geometry on non-singular cubic curves, mainly over finite fields, is surveyed. Such a curve has 9,3,1 or 0 points of inflexion, and cubic curves are classified accordingly. The group structure and the possible numbers of rational points are also surveyed. A possible strengthening of the security of elliptic curve cryptography is proposed using a `shared secret' related to the group law. Cubic curves are also used in a new way to construct sets of points having various combinatorial and geometric properties that are of particular interest in finite Desarguesian planes.
Cubical sets as a classifying topos
DEFF Research Database (Denmark)
Spitters, Bas
Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. We show that the underlying cube category is the opposite of the Lawvere theory of De...... Morgan algebras. The topos of cubical sets itself classifies the theory of ‘free De Morgan algebras’. This provides us with a topos with an internal ‘interval’. Using this interval we construct a model of type theory following van den Berg and Garner. We are currently investigating the precise relation...
Wasicek, Philip; Kaswan, Sumesh; Messing, Susan; Gusenoff, Jeffrey A
2013-11-01
Medical photography of body contouring patients often requires complete nudity, placing patients in a vulnerable situation. We investigated patient perspectives on full body photography in an effort to better protect the patients and enhance comfort with the photography process. Sixty-five massive weight loss patients were identified who underwent body contouring surgery with full body photography. Photographs were taken at the time of initial consult, time of marking, and postoperatively. A retrospective chart review was performed to assess body mass indices and comorbidities, and a telephone survey inquired about several aspects of the photographic process. Fifty-six (86%) patients participated. Patients were more comfortable at the time of markings (P = 0.0004) and at the postoperative session (P = 0.0009). Patients' perception of positive body image increased after body contouring surgery (P photography improves quickly as they move through the surgical process. Maintaining professionalism is the most important factor in achieving patient trust and comfort. Limiting the number of observers in the room, providing explicit details of the photography process, and having at least 1 person of the same sex in the room can optimize patient safety and comfort.
Wada, Osamu; Tateuchi, Hiroshige; Ichihashi, Noriaki
2014-01-01
Body rotation is associated with many activities. The concomitant movement of the center of mass (COM) is essential for effective body rotation. This movement is considered to be influenced by kinematic changes in the spine, pelvis, and hip joints. However, there is no research on the association between COM movement and kinematic changes during body rotation. We aimed to investigate the association between COM movement and the kinematics of the spine, pelvis, and hip joints during body rotation in standing. Twenty-four healthy men were included in the study. COM movement during active body rotation in a standing position was measured. We evaluated pelvic shift and changes in the angles of the spine, pelvis, and hip joints. We calculated the Pearson correlation coefficients to analyze the relationship between COM movement and kinematic changes in the spine, pelvis, and hip joints. There were significant correlations between lateral COM movement to the rotational side and pelvic shift to the rotational side, and between posterior COM movement and pelvic shift to the posterior side. In addition, lateral COM movement to the rotational side showed significant and negative correlation with spinal flexion and was significantly and positively correlated with the change in anterior pelvic tilt. Clinicians need to take particular note of both spinal and pelvic motion in the sagittal plane, as well as the pelvic shift, to speculate COM movement during body rotation in standing.
Institute of Scientific and Technical Information of China (English)
罗宏超; 成泰民
2011-01-01
考虑到第三近邻相互作用情况下,利用晶格动力学方法,确定晶格振动的动力学矩阵及其本征方程,求解三维体心立方晶体声子谱,给出了非简并情况下声子谱的能量及与其对应的极化向量的解析解.并在第一布里渊区的全空间讨论了声子谱的特性,指出了声子谱能量只在第一布里渊区的主要对称点线面上具有简并现象,并按其极化向量判断了纵向声子与横向声子的特性.
Institute of Scientific and Technical Information of China (English)
张俊峰; 朱逢吾; 李春明
2000-01-01
通过原子探针(AP)对体心立方Fe-17Cr合金的深度分析,在原子尺度上获得紧靠晶界40 nm区域内Cr元素的分布.结果表明敏化Fe-17Cr合金在该区域存在贫Cr区,证实了Fe-Cr合金晶间腐蚀的贫Cr理论.在距晶界约30 nm内,出现比较平稳的Cr分布平台,并且Cr浓度低于相同Cr含量的敏化Fe-Cr-Ni合金Cr浓度.
Institute of Scientific and Technical Information of China (English)
刘华峰; 金士尧
2008-01-01
三维传感器网络有着重要的应用前景,而目前传感器网络的研究主要集中在二维.针对传感器节点在空间中的部署和组织,本文提出一种体心立方格结构传感器网络的确定部署方法,以及一种基于空间虚拟Voronoi单元的随机部署三维传感器网络的节点组织策略.
Institute of Scientific and Technical Information of China (English)
孔毅; 黄杨程; 舒小林; 王玲玲; 胡望宇
2003-01-01
应用改进分析型EAM多体势,运用晶格动力学理论,具体计算了7种过渡族bcc金属(Cr,Fe,W,Mo,Ta,V,Nb)的[100],[110]和[111]三个晶向声子谱和比热.将计算结果与实验值进行了比较,较Johmson势有很大提高;并从方向性键合角度对符合情况进行了分析.
Institute of Scientific and Technical Information of China (English)
汪乔欣; 田强
2007-01-01
介绍了可能的五种正多面体,指出正十二面体是晶体结构及其布里渊区不可能具有的正多面体形状.体心立方晶格的布里渊区是菱形十二面体,不是正十二面体.
2-rational Cubic Spline Involving Tension Parameters
Indian Academy of Sciences (India)
M Shrivastava; J Joseph
2000-08-01
In the present paper, 1-piecewise rational cubic spline function involving tension parameters is considered which produces a monotonic interpolant to a given monotonic data set. It is observed that under certain conditions the interpolant preserves the convexity property of the data set. The existence and uniqueness of a 2-rational cubic spline interpolant are established. The error analysis of the spline interpolant is also given.
Semisymmetric Cubic Graphs of Order 162
Indian Academy of Sciences (India)
Mehdi Alaeiyan; Hamid A Tavallaee; B N Onagh
2010-02-01
An undirected graph without isolated vertices is said to be semisymmetric if its full automorphism group acts transitively on its edge set but not on its vertex set. In this paper, we inquire the existence of connected semisymmetric cubic graphs of order 162. It is shown that for every odd prime , there exists a semisymmetric cubic graph of order 162 and its structure is explicitly specified by giving the corresponding voltage rules generating the covering projections.
MOVING SCREW DISLOCATION IN CUBIC QUASICRYSTAL
Institute of Scientific and Technical Information of China (English)
ZHOU Wang-min; SONG Yu-hai
2005-01-01
The elasticity theory of the dislocation of cubic quasicrystals is developed.The governing equations of anti-plane elasticity dynamics problem of the quasicrystals were reduced to a solution of wave equations by introducing displacement functions,and the analytical expressions of displacements, stresses and energies induced by a moving screw dislocation in the cubic quasicrystalline and the velocity limit of the dislocation were obtained. These provide important information for studying the plastic deformation of the new solid material.
Cubical version of combinatorial differential forms
DEFF Research Database (Denmark)
Kock, Anders
2010-01-01
The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry.......The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry....
Impurity modes in Frenkel exciton systems with dipolar interactions and cubic symmetry.
Avgin, I; Huber, D L
2013-04-28
We introduce a continuum model for impurity modes of Frenkel excitons in fully occupied face-centered and body-centered cubic lattices with dipole-dipole interactions and parallel moments. In the absence of impurities, the model reproduces the small-k behavior found in numerical calculations of dipolar lattice sums. The exciton densities of states near the upper and lower band edges are calculated and compared with the corresponding results for a random array of dipoles. The Green function obtained with the continuum model, together with a spherical approximation to the Brillouin zone, is used to determine the conditions for the formation of a localized exciton mode associated with a shift in the transition energy of a single chromophore. The dependence of the local mode energy on the magnitude of the shift is ascertained. The formation of impurity bands at high concentrations of perturbed sites is investigated using the coherent potential approximation. The contribution of the impurity bands to the optical absorption is calculated in the coherent potential approximation. The locations of the optical absorption peaks of the dipolar system are shown to depend on the direction of propagation of the light relative to the dipolar axis, a property that is maintained in the presence of short-range interactions.
Nielsen, Jack N; Kaattari, George E; Anastasio, Robert F
1953-01-01
A method is presented for calculating the lift and pitching-moment characteristics of circular cylindrical bodies in combination with triangular, rectangular, or trapezoidal wings or tails through the subsonic, transonic, and supersonic speed ranges. The method covers unbanked wings, sweptback leading edges or sweptforward trailing edges, low angles of attack, and the effects of wing and tail incidence. The wing-body interference is handled by the method presented in NACA RM's A51J04 and A52B06, and the wing-tail interference is treated by assuming one completely rolled-up vortex per wing panel and evaluating the tail load by strip theory. A computing table and set of design charts are presented which reduce the calculations to routine operations. Comparison is made between the estimated and experimental characteristics for a large number of wing-body and wing-body-tail combinations. Generally speaking, the lifts were estimated to within plus-or-minus 10 percent and the centers of pressure were estimated to within plus-or-minus 0.02 of the body length. The effect of wing deflection on wing-tail interference at supersonic speeds was not correctly predicted for triangular wings with supersonic leading edges.
Alipour-Faz, Athena; Shadnia, Shahin; Mirhashemi, Seyyed Hadi; Peyvandi, Maryam; Oroei, Mahbobeh; Shafagh, Omid; Peyvandi, Hassan; Peyvandi, Ali Asghar
2016-05-01
The incidence of smuggling and transporting illegal substances by internal concealment, also known as body packing, is on the rise. The clinical approach to such patients has been changed significantly over the past 2 decades. However, despite a recorded increase in body packing in general, there are controversies in the management of these patients. We aimed to gather data regarding the demographic characteristics, treatment, and outcome of body packers, which were that referred to Loghman Hakim Hospital, Tehran, Iran.The data of all body packers admitted to Loghman Hakim Hospital during 2010 to 2014 were evaluated retrospectively. Data regarding the demographic characteristics of the patients, findings of clinical imaging, treatment, and outcome were recorded.In this study, 175 individuals with a mean age of 31 ± 10 years were assessed. The most common concealed substances were crack (37%), crystal (17%), opium (13%), and heroin (6%). According to the results of surgery and imaging (abdominal radiography or computed tomography), the most common place for concealment was stomach in 33.3% and 12% of cases, respectively. Imaging findings were normal in 18% of the individuals. Forty-eight (27%) patients underwent surgery. The main indications for surgery were clinical manifestations of toxicity (79%) and obstruction of the gastro-intestinal tract (17%). The most common surgical techniques were laparotomy and gastrotomy (50%). The mean duration of hospitalization was 3.8 ± 4 days. The mortality rate was 3%.Conservative treatment of body packers seems to be the best treatment method. Careful monitoring of the patients for possible signs and symptoms of intoxication and gastro-intestinal obstruction is strongly recommended.
Natale, Ruby A; Lopez-Mitnik, Gabriela; Uhlhorn, Susan B; Asfour, Lila; Messiah, Sarah E
2014-09-01
This study examined the effect of an early childhood obesity prevention program on changes in Body Mass Index (BMI) z-score and nutrition practices. Eight child care centers were randomly assigned to an intervention or attention control arm. Participants were a multiethnic sample of children aged 2 to 5 years old (N = 307). Intervention centers received healthy menu changes and family-based education focused on increased physical activity and fresh produce intake, decreased intake of simple carbohydrate snacks, and decreased screen time. Control centers received an attention control program. Height, weight, and nutrition data were collected at baseline and at 3, 6, and 12 months. Analysis examined height, weight, and BMI z-score change by intervention condition (at baseline and at 3, 6, and 12 months). Pearson correlation analysis examined relationships among BMI z-scores and home activities and nutrition patterns in the intervention group. Child BMI z-score was significantly negatively correlated with the number of home activities completed at 6-month post intervention among intervention participants. Similarly, intervention children consumed less junk food, ate more fresh fruits and vegetables, drank less juice, and drank more 1% milk compared to children at control sites at 6 months post baseline. Ninety-seven percent of those children who were normal weight at baseline were still normal weight 12 months later. Findings support child care centers as a promising setting to implement childhood obesity prevention programs in this age group.
Babamoradi, Mohsen; Asgari, Sussan; Ranjbar, Ahmad; Belosludov, Rodion V.; Yunoki, Seiji
2017-01-01
A new model is applied to calculate the many-body properties of the neutral N3 color center in diamond. This model is based on the first-principles density functional theory (DFT) and cluster method, which is combined with the generalized Hubbard model. In contrast to the previous models for N3 centers, our model does not require the configuration interaction (CI) and molecular orbital (MO) techniques. The N3 defect in diamond is simulated with an empty site next to three substitutional nitrogen atoms in the center of a hydrogen-terminated diamond cluster. The method is shown to be highly accurate for describing the symmetries and spin properties of the ground state and the first dipole-allowed excited state for the N3 center. We obtain the transition energy as 412 nm for the first dipole-allowed transition, which is in good agreement with the corresponding experimental value as 415 nm. We assigned the dipole-allowed transition between the first and second excited states as the N2 optical peak, and evaluated the N2 optical peak to be 463 nm, which is close to the experimental value as 478 nm.
Covarelli, Piero; Burini, Gloria; Castellani, Elisa; Lombardo, Francesco; Caracappa, Daniela; Noya, Giuseppe; Rulli, Antonio
2015-01-01
Il “body packing” è un modo di trasportare pacchetti di droga all’interno delle cavità corporee. In Europa, come ha sottolineato l’ultimo report dell’Osservatorio di Bruxelles, ci sono 74 milioni di consumatori di sostanze stupefacenti. L’Italia è in pole position e Perugia è stata considerata come una “capitale” del commercio di droga. I “body packers” usualmente ingeriscono i pacchetti contenenti la droga, sebbene in letteratura sia riportato anche il trasporto all’interno di retto o vagina. La gestione dipende dal fatto che il paziente sia o meno sintomatico. Il trattamento chirurgico è indicato in presenza di sintomi da intossicazione non controllati dal trattamento medico, in caso di evidenza radiologica della presenza degli ovuli ritenuti nella cavità gastrica, segni di ostruzione o perforazione intestinale. È inoltre importante sottolineare che, in un contesto multidisciplinare, la gestione del paziente sintomatico che deve essere portato in sala operatoria è mirata alla stabilizzazione dei parametri vitali ed in genere viene demandata ai medici della Terapia Intensiva. In questo lavoro presentiamo l’esperienza del nostro centro con la gestione dei “body packers” sia chirurgica che conservativa.
Cubical Cohomology Ring of 3D Photographs
Gonzalez-Diaz, Rocio; Medrano, Belen; 10.1002/ima.20271
2011-01-01
Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex $Q$ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, $\\partial Q$ by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information.
Purely cubic action for string field theory
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Lakoski, Susan G; Barlow, Carolyn E; Farrell, Stephen W; Berry, Jarett D; Morrow, James R; Haskell, William L
2011-07-01
Cardiorespiratory fitness (CRF) is widely accepted as an important reversible cardiovascular risk factor. In the present study, we examined the nonmodifiable and modifiable determinants of CRF within a large healthy Caucasian population of men and women. The study included 20,239 patients presenting to Cooper Clinic (Dallas, Texas) for a comprehensive medical examination from 2000 through 2010. CRF was determined by maximal treadmill exercise testing. Physical activity categories were 0 metabolic equivalent tasks (METs)/min/week (no self-reported moderate or vigorous intensity physical activity), 1 to 449 METs/min/week (not meeting physical activity guideline), 450 to 749 METs/min/week (meeting guideline), and ≥750 METs/min/week (exceeding guideline). Linear regression modeling was used to determine the most robust clinical factors associated with achieved treadmill time. Age, gender, body mass index (BMI), and physical activity were the most important factors associated with CRF, explaining 56% of the variance (R(2) = 0.56). The addition of all other factors combined (current smoking, systolic blood pressure, blood glucose, high-density and low-density lipoprotein cholesterol, health status) were associated with CRF (p physical activity on CRF, such that normal-weight (BMI physical activity compared to obese subjects (BMI ≥30 kg/m(2)). Percent body fat, not lean body mass, was the key factor driving this interaction. In conclusion, BMI was the most important clinical risk factor associated with CRF other than nonmodifiable risk factors age and gender. For a similar amount of physical activity, normal-weight subjects achieved a higher CRF level compared to obese subjects. These data suggest that obesity may offset the benefits of physical activity on achieved CRF, even in a healthy population of men and women.
Directory of Open Access Journals (Sweden)
Ali Zakerolhosseini
2013-09-01
Full Text Available Quick responds to heart attack patients before arriving to hospital is a very important factor. In this paper, a combined model of Body Sensor Network and Personal Digital Access using QTRU cipher algorithm in Wifi networks is presented to efficiently overcome these life threatening attacks. The algorithm for optimizing the routing paths between sensor nodes and an algorithm for reducing the power consumption are also applied for achieving the best performance by this model. This system is consumes low power and has encrypting and decrypting processes. It also has an efficient routing path in a fast manner
Zakerolhosseini, Ali; Sokouti, Massoud; Pezeshkian, Massoud
2013-01-01
Quick responds to heart attack patients before arriving to hospital is a very important factor. In this paper, a combined model of Body Sensor Network and Personal Digital Access using QTRU cipher algorithm in Wifi networks is presented to efficiently overcome these life threatening attacks. The algorithm for optimizing the routing paths between sensor nodes and an algorithm for reducing the power consumption are also applied for achieving the best performance by this model. This system is consumes low power and has encrypting and decrypting processes. It also has an efficient routing path in a fast manner.
Binomial Squares in Pure Cubic Number Fields
Lemmermeyer, Franz
2011-01-01
Let K = Q(\\omega) with \\omega^3 = m be a pure cubic number field. We show that the elements\\alpha \\in K^\\times whose squares have the form a - \\omega form a group isomorphic to the group of rational points on the elliptic curve E_m: y^2= x^3 - m.
Anisotropy of a cubic ferromagnet at criticality
Kudlis, A.; Sokolov, A. I.
2016-10-01
Critical fluctuations change the effective anisotropy of cubic ferromagnet near the Curie point. If the crystal undergoes phase transition into orthorhombic phase and the initial anisotropy is not too strong, reduced anisotropy of nonlinear susceptibility acquires at Tc the universal value δ4*=2/v* 3 (u*+v*) where u* and v* are coordinates of the cubic fixed point on the flow diagram of renormalization group equations. In the paper, the critical value of the reduced anisotropy is estimated within the pseudo-ɛ expansion approach. The six-loop pseudo-ɛ expansions for u*, v*, and δ4* are derived for the arbitrary spin dimensionality n . For cubic crystals (n =3 ) higher-order coefficients of the pseudo-ɛ expansions obtained turn out to be so small that use of simple Padé approximants yields reliable numerical results. Padé resummation of the pseudo-ɛ series for u*, v*, and δ4* leads to the estimate δ4*=0.079 ±0.006 , indicating that detection of the anisotropic critical behavior of cubic ferromagnets in physical and computer experiments is certainly possible.
Counting rational points on cubic curves
Institute of Scientific and Technical Information of China (English)
HEATH-BROWN; Roger; TESTA; Damiano
2010-01-01
We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals.The bounds are uniform in the curve and involve the rank of the corresponding Jacobian.The method used in the proof is a combination of the "determinant method" with an m-descent on the curve.
CONSTRAINED RATIONAL CUBIC SPLINE AND ITS APPLICATION
Institute of Scientific and Technical Information of China (English)
Qi Duan; Huan-ling Zhang; Xiang Lai; Nan Xie; Fu-hua (Frank) Cheng
2001-01-01
In this paper, a kind of rational cubic interpolation functionwith linear denominator is constructed. The constrained interpolation with constraint on shape of the interpolating curves and on the second-order derivative of the interpolating function is studied by using this interpolation, and as the consequent result, the convex interpolation conditions have been derived.
DEFICIENT CUBIC SPLINES WITH AVERAGE SLOPE MATCHING
Institute of Scientific and Technical Information of China (English)
V. B. Das; A. Kumar
2005-01-01
We obtain a deficient cubic spline function which matches the functions with certain area matching over a greater mesh intervals, and also provides a greater flexibility in replacing area matching as interpolation. We also study their convergence properties to the interpolating functions.
The cactus rank of cubic forms
Bernardi, Alessandra
2011-01-01
We prove that the smallest degree of an apolar 0-dimensional scheme to a general cubic form in $n+1$ variables is at most $2n+2$, when $n\\geq 8$, and therefore smaller than the rank of the form. When n=8 we show that the bound is sharp, i.e. the smallest degree of an apolar subscheme is 18.
Farris, Samantha G; Paulus, Daniel J; Gonzalez, Adam; Mahaffey, Brittain L; Bromet, Evelyn J; Luft, Benjamin J; Kotov, Roman; Zvolensky, Michael J
2016-07-30
Among individuals exposed to the World Trade Center (WTC) disaster on September 11, 2001, posttraumatic stress disorder (PTSD) and symptoms are both common and associated with increased cigarette smoking and body mass. However, there is little information on the specific processes underlying the relationship of PTSD symptoms with body mass. The current study is an initial exploratory test of anxiety sensitivity, the fear of internal bodily sensations, as a possible mechanism linking PTSD symptom severity and body mass index (BMI). Participants were 147 adult daily smokers (34.0% female) exposed to the WTC disaster (via rescue/recovery work or direct witness). The direct and indirect associations between PTSD symptom severity and BMI via anxiety sensitivity (total score and subscales of physical, cognitive, and social concerns) were examined. PTSD symptom severity was related to BMI indirectly via anxiety sensitivity; this effect was specific to physical concerns about the meaning of bodily sensations. Interventions focusing on anxiety sensitivity reduction (specifically addressing physical concerns about bodily sensations) may be useful in addressing elevated BMI among trauma-exposed persons.
Erbium related centers in CZ-silicon
Jantsch, W; Przybylinska, H; SuprunBelevich, Y; Stepikhova, M; Hendorfer, G; Palmetshofer, L; Suezawa, M; KatayamaYoshida, H
1995-01-01
CZ Si implanted with Er shows the same cubic crystal field splitting of the 1.54 mu m luminescence as FZ-SI together with otter, defect- and oxygen correlated Pr complexes. The cubic centers exhibit somewhat shorter radiative life- and excitation times. The 100 times higher luminescence yield of CZ
1:2 INTERNAL RESONANCE OF COUPLED DYNAMIC SYSTEM WITH QUADRATIC AND CUBIC NONLINEARITIES
Institute of Scientific and Technical Information of China (English)
陈予恕; 杨彩霞; 吴志强; 陈芳启
2001-01-01
The 1:2 internal resonance of coupled dynamic system with quadratic and cubic nonlinearities is studied. The normal forms of this system in 1: 2 internal resonance were derived by using the direct method of normal form. In the normal forms, quadratic and cubic nonlinearities were remained. Based on a new convenient transformation technique, the 4-dimension bifurcation equations were reduced to 3-dimension. A bifurcation equation with one-dimension was obtained. Then the bifurcation behaviors of a universal unfolding were studied by using the singularity theory. The method of this paper can be applied to analyze the bifurcation behavior in strong internal resonance on 4-dimension center manifolds.
Atomic ordering in cubic bismuth telluride alloy phases at high pressure
Loa, I.; Bos, J.-W. G.; Downie, R. A.; Syassen, K.
2016-06-01
Pressure-induced transitions from ordered intermetallic phases to substitutional alloys to semi-ordered phases were studied in a series of bismuth tellurides. By using angle-dispersive x-ray diffraction, the compounds Bi4Te5 , BiTe, and Bi2Te were observed to form alloys with the disordered body-centered cubic (bcc) crystal structure upon compression to above 14-19 GPa at room temperature. The BiTe and Bi2Te alloys and the previously discovered high-pressure alloys of Bi2Te3 and Bi4Te3 were all found to show atomic ordering after gentle annealing at very moderate temperatures of ˜100 ∘C . Upon annealing, BiTe transforms from bcc to the B2 (CsCl) crystal-structure type, and the other phases adopt semi-disordered variants thereof, featuring substitutional disorder on one of the two crystallographic sites. The transition pressures and atomic volumes of the alloy phases show systematic variations across the BimTen series including the end members Bi and Te. First-principles calculations were performed to characterize the electronic structure and chemical bonding properties of B2-type BiTe and to identify the driving forces of the ordering transition. The calculated Fermi surface of B2-type BiTe has an intricate structure and is predicted to undergo three topological changes between 20 and 60 GPa.
Hybrid functional study rationalizes the simple cubic phase of calcium at high pressures.
Liu, Hanyu; Cui, Wenwen; Ma, Yanming
2012-11-14
Simple cubic (SC) phase has been long experimentally determined as the high-pressure phase III of elemental calcium (Ca) since 1984. However, recent density functional calculations within semi-local approximation showed that this SC phase is structurally unstable by exhibiting severely imaginary phonons, and is energetically unstable with respect to a theoretical body-centered tetragonal I4(1)/amd structure over the pressure range of phase III. These calculations generated extensive debates on the validity of SC phase. Here we have re-examined the SC structure by performing more precise density functional calculations within hybrid functionals of Heyd-Scuseria-Erhzerhof and PBE0. Our calculations were able to rationalize fundamentally the phase stability of SC structure over all other known phases by evidence of its actual energetic stability above 33 GPa and its intrinsically dynamical stability without showing any imaginary phonons in the entire pressure range studied. We further established that the long-thought theoretical I4(1)/amd structure remains stable in a narrow pressure range before entering SC phase and is actually the structure of experimental Ca-III(') synthesized recently at low temperature 14 K as supported by the excellent agreement between our simulated x-ray diffraction patterns and the experimental data. Our results shed strong light on the crucial role played by the precise electron exchange energy in a proper description of the potential energy of Ca.
Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.
Biesiekierski, Arne; Ping, Dehai; Li, Yuncang; Lin, Jixing; Munir, Khurram S; Yamabe-Mitarai, Yoko; Wen, Cuie
2017-02-02
While titanium alloys represent the current state-of-the-art for orthopedic biomaterials, concerns still remain over their modulus. Circumventing this via increased porosity requires high elastic admissible strains, yet also limits traditional thermomechanical strengthening techniques. To this end, a novel β-type Ti-Zr-Ta alloy system, comprised of Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta, was designed and characterized mechanically and microstructurally. As-cast, this system displayed extremely high yield strengths and elastic admissible strains, up to 1.4GPa and potentially 1.48%, respectively. This strength was attributed to a nanoscaled, cuboidal structure of semi-coherent, dual body-centered cubic (BCC) phases, arising from the thermodynamics of interaction between Ta and Zr; this morphology occurring with dual BCC-phases is heretofore unreported in Ti-based alloys. Further, cell proliferation investigated by MTS assay suggests this was achieved without sacrificing biocompatibility, with no significant difference to either empty-well or commercially-pure Ti controls noted.
Novel Cubic Magnetite Nanoparticle Synthesis Using Room Temperature Ionic Liquid
Directory of Open Access Journals (Sweden)
M. Sundrarajan
2012-01-01
Full Text Available Room Temperature Ionic liquids are relatively more useful in the synthesis of inorganic nanostructured materials because of their unique properties. To synthesize the iron oxide nanoparticle in simple precipitation method, a novel ionic liquid was used as the greener medium and stabilizing agent namely “1-n-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][TfO]”. The crystallinity, chemical structure, morphology and magnetic properties of the synthesized magnetite nanoparticles have been characterized by using X-ray diffraction (XRD, Fourier Transform Infrared (FT-IR, Scanning electron microscopy (SEM, Atomic force microscopy(AFM, Transmission electron microscopy (TEM and Vibrating sample magnetometer (VSM studies. The XRD study is divulge that the synthesized magnetite nanoparticles have inverse spinel face centered cubic structure. The FT-IR vibration peaks show the formation of Fe3O4 nanoparticles, where the vibration peak for Fe-O is deliberately presence at 584 cm-1. The average particle size of the synthesized nanoparticles is found to be 35 nm. Homogeneously dispersed cubic shape with superstructure is found through SEM, AFM and TEM examination studies. The synthesized iron oxide nanoparticles have a high saturation magnetization value of 25 emu/g, which is very much useful for biomedical applications.
Directory of Open Access Journals (Sweden)
P Santhanam
2016-01-01
Full Text Available Objective: Diagnostic whole body scan (pre-therapy scan with either I-123 or I-131 (radioactive isotopes of iodine is performed to assess the extent of thyroid cancer especially distant metastasis prior to administering the therapeutic dose of I-131. Our aim of the following study was to determine the utility of the diagnostic pre-therapy scan in the management of differentiated thyroid cancer. Materials and Methods: It was a case-control study carried out by retrospective chart review, of a randomly selected 100 patients with differentiated thyroid cancer who had followed in our community hospital over the course of 1 year. We collected data on multiple variables in the subjects - including age, gender, pre-operative size of the nodules, diagnosis, stage of the malignancy, size of the tumor, multifocality, lymphovascular invasion, dose of radioiodine used for remnant ablation, recurrence rates and persistence rates. Continuous variables were compared using the independent sample Mann-Whitney U-test whereas the Chi-square test was used for nominal variables. Results: The mean dose of radioactive iodine administered was 97.56 (±27.98 in the pre-therapy scan group and it was 97.23 (±32.40 in the control group. There was no difference between the two groups (P - 0.45. There was also no difference in the recurrence rates between the groups (P = 1.0. There was a trend toward a higher degree of persistent cancer in the group that had the pre-therapy scans (P - 0.086. Conclusion: Pre-therapy scan may not affect the dose of radio-iodine I-131 used for remnant ablation of differentiated thyroid cancer and does not influence the recurrence rates. This was especially true with respect to I-131 remnant ablation for low risk tumors.
Nonlinear structure formation in the Cubic Galileon gravity model
Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia
2013-01-01
We model the linear and nonlinear growth of large scale structure in the Cubic Galileon gravity model, by running a suite of N-body cosmological simulations using the {\\tt ECOSMOG} code. Our simulations include the Vainshtein screening effect, which reconciles the Cubic Galileon model with local tests of gravity. In the linear regime, the amplitude of the matter power spectrum increases by $\\sim 25%$ with respect to the standard $\\Lambda$CDM model today. The modified expansion rate accounts for $\\sim 20%$ of this enhancement, while the fifth force is responsible for only $\\sim 5%$. This is because the effective unscreened gravitational strength deviates from standard gravity only at late times, even though it can be twice as large today. In the nonlinear regime ($k \\gtrsim 0.1 h\\rm{Mpc}^{-1}$), the fifth force leads to only a modest increase ($\\lesssim 8%$) in the clustering power on all scales due to the very efficient operation of the Vainshtein mechanism. Such a strong effect is typically not seen in other...
Directory of Open Access Journals (Sweden)
O'Neil Amy E
2007-07-01
Full Text Available Abstract Background Development of effective behavioral interventions to promote weight control and physical activity among diverse, underserved populations is a public health priority. Community focused wellness organizations, such as YMCAs, could provide a unique channel with which to reach such populations. This study assessed health behaviors and related characteristics of members of an urban YMCA facility. Methods We surveyed 135 randomly selected members of an urban YMCA facility in Massachusetts to examine self-reported (1 physical activity, (2 dietary behaviors, (3 body mass index, and (4 correlates of behavior change among short-term (i.e., one year or less and long-term (i.e., more than one year members. Chi-square tests were used to assess bivariate associations between variables, and multivariate linear regression models were fit to examine correlates of health behaviors and weight status. Results Eighty-nine percent of short-term and 94% of long-term members reported meeting current physical activity recommendations. Only 24% of short-term and 19% of long-term members met fruit and vegetable consumption recommendations, however, and more than half were overweight or obese. Length of membership was not significantly related to weight status, dietary behaviors, or physical activity. Most respondents were interested in changing health behaviors, in the preparation stage of change, and had high levels of self-efficacy to change behaviors. Short-term members had less education (p = 0.02, lower household incomes (p = 0.02, and were less likely to identify as white (p = 0.005 than long-term members. In multivariate models, females had lower BMI than males (p = 0.003 and reported less physical activity (p = 0.008. Physical activity was also inversely associated with age (p = 0.0004 and education (p = 0.02. Conclusion Rates of overweight/obesity and fruit and vegetable consumption suggested that there is a need for a weight control
Directory of Open Access Journals (Sweden)
Dian L
2013-02-01
Full Text Available Linghui Dian,1,2,* Zhiwen Yang,3,* Feng Li,1 Zhouhua Wang,1 Xin Pan,1 Xinsheng Peng,2 Xintian Huang,1 Zhefei Guo,1 Guilan Quan,1 Xuan Shi,1 Bao Chen,1 Ge Li,4 Chuanbin Wu1,41School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, People’s Republic of China; 2School of Pharmaceutical Sciences, Guangdong Medical College, Dongguan, People’s Republic of China; 3Department of Gastroenterology, Songjiang Branch of the Affiliated First People’s Hospital of Shanghai Jiaotong University, Shanghai, People’s Republic of China; 4Guangdong Research Center for Drug Delivery Systems, Guangzhou, People’s Republic of China*These authors contributed equally to this workAbstract: In order to improve the oral bioavailability of ibuprofen, ibuprofen-loaded cubic nanoparticles were prepared as a delivery system for aqueous formulations. The cubic inner structure was verified by cryogenic transmission electron microscopy. With an encapsulation efficiency greater than 85%, the ibuprofen-loaded cubic nanoparticles had a narrow size distribution around a mean size of 238 nm. Differential scanning calorimetry and X-ray diffraction determined that ibuprofen was in an amorphous and molecular form within the lipid matrix. The in vitro release of ibuprofen from cubic nanoparticles was greater than 80% at 24 hours, showing sustained characteristics. The pharmacokinetic study in beagle dogs showed improved absorption of ibuprofen from cubic nanoparticles compared to that of pure ibuprofen, with evidence of a longer half-life and a relative oral bioavailability of 222% (P < 0.05. The ibuprofen-loaded cubic nanoparticles provide a promising carrier candidate with an efficient drug delivery for therapeutic treatment.Keywords: ibuprofen, cubic nanoparticles, oral drug delivery, bioavailability
Cubic Lienard Equations with Quadratic Damping (Ⅱ)
Institute of Scientific and Technical Information of China (English)
Yu-quan Wang; Zhu-jun Jing
2002-01-01
Applying Hopf bifurcation theory and qualitative theory, we show that the general cubic Lienard equations with quadratic damping have at most three limit cycles. This implies that the guess in which the system has at most two limit cycles is false. We give the sufficient conditions for the system has at most three limit cycles or two limit cycles. We present two examples with three limit cycles or two limit cycles by using numerical simulation.
Shape preserving rational bi-cubic function
Directory of Open Access Journals (Sweden)
Malik Zawwar Hussain
2012-11-01
Full Text Available The study is dedicated to the development of shape preserving interpolation scheme for monotone and convex data. A rational bi-cubic function with parameters is used for interpolation. To preserve the shape of monotone and convex data, the simple data dependent constraints are developed on these parameters in each rectangular patch. The developed scheme of this paper is confined, cheap to run and produce smooth surfaces.
The special symplectic structure of binary cubics
Slupinski, Marcus
2009-01-01
Let $k$ be a field of characteristic not 2 or 3. Let $V$ be the $k$-space of binary cubic polynomials. The natural symplectic structure on $k^2$ promotes to a symplectic structure $\\omega$ on $V$ and from the natural symplectic action of $\\textrm{Sl}(2,k)$ one obtains the symplectic module $(V,\\omega)$. We give a complete analysis of this symplectic module from the point of view of the associated moment map, its norm square $Q$ (essentially the classical discriminant) and the symplectic gradient of $Q$. Among the results are a symplectic derivation of the Cardano-Tartaglia formulas for the roots of a cubic, detailed parameters for all $\\textrm{Sl}(2,k)$ and $\\textrm{Gl}(2,k)$-orbits, in particular identifying a group structure on the set of $\\textrm{Sl}(2,k)$-orbits of fixed nonzero discriminant, and a purely symplectic generalization of the classical Eisenstein syzygy for the covariants of a binary cubic. Such fine symplectic analysis is due to the special symplectic nature inherited from the ambient excepti...
Local atomic structure in cubic stabilized zirconia
Energy Technology Data Exchange (ETDEWEB)
Villella, P.; Conradson, S. D.; Espinosa-Faller, F. J.; Foltyn, S. R.; Sickafus, K. E.; Valdez, J. A.; Degueldre, C. A.
2001-09-01
X-ray-absorption fine structure measurements have been used to elucidate the local atomic structure of quaternary Zr, Y, Er, Ce/U cubic stabilized zirconia. These compounds display more complicated local environments than those reported for simpler binary systems. While the shortest cation-O distances are similar to those found in the binary cubic stabilized compounds, responding to the different sizes of the cations, we have identified large distortions in the first-shell oxygen distribution involving long, 2.8--3.2 {angstrom} cation-O distances that are similar to those found in the amorphous phase of zirconium. The cation-cation distributions are also found to be quite complicated (non-Gaussian) and element specific. The U-near neighbor distances are expanded relative to the Ce ions for which it substitutes, consistent with the larger size of the actinide, and the U-cation distribution is also more complicated. In terms of the effects of this substitution on the other cation sites, the local environment around Y is altered while the Zr and Er local environments remain unchanged. These results point out the importance of collective and correlated interactions between the different pairs of cations and the host lattice that are mediated by the local strain fields generated by the different cations. The presence of pair-specific couplings has not been commonly included in previous analyses and may have implications for the stabilization mechanisms of cubic zirconia.
Method of synthesizing cubic system boron nitride
Energy Technology Data Exchange (ETDEWEB)
Yuzu, S.; Sumiya, H.; Degawa, J.
1987-10-13
A method is described for synthetically growing cubic system boron nitride crystals by using boron nitride sources, solvents for dissolving the boron nitride sources, and seed crystals under conditions of ultra-high pressure and high temperature for maintaining the cubic system boron nitride stable. The method comprises the following steps: preparing a synthesizing vessel having at least two chambers, arrayed in order in the synthesizing vessel so as to be heated according to a temperature gradient; placing the solvents having different eutectic temperatures in each chamber with respect to the boron nitride sources according to the temperature gradient; placing the boron nitride source in contact with a portion of each of the solvents heated at a relatively higher temperature and placing at least a seed crystal in a portion of each of the solvents heated at a relatively lower temperature; and growing at least one cubic system boron nitride crystal in each of the solvents in the chambers by heating the synthesizing vessel for establishing the temperature gradient while maintaining conditions of ultra-high pressure and high temperature.
Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography
Demurtas, Davide; Guichard, Paul; Martiel, Isabelle; Mezzenga, Raffaele; Hébert, Cécile; Sagalowicz, Laurent
2015-11-01
Bulk and dispersed cubic liquid crystalline phases (cubosomes), present in the body and in living cell membranes, are believed to play an essential role in biological phenomena. Moreover, their biocompatibility is attractive for nutrient or drug delivery system applications. Here the three-dimensional organization of dispersed cubic lipid self-assembled phases is fully revealed by cryo-electron tomography and compared with simulated structures. It is demonstrated that the interior is constituted of a perfect bicontinuous cubic phase, while the outside shows interlamellar attachments, which represent a transition state between the liquid crystalline interior phase and the outside vesicular structure. Therefore, compositional gradients within cubosomes are inferred, with a lipid bilayer separating at least one water channel set from the external aqueous phase. This is crucial to understand and enhance controlled release of target molecules and calls for a revision of postulated transport mechanisms from cubosomes to the aqueous phase.
Use of Pom Pons to Illustrate Cubic Crystal Structures.
Cady, Susan G.
1997-01-01
Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)
Cubic Polynomials with Rational Roots and Critical Points
Gupta, Shiv K.; Szymanski, Waclaw
2010-01-01
If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.
立体式车身调度中心设计及应用%Stereometric formula Body Distribute Center Design and Application
Institute of Scientific and Technical Information of China (English)
杨康和
2016-01-01
文章通过对车身调度中心设计原则和功能、工艺布局、工艺流程及主要设备设施的介绍，详细阐述了该系统的设计思路，将立体仓库这一先进的仓储管理技术引进到汽车整车装配领域，为整车生产过程中的车身存储及输送提出了一种全新的设计思路。%Through the introduction of body distribute center design principle and function, process layout, process flow and major equipment and facilities, described in detail the system design, warehouse the advanced warehouse management technology introduced to in the field of vehicle assembly, vehicle student body storage in the production process and transportation of a new design ideas.
Directory of Open Access Journals (Sweden)
Irwan Syah MOHD YUSOFF
2015-10-01
Full Text Available Background: The aim of this study is to develop a new ergonomics chisel based on user centered design approach and to evaluate the effectiveness for reducing awkward posture using CATIA software for simulation analysis.Methods: Respondents were selected using purposive sampling – age 18 – 49 years old, men, experience using chisel (>1 month. A set of questionnaire were used to interview workers while postural risks were determined using Rapid Upper Limb Assessment (RULA. Selected anthropometric parameters were taken and user centered design concept were applied to determine mismatch and to facilitate design process. CATIA software was used to integrate the results of postural analysis and anthropometric measurement using 3D modeling.Results: A total of 273 male harvesters participated in this study. The result shows 5.2% of the chisels’ length of handles matches with the respondents whereas none (100% of the chisels’ circumference of handle matches with respondents’ internal grip diameter. Tool-chisel usage, majority of harvester bend forward while harvesting (96.7% and most of workers having blister (83.2%, redness (85.3% and numbness (65.9% during harvesting. RULA simulation analysis showed the score action level for new design is 3(further investigated need and changes may be required compared to existing tool are in action score 7(investigated and changes required immediately.Conclusions: The study showed that the design of new harvesting tool has the potential to reduce awkward body posture during harvesting activities as compared to existing tools. Keywords: Harvesting tool, Awkward posture, User centered design, CATIA simulation
Generalized fairing algorithm of parametric cubic splines
Institute of Scientific and Technical Information of China (English)
WANG Yuan-jun; CAO Yuan
2006-01-01
Kjellander has reported an algorithm for fairing uniform parametric cubic splines. Poliakoff extended Kjellander's algorithm to non-uniform case. However, they merely changed the bad point's position, and neglected the smoothing of tangent at bad point. In this paper, we present a fairing algorithm that both changed point's position and its corresponding tangent vector. The new algorithm possesses the minimum property of energy. We also proved Poliakoff's fairing algorithm is a deduction of our fairing algorithm. Several fairing examples are given in this paper.
Cherenkov and Scintillation Properties of Cubic Zirconium
Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.
2008-01-01
Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed
Competing structural instabilities in cubic perovskites
Vanderbilt, D
1994-01-01
We study the antiferrodistortive instability and its interaction with ferroelectricity in cubic perovskite compounds. Our first-principles calculations show that coexistence of both instabilities is very common. We develop a first-principles scheme to study the thermodynamics of these compounds when both instabilities are present, and apply it to SrTiO$_3$. We find that increased pressure enhances the antiferrodistortive instability while suppressing the ferroelectric one. Moreover, the presence of one instability tends to suppress the other. A very rich $P$--$T$ phase diagram results.
The Exact Limit of Some Cubic Towers
DEFF Research Database (Denmark)
Anbar Meidl, Nurdagül; Beelen, Peter; Nguyen, Nhut
2016-01-01
Recently, a new explicit tower of function fields was introduced by Bassa, Beelen, Garcia and Stichtenoth (BBGS). This resulted in currently the best known lower bound for Ihara’s constant in the case of non-prime finite fields. In particular over cubic fields, the tower’s limit is at least as good...... as Zink’s bound; i.e. λ(BBGS/Fq3 ) ≥ 2(q2 - 1)/(q + 2). In this paper, the exact value of λ(BBGS/Fq3 ) is computed. We also settle a question stated by Ihara....
Tachyon Vacuum in Cubic Superstring Field Theory
Erler, Theodore
2008-01-01
In this paper we give an exact analytic solution for tachyon condensation in the modified (picture 0) cubic superstring field theory. We prove the absence of cohomology and, crucially, reproduce the correct value for the D-brane tension. The solution is surprising for two reasons: First, the existence of a tachyon vacuum in this theory has not been definitively established in the level expansion. Second, the solution {\\it vanishes} in the GSO$(-)$ sector, implying a ``tachyon vacuum'' solution exists even for a {\\it BPS} D-brane.
The effects of next-to-nearest-neighbour hopping on Bose–Einstein condensation in cubic lattices
Indian Academy of Sciences (India)
G K Chaudhary; R Ramakumar
2010-01-01
In this paper, we present results of our calculations on the effects of next-to-nearest-neighbour boson hopping (′) energy on Bose–Einstein condensation in cubic lattices. We consider both non-interacting and repulsively interacting bosons moving in the lowest Bloch band. The interacting bosons are studied using Bogoliubov method. We find that the Bose condensation temperature is enhanced by increasing ′ for bosons in a simple cubic (sc) lattice and decreases for bosons in body-centred cubic (bcc) and face-centred cubic (fcc) lattices. We also find that interaction-induced depletion of the condensate is reduced for bosons in an sc lattice while it is enhanced for bosons in bcc and fcc lattices.
Symmetry transition in the cubic phase of a ternary surfactant system
Radiman, S.; Toprakcioglu, C.; Faruqi, A.R.
1990-01-01
We report a small-angle X-ray and neutron scattering investigation in the cubic phase of the ternary system water/didodecyldimethyl ammonium bromide (DDAB)/octane. We have observed a systematic variation in the lattice parameter as a function of water content, which can be related to the change in interfacial area per unit cell with the aqueous volume fraction. Our results are consistent with a bicontinuous periodic constant mean curvature structure, and show a transition from diamond to body...
To, Siu-ming; Kan, Siu-mee Iu; Ngai, Steven Sek-yum
2015-01-01
This study examined the interaction effects between Hong Kong adolescents' exposure to sexually explicit online materials (SEOM) and individual, family, peer, and cultural factors on their beliefs about gender role equality and body-centered sexuality. Based on a survey design with a sample of 503 high school students in Hong Kong, the results…
All unitary cubic curvature gravities in D dimensions
Energy Technology Data Exchange (ETDEWEB)
Sisman, Tahsin Cagri; Guellue, Ibrahim; Tekin, Bayram, E-mail: sisman@metu.edu.tr, E-mail: e075555@metu.edu.tr, E-mail: btekin@metu.edu.tr [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)
2011-10-07
We construct all the unitary cubic curvature gravity theories built on the contractions of the Riemann tensor in D-dimensional (anti)-de Sitter spacetimes. Our construction is based on finding the equivalent quadratic action for the general cubic curvature theory and imposing ghost and tachyon freedom, which greatly simplifies the highly complicated problem of finding the propagator of cubic curvature theories in constant curvature backgrounds. To carry out the procedure we have also classified all the unitary quadratic models. We use our general results to study the recently found cubic curvature theories using different techniques and the string generated cubic curvature gravity model. We also study the scattering in critical gravity and give its cubic curvature extensions.
Capturing dynamic cation hopping in cubic pyrochlores
Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.
2011-08-01
In direct contrast to recent reports, density functional theory predicts that the most stable structure of Bi2Ti2O7 pyrochlore is a cubic Fd3¯m space group by accounting for atomic displacements. The displaced Bi occupies the 96g(x,x,z) Wyckoff position with six equivalent sites, which create multiple local minima. Using nudged elastic band method, the transition states of Bi cation hopping between equivalent minima were investigated and an energy barrier between 0.11 and 0.21 eV was determined. Energy barriers associated with the motion of Bi between equivalent sites within the 96g Wyckoff position suggest the presence of dielectric relaxation in Bi2Ti2O7.
Black holes in a cubic Galileon universe
Babichev, Eugeny; Lehébel, Antoine; Moskalets, Tetiana
2016-01-01
We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two of these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.
Cubic meter volume optical coherence tomography
WANG, ZHAO; POTSAID, BENJAMIN; CHEN, LONG; DOERR, CHRIS; LEE, HSIANG-CHIEH; NIELSON, TORBEN; JAYARAMAN, VIJAYSEKHAR; CABLE, ALEX E.; SWANSON, ERIC; FUJIMOTO, JAMES G.
2017-01-01
Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications. PMID:28239628
Black holes in Einsteinian cubic gravity
Hennigar, Robie A
2016-01-01
Using numerical and perturbative methods, we construct the first examples of black hole solutions in Einsteinian cubic gravity and study their thermodynamics. Focusing first on four dimensional solutions, we show that these black holes have a novel equation of state in which the pressure is a quadratic function of the temperature. Despite this, they undergo a first order phase transition with associated van der Waals behaviour. We then construct perturbative solutions for general $D \\ge 5$ and study the properties of these solutions for $D=5$ and $D=6$ in particular. We find novel examples of zeroth order phase transitions and find super-entropic behaviour over a large portion of the parameter space. We analyse the specific heat, determining that the black holes are thermodynamically stable over large regions of parameter space.
Finite element differential forms on cubical meshes
Arnold, Douglas N
2012-01-01
We develop a family of finite element spaces of differential forms defined on cubical meshes in any number of dimensions. The family contains elements of all polynomial degrees and all form degrees. In two dimensions, these include the serendipity finite elements and the rectangular BDM elements. In three dimensions they include a recent generalization of the serendipity spaces, and new H(curl) and H(div) finite element spaces. Spaces in the family can be combined to give finite element subcomplexes of the de Rham complex which satisfy the basic hypotheses of the finite element exterior calculus, and hence can be used for stable discretization of a variety of problems. The construction and properties of the spaces are established in a uniform manner using finite element exterior calculus.
Triangulation of cubic panorama for view synthesis.
Zhang, Chunxiao; Zhao, Yan; Wu, Falin
2011-08-01
An unstructured triangulation approach, new to our knowledge, is proposed to apply triangular meshes for representing and rendering a scene on a cubic panorama (CP). It sophisticatedly converts a complicated three-dimensional triangulation into a simple three-step triangulation. First, a two-dimensional Delaunay triangulation is individually carried out on each face. Second, an improved polygonal triangulation is implemented in the intermediate regions of each of two faces. Third, a cobweblike triangulation is designed for the remaining intermediate regions after unfolding four faces to the top/bottom face. Since the last two steps well solve the boundary problem arising from cube edges, the triangulation with irregular-distribution feature points is implemented in a CP as a whole. The triangular meshes can be warped from multiple reference CPs onto an arbitrary viewpoint by face-to-face homography transformations. The experiments indicate that the proposed triangulation approach provides a good modeling for the scene with photorealistic rendered CPs.
Polarization conversion in cubic Raman crystals
McKay, Aaron; Sabella, Alexander; Mildren, Richard P.
2017-01-01
Nonlinear conversion of unpolarized beams to lower frequencies is generally inefficient in c(2) materials, as it is challenging to achieve phase-matching for input ordinary and extraordinary beams simultaneously in the normal dispersion regime. Here, we show that cubic Raman crystals having doubly and triply degenerate (E and F type) modes provide a method for efficient nonlinear frequency downconversion of an unpolarized beam and yield a linearly polarized output state. Using Mueller calculus, optimal crystal directions for such polarization conversion are determined. Using diamond, an example of an F-class Raman crystal, we have verified that such conversion is possible with near quantum-defect-limited slope efficiency and a linear polarization contrast of more than 23.9 dB. PMID:28169327
On the Stability of Cubic Galileon Accretion
Bergliaffa, Santiago P E
2016-01-01
We examine the stability of steady-state galileon accretion for the case of a Schwarzshild black hole. Considering the galileon action up to the cubic term in a static and spherically symmetric background we obtain the general solution for the equation of motion which is divided in two branches. By perturbing this solution we define an effective metric which determines the propagation of fluctuations. In this general picture we establish the position of the sonic horizon together with the matching condition of the two branches on it. Restricting to the case of a Schwarzschild background, we show, via the analysis of the energy of the perturbations and its time derivative, that the accreting field is linearly stable.
Shape preserving rational cubic spline for positive and convex data
Directory of Open Access Journals (Sweden)
Malik Zawwar Hussain
2011-11-01
Full Text Available In this paper, the problem of shape preserving C2 rational cubic spline has been proposed. The shapes of the positive and convex data are under discussion of the proposed spline solutions. A C2 rational cubic function with two families of free parameters has been introduced to attain the C2 positive curves from positive data and C2 convex curves from convex data. Simple data dependent constraints are derived on free parameters in the description of rational cubic function to obtain the desired shape of the data. The rational cubic schemes have unique representations.
CRACK PROBLEM UNDER SHEAR LOADING IN CUBIC QUASICRYSTAL
Institute of Scientific and Technical Information of China (English)
周旺民; 范天佑; 尹姝媛
2003-01-01
The axisymmetric elasticity problem of cubic quasicrystal is reduced to a single higher-order partial differential equation by introducing a displacement function. Based on the work, the analytic solutions of elastic field of cubic quasicrystal with a penny-shaped crack under the shear loading are found, and the stress intensity factor and strain energy release rate are determined.
Cubic Polynomials with Real or Complex Coefficients: The Full Picture
Bardell, Nicholas S.
2016-01-01
The cubic polynomial with real coefficients has a rich and interesting history primarily associated with the endeavours of great mathematicians like del Ferro, Tartaglia, Cardano or Vieta who sought a solution for the roots (Katz, 1998; see Chapter 12.3: The Solution of the Cubic Equation). Suffice it to say that since the times of renaissance…
Rational Cubics and Conics Representation: A Practical Approach
Directory of Open Access Journals (Sweden)
M. Sarfraz
2012-08-01
Full Text Available A rational cubic spline, with one family of shape parameters, has been discussed with the view to its application in Computer Graphics. It incorporates both conic sections and parametric cubic curves as special cases. The parameters (weights, in the description of the spline curve can be used to modify the shape of the curve, locally and globally, at the knot intervals. The rational cubic spline attains parametric smoothness whereas the stitching of the conic segments preserves visually reasonable smoothness at the neighboring knots. The curve scheme is interpolatory and can plot parabolic, hyperbolic, elliptic, and circular splines independently as well as bits and pieces of a rational cubic spline.Key Words: Computer Graphics, Interpolation, Spline, Conic, Rational Cubic
On cubic equations over $P-$adic field
Mukhamedov, Farrukh; Saburov, Mansoor
2012-01-01
We provide a solvability criteria for a depressed cubic equation in domains $\\bz_p^{*},\\bz_p,\\bq_p$. We show that, in principal, the Cardano method is not always applicable for such equations. Moreover, the numbers of solutions of the depressed cubic equation in domains $\\bz_p^{*},\\bz_p,\\bq_p$ are provided. Since $\\bbf_p\\subset\\bq_p,$ we generalize J.-P. Serre's \\cite{JPSJ} and Z.H.Sun's \\cite{ZHS1,ZHS3} results concerning with depressed cubic equations over the finite field $\\bbf_p$. Finally, all depressed cubic equations, for which the Cardano method could be applied, are described and the $p-$adic Cardano formula is provided for those cubic equations.
The Electric Field of a Uniformly Charged Non-Conducting Cubic Surface
McCreery, Kaitlin
2016-01-01
As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's Law, superposition, Gauss's law, and visualization to understand the electric field produced by a non-conducting cubic surface that is covered with a uniform surface charge density. We first discuss how to deduce qualitatively, using only elementary physics, the surprising fact that the electric field inside the cubic surface is nonzero and has a complex structure, pointing inwards towards the cube center from the midface of each cube and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces. This example would be a good choice for group problem solving in a recitation or flipped classroom.
Bifurcation and Isochronicity at Infinity in a Class of Cubic Polynomial Vector Fields
Institute of Scientific and Technical Information of China (English)
Qin-long Wang; Yi-rong Liu
2007-01-01
In this paper, we study the appearance of limit cycles from the equator and isochronicity of infinity in polynomial vector fields with no singular points at infinity. We give a recursive formula to compute the singular point quantities of a class of cubic polynomial systems, which is used to calculate the first seven singular point quantities. Further, we prove that such a cubic vector field can have maximal seven limit cycles in the neighborhood of infinity. We actually and construct a system that has seven limit cycles. The positions of these limit cycles can be given exactly without constructing the Poincare cycle fields. The technique employed in this work is essentially different from the previously widely used ones. Finally, the isochronous center conditions at infinity are given.
Institute of Scientific and Technical Information of China (English)
王朝斌; 吴旭; 熊吉
2014-01-01
In this paper, a test method about the relative displacement of body at wheel center by measuring the strain of coin spring ispresented based on studying the existing test method about the relative displacement of body at wheel center in the field of vehicle test. Verification test is carried out in Dongfeng proving ground.%本文通过研究车轮轮心相对车身位移的测量方法，提出了一种以通过测量螺旋弹簧应变来获得轮心相对车身位移的试验方法，并在东风试车场对该试验方法进行了实车试验验证。
The compressibility of cubic white and orthorhombic, rhombohedral, and simple cubic black phosphorus
Energy Technology Data Exchange (ETDEWEB)
Clark, Simon M; Zaug, Joseph
2010-03-10
The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The ?alpha phase was found to transform into the alpha' phase at 0.87 +- 0.04 GPa with a volume change of 0.1 +- 0.3 cc/mol. A fit of a second order Birch- Murnaghan equation to the data gave Vo = 16.94 ? 0.08 cc/mol and Ko = 6.7 +- 0.5 GPa for the alpha phase and Vo = 16.4 +- 0.1 cc/mol and Ko = 9.1 +- 0.3 GPa for the alpha' phase. The alpha' phase was found to transform to the A17 phase of black phosphorus at 2.68 +- 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second order Birch-Murnaghan equation to our data combined with previous measurements gave Vo = 11.43 +- 0.05 cc/mol and Ko = 34.7 +- 0.5 GPa for the A17 phase, Vo = 9.62 +- 0.01 cc/mol and Ko = 65.0 +- 0.6 GPa for the A7 phase and , Vo = 9.23 +- 0.01 cc/mol and Ko = 72.5 +- 0.3 GPa for the simple cubic phase.
On q-power cycles in cubic graphs
DEFF Research Database (Denmark)
Bensmail, Julien
2016-01-01
In the context of a conjecture of Erdos and Gyárfás, we consider, for any q ≥ 2, the existence of q-power cycles (i.e. with length a power of q) in cubic graphs. We exhibit constructions showing that, for every q ≥ 3, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning...... the remaining case q = 2 (which corresponds to the conjecture of Erdos and Gyárfás), we show that there exist arbitrarily large cubic graphs whose only 2-power cycles have length 4 only, or 8 only....
On q-power cycles in cubic graphs
DEFF Research Database (Denmark)
Bensmail, Julien
2017-01-01
In the context of a conjecture of Erdos and Gyárfás, we consider, for any q ≥ 2, the existence of q-power cycles (i.e. with length a power of q) in cubic graphs. We exhibit constructions showing that, for every q ≥ 3, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning...... the remaining case q = 2 (which corresponds to the conjecture of Erdos and Gyárfás), we show that there exist arbitrarily large cubic graphs whose only 2-power cycles have length 4 only, or 8 only....
Cubic B-spline curve approximation by curve unclamping
Chen, Xiao-Diao; Ma, Weiyin; Paul, Jean-Claude
2010-01-01
International audience; A new approach for cubic B-spline curve approximation is presented. The method produces an approximation cubic B-spline curve tangent to a given curve at a set of selected positions, called tangent points, in a piecewise manner starting from a seed segment. A heuristic method is provided to select the tangent points. The first segment of the approximation cubic B-spline curve can be obtained using an inner point interpolation method, least-squares method or geometric H...
Heianza, Yoriko; Kodama, Satoru; Arase, Yasuji; Hsieh, Shiun Dong; Yoshizawa, Sakiko; Tsuji, Hiroshi; Saito, Kazumi; Tanaka, Shiro; Hara, Shigeko; Sone, Hirohito
2014-08-01
It has not been clarified whether overall adiposity in early adulthood or at the lifetime maximum weight would confer a residual risk of hypertension after considering the risk associated with current adiposity. Studied were 6121 Japanese without hypertension. The risk of developing hypertension 4 years after a baseline examination was investigated using the body mass index in the early 20s, at the lifetime maximum, or at the baseline examination. An elevated body mass index at baseline or at the maximum rather than in the early 20s was strongly associated with future hypertension. Compared with individuals with low body mass index both at baseline and in the early 20s, those with an elevated body mass index at the baseline alone had an odds ratio of 1.89 (95% confidence interval, 1.58–2.27) and those with an elevated body mass index both at baseline and in the early 20s had the highest odds ratio of 2.26 (1.76–2.89). Individuals with an elevated body mass index both at baseline and at the maximum had a 2.26-fold (1.87–2.72) increased risk of hypertension compared with those without the 2 factors. An elevated body mass index at the baseline examination weakened the favorable influence of a low body mass index in early adulthood on developing hypertension. Adding information on body mass index in early adulthood or at the maximum in addition to that at the baseline examination contributed to differentiating the risk of hypertension among Japanese, particularly among those with an elevated overall adiposity at present.
The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.
Francisco, E.; And Others
1988-01-01
Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)
Spinning solitons in cubic-quintic nonlinear media
Indian Academy of Sciences (India)
Lucian-Cornel Crasovan; Boris A Malomed; Dumitru Mihalache
2001-11-01
We review recent theoretical results concerning the existence, stability and unique features of families of bright vortex solitons (doughnuts, or ‘spinning’ solitons) in both conservative and dissipative cubic-quintic nonlinear media.
Global infinite energy solutions for the cubic wave equation
Burq, N.; L. Thomann; Tzvetkov, N.
2012-01-01
International audience; We prove the existence of infinite energy global solutions of the cubic wave equation in dimension greater than 3. The data is a typical element on the support of suitable probability measures.
Stress Intensity of Antiplane Conjugate Cracks in Cubic Quasicrystal
Institute of Scientific and Technical Information of China (English)
ZHANG Lei
2008-01-01
Based on the theory of Muskhelishvili, the general solutions for stress and strain of conjugate cracks in cubic quasicrystal are obtained, with which the stress intensity factors of cubic quasicrystal at crack tips and the stress distribution functions of phonon and phason fields are given. The results show that though phason field is coupled with phonon field by constitutive equations, the stress intensity factors are not coupled with any other factors.
Optical studies of cubic III-nitride structures
2014-01-01
The properties of cubic nitrides grown by molecular beam epitaxy (MBE) on GaAs (001) have been studied using optical and electrical techniques. The aim of these studies was the improvement of the growth techniques in order to improve the quality of grown nitrides intended for bulk substrate and optoelectronic device applications. We have also characterised hexagonal nanocolumn structures incorporating indium. Firstly, bulk films of cubic AlxGa1-xN with aluminium fractions (x) spanning the ...
Cubic Polynomial Maps with Periodic Critical Orbit, Part II: Escape Regions
Bonifant, Araceli; Milnor, John
2009-01-01
The parameter space $\\mathcal{S}_p$ for monic centered cubic polynomial maps with a marked critical point of period $p$ is a smooth affine algebraic curve whose genus increases rapidly with $p$. Each $\\mathcal{S}_p$ consists of a compact connectedness locus together with finitely many escape regions, each of which is biholomorphic to a punctured disk and is characterized by an essentially unique Puiseux series. This note will describe the topology of $\\mathcal{S}_p$, and of its smooth compactification, in terms of these escape regions. It concludes with a discussion of the real sub-locus of $\\mathcal{S}_p$.
Spinor bose gases in cubic optical lattice
Energy Technology Data Exchange (ETDEWEB)
Mobarak, Mohamed Saidan Sayed Mohamed
2014-01-27
In recent years the quantum simulation of condensed-matter physics problems has resulted from exciting experimental progress in the realm of ultracold atoms and molecules in optical lattices. In this thesis we analyze theoretically a spinor Bose gas loaded into a three-dimensional cubic optical lattice. In order to account for different superfluid phases of spin-1 bosons with a linear Zeeman effect, we work out a Ginzburg-Landau theory for the underlying spin-1 Bose-Hubbard model. To this end we add artificial symmetry-breaking currents to the spin-1 Bose-Hubbard Hamiltonian in order to break the global U (1) symmetry. With this we determine a diagrammatic expansion of the grand-canonical free energy up to fourth order in the symmetry-breaking currents and up to the leading non-trivial order in the hopping strength which is of first order. As a cross-check we demonstrate that the resulting grand-canonical free energy allows to recover the mean-field theory. Applying a Legendre transformation to the grand-canonical free energy, where the symmetry-breaking currents are transformed to order parameters, we obtain the effective Ginzburg-Landau action. With this we calculate in detail at zero temperature the Mott insulator-superfluid quantum phase boundary as well as condensate and particle number density in the superfluid phase. We find that both mean-field and Ginzburg-Landau theory yield the same quantum phase transition between the Mott insulator and superfluid phases, but the range of validity of the mean-field theory turns out to be smaller than that of the Ginzburg-Landau theory. Due to this finding we expect that the Ginzburg-Landau theory gives better results for the superfluid phase and, thus, we restrict ourselves to extremize only the effective Ginzburg-Landau action with respect to the order parameters. Without external magnetic field the superfluid phase is a polar (ferromagnetic) state for anti-ferromagnetic (ferromagnetic) interactions, i.e. only the
van Kempen-Harteveld, M. Loes; Brand, Ronald; Kal, Henk B.; Verdonck, Leo F.; Hofman, Pieter; Schattenberg, Anton V.; van der Maazen, Richard W.; Cornelissen, Jan J.; Eijkenboom, Wil M. H.; van der Lelie, Johannes P.; Oldenburger, Foppe; Barge, Renee M.; van Biezen, Anja; Vossen, Jaak M. J. J.; Noordijk, Evert M.; Struikmans, Henk
2008-01-01
Purpose: To evaluate results of high-dose total-body irradiation (TBI) regimens for hematopoietic stem cell transplantation. Methods and Materials: A total of 1,032 patients underwent TBI in one or two fractions before autologous or allogeneic hematologic stem cell transplantation for acute leukemia
Kempen-Harteveld, ML van; Brand, R.; Kal, H.B.; Verdonck, L.F.; Hofman, P.; Schattenberg, A.V.M.B.; Maazen, R.W.M. van der; Cornelissen, J.J.L.M.; Eijkenboom, W.M.H.; Lelie, JP van der; Oldenburger, F.; Barge, R.M.; Biezen, A. van; Vossen, J.M.J.J.; Noordijk, E.M.; Struikmans, H.
2008-01-01
PURPOSE: To evaluate results of high-dose total-body irradiation (TBI) regimens for hematopoietic stem cell transplantation. METHODS AND MATERIALS: A total of 1,032 patients underwent TBI in one or two fractions before autologous or allogeneic hematologic stem cell transplantation for acute leukemia
Energy Technology Data Exchange (ETDEWEB)
Alfaro L, M.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)
1998-10-15
The existence of the Center of Storage of Radioactive Wastes (CADER) in the Municipality of Temascalapa, Estado de Mexico has generated restlessness among the inhabitants from it installation. In March 1998, its appeared in diverse media, notes and reports attributing illnesses and sufferings to the CADER activities. In coordination with the health authorities of the Estado de Mexico and of the Municipality of Temascalapa, the doctors of the ININ assisted people that converged to the centers. For the above-mentioned, in the period understood among the months of May to September 1998, its were carried out measurements in 338 urine samples and 45 whole-body of voluntary people of the surroundings of the CADER. This document has the purpose of presenting the information on the carried out measurements. (Author)
Bobrovskij, N. M.; Levashkin, D. G.; Bobrovskij, I. N.; Melnikov, P. A.; Lukyanov, A. A.
2017-01-01
Article is devoted the decision of basing holes machining accuracy problems of automatically replaceable cubical units (carriers) for reconfigurable manufacturing systems with low-waste production (RMS). Results of automatically replaceable units basing holes machining modeling on the basis of the dimensional chains analysis are presented. Influence of machining parameters processing on accuracy spacings on centers between basing apertures is shown. The mathematical model of carriers basing holes machining accuracy is offered.
Stouwe, van der, Elisabeth C.D.; de Vries, Bertine; Aleman, André; Arends, Johan; Waarheid, Clement; Meerdink, Aniek; van der Helm, Erwin; van Busschbach, Jooske T.; Pijnenborg, Gerdina H. M.
2016-01-01
BACKGROUND: Individuals with a psychotic disorder are at an increased risk of becoming victim of a crime or other forms of aggression. Research has revealed several possible risk factors (e.g. impaired social cognition, aggression regulation problems, assertiveness, self-stigma, self-esteem) for victimization in patients with a psychotic disorder. To address these risk factors and prevent victimization, we developed a body-oriented resilience training with elements of kickboxing: BEATVIC. The...
Neuroimaging, Genetics, and Clinical Data Sharing in Python Using the CubicWeb Framework
Grigis, Antoine; Goyard, David; Cherbonnier, Robin; Gareau, Thomas; Papadopoulos Orfanos, Dimitri; Chauvat, Nicolas; Di Mascio, Adrien; Schumann, Gunter; Spooren, Will; Murphy, Declan; Frouin, Vincent
2017-01-01
In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts. PMID:28360851
Hardness and thermal stability of cubic silicon nitride
DEFF Research Database (Denmark)
Jiang, Jianzhong; Kragh, Flemming; Frost, D. J.
2001-01-01
The hardness and thermal stability of cubic spinel silicon nitride (c-Si3N4), synthesized under high-pressure and high-temperature conditions, have been studied by microindentation measurements, and x-ray powder diffraction and scanning electron microscopy, respectively The phase at ambient...... temperature has an average hardness of 35.31 GPa, slightly larger than SiO2 stishovite, which is often referred to as the third hardest material after diamond and cubic boron nitride. The cubic phase is stable up to 1673 K in air. At 1873 K, alpha -and beta -Si3N4 phases are observed, indicating a phase...... transformation sequence of c-to-alpha -to-beta -Si3N4 phases....
Extended temperature dependence of elastic constants in cubic crystals.
Telichko, A V; Sorokin, B P
2015-08-01
To extend the theory of the temperature dependence of the elastic constants in cubic crystals beyond the second- and third-order elastic constants, the fourth-order elastic constants, as well as the non-linearity in the thermal expansion temperature dependence, have been taken into account. Theoretical results were represented as temperature functions of the effective elastic constants and compared with experimental data for a number of cubic crystals, such as alkali metal halides, and elements gold and silver. The relations obtained give a more accurate description of the experimental temperature dependences of second-order elastic constants for a number of cubic crystals, including deviations from linear behavior. A good agreement between theoretical estimates and experimental data has been observed.
Cubic interactions of Maxwell-like higher spins
Francia, Dario; Mkrtchyan, Karapet
2016-01-01
We study the cubic vertices for Maxwell-like higher-spins in flat space. Reducibility of their free spectra implies that a single cubic vertex involving any three fields subsumes a number of couplings among different particles of various spins. The resulting vertices do not involve traces of the fields and in this sense are simpler than their Fronsdal counterparts. We propose an extension of both the free theory and of its cubic deformation to a more general class of partially reducible systems, that one can obtain from the original theory upon imposing trace constraints of various orders. The key to our results is a version of the Noether procedure allowing to systematically account for the deformations of the transversality conditions to be imposed on the gauge parameters at the free level.
Tetragonal and cubic zirconia multilayered ceramic constructs created by EPD.
Mochales, Carolina; Frank, Stefan; Zehbe, Rolf; Traykova, Tania; Fleckenstein, Christine; Maerten, Anke; Fleck, Claudia; Mueller, Wolf-Dieter
2013-02-14
The interest in electrophoretic deposition (EPD) for nanomaterials and ceramics production has widely increased due to the versatility of this technique to effectively combine different materials in unique shapes and structures. We successfully established an EPD layering process with submicrometer sized powders of Y-TZP with different mol percentages of yttrium oxide (3 and 8%) and produced multilayers of alternating tetragonal and cubic phases with a clearly defined interface. The rationale behind the design of these multilayer constructs was to optimize the properties of the final ceramic by combining the high mechanical toughness of the tetragonal phase of zirconia together with the high ionic conductivity of its cubic phase. In this work, a preliminary study of the mechanical properties of these constructs proved the good mechanical integrity of the multilayered constructs obtained as well as crack deflection in the interface between tetragonal and cubic zirconia layers.
Superconductivity in cubic noncentrosymmetric PdBiSe Crystal
Joshi, B.; Thamizhavel, A.; Ramakrishnan, S.
2015-03-01
Mixing of spin singlet and spin triplet superconducting pairing state is expected in noncentrosymmetric superconductors (NCS) due to the inherent presence of Rashba-type antisymmetric spin-orbit coupling. Unlike low symmetry (tetragonal or monoclinic) NCS, parity is isotropicaly broken in space for cubic NCS and can additionally lead to the coexistence of magnetic and superconducting state under certain conditions. Motivated with such enriched possibility of unconventional superconducting phases in cubic NCS we are reporting successful formation of single crystalline cubic noncentrosymmetric PdBiSe with lattice parameter a = 6.4316 Å and space group P21 3 (space group no. 198) which undergoes to superconducting transition state below 1.8 K as measured by electrical transport and AC susceptibility measurements. Significant strength of Rashba-type antisymmetric spin-orbit coupling can be expected for PdBiSe due to the presence of high Z (atomic number) elements consequently making it potential candidate for unconventional superconductivity.
A new hypercube variant: Fractal Cubic Network Graph
Directory of Open Access Journals (Sweden)
Ali Karci
2015-03-01
Full Text Available Hypercube is a popular and more attractive interconnection networks. The attractive properties of hypercube caused the derivation of more variants of hypercube. In this paper, we have proposed two variants of hypercube which was called as “Fractal Cubic Network Graphs”, and we have investigated the Hamiltonian-like properties of Fractal Cubic Network Graphs FCNGr(n. Firstly, Fractal Cubic Network Graphs FCNGr(n are defined by a fractal structure. Further, we show the construction and characteristics analyses of FCNGr(n where r=1 or r=2. Therefore, FCNGr(n is a Hamiltonian graph which is obtained by using Gray Code for r=2 and FCNG1(n is not a Hamiltonian Graph. Furthermore, we have obtained a recursive algorithm which is used to label the nodes of FCNG2(n. Finally, we get routing algorithms on FCNG2(n by utilizing routing algorithms on the hypercubes.
Classifying Cubic Edge-Transitive Graphs of Order 8
Indian Academy of Sciences (India)
Mehdi Alaeiyan; M K Hosseinipoor
2009-11-01
A simple undirected graph is said to be semisymmetric if it is regular and edge-transitive but not vertex-transitive. Let be a prime. It was shown by Folkman (J. Combin. Theory 3(1967) 215--232) that a regular edge-transitive graph of order 2 or 22 is necessarily vertex-transitive. In this paper, an extension of his result in the case of cubic graphs is given. It is proved that, every cubic edge-transitive graph of order 8 is symmetric, and then all such graphs are classified.
Elastic interaction of point defects in crystals with cubic symmetry
Kuz'michev, S. V.; Kukushkin, S. A.; Osipov, A. V.
2013-07-01
The energy of elastic mechanical interaction between point defects in cubic crystals is analyzed numerically. The finite-element complex ANSYS is used to investigate the character of interaction between point defects depending on their location along the crystallographic directions , , and on the distance from the free boundary of the crystal. The numerical results are compared with the results of analytic computations of the energy of interaction between two point defects in an infinite anisotropic medium with cubic symmetry. The interaction between compressible and incompressible defects of general type is studied. Conditions for onset of elastic attraction between the defects, which leads to general relaxation of the crystal elastic energy, are obtained.
Counting perfect matchings of cubic graphs in the geometric dual
Jiménez, Andrea
2010-01-01
Lov\\'asz and Plummer conjectured, in the mid 1970's, that every cubic graph G with no cutedge has an exponential in |V(G)| number of perfect matchings. In this work we show that every cubic planar graph G whose geometric dual graph is a stack triangulation has at least 3 times the golden ratio to |V(G)|/72 distinct perfect matchings. Our work builds on a novel approach relating Lov\\'asz and Plummer's conjecture and the number of so called groundstates of the widely studied Ising model from statistical physics.
Cubic surfaces and their invariants: Some memories of Raymond Stora
Directory of Open Access Journals (Sweden)
Michel Bauer
2016-11-01
I then turn to the study of the family of cubic surfaces. They depend on 20 parameters, and the action of the 15 parameter group SL4(C splits the family in orbits depending on 5 parameters. This takes us into the realm of (geometric invariant theory. I review briefly the classical theorems on the structure of the ring of polynomial invariants and illustrate its many facets by looking at a simple example, before turning to the already involved case of cubic surfaces. The invariant ring was described in the 19th century. I show how to retrieve this description via counting/generating functions and character formulae.
Higher-spin Interactions from CFT: The Complete Cubic Couplings
Sleight, Charlotte
2016-01-01
In this letter we provide a complete holographic reconstruction of the cubic couplings in the minimal bosonic higher-spin theory in AdS$_{d+1}$. For this purpose we also determine the OPE coefficients of all single-trace conserved currents in the $d$-dimensional free scalar $O\\left(N\\right)$ vector model, and compute the tree-level three-point Witten diagram amplitudes for a generic cubic interaction of higher-spin gauge fields in the metric-like formulation.
Cubic surfaces and their invariants: Some memories of Raymond Stora
Bauer, Michel
2016-11-01
Cubic surfaces embedded in complex projective 3-space are a classical illustration of the use of old and new methods in algebraic geometry. Recently, they made their appearance in physics, and in particular aroused the interest of Raymond Stora, to the memory of whom these notes are dedicated, and to whom I'm very much indebted. Each smooth cubic surface has a rich geometric structure, which I review briefly, with emphasis on the 27 lines and the combinatorics of their intersections. Only elementary methods are used, relying on first order perturbation/deformation theory. I then turn to the study of the family of cubic surfaces. They depend on 20 parameters, and the action of the 15 parameter group SL4 (C) splits the family in orbits depending on 5 parameters. This takes us into the realm of (geometric) invariant theory. I review briefly the classical theorems on the structure of the ring of polynomial invariants and illustrate its many facets by looking at a simple example, before turning to the already involved case of cubic surfaces. The invariant ring was described in the 19th century. I show how to retrieve this description via counting/generating functions and character formulae.
Cubic spline approximation techniques for parameter estimation in distributed systems
Banks, H. T.; Crowley, J. M.; Kunisch, K.
1983-01-01
Approximation schemes employing cubic splines in the context of a linear semigroup framework are developed for both parabolic and hyperbolic second-order partial differential equation parameter estimation problems. Convergence results are established for problems with linear and nonlinear systems, and a summary of numerical experiments with the techniques proposed is given.
Global Well-Posedness for Cubic NLS with Nonlinear Damping
Antonelli, Paolo
2010-11-04
We study the Cauchy problem for the cubic nonlinear Schrödinger equation, perturbed by (higher order) dissipative nonlinearities. We prove global in-time existence of solutions for general initial data in the energy space. In particular we treat the energy-critical case of a quintic dissipation in three space dimensions. © Taylor & Francis Group, LLC.
Trace spaces in a pre-cubical complex
DEFF Research Database (Denmark)
Raussen, Martin
In directed algebraic topology, (spaces of) directed irreversible (d)-paths are studied from a topological and from a categorical point of view. Motivated by models for concurrent computation, we study in this paper spaces of d-paths in a pre-cubical complex. Such paths are equipped with a natural...
SUPERCONVERGENCE ANALYSIS FOR CUBIC TRIANGULAR ELEMENT OF THE FINITE ELEMENT
Institute of Scientific and Technical Information of China (English)
Qi-ding Zhu
2000-01-01
In this paper, we construct a projection interpolation for cubic triangular ele- ment by using othogonal expansion triangular method. We show two fundamental formulas of estimation on a special partion and obtain a superconvergence result of 1 -e order higher for the placement function and its tangential derivative on the third order Lobatto points and Gauss points on each edge of triangular element.
Trapping of cubic ZnO nanocrystallites at ambient conditions
DEFF Research Database (Denmark)
Decremps, F.; Pellicer-Porres, J.; Datchi, F.
2002-01-01
Dense powder of nanocrystalline ZnO has been recovered at ambient conditions in the metastable cubic structure after a heat treatment at high pressure (15 GPa and 550 K). Combined x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) experiments have been performed to probe both long-ra...
Integrability of Lotka-Volterra Planar Complex Cubic Systems
Dukarić, Maša; Giné, Jaume
In this paper, we study the Lotka-Volterra complex cubic systems. We obtain necessary conditions of integrability for these systems with some restriction on the parameters. The sufficiency is proved for all conditions, except one which remains open, using different methods.
Phase diagrams and synthesis of cubic boron nitride
Turkevich, V Z
2002-01-01
On the basis of phase equilibria, the lowest temperatures, T sub m sub i sub n , above which at high pressures cubic boron nitride crystallization from melt solution is allowable in terms of thermodynamics have been found for a number of systems that include boron nitride.
Specific heat of the simple-cubic Ising model
Feng, X.; Blöte, H.W.J.
2010-01-01
We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions
Combinatorics on Words in Symbolic Dynamics: the Antisymmetric Cubic Map
Institute of Scientific and Technical Information of China (English)
Wan Ji DAI; Kebo L(U); Jun WANG
2008-01-01
This paper is contributed to the combinatorial properties of the periodic kneading words of antisymmetric cubic maps defined on a interval.The least words of given lengths,the adjacency relations on the words of given lengths and the parity-alternative property in some sets of such words are established.
Higher-Order Approximation of Cubic-Quintic Duffing Model
DEFF Research Database (Denmark)
Ganji, S. S.; Barari, Amin; Babazadeh, H.;
2011-01-01
We apply an Artificial Parameter Lindstedt-Poincaré Method (APL-PM) to find improved approximate solutions for strongly nonlinear Duffing oscillations with cubic-quintic nonlinear restoring force. This approach yields simple linear algebraic equations instead of nonlinear algebraic equations...
Rheology of cubic particles suspended in a Newtonian fluid.
Cwalina, Colin D; Harrison, Kelsey J; Wagner, Norman J
2016-05-18
Many real-world industrial processes involve non-spherical particles suspended in a fluid medium. Knowledge of the flow behavior of these suspensions is essential for optimizing their transport properties and designing processing equipment. In the present work, we explore and report on the rheology of concentrated suspensions of cubic-shaped colloidal particles under steady and dynamic shear flow. These suspensions exhibit a rich non-Newtonian rheology that includes shear thickening and normal stress differences at high shear stresses. Scalings are proposed to connect the material properties of these suspensions of cubic particle to those measured for suspensions of spherical particles. Negative first normal stress differences indicate that lubrication hydrodynamic forces dominate the stress in the shear-thickened state. Accounting for the increased lubrication hydrodynamic interactions between the flat surfaces of the cubic particles allows for a quantitative comparison of the deviatoric stress in the shear-thickened state to that of spherical particles. New semi-empirical models for the viscosity and normal stress difference coefficients are presented for the shear-thickened state. The results of this study indicate that cubic particles offer new and unique opportunities to formulate colloidal dispersions for field-responsive materials.
Connecting the Dots Parametrically: An Alternative to Cubic Splines.
Hildebrand, Wilbur J.
1990-01-01
Discusses a method of cubic splines to determine a curve through a series of points and a second method for obtaining parametric equations for a smooth curve that passes through a sequence of points. Procedures for determining the curves and results of each of the methods are compared. (YP)
Interaction of dispersed cubic phases with blood components
DEFF Research Database (Denmark)
Bode, J C; Kuntsche, Judith; Funari, S S;
2013-01-01
The interaction of aqueous nanoparticle dispersions, e.g. based on monoolein/poloxamer 407, with blood components is an important topic concerning especially the parenteral way of administration. Therefore, the influence of human and porcine plasma on dispersed cubic phases was investigated...
A Unified Approach to Teaching Quadratic and Cubic Equations.
Ward, A. J. B.
2003-01-01
Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)
Exact solutions for the cubic-quintic nonlinear Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Zhu Jiamin [Department of Physics, Zhejiang Lishui University, Lishui 323000 (China)]. E-mail: zjm64@163.com; Ma Zhengyi [Department of Physics, Zhejiang Lishui University, Lishui 323000 (China); Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072 (China)
2007-08-15
In this paper, the cubic-quintic nonlinear Schroedinger equation is solved through the extended elliptic sub-equation method. As a consequence, many types of exact travelling wave solutions are obtained which including bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions.
Orientational phase transition in cubic liquid crystals with positional order
Pokrovsky, V.L.; Saidachmetov, P.A.
1988-01-01
An electric field can give rise to a shear deformation of a cubic liquid crystal with long-range positional order fixed by two plates. The critical value of the field does not depend on the size of the system and depends crucially on the orientation.
An effective packing density of binary cubic crystals
Eremin, I. E.; Eremina, V. V.; Sychev, M. S.; Moiseenko, V. G.
2015-04-01
The methodology of effective macroscopic calculation of numerical values of internuclear distances in binary crystals of a cubic crystal system is based on the use of coefficients of the structural packing density of the crystal lattice. The possibility of combining the reference data on the main physicochemical parameters of the substance is implemented by synthesis of the corresponding mathematical models.
Relative Lyapunov Center Bifurcations
DEFF Research Database (Denmark)
Wulff, Claudia; Schilder, Frank
2014-01-01
Relative equilibria (REs) and relative periodic orbits (RPOs) are ubiquitous in symmetric Hamiltonian systems and occur, for example, in celestial mechanics, molecular dynamics, and rigid body motion. REs are equilibria, and RPOs are periodic orbits of the symmetry reduced system. Relative Lyapunov...... center bifurcations are bifurcations of RPOs from REs corresponding to Lyapunov center bifurcations of the symmetry reduced dynamics. In this paper we first prove a relative Lyapunov center theorem by combining recent results on the persistence of RPOs in Hamiltonian systems with a symmetric Lyapunov...... center theorem of Montaldi, Roberts, and Stewart. We then develop numerical methods for the detection of relative Lyapunov center bifurcations along branches of RPOs and for their computation. We apply our methods to Lagrangian REs of the N-body problem....
Directory of Open Access Journals (Sweden)
Nancy Krieger
Full Text Available OBJECTIVES: To date, limited and inconsistent evidence exists regarding racial discrimination and risk of cardiovascular disease (CVD. METHODS: Cross-sectional observational study of 1005 US-born non-Hispanic black (n = 504 and white (n = 501 participants age 35-64 randomly selected from community health centers in Boston, MA (2008-2010; 82.4% response rate, using 3 racial discrimination measures: explicit self-report; implicit association test (IAT, a time reaction test for self and group as target vs. perpetrator of discrimination; and structural (Jim Crow status of state of birth, i.e. legal racial discrimination prior 1964. RESULTS: Black and white participants both had adverse cardiovascular and socioeconomic profiles, with black participants most highly exposed to racial discrimination. Positive crude associations among black participants occurred for Jim Crow birthplace and hypertension (odds ratio (OR 1.92, 95% confidence interval (CI 1.28, 2.89 and for explicit self-report and the Framingham 10 year CVD risk score (beta = 0.04; 95% CI 0.01, 0.07; among white participants, only negative crude associations existed (for IAT for self, for lower systolic blood pressure (SBP; beta = -4.86; 95% CI -9.08, -0.64 and lower Framingham CVD score (beta = -0.36, 95% CI -0.63, -0.08. All of these associations were attenuated and all but the white IAT-Framingham risk score association were rendered null in analyses that controlled for lifetime socioeconomic position and additional covariates. Controlling for racial discrimination, socioeconomic position, and other covariates did not attenuate the crude black excess risk for SBP and hypertension and left unaffected the null excess risk for the Framingham CVD score. CONCLUSION: Despite worse exposures among the black participants, racial discrimination and socioeconomic position were not associated, in multivariable analyses, with risk of CVD. We interpret results in relation to constrained variability
Energy Technology Data Exchange (ETDEWEB)
Linsenmeier, Claudia; Thoennessen, Daniel; Negretti, Laura; Streller, Tino; Luetolf, Urs Martin [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Bourquin, Jean-Pierre [University Children' s Hospital Zurich (Switzerland). Dept. of Hemato-Oncology; Oertel, Susanne [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Heidelberg Univ. (Germany). Dept. of Radiation Oncology
2010-11-15
To retrospectively analyze patient characteristics, treatment, and treatment outcome of pediatric patients with hematologic diseases treated with total body irradiation (TBI) between 1978 and 2006. 32 pediatric patients were referred to the Department of Radiation-Oncology at the University of Zurich for TBI. Records of regular follow-up of 28 patients were available for review. Patient characteristics as well as treatment outcome regarding local control and overall survival were assessed. A total of 18 patients suffered from acute lymphoblastic leukemia (ALL), 5 from acute and 2 from chronic myelogenous leukemia, 1 from non-Hodgkin lymphoma, and 2 from anaplastic anemia. The cohort consisted of 15 patients referred after first remission and 13 patients with relapsed leukemia. Mean follow-up was 34 months (2-196 months) with 15 patients alive at the time of last follow-up. Eight patients died of recurrent disease, 1 of graft vs. host reaction, 2 of sepsis, and 2 patients died of a secondary malignancy. The 5-year overall survival rate (OS) was 60%. Overall survival was significantly inferior in patients treated after relapse compared to those treated for newly diagnosed leukemia (24% versus 74%; p=0.004). At the time of last follow-up, 11 patients survived for more than 36 months following TBI. Late effects (RTOG {>=}3) were pneumonitis in 1 patient, chronic bronchitis in 1 patient, cardiomyopathy in 2 patients, severe cataractogenesis in 1 patient (48 months after TBI with 10 Gy in a single dose) and secondary malignancies in 2 patients (36 and 190 months after TBI). Growth disturbances were observed in all patients treated prepubertally. In 2 patients with identical twins treated at ages 2 and 7, a loss of 8% in final height of the treated twin was observed. As severe late sequelae after TBI, we observed 2 secondary malignancies in 11 patients who survived in excess of 36 months. However, long-term morbidity is moderate following treatment with the fractionated
Thermal plasma processed ferro-magnetically ordered face-centered cubic iron at room temperature
Energy Technology Data Exchange (ETDEWEB)
Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Das, A. K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)
2014-10-28
Here, we report tailor made phase of iron nanoparticles using homogeneous gas phase condensation process via thermal plasma route. It was observed that crystal lattice of nano-crystalline iron changes as a function of operating parameters of the plasma reactor. In the present investigation iron nanoparticles have been synthesized in presence of argon at operating pressures of 125–1000 Torr and fixed plasma input DC power of 6 kW. It was possible to obtain pure fcc, pure bcc as well as the mixed phases for iron nanoparticles in powder form as a function of operating pressure. The as synthesized product was characterized for understanding the structural and magnetic properties by using X-ray diffraction, vibrating sample magnetometer, and Mössbauer spectroscopy. The data reveal that fcc phase is ferromagnetically ordered with high spin state, which is unusual whereas bcc phase is found to be ferromagnetic as usual. Finally, the structural and magnetic properties are co-related.
In situ observation of deformation processes in nanocrystalline face-centered cubic metals.
Kobler, Aaron; Brandl, Christian; Hahn, Horst; Kübel, Christian
2016-01-01
The atomistic mechanisms active during plastic deformation of nanocrystalline metals are still a subject of controversy. The recently developed approach of combining automated crystal orientation mapping (ACOM) and in situ straining inside a transmission electron microscope was applied to study the deformation of nanocrystalline Pd x Au1- x thin films. This combination enables direct imaging of simultaneously occurring plastic deformation processes in one experiment, such as grain boundary motion, twin activity and grain rotation. Large-angle grain rotations with ≈39° and ≈60° occur and can be related to twin formation, twin migration and twin-twin interaction as a result of partial dislocation activity. Furthermore, plastic deformation in nanocrystalline thin films was found to be partially reversible upon rupture of the film. In conclusion, conventional deformation mechanisms are still active in nanocrystalline metals but with different weighting as compared with conventional materials with coarser grains.
Thermal plasma processed ferro-magnetically ordered face-centered cubic iron at room temperature
Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Das, A. K.; Mathe, V. L.
2014-10-01
Here, we report tailor made phase of iron nanoparticles using homogeneous gas phase condensation process via thermal plasma route. It was observed that crystal lattice of nano-crystalline iron changes as a function of operating parameters of the plasma reactor. In the present investigation iron nanoparticles have been synthesized in presence of argon at operating pressures of 125-1000 Torr and fixed plasma input DC power of 6 kW. It was possible to obtain pure fcc, pure bcc as well as the mixed phases for iron nanoparticles in powder form as a function of operating pressure. The as synthesized product was characterized for understanding the structural and magnetic properties by using X-ray diffraction, vibrating sample magnetometer, and Mössbauer spectroscopy. The data reveal that fcc phase is ferromagnetically ordered with high spin state, which is unusual whereas bcc phase is found to be ferromagnetic as usual. Finally, the structural and magnetic properties are co-related.
Low-temperature thermostatics of face-centered-cubic metallic hydrogen
Caron, L. G.
1974-01-01
The thermostatic properties of a high-symmetry phase of metallic hydrogen with atomic sphere radius between 0.1 and 1.5 bohr are studied, with special emphasis accorded to electronic screening and quantum proton motion. The electron-proton and proton-proton interactions receive a perturbation treatment based on the Singwi dielectric function, while the proton motion is handled by self-consistent harmonic approximation. Quantum behavior is found to be less pronounced than expected, and nuclear magnetism is absent. The phonon spectrum is, however, affected by screening and large proton motion. The zero-point vibrational energy and the superconducting critical temperature are below previous estimates. The crystalline-defect formation energies are a few times the Debye energy, which implies that defects contribute significantly to melting at the lower particle densities.
2006-03-01
on the x-y plane form a 0◦, −60◦ and 60◦ angle respectively, with the x axis. [3]. . . . . . . . . . 88 4.36. SEM images of FCC structure created in...structure (Figure 2.7) is an fcc structure with air cylinders in a dielectric. This crystal has a complete PBG around the 1.55-µm wavelength; when using...x axis. [3]. 88 Figure 4.36: SEM images of FCC structure created in SU-8 by Hy- brid Technologies using holographic process, (a), (b), (c), and (d
Thermodynamic properties of solid face centered cubic Rb3C60 at high temperature and pressure
Yang, W.; Sun, J. X.; Liu, H.; Yan, G. F.
2014-03-01
Analytic equation of state and thermodynamic quantities of solid fcc Rb3C60 are derived by using an analytic mean field potential method. For intermolecular forces, the double-exponential potential is utilized. Four potential parameters are determined by fitting experimental compression data of Rb3C60 up to 14 GPa at 296 K. Various physical quantities including isothermals, thermal expansion, isochoric heat capacity, Helmholtz free energy and internal energy are calculated and analyzed. Calculated results are consistent with available experimental data in literature. Furthermore, spinodal temperature for Rb3C60 is found to be 2,860 K. Results verify that analytic mean field potential method is a useful approach to consider the anharmonic effect at high temperatures. Numerous reasonable predictions and the change trend of the properties for Rb3C60 at high temperature and pressure have been given.
Plasma simulation with the Differential Algebraic Cubic Interpolated Propagation scheme
Energy Technology Data Exchange (ETDEWEB)
Utsumi, Takayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
A computer code based on the Differential Algebraic Cubic Interpolated Propagation scheme has been developed for the numerical solution of the Boltzmann equation for a one-dimensional plasma with immobile ions. The scheme advects the distribution function and its first derivatives in the phase space for one time step by using a numerical integration method for ordinary differential equations, and reconstructs the profile in phase space by using a cubic polynomial within a grid cell. The method gives stable and accurate results, and is efficient. It is successfully applied to a number of equations; the Vlasov equation, the Boltzmann equation with the Fokker-Planck or the Bhatnagar-Gross-Krook (BGK) collision term and the relativistic Vlasov equation. The method can be generalized in a straightforward way to treat cases such as problems with nonperiodic boundary conditions and higher dimensional problems. (author)
Experimental core electron density of cubic boron nitride
DEFF Research Database (Denmark)
Wahlberg, Nanna; Bindzus, Niels; Bjerg, Lasse;
Experimental core electron density of cubic boron nitride Nanna Wahlberg*, Niels Bindzus*, Lasse Bjerg*, Jacob Becker*, and Bo B. Iversen* *Aarhus University, Department of Chemistry, CMC, Langelandsgade 140, 8000 Århus, Denmark The resent progress in powder diffraction provides data of quality...... beyond multipolar modeling of the valence density. As was recently shown in a benchmark study of diamond by Bindzus et al.1 The next step is to investigate more complicated chemical bonding motives, to determine the effect of bonding on the core density. Cubic boron nitride2 lends itself as a perfect...... candidate because of its many similarities with diamond: bonding pattern in the extended network structure, hardness, and the quality of the crystallites.3 However, some degree ionic interaction is a part of the bonding in boron nitride, which is not present in diamond. By investigating the core density...
Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem
Directory of Open Access Journals (Sweden)
Xiaomei Zhang
2012-01-01
Full Text Available We present some sufficient global optimality conditions for a special cubic minimization problem with box constraints or binary constraints by extending the global subdifferential approach proposed by V. Jeyakumar et al. (2006. The present conditions generalize the results developed in the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or binary constraints was considered. In addition, a special diagonal matrix is constructed, which is used to provide a convenient method for justifying the proposed sufficient conditions. Then, the reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also applicable to the quadratic minimization problem with box or binary constraints considered in the works of V. Jeyakumar et al. (2006 and Y. Wang et al. (2010. Finally some examples demonstrate that our optimality conditions can effectively be used for identifying global minimizers of the certain nonconvex cubic minimization problem.
The Piecewise Cubic Method (PCM) for Computational Fluid Dynamics
Lee, Dongwook; Reyes, Adam
2016-01-01
We present a new high-order finite volume reconstruction method for hyperbolic conservation laws. The method is based on a piecewise cubic polynomial which provides its solutions a fifth-order accuracy in space. The spatially reconstructed solutions are evolved in time with a fourth-order accuracy by tracing the characteristics of the cubic polynomials. As a result, our temporal update scheme provides a significantly simpler and computationally more efficient approach in achieving fourth order accuracy in time, relative to the comparable fourth-order Runge-Kutta method. We demonstrate that the solutions of PCM converges in fifth-order in solving 1D smooth flows described by hyperbolic conservation laws. We test the new scheme in a range of numerical experiments, including both gas dynamics and magnetohydrodynamics applications in multiple spatial dimensions.
Reversible Nanoparticle Cubic Lattices in Blue Phase Liquid Crystals.
Gharbi, Mohamed Amine; Manet, Sabine; Lhermitte, Julien; Brown, Sarah; Milette, Jonathan; Toader, Violeta; Sutton, Mark; Reven, Linda
2016-03-22
Blue phases (BPs), a distinct class of liquid crystals (LCs) with 3D periodic ordering of double twist cylinders involving orthogonal helical director twists, have been theoretically studied as potential templates for tunable colloidal crystals. Here, we report the spontaneous formation of thermally reversible, cubic crystal nanoparticle (NP) assemblies in BPs. Gold NPs, functionalized to be highly miscible in cyanobiphenyl-based LCs, were dispersed in BP mixtures and characterized by polarized optical microscopy and synchrotron small-angle X-ray scattering (SAXS). The NPs assemble by selectively migrating to periodic strong trapping sites in the BP disclination lines. The NP lattice, remarkably robust given the small particle size (4.5 nm diameter), is commensurate with that of the BP matrix. At the BP I to BP II phase transition, the NP lattice reversibly switches between two different cubic structures. The simultaneous presence of two different symmetries in a single material presents an interesting opportunity to develop novel dynamic optical materials.
Nonlinear optical imaging of defects in cubic silicon carbide epilayers.
Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Matei, Alecs; Stanciu, George A
2014-06-11
Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.
Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure
Suteewong, Teeraporn
2011-01-19
Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.
Quantum spectra and classical periodic orbit in the cubic billiard
Institute of Scientific and Technical Information of China (English)
Dehua Wang; Yongjiang Yu; Shenglu Lin
2006-01-01
Quantum billiards have attracted much interest in many fields. People have made a lot of researches on the two-dimensional (2D) billiard systems. Contrary to the 2D billiard, due to the complication of its classical periodic orbits, no one has studied the correspondence between the quantum spectra and the classical orbits of the three-dimensional (3D) billiards. Taking the cubic billiard as an example, using the periodic orbit theory, we find the periodic orbit of the cubic billiard and study the correspondence between the quantum spectra and the length of the classical orbits in 3D system. The Fourier transformed spectrum of this system has allowed direct comparison between peaks in such plot and the length of the periodic orbits, which verifies the correctness of the periodic orbit theory. This is another example showing that semiclassical method provides a bridge between quantum and classical mechanics.
3D Medical Image Interpolation Based on Parametric Cubic Convolution
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In the process of display, manipulation and analysis of biomedical image data, they usually need to be converted to data of isotropic discretization through the process of interpolation, while the cubic convolution interpolation is widely used due to its good tradeoff between computational cost and accuracy. In this paper, we present a whole concept for the 3D medical image interpolation based on cubic convolution, and the six methods, with the different sharp control parameter, which are formulated in details. Furthermore, we also give an objective comparison for these methods using data sets with the different slice spacing. Each slice in these data sets is estimated by each interpolation method and compared with the original slice using three measures: mean-squared difference, number of sites of disagreement, and largest difference. According to the experimental results, we present a recommendation for 3D medical images under the different situations in the end.
Quantum Phase Transitions in Anti-ferromagnetic Planar Cubic Lattices
Wellard, C J; Wellard, Cameron; Orus, Roman
2004-01-01
Motivated by its relation to an NP-hard problem we analyze the ground state properties of anti-ferromagnetic Ising-spin networks in planar cubic lattices under the action of homogeneous transverse and longitudinal magnetic fields. We consider different instances of the cubic geometry and find a set of quantum phase transitions for each one of the systems, which we characterize by means of entanglement behavior and majorization theory. Entanglement scaling at the critical region is in agreement with results arising from conformal symmetry, therefore even the simplest planar systems can display very large amounts of quantum correlation. No conclusion can be made as to the scaling behavior of the minimum energy gap, with the data allowing equally good fits to exponential and power law decays. Analysis of entanglement and especially of majorization instead of the energy spectrum proves to be a good way of detecting quantum phase transitions in highly frustrated configurations.
Legreneur, Pierre; Homberger, Dominique G; Bels, Vincent
2012-07-01
This study provides a morphometric data set of body segments that are biomechanically relevant for locomotion in two ecomorphs of adult male anoles, namely, the trunk-ground Anolis sagrei and the trunk-crown Anolis carolinensis. For each species, 10 segments were characterized, and for each segment, length, mass, location of the center of mass, and radius of gyration were measured or calculated, respectively. The radii of gyration were computed from the moments of inertia by using the double swing pendulum method. The trunk-ground A. sagrei has relatively longer and stockier hindlimbs and forelimbs with smaller body than A. carolinensis. These differences between the two ecomorphs demonstrated a clear relationship between morphology and performance, particularly in the context of predator avoidance behavior, such as running or jumping in A. sagrei and crypsis in A. carolinensis. Our results provide new perspectives on the mechanism of adaptive radiation as the limbs of the two species appear to scale via linear factors and, therefore, may also provide explanations for the mechanism of evolutionary changes of structures within an ecological context.
Energy Technology Data Exchange (ETDEWEB)
Burger, Arnold, E-mail: aburger@fisk.edu [Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Rowe, Emmanuel; Groza, Michael; Morales Figueroa, Kristle [Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208 (United States); Cherepy, Nerine J.; Beck, Patrick R.; Hunter, Steven; Payne, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-10-05
We report on the scintillation properties of Cs{sub 2}HfCl{sub 6} (cesium hafnium chloride or CHC) as an example of a little-known class of non-hygroscopic compounds having the generic cubic crystal structure of K{sub 2}PtCl{sub 6}. The crystals are easily growable from the melt using the Bridgman method with minimal precursor treatments or purification. CHC scintillation is centered at 400 nm, with a principal decay time of 4.37 μs and a light yield of up to 54 000 photons/MeV when measured using a silicon CCD photodetector. The light yield is the highest ever reported for an undoped crystal, and CHC also exhibits excellent light yield nonproportionality. These desirable properties allowed us to build and test CHC gamma-ray spectrometers providing energy resolution of 3.3% at 662 keV.
Photonic Crystal Cavities in Cubic Polytype Silicon Carbide Films
Radulaski, Marina; Buckley, Sonia; Rundquist, Armand; Provine, J; Alassaad, Kassem; Ferro, Gabriel; Vučković, Jelena
2013-01-01
We present the design, fabrication, and characterization of high quality factor and small mode volume planar photonic crystal cavities from cubic (3C) thin films (thickness ~ 200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1250 - 1600 nm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.
INTEGRABILITY AND LINEARIZABILITY FOR A CLASS OF CUBIC KOLMOGOROV SYSTEMS
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The integrability and linearizability for a class of cubic Kolmogorov systems are studied. A recursive formula to compute the saddle quantities of the systems is deduced firstly, and integrable conditions for the systems are obtained. Then a recursive formula to compute the coefficients of the normal form for saddle points of the systems is also applied. Finally linearizable conditions of the origin for the systems are given. Both formulas to find necessary conditions are all linear and readily done using c...
Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.
Weierstall, Uwe; James, Daniel; Wang, Chong; White, Thomas A; Wang, Dingjie; Liu, Wei; Spence, John C H; Bruce Doak, R; Nelson, Garrett; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Kupitz, Christopher; Zatsepin, Nadia A; Liu, Haiguang; Basu, Shibom; Wacker, Daniel; Han, Gye Won; Katritch, Vsevolod; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Koglin, Jason E; Marvin Seibert, M; Klinker, Markus; Gati, Cornelius; Shoeman, Robert L; Barty, Anton; Chapman, Henry N; Kirian, Richard A; Beyerlein, Kenneth R; Stevens, Raymond C; Li, Dianfan; Shah, Syed T A; Howe, Nicole; Caffrey, Martin; Cherezov, Vadim
2014-01-01
Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.
Multiscale Modeling of Point and Line Defects in Cubic Lattices
2007-01-01
and discli- nations with finite micropolar elastoplasticity . Int. J. Plasticity. 22:210–256, 2006. 56. Menzel, A., and Steinmann, P., On the contin...Voyiadjis, G. Z., A finite strain plastic- damage model for high velocity impact using combined viscosity and gradient localization limiters: Part I...Theoretical for- mulation. Int. J. Damage Mech. 15:293–334, 2006. 58. Milstein, F., and Chantasiriwan, S,. Theoretical study of the response of 12 cubic
A highly ordered cubic mesoporous silica/graphene nanocomposite
Lee, Chang-Wook; Roh, Kwang Chul; Kim, Kwang-Bum
2013-09-01
A highly ordered cubic mesoporous silica (KIT-6)/graphene nanocomposite and 2D KIT-6 nanoflakes were synthesized using a novel synthesis methodology. The non-ionic triblock copolymer, P123, played a dual role as a structure-directing agent in the formation of the cubic mesoporous structure and as a cross-linking agent between mesoporous silica and graphene. The prepared (KIT-6)/graphene nanocomposite could act as a template for the preparation of mesoporous material/graphene nanocomposites.A highly ordered cubic mesoporous silica (KIT-6)/graphene nanocomposite and 2D KIT-6 nanoflakes were synthesized using a novel synthesis methodology. The non-ionic triblock copolymer, P123, played a dual role as a structure-directing agent in the formation of the cubic mesoporous structure and as a cross-linking agent between mesoporous silica and graphene. The prepared (KIT-6)/graphene nanocomposite could act as a template for the preparation of mesoporous material/graphene nanocomposites. Electronic supplementary information (ESI) available: S1: TEM images of disordered mesoporous silica/graphene nanocomposite; S2: TEM images of KIT-6/GO nanocomposite; S3: Thermogravimetric analysis of KIT-6/GO and KG-400-700; S4: SEM and TEM images of KIT-6; S5: Low angle XRD, Raman spectra, N2 adsorption isotherms, pore size distribution and photographic images of the prepared samples; S6: TEM image and N2 adsorption isotherms of mesoporous carbon/graphene nanocomposite; S7: XPS C1s spectra of the prepared samples. See DOI: 10.1039/c3nr03108j
The Number of Real Roots of a Cubic Equation
Kavinoky, Richard; Thoo, John B.
2008-01-01
To find the number of distinct real roots of the cubic equation (1) x[caret]3 + bx[caret]2 + cx + d = 0, we could attempt to solve the equation. Fortunately, it is easy to tell the number of distinct real roots of (1) without having to solve the equation. The key is the discriminant. The discriminant of (1) appears in Cardan's (or Cardano's) cubic…
Quadratic and Cubic Nonlinear Oscillators with Damping and Their Applications
Li, Jibin; Feng, Zhaosheng
We apply the qualitative theory of dynamical systems to study exact solutions and the dynamics of quadratic and cubic nonlinear oscillators with damping. Under certain parametric conditions, we also consider the van der Waals normal form, Chaffee-Infante equation, compound Burgers-KdV equation and Burgers-KdV equation for explicit representations of kink-profile wave solutions and unbounded traveling wave solutions.
Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of Doxorubicin
DEFF Research Database (Denmark)
Swarnakar, Nitin K; Thanki, Kaushik; Jain, Sanyog
2014-01-01
PURPOSE: The present study explores the potential of bicontinous cubic liquid crystalline nanoparticles (LCNPs) for improving therapeutic potential of doxorubicin. METHODS: Phytantriol based Dox-LCNPs were prepared using hydrotrope method, optimized for various formulation components, process...... variables and lyophilized. Structural elucidation of the reconstituted formulation was performed using HR-TEM and SAXS analysis. The developed formulation was subjected to exhaustive cell culture experiments for delivery potential (Caco-2 cells) and efficacy (MCF-7 cells). Finally, in vivo pharmacokinetics...
Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride
2014-01-01
Poly-crystalline cubic boron nitride (PCBN) is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM) is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materia...
Arithmetic Problems in Cubic and Quartic Function Fields
Bembom, Tobias
2010-01-01
One of the main themes in this thesis is the description of the signature of both the infinite place and the finite places in cubic function fields of any characteristic and quartic function fields of characteristic at least 5. For these purposes, we provide a new theory which can be applied to cubic and quartic function fields and to even higher dimensional function fields. One of the striking advantages of this theory to other existing methods is that is does not use the concept of p-adic completions and we can dispense of Cardano's formulae. Another key result comprises the construction of cubic function fields of unit rank 1 and 2, with an obvious fundamental system. One of the main ingredients for such constructions is the definition of the maximum value. This definition is new and very prolific in the context of finding fundamental systems. We conclude the thesis with miscellaneous results on the divisor class number h, including a new approach for finding divisors of h.
Integer roots of quadratic and cubic polynomials with integer coefficients
Zelator, Konstantine
2011-01-01
The subject matter of this work is quadratic and cubic polynomial functions with integer coefficients;and all of whose roots are integers. The material of this work is directed primarily at educators,students,and teachers of mathematics,grades K12 to K20.The results of this work are expressed in Theorems3,4,and5. Of these theorems, Theorem3, is the one that most likely, the general reader of this article will have some familiarity with.In Theorem3, precise coefficient conditions are given;in order that a quadratic trinomial(with integer) have two integer roots or zeros.On the other hand, Theorems4 and5 are largely unfamiliar territory. In Theorem4, precise coefficient conditions are stated; for a monic cubic polynomial to have a double(i.e.of multiplicity 2) integer root, and a single integer root(i.e.of multiplicity 1).The entire family of such cubics can be described in terms of four groups or subfamilies; each such group being a two-integer parameter subfamily. In Theorem5, a one-integer parameter family o...
The traveling salesman problem on cubic and subcubic graphs
Boyd, Sylvia; van der Ster, Suzanne; Stougie, Leen
2011-01-01
We study the Travelling Salesman Problem (TSP) on the metric completion of cubic and subcubic graphs, which is known to be NP-hard. The problem is of interest because of its relation to the famous 4/3 conjecture for metric TSP, which says that the integrality gap, i.e., the worst case ratio between the optimal values of the TSP and its linear programming relaxation (the subtour elimination relaxation), is 4/3. We present the first algorithm for cubic graphs with approximation ratio 4/3. The proof uses polyhedral techniques in a surprising way, which is of independent interest. In fact we prove constructively that for any cubic graph on $n$ vertices a tour of length 4n/3-2 exists, which also implies the 4/3 conjecture, as an upper bound, for this class of graph-TSP. Recently, M\\"omke and Svensson presented a randomized algorithm that gives a 1.461-approximation for graph-TSP on general graphs and as a side result a 4/3-approximation algorithm for this problem on subcubic graphs, also settling the 4/3 conjectur...
Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)
Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.
2002-08-01
Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application.
Field-effect transistors based on cubic indium nitride.
Oseki, Masaaki; Okubo, Kana; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi
2014-02-04
Although the demand for high-speed telecommunications has increased in recent years, the performance of transistors fabricated with traditional semiconductors such as silicon, gallium arsenide, and gallium nitride have reached their physical performance limits. Therefore, new materials with high carrier velocities should be sought for the fabrication of next-generation, ultra-high-speed transistors. Indium nitride (InN) has attracted much attention for this purpose because of its high electron drift velocity under a high electric field. Thick InN films have been applied to the fabrication of field-effect transistors (FETs), but the performance of the thick InN transistors was discouraging, with no clear linear-saturation output characteristics and poor on/off current ratios. Here, we report the epitaxial deposition of ultrathin cubic InN on insulating oxide yttria-stabilized zirconia substrates and the first demonstration of ultrathin-InN-based FETs. The devices exhibit high on/off ratios and low off-current densities because of the high quality top and bottom interfaces between the ultrathin cubic InN and oxide insulators. This first demonstration of FETs using a ultrathin cubic indium nitride semiconductor will thus pave the way for the development of next-generation high-speed electronics.
Proton disorder in cubic ice: Effect on the electronic and optical properties
Energy Technology Data Exchange (ETDEWEB)
Garbuio, Viviana; Pulci, Olivia [MIFP, ETSF, Physics Department of Tor Vergata University, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Cascella, Michele [Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC), University of Oslo, Postboks 1033, Blindern, N-0315 Oslo (Norway); Kupchak, Igor [MIFP, V. Lashkarev Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, pr. Nauki 45, UA-03680 Kiev (Ukraine); Seitsonen, Ari Paavo [Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Département de Chimie, École Normale Supérieure, 24 rue Lhomond, F-75005 Paris (France)
2015-08-28
The proton disorder in ice has a key role in several properties such as the growth mode, thermodynamical properties, and ferroelectricity. While structural phase transitions from proton disordered to proton ordered ices have been extensively studied, much less is known about their electronic and optical properties. Here, we present ab initio many body perturbation theory-based calculations of the electronic and optical properties of cubic ice at different levels of proton disorder. We compare our results with those from liquid water, that acts as an example of a fully (proton- and oxygen-)disordered system. We find that by increasing the proton disorder, a shrinking of the electronic gap occurs in ice, and it is smallest in the liquid water. Simultaneously, the excitonic binding energy decreases, so that the final optical gaps result to be almost independent on the degree of proton disorder. We explain these findings as an interplay between the local dipolar disorder and the electronic correlation.
Energy Technology Data Exchange (ETDEWEB)
Navarro C, H.; Perez C, M.; Rodriguez, A. G.; Lopez L, E.; Vidal, M. A. [Universidad Autonoma de San Luis Potosi, Coordinacion para la Innovacion y la Aplicacion de la Ciencia y la Tecnologia, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)
2012-07-01
Cubic In N samples were grown on Mg O (001) substrates by gas source molecular beam epitaxy. In general, we find that In N directly deposited onto the Mg O substrate results in polycrystalline or columnar films of hexagonal symmetry. We find that adequate conditions to grow the cubic phase of this compound require the growth of an initial cubic Ga N buffer interlayer ({beta}-t Ga N) on the Mg O surface. Subsequently, the growth conditions were optimized to obtain good photoluminescence (Pl) emission. The resultant In N growth is mostly cubic, with very small hexagonal inclusions, as confirmed by X-ray diffraction and scanning electron microscopy studies. Good crystalline quality requires that the samples to be grown under rich Indium metal flux. The cubic {beta}-t In N/Ga N/Mg O samples exhibit a high signal to noise ratio for Pl at low temperatures (20 K). The Pl is centered at O.75 eV and persist at room temperature. (Author)
Dynamic properties of the cubic nonlinear Schr(o)dinger equation by symplectic method
Institute of Scientific and Technical Information of China (English)
Liu Xue-Shen; Wei Jia-Yu; Ding Pei-Zhu
2005-01-01
The dynamic properties of a cubic nonlinear Schrodinger equation are investigated numerically by using the symplectic method with different space approximations. The behaviours of the cubic nonlinear Schrodinger equation are discussed with different cubic nonlinear parameters in the harmonically modulated initial condition. We show that the conserved quantities will be preserved for long-time computation but the system will exhibit different dynamic behaviours in space difference approximation for the strong cubic nonlinearity.
Institute of Scientific and Technical Information of China (English)
汪志刚; 朱俊; 陈刚
2006-01-01
在单中心球模型近似下,作者选用类N原子解析波函数,用变分法计算了H29+团簇的体心立方结构与能量.结果表明,当中心氢原子核到顶角氢原子核之间的距离R=2.30a0时,体系能量有一极小值E=-3.527h0(a0=0.529177×10-10m,h0=27.2eV).这表明H29+团簇的体心立方结构是稳定的结构,H29+团簇是可能存在的.
Institute of Scientific and Technical Information of China (English)
汪渊; 宋忠孝; 徐可为
2007-01-01
体心立方W膜(110)织构系数T110的变化存在非单调的厚度尺寸效应,这依赖于薄膜中晶粒形核和长大时表面能和应变能的相互作用,薄膜表面结构演变反映了两者的竞争过程.应用小波变换结合分形几何描述薄膜表面结构各向异性行为,用此法构建了薄膜织构系数T110与表面结构各向异性的关系,表明薄膜晶体取向存在表面映射.
Energy Technology Data Exchange (ETDEWEB)
Gueguen, A.; Joubert, J.-M. [Institut de Chimie et des Materiaux de Paris Est (ICMPE), Chimie Metallurgique des Terres Rares, CNRS, UMR 7182, Thiais (France); Latroche, M., E-mail: michel.latroche@icmpe.cnrs.fr [Institut de Chimie et des Materiaux de Paris Est (ICMPE), Chimie Metallurgique des Terres Rares, CNRS, UMR 7182, Thiais (France)
2011-02-10
Research highlights: > Preparation and structural characterizations of multiphase materials made of a bcc matrix with nominal composition Ti{sub 24.5}V{sub 59.3}Fe{sub 16.2} and C14 Laves phase inclusions. > Study of the influence of the presence of C14 Laves phase on the hydrogen sorption properties of the bcc alloy Ti{sub 24.5}V{sub 59.3}Fe{sub 16.2}. > Influence of the annealing process on the structure and the hydrogenation properties of the bcc Ti{sub 24.5}V{sub 59.3}Fe{sub 16.2} phase. - Abstract: Bcc Ti{sub 24.5}V{sub 59.3}Fe{sub 16.2} alloys containing 10 and 30% of C14 Laves phase inclusions were prepared by induction melting followed by annealing at 1000 {sup o}C. X-ray powder diffraction and BSE microscopy confirmed the presence of the C14 Laves phase (average composition Ti{sub 35.4}V{sub 32.3}Fe{sub 32.3}) embedded in the bcc matrix. The two end members of the series, the C14 Laves phase and the bcc Ti{sub 24.5}V{sub 59.3}Fe{sub 16.2} alloy, have very different hydrogenation behaviors. The C14 Laves phase does not absorb as much hydrogen as does the bcc phase. No equilibrium plateau and little hysteresis between absorption and desorption were observed at 25 deg. C for the C14 Laves on the PCI curves whereas those of the bcc sample present one equilibrium plateau and significant hysteresis between absorption and desorption. As a result, the absorption capacity and the length of the equilibrium plateau of the multiphase alloys decrease with the C14 Laves phase content. The hydrogenation properties of an as-cast bcc Ti{sub 24.5}V{sub 59.3}Fe{sub 16.2} sample were also investigated: the kinetics of the first hydrogenation is found to be slower and the plateau pressures higher for the as-cast alloy than for the annealed sample.
Hydrogen four-level tunnel systems in substitutional body-centred cubic alloys
Energy Technology Data Exchange (ETDEWEB)
Cordero, F. [CNR, Area di Ricerca di Roma - Tor Vergata, Ist. di Acustica ' ' O. M. Corbino' ' , Roma (Italy); INFM (Italy); Cantelli, R. [INFM (Italy); Univ. di Roma ' ' La Sapienza' ' , Dipt. di Fisica, Roma (Italy)
2002-10-01
A brief account is provided of the main results of a study of the tunneling states of H trapped by substitutional (S) impurities in Nb, mainly consisting in anelasticity experiments. The phenomenology is rather complex when the concentration of S atoms is higher than a few parts per thousand, and various and contrasting interpretations are possible. The complication arises from the destruction of the symmetry of the S-H pair by the elastic interactions among the defects. The situation becomes, however, clear for an S content around 0.1%, when the anelastic spectra reveal the relaxation processes due to the now nearly undistorted S-H complexes. In this case H delocalizes over four tetrahedral sites of a face of the cube containing the S atom, giving rise to a four-level tunnel system (FLS). The parameters of tunneling and coupling to phonons and electron excitations are similar to those found for the two-level system of H near an interstitial impurity, but new effects are found, due to the symmetry of the additional eigenstates of a centrosymmetric FLS. (orig.)
... About Us Contact Us Text size | Print | Body Image Developing a positive body image and a healthy mental attitude is crucial to ... on for tips to have a healthy body image. Topics About body image When you look in ...
Kim, Hwajeong; Park, Sung Soo; Seo, Jooyeok; Ha, Chang-Sik; Moon, Cheil; Kim, Youngkyoo
2013-08-14
Here we shortly report a protein device platform that is extremely stable in a buffer condition similar to human bodies. The protein device platform was fabricated by covalently attaching cytochrome c (cyt c) protein molecules to organic coupler molecules (pyridine dicarboxylic acid, PDA) that were already covalently bound to an electron-transporting substrate. A cubic nanostructured mesoporous titania film was chosen as an electron-transporting substrate because of its large-sized cubic holes (∼7 nm) and highly crystalline cubic titania walls (∼0.4 nm lattice). Binding of PDA molecules to the mesoporous titania surface was achieved by esterification reaction between carboxylic acid groups (PDA) and hydroxyl groups (titania) in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) mediator, whereas the immobilization of cyt c to the PDA coupler was carried out by the EDC-mediated amidation reaction between carboxylic acid groups (PDA) and amine groups (cyt c). Results showed that the 2,4-position isomer among several PDAs exhibited the highest oxidation and reduction peak currents. The cyt c-immobilized PDA-bound titania substrates showed stable and durable electrochemical performances upon continuous current-voltage cycling for 240 times (the final current change was less than 3%) and could detect superoxide that is a core indicator for various diseases including cancers.
Vacancy-induced mechanical stabilization of cubic tungsten nitride
Balasubramanian, Karthik; Khare, Sanjay; Gall, Daniel
2016-11-01
First-principles methods are employed to determine the structural, mechanical, and thermodynamic reasons for the experimentally reported cubic WN phase. The defect-free rocksalt phase is both mechanically and thermodynamically unstable, with a negative single crystal shear modulus C44=-86 GPa and a positive enthalpy of formation per formula unit Hf=0.623 eV with respect to molecular nitrogen and metallic W. In contrast, WN in the NbO phase is stable, with C44=175 GPa and Hf=-0.839 eV . A charge distribution analysis reveals that the application of shear strain along [100] in rocksalt WN results in an increased overlap of the t2 g orbitals which causes electron migration from the expanded to the shortened W-W bond axes, yielding a negative shear modulus due to an energy reduction associated with new bonding states 8.1-8.7 eV below the Fermi level. A corresponding shear strain in WN in the NbO phase results in an energy increase and a positive shear modulus. The mechanical stability transition from the NaCl to the NbO phase is explored using supercell calculations of the NaCl structure containing Cv=0 %-25 % cation and anion vacancies, while keeping the N-to-W ratio constant at unity. The structure is mechanically unstable for Cvconcentration, the isotropic elastic modulus E of cubic WN is zero, but increases steeply to E =445 GPa for Cv=10 % , and then less steeply to E =561 GPa for Cv=25 % . Correspondingly, the hardness estimated using Tian's model increases from 0 to 15 to 26 GPa as Cv increases from 5% to 10% to 25%, indicating that a relatively small vacancy concentration stabilizes the cubic WN phase and that the large variations in reported mechanical properties of WN can be attributed to relatively small changes in Cv.
Cubic Phases, Cubosomes and Ethosomes for Cutaneous Application.
Esposito, Elisabetta; Drechsler, Markus; Nastruzzi, Claudio; Cortesi, Rita
2016-01-01
Cutaneous administration represents a good strategy to treat skin diseases, avoiding side effects related to systemic administration. Apart from conventional therapy, based on the use of semi-solid formulation such as gel, ointments and creams, recently the use of specialized delivery systems based on lipid has been taken hold. This review provides an overview about the use of cubic phases, cubosomes and ethosomes, as lipid systems recently proposed to treat skin pathologies. In addition in the final part of the review cubic phases, cubosomes and ethosomes are compared to solid lipid nanoparticles and lecithin organogel with respect to their potential as delivery systems for cutaneous application. It has been reported that lipid nanosystems are able to dissolve and deliver active molecules in a controlled fashion, thereby improving their bioavailability and reducing side-effects. Particularly lipid matrixes are characterized by skin affinity and biocompatibility allowing their application on skin. Indeed, after cutaneous administration, the lipid matrix of cubic phases and cubosomes coalesces with the lipids of the stratum comeum and leads to the formation of a lipid depot from which the drug associated to the nanosystem can be released in the deeper skin strata in a controlled manner. Ethosomes are characterized by a malleable structure that promotes their interaction with skin, improving their potential as skin delivery systems with respect to liposomes. Also in the case of solid lipid nanoparticles it has been suggested a deep interaction between lipid matrix and skin strata that endorses sustained and prolonged drug release. Concerning lecithin organogel, the peculiar structure of this system, where lecithin exerts a penetration enhancer role, allows a deep interaction with skin strata, promoting the transdermal absorption of the encapsulated drugs.
Compressibility and thermal expansion of cubic silicon nitride
DEFF Research Database (Denmark)
Jiang, Jianzhong; Lindelov, H.; Gerward, Leif
2002-01-01
The compressibility and thermal expansion of the cubic silicon nitride (c-Si3N4) phase have been investigated by performing in situ x-ray powder-diffraction measurements using synchrotron radiation, complemented with computer simulations by means of first-principles calculations. The bulk...... compressibility of the c-Si3N4 phase originates from the average of both Si-N tetrahedral and octahedral compressibilities where the octahedral polyhedra are less compressible than the tetrahedral ones. The origin of the unit cell expansion is revealed to be due to the increase of the octahedral Si-N and N-N bond...
On the {P2, P3}-Factor of Cubic Graphs
Institute of Scientific and Technical Information of China (English)
GOU Kui-xiang; SUN Liang
2005-01-01
Let G = ( V, E) be a finite simple graph and Pn denote the path of order n. A spanning subgraph F is called a {P2, P3}-factor of G if each component of F is isomorphic to P2 or P3. With the path-covering method, it is proved that any connected cubic graph with at least 5 vertices has a { P2, P3 }-factor F such that | P3 (F) |≥|P2 (F) |, where P2 (F) and P3 (F) denote the set of components of P2 and P3 in F,respectively.
Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy.
Salazar-Alvarez, G; Qin, J; Sepelák, V; Bergmann, I; Vasilakaki, M; Trohidou, K N; Ardisson, J D; Macedo, W A A; Mikhaylova, M; Muhammed, M; Baró, M D; Nogués, J
2008-10-08
The magnetic properties of maghemite (gamma-Fe2O3) cubic and spherical nanoparticles of similar sizes have been experimentally and theoretically studied. The blocking temperature, T(B), of the nanoparticles depends on their shape, with the spherical ones exhibiting larger T(B). Other low temperature properties such as saturation magnetization, coercivity, loop shift or spin canting are rather similar. The experimental effective anisotropy and the Monte Carlo simulations indicate that the different random surface anisotropy of the two morphologies combined with the low magnetocrystalline anisotropy of gamma-Fe2O3 is the origin of these effects.
Soliton interaction in quadratic and cubic bulk media
DEFF Research Database (Denmark)
Johansen, Steffen Kjær; Bang, Ole
2000-01-01
Summary form only given. The understanding of how and to what extend the cubic nonlinearity affects beam propagation and spatial soliton formation in quadratic media is of vital importance in fundamental and applied nonlinear physics. We consider beam propagation under type-I SHG conditions...... in lossless bulk second order nonlinear optical materials with a nonvanishing third order nonlinearity. It is known that in pure second order systems a single soliton can never collapse whereas in systems with both nonlinearities and that stable single soliton propagation can only in some circumstances...
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.
Cramer, M; Eisert, J; Illuminati, F
2004-11-05
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.
Cubic to tetragonal crystal lattice reconstruction during ordering or decomposition
Energy Technology Data Exchange (ETDEWEB)
Cheong, Byung-kl [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering
1992-09-01
This thesis studied thermodynamic stability and morphology of product phases in diffusional phase transformations involving cubic-to-tetragonal crystal lattice reconstructions. Two different kinds of diffusional transformations were examined: L1{sub 0} ordering (fcc to fct lattice change) and decomposition of off-stoichiometric B2 ordering alloys accompanying bcc to fcc Bain transformation. In the first case, Fe-45 at.% Pd alloys were studied by TEM; in the second, the Bain strain relaxation during decomposition of hyper-eutectoid Cu-9.04 wt% Be alloy was studied. CuAu and InMg were also studied.
Ionic Conduction in Cubic Zirconias at Low Temperatures
Institute of Scientific and Technical Information of China (English)
Ying LI; Yunfa CHEN; Jianghong GONG
2004-01-01
The ac conductivities of Y2O3 or CaO-stabilized cubic zirconias were obtained from complex impedance measurements in the temperature range from 373 to 473 K. By analyzing the temperature-dependence of the resultant dc conductivities, it was shown that the activation energies for conduction are lower than those reported previously for the same materials at high temperatures. Comparing the activation energy data with the theoretically estimated values revealed that there may exist a certain, although very small, amount of free oxygen vacancies in the test samples at low temperatures and the conduction in the test samples is a result of the migration of these free oxygen vacancies.
Exotic Universal Solutions in Cubic Superstring Field Theory
Erler, Theodore
2010-01-01
We present a class of analytic solutions of cubic superstring field theory in the universal sector on a non-BPS D-brane. Computation of the action and gauge invariant overlap reveal that the solutions carry half the tension of a non-BPS D-brane. However, the solutions do not satisfy the reality condition. In fact, they display an intriguing topological structure: We find evidence that conjugation of the solutions is equivalent to a gauge transformation that cannot be continuously deformed to the identity.
Self-trapping transition in nonlinear cubic lattices
Naether, Uta; Guzmán-Silva, Diego; Molina, Mario I; Vicencio, Rodrigo A
2013-01-01
We explore the fundamental question about the critical nonlinearity value needed to dynamically localize energy in discrete nonlinear cubic (Kerr) lattices. We focus on the effective frequency and participation ratio of the profile to determine the transition into localization, performing several numerical simulations in one-, two-, and three-dimensional lattices. A simple criterium is developed - for the case of an initially localized excitation - defining the transition region in parameter space ("dynamical tongue") from a delocalized to a localized profile. A general analytical estimate of the critical nonlinearity value for which this transition occurs is obtained.
Cubature Formula and Interpolation on the Cubic Domain
Institute of Scientific and Technical Information of China (English)
Huiyuan Li; Jiachang Sun; Yuan Xu
2009-01-01
Several cubature formulas on the cubic domains are derived using the dis-crete Fourier analysis associated with lattice tiling, as developed in [10]. The main results consist of a new derivation of the Gaussian type cubature for the product Cheby-shev weight functions and associated interpolation polynomials on [-1,1]2, as well as new results on [-1,1]3. In particular, compact formulas for the fundamental interpo-lation polynomials are derived, based on n3/4 + (n2) nodes of a cubature formula on [-1,1]3.
CLOSED SMOOTH SURFACE DEFINED FROM CUBIC TRIANGULAR SPLINES
Institute of Scientific and Technical Information of China (English)
Ren-zhong Feng; Ren-hong Wang
2005-01-01
In order to construct closed surfaces with continuous unit normal, we introduce a new spline space on an arbitrary closed mesh of three-sided faces. Our approach generalizes an idea of Goodman and is based on the concept of 'Geometric continuity' for piecewise polynomial parametrizations. The functions in the spline space restricted to the faces are cubic triangular polynomials. A basis of the spline space is constructed of positive functions which sum to 1. It is also shown that the space is suitable for interpolating data at the midpoints of the faces.
Research on the Cutting Performance of Cubic Boron Nitride Tools
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
There were only two kinds of superhard tool material at the past, i.e. diamond and cubic boron nitride (CBN). Manmade diamond and CBN are manufactured by the middle of 20th century. Various manufacturing methods and manmade superhard materials were developed later. They were widely used in different industry and science areas. Recently, a new kind of superhard tool material, C 3N 4 coating film, had been developed. American physical scientists, A. M. Liu and M. L. Cohen, designed a new kind of inorganic c...
Cubic Plus Association Equation of State for Flow Assurance Projects
DEFF Research Database (Denmark)
dos Santos, Leticia Cotia; Abunahman, Samir Silva; Tavares, Frederico Wanderley
2015-01-01
Thermodynamic hydrate inhibitors such as methanol, ethanol, (mono) ethylene glycol (MEG), and triethylene glycol (TEG) are widely used in the oil and gas industry. On modeling these compounds, we show here how the CPA equation of state was implemented in an in-house process simulator as an in......-built model: To validate the implementation, we show calulations for binary systems containing hydrate inhibitors and water or hydrocarbons using the Cubic Plus Association (CPA) and Soave-Redlich-Kwong (SRK) equation of states, also comparing against experimental data. For streams containing natural gas...
Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride
Directory of Open Access Journals (Sweden)
Kuruc Marcel
2014-12-01
Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.
Elasticity tensor and ultrasonic velocities for anisotropic cubic polycrystal
Institute of Scientific and Technical Information of China (English)
2008-01-01
The orientation distribution of crystallites in a polycrystal can be described by the orientation distribution function(ODF) . The ODF can be expanded under the Wigner D-bases. The expanded coefficients in the ODF are called the texture coefficients. In this paper,we use the Clebsch-Gordan expression to derive an explicit expression of the elasticity tensor for an anisotropic cubic polycrystal. The elasticity tensor contains three material constants and nine texture coefficients. In order to measure the nine texture coefficients by ultrasonic wave,we give relations between the nine texture coefficients and ultrasonic propagation velocities. We also give a numerical example to check the relations.
Theoretical and Experimental Study of Time Reversal in Cubic Crystals
Institute of Scientific and Technical Information of China (English)
陆铭慧; 张碧星; 汪承灏
2004-01-01
The self-adaptive focusing of the time reversal in anisotropic media is studied theoretically and experimentally. It is conducted for the compressional wave field in the cubic crystal silicon. The experimental result is in agreement with our theoretical analysis. The focusing gain and the displacement distributions of the time reversal field are analysed in detail. It is shown that the waves from different elements of the transducer array arrive at the original place of the source simultaneously after the time reversal operation. The waveform distortions caused by the velocity anisotropy can automatically be compensated for after the time reversal processing.
Tensor tomography of stresses in cubic single crystals
Directory of Open Access Journals (Sweden)
Dmitry D. Karov
2015-03-01
Full Text Available The possibility of optical tomography applying to investigation of a two-dimensional and a three-dimensional stressed state in single cubic crystals has been studied. Stresses are determined within the framework of the Maxwell piezo-optic law (linear dependence of the permittivity tensor on stresses and weak optical anisotropy. It is shown that a complete reconstruction of stresses in a sample is impossible both by translucence it in the parallel planes system and by using of the elasticity theory equations. For overcoming these difficulties, it is offered to use a method of magnetophotoelasticity.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Citigroup,one of the World top 500 companies,has now settled in Excel Center,Financial Street. The opening ceremony of Excel Center and the entry ceremony of Citigroup in the center were held on March 31.Government leaders of Xicheng District,the Excel CEO and the heads of Asia-Pacific Region leaders of Citibank all participated in the ceremony.
Four-dimensional black holes in Einsteinian cubic gravity
Bueno, Pablo; Cano, Pablo A.
2016-12-01
We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordström-(anti-)de Sitter [RN-(A)dS] black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are characterized by a single function which satisfies a nonlinear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature T , the Wald entropy S and the Abbott-Deser mass M of the solutions analytically as functions of the horizon radius and the ECG coupling constant λ . Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case. Further, we claim that, up to cubic order in curvature, ECG is the most general four-dimensional theory of gravity which allows for nontrivial generalizations of Schwarzschild- and RN-(A)dS characterized by a single function which reduce to the usual Einstein gravity solutions when the corresponding higher-order couplings are set to zero.
Partially Blended Constrained Rational Cubic Trigonometric Fractal Interpolation Surfaces
Chand, A. K. B.; Tyada, K. R.
2016-08-01
Fractal interpolation is an advance technique for visualization of scientific shaped data. In this paper, we present a new family of partially blended rational cubic trigonometric fractal interpolation surfaces (RCTFISs) with a combination of blending functions and univariate rational trigonometric fractal interpolation functions (FIFs) along the grid lines of the interpolation domain. The developed FIFs use rational trigonometric functions pi,j(θ) qi,j(θ), where pi,j(θ) and qi,j(θ) are cubic trigonometric polynomials with four shape parameters. The convergence analysis of partially blended RCTFIS with the original surface data generating function is discussed. We derive sufficient data-dependent conditions on the scaling factors and shape parameters such that the fractal grid line functions lie above the grid lines of a plane Π, and consequently the proposed partially blended RCTFIS lies above the plane Π. Positivity preserving partially blended RCTFIS is a special case of the constrained partially blended RCTFIS. Numerical examples are provided to support the proposed theoretical results.
A family of quasi-cubic blended splines and applications
Institute of Scientific and Technical Information of China (English)
SU Ben-yue; TAN Jie-qing
2006-01-01
A class of quasi-cubic B-spline base functions by trigonometric polynomials are established which inherit properties similar to those of cubic B-spline bases. The corresponding curves with a shape parameter α, defined by the introduced base functions, include the B-spline curves and can approximate the B-spline curves from both sides. The curves can be adjusted easily by using the shape parameter α, where dpi(α,t) is linear with respect to dα for the fixed t. With the shape parameter chosen properly,the defined curves can be used to precisely represent straight line segments, parabola segments, circular arcs and some transcendental curves, and the corresponding tensor product surfaces can also represent spherical surfaces, cylindrical surfaces and some transcendental surfaces exactly. By abandoning positive property, this paper proposes a new C2 continuous blended interpolation spline based on piecewise trigonometric polynomials associated with a sequence of local parameters. Illustration showed that the curves and surfaces constructed by the blended spline can be adjusted easily and freely. The blended interpolation spline curves can be shape-preserving with proper local parameters since these local parameters can be considered to be the magnification ratio to the length of tangent vectors at the interpolating points. The idea is extended to produce blended spline surfaces.
Xu, Xu; Chang, Chien-Chi; Faber, Gert S; Kingma, Idsart; Dennerlein, Jack T
2010-02-10
Simple video-based methods previously proposed for field research to estimate L5/S1 net moments during real-world manual materials handling rely on polynomial interpolation on the joint angles from key frames extracted from video recordings; however, polynomial interpolations may not converge as the number of interpolation points increases. Therefore, we compared L5/S1 net moments calculated from continuous kinematic measurements to those calculated from both polynomial and cubic spline interpolation on body segments angles during lifting tasks. For small number of interpolation points (polynomial fits decreased with the increase in the number of interpolation points; however, above 6 interpolation points error for the polynomial fits started to increase while the error from the spline fit continued to decrease. These results suggest that cubic spline interpolation on body segments angles provides a more robust basis for calculating L5/S1 net moment from a few key video frames.
Calculation of local pressure tensors in systems with many-body interactions.
Heinz, Hendrik; Paul, Wolfgang; Binder, Kurt
2005-12-01
Local pressures are important in the calculation of interface tensions and in analyzing micromechanical behavior. The calculation of local pressures in computer simulations has been limited to systems with pairwise interactions between the particles, which is not sufficient for chemically detailed systems with many-body potentials such as angles and torsions. We introduce a method to calculate local pressures in systems with n-body interactions (n=2,3,4,) based on a micromechanical definition of the pressure tensor. The local pressure consists of a kinetic contribution from the linear momentum of the particles and an internal contribution from dissected many-body interactions by infinitesimal areas. To define dissection by a small area, respective n-body interactions are divided into two geometric centers, effectively reducing them to two-body interactions. Consistency with hydrodynamics-derived formulas for systems with two-body interactions [J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950)], for average cross-sectional pressures [B. D. Todd, D. J. Evans, and P. J. Daivis, Phys. Rev. E 52, 1627 (1995)], and for volume averaged pressures (virial formula) is shown. As a simple numerical example, we discuss liquid propane in a cubic box. Local, cross-sectional, and volume-averaged pressures as well as relative contributions from two-body and three-body forces are analyzed with the proposed method, showing full numerical equivalence with the existing approaches. The method allows computing local pressures in the presence of many-body interactions in atomistic simulations of complex materials and biological systems.
Jablonski, Paul D.; Larbalestier, David C.
1993-01-01
Superconductors formed by powder metallurgy have a matrix of niobium-titanium alloy with discrete pinning centers distributed therein which are formed of a compatible metal. The artificial pinning centers in the Nb-Ti matrix are reduced in size by processing steps to sizes on the order of the coherence length, typically in the range of 1 to 10 nm. To produce the superconductor, powders of body centered cubic Nb-Ti alloy and the second phase flux pinning material, such as Nb, are mixed in the desired percentages. The mixture is then isostatically pressed, sintered at a selected temperature and selected time to produce a cohesive structure having desired characteristics without undue chemical reaction, the sintered billet is reduced in size by deformation, such as by swaging, the swaged sample receives heat treatment and recrystallization and additional swaging, if necessary, and is then sheathed in a normal conducting sheath, and the sheathed material is drawn into a wire. The resulting superconducting wire has second phase flux pinning centers distributed therein which provide enhanced J.sub.ct due to the flux pinning effects.
Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi
2016-02-01
A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.
Non-spherical micelles in an oil-in-water cubic phase
DEFF Research Database (Denmark)
Leaver, M.; Rajagopalan, V.; Ulf, O.
2000-01-01
The cubic phase formed between the microemulsion and hexagonal phases of the ternary pentaethylene glycol dodecyl ether (C12E5)-decane-water system and that doped with small amounts of sodium dodecylsulfate (SDS) have been investigated. The presence of discrete oil-swollen micelles in the cubic...... phase, both with and without SDS, was established by NMR self-diffusion. In addition H-2 NMR relaxation experiments have demonstrated that the micelles in the cubic phase are non-spherical, having grown and changed shape upon formation of the cubic phase from the micellar solution. Small angle...... scattering experiments indicate that the lattice parameter for the cubic phase is inconsistent with a simple packing of micelles. Whilst insufficient reflections were observed to establish the space group of the cubic phase uniquely, those that were are consistent with two commonly observed space groups...
Quantum-Carnot engine for particle confined to cubic potential
Energy Technology Data Exchange (ETDEWEB)
Sutantyo, Trengginas Eka P., E-mail: trengginas.eka@gmail.com; Belfaqih, Idrus H., E-mail: idrushusin21@gmail.com; Prayitno, T. B., E-mail: teguh-budi@unj.ac.id [Department of Physics, State University of Jakarta, Jl. Pemuda No.10, Rawamangun, Jakarta Timur 13220 (Indonesia)
2015-09-30
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.
PT-Symmetric Cubic Anharmonic Oscillator as a Physical Model
Mostafazadeh, A
2004-01-01
We perform a perturbative calculation of the physical observables, in particular pseudo-Hermitian position and momentum operators, the equivalent Hermitian Hamiltonian operator, and the classical Hamiltonian for the PT-symmetric cubic anharmonic oscillator, $ H=p^1/(2m)+\\mu^2x^2/2+i\\epsilon x^3 $. Ignoring terms of order $ \\epsilon^4 $ and higher, we show that this system describes an ordinary quartic anharmonic oscillator with a position-dependent mass and real and positive coupling constants. This observation elucidates the classical origin of the reality and positivity of the energy spectrum. We also discuss the quantum-classical correspondence for this PT-symmetric system, compute the associated conserved probability density, and comment on the issue of factor-ordering in the pseudo-Hermitian canonical quantization of the underlying classical system.
Inverse cubic law of index fluctuation distribution in Indian markets
Pan, R K; Pan, Raj Kumar; Sinha, Sitabhra
2006-01-01
One of the principal statistical features characterizing the activity in financial markets is the distribution of fluctuations in market indicators such as the index. While the developed stock markets such as the New York Stock Exchange (NYSE) have been found to show heavy-tailed fluctuation distribution, there have been claims that emerging markets behave differently. Here we investigate the distribution of several indices from the Indian financial market, one of the largest emerging markets in the world. We have used both tick-by-tick data from the National Stock Exchange (NSE) and daily closing data from both NSE and Bombay Stock Exchange (BSE). We find that the cumulative distribution of index fluctuations has long tails consistent with a power law having exponent $\\alpha \\approx 3$, independent of the time-scale of observation or the market index used for the analysis. This ``inverse cubic law'' is quantitatively similar to what has been observed in developed markets, thereby providing strong evidence th...
Spatial 't Hooft loop to cubic order in hot QCD
Giovannangeli, P
2002-01-01
Spatial 't Hooft loops of strength k measure the qualitative change in the behaviour of electric colour flux in confined and deconfined phase of SU (N) gauge theory. They show an area law in the deconfined phase, known analytica lly to two loop order with a ``k-scaling'' law k(N-k). In this paper we comput e the O(g^3) correction to the tension. It is due to neutral gluon fields that get their mass through interaction with the wall. The simple k-scaling is lost in cubic order. The generic problem of non-convexity shows up in this order an d the cure is provided. The result for large N is explicitely given. We show tha t nonperturbative effects appear at O(g^5).
Cubic Derivative Interactions and Asymptotic Dynamics of the Galileon Vacuum
De Arcia, Roberto; León, Genly; Nucamendi, Ulises; Quiros, Israel
2015-01-01
In this paper we apply the tools of the dynamical systems theory in order to uncover the whole asymptotic structure of the vacuum interactions of a galileon model with a cubic derivative interaction term. It is shown that, contrary to what occurs in the presence of background matter, the galileon interactions of vacuum appreciably modify the late-time cosmic dynamics. In particular, a local late-time attractor representing phantom behavior arises which is inevitably associated with a big rip singularity. It seems that the gravitational interactions of the background matter with the galileon screen the effects of the gravitational self-interactions of the galileon, thus erasing any potential modification of the late-time dynamics by the galileon vacuum processes. Unlike other galileon models inspired in the DGP scenario, self-accelerating solutions do not arise in this model.
Plasmon polaritons in cubic lattices of spherical metallic nanoparticles
Lamowski, Simon; Mariani, Eros; Weick, Guillaume; Pauly, Fabian
2016-01-01
We investigate theoretically plasmon polaritons in cubic lattices of interacting spherical metallic nanoparticles. Dipolar localized surface plasmons on each nanoparticle couple through the near field dipole-dipole interaction and form collective plasmons which extend over the whole metamaterial. Coupling these collective plasmons in turn to photons leads to plasmon polaritons. We derive within a quantum model general semi-analytical expressions to evaluate both plasmon and plasmon-polariton dispersions that fully account for nonlocal effects in the dielectric function of the metamaterial. Within this model, we discuss the influence of different lattice symmetries and predict related polaritonic gaps within the near-infrared to the visible range of the spectrum that depend on wavevector direction and polarization.
A cubic autocatalytic reaction in a continuous stirred tank reactor
Energy Technology Data Exchange (ETDEWEB)
Yakubu, Aisha Aliyu; Yatim, Yazariah Mohd [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang Malaysia (Malaysia)
2015-10-22
In the present study, the dynamics of the cubic autocatalytic reaction model in a continuous stirred tank reactor with linear autocatalyst decay is studied. This model describes the behavior of two chemicals (reactant and autocatalyst) flowing into the tank reactor. The behavior of the model is studied analytically and numerically. The steady state solutions are obtained for two cases, i.e. with the presence of an autocatalyst and its absence in the inflow. In the case with an autocatalyst, the model has a stable steady state. While in the case without an autocatalyst, the model exhibits three steady states, where one of the steady state is stable, the second is a saddle point while the last is spiral node. The last steady state losses stability through Hopf bifurcation and the location is determined. The physical interpretations of the results are also presented.
Structure and energetics of nanotwins in cubic boron nitrides
Zheng, Shijian; Zhang, Ruifeng; Huang, Rong; Taniguchi, Takashi; Ma, Xiuliang; Ikuhara, Yuichi; Beyerlein, Irene J.
2016-08-01
Recently, nanotwinned cubic boron nitrides (NT c-BN) have demonstrated extraordinary leaps in hardness. However, an understanding of the underlying mechanisms that enable nanotwins to give orders of magnitude increases in material hardness is still lacking. Here, using transmission electron microscopy, we report that the defect density of twin boundaries depends on nanotwin thickness, becoming defect-free, and hence more stable, as it decreases below 5 nm. Using ab initio density functional theory calculations, we reveal that the Shockley partials, which may dominate plastic deformation in c-BNs, show a high energetic barrier. We also report that the c-BN twin boundary has an asymmetrically charged electronic structure that would resist migration of the twin boundary under stress. These results provide important insight into possible nanotwin hardening mechanisms in c-BN, as well as how to design these nanostructured materials to reach their full potential in hardness and strength.
Lipidic cubic phase serial millisecond crystallography using synchrotron radiation
Directory of Open Access Journals (Sweden)
Przemyslaw Nogly
2015-03-01
Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.
Cubic Spline Interpolation Reveals Different Evolutionary Trends of Various Species
Directory of Open Access Journals (Sweden)
Li Zhiqiang
2016-01-01
Full Text Available Instead of being uniform in each branch of the biological evolutionary tree, the speed of evolution, measured in the number of mutations over a fixed number of years, seems to be much faster or much slower than average in some branches of the evolutionary tree. This paper describes an evolutionary trend discovery algorithm that uses cubic spline interpolation for various branches of the evolutionary tree. As shown in an example, within the vertebrate evolutionary tree, human evolution seems to be currently speeding up while the evolution of chickens is slowing down. The new algorithm can automatically identify those branches and times when something unusual has taken place, aiding data analytics of evolutionary data.
Palladium in cubic silicon carbide: Stability and kinetics
Roma, Guido
2009-12-01
Several technological applications of silicon carbide are concerned with the introduction of palladium impurities. Be it intentional or not, this may lead to the formation of silicides. Not only this process is not well understood, but the basic properties of palladium impurities in silicon carbide, such as solubility or diffusion mechanisms, are far from being known. Here the stability and kinetics of isolated Pd impurities in cubic silicon carbide are studied by first principles calculations in the framework of density functional theory. The preferential insertion sites, as well as the main migration mechanisms, are analyzed and presented here, together with the results for solution and migration energies. The early stages of nucleation are discussed based on the properties of isolated impurities and the smallest clusters.
Quantum-Carnot engine for particle confined to cubic potential
Sutantyo, Trengginas Eka P.; Belfaqih, Idrus H.; Prayitno, T. B.
2015-09-01
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.
Room temperature quantum emission from cubic silicon carbide nanoparticles.
Castelletto, Stefania; Johnson, Brett C; Zachreson, Cameron; Beke, David; Balogh, István; Ohshima, Takeshi; Aharonovich, Igor; Gali, Adam
2014-08-26
The photoluminescence (PL) arising from silicon carbide nanoparticles has so far been associated with the quantum confinement effect or to radiative transitions between electronically active surface states. In this work we show that cubic phase silicon carbide nanoparticles with diameters in the range 45-500 nm can host other point defects responsible for photoinduced intrabandgap PL. We demonstrate that these nanoparticles exhibit single photon emission at room temperature with record saturation count rates of 7 × 10(6) counts/s. The realization of nonclassical emission from SiC nanoparticles extends their potential use from fluorescence biomarker beads to optically active quantum elements for next generation quantum sensing and nanophotonics. The single photon emission is related to single isolated SiC defects that give rise to states within the bandgap.
Submicron cubic boron nitride as hard as diamond
Energy Technology Data Exchange (ETDEWEB)
Liu, Guoduan; Kou, Zili, E-mail: kouzili@scu.edu.cn, E-mail: yanxz@hpstar.ac.cn; Lei, Li; Peng, Fang; Wang, Qiming; Wang, Kaixue; Wang, Pei; Li, Liang; Li, Yong; Wang, Yonghua [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Yan, Xiaozhi, E-mail: kouzili@scu.edu.cn, E-mail: yanxz@hpstar.ac.cn; Li, Wentao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China); Bi, Yan [Institute of Fluid Physics and National Key Laboratory of Shockwave and Detonation Physic, China Academy of Engineering Physics, Mianyang 621900 (China); Leng, Yang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong (China); He, Duanwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Institute of Fluid Physics and National Key Laboratory of Shockwave and Detonation Physic, China Academy of Engineering Physics, Mianyang 621900 (China)
2015-03-23
Here, we report the sintering of aggregated submicron cubic boron nitride (sm-cBN) at a pressure of 8 GPa. The sintered cBN compacts exhibit hardness values comparable to that of single crystal diamond, fracture toughness about 5-fold that of cBN single crystal, in combination with a high oxidization temperature. Thus, another way has been demonstrated to improve the mechanical properties of cBN besides reducing the grain size to nano scale. In contrast to other ultrahard compacts with similar hardness, the sm-cBN aggregates are better placed for potential industrial application, as their relative low pressure manufacturing perhaps be easier and cheaper.
Enhanced initial protein adsorption on an engineered nanostructured cubic zirconia
Sabirianov, R F; Namavar, F
2010-01-01
Motivated by experimentally observed biocompatibility enhancement of nanoengineered cubic zirconia ZrO2 coatings to mesenchymal stromal cells, we have carried out computational analysis of the initial immobilization of one of known structural fragment of the adhesive protein (fibronectin) on the corresponding surface. We constructed an atomistic model of the zirconia nano-hillock of 3-fold symmetry based on AFM and TEM images. First-principle quantum-mechanical calculations show a substantial variation of electrostatic potential at the hillock due to the presence of surface features such as edges and vertexes. Using an implemented Monte Carlo simulated annealing method we found the orientation of the immobilized protein on the zirconia surface (both flat and nanostructured) and contribution of the each amino acid residue from the protein sequence to the adsorption energy. Accounting for the variation of the dielectric permittivity at the protein-implant interface we use a model distance-dependent dielectric f...
Linear and cubic dynamic susceptibilities in quantum spin glass
Busiello, G; Sushkova, V G
2001-01-01
The low temperature behaviour of the dynamic nonlinear (cubic) susceptibility chi sub 3 sup ' (omega, T) in quantum d-dimensional Ising spin glass with short-range interactions between spins is investigated in terms of the quantum droplet model and the quantum-mechanical nonlinear response theory is employed. We have revealed a glassy like behaviour of droplet dynamics. The frequency dependence of chi sub 3 sup ' (omega, T) is very remarkable, the temperature dependence is found at very low temperatures (quantum regime). The nonlinear response depends on the tunneling rate for a droplet which regulates the strength of quantum fluctuations. This response has a strong dependence on the distribution of droplet free energies and on the droplet length scale average. Implications for experiments in quantum spin glasses like disordered dipolar quantum Ising magnet LiHo sub x Y sub 1 sub - sub x F sub 4 and pseudospin are noted.
Gauge Fixing of Modified Cubic Open Superstring Field Theory
Kohriki, Maiko; Kunitomo, Hiroshi
2011-01-01
The gauge-fixing problem of modified cubic open superstring field theory is discussed in detail both for the Ramond and Neveu-Schwarz sectors in the Batalin-Vilkovisky (BV) framework. We prove for the first time that the same form of action as the classical gauge-invariant one with the ghost-number constraint on the string field relaxed gives the master action satisfying the BV master equation. This is achieved by identifying independent component fields based on the analysis of the kernel structure of the inverse picture changing operator. The explicit gauge-fixing conditions for the component fields are discussed. In a kind of $b_0=0$ gauge, we explicitly obtain the NS propagator which has poles at the zeros of the Virasoro operator $L_0$.
THERMODYNAMIC PARAMETERS OF LEAD SULFIDE CRYSTALS IN THE CUBIC PHASE
Directory of Open Access Journals (Sweden)
T. O. Parashchuk
2016-07-01
Full Text Available Geometric and thermodynamic parameters of cubic PbS crystals were obtained using the computer calculations of the thermodynamic parameters within density functional theory method DFT. Cluster models for the calculation based on the analysis of the crystal and electronic structure. Temperature dependence of energy ΔE and enthalpy ΔH, Gibbs free energy ΔG, heat capacity at constant pressure CP and constant volume CV, entropy ΔS were determined on the basis of ab initio calculations of the crystal structure of molecular clusters. Analytical expressions of temperature dependences of thermodynamic parameters which were approximated with quantum-chemical calculation points have been presented. Experimental results compared with theoretically calculated data.
Perbaikan Metode Penghitungan Debit Sungai Menggunakan Cubic Spline Interpolation
Directory of Open Access Journals (Sweden)
Budi I. Setiawan
2007-09-01
Full Text Available Makalah ini menyajikan perbaikan metode pengukuran debit sungai menggunakan fungsi cubic spline interpolation. Fungi ini digunakan untuk menggambarkan profil sungai secara kontinyu yang terbentuk atas hasil pengukuran jarak dan kedalaman sungai. Dengan metoda baru ini, luas dan perimeter sungai lebih mudah, cepat dan tepat dihitung. Demikian pula, fungsi kebalikannnya (inverse function tersedia menggunakan metode. Newton-Raphson sehingga memudahkan dalam perhitungan luas dan perimeter bila tinggi air sungai diketahui. Metode baru ini dapat langsung menghitung debit sungaimenggunakan formula Manning, dan menghasilkan kurva debit (rating curve. Dalam makalah ini dikemukaan satu canton pengukuran debit sungai Rudeng Aceh. Sungai ini mempunyai lebar sekitar 120 m dan kedalaman 7 m, dan pada saat pengukuran mempunyai debit 41 .3 m3/s, serta kurva debitnya mengikuti formula: Q= 0.1649 x H 2.884 , dimana Q debit (m3/s dan H tinggi air dari dasar sungai (m.
Four-dimensional black holes in Einsteinian cubic gravity
Bueno, Pablo
2016-01-01
We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordstr\\"om-(Anti) de Sitter (RN-(A)dS) black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are determined by a single blackening factor which satisfies a non-linear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature $T$, the Wald entropy $\\mathsf{S}$ and the Abbott-Deser mass $M$ of the solutions analytically as functions of the horizon radius and the ECG coupling constant $\\lambda$. Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case.
Adaptive Predistortion Using Cubic Spline Nonlinearity Based Hammerstein Modeling
Wu, Xiaofang; Shi, Jianghong
In this paper, a new Hammerstein predistorter modeling for power amplifier (PA) linearization is proposed. The key feature of the model is that the cubic splines, instead of conventional high-order polynomials, are utilized as the static nonlinearities due to the fact that the splines are able to represent hard nonlinearities accurately and circumvent the numerical instability problem simultaneously. Furthermore, according to the amplifier's AM/AM and AM/PM characteristics, real-valued cubic spline functions are utilized to compensate the nonlinear distortion of the amplifier and the following finite impulse response (FIR) filters are utilized to eliminate the memory effects of the amplifier. In addition, the identification algorithm of the Hammerstein predistorter is discussed. The predistorter is implemented on the indirect learning architecture, and the separable nonlinear least squares (SNLS) Levenberg-Marquardt algorithm is adopted for the sake that the separation method reduces the dimension of the nonlinear search space and thus greatly simplifies the identification procedure. However, the convergence performance of the iterative SNLS algorithm is sensitive to the initial estimation. Therefore an effective normalization strategy is presented to solve this problem. Simulation experiments were carried out on a single-carrier WCDMA signal. Results show that compared to the conventional polynomial predistorters, the proposed Hammerstein predistorter has a higher linearization performance when the PA is near saturation and has a comparable linearization performance when the PA is mildly nonlinear. Furthermore, the proposed predistorter is numerically more stable in all input back-off cases. The results also demonstrate the validity of the convergence scheme.
Alosco, Michael L; Duskin, Jonathan; Besser, Lilah M; Martin, Brett; Chaisson, Christine E; Gunstad, John; Kowall, Neil W; McKee, Ann C; Stern, Robert A; Tripodis, Yorghos
2017-03-13
The relationship between late-life body mass index (BMI) and Alzheimer's disease (AD) is poorly understood due to the lack of research in samples with autopsy-confirmed AD neuropathology (ADNP). The role of cerebrovascular disease (CVD) in the interplay between late-life BMI and ADNP is unclear. We conducted a retrospective longitudinal investigation and used joint modeling of linear mixed effects to investigate causal relationships among repeated antemortem BMI measurements, CVD (quantified neuropathologically), and ADNP in an autopsy sample of subjects across the AD clinical continuum. The sample included 1,421 subjects from the National Alzheimer's Coordinating Center's Uniform Data Set and Neuropathology Data Set with diagnoses of normal cognition (NC; n = 234), mild cognitive impairment (MCI; n = 201), or AD dementia (n = 986). ADNP was defined as moderate to frequent neuritic plaques and Braak stageIII-VI. Ischemic Injury Scale (IIS) operationalized CVD. Joint modeling examined relationships among BMI, IIS, and ADNP in the overall sample and stratified by initial visit Clinical Dementia Rating score. Subject-specific random intercept for BMI was the predictor for ADNP due to minimal BMI change (p = 0.3028). Analyses controlling for demographic variables and APOE ɛ4 showed lower late-life BMI predicted increased odds of ADNP in the overall sample (p < 0.001), and in subjects with CDR of 0 (p = 0.0021) and 0.5 (p = 0.0012), but not ≥1.0 (p = 0.2012). Although higher IIS predicted greater odds of ADNP (p < 0.0001), BMI did not predict IIS (p = 0.2814). The current findings confirm lower late-life BMI confers increased odds for ADNP. Lower late-life BMI may be a preclinical indicator of underlying ADNP.
Verma, Purnima; Ahuja, Munish
2016-10-01
The purpose of this study was to investigate the potential of cubic liquid crystalline nanoparticles for ocular delivery of tropicamide. Ultrasound-assisted fragmentation of cubic liquid crystalline bulk phases resulted in cubic liquid crystalline nanoparticles employing Pluronic F127 as dispersant. The effects of process variables such as sonication time, sonication amplitude, sonication depth, and pre-mixing time on particle size and polydispersity index was investigated using central composite design. The morphology of tropicamide-loaded nanoparticles was found to be nearly cubical in shape by transmission electron microscopy observation. Further, small angle X-ray scattering experiment confirmed the presence of D and P phase cubic structures in coexistence. The optimized tropicamide-loaded cubic nanoparticles showed in vitro corneal permeation of tropicamide across isolated porcine cornea comparable to its commercial preparation, Tropicacyl®. Ocular tolerance was evaluated by Hen's egg-chorioallantoic membrane test and histological studies. The results of in vivo mydriatic response study demonstrated a remarkably higher area under mydriatic response curve (AUC0→1440 min) values of cubic nanoparticles over Tropicacyl® indicating better therapeutic value of cubic nanoparticles. Furthermore, tropicamide-loaded cubic nanoparticles exhibited prolonged mydriatic effect on rabbits as compared to commercial conventional aqueous ophthalmic solution.
Construction of a 3D meso-structure and analysis of mechanical properties for deposit body medium
Institute of Scientific and Technical Information of China (English)
石崇; 陈凯华; 徐卫亚; 张海龙; 王海礼; 王盛年
2015-01-01
For deposit body medium, the internal structural properties may be the controlling factors for the strength of the material and the mechanical response. Based on the results of soil-rock meso-statistics using digital imaging, a simulated annealing algorithm is adopted to expand the meso-structural features of deposit bodies in 3D. The construction of the 3D meso-structure of a deposit body is achieved, and then the particle flow analysis program PFC3D is used to simulate the mechanical properties of the deposit body. It is shown that with a combination of the simulated annealing algorithm and the statistical feature functions, the randomness and heterogeneity of the rock distribution in the 3D inner structure of deposit body medium can be realized, and the reconstructed structural features of the deposit medium can match the features of the digital images well. The spatial utilizations and the compacting effects of the body-centered cubic, hexagonal close and face-centered packing models are high, so these structures can be applied in the simulations of the deposit structures. However, the shear features of the deposit medium vary depending on the different model constructive modes. Rocks, which are the backbone of the deposit, are the factors that determine the shear strength and deformation modulus of the deposit body. The modeling method proposed is useful for the construction of 3D meso-scope models from 2D meso-scope statistics and can be used for studying the mechanical properties of mixed media, such as deposit bodies.
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
Distribution center is a logistics link fulfill physical distribution as its main functionGenerally speaking, it's a large and hiahly automated center destined to receive goods from various plants and suppliers,take orders,fill them efficiently,and deliver goods to customers as quickly as possible.
New cubic structure compounds as actinide host phases
Energy Technology Data Exchange (ETDEWEB)
Stefanovsky, S V [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation); Yudintsev, S V; Livshits, T S, E-mail: profstef@mtu-net.ru [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Staromonetny lane 35, Moscow 119017 (Russian Federation)
2010-03-15
Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds - stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd{sub 2}Zr{sub 2}O{sub 7}) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 deg. C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn{sup 4+} substitution for Zr{sup 4+} reduces production temperature and the compounds REE{sub 2}ZrSnO{sub 7} may be hot-pressed or cold pressed and sintered at {approx}1400 deg. C. Pyrochlore, A{sub 2}B{sub 2}O{sub 7-x} (two-fold elementary fluorite unit cell), and murataite, A{sub 3}B{sub 6}C{sub 2}O{sub 20-y} (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C - murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO{sub 2} (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C {yields} 8C {yields} 3C phases with the highest actinide concentration in the core and the lowest - in the rim of the grains. Radiation resistance of the 'murataite' is comparable to titanate pyrochlores. One
Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics
Li, Yangyang
2013-05-01
The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid
Cubic Invariant Spherical Surface Harmonics in Conjunction With Diffraction Strain Pole-Figures
Brakman, C.M.
1986-01-01
Four kinds of cubic invariant spherical surface harmonics are introduced. It has been shown previously that these harmonics occur in the equations relating measured diffraction (line-shift) elastic strain and macro-stresses generating these strains for the case of textured cubic materials. As a cons
The Normals to a Parabola and the Real Roots of a Cubic
Bains, Majinder S.; Thoo, J. B.
2007-01-01
The geometric problem of finding the number of normals to the parabola y = x[squared] through a given point is equivalent to the algebraic problem of finding the number of distinct real roots of a cubic equation. Apollonius solved the former problem, and Cardano gave a solution to the latter. The two problems are bridged by Neil's (semi-cubical)…
Extending a Property of Cubic Polynomials to Higher-Degree Polynomials
Miller, David A.; Moseley, James
2012-01-01
In this paper, the authors examine a property that holds for all cubic polynomials given two zeros. This property is discovered after reviewing a variety of ways to determine the equation of a cubic polynomial given specific conditions through algebra and calculus. At the end of the article, they will connect the property to a very famous method…
Holder for rotating glass body
Kolleck, Floyd W.
1978-04-04
A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint.
Cubic-interaction-induced deformations of higher-spin symmetries
Joung, Euihun
2013-01-01
The deformations of higher-spin symmetries induced by cubic interactions of symmetric massless bosonic fields are analyzed within the metric-like formalism. Our analysis amends the existing classification according to gauge-algebra deformations taking into account also gauge-transformation deformations. In particular, we identify a class of couplings which leave the gauge algebra Abelian but deform one (out of three) gauge transformation, and another class of couplings which deform all three gauge transformations in (A)dS but only two in the flat-space limit. The former class is related to higher-spin algebra multiplets (representations of the global algebra) together with the massless-massive-massive couplings, which we also briefly discuss. The latter class is what makes (A)dS a distinguished background for higher-spin interactions and includes in particular the gravitational interactions of higher-spin fields, retrospectively accounting for the Fradkin-Vasiliev solution to the Aragon-Deser problem. We also...
The Structure of the Cubic Coincident Site Lattice Rotation Group
Energy Technology Data Exchange (ETDEWEB)
Reed, B W; Minich, R W; Rudd, R E; Kumar, M
2004-01-13
This work is intended to be a mathematical underpinning for the field of grain boundary engineering and its relatives. The interrelationships within the set of rotations producing coincident site lattices in cubic crystals are examined in detail. Besides combining previously established but widely scattered results into a unified context, the present work details newly developed representations of the group structure in terms of strings of generators (based on quaternionic number theory, and including uniqueness proofs and rules for algebraic manipulation) as well as an easily visualized topological network model. Important results that were previously obscure or not universally understood (e.g. the {Sigma} combination rule governing triple junctions) are clarified in these frameworks. The methods also facilitate several general observations, including the very different natures of twin-limited structures in two and three dimensions, the inadequacy of the {Sigma} combination rule to determine valid quadruple nodes, and a curious link between allowable grain boundary assignments and the four-color map theorem. This kind of understanding is essential to the generation of realistic statistical models of grain boundary networks (particularly in twin-dominated systems) and is especially applicable to the field of grain boundary engineering.
Hardness analysis of cubic metal mononitrides from first principles
Fulcher, B. D.; Cui, X. Y.; Delley, B.; Stampfl, C.
2012-05-01
Density functional theory calculations are performed to evaluate the hardness of various cubic metal nitrides: rocksalt TiN, VN, ZrN, NbN, AlN, and SiN; zincblende AlN and BN; and diamond C for comparison. The isotropic elastic stiffness constants cij, bulk modulus K, shear modulus G, Young's modulus E, and isotropic Poisson's ratio ν¯ are calculated. From simulated uniaxial stress-strain curves, ideal strength values σmax in the [100], [110], and [111] directions are also evaluated for all systems. In particular, rocksalt AlN is found to possess both high elastic moduli and ideal strength. These quantities are then compared for correlations with existing experimental Vicker's hardness data. The bulk modulus is found to be a poor indicator of hardness, while E, G, 1/ν¯, and σmax all exhibit stronger correlations. With a view to circumvent the need to run computationally expensive relaxation steps, different methodologies for approximating uniaxial stress-strain curves are introduced. Utilizing the anisotropic Poisson's ratio to approximate the relaxed transverse lattice parameters at a given axial strain is a good approximation to stress-strain curves, and the ideal strengths obtained in this way exhibit strong correlations to experimental Vicker's hardness values.
Twinning of cubic diamond explains reported nanodiamond polymorphs
Németh, Péter; Garvie, Laurence A. J.; Buseck, Peter R.
2015-12-01
The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin ( rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications.
Diamine Functionalized Cubic Mesoporous Silica for Ibuprofen Controlled Delivery.
Sivaguru, J; Selvaraj, M; Ravi, S; Park, H; Song, C W; Chun, H H; Ha, C-S
2015-07-01
A diamine functionalized cubic mesostructured KIT-6 (N-KIT-6) has been prepared by post-synthetic method using calcined mesoporous KIT-6 with a diamine source, i.e., N-'[3-(tri methoxysilyl)- propyl]'ethylenediamine. The KIT-6 mesoporous silica used for N-KIT-6 was synthesized under weak acidic hydrothermal method using bitemplates, viz., Pluronic P123 and 1-butanol. The synthesized mesoporous materials, KIT-6 and N-KIT-6, have been characterized by the relevant instrumental techniques such as SAXS, N2 sorption isotherm, FT-IR, SEM, TEM and TGA to prove the standard mesoporous materials with the identification of diamine groups. The characterized mesoporous materials, KIT-6 and N-KIT-6, have been extensively used in the potential application of controlled drug delivery, where ibuprofen (IBU) employed as a model drug. The rate of IBU adsorption and release was monitored by UV vis-spectrometer. On the basis of the experimental results of controlled drug delivery system, the results of IBU adsorption and releasing rate in N-KIT-6 are higher than those of KIT-6 because of the higher hydrophobic nature as well as rich basic sites on the surface of inner pore wall silica.
Thermodynamic properties of the cubic plutonium hydride solid solution
Energy Technology Data Exchange (ETDEWEB)
Haschke, J M
1981-12-01
Pressure, temperature, and composition data for the cubic solid solution plutonium hydride phase, PuH/sub x/, have been measured by microbalance methods. Integral enthalpies and entropies of formation have been evaluated for the composition range 1.90 less than or equal to X less than or equal to 3.00. At 550/sup 0/K, ..delta..H/sup 0/ /sub f/(PuH/sub x/(s)) varies linearly from approximately (-38 +- 1) kcal mol/sup -1/ at PuH/sub 190/ to (-50 +- 1 kcal mol/sup -1/) at PuH/sub 3/ /sub 00/. Thermochemical values obtained by reevaluating tensimetric data from the literature are in excellent agreement with these results. Isotopic effects have been quantified by comparing the results for hydride and deuteride, and equations are presented for predicting ..delta..H/sup 0/ /sub f/ and ..delta..S/sup 0/ /sub f/ values for PuH/sub x/(s) and PuD/sub x/(s).
Mechanical properties for irradiated face-centred cubic nanocrystalline metals
Xiao, X. Z.; Song, D. K.; Chu, H. J.; Xue, J. M.; Duan, H. L.
2015-01-01
In this paper, a self-consistent plasticity theory is proposed to model the mechanical behaviours of irradiated face-centred cubic nanocrystalline metals. At the grain level, a tensorial crystal model with both irradiation and grain size effects is applied for the grain interior (GI), whereas both grain boundary (GB) sliding with irradiation effect and GB diffusion are considered in modelling the behaviours of GBs. The elastic-viscoplastic self-consistent method with considering grain size distribution is developed to transit the microscopic behaviour of individual grains to the macroscopic properties of nanocrystals (NCs). The proposed theory is applied to model the mechanical properties of irradiated NC copper, and the feasibility and efficiency have been validated by comparing with experimental data. Numerical results show that: (i) irradiation-induced defects can lead to irradiation hardening in the GIs, but the hardening effect decreases with the grain size due to the increasing absorption of defects by GBs. Meanwhile, the absorbed defects would make the GBs softer than the unirradiated case. (ii) There exists a critical grain size for irradiated NC metals, which separates the grain size into the irradiation hardening dominant region (above the critical size) and irradiation softening dominant region (below the critical size). (iii) The distribution of grain size has a significant influence on the mechanical behaviours of both irradiated and unirradiated NCs. The proposed model can offer a valid theoretical foundation to study the irradiation effect on NC materials. PMID:27547091
Institute of Scientific and Technical Information of China (English)
刘洪毓
2000-01-01
“Body clocks” are biological methods of controling body activities.Every living thing has one. In humans, a body clock controls normal periods of sleeping and waking. It controls the time swhen you are most likely to feel pain.Eating, sleeping and exercising at about the same time each day will help keep body activities normal. But changes in your life, a new job, for example, destroy the balance and thus cause health problems.
Lin, Qisheng; Corbett, John D
2010-05-17
Exploratory syntheses in the M-Au-Ge (M = Ca, Yb) systems have led to the discovery of two cleanly separated non-stoichiometric phases M(3)Au(approximately 14.4)Ge(approximately 4.6) (I) and M(3.25)Au(approximately 12.7)Ge(approximately 5.3) (II). Single crystal X-ray studies reveal that both (space group Im3) feature body-centered-cubic packing of five-shell multiply endohedral clusters that resemble those in the parent YCd(6) (= Y(3)Cd(18)) and are akin to approximate phases in other quasicrystal systems. However, differences resulting from various disorders in these are distinctive. The innermost cluster in the M(3)Au(approximately 14.4)Ge(approximately 4.6) phase (I) remains a disordered tetrahedron, as in the YCd(6) parent. In contrast, its counterpart in the electron-richer M(3.25)Au(approximately 12.7)Ge(approximately 5.3) phase (II) is a "rattling" M atom. The structural differentiations between I and II exhibit strong correlations between lattice parameters, cluster sizes, particular site occupancies, and valence electron counts.
Spinel type twins of the new cubic Er{sub 6}Zn{sub 23}Ge compound
Energy Technology Data Exchange (ETDEWEB)
Solokha, Pavlo; De Negri, Serena; Saccone, Adriana [Genova Univ. (Italy). Dipt. di Chimica e Chimica Industriale; Proserpio, Davide M. [Univ. degli Studi di Milano (Italy). Dipt. di Chimica; Samara State Univ. (Russian Federation). Samara Center for Theoretical Materials Science (SCTMS)
2016-04-01
The crystal structure of the new Er{sub 6}Zn{sub 23}Ge intermetallic compound was established by X-ray diffraction analysis on a twinned crystal (space group Fm anti 3m, Wyckoff sequence: f{sup 2}edba, cF120-Zr{sub 6}Zn{sub 23}Si, a=12.7726(6) Aa). The crystal is composed of two nearly equal size domains, whose mutual orientation is described by a 180 rotation around the cubic [111] axis, i.e. a spinel-type twinning law, not common for intermetallics. Applying the nanocluster approach, Er{sub 6}Ge octahedra and centered two-shell Zn{sub 45} clusters were found as structural building blocks, filling the crystal space in a NaCl-like arrangement. This description was adopted to interpret the twinning in terms of stacking faults in the fcc cubic close packed arrangement. Moreover, the assembly of the nanocluster units is proposed as a possible mechanism for crystal growth and twin formation, in agreement with the principle of the interface energy minimization. Experimental conditions such as supersaturation and co-formation of other phases are also considered as favorable factors for Er{sub 6}Zn{sub 23}Ge twin formation.
Aromatic molecules on low-index coinage metal surfaces: Many-body dispersion effects
Jiang, Yingda; Yang, Sha; Li, Shuang; Liu, Wei
2016-12-01
Understanding the binding mechanism for aromatic molecules on transition-metal surfaces in atomic scale is a major challenge in designing functional interfaces for to (opto)electronic devices. Here, we employ the state-of-the-art many-body dispersion (MBD) approach, coupled with density functional theory methods, to study the interactions of benzene with low-index coinage metal surfaces. The many-body effects contribute mostly to the (111) surface, and leastly to the (110) surface. This corresponds to the same sequence of planar atomic density of face-centered-cubic lattices, i.e., (111) > (100) > (110). The binding energy for benzene/Au(110) is even stronger than that for benzene/Ag(110), due to a larger broadening of molecular orbitals in the former case. On the other hand, our calculations show almost identical binding energies for benzene on Ag(111) and Au(111), which contradicts the classic d-band center theory that could well predict the trend in chemisorption energies for various small molecules on a number of metal surfaces. Our results provide important insight into the benchmark adsorption systems with opener surfaces, which could help in designing more complex functional interfaces.
Electron affinity of cubic boron nitride terminated with vanadium oxide
Energy Technology Data Exchange (ETDEWEB)
Yang, Yu; Sun, Tianyin; Shammas, Joseph; Hao, Mei; Nemanich, Robert J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Kaur, Manpuneet [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106 (United States)
2015-10-28
A thermally stable negative electron affinity (NEA) for a cubic boron nitride (c-BN) surface with vanadium-oxide-termination is achieved, and its electronic structure was analyzed with in-situ photoelectron spectroscopy. The c-BN films were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition employing BF{sub 3} and N{sub 2} as precursors. Vanadium layers of ∼0.1 and 0.5 nm thickness were deposited on the c-BN surface in an electron beam deposition system. Oxidation of the metal layer was achieved by an oxygen plasma treatment. After 650 °C thermal annealing, the vanadium oxide on the c-BN surface was determined to be VO{sub 2}, and the surfaces were found to be thermally stable, exhibiting an NEA. In comparison, the oxygen-terminated c-BN surface, where B{sub 2}O{sub 3} was detected, showed a positive electron affinity of ∼1.2 eV. The B{sub 2}O{sub 3} evidently acts as a negatively charged layer introducing a surface dipole directed into the c-BN. Through the interaction of VO{sub 2} with the B{sub 2}O{sub 3} layer, a B-O-V layer structure would contribute a dipole between the O and V layers with the positive side facing vacuum. The lower enthalpy of formation for B{sub 2}O{sub 3} is favorable for the formation of the B-O-V layer structure, which provides a thermally stable surface dipole and an NEA surface.
Polyol synthesis and characterizations of cubic ZrO{sub 2}:Eu{sup 3+} nanocrystals
Energy Technology Data Exchange (ETDEWEB)
Meetei, S. Dhiren [Department of Physics, Manipur University, Canchipur-795 003, Imphal (India); Singh, Sh. Dorendrajit, E-mail: dorendrajit@yahoo.co.in [Department of Physics, Manipur University, Canchipur-795 003, Imphal (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)
2012-02-15
Highlights: Black-Right-Pointing-Pointer By polyol route nanocrystalline cubic ZrO{sub 2}:Eu{sup 3+} can be synthesized. Black-Right-Pointing-Pointer Cubic phase is the most desirable phase of zirconia. Black-Right-Pointing-Pointer Distinguishing cubic from tetragonal phase is difficult. Black-Right-Pointing-Pointer Characterizations of the samples are done by XRD, TEM, FTIR and PL. Black-Right-Pointing-Pointer Eu{sup 3+} emission peaks vary as charge transfer state in ZrO{sub 2}:Eu{sup 3+}. - Abstract: Nanocrystalline ZrO{sub 2} and ZrO{sub 2}:Eu{sup 3+} were synthesized by polyol route. The x-ray diffraction (XRD) pattern of ZrO{sub 2} shows presence of both monoclinic and tetragonal phase of zirconia, while that of ZrO{sub 2}:Eu{sup 3+} show cubic structure. Cubic phase is the most desired phase of zirconia. However, it is difficult to distinguish between the tetragonal and cubic phases solely from XRD study. Therefore, the characterizations of cubic phase in the doped samples are substantiated by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and photoluminescence (PL) studies. Interplaner spacing, d{sub hkl} are calculated from the selected area electron diffraction (SAED) rings and they are found to be consistent with that of cubic zirconia. FT-IR spectra of doped and undoped samples are found to be different. This is attributed to the presence of both monoclinic and tetragonal phase in the undoped sample and only cubic phase in the doped samples. PL excitation and emission spectra of the samples are studied. The asymmetry ratio is found to be less than that of the reported tetragonal phase indicating that the present analyzing samples have higher symmetry than tetragonal phase. Variations of Eu{sup 3+} emission peaks are observed as that of charge transfer state (CTS).
Institute of Scientific and Technical Information of China (English)
张波; 沈敏鹤; 阮善明; 单飞瑜; 徐叶峰
2012-01-01
[Objective] To sum up director Shen Minhe's feature in recognizing tumor causa morbi and mechanism and clinical different treatment, thoughts, characteristics and rules from others; with clinical cases, it further proves his academic thought on treating tumor and science of clinical experience, for better guiding clinically diagnosing and treating tumor. [Method] The author clears up Mr. Shen's medical cases, recipes and collects his lecture data, individual notes, special interview, thesis and works, analysis on his medication, formulae, differentiation thoughts and experience; by retrieving ancient TCM books and analyzing famous TCM doctors's academic thoughts, he finishes the summary on doctor Shen Minhe's academic thought and clinical experience. [Result] Shen's thought mainly originates from classical works, such as "Internal Classics", " Treatise on Febrile Diseases" and "Synopsis on Golden Chamber", his main treatment rule is centered on strengthening the body resistance and nourishing Qi and warming Yang. [Conclusion] To take Shen's experience for treating tumor from essence, deficiency, congealing cold, and apply his rule can markedly relieve tumor patients' clinical symptoms, reduce its re-occurrence and metastasis and obviously improve patients' life quality.%[目的]总结沈敏鹤主任中医师对肿瘤病因病机的认识及临床不同于其他医家的治疗特色、用方思想、用药特色和规律；通过临床实证进一步验证沈师治疗肿瘤的学术思想和临床经验的科学性,以便更好的指导肿瘤的临床诊治.[方法]笔者随沈师出诊,整理其医案、验方并收集沈师讲课资料、个人笔记、专题访谈、论文和著作,分析其用药、用方和辨证思路与经验；通过中医古籍的检索以及对导师影响较大的名老中医学术思想的分析,完成沈敏鹤主任中医师学术思想和临床经验的整理与总结.[结果]沈师的思想渊源主要来源于《内经》、《伤
Kananenka, Alexei A; Lan, Tran Nguyen; Gull, Emanuel; Zgid, Dominika
2016-01-01
The popular, stable, robust and computationally inexpensive cubic spline interpolation algorithm is adopted and used for finite temperature Green's function calculations of realistic systems. We demonstrate that with appropriate modifications the temperature dependence can be preserved while the Green's function grid size can be reduced by about two orders of magnitude by replacing the standard Matsubara frequency grid with a sparser grid and a set of interpolation coefficients. We benchmarked the accuracy of our algorithm as a function of a single parameter sensitive to the shape of the Green's function. Through numerous examples, we confirmed that our algorithm can be utilized in a systematically improvable, controlled, and black-box manner and highly accurate one- and two-body energies and one-particle density matrices can be obtained using only around 5% of the original grid points. Additionally, we established that to improve accuracy by an order of magnitude, the number of grid points needs to be double...
Leblond, Hervé; Mihalache, Dumitru; 10.1103/PHYSREVA.81.033824
2011-01-01
By using a reductive perturbation method, we derive from Maxwell-Bloch equations a cubic generalized Kadomtsev-Petviashvili equation for ultrashort spatiotemporal optical pulse propagation in cubic (Kerr-like) media without the use of the slowly varying envelope approximation. We calculate the collapse threshold for the propagation of few-cycle spatiotemporal pulses described by the generic cubic generalized Kadomtsev-Petviashvili equation by a direct numerical method and compare it to analytic results based on a rigorous virial theorem. Besides, typical evolution of the spectrum (integrated over the transverse spatial coordinate) is given and a strongly asymmetric spectral broadening of ultrashort spatiotemporal pulses during collapse is evidenced.
Body contact and body language
DEFF Research Database (Denmark)
Winther, Helle Dagmar
2008-01-01
logue between a written text and a visceral on-line performance involving photographs and music, the reader/audience has the possibility to be touched both sensually and intellectually, although through communication is in cyberspace, missing the liveliness of direct body language. Udgivelsesdato: 2008-May......Body contact and body language are unique and existential and, although culturally dependent and socially embodied, they are also universal communication forms. For small children all over the world, warm, close and nourishing body contact is fundamental to their embodied experience of themselves...... and the boundaries between self and world. In western societies, the modern premises for contact are in some ways developing from close contact to virtual communication. With this breadth of perspective in mind, the question is whether conscious and experimental work with body contact and body language in move...
[Donation of bodies to science].
Delmas, V
2001-01-01
Teaching and research in anatomy is mainly based on cadaveric dissection. Unclaimed bodies is no more the origin of cadavers, but body donation programs. The dissection is an important part in the anatomical curses of medical students and for anatomical research and special courses devoted to the surgeons. A body donation center was created in Paris in 1953 with the purpose of obtaining bodies for dissection. Donation is a clear will made by people free and informed. Donation is most often by altruism, conferrins life on another. Body donation is regulated by various act or reglementar text according to each country. One of the problem with the body gift is biological hazard, specially in research and clinical courses, but the rule is to consider unembalmed material as contaminated and to use all precautions with barrier for blood and bodily fluid. Body donation is one of the modern expression of solidarity.
... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System Heart and Circulatory System Immune ...
DEFF Research Database (Denmark)
Mogensen, Kevin
BODYPUNK - A Treatise on male body builders and the meaning of the body in the shadow of an Anti Doping Campaign Based on a qualitative study, the thesis investigates the visual representation of the male bodybuilder found in the national anti doping campaign: ‗ "The hunt has begun" along...
Institute of Scientific and Technical Information of China (English)
JosephDeVeto
2004-01-01
When we speak,we use much more than just words. We also communicate with our face. our hands,and even our own body. This Kind of communication ean be called “body language” or “non-verbal eommunieation”. Non-verbal
Human Body Image Edge Detection Based on Wavelet Transform
Institute of Scientific and Technical Information of China (English)
李勇; 付小莉
2003-01-01
Human dresses are different in thousands way.Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to tte peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.
Is inner core seismic anisotropy a marker of plastic flow of cubic iron?
Lincot, A; Cardin, Philippe
2015-01-01
This paper investigates whether observations of seismic anisotropy are compatible with a cubic structure of the inner core Fe alloy. We assume that anisotropy is the result of plastic deformation within a large scale flow induced by preferred growth at the inner core equator. Based on elastic moduli from the literature, bcc- or fcc-Fe produce seismic anisotropy well below seismic observations ($\\textless{}0.4\\%$). A Monte-Carlo approach allows us to generalize this result to any form of elastic anisotropy in a cubic system. Within our model, inner core global anisotropy is not compatible with a cubic structure of Fe alloy. Hence, if the inner core material is indeed cubic, large scale coherent anisotropic structures, incompatible with plastic deformation induced by large scale flow, must be present.
ON THE NUMBER OF LIMIT CYCLES OF A CUBIC SYSTEM NEAR A CUSPIDAL LOOP
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, we investigate the limit cycle bifurcations in a cubic near-Hamiltonian system by perturbing a cuspidal loop and prove that 5 limit cycles can appear in a neighborhood of the cuspidal loop.
Unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials
DEFF Research Database (Denmark)
Willatzen, Morten; Wang, Zhong Lin
2015-01-01
A unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials is presented whereby the lattice displacement vector and the internal ionic displacement vector are found simultaneously. It is shown that phonon couplings exist in pairs only; either between the electric...... potential and the lattice displacement coordinate perpendicular to the phonon wave vector or between the two other lattice displacement components. The former leads to coupled acousto-optical phonons by virtue of the piezoelectric effect. We then establish three new conjectures that entirely stem from...... piezoelectricity in a cubic structured material slab. First, it is shown that isolated optical phonon modes generally cannot exist in piezoelectric cubic slabs. Second, we prove that confined acousto-optical phonon modes only exist for a discrete set of in-plane wave numbers in piezoelectric cubic slabs. Third...
CHARACTERIZATION OF PRECIPITATES IN CUBIC SILICON CARBIDE IMPLANTED WITH 25Mg+ IONS
Energy Technology Data Exchange (ETDEWEB)
Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Edwards, Danny J.; Schreiber, Daniel K.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang
2016-09-26
The aim of this study is to characterize precipitates in Mg+ ion implanted and high-temperature annealed cubic silicon carbide using scanning transmission electron microscopy, electron energy loss spectroscopy and atom probe tomography.
Russier, V.
2016-07-01
The low temperature behavior of densely packed interacting spherical single domain nanoparticles (MNP) is investigated by Monte Carlo simulations in the framework of an effective one spin model. The particles are distributed through a hard sphere like distribution with periodic boundary conditions and interact through the dipole dipole interaction (DDI) with an anisotropy energy including both cubic and uniaxial symmetry components. The cubic component is shown to play a sizable role on the value of the blocking temperature Tb only when the MNP easy axes are parallel to the cubic easy direction ([111] direction for a negative cubic anisotropy constant). The nature of the collective low temperature state, either ferromagnetic or spin glass like, is found to depend on the ratio of the anisotropy to the dipolar energies characterizing partly the disorder in the system.
Flux pinning effect of cubic equiaxed morphology and its Ti stabilizing in Nb3Sn superconductors
Institute of Scientific and Technical Information of China (English)
ZHANG ChaoWu; ZHOU Lian; Andre SULPICE; Jean-Louis SOUBEYROUX; TANG XianDe; Christophe VERWAERDE; Gia Ky HOANG
2009-01-01
zes the cubic equiaxed phase at lower temperature so that heat reaction temperature is effectively reduced,the flux pinning performance is largely reinforced and the transport critical current density Jc is substantially promoted.
Study of unsteady cavitation on NACA66 hydrofoil using dynamic cubic nonlinear subgrid-scale model
Directory of Open Access Journals (Sweden)
Xianbei Huang
2015-11-01
Full Text Available In this article, we describe the use of a new dynamic cubic nonlinear model, a new nonlinear subgrid-scale model, for simulating the cavitating flow around an NACA66 series hydrofoil. For comparison, the dynamic Smagorinsky model is also used. It is found that the dynamic cubic nonlinear model can capture the turbulence spectrum, while the dynamic Smagorinsky model fails. Both models reproduce the cavity growth/destabilization cycle, but the results of the dynamic cubic nonlinear model are much smoother. The re-entrant jet is clearly captured by the models, and it is shown that the re-entrant jet cuts the cavity into two parts. In general, the dynamic cubic nonlinear model provides improvement over the dynamic Smagorinsky model for the calculation of cavitating flow.
Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier
Neumeyer, S.; Sorokin, V. S.; Thomsen, J. J.
2017-01-01
We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing-Mathieu equation with appended quadratic nonlinearity is considered as the model system, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic nonlinearities may generate additional amplitude-frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi-stability in the amplitude-phase characteristics are predicted, supporting previously reported experimental observations.
Rheological Properties of Cubic Liquid Crystals Formed from Monoglyceride／H2O Systems
Institute of Scientific and Technical Information of China (English)
水玲玲; 王志宁; 郑利强
2005-01-01
Monoglyceride (MO) can form various liquid crystalline phases spontaneously in the presence of various amount of water at room temperature. The appropriate compositions from binary phase diagram of MO/H2O were selected to form cubic phases. The selected systems were studied at different salt concentrations and pH value using rheological methods. There was a weak effect of salt on viscoelastic properties of cubic phases formed from MO/H2O system. Hexagonal phase was formed when pH value was decreased or increased. The viscoelasticity of cubic phases was different from that of hexagonal liquid crystals. Rheological properties of MO/H2O cubic phases were stable at pH and salt concentration similar to physiological condition.
Characteristics of plate-like and color-zoning cubic boron nitride crystals
Energy Technology Data Exchange (ETDEWEB)
Feng, Shuang [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Hou, Lixin, E-mail: houlixin_2000@126.com [College of Information and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118 (China); Liu, Xiuhuan [College of Telecommunication Engineering, Jilin University, 5372 Nanhu Road, Changchun 130012 (China); Gao, Yanjun; Li, Xinlu; Wang, Qi [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Chen, Zhanguo, E-mail: czg@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Jia, Gang; Zheng, Jie [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)
2013-11-15
The polarities of a kind of plate-like and color-zoning cubic boron nitride (cBN) crystal were extensively investigated by microscopy, chemical etching, XPS, Raman scattering, and current–voltage measurements. The {1 1 1}B faces and {1"¯1"¯1"¯}N faces of the cBN samples can be easily distinguished by optical microscope as there are a lot of defects incorporate in {1"¯1"¯1"¯}N sectors serving as the color centers, while the {1 1 1}B sectors have less defects and are nearly colorless. Both XPS and Raman spectra also revealed the uneven distributions of N vacancies and substitutional impurities in cBN crystals. The determination of {1 1 1}B faces and {1"¯1"¯1"¯}N faces can also be verified by the results of the chemical etching because the {1"¯1"¯1"¯}N faces have much faster etch rates than the {1 1 1}B faces. According to XPS, the {1 1 1}B faces have more C and O contaminations than the {1"¯1"¯1"¯}N faces, however the {1"¯1"¯1"¯}N faces have larger atomic ratio of B:N after surface cleaning by Ar{sup +} sputtering. In the Raman spectra of the {1"¯1"¯1"¯}N sectors of cBN, several small broad infrared-active phonon bands emerge nearby TO and LO modes because of the disorder-activated Raman scattering. As for the {1 1 1}B sectors, this phenomenon disappears. In addition, the {1 1 1}B faces have much smaller leakage current than the {1"¯1"¯1"¯}N faces, which indicates that the {1 1 1}B sectors have higher crystalline quality.
Chandrasekhar, Vadapalli; Dey, Atanu; Senapati, Tapas; Sañudo, E Carolina
2012-01-21
The reaction of VCl(3) with 3,5-dimethylpyrazole (3,5-Me(2)PzH) and trichloromethylphosphonic/tert-butylphosphonic acid in the presence of triethylamine as a hydrogen chloride scavenger afforded the tetranuclear V(IV) assemblies, [(VO)(4)(3,5-Me(2)PzH)(8)(CCl(3)PO(3))(4)] (1) and [(VO)(4)(3,5-Me(2)PzH)(4)(t-BuPO(3))(4)] (2). Both of these compounds possess a distorted cubic framework structures containing V(IV) ions and phosphorus atoms in the alternate corners of the cube. The edges of the cube contain oxygen atoms derived from the phosphonate ligand. The phosphonate ligand in both of these compounds is dianionic and helps to bind to three V(IV) centers. The faces of the cubic ensembles contain puckered V(2)P(2)O(4) eight-membered rings. The V(IV) center in 1 is six-coordinate in a distorted octahedral geometry while in 2 it is five-coordinate in a distorted square-pyramidal geometry. Magnetic studies carried out on 1 and 2 reveal that the V(IV) centers are anti-ferromagnetically coupled to each other, albeit weakly, through the mediation of the phosphonate ligands.
Connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups
Institute of Scientific and Technical Information of China (English)
XU ShangJin; WU ZhengFei; DENG YunPing
2009-01-01
A graph is said to be s-arc-regular if its full automorphism group acts regularly on the set of its s-arcs. In this paper, we investigate connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups. Two sufficient and necessary conditions for such graphs to be 1- or 2-arcregular are given and based on the conditions, several infinite families of 1- or 2-arc-regular cubic Cayley graphs of alternating groups are constructed.
The double-end-pumped cubic Nd:YVO4 laser: Temperature distribution and thermal stress
Indian Academy of Sciences (India)
P Elahi; S Morshedi
2010-01-01
Thermal effects of a double-end-pumped cubic Nd:YVO4 laser crystal are investigated in this paper. A detailed analysis of temperature distribution and thermal stress in cubic crystal with circular shape pumping is discussed. It has been shown that by considering the total input powers as constant, the double-end-pumped configurations with equal pump power can be considered as having a minimum thermal effect with respect to the other end-pumped configuration.
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)
2011-01-01
Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.
Exact Solutions of Discrete Complex Cubic Ginzburg-Landau Equation and Their Linear Stability
Institute of Scientific and Technical Information of China (English)
张金良; 刘治国
2011-01-01
The discrete complex cubic Ginzburg-Landau equation is an important model to describe a number of physical systems such as Taylor and frustrated vortices in hydrodynamics and semiconductor laser arrays in optics. In this paper, the exact solutions of the discrete complex cubic Ginzburg-Landau equation are derived using homogeneous balance principle and the GI/G-expansion method, and the linear stability of exact solutions is discussed.
三次系统的Berlinskii定理%ON THE BERLINSKII'S THEOREM FOR CUBIC SYSTEMS
Institute of Scientific and Technical Information of China (English)
袁蔚莉
2001-01-01
In [1]-[3], the Berlinskii's theorem of the distribution of critical points for quadratic differential systems is extended to the general n-th differential systems with n2 finite critical points. In this paper, we prove that 5- 4 distribution of critical points for cubic system is impossible by using the method of basic triangle and index formula. Then we discuss the possible distributions of cubic systems with eight, seven or six finite critical points.
Xiaolong Wang; Yi Wang; Zhizhu Cao; Weizhong Zou; Liping Wang; Guojun Yu; Bo Yu; Jinjun Zhang
2013-01-01
In general, proper orthogonal decomposition (POD) method is used to deal with single-parameter problems in engineering practice, and the linear interpolation is employed to establish the reduced model. Recently, this method is extended to solve the double-parameter problems with the amplitudes being achieved by cubic B-spline interpolation. In this paper, the accuracy of reduced models, which are established with linear interpolation and cubic B-spline interpolation, respectively, is verified...
Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations
Joan Goh; Ahmad Abd. Majid; Ahmad Izani Md. Ismail
2012-01-01
Numerical solutions of one-dimensional heat and advection-diffusion equations are obtained by collocation method based on cubic B-spline. Usual finite difference scheme is used for time and space integrations. Cubic B-spline is applied as interpolation function. The stability analysis of the scheme is examined by the Von Neumann approach. The efficiency of the method is illustrated by some test problems. The numerical results are found to be in good agreement with the exact solution.
GA Based Rational cubic B-Spline Representation for Still Image Interpolation
Samreen Abbas; Malik Zawwar Hussain; Misbah Irshad
2016-01-01
In this paper, an image interpolation scheme is designed for 2D natural images. A local support rational cubic spline with control parameters, as interpolatory function, is being optimized using Genetic Algorithm (GA). GA is applied to determine the appropriate values of control parameter used in the description of rational cubic spline. Three state-of-the-art Image Quality Assessment (IQA) models with traditional one are hired for comparison with existing image interpolation schemes and perc...
Relations among Dirichlet series whose coefficients are class numbers of binary cubic forms II
Ohno, Yasuo
2011-01-01
As a continuation of the authors and Wakatsuki's previous paper [5], we study relations among Dirichlet series whose coefficients are class numbers of binary cubic forms. We show that for any integral models of the space of binary cubic forms, the associated Dirichlet series satisfies a simple explicit relation to that of the dual other than the usual functional equation. As an application, we write the functional equations of these Dirichlet series in self dual forms.
Origin of birefringence in common silicate garnet: intergrowth of different cubic phases
Antao, S.; Klincker, A.; Round, S.
2013-05-01
Birefringence is unexpected in ideal high symmetry cubic minerals, such as common silicate garnets. Birefringence in cubic garnet was reported over a century ago, but the origin still remains questionable. Some grossular, spessartine, andradite, and uvarovite samples may show birefringence under cross-polarized light, which may indicate that they are not optically cubic. Several reasons were given as the cause of the birefringence, but the main one appears to be cation order that may cause symmetry reduction. The crystal structure of several birefringent garnet samples (grossular, spessartine, andradite, and uvarovite) were refined by the Rietveld method, space group Ia-3d, and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe results indicate the samples are homogeneous or non-homogenous with two or three distinct compositions. Each birefringent sample contains an assemblage of cubic phases that have slightly different unit-cell parameters. The intergrowth of different phases causes strain-induced birefringence that arises from mismatch of different cubic unit-cell parameters. These results have many implications, including garnet phase transitions from cubic to lower symmetry in the mantle, which has important geophysical consequences.
Certified Approximation of Parametric Space Curves with Cubic B-spline Curves
Shen, Liyong; Gao, Xiao-Shan
2012-01-01
Approximating complex curves with simple parametric curves is widely used in CAGD, CG, and CNC. This paper presents an algorithm to compute a certified approximation to a given parametric space curve with cubic B-spline curves. By certified, we mean that the approximation can approximate the given curve to any given precision and preserve the geometric features of the given curve such as the topology, singular points, etc. The approximated curve is divided into segments called quasi-cubic B\\'{e}zier curve segments which have properties similar to a cubic rational B\\'{e}zier curve. And the approximate curve is naturally constructed as the associated cubic rational B\\'{e}zier curve of the control tetrahedron of a quasi-cubic curve. A novel optimization method is proposed to select proper weights in the cubic rational B\\'{e}zier curve to approximate the given curve. The error of the approximation is controlled by the size of its tetrahedron, which converges to zero by subdividing the curve segments. As an applic...