International Nuclear Information System (INIS)
Wang, S.; Wang, M.P.; Chen, C.; Xiao, Z.; Jia, Y.L.; Li, Z.; Wang, Z.X.
2014-01-01
The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compression axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different
Fast computed tomography and volume rendering using the body-centered cubic lattice
Finkbeiner, Bernhard
2009-01-01
Two main tasks in the field of volumetric image processing are acquisition and visualization of 3D data. The main challenge is to reduce processing costs, while maintaining high accuracy. To achieve these goals for volume rendering (visualization), we demonstrate that non-separable box splines for body-centered cubic (BCC) lattices can be adapted to fast evaluation on graphics hardware. Thus, the BCC lattice can be used for interactive volume rendering leading to better image quality than com...
Insights on activation enthalpy for non-Schmid slip in body-centered cubic metals
International Nuclear Information System (INIS)
Hale, Lucas M.; Lim, Hojun; Zimmerman, Jonathan A.; Battaile, Corbett C.; Weinberger, Christopher R.
2015-01-01
We use insights gained from atomistic simulation to develop an activation enthalpy model for dislocation slip in body-centered cubic iron. Using a classical potential that predicts dislocation core stabilities consistent with ab initio predictions, we quantify the non-Schmid stress-dependent effects of slip. The kink-pair activation enthalpy is evaluated and a model is identified as a function of the general stress state. Our model enlarges the applicability of the classic Kocks activation enthalpy model to materials with non-Schmid behavior
Maximal independent set graph partitions for representations of body-centered cubic lattices
DEFF Research Database (Denmark)
Erleben, Kenny
2009-01-01
corresponding to the leaves of a quad-tree thus has a smaller memory foot-print. The adjacency information in the graph relieves one from going up and down the quad-tree when searching for neighbors. This results in constant time complexities for refinement and coarsening operations.......A maximal independent set graph data structure for a body-centered cubic lattice is presented. Refinement and coarsening operations are defined in terms of set-operations resulting in robust and easy implementation compared to a quad-tree-based implementation. The graph only stores information...
Ab initio modelling of screw dislocations in body-centered cubic transition metals
International Nuclear Information System (INIS)
Dezerald, Lucile
2014-01-01
We performed electronic structure ab initio calculations based on density functional theory (DFT) to study the <111> screw dislocation properties in body-centered cubic transition metals (V, Nb, Ta, Mo, W and Fe). In all investigated elements, the nondegenerate easy core is the minimum energy configuration and the split core configuration has a high energy near or above that of the hard core, contrary to interatomic potential predictions. A strong group dependence of the core energy of the easy dislocation is also evidenced, related to the position of the Fermi level with respect to the minimum of the pseudo-gap of the electronic density of states. Our work also reveals an atypical behavior in Fe, with a low relative energy at the hard core position, close to that of the saddle configuration between easy cores, resulting in a flat Peierls potential around the hard core configuration, at variance with other elements. From these DFT calculations, the two-dimensional energetic landscape in the {111} plane (Peierls potential) is constructed and we investigated several properties of dislocation glide and in particular, the kink-pair formation enthalpy, as well as the dependence of the Peierls stress on crystal orientation. We proposed a simple modification to the Schmid law that takes account of the non-straight trajectory of the dislocation and that qualitatively explains why the twinning/anti-twinning asymmetry is less pronounced in Fe than in other body-centered cubic metals. (author) [fr
BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices
Janse van Rensburg, E. J.; Rechnitzer, A.
2011-04-01
In this paper, the elementary moves of the BFACF-algorithm (Aragão de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragão de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.
Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten
Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.
2017-05-01
Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.
Practical box splines for reconstruction on the body centered cubic lattice.
Entezari, Alireza; Van De Ville, Dimitri; Möeller, Torsten
2008-01-01
We introduce a family of box splines for efficient, accurate and smooth reconstruction of volumetric data sampled on the Body Centered Cubic (BCC) lattice, which is the favorable volumetric sampling pattern due to its optimal spectral sphere packing property. First, we construct a box spline based on the four principal directions of the BCC lattice that allows for a linear C(0) reconstruction. Then, the design is extended for higher degrees of continuity. We derive the explicit piecewise polynomial representation of the C(0) and C(2) box splines that are useful for practical reconstruction applications. We further demonstrate that approximation in the shift-invariant space---generated by BCC-lattice shifts of these box splines---is {twice} as efficient as using the tensor-product B-spline solutions on the Cartesian lattice (with comparable smoothness and approximation order, and with the same sampling density). Practical evidence is provided demonstrating that not only the BCC lattice is generally a more accurate sampling pattern, but also allows for extremely efficient reconstructions that outperform tensor-product Cartesian reconstructions.
Clean Grain Boundary Found in C14/Body-Center-Cubic Multi-Phase Metal Hydride Alloys
Directory of Open Access Journals (Sweden)
Hao-Ting Shen
2016-06-01
Full Text Available The grain boundaries of three Laves phase-related body-center-cubic (bcc solid-solution, metal hydride (MH alloys with different phase abundances were closely examined by scanning electron microscopy (SEM, transmission electron microscopy (TEM, and more importantly, electron backscatter diffraction (EBSD techniques. By using EBSD, we were able to identify the alignment of the crystallographic orientations of the three major phases in the alloys (C14, bcc, and B2 structures. This finding confirms the presence of crystallographically sharp interfaces between neighboring phases, which is a basic assumption for synergetic effects in a multi-phase MH system.
Collective dynamics and self-diffusion in a diblock copolymer melt in the body-centered cubic phase
DEFF Research Database (Denmark)
Papadakis, C.M.; Rittig, F.; Almdal, K.
2004-01-01
The structure and dynamics of a strongly asymmetric poly(ethylene propylene)poly (dimethylsiloxane) (PEP-PDMS) diblock copolymer in the melt have been studied over a wide temperature range. Small-angle neutron scattering reveals that the sample exhibits two stable phases in this temperature range......: Above the order-to-disorder transition temperature, it is disordered, whereas the domain structure is body-centered cubic (bcc) below, being stable down to the lowest temperatures measured. In the disordered state, dynamic light scattering (DLS) in the polarized geometry reveals the heterogeneity mode...
Csébfalvi, Balázs
2010-01-01
In this paper, we demonstrate that quasi-interpolation of orders two and four can be efficiently implemented on the Body-Centered Cubic (BCC) lattice by using tensor-product B-splines combined with appropriate discrete prefilters. Unlike the nonseparable box-spline reconstruction previously proposed for the BCC lattice, the prefiltered B-spline reconstruction can utilize the fast trilinear texture-fetching capability of the recent graphics cards. Therefore, it can be applied for rendering BCC-sampled volumetric data interactively. Furthermore, we show that a separable B-spline filter can suppress the postaliasing effect much more isotropically than a nonseparable box-spline filter of the same approximation power. Although prefilters that make the B-splines interpolating on the BCC lattice do not exist, we demonstrate that quasi-interpolating prefiltered linear and cubic B-spline reconstructions can still provide similar or higher image quality than the interpolating linear box-spline and prefiltered quintic box-spline reconstructions, respectively.
International Nuclear Information System (INIS)
Luthi, Berengere
2017-01-01
In order to improve our understanding of alloy plasticity, it is important to describe at the atomic scale the dislocation-solute interactions and their effect on the dislocation mobility. This work focuses on the body-centered cubic (BCC) transition metals in presence of interstitial solute atoms, in particular the Fe-C system. Using Density Functional Theory (DFT) calculations, the core structure of the screw dislocation of Burgers vector b=1/2<111> was investigated in iron in presence of boron, carbon, nitrogen and oxygen solute atoms, and in BCC metals from group 5 (V, Nb, Ta) and 6 (Mo, W) in presence of carbon solutes. A core reconstruction is evidenced in iron and group 6 metals, along with a strong attractive dislocation-solute interaction energy: the dislocation goes from easy to hard configuration where the solute atoms are at the center of trigonal prisms along the dislocation line. A different behavior is observed in group 5 metals, for which the most stable configuration for the carbon atom is an octahedral site in the vicinity of the dislocation, without any core reconstruction. This group tendency is linked to the structure of mono-carbides. Consequences of the strongly attractive dislocation-solute interactions in Fe(C) were then investigated. First the equilibrium segregation close to the dislocation core was studied using a mean-field model and Monte Carlo simulations. Over a wide temperature range, from 200 to 700 K, a strong segregation is predicted with every other prismatic site occupied by a carbon atom. Then, the mobility of the dislocation in presence of carbon atoms was investigated by modeling the double-kink mechanism with DFT, in relation with experimental data obtained with transmission electron microscopy. The activation energy obtained for this atomic scale mechanism is in good agreement with experimental values for the dynamic strain aging. (author) [fr
Directory of Open Access Journals (Sweden)
Shinichi Sakurai
2010-12-01
Full Text Available Block copolymers forming glassy spheres in the matrix of rubbery chains can exhibit elastomeric properties. It is well known that the spherical microdomains are arranged in the body-center cubic (bcc lattice. However, recently, we have found packing in the face-centered cubic (fcc lattice, which is easily transformed into the bcc lattice upon uniaxial stretching. In the same time, the packing regularity of the spheres in the bcc lattice was found to be enhanced for samples completely recovered from the stretched state. This reminds us that a cycle of stretching-and-releasing plays an important role from analogy of densification of the packing in granules upon shaking. In the current paper, we quantify the enhancement of packing regularity of spherical microdomains in the bcc lattice upon uniaxial stretching of the same elastomeric triblock copolymer as used in our previous work by conducting small-angle X-ray scattering (SAXS measurements using high brilliant synchrotron radiation. Isotropically circular rings of the lattice peaks observed for the unstretched sample turned into deformed ellipsoidal rings upon the uniaxial stretching, with sharpening of the peaks in the direction parallel to the stretching direction and almost disappearing of the peaks in the perpendicular direction. By quantitatively analyzing the SAXS results, it was found that the packing regularity of the spherical microdomains was enhanced in the parallel direction while it was spoiled in the perpendicular direction under the stretched state. The enhanced regularity of packing was unchanged even if the stretching load was completely removed.
International Nuclear Information System (INIS)
Gorondy-Novak, Sofia Maria
2017-01-01
The presence of helium produced during the operation of future fast reactors and fusion reactors in core structural materials induces a deterioration of their mechanical properties (hardening, swelling, embrittlement). In order to pursue the development of the metallic structural alloys, it is necessary to comprehend the He interaction with the metal lattice thus the point in common is the study of the metallic components with body-centered cubic structure (bcc) of future alloys, such as iron and/or vanadium. Ion implantation of ions 4 He was employed with the aim of simulating the damaging effects associated with the helium accumulation, the point defects' creation (vacancies, self-interstitials) and the He cluster formation in future reactors. Helium evolution in pure iron and pure vanadium has been revealed from the point of view of the trapping sites' nature and well as the helium migration mechanisms and the nucleation/growth of bubbles. These phenomena were studied by coupling different complementary techniques. Despite of the fact that some mechanisms involved seem to be similar for both bcc metals, the comparison between the helium behavior in iron and vanadium shows certain differences. Microstructural defects, including grain boundaries and implanted helium concentration (dose) in both bcc metals will play significant roles on the helium behavior at high temperature. The acquired experimental data coupled with simulation methods contribute to the future development in terms of kinetic and thermodynamic data management of helium behavior in the metal components of the alloys of nuclear interest. (author) [fr
Magnetic and thermodynamic properties of face-centered cubic Fe-Ni alloys.
Lavrentiev, M Yu; Wróbel, J S; Nguyen-Manh, D; Dudarev, S L
2014-08-14
A model lattice ab initio parameterized Heisenberg-Landau magnetic cluster expansion Hamiltonian spanning a broad range of alloy compositions and a large variety of chemical and magnetic configurations has been developed for face-centered cubic Fe-Ni alloys. The thermodynamic and magnetic properties of the alloys are explored using configuration and magnetic Monte Carlo simulations over a temperature range extending well over 1000 K. The predicted face-centered cubic-body-centered cubic coexistence curve, the phase stability of ordered Fe3Ni, FeNi, and FeNi3 intermetallic compounds, and the predicted temperatures of magnetic transitions simulated as functions of alloy composition agree well with experimental observations. Simulations show that magnetic interactions stabilize the face-centered cubic phase of Fe-Ni alloys. Both the model Hamiltonian simulations and ab initio data exhibit a particularly large number of magnetic configurations in a relatively narrow range of alloy compositions corresponding to the occurrence of the Invar effect.
High pressure-induced distortion in face-centered cubic phase of thallium
Kotmool, Komsilp; Li, Bing; Chakraborty, Sudip; Bovornratanaraks, Thiti; Luo, Wei; Mao, Ho-kwang; Ahuja, Rajeev
2016-10-01
The complex and unusual high-pressure phase transition of III-A (i.e. Al, Ga, and In) metals have been investigated in the last several decades because of their interesting periodic table position between the elements having metallic and covalent bonding. Our present first principles-based electronic structure calculations and experimental investigation have revealed the unusual distortion in face-centered cubic (f.c.c.) phase of the heavy element thallium (Tl) induced by the high pressure. We have predicted body-centered tetragonal (b.c.t) phase at 83 GPa using an evolutionary algorithm coupled with ab initio calculations, and this prediction has been confirmed with a slightly distorted parameter (2 × a - c)/c lowered by 1% using an angle-dispersive X-ray diffraction technique. The density functional theory (DFT)-based calculations suggest that s-p mixing states and the valence-core overlapping of 6s and 5d states play the most important roles for the phase transitions along the pathway h.c.p→b.c.t.
Limit cycles bifurcating from the periodic annulus of cubic homogeneous polynomial centers
Directory of Open Access Journals (Sweden)
Jaume Llibre
2015-10-01
Full Text Available We obtain an explicit polynomial whose simple positive real roots provide the limit cycles which bifurcate from the periodic orbits of any cubic homogeneous polynomial center when it is perturbed inside the class of all polynomial differential systems of degree n.
Decomposition of algebraic sets and applications to weak centers of cubic systems
Chen, Xingwu; Zhang, Weinian
2009-10-01
There are many methods such as Gröbner basis, characteristic set and resultant, in computing an algebraic set of a system of multivariate polynomials. The common difficulties come from the complexity of computation, singularity of the corresponding matrices and some unnecessary factors in successive computation. In this paper, we decompose algebraic sets, stratum by stratum, into a union of constructible sets with Sylvester resultants, so as to simplify the procedure of elimination. Applying this decomposition to systems of multivariate polynomials resulted from period constants of reversible cubic differential systems which possess a quadratic isochronous center, we determine the order of weak centers and discuss the bifurcation of critical periods.
International Nuclear Information System (INIS)
Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.
2012-01-01
We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.
Face Centered Cubic and Hexagonal Close Packed Skyrmion Crystals in Centrosymmetric Magnets
Lin, Shi-Zeng; Batista, Cristian D.
2018-02-01
Skyrmions are disklike objects that typically form triangular crystals in two-dimensional systems. This situation is analogous to the so-called pancake vortices of quasi-two-dimensional superconductors. The way in which Skyrmion disks or "pancake Skyrmions" pile up in layered centrosymmetric materials is dictated by the interlayer exchange. Unbiased Monte Carlo simulations and simple stabilization arguments reveal face centered cubic and hexagonal close packed Skyrmion crystals for different choices of the interlayer exchange, in addition to the conventional triangular crystal of Skyrmion lines. Moreover, an inhomogeneous current induces a sliding motion of pancake Skyrmions, indicating that they behave as effective mesoscale particles.
Ab initio phonon dispersions of face centered cubic Pb: effects of spin-orbit coupling
International Nuclear Information System (INIS)
Dal Corso, Andrea
2008-01-01
I present the ab initio phonon dispersions of face centered cubic Pb calculated within the framework of density functional perturbation theory, with plane waves and a fully relativistic ultrasoft pseudopotential which includes spin-orbit coupling effects. I find that, within the local density approximation, the theory gives phonon frequencies close to the experimental inelastic neutron scattering data. Many of the anomalies present in these dispersions are well reproduced by the fully relativistic pseudopotential theory and can be shown to appear only for small values of the smearing parameter that controls the sharpness of the Fermi surface.
New integrable problems in a rigid body dynamics with cubic integral in velocities
Elmandouh, A. A.
2018-03-01
We introduce a new family of the 2D integrable mechanical system possessing an additional integral of the third degree in velocities. This system contains 20 arbitrary parameters. We also clarify that the majority of the previous systems with a cubic integral can be reconstructed from it as a special version for certain values of those parameters. The applications of this system are extended to include the problem of motion of a particle and rigid body about its fixed point. We announce new integrable problems describing the motion of a particle in the plane, pseudosphere, and surfaces of variable curvature. We also present a new integrable problem in a rigid body dynamics and this problem generalizes some of the previous results for Sokolov-Tsiganov, Yehia, Stretensky, and Goriachev.
High dose effects in neutron irradiated face-centered cubic metals
International Nuclear Information System (INIS)
Garner, F.A.; Toloczko, M.B.
1993-06-01
During neutron irradiation, most face-centered cubic metals and alloys develop saturation or quasi-steady state microstructures. This, in turn, leads to saturation levels in mechanical properties and quasi-steady state rates of swelling and creep deformation. Swelling initially plays only a small role in determining these saturation states, but as swelling rises to higher levels, it exerts strong feedback on the microstructure and its response to environmental variables. The influence of swelling, either directly or indirectly via second order mechanisms, such as elemental segregation to void surfaces, eventually causes major changes, not only in irradiation creep and mechanical properties, but also on swelling itself. The feedback effects of swelling on irradiation creep are particularly complex and lead to problems in applying creep data derived from highly pressurized creep tubes to low stress situations, such as fuel pins in liquid metal reactors
Ultra-light hierarchical meta-materials on a body-centred cubic lattice
Rayneau-Kirkhope, Daniel; Mao, Yong; Farr, Robert
2017-07-01
Modern fabrication techniques offer the freedom to design and manufacture structures with complex geometry on many lengthscales, offering many potential advantages. For example, fractal/hierarchical struts have been shown to be exceptionally strong and yet light (Rayneau-Kirkhope D. et al., Phys. Rev. Lett., 109 (2012) 204301). In this letter, we propose a new class of meta-material, constructed from fractal or hierarchical struts linking a specific set of lattice points. We present a mechanical analysis of this meta-material resulting from a body-centred cubic (BCC) lattice. We show that, through the use of hierarchy, the material usage follows an enhanced scaling relation, and both material property and overall efficiency can be optimised for a specific applied stress. Such a design has the potential of providing the next generation of lightweight, buckling-resistant meta-materials.
Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting
Wu, Christine J.; Söderlind, Per; Glosli, James N.; Klepeis, John E.
2009-03-01
There are many structural and optical similarities between a liquid and a plastic flow. Thus, it is non-trivial to distinguish between them at high pressures and temperatures, and a detailed description of the transformation between these phenomena is crucial to our understanding of the melting of metals at high pressures. Here we report a shear-induced, partially disordered viscous plastic flow from body-centred-cubic tantalum under heating before it melts into a liquid. This thermally activated structural transformation produces a unique, one-dimensional structure analogous to a liquid crystal with the rheological characteristics of Bingham plastics. This mechanism is not specific to Ta and is expected to hold more generally for other metals. Remarkably, this transition is fully consistent with the previously reported anomalously low-temperature melting curve and thus offers a plausible resolution to a long-standing controversy about melting of metals under high pressures.
Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes.
Lee, Byoung-Sun; Seo, Jong-Hyun; Son, Seoung-Bum; Kim, Seul Cham; Choi, In-Suk; Ahn, Jae-Pyoung; Oh, Kyu Hwan; Lee, Se-Hee; Yu, Woong-Ryeol
2013-07-23
In the foreseeable future, there will be a sharp increase in the demand for flexible Li-ion batteries. One of the most important components of such batteries will be a freestanding electrode, because the traditional electrodes are easily damaged by repeated deformations. The mechanical sustainability of carbon-based freestanding electrodes subjected to repeated electrochemical reactions with Li ions is investigated via nanotensile tests of individual hollow carbon nanofibers (HCNFs). Surprisingly, the mechanical properties of such electrodes are improved by repeated electrochemical reactions with Li ions, which is contrary to the conventional wisdom that the mechanical sustainability of carbon-based electrodes should be degraded by repeated electrochemical reactions. Microscopic studies reveal a reinforcing mechanism behind this improvement, namely, that inserted Li ions form irreversible face-centered-cubic (FCC) crystals within HCNF cavities, which can reinforce the carbonaceous matrix as strong second-phase particles. These FCC Li crystals formed within the carbon matrix create tremendous potential for HCNFs as freestanding electrodes for flexible batteries, but they also contribute to the irreversible (and thus low) capacity of HCNFs.
Carl Rogers: Body-Centered Counselor.
Fernald, Peter S.
2000-01-01
C. R. Rogers' approach is examined in the context of person-centered theories of personality and counseling. Identifies similarities between Rogers' thinking and W. Reich's theories in body-oriented psychotherapy. Discusses film-recorded interview conducted by Rogers, which demonstrates his body-centered approach. (Author/JDM)
International Nuclear Information System (INIS)
Ao, B.Y.; Wang, X.L.; Shi, P.; Chen, P.H.; Ye, X.Q.; Lai, X.C.; Gao, T.
2012-01-01
Plutonium metal can be loaded with hydrogen, which forms complicated solid solutions and compounds, and leads to significant changes in electronic structure. A first-principles pseudopotential plane wave method with added Hubbard parameter U was employed to investigate the electronic and structural properties of face-centered cubic Pu hydrides (PuH x , x = 2, 2.25, and 3). The decrease in calculated lattice parameters with increasing x is in reasonable agreement with experimental findings. Comparative analysis of the electronic-structure results for a series of PuH x compositions reveals that lattice contraction occurs due to enhanced chemical bonding and the size effects involving interstitial atoms. We find that the size effects are the driving force for the abnormal lattice contraction.
The Effects of Texture on the Resistivity of Thin Metallic Face-Centered Cubic Films
Soss, Steven Robert
This thesis is concerned with the identification of the role of texture to the resistivity in thin silver, copper, and aluminum films. The results of this work can, in principle, be applied to any cubic structure, electronic conduction metal film with suitable changes to the calculations. We utilize the theory of Mayadas and Shatzke, and extended by Tellier, et. al., for electron transport properties at the grain boundaries. In particular, the theory is used to determine the probability of specular transmittance of an electron through the grain boundary. In addition, a Monte-Carlo simulation was developed which, given the measured texture distribution in the film, can determine the effective dislocation density at the grain boundary. It is found that the density of dislocations at the grain boundary can be identified as the underlying cause for the resistivity changes with texture. The films are deposited using the partially ionized beam (PIB) deposition system. The PIB technique utilizes a small percentage of ions derived from the evaporant flux to bombard the growth front during deposition. This deposition technique is unique in the fact that the texture distribution in the film can be dramatically changed while keeping the grain size relatively constant and while avoiding the incorporation of foreign species as impurities in the film. The films were deposited on glass microslides. Resistivity was measured using a standard four-point probe technique, grain size measurements were performed using X-ray and atomic force microscopy, and the film thickness was determined using a Tencor Alpha Step profilometer. The texture distribution in the film was measured by the X-ray Pole Figure technique, which found all the films to possess a fiber texture. Using the dislocation core model, an expression for the potential seen by an electron at the boundary can be written. The solution to the wave equation gives rise to a probability for the electron to be specularly
Liu, Jingfa; Song, Beibei; Liu, Zhaoxia; Huang, Weibo; Sun, Yuanyuan; Liu, Wenjie
2013-11-01
Protein structure prediction (PSP) is a classical NP-hard problem in computational biology. The energy-landscape paving (ELP) method is a class of heuristic global optimization algorithm, and has been successfully applied to solving many optimization problems with complex energy landscapes in the continuous space. By putting forward a new update mechanism of the histogram function in ELP and incorporating the generation of initial conformation based on the greedy strategy and the neighborhood search strategy based on pull moves into ELP, an improved energy-landscape paving (ELP+) method is put forward. Twelve general benchmark instances are first tested on both two-dimensional and three-dimensional (3D) face-centered-cubic (fcc) hydrophobic-hydrophilic (HP) lattice models. The lowest energies by ELP+ are as good as or better than those of other methods in the literature for all instances. Then, five sets of larger-scale instances, denoted by S, R, F90, F180, and CASP target instances on the 3D FCC HP lattice model are tested. The proposed algorithm finds lower energies than those by the five other methods in literature. Not unexpectedly, this is particularly pronounced for the longer sequences considered. Computational results show that ELP+ is an effective method for PSP on the fcc HP lattice model.
International Nuclear Information System (INIS)
Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P.
2014-01-01
Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. To clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 −3 s −1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. To better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due
DEFF Research Database (Denmark)
Redanz, Pia; McMeeking, R. M.
2003-01-01
Solid-state sintering of a bcc structure of spherical particles has been studied numerically by use of simple shape parameters to describe the state of the unit cell. Both free and pressure-assisted sintering of particles of equal and different sizes for various ratios of boundary and surface dif...
Application and Research Progress of Body-centered-cubic Ti-Mo Base Alloys
Directory of Open Access Journals (Sweden)
XIANG Li
2017-07-01
Full Text Available The application and research progress of β-type Ti-Mo base alloys were reviewed from aspects of aerospace, biomedical, offshore, new energy and other fields. The strengthening-toughening approach through the coupled deformation modes, namely martensitic phase transformation, twinning and dislocation slip was focused,and the control method of mechanical properties based on a combination of deformation microstructures and phase transformation was described. It was pointed out that high-performance and multifunctionality will be the development directions of Ti-Mo base alloys with multiple deformation modes.
Mesoscale plastic texture in body-centered cubic metals under uniaxial load
Czech Academy of Sciences Publication Activity Database
Gröger, Roman; Vitek, V.; Lookman, T.
2017-01-01
Roč. 1, č. 6 (2017), s. 063601 E-ISSN 2475-9953 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA16-13797S Institutional support: RVO:68081723 Keywords : dislocations * mesoscale * bcc metals Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)
Maurer-Groeli, Y
1996-03-01
Body centered Psychotherapy IKP is treated in this article under the aspect of a holistic approach. First the theory and the system of science are summarised and shown as to which amount they are changing concerning knowledge of details and wholeness. It is pointed out that the actual paradigma "to the depth" has to be completed by that of "wideness". The way of holistic-multirelational thinking, stating a diagnosis and doing therapy is demonstrated along a case study going on at the background of a therapeutic encounter-relationship which is emotionally warm (Gestalt-approach).
International Nuclear Information System (INIS)
Seeger, A.
1995-01-01
The strong temperature and strain-rate dependence of the flow stress of high-purity refractory body-centred cubic metals has been shown to be an intrinsic property and is usually ascribed to a high Peierls barrier of a o left angle 111 right angle /2 screw dislocations. These barriers are overcome by the formation of kink pairs on the screw dislocations. The paper reports on recent, very complete flow-stress data on ultra-high purity Mo crystals obtained by two different experimental techniques and covering the temperature range 4 K to 460 K. The results are in accord with earlier work of Brunner and Diehl on α-Fe, who showed that below the so-called knee temperature, T K , three regimes in the temperature variation of the flow-stress should be distinguished. Two of them are fully accounted for by the same glide mechanism, namely elementary glide steps on {211} planes. The so-called upper bend separating these two regimes in an inherent feature of the theory of kink-pair formation and does not indicate a change in the glide mechanism. There is, however, strong evidence that the so-called lower bend, separating the range of {211} elementary glide steps from the low-temperature flow-stress regime, is due to a change in the glide mechanism. It is argued that at the lower bend the screw-dislocation cores undergo a ''first-order phase transition'' from a low-temperature configuration that allows glide of a given screw dislocation on any of its three {110} glide planes to a high-temperature configuration that can glide only on one definite {211} plane. Between T K and the lower-bend temperature, T, bcc metals may show the unique phenomena of alloy and irradiation softening. With regard to the latter phenomenon, Brunner and Diehl distinguish between ''primary'' and ''secondary'' softening. It is shown that alloy softening and the ''secondary irradiation softening'' of bcc metals may be explained by an ''overheating'' of the phase transition in the dislocation core. (orig./WL)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jie; Huang, Rong; Wei, Fenfen; Cheng, Guosheng, E-mail: gscheng2006@sinano.ac.cn [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Jiangsu 215123 (China); University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 (China); Kong, Tao [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Jiangsu 215123 (China)
2014-11-17
The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.
International Nuclear Information System (INIS)
Zhang, Jie; Huang, Rong; Wei, Fenfen; Cheng, Guosheng; Kong, Tao
2014-01-01
The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions
Llibre, Jaume; Valls, Clàudia
In this paper we classify the centers, the cyclicity of its Hopf bifurcation and their isochronicity for the polynomial differential systems in R of arbitrary degree d⩾3 odd that in complex notation z=x+iy can be written as z˙=(λ+i)z+((Az+Bzz¯+Czz+Dz), where λ∈R and A,B,C,D∈C. If d=3 we obtain the well-known class of all polynomial differential systems of the form a linear system with cubic homogeneous nonlinearities.
Fan, Zhanxi
2015-03-17
The synthesis of ultrathin face-centered-cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal-close-packed (hcp) Au square sheets (AuSSs). The Pt-layer growth results in a hcp-to-fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f-oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures. Phase change: Ultrathin Au@Pt and Au@Pd core-shell nanoplates were prepared from Au square sheets. A phase transformation from hexagonal close-packed (hcp) to face-centered cubic (fcc) is observed upon coating the hcp Au square sheets with Pt or Pd under ambient conditions. The prepared fcc Au@Pt and Au@Pd rhombic nanoplates demonstrate unique (101)f orientation (picture shows a typical fcc Au@Pt rhombic nanoplate). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cubic erbium trihydride thin films
Energy Technology Data Exchange (ETDEWEB)
Adams, D.P., E-mail: dpadams@sandia.gov; Rodriguez, M.A.; Romero, J.A.; Kotula, P.G.; Banks, J.
2012-07-31
High-purity, erbium hydride thin films have been deposited onto {alpha}-Al{sub 2}O{sub 3} and oxidized Si by reactive sputtering methods. Rutherford backscattering spectrometry and elastic recoil detection show that films deposited at temperatures of 35, 150 and 275 Degree-Sign C have a composition of 3H:1Er. Erbium trihydride films consist of a face-centered cubic erbium sub-lattice with a lattice parameter in the range of 5.11-5.20 A. The formation of cubic ErH{sub 3} is intriguing, because previous studies demonstrate a single trihydride phase with a hexagonal metal sub-lattice. The formation of a stable, cubic trihydride phase is attributed to a large, in-plane stress resulting from ion beam sputter deposition. - Highlights: Black-Right-Pointing-Pointer Cubic erbium trihydride thin films produced by ion beam sputter deposition. Black-Right-Pointing-Pointer Face-centered cubic metal sub-lattice verified by X-ray and electron diffraction. Black-Right-Pointing-Pointer Composition evaluated using four different techniques. Black-Right-Pointing-Pointer Film stress monitored during deposition. Black-Right-Pointing-Pointer Formation of cubic erbium trihydride attributed to a large, in-plane film stress.
International Nuclear Information System (INIS)
Rao, S.I.; Dimiduk, D.M.; El-Awady, J.A.; Parthasarathy, T.A.; Uchic, M.D.; Woodward, C.
2010-01-01
We extend our recent simulation studies where a screw dislocation in face-centered cubic (fcc) Ni was found to spontaneously attain a low energy partially cross-slipped configuration upon intersecting a forest dislocation. Using atomistic (molecular statics) simulations with embedded atom potentials, we evaluated the activation barrier for a dislocation to transform from fully residing on the glide plane to fully residing on a cross-slip plane intersecting a forest dislocation in both Ni and Cu. The activation energies were obtained by determining equilibrium configurations (energies) when variable pure tensile or compressive stresses were applied along the [1 1 1] direction on the partially cross-slipped state. We show that the activation energy is a factor of 2-5 lower than that for cross-slip in isolation via the Escaig process. The cross-slip activation energies obtained at the intersection in Cu were in reasonable accord with the experimentally determined cross-slip activation energy for Cu. Further, the activation barrier for cross-slip at these intersections was shown to be linearly proportional to (d/b)[ln(√(3)d/b)] 1/2 , as in the Escaig process, where d is the Shockley partial dislocation spacing and b is the Burgers vector of the screw dislocation. These results suggest that cross-slip should be preferentially observed at selected screw dislocation intersections in fcc materials.
Analysis of a Hybrid Wing Body Center Section Test Article
Wu, Hsi-Yung T.; Shaw, Peter; Przekop, Adam
2013-01-01
The hybrid wing body center section test article is an all-composite structure made of crown, floor, keel, bulkhead, and rib panels utilizing the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) design concept. The primary goal of this test article is to prove that PRSEUS components are capable of carrying combined loads that are representative of a hybrid wing body pressure cabin design regime. This paper summarizes the analytical approach, analysis results, and failure predictions of the test article. A global finite element model of composite panels, metallic fittings, mechanical fasteners, and the Combined Loads Test System (COLTS) test fixture was used to conduct linear structural strength and stability analyses to validate the specimen under the most critical combination of bending and pressure loading conditions found in the hybrid wing body pressure cabin. Local detail analyses were also performed at locations with high stress concentrations, at Tee-cap noodle interfaces with surrounding laminates, and at fastener locations with high bearing/bypass loads. Failure predictions for different composite and metallic failure modes were made, and nonlinear analyses were also performed to study the structural response of the test article under combined bending and pressure loading. This large-scale specimen test will be conducted at the COLTS facility at the NASA Langley Research Center.
International Nuclear Information System (INIS)
He Youliang; Godet, Stephane; Jacques, Pascal J.; Jonas, John J.
2006-01-01
The orientations of the kamacite lamellae formed from a single prior-taenite grain were measured by analysing the electron backscatter diffraction patterns obtained using scanning electron microscopy. These are shown to be close to the Kurdjumov-Sachs and Nishiyama-Wassermann relations and their intermediate, i.e., the Greninger-Troiano relation. The orientations of the α grains in the plessite regions were also measured and these were found to be continuously distributed around the Bain circles formed by the variants of the common correspondence relationships, including the Pitsch one in this case. The local misorientations between individual face- and body-centred cubic crystals along their common interfaces were measured. These can be characterized by the orientation relationships mentioned above as long as a certain amount of tolerance is allowed. Orientation variations within individual kamacite lamellae were also analysed. The crystallographic data support the view that somewhat different mechanisms are involved in the formation of Widmanstaetten structures and of the plessite in meteorites
Collective dynamics and self-diffusion in a diblock copolymer melt in the body-centered cubic phase
Czech Academy of Sciences Publication Activity Database
Papadakis, C.; Rittig, F.; Almdal, K.; Mortensen, K.; Štěpánek, Petr
2004-01-01
Roč. 15, č. 4 (2004), s. 359-370 ISSN 1292-8941 R&D Projects: GA ČR GA203/02/1262 Keywords : diblock copolymer * small-angle neutron scattering * dynamic light scattering Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.903, year: 2004
Czech Academy of Sciences Publication Activity Database
Fikar, Jan; Gröger, Roman
2015-01-01
Roč. 99, OCT (2015), s. 392-401 ISSN 1359-6454 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.20.0214 Institutional support: RVO:68081723 Keywords : Dislocation loop * Dislocation mobility * Dislocation theory * Irradiation effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.058, year: 2015
Whalen, R. T.; Gonzalez-Doncel, G.; Robinson, S. L.; Sherby, O. D.
1989-01-01
The effect of substituting the Mg metal in Mg-B composites by a Mg-14 wt pct Li solid solution on the ductility of the resulting composite was investigated using elastic modulus measurements on the P/M composite material prepared with a dispersion of B particles (in a vol pct range of 0-30) in a matrix of Mg-14 wt pct Li-1.5 wt pct Al. It was found that the elastic modulus of the composites increased rapidly with increasing boron, with specific stiffness values reaching about two times that of most structural materials. The values of the compression and tensile strengths increased significantly with boron additions. Good tensile ductility was achieved at the level of 10 vol pct B. However, at 20 vol pct B, the Mg-Li composite exhibited only limited tensile ductility (about 2 percent total elongation).
Directory of Open Access Journals (Sweden)
Gary R. Nicklason
2015-07-01
Full Text Available We consider center conditions for plane polynomial systems of Abel type consisting of a linear center perturbed by the sum of 2 homogeneous polynomials of degrees n and 2n-1 where $n \\ge 2$. Using properties of Abel equations we obtain two general systems valid for arbitrary values on n. For the cubic n=2 systems we find several sets of new center conditions, some of which show that the results in a paper by Hill, Lloyd and Pearson which were conjectured to be complete are in fact not complete. We also present a particular system which appears to be a counterexample to a conjecture by Zoladek et al. regarding rational reversibility in cubic polynomial systems.
Ahn, Sang Hee; Chung, Kwangzoo; Shin, Jung Wook; Cheon, Wonjoong; Han, Youngyih; Park, Hee Chul; Choi, Doo Ho
2017-10-01
Gold nanoparticles (GNPs) injected in a body for dose enhancement in radiation therapy are known to form clusters. We investigated the dependence of dose enhancement on the GNP morphology using Monte-Carlo simulations and compared the model predictions with experimental data. The cluster morphology was approximated as a body-centred cubic (BCC) structure by placing GNPs at the 8 corners and the centre of a cube with an edge length of 0.22-1.03 µm in a 4 × 4 × 4 µm3 water-filled phantom. We computed the dose enhancement ratio (DER) for 50 and 260 kVp photons as a function of the distance from the cube centre for 12 different cube sizes. A 10 nm-wide concentric shell shaped detector was placed up to 100 nm away from a GNP at the cube centre. For model validation, simulations based on BCC and nanoparticle random distribution (NRD) models were performed using parameters that corresponded to the experimental conditions, which measured increases in the relative biological effect due to GNPs. We employed the linear quadratic model to compute cell surviving fraction (SF) and sensitizer enhancement ratio (SER). The DER is inversely proportional to the distance to the GNPs. The largest DERs were 1.97 and 1.80 for 50 kVp and 260 kVp photons, respectively. The SF predicted by the BCC model agreed with the experimental value within 10%, up to a 5 Gy dose, while the NRD model showed a deviation larger than 10%. The SERs were 1.21 ± 0.13, 1.16 ± 0.11, and 1.08 ± 0.11 according to the experiment, BCC, and NRD models, respectively. We most accurately predicted the GNP radiosensitization effect using the BCC approximation and suggest that the BCC model is effective for use in nanoparticle dosimetry.
Influence of a hydrostatic pressure on the diffusion in metals having a cubic structure
International Nuclear Information System (INIS)
Beyeler, M.
1969-01-01
In view of obtaining informations on the structure of vacancies. We have determined, by diffusion experiments under high pressure, the activation volumes for self diffusion in different face centered cubic metals: silver, gold, copper, aluminium and in body centered cubic uranium (gamma phase). Activation volumes for noble metals diffusion in aluminium have also been investigated. The experimental results on gold, silver and copper are in good agreement with most of the theoretical models. The estimated activation volume for gamma uranium seems to indicate a vacancy mechanism.The results on aluminium for both self and impurity diffusion agree quite well with Friedel's theoretical predictions [fr
Structure of cubic polytype indium nitride layers on top of modified sapphire substrates
Energy Technology Data Exchange (ETDEWEB)
Morales, F.M.; Lozano, J.G.; Garcia, R.; Gonzalez, D. [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica y QI, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain); Lebedev, V.; Wang, Ch.Y.; Cimalla, V.; Ambacher, O. [Institute of Micro- and Nanotechnologies, Technical University Ilmenau, 98684 Ilmenau (Germany)
2008-07-01
The occurrence of cubic indium nitride thin layers grown by molecular beam epitaxy on top of c-plane sapphire substrates modified by an intermediate layer of cubic indium oxide is reported. An orientation relationship between the (0001) plane of Al{sub 2}O{sub 3} and both (001) surfaces of body-centered cubic In{sub 2}O{sub 3} and zinc-blende InN is demonstrated by means of electron and X-ray diffraction and by transmission electron microscopy. We propose that the demonstrated approach is able to stabilize the non equilibrium phase of InN (i. e., the cubic polytype) due to a low lattice mismatch together with a four fold surface atomic arrangement of the indium oxide-indium nitride interface. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Moving with Somatic Awareness. The Body-Mind Centering Approach to Growth and Health.
Gomez, Ninoska
1988-01-01
The article describes some significant aspects of the Body-Mind Centering techniques of Bonnie Bainbridge Cohen for physical well-being that hold considerable possibilities for educators, researchers, and artists in body-oriented disciplines. (CB)
Bifurcation of limit cycles for cubic reversible systems
Directory of Open Access Journals (Sweden)
Yi Shao
2014-04-01
Full Text Available This article is concerned with the bifurcation of limit cycles of a class of cubic reversible system having a center at the origin. We prove that this system has at least four limit cycles produced by the period annulus around the center under cubic perturbations
For an Aesthetics of Sensations: intense body of Bartenieff Fundamentals and Body-Mind Centering
Directory of Open Access Journals (Sweden)
Patrícia de Lima
2014-12-01
Full Text Available This paper discusses concepts and methodological proposals that approach the theoretical and practical study concerning the body, understanding it as an expressive subject in constant mutation and process of reinvention. For this reason, the study approximates two somatic approaches: Bartenieff Fundamentals™ and Body-Mind Centering™. The aim was to perceive how these somatic approaches allow the construction of an intensive body that engenders an aesthetics of sensations.
Indian Academy of Sciences (India)
Cardano's formula for solving a cubic is the crowning achievement of renaissance mathematics. Yet, it does not receive the same recognition in our curricula as does the quadratic formula, which was discovered long be- fore it. It is rather surprising that there have not been attempts to simplify further the messy formulas of ...
Indian Academy of Sciences (India)
But they facilitated great advances in mathematics. Arabs, and the early Europeans who were to take off from where the Arabs had left, did not consider negative coefficients. Thus there were dozens of cases of the cubic equation to be considered. For example, the so-called depressed form alone, with square term absent, ...
African Journals Online (AJOL)
ES Obe
algebraic solution of the reduced cubic equation x. 3. + px + q = 0. It is indisputable that Geronimus Cardano [1, .... Equation(la) is not suitable for direct manipulation and to simplify the algebra the following alternate reduced forms .... REFERENCES. 1. Smith, D. E. History of Mathematics, vol. II: Special Topics of Elementary ...
Anterior and posterior centers jointly regulate Bombyx embryo body segmentation.
Nakao, Hajime
2012-11-15
Insect embryo segmentation is largely divided into long and short germ types. In the long germ type, each segment primordium is represented on a large embryonic rudiment of the blastoderm, and segmental patterning occurs nearly simultaneously in the syncytium. In the short germ type, however, only anterior segments are represented in the small embryonic rudiment, usually located on the egg posterior, and the rest of the segments are added sequentially from the posterior growth zone in a cellular context. The long germ type is thought to have evolved from the short germ type. It is proposed that this transition, which appears to have occurred multiple times over the course of evolution, was realized through the acquisition of a localized anterior instruction center. Here, I examined the early segmentation process in the silkmoth Bombyx mori, a lepidopteran insect, in which the mechanisms of anterior-posterior (AP) axis formation have not been well analyzed. In this insect, both the long germ and short germ features have been reported. The mRNAs for two key genes involved in insect AP axis formation, orthodenticle (Bm-otd) and caudal (Bm-cad), are localized maternally in the germ anlage, where they act as anterior and posterior instruction centers, respectively. RNAi studies indicate that, while Bm-cad affects the formation of all the even skipped (Bm-eve) stripes, there is also anterior Bm-eve stripe formation activity that involves Bm-otd. Thus, there is redundancy in Bm-eve stripe formation activity that must be coordinated. Some genetic interactions, identified either experimentally or hypothetically, are also introduced, which might enable robust AP formation in this organism. Copyright © 2012 Elsevier Inc. All rights reserved.
DEFF Research Database (Denmark)
Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald
2016-01-01
terms. CTT provides a computational interpretation of functional extensionality, enjoys canonicity for the natural numbers type, and is conjectured to support decidable type-checking. Our new type theory, guarded cubical type theory (GCTT), provides a computational interpretation of extensionality......This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...
Directory of Open Access Journals (Sweden)
Burhan Selçuk
2017-06-01
Full Text Available Hypercube is a popular interconnection network. Due to the popularity of hypercube, more researchers pay a great effort to develop the different variants of hypercube. In this paper, we have proposed a variant of hypercube which is called as “Connected Cubic Network Graphs”, and have investigated the Hamilton-like properties of Connected Cubic Network Graphs (CCNG. Firstly, we defined CCNG and showed the characteristic analyses of CCNG. Then, we showed that the CCNG has the properties of Hamilton graph, and can be labeled using a Gray coding based recursive algorithm. Finally, we gave the comparison results, a routing algorithm and a bitonic sort algorithm for CCNG. In case of sparsity and cost, CCNG is better than Hypercube.
Phase transformation of metastable cubic γ-phase in U-Mo alloys
International Nuclear Information System (INIS)
Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.
2010-01-01
Over the past decade considerable efforts have been put by many fuel designers to develop low enriched uranium (LEU 235 ) base U-Mo alloy as a potential fuel for core conversion of existing research and test reactors which are running on high enriched uranium (HEU > 85%U 235 ) fuel and also for the upcoming new reactors. U-Mo alloy with minimum 8 wt% molybdenum shows excellent metastability with cubic γ-phase in cast condition. However, it is important to characterize the decomposition behaviour of metastable cubic γ-uranium in its equilibrium products for in reactor fuel performance point of view. The present paper describes the phase transformation behaviour of cubic γ-uranium phase in U-Mo alloys with three different molybdenum compositions (i.e. 8 wt%, 9 wt% and 10 wt%). U-Mo alloys were prepared in an induction melting furnace and characterized by X-ray diffraction (XRD) method for phase determination. Microstructures were developed for samples in as cast condition. The alloys were hot rolled in cubic γ-phase to break the cast structure and then they were aged at 500 o C for 68 h and 240 h, so that metastable cubic γ-uranium will undergo eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and body centered tetragonal U 2 Mo intermetallic compound. U-Mo alloy samples with different ageing history were then characterized by XRD for phase and development of microstructure.
Superhard BC(3) in cubic diamond structure.
Zhang, Miao; Liu, Hanyu; Li, Quan; Gao, Bo; Wang, Yanchao; Li, Hongdong; Chen, Changfeng; Ma, Yanming
2015-01-09
We solve the crystal structure of recently synthesized cubic BC(3) using an unbiased swarm structure search, which identifies a highly symmetric BC(3) phase in the cubic diamond structure (d-BC(3)) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d-BC(3) are in excellent agreement with experimental data. Calculated stress-strain relations of d-BC(3) demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. The present results establish the first boron carbide in the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.
Three-body scattering problem in the fixed center approximation: The case of attraction
Energy Technology Data Exchange (ETDEWEB)
Kudryavtsev, Alexander E. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Gani, Vakhid A. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Romanov, Alexander I. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)
2016-12-15
We study the scattering of a light particle on a bound pair of heavy particles (e.g., the deuteron) within the fixed center approximation in the case of light-heavy attraction, solving the integral equation for the three-body Green's function both in the coordinate and in the momentum space. The results for the three-body scattering amplitude appear to be ambiguous -they depend on a single real parameter. This parameter may be fixed by a three-body input, e.g., the three-body scattering length. We also solve the integral equation for the three-body Green function in the momentum space, introducing a finite cut-off. We show that all three approaches are equivalent. We also discuss how our approach to the problem matches with the introduction of three-body contact interaction as done by other authors. (orig.)
The Woven Body: Embodying Text in Performance Art and the Writing Center
Rifenburg, J. Michael; Allgood, Lindsey
2015-01-01
Drawing on Lindsey Allgood's scripts, journal entries, and images of a specific participatory performance piece she executed, we argue for seeing performance art as a form of embodied text. Such an assertion is particularly pertinent for postsecondary writing center praxis as it allows for the mindful intersections of the body and writing during…
Face, Body, and Center of Gravity Mediate Person Detection in Natural Scenes
Bindemann, Markus; Scheepers, Christoph; Ferguson, Heather J.; Burton, A. Mike
2010-01-01
Person detection is an important prerequisite of social interaction, but is not well understood. Following suggestions that people in the visual field can capture a viewer's attention, this study examines the role of the face and the body for person detection in natural scenes. We observed that viewers tend first to look at the center of a scene,…
DEFF Research Database (Denmark)
Birkedal, Lars; Bizjak, Aleš; Clouston, Ranald
2016-01-01
types. This further expands the foundations of CTT as a basis for formalisation in mathematics and computer science. We present examples to demonstrate the expressivity of our type theory, all of which have been checked using a prototype type-checker implementation, and present semantics in a presheaf......This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning...... with coinductive types. We wish to implement GDTT with decidable type-checking, while still supporting non-trivial equality proofs that reason about the extensions of guarded recursive constructions. CTT is a variation of Martin-L\\"of type theory in which the identity type is replaced by abstract paths between...
Body adiposity index and incident hypertension: The Aerobics Center Longitudinal Study
Moliner-Urdiales, D; Artero, E G; Sui, X; España-Romero, V; Lee, DC; Blair, S N
2014-01-01
Background and Aim The body adiposity index (BAI) has been recently proposed as a new method to estimate the percentage of body fat. The association between BAI and hypertension risk has not been investigated yet. The aim of our study was to evaluate the ability of BAI to predict hypertension in males and females compared with traditional body adiposity measures. Methods and Results The present follow-up analysis comprised 10 309 individuals (2259 females) free of hypertension from the Aerobics Center Longitudinal Study, who completed a baseline examination during 1988–2003. Body adiposity measures included BAI, body mass index (BMI), waist circumference, hip circumference, percentage of body fat and waist to hip ratio (WHR). Incident hypertension was ascertained from responses to mail-back surveys between 1990 and 2004. During an average of 9.1 years of follow-up, 872 subjects (107 females) became hypertensive. Hazard ratios (HRs) and 95% confidence intervals (95% CI) showed that males in the highest categories of all body adiposity measures showed a higher incident risk of hypertension (HRs ranged from 1.37 to 2.09). Females showed a higher incident risk of hypertension only in the highest categories of BAI, BMI and WHR (HRs ranged from 1.84 to 3.36). Conclusion Our results suggest that in order to predict incident hypertension BAI could be considered as an alternative to traditional body adiposity measures. PMID:24974319
Eating behavior and body image perception of pregnant women attending a high-risk outpatient center
Directory of Open Access Journals (Sweden)
Raquel Guimarães Nobre
2014-06-01
Full Text Available Objective: To investigate the eating behavior and body image perception in pregnant women attending a high-risk outpatient center. Methods: A quantitative, cross-sectional, observational study conducted with 28 overweight pregnant women attending the first consultation in the nutrition outpatient center of a maternity hospital in Fortaleza-CE, from December 2010 to February 2011. It has been used a pre-established form containing data on the characterization of the sample (socioeconomic, obstetric, and nutritional, the BES (Binge Eating Scale to assess binge eating and BSQ (Body Shape Questionnaire to assess the severity or absence of body image disorder. The variables were presented as mean ± standard deviation and simple frequency and percentage. The Pearson’s correlation was used to verify the relation between body image and binge eating, considering p <0.05. Results: The pregnant women studied had a mean age of 29.4 ± 6.3 years and mean gestational age of 24.6 ± 8.2 weeks. It was found a prevalence of 71.5% (n=20 of body image disorder and 17.8% (n=5 of binge eating. It was also observed a direct and significant correlation between the body image perception and the degree of binge eating (r=0.4358, p=0.020. Conclusion: The high rate of body image disorder positively related to a significant binge eating indicates an unfavorable adjustment of this group of pregnant women to alterations in weight and body shape and size, which are inherent to pregnancy, standing out as group that needs special attention by the professional team. doi:10.5020/18061230.2014.p256
Interpolation of natural cubic spline
Directory of Open Access Journals (Sweden)
Arun Kumar
1992-01-01
Full Text Available From the result in [1] it follows that there is a unique quadratic spline which bounds the same area as that of the function. The matching of the area for the cubic spline does not follow from the corresponding result proved in [2]. We obtain cubic splines which preserve the area of the function.
Digital image analysis of ossification centers in the axial dens and body in the human fetus.
Baumgart, Mariusz; Wiśniewski, Marcin; Grzonkowska, Magdalena; Małkowski, Bogdan; Badura, Mateusz; Dąbrowska, Maria; Szpinda, Michał
2016-12-01
The detailed understanding of the anatomy and timing of ossification centers is indispensable in both determining the fetal stage and maturity and for detecting congenital disorders. This study was performed to quantitatively examine the odontoid and body ossification centers in the axis with respect to their linear, planar and volumetric parameters. Using the methods of CT, digital image analysis and statistics, the size of the odontoid and body ossification centers in the axis in 55 spontaneously aborted human fetuses aged 17-30 weeks was studied. With no sex difference, the best fit growth dynamics for odontoid and body ossification centers of the axis were, respectively, as follows: for transverse diameter y = -10.752 + 4.276 × ln(age) ± 0.335 and y = -10.578 + 4.265 × ln(age) ± 0.338, for sagittal diameter y = -4.329 + 2.010 × ln(age) ± 0.182 and y = -3.934 + 1.930 × ln(age) ± 0.182, for cross-sectional area y = -7.102 + 0.520 × age ± 0.724 and y = -7.002 + 0.521 × age ± 0.726, and for volume y = -37.021 + 14.014 × ln(age) ± 1.091 and y = -37.425 + 14.197 × ln(age) ± 1.109. With no sex differences, the odontoid and body ossification centers of the axis grow logarithmically in transverse and sagittal diameters, and in volume, while proportionately in cross-sectional area. Our specific-age reference data for the odontoid and body ossification centers of the axis may be relevant for determining the fetal stage and maturity and for in utero three-dimensional sonographic detecting segmentation anomalies of the axis.
Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.
2008-01-01
One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…
Pinto, Gabriel
2012-01-01
When students are introduced to the ways in which atoms are arranged in crystal structures, transposing the textbook illustrations into three-dimensional structures is difficult for some of them. To facilitate this transition, this article describes an approach to the study of the structure of solids through a well-known monument, the Atomium in…
International Nuclear Information System (INIS)
Yu, X.B.; Walker, G.S.; Grant, D.M.; Wu, Z.; Xia, B.J.; Shen, J.
2005-01-01
A composite of Ti-V-based bcc phase alloy surface-modified with AB 5 nanoparticles was prepared by ball milling. The composite showed significantly improved electrochemical hydrogen release capacities. For example, the 30 min ball milled Ti-30V-15Mn-15Cr+10 wt %AB 5 showed a discharge capacity in the first cycle, at 353 K, of 886 mA h g -1 , corresponding to 3.38 wt % of hydrogen, with a 45 mA g -1 discharge current. It is thought that this high capacity is due to the enhanced electrochemical-catalytic activity from the alloy surface covered with AB 5 nanoparticles, which not only have better charge-discharge capacity themselves, acting as both an electrocatalyst and a microcurrent collector, but also result in the greatly enhanced hydrogen atomic diffusivities in the nanocrystalline relative to their conventional coarse-grained counterparts. These results provide new insight for use of Ti-V-based bcc phase alloy for high-energy batteries
Energy Technology Data Exchange (ETDEWEB)
Young, K., E-mail: kwo.young@basf.com [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Wong, D.F. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States); Department of Chemical Engineering and Materials Science, Wayne State University, MI 48202 (United States); Wang, L. [BASF/Battery Materials-Ovonic, 2983 Waterview Drive, Rochester Hills, MI 48309 (United States)
2015-02-15
Highlights: • Influences of Ti/Cr to BCC to hydrogen storage properties were reported. • A new activation using hydrogen pressure at 5 MPa was developed. • A discharge capacity of 463 mA h g{sup −1} was reported on a C14(36%)/BCC(64%) alloy. • Increase in Ti/Cr increases storage capacity and decreases high-rate performance. • The high-rate performance was dominated by the surface reaction. - Abstract: A series of BCC/C14 mixed phase alloys with the chemical composition of Ti{sub 13.6+x}Zr{sub 2.1}V{sub 44}Cr{sub 13.2−x}Mn{sub 6.9}Fe{sub 2.7}Co{sub 1.4}Ni{sub 15.7}Al{sub 0.3}, x = 0, 2, 4, 6, 8, 10, and 12, was fabricated, and their structural, gaseous phase and electrochemical hydrogen storage properties were studied. Raising the maximum pressure for measuring the gaseous hydrogen storage capacity allowed these alloys to reach full activation, and the maximum discharge capacities ranged from 375 to 463 mA h g{sup −1}. As the Ti/Cr ratio in the alloy composition increased, the maximum gaseous hydrogen storage capacity improved due to the expansion in both BCC and C14 unit cells. However, reversibility decreased due to the higher stability of the hydride phase, as indicated by the lower equilibrium pressures measured for these alloys. As with most other metal hydride alloys, the electrochemical capacities measured at 50 and 4 mA g{sup −1} fell between the boundaries set by the maximum and reversible gaseous hydrogen storage capacities. The poorer high-rate dischargeability observed with higher Ti/Cr ratios was attributed to the lower surface exchange current (less catalytic). Two other negative impacts observed with higher Ti/Cr ratios in the alloy composition are poorer cycle stability and lower open-circuit voltage.
Integrable peakon equations with cubic nonlinearity
International Nuclear Information System (INIS)
Hone, Andrew N W; Wang, J P
2008-01-01
We present a new integrable partial differential equation found by Vladimir Novikov. Like the Camassa-Holm and Degasperis-Procesi equations, this new equation admits peaked soliton (peakon) solutions, but it has nonlinear terms that are cubic, rather than quadratic. We give a matrix Lax pair for V Novikov's equation, and show how it is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy. Infinitely many conserved quantities are found, as well as a bi-Hamiltonian structure. The latter is used to obtain the Hamiltonian form of the finite-dimensional system for the interaction of N peakons, and the two-body dynamics (N = 2) is explicitly integrated. Finally, all of this is compared with some analogous results for another cubic peakon equation derived by Zhijun Qiao. (fast track communication)
International Nuclear Information System (INIS)
Lagarec, K.; Rancourt, D.G.; Bose, S.K.; Sanyal, B.; Dunlap, R.A.
2001-01-01
We report the first conclusive observation of a high-moment (HM)/low-moment (LM) transition occurring in face centered cubic Fe-Ni alloys. 57 Fe Moessbauer isomer shifts give local electronic densities that exhibit a large discontinuity of ∼0.4 el./a 0 3 at the transition that spans the concentration range ∼60-80 at% Fe, in agreement with ab initio predictions. Our electronic structure calculations give an isomer shift discontinuity at a comparable composition and of the same magnitude as the observed one. This identification of the HM/LM transition in Fe-Ni allows an interpretation of the compositional dependence of the lattice parameter (at room temperature or extrapolated to T=0 K) in which it is seen that the Invar effect is an expansion, relative to normal HM non-magnetovolume active behavior, not a contraction as is required in all two-γ-state-like interpretations. Indeed, the Invar effect and the HM/LM transition are seen as two distinct and competing phenomena that dominate at different compositions and that arise from different features of the electronic structure: a large inter-atomic separation dependence of the magnetic exchange interaction between large local moments versus instability of the local moment magnitude, respectively. In the Fe-rich alloys including Invar (Fe 65 Ni 35 ), we observe temperature-induced changes in electronic density that follow the spontaneous magnetization curves and that are both consistent with the associated loss of local moment orientation order and inconsistent with a significant loss of local moment magnitude. This establishes that Invar is predominantly a HM phase at all temperatures where an Invar effect occurs. In the most Fe-rich alloys that have LM ground states (including γ-Fe), we find that thermal stabilization of the HM phase occurs at high temperatures (i.e., increase of local moment magnitude with increasing temperature), along a continuum of homogeneous phases between the LM and HM extremes, in a
Structure and Barr body formation of an Xp + chromosome with two inactivation centers.
Daly, R F; Patau, K; Therman, E; Sarto, G E
1977-01-01
A patients with seizures, Von Willebrand disease, and symptoms of Turner syndrome was a chromosomal mosaic. In blood culture (1974), 56% of the cells were 45, X 33% 46, XXp+ and 11% 47,XXp + Xp +; in the skin, no cells with 47 chromosomes were found. Presumably the Xp + chromosome arose through a break in the Q-banded dark region next to the centromere on Xp to which an Xq had been attached. The abnormal X was late-labeling and formed a larger than normal Barr body. Of the chromatin-positive fibroblasts, 18.2% showed bipartite Barr bodies, which agrees with the hypothesis that the X inactivation center lies on the proximal part of the Xq. On the basis of the structure and behavior of the bipartite bodies in the present patient, as compared to those formed by other chromosomes with two presumed inactivation centers, we propose that the dark region next to the centromere of Xp remains active in the inactive X. In cells with 45,X and 46,XY, this region has the same relative size, whereas it is significantly shorter in the active X of three females, including the present patient, with one abnormal X. We propose that this region on the active X reveals different states of activity, as reflected in its length, depending on how many other X chromosomes are in the cell. Images Fig. 1 Fig. 2 Fig. 3 PMID:299980
Nonlinear Analysis and Preliminary Testing Results of a Hybrid Wing Body Center Section Test Article
Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.; Wu, Hsi-Yung T.
2015-01-01
A large test article was recently designed, analyzed, fabricated, and successfully tested up to the representative design ultimate loads to demonstrate that stiffened composite panels with through-the-thickness reinforcement are a viable option for the next generation large transport category aircraft, including non-conventional configurations such as the hybrid wing body. This paper focuses on finite element analysis and test data correlation of the hybrid wing body center section test article under mechanical, pressure and combined load conditions. Good agreement between predictive nonlinear finite element analysis and test data is found. Results indicate that a geometrically nonlinear analysis is needed to accurately capture the behavior of the non-circular pressurized and highly-stressed structure when the design approach permits local buckling.
Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.
2016-01-01
This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.
Vercillo, Tiziana; Tonelli, Alessia; Gori, Monica
2018-01-01
The effects of early visual deprivation on auditory spatial processing are controversial. Results from recent psychophysical studies show that people who were born blind have a spatial impairment in localizing sound sources within specific auditory settings, while previous psychophysical studies revealed enhanced auditory spatial abilities in early blind compared to sighted individuals. An explanation of why an auditory spatial deficit is sometimes observed within blind populations and its task-dependency remains to be clarified. We investigated auditory spatial perception in early blind adults and demonstrated that the deficit derives from blind individual's reduced ability to remap sound locations using an external frame of reference. We found that performance in blind population was severely impaired when they were required to localize brief auditory stimuli with respect to external acoustic landmarks (external reference frame) or when they had to reproduce the spatial distance between two sounds. However, they performed similarly to sighted controls when had to localize sounds with respect to their own hand (body-centered reference frame), or to judge the distances of sounds from their finger. These results suggest that early visual deprivation and the lack of visual contextual cues during the critical period induce a preference for body-centered over external spatial auditory representations. Copyright © 2017 Elsevier B.V. All rights reserved.
Surette, Véronique; Ward, Stéphanie; Morin, Pascale; Vatanparast, Hassan; Bélanger, Mathieu
2017-11-01
Food reluctance can present as fussiness, picky eating, slowness in eating, and high satiety responsiveness. It can be associated with inadequate weight gain during early childhood. Although a majority of preschoolers attend daycare centers, associations between their eating behaviors at daycare and their body composition have not been studied. Our aim was to develop an estimate of food reluctance and to assess the relationship between food reluctance at daycare and body mass index (BMI) and waist circumference of preschoolers. We conducted a cross-sectional secondary analyses. Food reluctance was estimated using weighted digital plate waste analysis. Intra-rater, inter-rater, and test-retest reliability and convergent validity of the food reluctance score were tested. The food reluctance score was then compared to preschool children's BMI and waist circumference. Participants included 309 children aged 3 to 5 years in 24 daycare centers across the Canadian province of New Brunswick. Preschool children's waist circumference and age-adjusted BMI derived from objectively measured height and weight were analyzed. Intraclass correlations were used to determine the reliability of the new estimate. Spearman correlation was used to compare the estimate with parental report of food reluctance. Multivariate linear regressions were used to examine the relationship between food reluctance and waist circumference and age-adjusted BMI. The estimated food reluctance score demonstrated excellent inter- and intra-rater reliability (intraclass correlation>0.97; PBehavior Questionnaire (ρ=.53, Pfood reluctance at the daycare center was associated with a lower age-adjusted BMI (adjusted β -1.41; 95% CI -.15 to -2.67), but was not associated with children's waist circumference (adjusted β -.60; 95% CI -2.06 to .86). Signs of food reluctance can be observed in daycare and relate to lower BMI among preschoolers. Copyright © 2017 Academy of Nutrition and Dietetics. Published by
Knott, Gary D
2000-01-01
A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline func...
Smoothing quadratic and cubic splines
Oukropcová, Kateřina
2014-01-01
Title: Smoothing quadratic and cubic splines Author: Kateřina Oukropcová Department: Department of Numerical Mathematics Supervisor: RNDr. Václav Kučera, Ph.D., Department of Numerical Mathematics Abstract: The aim of this bachelor thesis is to study the topic of smoothing quadratic and cubic splines on uniform partitions. First, we define the basic con- cepts in the field of splines, next we introduce interpolating splines with a focus on their minimizing properties for odd degree and quadra...
The planar cubic Cayley graphs
Georgakopoulos, Agelos
2018-01-01
The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.
The planar cubic cayley graphs
Georgakopoulos, Agelos
2018-01-01
The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.
Amaya, Andrew J; Pathak, Harshad; Modak, Viraj P; Laksmono, Hartawan; Loh, N Duane; Sellberg, Jonas A; Sierra, Raymond G; McQueen, Trevor A; Hayes, Matt J; Williams, Garth J; Messerschmidt, Marc; Boutet, Sébastien; Bogan, Michael J; Nilsson, Anders; Stan, Claudiu A; Wyslouzil, Barbara E
2017-07-20
Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ∼225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ± 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. The high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ∼1 μs time scale in single nanodroplets.
Cryptographic Analysis in Cubic Time
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis; Seidl, H.
2004-01-01
The spi-calculus is a variant of the polyadic pi-calculus that admits symmetric cryptography and that admits expressing communication protocols in a precise though still abstract way. This paper shows that context-independent control flow analysis can be calculated in cubic time despite the fact...
Starikov, S. V.; Kolotova, L. N.; Kuksin, A. Yu.; Smirnova, D. E.; Tseplyaev, V. I.
2018-02-01
We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0 -phase that is formed in U-Mo alloys at low temperature. Structure of γ0 -phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [ 001 ] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs -phase, still showing ordering of central atom displacements. With rise in temperature, γs -phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs -phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. This approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.
Numbers for reducible cubic scrolls
Directory of Open Access Journals (Sweden)
Israel Vainsencher
2004-12-01
Full Text Available We show how to compute the number of reducible cubic scrolls of codimension 2 in (math blackboard symbol Pn incident to the appropriate number of linear spaces.Mostramos como calcular o número de rolos cúbicos redutíveis de codimensão 2 em (math blackboard symbol Pn incidentes a espaços lineares apropriados.
Randomized Block Cubic Newton Method
Doikov, Nikita
2018-02-12
We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\\\cal O}(1/\\\\epsilon)$, ${\\\\cal O}(1/\\\\sqrt{\\\\epsilon})$ and ${\\\\cal O}(\\\\log (1/\\\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.
Cubic Matrix, Nambu Mechanics and Beyond
Yoshiharu, KAWAMURA; Department of Physics, Shinshu University
2003-01-01
We propose a generalization of cubic matrix mechanics by introducing a canonical triplet and study its relation to Nambu mechanics. The generalized cubic matrix mechanics we consider can be interpreted as a 'quantum' generalization of Nambu mechanics.
Cubic Matrix, Nambu Mechanics and Beyond
Kawamura, Yoshiharu
2002-01-01
We propose a generalization of cubic matrix mechanics by introducing a canonical triplet and study its relation to Nambu mechanics. The generalized cubic matrix mechanics we consider can be interpreted as a “quantum” generalization of Nambu mechanics.
Solving Cubic Equations by Polynomial Decomposition
Kulkarni, Raghavendra G.
2011-01-01
Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…
Cubic colloids : Synthesis, functionalization and applications
Castillo, S.I.R.
2015-01-01
This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when
Directory of Open Access Journals (Sweden)
behrooz teymourian
2016-03-01
Full Text Available Objective: The aim of this study was comparing the ground reaction forces, center of pressure and body center of mass changes in voluntary, semi-voluntary and involuntary gait termination in healthy young men. Methods: In this study, 12 young men performed termination of gait in three different patterns. The variable of peak antero-posterior and vertical forces in two directions at both limbs, the time to reach peak and average forces in every limb in both directions, the center of pressure displacement of medio-lateral and antero-posterior direction for each limb and the net center of pressure and the displacement of the center of mass motion in all three motion plates were recorded using motion analysis system and force plate.The repeated measurements test was used to compare three patterns of gait termination at significance level of p&le0.5. Results: The results showed a significant difference in variables of peak antero-posterior force, the time to reach peak antero-posterior force and mean antero-posterior forces of the leading limb, the peak antero-posterior force of the trialing limbs, the depth force of leading limbs, medio-lateral cop of leading limbs displacement and vertical displacement of the center of mass, among different patterns of gait termination. Conclusion: While walking, the probability of a fall or collision damage, when a sudden or unexpected stop is required, increases. Therefore, more coordination between neuromuscular systems is required.
Cubical local partial orders on cubically subdivided spaces - existence and construction
DEFF Research Database (Denmark)
Fajstrup, Lisbeth
The geometric models of Higher Dimensional Automata and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes......, such that any n-cube in the cubic subdivision is dihomeomorphic to [0,1]^n with the induced partial order from R^n. After subdivision once, any cubicalized space has a cubical local partial order. In particular, all triangularized spaces have a cubical local partial order. This implies in particular...
Cubical local partial orders on cubically subdivided spaces - Existence and construction
DEFF Research Database (Denmark)
Fajstrup, Lisbeth
2006-01-01
The geometric models of higher dimensional automata (HDA) and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes......, such that any n-cube in the cubic subdivision is dihomeomorphic to [0,1]^n with the induced partial order from R^n. After subdivision once, any cubicalized space has a cubical local partial order. In particular, all triangularized spaces have a cubical local partial order. This implies in particular...
Weighted cubic and biharmonic splines
Kvasov, Boris; Kim, Tae-Wan
2017-01-01
In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.
Takemura, Yasutaka; Lee, Du-Yeong; Lee, Seung-Eun; Chae, Kyo-Suk; Shim, Tae-Hun; Lian, Guoda; Kim, Moon; Park, Jea-Gun
2015-05-15
The TMR ratio of Co2Fe6B2/MgO-based p-MTJ spin valves stacked with a [Co/Pd]n-SyAF layer decreased rapidly when the ex situ magnetic annealing temperature (Tex) was increased from 275 to 325 °C, and this decrease was associated with degradation of the Co2Fe6B2 pinned layer rather than the Co2Fe6B2 free layer. At a Tex above 325 °C the amorphous Co2Fe6B2 pinned layer was transformed into a face-centered-cubic (fcc) crystalline layer textured from [Co/Pd]n-SyAF, abruptly reducing the Δ1 coherence tunneling of perpendicular-spin-torque electrons between the (100) MgO tunneling barrier and the fcc Co2Fe6B2 pinned layer.
Cubical sets and the topological topos
DEFF Research Database (Denmark)
Spitters, Bas
2016-01-01
Coquand's cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. This paper contributes to the understanding of this model. We make three contributions......: 1. Johnstone's topological topos was created to present the geometric realization of simplicial sets as a geometric morphism between toposes. Johnstone shows that simplicial sets classify strict linear orders with disjoint endpoints and that (classically) the unit interval is such an order. Here we...... show that it can also be a target for cubical realization by showing that Coquand's cubical sets classify the geometric theory of flat distributive lattices. As a side result, we obtain a simplicial realization of a cubical set. 2. Using the internal `interval' in the topos of cubical sets, we...
Evolution of motions of a rigid body about its center of mass
Chernousko, Felix L; Leshchenko, Dmytro D
2017-01-01
The book presents a unified and well-developed approach to the dynamics of angular motions of rigid bodies subjected to perturbation torques of different physical nature. It contains both the basic foundations of the rigid body dynamics and of the asymptotic method of averaging. The rigorous approach based on the averaging procedure is applicable to bodies with arbitrary ellopsoids of inertia. Action of various perturbation torques, both external (gravitational, aerodynamical, solar pressure) and internal (due to viscous fluid in tanks, elastic and visco-elastic properties of a body) is considered in detail. The book can be used by researchers, engineers and students working in attitude dynamics of spacecraft.
Social Inequalities in Body Weight and Physical Activity: Exploring the Role of Fitness Centers
McLaren, Lindsay; Rock, Melanie J.; McElgunn, Jamie
2012-01-01
Fitness centers are a viable option for physical activity, particularly in climates with significant weather variation. Due to variation in economic and social expressions of exclusivity, fitness centers may have some relation to social inequalities in physical inactivity and related health outcomes; thus, our objective was to explore this…
Darboux integrability and rational reversibility in cubic systems with two invariant straight lines
Directory of Open Access Journals (Sweden)
Dumitru Cozma
2013-01-01
Full Text Available We find conditions for a singular point O(0,0 of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0,0 is proved by using the method of Darboux integrability and the rational reversibility.
Directory of Open Access Journals (Sweden)
Liudmyla Shesterova
2017-04-01
Full Text Available Purpose: to determine the basic conditions for minimizing the cost of effort to accelerate the movement speed of the common center of athlete's body mass in the specified direction of his movement. Material & Methods: the study used video footage for short distances of the world's leading sprinters and athletes of various qualifications. To solve the problems, we used: a method for estimating the angles between biosigns and storyboard video, method of analogies, method of the theory of similarity and dimension, the method of computer modeling, statistical analysis, estimation of physical stress and strength impulse using the method of estimating the interdependence of the developed effort on the angle of expansion between the corresponding biokinematic links. Results: it sets the basic position kinematics movement common center of the athlete's body mass (CCM, which improves the efficiency of performance crouch start. The results of the dynamics of the movement of a common force vector are presented, which determines the direction of movement of the body's CCM in three-dimensional space, ensuring its movement along the center line of the run are presented. On the basis of the observed dynamics of the change in the direction of the resultant force vector, when a crouch start is performed, it is established that the trajectory of its movement is a helicoid. Conclusion: movement of the common center of body mass is carried out along the helicoid with subsequent reduction of its radius. Changes in the length of the helix forming the radius are systematic and reflect the energy efficiency of the running costs. The dynamics of the helicoidal movement of the generating vector is observed in each supporting phase of the running step, which makes it possible to assess the stability of the dynamic stereotype manifestation of the running step, and to judge by these indicators about the degree of athlete fatigue at the distance.
Lake, Jason P; Lauder, Mike A; Smith, Neal A
2012-05-01
The aim of this study was to compare measures of power output applied to the center of mass of the barbell and body system (CM) obtained by multiplying ground reaction force (GRF) by (a) the velocity of the barbell; (b) the velocity of the CM derived from three-dimensional (3D) whole-body motion analysis, and (c) the velocity of the CM derived from GRF during lower-body resistance exercise. Ten resistance-trained men performed 3 maximal-effort single back squats with 60% 1 repetition maximum while GRF and whole-body motion were captured using synchronized Kistler force platforms and a Vicon Motus motion analysis system. Repeated measures analysis of variance of time-normalized kinematic and kinetic data obtained using the different methods showed that the barbell was displaced 13.4% (p barbell was 16.1% (p barbell was 18.7% (p barbell was significantly greater than the velocity of the trunk, upper leg, lower leg, and foot (p barbell (using inverse dynamics) or CM (GRF or 3D motion analysis). Failure to apply these suggestions could result in continued overestimation of CM power, compromising methodological integrity.
Directory of Open Access Journals (Sweden)
Haibo Wang
2013-01-01
Full Text Available Highly crystalline body-centered cubic structure Y2O3 with lanthanide (Ln codopants (Ln = Yb3+/Er3+ and Yb3+/Ho3+ has been synthesized via a moderate hydrothermal method in combination with a subsequent calcination. The structure and morphology of Y(OH3 precursors and Y2O3 nanoparticles were characterized by X-ray diffraction and transmission electron microscopy. The results reveal that the Y2O3 nanoparticles possess cubic phase and form the quasispherical structure. The upconversion luminescence properties of Y2O3 nanoparticles doped with different Ln3+ (Yb3+/ Er3+ and Yb3+/ Ho3+ ions were well investigated under the 980 nm excitation. The results show that the Yb3+/Er3+ and Yb3+/Ho3+ codoped Y2O3 nanoparticles exhibit strong red and light yellow upconversion emissions, respectively. It is expected that these Y2O3 nanoparticles with tunable multicolor output and intense red upconversion emission may have potential application in color displays and biolabels.
Cubic spline functions for curve fitting
Young, J. D.
1972-01-01
FORTRAN cubic spline routine mathematically fits curve through given ordered set of points so that fitted curve nearly approximates curve generated by passing infinite thin spline through set of points. Generalized formulation includes trigonometric, hyperbolic, and damped cubic spline fits of third order.
Topics in Cubic Special Geometry
Bellucci, Stefano; Roychowdhury, Raju
2011-01-01
We reconsider the sub-leading quantum perturbative corrections to N=2 cubic special Kaehler geometries. Imposing the invariance under axion-shifts, all such corrections (but the imaginary constant one) can be introduced or removed through suitable, lower unitriangular symplectic transformations, dubbed Peccei-Quinn (PQ) transformations. Since PQ transformations do not belong to the d=4 U-duality group G4, in symmetric cases they generally have a non-trivial action on the unique quartic invariant polynomial I4 of the charge representation R of G4. This leads to interesting phenomena in relation to theory of extremal black hole attractors; namely, the possibility to make transitions between different charge orbits of R, with corresponding change of the supersymmetry properties of the supported attractor solutions. Furthermore, a suitable action of PQ transformations can also set I4 to zero, or vice versa it can generate a non-vanishing I4: this corresponds to transitions between "large" and "small" charge orbit...
The cyclicity of a cubic system with nonradical Bautin ideal
Levandovskyy, Viktor; Romanovski, Valery G.; Shafer, Douglas S.
We present a method for investigating the cyclicity of an elementary focus or center of a polynomial system of differential equations by means of complexification of the system and application of algorithms of computational algebra, showing an approach to treating the case that the Bautin ideal B of focus quantities is not a radical ideal (more precisely, when the ideal B is not radical, where B is the ideal generated by the shortest initial string of focus quantities that, like the Bautin ideal, determines the center variety). We illustrate the method with a family of cubic systems.
Alkon, Abbey; Crowley, Angela A; Neelon, Sara E Benjamin; Hill, Sherika; Pan, Yi; Nguyen, Viet; Rose, Roberta; Savage, Eric; Forestieri, Nina; Shipman, Linda; Kotch, Jonathan B
2014-03-01
To address the public health crisis of overweight and obese preschool-age children, the Nutrition And Physical Activity Self Assessment for Child Care (NAP SACC) intervention was delivered by nurse child care health consultants with the objective of improving child care provider and parent nutrition and physical activity knowledge, center-level nutrition and physical activity policies and practices, and children's body mass index (BMI). A seven-month randomized control trial was conducted in 17 licensed child care centers serving predominantly low income families in California, Connecticut, and North Carolina, including 137 child care providers and 552 families with racially and ethnically diverse children three to five years old. The NAP SACC intervention included educational workshops for child care providers and parents on nutrition and physical activity and consultation visits provided by trained nurse child care health consultants. Demographic characteristics and pre - and post-workshop knowledge surveys were completed by providers and parents. Blinded research assistants reviewed each center's written health and safety policies, observed nutrition and physical activity practices, and measured randomly selected children's nutritional intake, physical activity, and height and weight pre- and post-intervention. Hierarchical linear models and multiple regression models assessed individual- and center-level changes in knowledge, policies, practices and age- and sex-specific standardized body mass index (zBMI), controlling for state, parent education, and poverty level. Results showed significant increases in providers' and parents' knowledge of nutrition and physical activity, center-level improvements in policies, and child-level changes in children's zBMI based on 209 children in the intervention and control centers at both pre- and post-intervention time points. The NAP SACC intervention, as delivered by trained child health professionals such as child care
Personnel monitoring with a partial-body-counter at the Research Center Seibersdorf
International Nuclear Information System (INIS)
Hefner, A.; Steger, F.; Schoenfeld, T.
1974-01-01
The Austrian laws for radiation protection prescribe a physical control of the persons which are exposed to radiation where incorporated radionuclids have to be considered too. At the Research Center Seibersdorf a monitor has been developed for that purpose. The calibration of the monitor for various measuring positions was performed with the aid of standard-solutions placed inside phantoms. The apparatus has then been used for personnel monitoring and the results obtained are presented and discussed. (author)
Cubical sets as a classifying topos
DEFF Research Database (Denmark)
Spitters, Bas
Coquand’s cubical set model for homotopy type theory provides the basis for a computational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. We show that the underlying cube category is the opposite of the Lawvere theory of De...... Morgan algebras. The topos of cubical sets itself classifies the theory of ‘free De Morgan algebras’. This provides us with a topos with an internal ‘interval’. Using this interval we construct a model of type theory following van den Berg and Garner. We are currently investigating the precise relation...
International Nuclear Information System (INIS)
Alfaro L, M.M.
1998-10-01
The existence of the Center of Storage of Radioactive Wastes (CADER) in the Municipality of Temascalapa, Estado de Mexico has generated restlessness among the inhabitants from it installation. In March 1998, its appeared in diverse media, notes and reports attributing illnesses and sufferings to the CADER activities. In coordination with the health authorities of the Estado de Mexico and of the Municipality of Temascalapa, the doctors of the ININ assisted people that converged to the centers. For the above-mentioned, in the period understood among the months of May to September 1998, its were carried out measurements in 338 urine samples and 45 whole-body of voluntary people of the surroundings of the CADER. This document has the purpose of presenting the information on the carried out measurements. (Author)
International Nuclear Information System (INIS)
Tamura, R.; Shibata, K.; Nishimoto, K.; Takeuchi, S.; Edagawa, K.; Saitoh, K.; Isobe, M.; Ueda, Y.
2005-01-01
An antiparallel orientational transition is reported for an intermetallic compound, i.e., Cd 6 Ca crystal, which is a 1/1-1/1-1/1 crystalline approximant to the icosahedral quasicrystal Cd 5.7 Ca. A group theoretical analysis based on the Landau theory predicts that the space group of the low-temperature phase is either C2/c or C2/m, in good agreement with the observations. Accordingly, two types of orientational orderings of Cd 4 tetrahedra, which are located in the center of icosahedral clusters, may occur below 100 K: In both cases, the Cd 4 tetrahedra are orientationally ordered in an antiparallel fashion along the [110] direction of the high temperature body-centered-cubic phase. Such a transition in a metal is reminiscent of orientational transitions in molecular solids
Riggs, Christina
2010-01-01
The human body is both the physical form inhabited by an individual “self” and the medium through which an individual engages with society. Hence the body both shapes and is shaped by an individual’s social roles. In contrast to the cognate fields of archaeology, anthropology, and classics, there has been little explicit discussion or theorization of the body in Egyptology. Some recent works, discussed here, constitute an exception to this trend, but there is much more scope for exploring anc...
Biomechanical Analysis with Cubic Spline Functions
McLaughlin, Thomas M.; And Others
1977-01-01
Results of experimentation suggest that the cubic spline is a convenient and consistent method for providing an accurate description of displacement-time data and for obtaining the corresponding time derivatives. (MJB)
The effect of direct heating and cooling of heat regulation centers on body temperature
Barbour, H. G.
1978-01-01
Experiments were done on 28 rabbits in which puncture instruments were left in the brain for 1-2 days until the calori-puncture hyperthermia had passed and the body temperature was again normal. The instrument remaining in the brain was then used as a galvanic electrode and a second fever was produced, this time due to the electrical stimulus. It was concluded that heat is a centrally acting antipyretic and that cold is a centrally acting stimulus which produces hyperpyrexia cold-induced fever.
Flexible regression models with cubic splines.
Durrleman, S; Simon, R
1989-05-01
We describe the use of cubic splines in regression models to represent the relationship between the response variable and a vector of covariates. This simple method can help prevent the problems that result from inappropriate linearity assumptions. We compare restricted cubic spline regression to non-parametric procedures for characterizing the relationship between age and survival in the Stanford Heart Transplant data. We also provide an illustrative example in cancer therapeutics.
IMPROVEMENT OF BODY SHOP MANAGING AS A PART OF VEHICLE IMPORTERS CENTER
Directory of Open Access Journals (Sweden)
Vasil Stamboliski
2014-12-01
Full Text Available The dynamic rhythm of living in today’s contemporary surroundings can not be considered without the use of personal and commercial vehicles, for transport of passengers and cargo. This means that every manufacturer in this segment, in their departments for development, find a way to increase their participation in the market. Since the race with time, for promoting new models on the market, not always is in positive relation with the profit which the manufacturer plans to achieve, issues the manufacturer’s focus in the after-sale activities. The body shop with its service, as part of the after-sale activities, brings the client satisfaction to a higher level and of course contributes to realization of higher profit of the company. The setting of the equipment and the staff management, the analysis of the number of entries and realized working hours in the body shop of an importer centre are the central topic/main subject for the author in this paper work. Finding the key factors, as well as the possibility for implementation of the key factors, would reflect increased number of entries, increased number of realized working hours and possibility for improving of the existing system of managing.
School-Based Health Center Intervention Improves Body Mass Index in Overweight and Obese Adolescents
Directory of Open Access Journals (Sweden)
Alberta S. Kong
2013-01-01
Full Text Available Adolescents Committed to Improvement of Nutrition and Physical Activity (ACTION was undertaken to determine feasibility of a school-based health center (SBHC weight management program. Two urban New Mexico SBHCs were randomized to deliver ACTION or standard care. ACTION consisted of eight visits using motivational interviewing to improve eating and physical activity behavior. An educational nutrition and physical activity DVD for students and a clinician toolkit were created for use as menu of options. Standard care consisted of one visit with the SBHC provider who prescribed recommendations for healthy weight. Sixty nondiabetic overweight/obese adolescents were enrolled. Measures included BMI percentile, waist circumference, insulin resistance by homeostasis model assessment (HOMA-IR, blood pressure, triglycerides, and HDL-C levels. Pre- to postchanges for participants were compared between groups. Fifty-one students (mean age 15 years, 62% female, 75% Hispanic completed pre- and postmeasures. ACTION students (n=28 had improvements in BMI percentile (P=0.04 and waist circumference (P=0.04 as compared with students receiving standard care (n=23. No differences were found between the two groups in blood pressure, HOMA-IR, triglycerides, and HDL-C. The ACTION SBHC weight management program was feasible and demonstrated improved outcomes in BMI percentile and waist circumference.
Helium release from metals with face-centered cubic structure
International Nuclear Information System (INIS)
Sciani, V.; Lucki, G.; Jung, P.
1984-01-01
The helium release from gold sheets of 5 and 54 μm of thickness and helium concentrations from 10 -9 to 10 -5 ap of He during the isothermal and linear annealing is studied. The helium was put in the sample through the implantation of alpha particles, with variable energy,in the cyclotron. The free diffusion of the atoms of the helium, where the diffusion coefficient follows an Arrhenius law is studied. (E.G.) [pt
Mapelli, Andrea; Zago, Matteo; Fusini, Laura; Galante, Domenico; Colombo, Andrea; Sforza, Chiarella
2014-01-01
Since strictly related to balance and stability control, body center of mass (CoM) kinematics is a relevant quantity in sport surveys. Many methods have been proposed to estimate CoM displacement. Among them, segmental method appears to be suitable to investigate CoM kinematics in sport: human body is assumed as a system of rigid bodies, hence the whole-body CoM is calculated as the weighted average of the CoM of each segment. The number of landmarks represents a crucial choice in the protocol design process: one have to find the proper compromise between accuracy and invasivity. In this study, using a motion analysis system, a protocol based upon the segmental method is validated, adopting an anatomical model comprising 14 landmarks. Two sets of experiments were conducted. Firstly, our protocol was compared to the ground reaction force method (GRF), accounted as a standard in CoM estimation. In the second experiment, we investigated the aerial phase typical of many disciplines, comparing our protocol with: (1) an absolute reference, the parabolic regression of the vertical CoM trajectory during the time of flight; (2) two common approaches to estimate CoM kinematics in gait, known as sacrum and reconstructed pelvis methods. Recognized accuracy indexes proved that the results obtained were comparable to the GRF; what is more, during the aerial phases our protocol showed to be significantly more accurate than the two other methods. The protocol assessed can therefore be adopted as a reliable tool for CoM kinematics estimation in further sport researches. Copyright © 2013 Elsevier B.V. All rights reserved.
Kolacz, Jacek; Raspa, Melissa; Heilman, Keri J; Porges, Stephen W
2018-02-07
Individuals with fragile X syndrome (FXS), especially those co-diagnosed with autism spectrum disorder (ASD), face many sensory processing challenges. However, sensory processing measures informed by neurophysiology are lacking. This paper describes the development and psychometric properties of a parent/caregiver report, the Brain-Body Center Sensory Scales (BBCSS), based on Polyvagal Theory. Parents/guardians reported on 333 individuals with FXS, 41% with ASD features. Factor structure using a split-sample exploratory-confirmatory design conformed to neurophysiological predictions. Internal consistency, test-retest, and inter-rater reliability were good to excellent. BBCSS subscales converged with the Sensory Profile and Sensory Experiences Questionnaire. However, data also suggest that BBCSS subscales reflect unique features related to sensory processing. Individuals with FXS and ASD features displayed more sensory challenges on most subscales.
Degenerations of cubic fourfolds and holomorphic symplectic geometry
van den Dries, B.
2012-01-01
In this thesis we study deformations of varieties of lines on smooth cubic hypersurfaces of the 5-dimensional complex projective space. These cubic hypersurfaces are also called cubic fourfolds. Beauville and Donagi proved that the line variety of any cubic fourfold is a polarized holomorphic
Directory of Open Access Journals (Sweden)
Mu YS
2016-05-01
Full Text Available Yanshun Mu,* Maoquan Qin,* Bin Wang, Sidan Li, Guanghua Zhu, Xuan Zhou, Jun Yang, Kai Wang, Wei Lin, Huyong Zheng Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, Key Laboratory of Major Diseases in Children, Ministry of Education, Hematology Oncology Center, Beijing Children’s Hospital, Capital Medical University, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Hematopoietic stem cell transplantation (HSCT is a promising method for therapy of pediatric patients with acute leukemia. However, less availability of matched donors limited its wide application. Recently, haploidentical HSCT has become a great resource. Here, we have retrospectively reported our experience of 20 pediatric patients with acute leukemia who underwent haploidentical HSCT without total body irradiation (TBI myeloablative regimen in our center from November 2007 to June 2014. All the patients attained successful HSCT engraftment in terms of myeloid and platelet recovery. Thirteen patients developed grade I–IV acute graft-versus-host disease (a-GVHD. The incidence of grade I–II a-GVHD, grade III–IV a-GVHD, and chronic GVHD (c-GVHD was 45%, 20%, and 25%, respectively. The mean myeloid and platelet recovery time was 13.20±2.41 and 19.10±8.37 days. The median follow-up time was 43.95±29.26 months. During the follow-up, three patients died. The overall survival (OS rate was 85%. The present study indicated that haploidentical HSCT without TBI myeloablative regimen significantly improved the OS rate of pediatric patients with acute leukemia. Keywords: haploidentical, hematopoietic stem cell transplantation, myeloablative regimen, total body irradiation, acute leukemia, pediatric
Mahata, Partha; Natarajan, Srinivasan; Panissod, Pierre; Drillon, Marc
2009-07-29
Octahedral Co(2+) centers have been connected by mu(3)-OH and mu(2)-OH(2) units forming [Co(4)] clusters which are linked by pyrazine forming a two-dimensional network. The two-dimensional layers are bridged by oxybisbenzoate (OBA) ligands giving rise to a three-dimensional structure. The [Co(4)] clusters bond with the pyrazine and the OBA results in a body-centered arrangement of the clusters, which has been observed for the first time. Magnetic studies reveal a noncollinear frustrated spin structure of the bitriangular cluster, resulting in a net magnetic moment of 1.4 microB per cluster. For T > 32 K, the correlation length of the cluster moments shows a stretched-exponential temperature dependence typical of a Berezinskii-Kosterlitz-Thouless model, which points to a quasi-2D XY behavior. At lower temperature and down to 14 K, the compound behaves as a soft ferromagnet and a slow relaxation is observed, with an energy barrier of ca. 500 K. Then, on further cooling, a hysteretic behavior takes place with a coercive field that reaches 5 T at 4 K. The slow relaxation is assigned to the creation/annihilation of vortex-antivortex pairs, which are the elementary excitations of a 2D XY spin system.
Purely cubic action for string field theory
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Brennan, Marie-Luise; Adam, Margaret P; Seaver, Laurie H; Myers, Angela; Schelley, Susan; Zadeh, Neda; Hudgins, Louanne; Bernstein, Jonathan A
2015-01-01
The diagnosis of Angelman syndrome (AS) is based on clinical features and genetic testing. Developmental delay, severe speech impairment, ataxia, atypical behavior and microcephaly by two years of age are typical. Feeding difficulties in young infants and obesity in late childhood can also be seen. The NIH Angelman-Rett-Prader-Willi Consortium and others have documented genotype-phenotype associations including an increased body mass index in children with uniparental disomy (UPD) or imprinting center (IC) defects. We recently encountered four cases of infantile obesity in non-deletion AS cases, and therefore examined body mass measures in a cohort of non-deletion AS cases. We report on 16 infants and toddlers (ages 6 to 44 months; 6 female, and 10 male) with severe developmental delay. Birth weights were appropriate for gestational age in most cases, >97th% in one case and not available in four cases. The molecular subclass case distribution consisted of: UPD (n = 2), IC defect (n = 3), UPD or IC defect (n = 3), and UBE3A mutation (n = 8). Almost all (7 out of 8) UPD, IC and UPD/IC cases went on to exhibit >90th% age- and gender-appropriate weight for height or BMI within the first 44 months. In contrast, no UBE3A mutation cases exhibited obesity or pre-obesity measures (percentiles ranged from <3% to 55%). These findings demonstrate that increased body mass may be evident as early as the first year of life and highlight the utility of considering the diagnosis of AS in the obese infant or toddler with developmental delay, especially when severe. Although a mechanism explaining the association of UPD, and IC defects with obesity has not been identified, recognition of this correlation may inform investigation of imprinting at the PWS/AS locus and obesity. © 2014 Wiley Periodicals, Inc.
Some elements go cubic under pressure
Czech Academy of Sciences Publication Activity Database
Legut, Dominik
2007-01-01
Roč. 60, č. 10 (2007), s. 17-17 ISSN 0031-9228 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio * polonium * cubic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.133, year: 2007
The Exact Limit of Some Cubic Towers
DEFF Research Database (Denmark)
Anbar Meidl, Nurdagül; Beelen, Peter; Nguyen, Nhut
2017-01-01
Recently, a new explicit tower of function fields was introduced by Bassa, Beelen, Garcia and Stichtenoth (BBGS). This resulted in currently the best known lower bound for Ihara’s constant in the case of non-prime finite fields. In particular over cubic fields, the tower’s limit is at least as good...
A monotonicity conjecture for real cubic maps
Energy Technology Data Exchange (ETDEWEB)
Dawson, S.P. [Los Alamos National Lab., NM (United States); Galeeva, R. [Northwestern Univ., Evanston, IL (United States); Milnor, J. [State Univ. of New York, Stony Brook, NY (United States); Tresser, C. [International Business Machines Corp., Yorktown Heights, NY (United States)
1993-12-01
This will be an outline of work in progress. We study the conjecture that the topological entropy of a real cubic map depends ``monotonely`` on its parameters, in the sense that each locus of constant entropy in parameter space is a connected set. This material will be presented in more detail in a later paper.
Most pressurized elements are not simple cubic
Czech Academy of Sciences Publication Activity Database
Legut, Dominik; Friák, Martin; Šob, Mojmír
2008-01-01
Roč. 61, č. 9 (2008), s. 10-11 ISSN 0031-9228 R&D Projects: GA MŠk OC 147; GA AV ČR IAA1041302 Institutional research plan: CEZ:AV0Z20410507 Keywords : electronic structure * simple cubic structure * phase transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.674, year: 2008
Squares in arithmetic progression over cubic fields
Bremner, Andrew; Siksek, Samir
2015-01-01
Euler showed that there can be no more than three integer squares in arithmetic progression. In quadratic number fields, Xarles has shown that there can be arithmetic progressions of five squares, but not of six. Here, we prove that there are no cubic number fields which contain five squares in arithmetic progression.
Abelian gauge potentials on cubic lattices
DEFF Research Database (Denmark)
Burrello, M.; Lepori, L.; Paganelli, S.
2017-01-01
fields in a system of ultracold atoms in optical lattices. After reviewing two of the main experimental schemes for the physical realization of synthetic gauge potentials in ultracold setups, we study cubic lattice tight-bindingmodels with commensurate flux.We finally discuss applications of gauge...
SHORT COMMUNICATIONA Cubic Power Potential Model for ...
African Journals Online (AJOL)
SHORT COMMUNICATIONA Cubic Power Potential Model for Baryonium. L. K. Sharma. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/dai.v11i1.15528 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for ...
The Exact Limit of Some Cubic Towers
DEFF Research Database (Denmark)
Anbar Meidl, Nurdagül; Beelen, Peter; Nguyen, Nhut
2017-01-01
Recently, a new explicit tower of function fields was introduced by Bassa, Beelen, Garcia and Stichtenoth (BBGS). This resulted in currently the best known lower bound for Ihara’s constant in the case of non-prime finite fields. In particular over cubic fields, the tower’s limit is at least as go...
Scattering of quantized solitary waves in the cubic Schrodinger equation
International Nuclear Information System (INIS)
Dolan, L.
1976-01-01
The quantum mechanics for N particles interacting via a delta-function potential in one space dimension and one time dimension is known. The second-quantized description of this system has for its Euler-Lagrange equations of motion the cubic Schrodinger equation. This nonlinear differential equation supports solitary wave solutions. A quantization of these solitons reproduces the weak-coupling limit to the known quantum mechanics. The phase shift for two-body scattering and the energy of the N-body bound state is derived in this approximation. The nonlinear Schrodinger equation is contrasted with the sine-Gordon theory in respect to the ideas which the classical solutions play in the description of the quantum states
Fahlgren, Elin; Nima, Ali A; Archer, Trevor; Garcia, Danilo
2015-01-01
Background. Osteopathic philosophy and practice are congruent with the biopsychosocial model, a patient-centered approach when treating disease, and the view of the person as a unity (i.e., body, mind, and soul). Nevertheless, a unity of being should involve a systematic person-centered understanding of the patient's personality as a biopsychosociospiritual construct that influences health (i.e., well-being and ill-being). We suggest Cloninger's personality model, comprising temperament (i.e., body) and character (i.e., mind and soul), as a genuine paradigm for implementation in osteopathic practice. As a first step, we investigated (1) the relationships between personality and health among osteopathic patients, (2) differences in personality between patients and a control group, and (3) differences in health within patients depending on the presenting problem and gender. Method. 524 osteopathic patients in Sweden (age mean = 46.17, SD = 12.54, 388 females and 136 males) responded to an online survey comprising the Temperament and Character Inventory and measures of health (well-being: life satisfaction, positive affect, harmony in life, energy, and resilience; ill-being: negative affect, anxiety, depression, stress, and dysfunction and suffering associated to the presenting problem). We conducted two structural equation models to investigate the association personality-health; graphically compared the patients' personality T-scores to those of the control group and compared the mean raw scores using t-tests; and conducted two multivariate analyses of variance, using age as covariate, to compare patients' health in relation to their presenting problem and gender. Results. The patients' personality explained the variance of all of the well-being (R (2) between .19 and .54) and four of the ill-being (R (2) between .05 and .43) measures. Importantly, self-transcendence, the spiritual aspect of personality, was associated to high levels of positive emotions and
Nima, Ali A.; Archer, Trevor
2015-01-01
Background. Osteopathic philosophy and practice are congruent with the biopsychosocial model, a patient-centered approach when treating disease, and the view of the person as a unity (i.e., body, mind, and soul). Nevertheless, a unity of being should involve a systematic person-centered understanding of the patient’s personality as a biopsychosociospiritual construct that influences health (i.e., well-being and ill-being). We suggest Cloninger’s personality model, comprising temperament (i.e., body) and character (i.e., mind and soul), as a genuine paradigm for implementation in osteopathic practice. As a first step, we investigated (1) the relationships between personality and health among osteopathic patients, (2) differences in personality between patients and a control group, and (3) differences in health within patients depending on the presenting problem and gender. Method. 524 osteopathic patients in Sweden (age mean = 46.17, SD = 12.54, 388 females and 136 males) responded to an online survey comprising the Temperament and Character Inventory and measures of health (well-being: life satisfaction, positive affect, harmony in life, energy, and resilience; ill-being: negative affect, anxiety, depression, stress, and dysfunction and suffering associated to the presenting problem). We conducted two structural equation models to investigate the association personality-health; graphically compared the patients’ personality T-scores to those of the control group and compared the mean raw scores using t-tests; and conducted two multivariate analyses of variance, using age as covariate, to compare patients’ health in relation to their presenting problem and gender. Results. The patients’ personality explained the variance of all of the well-being (R2 between .19 and .54) and four of the ill-being (R2 between .05 and .43) measures. Importantly, self-transcendence, the spiritual aspect of personality, was associated to high levels of positive emotions and
Directory of Open Access Journals (Sweden)
Elin Fahlgren
2015-10-01
Full Text Available Background. Osteopathic philosophy and practice are congruent with the biopsychosocial model, a patient-centered approach when treating disease, and the view of the person as a unity (i.e., body, mind, and soul. Nevertheless, a unity of being should involve a systematic person-centered understanding of the patient’s personality as a biopsychosociospiritual construct that influences health (i.e., well-being and ill-being. We suggest Cloninger’s personality model, comprising temperament (i.e., body and character (i.e., mind and soul, as a genuine paradigm for implementation in osteopathic practice. As a first step, we investigated (1 the relationships between personality and health among osteopathic patients, (2 differences in personality between patients and a control group, and (3 differences in health within patients depending on the presenting problem and gender.Method. 524 osteopathic patients in Sweden (age mean = 46.17, SD = 12.54, 388 females and 136 males responded to an online survey comprising the Temperament and Character Inventory and measures of health (well-being: life satisfaction, positive affect, harmony in life, energy, and resilience; ill-being: negative affect, anxiety, depression, stress, and dysfunction and suffering associated to the presenting problem. We conducted two structural equation models to investigate the association personality-health; graphically compared the patients’ personality T-scores to those of the control group and compared the mean raw scores using t-tests; and conducted two multivariate analyses of variance, using age as covariate, to compare patients’ health in relation to their presenting problem and gender.Results. The patients’ personality explained the variance of all of the well-being (R2 between .19 and .54 and four of the ill-being (R2 between .05 and .43 measures. Importantly, self-transcendence, the spiritual aspect of personality, was associated to high levels of positive emotions
Piecewise-Cubic Approximation in Autotracking Mode
Dikoussar, N D
2004-01-01
A method for piecewise-cubic approximation within the frame of four-point transforms is proposed. The knots of the segments are detected in autotracking mode using a digitized curve. A three-point cubic parametric spline (TPS) is used as a model of a local approximant. A free parameter $\\theta$ (a coefficient at $x^{3}$) is found in a line following mode, using step-by-step averaging. A formula for expression of the free parameter via a length of the segment and values of a function and derivatives in joining points is received. The $C^{1}$-smoothness depends on the accuracy of the $\\theta$-estimate. The stability of the method w.r.t. input errors is shown as well. The key parameters of the approximation are: the parameters of the basic functions, the variance of the input errors, and a sampling step. The efficiency of the method is shown by numerical calculations on test examples.
Electronic levels of cubic quantum dots
Energy Technology Data Exchange (ETDEWEB)
Aristone, Flavio [Federal De Mato Grosso Do Sul Univ., Campo Grande (Brazil); Sanchez-Dehesa, Jose [Autonoma De Madrid Univ., Madrid (Spain); Marques, Gilmar E. [Federal De Sao Carlos Univ., Sao Carlos (Brazil)
2003-09-01
We introduce an efficient variational method to solve the three-dimensional Schroedinger equation for any arbitrary potential V(x,y,z). The method uses a basis set of localized functions which are build up as products of one-dimensional cubic {beta}-splines. We calculated the energy levels of GaAs/AlGaAs cubic quantum dots and make a comparison with the results from two well-known simplification schemes based on a decomposition of the full potential problem into three separate one-dimensional problems. We show that the scheme making a sequential decomposition gives eigenvalues in better agreement with the ones obtained variationally, but an exact solution is necessary when looking for highly precise values.
HRTEM studies of dislocations in cubic BN
International Nuclear Information System (INIS)
Nistor, L.C.; Tendeloo, G. van; Dinca, G.
2004-01-01
The atomic structure of dislocations in cubic boron nitride has been investigated by high resolution transmission electron microscopy. Most of the perfect dislocations, screw and 60 edge, are dissociated. A 60 dislocation which was undissociated has been analysed. Computer simulation is performed in an attempt to characterise the core structure. Twinning dislocations and dislocations resulting from the intersection of stacking faults are also revealed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
HRTEM studies of dislocations in cubic BN
Energy Technology Data Exchange (ETDEWEB)
Nistor, L.C. [National Institute for Materials Physics, P.O. Box MG-7 Magurele, 077125 Bucharest (Romania); Tendeloo, G. van [University of Antwerp, EMAT, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Dinca, G. [Dacia Synthetic Diamond Factory, Timisoara av. 5, P.O. Box 58-52, 077350 Bucharest (Romania)
2004-09-01
The atomic structure of dislocations in cubic boron nitride has been investigated by high resolution transmission electron microscopy. Most of the perfect dislocations, screw and 60 edge, are dissociated. A 60 dislocation which was undissociated has been analysed. Computer simulation is performed in an attempt to characterise the core structure. Twinning dislocations and dislocations resulting from the intersection of stacking faults are also revealed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Use of Pom Pons to Illustrate Cubic Crystal Structures.
Cady, Susan G.
1997-01-01
Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)
Cubic Polynomials with Rational Roots and Critical Points
Gupta, Shiv K.; Szymanski, Waclaw
2010-01-01
If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.
Center of Mass of Two or More Celestial Bodies as a Basis of Comets and «Black Holes» Mechanism
Directory of Open Access Journals (Sweden)
Eugeny F. Orlov
2012-04-01
Full Text Available The article considers the questions, arising during rendezvous of two celestial bodies with equal mass, one of which is the Earth and the consequences of such rendezvous to modern civilization, suggests the idea of centers of galaxies mass with anomalously large values of the gravitational fields, which allows to divide them into two types – material filled and hollow.
Energy Technology Data Exchange (ETDEWEB)
Taremi, Mojgan, E-mail: mojgan.taremi@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada); Department of Radiation Oncology, University Health Network, Toronto, ON (Canada); Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Hope, Andrew [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada); Department of Radiation Oncology, University Health Network, Toronto, ON (Canada); Dahele, Max [Department of Radiation Oncology, Stronach Regional Cancer Center, Newmarket, ON (Canada); Pearson, Shannon [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada); Fung, Sharon [Department of Biostatistics, Princess Margaret Hospital, Toronto, ON (Canada); Purdie, Thomas [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada); Brade, Anthony [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada); Department of Radiation Oncology, University Health Network, Toronto, ON (Canada); Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Cho, John; Sun, Alexander; Bissonnette, Jean-Pierre; Bezjak, Andrea [Radiation Medicine Program, Princess Margaret Hospital, Toronto, ON (Canada); Department of Radiation Oncology, University Health Network, Toronto, ON (Canada)
2012-02-01
Purpose: To present the results of stereotactic body radiotherapy (SBRT) for medically inoperable patients with Stage I non-small-cell lung cancer (NSCLC) and contrast outcomes in patients with and without a pathologic diagnosis. Methods and Materials: Between December 2004 and October 2008, 108 patients (114 tumors) underwent treatment according to the prospective research ethics board-approved SBRT protocols at our cancer center. Of the 108 patients, 88 (81.5%) had undergone pretreatment whole-body [18F]-fluorodeoxyglucose positron emission tomography/computed tomography. A pathologic diagnosis was unavailable for 33 (28.9%) of the 114 lesions. The SBRT schedules included 48 Gy in 4 fractions or 54-60 Gy in 3 fractions for peripheral lesions and 50-60 Gy in 8-10 fractions for central lesions. Toxicity and radiologic response were assessed at the 3-6-month follow-up visits using conventional criteria. Results: The mean tumor diameter was 2.4-cm (range, 0.9-5.7). The median follow-up was 19.1 months (range, 1-55.7). The estimated local control rate at 1 and 4 years was 92% (95% confidence interval [CI], 86-97%) and 89% (95% CI, 81-96%). The cause-specific survival rate at 1 and 4 years was 92% (95% CI, 87-98%) and 77% (95% CI, 64-89%), respectively. No statistically significant difference was found in the local, regional, and distant control between patients with and without pathologically confirmed NSCLC. The most common acute toxicity was Grade 1 or 2 fatigue (53 of 108 patients). No toxicities of Grade 4 or greater were identified. Conclusions: Lung SBRT for early-stage NSCLC resulted in excellent local control and cause-specific survival with minimal toxicity. The disease-specific outcomes were comparable for patients with and without a pathologic diagnosis. SBRT can be considered an option for selected patients with proven or presumed early-stage NSCLC.
Navruz, N.
2001-02-01
The aim of the present study is to discuss the infinitesimal deformation (ID) approach’s application and practical applicability. Therefore, ID theory was reformulated and applied to the face centered cubic (fcc) to body centered tetragonal (bct) martensitic transformation for the case of the (110) [bar 110] slip system as the lattice invariant shear (LIS). The analytical solutions for the habit plane orientation, the magnitude of the lattice invariant shear, the orientation relation between parent and product phases, etc. were derived for fcc to bct martensitic transformation in an Fe-7 pct Al-2 pct C alloy. In order to compare with phenomenological theory’s results, crystallographic parameters were also calculated by using Wechsler, Lieberman, and Read (W-L-R) phenomenological theory. Agreement between the two results obtained from ID approach and W-L-R theory was found to be excellent.
On construction of quantum mechanics on cubic forms
International Nuclear Information System (INIS)
Yamaleev, R.M.
1989-01-01
One of the ways is studied of constructing Quantum Mechanics on cubic forms with a wave function in the field of Greav's numbers. The corresponding cubic forms and transformations such as rotation which remain invariant these cubic forms are determined. The properties of geometric elements on cubic forms and Dicson algebra of the cubic degree are described. We give definitions of triunitary operator, creation operators for trilinear oscillator and operator of trispin. Analogs of the energy operator of Pauli equation and the relativistic relationship between energy, momentum and mass are considered. 10 refs
Compilation of temperature factors of cubic compounds
International Nuclear Information System (INIS)
Butt, N.M.; Bashir, J.; Willis, B.T.M.; Khan, M.N.
1991-11-01
A compilation of the temperature factors of 52 cubic compounds determined by diffraction methods using X-rays, neutron, and gamma rays is presented. For each compound the recommended temperature factors of cation B/sup +/, anion B/sup -/and B/sup prime/, the mass weighted average of B/sup +/and B/sup -/, along with the Debye temperature phi are given. This represents the second stage of a temperature factor project initiated by the Neutron Diffraction Commission of the International Union of Crystallography. (author)
Hydrothermal synthesis of cubic boron nitride crystals
International Nuclear Information System (INIS)
Yu Meiyan; Cui Deliang; Kai Li; Yin Yansheng; Wang Qilong; Lei Chu
2005-01-01
Cubic boron nitride (cBN) crystals have been successfully synthesized by in situ hydrothermal method. In order to obtain cBN pure phase crystals, two comparative experiments were carried out. The experimental results indicated that compared to one-step in situ hydrothermal method, multi-step in situ hydrothermal method was beneficial to the synthesis of cBN. It is believed that the multi-step in situ hydrothermal method is the optimal route to synthesize pure cBN bulk crystals
Multiply charged monopoles in cubic dimer model
Ganesh Jaya, Sreejith; Powell, Stephen
2015-03-01
The classical cubic dimer model is a 3D statistical mechanical system whose degrees of freedom are dimers that occupy the edges between nearest neighbour vertices of a cubic lattice. Dimer occupancies are subject to the local constraint that every vertex is associated with exactly one dimer. In the presence of an aligning interaction, it is known that the system exhibits an unconventional continuous thermal phase transition from a symmetry broken columnar phase to a Coulomb-phase. The transition is in the NCCP1 universality class, which also describes the Neel-VBS transition in the JQ model and the S =1/2 Heisenberg model with suppression of hedgehog defects. Using Monte-Carlo simulations of a pair of defects in a background of fluctuating dimers, we calculate the scaling exponents for fugacities of monopole defects of charge Q = 2 and 3 at this critical point. Our estimates suggest that Q = 3 monopoles are relevant and could therefore drive the JQ model away from the NCCP1 critical point on a hexagonal lattice.
Wasicek, Philip; Kaswan, Sumesh; Messing, Susan; Gusenoff, Jeffrey A
2013-11-01
Medical photography of body contouring patients often requires complete nudity, placing patients in a vulnerable situation. We investigated patient perspectives on full body photography in an effort to better protect the patients and enhance comfort with the photography process. Sixty-five massive weight loss patients were identified who underwent body contouring surgery with full body photography. Photographs were taken at the time of initial consult, time of marking, and postoperatively. A retrospective chart review was performed to assess body mass indices and comorbidities, and a telephone survey inquired about several aspects of the photographic process. Fifty-six (86%) patients participated. Patients were more comfortable at the time of markings (P = 0.0004) and at the postoperative session (P = 0.0009). Patients' perception of positive body image increased after body contouring surgery (P photography improves quickly as they move through the surgical process. Maintaining professionalism is the most important factor in achieving patient trust and comfort. Limiting the number of observers in the room, providing explicit details of the photography process, and having at least 1 person of the same sex in the room can optimize patient safety and comfort.
A smoothing algorithm using cubic spline functions
Smith, R. E., Jr.; Price, J. M.; Howser, L. M.
1974-01-01
Two algorithms are presented for smoothing arbitrary sets of data. They are the explicit variable algorithm and the parametric variable algorithm. The former would be used where large gradients are not encountered because of the smaller amount of calculation required. The latter would be used if the data being smoothed were double valued or experienced large gradients. Both algorithms use a least-squares technique to obtain a cubic spline fit to the data. The advantage of the spline fit is that the first and second derivatives are continuous. This method is best used in an interactive graphics environment so that the junction values for the spline curve can be manipulated to improve the fit.
Cubic phase control of ultrashort laser pulses
International Nuclear Information System (INIS)
Mecseki, K.; Erdelyi, M.; Kovacs, A.P.; Szabo, G.
2006-01-01
Complete test of publication follows. The temporal shape of an ultrashort laser pulse may change upon propagating through a linear dispersive medium having a phase shift ψω. The change can be characterized by the Taylor-coefficients of the phase shift which are calculated around the central frequency ω 0 of the pulse. Measurements and independent control of the group delay dispersion (GDD, ψ'(ω 0 )) and the third order dispersion (TOD, ψ'(ω 0 )) are important in several research fields, particularly in the generation of ultrashort laser pulses by chirped pulse amplification (CPA) and pulse shaping for molecular control. The GDD and the TOD of an ideal pulse compressor are equal to the negative of the corresponding dispersion coefficients of the medium. However, in the case of prism-pair and grating-pair compressor is different from the ratio of the coefficients of the medium to be compensated for. Therefore it is necessary to develop so-called cubic compressors that are able to control the TOD of the pulse, yet, do not affect the GDD. In this paper a new cubic compressor setup is investigated theoretically and experimentally, which resembles the set-up proposed by White, however, we control the GDD and the TOD by the position of a birefringent, semi-cylinder crystal place around the focal point of an achromatic lens. For the evaluation of the phase shift introduced by the proposed cubic compressor, a ray tracing program was written. The program allows optimizing the compressor parameters, such as the radius of the crystal, magnification of the lens etc. Calcite was applied because it is a strong birefringent material. Calculations showed that there is a trajectory, along which shifting the crystal the TOD can be tuned independently of the GDD. The value of the TOD changed in a relatively wide range between -3.15 x 10 5 fs 3 and -1.67 x 10 5 fs 3 . Although the defocus also affects the angular dispersion of the pulse leaving the compressor, if does not exceed
Erbium related centers in CZ-silicon
Jantsch, W; Przybylinska, H; SuprunBelevich, Y; Stepikhova, M; Hendorfer, G; Palmetshofer, L; Suezawa, M; KatayamaYoshida, H
1995-01-01
CZ Si implanted with Er shows the same cubic crystal field splitting of the 1.54 mu m luminescence as FZ-SI together with otter, defect- and oxygen correlated Pr complexes. The cubic centers exhibit somewhat shorter radiative life- and excitation times. The 100 times higher luminescence yield of CZ
Shape preserving rational cubic spline for positive and convex data
Directory of Open Access Journals (Sweden)
Malik Zawwar Hussain
2011-11-01
Full Text Available In this paper, the problem of shape preserving C2 rational cubic spline has been proposed. The shapes of the positive and convex data are under discussion of the proposed spline solutions. A C2 rational cubic function with two families of free parameters has been introduced to attain the C2 positive curves from positive data and C2 convex curves from convex data. Simple data dependent constraints are derived on free parameters in the description of rational cubic function to obtain the desired shape of the data. The rational cubic schemes have unique representations.
Chanthrasuwan, Maveeka; Asri, Nur Asreenawaty Mohd; Hamid, Nur Nadiah Abd; Majid, Ahmad Abd.; Azmi, Amirah
2017-08-01
The cubic B-spline and cubic trigonometric B-spline functions are used to set up the collocation in finding solutions for the Buckmaster equation. These splines are applied as interpolating functions in the spatial dimension while the finite difference method (FDM) is used to discretize the time derivative. The Buckmaster equation is linearized using Taylor's expansion and solved using two schemes, namely Crank-Nicolson and fully implicit. The von Neumann stability analysis is carried out on the two schemes and they are shown to be conditionally stable. In order to demonstrate the capability of the schemes, some problems are solved and compared with analytical and FDM solutions. The proposed methods are found to generate more accurate results than the FDM.
Balzaretti, N. M.; da Jornada, J. A. H.
1996-09-01
The pressure dependence of the refractive index of diamond, cubic boron nitride and cubic silicon carbide, was measured up to 9 GPa by an interferometric method using the diamond anvil cell. A least-square fit yields the following values for ( {1}/{n}) ( {dn }/{dP }): - 3.6 × 10 -4GPa -1 for diamond, -3.2 × 10 -4GPa -1 for c-BN and, for 3CSiC, -8.3 × 10 -4GPa -1. These results were used to investigate, for the first time under pressure, general empirical relationships between refractive index and energy gap found in the literature. The volume dependence of the electronic polarizability, α, of these compounds was determined through the Lorentz-Lorenz approach. The obtained linear behavior of α for the three cases was correlated to previous results for the pressure dependence of the transverse effective charge, e T∗.
International Nuclear Information System (INIS)
Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.
1996-01-01
The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy
Cohen, Tamara R; Hazell, Tom J; Vanstone, Catherine A; Plourde, Hugues; Rodd, Celia J; Weiler, Hope A
2013-04-25
Childhood obesity gives rise to health complications including impaired musculoskeletal development that associates with increased risk of fractures. Prevention and treatment programs should focus on nutrition education, increasing physical activity (PA), reducing sedentary behaviours, and should monitor bone mass as a component of body composition. To ensure lifestyle changes are sustained in the home environment, programs need to be family-centered. To date, no study has reported on a family-centered lifestyle intervention for obese children that aims to not only ameliorate adiposity, but also support increases in bone and lean muscle mass. Furthermore, it is unknown if programs of such nature can also favorably change eating and activity behaviors. The aim of this study is to determine the effects of a 1 y family-centered lifestyle intervention, focused on both nutrient dense foods including increased intakes of milk and alternatives, plus total and weight-bearing PA, on body composition and bone mass in overweight or obese children. The study design is a randomized controlled trial for overweight or obese children (6-8 y). Participants are randomized to control, standard treatment (StTx) or modified treatment (ModTx). This study is family-centred and includes individualized counselling sessions on nutrition, PA and sedentary behaviors occurring 4 weeks after baseline for 5 months, then at the end of month 8. The control group receives counselling at the end of the study. All groups are measured at baseline and every 3 months for the primary outcome of changes in body mass index Z-scores. At each visit blood is drawn and children complete a researcher-administered behavior questionnaire and muscle function testing. Changes from baseline to 12 months in body fat (% and mass), waist circumference, lean body mass, bone (mineral content, mineral density, size and volumetric density), dietary intake, self-reported PA and sedentary behaviour are examined. This family-centered
Chien, Hui-Lien; Lu, Tung-Wu; Liu, Ming-Wei
2014-04-01
High-heeled shoes are associated with instability and falling, leading to injuries such as fracture and ankle sprain. This study investigated the effects of habitual wearing of high-heeled shoes on the body's center of mass (COM) motion relative to the center of pressure (COP) during gait. Fifteen female experienced wearers and 15 matched controls walked with high-heeled shoes (7.3cm) while kinematic and ground reaction force data were measured and used to calculate temporal-distance parameters, joint moments, COM-COP inclination angles (IA) and the rate of IA changes (RCIA). Compared with inexperienced wearers, experienced subjects showed significantly reduced frontal IA with increased ankle pronator moments during single-limb support (pshoes, providing a basis for future design of strategies to minimize the risk of falling during high-heeled gait. Copyright © 2014 Elsevier B.V. All rights reserved.
The square of a planar cubic graph is 7-colorable
DEFF Research Database (Denmark)
Thomassen, Carsten
2017-01-01
We prove the conjecture made by G. Wegner in 1977 that the square of every planar, cubic graph is 7-colorable. Here, 7 cannot be replaced by 6.......We prove the conjecture made by G. Wegner in 1977 that the square of every planar, cubic graph is 7-colorable. Here, 7 cannot be replaced by 6....
Approximate Implicitization of Parametric Curves Using Cubic Algebraic Splines
Directory of Open Access Journals (Sweden)
Xiaolei Zhang
2009-01-01
Full Text Available This paper presents an algorithm to solve the approximate implicitization of planar parametric curves using cubic algebraic splines. It applies piecewise cubic algebraic curves to give a global G2 continuity approximation to planar parametric curves. Approximation error on approximate implicitization of rational curves is given. Several examples are provided to prove that the proposed method is flexible and efficient.
Rapid hydrothermal route to synthesize cubic-phase gadolinium ...
Indian Academy of Sciences (India)
Administrator
spectrum of a given specimen (pH = 10∙8) has revealed characteristic Fg + Ag modes of cubic phase of .... using the diffraction formula relevant to cubic phase: .... ground state. The energy absorption in Gd is mediated via transition of 4 f electrons to 5d level and then reorganiza- tion of 4 f electrons into various multiplets.
Cubic Polynomials with Real or Complex Coefficients: The Full Picture
Bardell, Nicholas S.
2016-01-01
The cubic polynomial with real coefficients has a rich and interesting history primarily associated with the endeavours of great mathematicians like del Ferro, Tartaglia, Cardano or Vieta who sought a solution for the roots (Katz, 1998; see Chapter 12.3: The Solution of the Cubic Equation). Suffice it to say that since the times of renaissance…
2014-01-01
Background To address the public health crisis of overweight and obese preschool-age children, the Nutrition And Physical Activity Self Assessment for Child Care (NAP SACC) intervention was delivered by nurse child care health consultants with the objective of improving child care provider and parent nutrition and physical activity knowledge, center-level nutrition and physical activity policies and practices, and children’s body mass index (BMI). Methods A seven-month randomized control trial was conducted in 17 licensed child care centers serving predominantly low income families in California, Connecticut, and North Carolina, including 137 child care providers and 552 families with racially and ethnically diverse children three to five years old. The NAP SACC intervention included educational workshops for child care providers and parents on nutrition and physical activity and consultation visits provided by trained nurse child care health consultants. Demographic characteristics and pre - and post-workshop knowledge surveys were completed by providers and parents. Blinded research assistants reviewed each center’s written health and safety policies, observed nutrition and physical activity practices, and measured randomly selected children’s nutritional intake, physical activity, and height and weight pre- and post-intervention. Results Hierarchical linear models and multiple regression models assessed individual- and center-level changes in knowledge, policies, practices and age- and sex-specific standardized body mass index (zBMI), controlling for state, parent education, and poverty level. Results showed significant increases in providers’ and parents’ knowledge of nutrition and physical activity, center-level improvements in policies, and child-level changes in children’s zBMI based on 209 children in the intervention and control centers at both pre- and post-intervention time points. Conclusions The NAP SACC intervention, as delivered by
Topological Oxide Insulator in Cubic Perovskite Structure
Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.
2013-01-01
The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973
Smooth cubic commensurate oxides on gallium nitride
Energy Technology Data Exchange (ETDEWEB)
Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul, E-mail: jpmaria@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Biegalski, Michael D.; Christen, Hans M. [Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
2014-02-14
Smooth, commensurate alloys of 〈111〉-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.
Stabilities of Cubic Mappings in Fuzzy Normed Spaces
Directory of Open Access Journals (Sweden)
Ghaffari Ali
2010-01-01
Full Text Available Rassias(2001 introduced the pioneering cubic functional equation in the history of mathematical analysis: and solved the pertinent famous Ulam stability problem for this inspiring equation. This Rassias cubic functional equation was the historic transition from the following famous Euler-Lagrange-Rassias quadratic functional equation: to the cubic functional equations. In this paper, we prove the Ulam-Hyers stability of the cubic functional equation: in fuzzy normed linear spaces. We use the definition of fuzzy normed linear spaces to establish a fuzzy version of a generalized Hyers-Ulam-Rassias stability for above equation in the fuzzy normed linear space setting. The fuzzy sequentially continuity of the cubic mappings is discussed.
Rational Cubics and Conics Representation: A Practical Approach
Directory of Open Access Journals (Sweden)
M. Sarfraz
2012-08-01
Full Text Available A rational cubic spline, with one family of shape parameters, has been discussed with the view to its application in Computer Graphics. It incorporates both conic sections and parametric cubic curves as special cases. The parameters (weights, in the description of the spline curve can be used to modify the shape of the curve, locally and globally, at the knot intervals. The rational cubic spline attains parametric smoothness whereas the stitching of the conic segments preserves visually reasonable smoothness at the neighboring knots. The curve scheme is interpolatory and can plot parabolic, hyperbolic, elliptic, and circular splines independently as well as bits and pieces of a rational cubic spline.Key Words: Computer Graphics, Interpolation, Spline, Conic, Rational Cubic
Crouter, Scott E; Salas, Carlos; Wiecha, Jean
2017-06-01
Physical activity (PA) promotes health in obese youth and is an important adjunct to medical weight management. Access to structured fitness programmes for obese, low-income youth is limited and potential benefits of such programmes are poorly understood. We describe an urban afterschool fitness programme for obese youth and participants' changes in fitness and body composition. A case series of 30 youth (age: 11.5 ± 2.5 years) with BMI ≥95th percentile and physician referral received a 24-wk programme scholarship. The programme, offered 4 times a week for 90-min.session, included aerobic, strength, and self-organised PA. Primary outcomes, measured at baseline (BL) time 1 (4-8 wk) and time 2 (12-16 wk) were BMI, per cent body fat (%BF), fat-free mass (FFM), heart rate during a treadmill test, and muscular strength (one repetition maximum (1RM)) and endurance (reps at 70% of 1RM) on the leg press (LP) and chest press (CP). Average participation was 1.5 ± 0.6 visits per week for 18.7 ± 6.5 weeks. Between BL and time 2, LP and CP 1RM and endurance significantly improved (P 0.05) while girls lost 0% (>0.05). Obese youth attending an urban fitness programme for at least three months improved strength and body composition, but average attendance was below planned levels.
Natale, Ruby A; Lopez-Mitnik, Gabriela; Uhlhorn, Susan B; Asfour, Lila; Messiah, Sarah E
2014-09-01
This study examined the effect of an early childhood obesity prevention program on changes in Body Mass Index (BMI) z-score and nutrition practices. Eight child care centers were randomly assigned to an intervention or attention control arm. Participants were a multiethnic sample of children aged 2 to 5 years old (N = 307). Intervention centers received healthy menu changes and family-based education focused on increased physical activity and fresh produce intake, decreased intake of simple carbohydrate snacks, and decreased screen time. Control centers received an attention control program. Height, weight, and nutrition data were collected at baseline and at 3, 6, and 12 months. Analysis examined height, weight, and BMI z-score change by intervention condition (at baseline and at 3, 6, and 12 months). Pearson correlation analysis examined relationships among BMI z-scores and home activities and nutrition patterns in the intervention group. Child BMI z-score was significantly negatively correlated with the number of home activities completed at 6-month post intervention among intervention participants. Similarly, intervention children consumed less junk food, ate more fresh fruits and vegetables, drank less juice, and drank more 1% milk compared to children at control sites at 6 months post baseline. Ninety-seven percent of those children who were normal weight at baseline were still normal weight 12 months later. Findings support child care centers as a promising setting to implement childhood obesity prevention programs in this age group. © 2014 Society for Public Health Education.
Allmer, Charlotte; Ventegodt, Søren; Kandel, Isack; Merrick, Joav
2009-01-01
To review adverse events of intensive, clinical holistic medicine (CHM) as it is practiced in holistic body-psychotherapy in England and Germany. Gerda Boyesen's "biodynamic body-psychotherapy" (BBP) is an intensive type of holistic mind-body medicine used by Boyesen at two centers. About 13,500 patients were treated during 1985-2005 period and studied for side effects and adverse events. The first author worked closely with Boyesen 1995-2005 with full insight in all aspects of the therapy and provided the data on side-effects. Therapy helped chronic patients with physical, psychological, sexual, psychiatric and existential problems to improve health, ability, and quality of life (NNT (number needed to treat) = 1-3). Effective in the treatment of mentally ill patients (schizophrenia, anxiety, poor mental health, low general ability). For retraumatization, brief reactive psychosis, depression, depersonalization and derealization, implanted memories, side effects from manipulations of the body, suicide/suicide attempts, hospitalization for physical and mental health problem during or 90 days after treatment, NNH (number needed to harm) > 13,500. Intensive, holistic non-drug medicine is helpful for physical, sexual, psychological, psychiatric and existential problems and is completely safe for the patient. The therapeutic value TV = NNH/NNT > 5,000. Altogether about 18,000 patients treated with different subtypes of CHM in four different countries have now been evaluated for effects, side effects and adverse events, with similar results.
Zakerolhosseini, Ali; Sokouti, Massoud; Pezeshkian, Massoud
2013-01-01
Quick responds to heart attack patients before arriving to hospital is a very important factor. In this paper, a combined model of Body Sensor Network and Personal Digital Access using QTRU cipher algorithm in Wifi networks is presented to efficiently overcome these life threatening attacks. The algorithm for optimizing the routing paths between sensor nodes and an algorithm for reducing the power consumption are also applied for achieving the best performance by this model. This system is consumes low power and has encrypting and decrypting processes. It also has an efficient routing path in a fast manner.
Optical characterisation of cubic silicon carbide
International Nuclear Information System (INIS)
Jackson, S.M.
1998-09-01
The varied properties of Silicon Carbide (SiC) are helping to launch the material into many new applications, particularly in the field of novel semiconductor devices. In this work, the cubic form of SiC is of interest as a basis for developing integrated optical components. Here, the formation of a suitable SiO 2 buried cladding layer has been achieved by high dose oxygen ion implantation. This layer is necessary for the optical confinement of propagating light, and hence optical waveguide fabrication. Results have shown that optical propagation losses of the order of 20 dB/cm are obtainable. Much of this loss can be attributed to mode leakage and volume scattering. Mode leakage is a function of the effective oxide thickness, and volume scattering related to the surface layer damage. These parameters have been shown to be controllable and so suggests that further reduction in the waveguide loss is feasible. Analysis of the layer growth mechanism by RBS, XTEM and XPS proves that SiO 2 is formed, and that the extent, of formation depends on implant dose and temperature. The excess carbon generated is believed to exit the oxide layer by a number of varying mechanisms. The result of this appears to be a number of stable Si-C-O intermediaries that, form regions to either depth extreme of the SiO 2 layer. Early furnace tests suggest a need to anneal at, temperatures approaching the melting point of the silicon substrate, and that the quality of the virgin material is crucial in controlling the resulting oxide growth. (author)
Shape Preserving Interpolation Using C2 Rational Cubic Spline
Directory of Open Access Journals (Sweden)
Samsul Ariffin Abdul Karim
2016-01-01
Full Text Available This paper discusses the construction of new C2 rational cubic spline interpolant with cubic numerator and quadratic denominator. The idea has been extended to shape preserving interpolation for positive data using the constructed rational cubic spline interpolation. The rational cubic spline has three parameters αi, βi, and γi. The sufficient conditions for the positivity are derived on one parameter γi while the other two parameters αi and βi are free parameters that can be used to change the final shape of the resulting interpolating curves. This will enable the user to produce many varieties of the positive interpolating curves. Cubic spline interpolation with C2 continuity is not able to preserve the shape of the positive data. Notably our scheme is easy to use and does not require knots insertion and C2 continuity can be achieved by solving tridiagonal systems of linear equations for the unknown first derivatives di, i=1,…,n-1. Comparisons with existing schemes also have been done in detail. From all presented numerical results the new C2 rational cubic spline gives very smooth interpolating curves compared to some established rational cubic schemes. An error analysis when the function to be interpolated is ft∈C3t0,tn is also investigated in detail.
Formation and stability of cubic ice in water droplets.
Murray, Benjamin J; Bertram, Allan K
2006-01-07
There is growing evidence that a metastable phase of ice, cubic ice, plays an important role in the Earth's troposphere and stratosphere. Cubic ice may also be important in diverse fields such as cryobiology and planetary sciences. Using X-ray diffraction, we studied the formation of cubic ice in pure water droplets suspended in an oil matrix as a function of droplet size. The results show that droplets of volume median diameter 5.6 microm froze dominantly to cubic ice with stacking faults. These results support previous suggestions that cubic ice is the crystalline phase that nucleates when pure water droplets freeze homogeneously at approximately 235 K. It is also shown that as the size of the water droplets increased from 5.6 to 17.0 microm, the formation of the stable phase of ice, hexagonal ice, was favoured. This size dependence can be rationalised with heat transfer calculations. We also investigated the stability of cubic ice that forms in water droplets suspended in an oil matrix. We observe cubic ice up to 243 K, much higher in temperature than observed in many previous studies. This result adds to the existing literature that shows bulk ice I(c) can persist up to approximately 240 K. The transformation of cubic ice to hexagonal ice also showed a complex time and temperature dependence, proceeding rapidly at first and then slowing down and coming to a halt. These combined results help explain why cubic ice forms in some experiments described in the literature and not others.
The compressibility of cubic white and orthorhombic, rhombohedral, and simple cubic black phosphorus
Energy Technology Data Exchange (ETDEWEB)
Clark, Simon M; Zaug, Joseph
2010-03-10
The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The ?alpha phase was found to transform into the alpha' phase at 0.87 +- 0.04 GPa with a volume change of 0.1 +- 0.3 cc/mol. A fit of a second order Birch- Murnaghan equation to the data gave Vo = 16.94 ? 0.08 cc/mol and Ko = 6.7 +- 0.5 GPa for the alpha phase and Vo = 16.4 +- 0.1 cc/mol and Ko = 9.1 +- 0.3 GPa for the alpha' phase. The alpha' phase was found to transform to the A17 phase of black phosphorus at 2.68 +- 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second order Birch-Murnaghan equation to our data combined with previous measurements gave Vo = 11.43 +- 0.05 cc/mol and Ko = 34.7 +- 0.5 GPa for the A17 phase, Vo = 9.62 +- 0.01 cc/mol and Ko = 65.0 +- 0.6 GPa for the A7 phase and , Vo = 9.23 +- 0.01 cc/mol and Ko = 72.5 +- 0.3 GPa for the simple cubic phase.
Hardness and thermal stability of cubic silicon nitride
DEFF Research Database (Denmark)
Jiang, Jianzhong; Kragh, Flemming; Frost, D. J.
2001-01-01
The hardness and thermal stability of cubic spinel silicon nitride (c-Si3N4), synthesized under high-pressure and high-temperature conditions, have been studied by microindentation measurements, and x-ray powder diffraction and scanning electron microscopy, respectively The phase at ambient...... temperature has an average hardness of 35.31 GPa, slightly larger than SiO2 stishovite, which is often referred to as the third hardest material after diamond and cubic boron nitride. The cubic phase is stable up to 1673 K in air. At 1873 K, alpha -and beta -Si3N4 phases are observed, indicating a phase...
Interaction of dispersed cubic phases with blood components
DEFF Research Database (Denmark)
Bode, J C; Kuntsche, Judith; Funari, S S
2013-01-01
The interaction of aqueous nanoparticle dispersions, e.g. based on monoolein/poloxamer 407, with blood components is an important topic concerning especially the parenteral way of administration. Therefore, the influence of human and porcine plasma on dispersed cubic phases was investigated....... Several phase transitions with the formation of smaller and sometimes larger particle fractions were observed beside remaining cubic structures. A very low but detectable hemolytic activity was found for the dispersed cubic phases based on monoolein and poloxamer 407, when compared to the hemolytic...
Strain tuning of topological band order in cubic semiconductors
Energy Technology Data Exchange (ETDEWEB)
Feng, wanxiang [Chinese Academy of Sciences; Zhu, Wenguang [University of Tennessee, Knoxville (UTK); Weitering, Hanno [University of Tennessee, Knoxville (UTK); Stocks, George Malcolm [ORNL; Yao, yugui [Chinese Academy of Sciences; Xiao, Di [ORNL
2012-01-01
We theoretically explore the possibility of tuning the topological order of cubic diamond/zinc-blende semi- conductors with external strain. Based on a simple tight-binding model, we analyze the evolution of the cubic semiconductor band structure under hydrostatic or biaxial lattice expansion, by which a generic guiding princi- ple is established that biaxial lattice expansion can induce a topological phase transition of small band-gap cubic semiconductors via a band inversion and symmetry breaking at point. Using density functional theory cal- culations, we demonstrate that a prototype topological trivial semiconductor, InSb, is converted to a nontrivial topological semiconductor with a 2% 3% biaxial lattice expansion.
Ternary cubic forms and central simple algebras of degree 3
Raczek, Mélanie
2007-01-01
Fix a ground field F of characteristic neither 2 nor 3 and consider pairs (A,V) consisting of a degree 3 central simple F-algebra A and a 3-dimensional subspace V of the reduced trace zero elements of A which is totally isotropic for the trace quadratic form. Mapping an element of V to its cube defines a cubic form. This thesis is devoted to the classification of such cubic pairs - i.e. the description of a representative of each isomorphism class of cubic pairs - and the study of the associa...
Farris, Samantha G; Paulus, Daniel J; Gonzalez, Adam; Mahaffey, Brittain L; Bromet, Evelyn J; Luft, Benjamin J; Kotov, Roman; Zvolensky, Michael J
2016-07-30
Among individuals exposed to the World Trade Center (WTC) disaster on September 11, 2001, posttraumatic stress disorder (PTSD) and symptoms are both common and associated with increased cigarette smoking and body mass. However, there is little information on the specific processes underlying the relationship of PTSD symptoms with body mass. The current study is an initial exploratory test of anxiety sensitivity, the fear of internal bodily sensations, as a possible mechanism linking PTSD symptom severity and body mass index (BMI). Participants were 147 adult daily smokers (34.0% female) exposed to the WTC disaster (via rescue/recovery work or direct witness). The direct and indirect associations between PTSD symptom severity and BMI via anxiety sensitivity (total score and subscales of physical, cognitive, and social concerns) were examined. PTSD symptom severity was related to BMI indirectly via anxiety sensitivity; this effect was specific to physical concerns about the meaning of bodily sensations. Interventions focusing on anxiety sensitivity reduction (specifically addressing physical concerns about bodily sensations) may be useful in addressing elevated BMI among trauma-exposed persons. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Monotonicity preserving splines using rational cubic Timmer interpolation
Zakaria, Wan Zafira Ezza Wan; Alimin, Nur Safiyah; Ali, Jamaludin Md
2017-08-01
In scientific application and Computer Aided Design (CAD), users usually need to generate a spline passing through a given set of data, which preserves certain shape properties of the data such as positivity, monotonicity or convexity. The required curve has to be a smooth shape-preserving interpolant. In this paper a rational cubic spline in Timmer representation is developed to generate interpolant that preserves monotonicity with visually pleasing curve. To control the shape of the interpolant three parameters are introduced. The shape parameters in the description of the rational cubic interpolant are subjected to monotonicity constrained. The necessary and sufficient conditions of the rational cubic interpolant are derived and visually the proposed rational cubic Timmer interpolant gives very pleasing results.
Identification of Hammerstein models with cubic spline nonlinearities.
Dempsey, Erika J; Westwick, David T
2004-02-01
This paper considers the use of cubic splines, instead of polynomials, to represent the static nonlinearities in block structured models. It introduces a system identification algorithm for the Hammerstein structure, a static nonlinearity followed by a linear filter, where cubic splines represent the static nonlinearity and the linear dynamics are modeled using a finite impulse response filter. The algorithm uses a separable least squares Levenberg-Marquardt optimization to identify Hammerstein cascades whose nonlinearities are modeled by either cubic splines or polynomials. These algorithms are compared in simulation, where the effects of variations in the input spectrum and distribution, and those of the measurement noise are examined. The two algorithms are used to fit Hammerstein models to stretch reflex electromyogram (EMG) data recorded from a spinal cord injured patient. The model with the cubic spline nonlinearity provides more accurate predictions of the reflex EMG than the polynomial based model, even in novel data.
Cubic interaction vertices for fermionic and bosonic arbitrary spin fields
Metsaev, R. R.
2012-06-01
Using the light-cone gauge approach to relativistic field dynamics, we study arbitrary spin fermionic and bosonic fields propagating in flat space of dimension greater than or equal to four. Generating functions of parity invariant cubic interaction vertices for totally symmetric and mixed-symmetry massive and massless fields are obtained. For the case of totally symmetric fields, we derive restrictions on the allowed values of spins and the number of derivatives. These restrictions provide a complete classification of parity invariant cubic interaction vertices for totally symmetric fermionic and bosonic fields. As an example of application of the light-cone formalism, we obtain simple expressions for the Yang-Mills and gravitational interactions of massive arbitrary spin fermionic fields. For some particular cases, using our light-cone cubic vertices, we discuss the corresponding manifestly Lorentz invariant and on-shell gauge invariant cubic vertices.
Kawakami, Yukiko; Yonetani, Yasukazu; Takao, Rikio; Ogasawara, Issei; Mae, Tatsuo; Nakata, Ken; Horibe, Shuji
2016-01-01
Dynamic balance was evaluated using the trajectory length of the center of foot pressure (COP) in the early phase from immediately after landing to the time of pastoral maintenance. Ten young volunteers with an average age of 23.8 years were asked to stand on one foot on a horizontal floor, hop forward half a step and land on one foot 10 times on each of 3 non-consecutive days. The peak of the vertical component of the floor reaction force (Fz), and the initiation time of the maximum value (tz) and COP trajectory length were measured by a force plate (AMTI, Ltd.). None of the subjects complained of any feeling of fear or loss of balance during the 3 days.The interclass correlation coefficient values of Fz and tz over the three days were 0.75 or higher. Single-leg hop for half a step as a motor task enabled safe measurement of COP trajectory length with high reproducibility. Fz reached its peak within 200 ms after landing and the COP trajectory length within 200 ms after landing accounted for approximately 50% of the total COP trajectory length at one second. Although the length differed in each subject, the interclass correlation coefficients for COP up to 100 ms and 200 ms were 0.68 and 0.80, respectively.The COP trajectory length within 200 ms after landing was considered to be useful as an objective criteria for the evaluation of dynamic balance in the early phase after landing.
Love-Osborne, Kathy; Fortune, Rachel; Sheeder, Jeanelle; Federico, Steven; Haemer, Matthew A
2014-10-01
School-based health centers (SBHCs) may be an ideal setting to address obesity in adolescents because they provide increased access to a traditionally difficult-to-reach population. The study evaluated the feasibility of adding a health educator (HE) to SBHC teams to provide support and increase the delivery of preventive services for overweight or obese adolescents. Adolescents with BMI ≥85% recruited from two SBHCs were randomized to a control group (CG) or an intervention group (IG). Both groups received preventive services, including physical examinations and laboratory screening in the SBHC. The educator met with the IG during the academic year, utilizing motivational interviewing techniques to set lifestyle goals. Text messaging was used to reinforce goals between visits. Eighty-two students (15.7±1.5 years of age; BMI, 31.9±6.2 kg/m(2)) were enrolled in the IG and 83 in the control group (16.0±1.5 years of age; BMI, 31.6±6.5 kg/m(2)). Retention was 94% in the IG and 87% in the CG. A total of 54.5% of the IG and 72.2% of the CG decreased or maintained BMI z-score (less than 0.05 increase; p=0.025). Sports participation was higher in the CG (47% vs. 28% in the IG; p=0.02). Mean BMI z-score change was -0.05±0.2 for students participating in sports vs. 0.01±0.2 for those not (p=0.09). This SBHC intervention showed successful recruitment and retention of participants and delivery of preventive services in both groups. Meeting with an HE did not improve BMI outcomes in the IG. Confounding factors, including sports participation and SBHC utilization, likely contributed to BMI outcomes.
Santhanam, P; Driscoll, H K; Venkatraman, P
2016-01-01
Diagnostic whole body scan (pre-therapy scan) with either I-123 or I-131 (radioactive isotopes of iodine) is performed to assess the extent of thyroid cancer especially distant metastasis prior to administering the therapeutic dose of I-131. Our aim of the following study was to determine the utility of the diagnostic pre-therapy scan in the management of differentiated thyroid cancer. It was a case-control study carried out by retrospective chart review, of a randomly selected 100 patients with differentiated thyroid cancer who had followed in our community hospital over the course of 1 year. We collected data on multiple variables in the subjects - including age, gender, pre-operative size of the nodules, diagnosis, stage of the malignancy, size of the tumor, multifocality, lymphovascular invasion, dose of radioiodine used for remnant ablation, recurrence rates and persistence rates. Continuous variables were compared using the independent sample Mann-Whitney U-test whereas the Chi-square test was used for nominal variables. The mean dose of radioactive iodine administered was 97.56 (±27.98) in the pre-therapy scan group and it was 97.23 (±32.40) in the control group. There was no difference between the two groups (P - 0.45). There was also no difference in the recurrence rates between the groups (P = 1.0). There was a trend toward a higher degree of persistent cancer in the group that had the pre-therapy scans (P - 0.086). Pre-therapy scan may not affect the dose of radio-iodine I-131 used for remnant ablation of differentiated thyroid cancer and does not influence the recurrence rates. This was especially true with respect to I-131 remnant ablation for low risk tumors.
On the Rank of Elliptic Curves in Elementary Cubic Extensions
Directory of Open Access Journals (Sweden)
Rintaro Kozuma
2015-01-01
Full Text Available We give a method for explicitly constructing an elementary cubic extension L over which an elliptic curve ED:y2+Dy=x3 (D∈Q∗ has Mordell-Weil rank of at least a given positive integer by finding a close connection between a 3-isogeny of ED and a generic polynomial for cyclic cubic extensions. In our method, the extension degree [L:Q] often becomes small.
Data interpolation using rational cubic Ball spline with three parameters
Karim, Samsul Ariffin Abdul
2016-11-01
Data interpolation is an important task for scientific visualization. This research introduces new rational cubic Ball spline scheme with three parameters. The rational cubic Ball will be used for data interpolation with or without true derivative values. Error estimation show that the proposed scheme works well and is a very good interpolant to approximate the function. All graphical examples are presented by using Mathematica software.
Generalized Born--Infeld Actions and Projective Cubic Curves
Ferrara, S; Sagnotti, A; Stora, R; Yeranyan, A
2015-01-01
We investigate $U(1)^{\\,n}$ supersymmetric Born-Infeld Lagrangians with a second non-linearly realized supersymmetry. The resulting non-linear structure is more complex than the square root present in the standard Born-Infeld action, and nonetheless the quadratic constraints determining these models can be solved exactly in all cases containing three vector multiplets. The corresponding models are classified by cubic holomorphic prepotentials. Their symmetry structures are associated to projective cubic varieties.
The Combinatorial Rigidity Conjecture is False for Cubic Polynomials
DEFF Research Database (Denmark)
Henriksen, Christian
2003-01-01
We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995.......We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995....
Bose-Einstein condensation under the cubic-quintic Gross-Pitaevskii equation in radial domains
Luckins, Ellen K.; Van Gorder, Robert A.
2018-01-01
We study stationary and quasi-stationary solutions for the cubic-quintic Gross-Pitaevskii equation modeling Bose-Einstein condensates (BECs) in one, two, and three spatial dimensions under the assumption of radial symmetry with the BEC dynamics influenced by a confining potential. We consider both repulsive and attractive cubic interactions - corresponding respectively to repulsive and attractive two-body interactions - under similar frameworks in order to deduce the effects of the potentials in each case. We also carefully consider the role played by the quintic nonlinearity (modeling the strength of inter-atomic coupling) in modifying the solutions arising due to a purely cubic interaction term. In one spatial dimension, we obtain a variety of exact solutions in the zero-potential limit (including new periodic solutions which generalize known soliton solutions) as well as perturbation solutions for small amplitude confining potentials. For more general forms of the confining potential, we rely on numerical simulations, but these agree with the analytical results when the latter are valid. We also consider the limit where the quintic term dominates the cubic term (with such a limit relevant in the study of a Tonks-Girardeau gas). Under the assumption of radial symmetry, we also consider cylindrical (or, cigar-shaped) and spherical BECs. We consider the nonperturbative regime where either the potential or the amplitude of the solutions is large, obtaining various qualitative analytical results. When the kinetic energy term is small (relative to the nonlinearity and the confining potential), we recover the expected Thomas-Fermi approximation for the stationary solutions. Numerical simulations, under a variety of external confining potentials, are then used to understand the role these potentials play on the BEC solution structure for both the attractive and repulsive regimes. This assortment of analytical and numerical results allows us to better understand the
Edwards, Daryl A.; Weaver, Harold F; Kastner, Carl E., Jr.
2009-01-01
The center-body diffuser (CBD) steam blocker (SB) system is a concept that incorporates a set of secondary drive nozzles into the envelope of a CBD, such that both nozzle systems (i.e., the rocket engine and the steam blocking nozzles) utilize the same supersonic diffuser, and will operate either singularly or concurrently. In this manner, the SB performs as an exhaust system stage when the rocket engine is not operating, and virtually eliminates discharge flow on rocket engine shutdown. A 2.25-percent scale model of a proposed SB integrated into a diffuser for the Plum Brook B-2 facility was constructed and cold-flow tested for the purpose of evaluating performance characteristics of various design options. These specific design options addressed secondary drive nozzle design (method of steam injection), secondary drive nozzle location relative to CBD throat, and center-body throat length to diameter (L/D) ratios. The objective of the test program is to identify the desired configuration to carry forward should the next phase of design proceed. The tested scale model can provide data for various pressure ratios; however, its design is based on a proposed B-2 spray chamber (SC) operating pressure of 4.0 psia and a steam supply pressure of 165 psia. Evaluation of the test data acquired during these tests indicate that either the discrete axial or annular nozzle configuration integrated into a CBD, with an annular throat length of 1.5 L/D at the nominal injection position, would be suitable to carry forward from the SB's perspective. Selection between these two then becomes more a function of constructability and implementation than performance. L/D also has some flexibility, and final L/D selection can be a function of constructability issues within a limited range.
International Nuclear Information System (INIS)
Sandberg, V.
1988-12-01
The center of buoyancy of an arbitrary shaped body is defined in analogy to the center of gravity. The definitions of the buoyant force and center of buoyancy in terms of integrals over the area of the body are converted to volume integrals and shown to have simple intuitive interpretations
[Multimodal medical image registration using cubic spline interpolation method].
He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan
2007-12-01
Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.
Deformation of the cubic open string field theory
International Nuclear Information System (INIS)
Lee, Taejin
2017-01-01
We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.
Deformation of the cubic open string field theory
Lee, Taejin
2017-05-01
We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang-Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang-Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.
Deformation of the cubic open string field theory
Directory of Open Access Journals (Sweden)
Taejin Lee
2017-05-01
Full Text Available We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.
Deformation of the cubic open string field theory
Energy Technology Data Exchange (ETDEWEB)
Lee, Taejin, E-mail: taejin@kangwon.ac.kr
2017-05-10
We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.
Cubic interactions of Maxwell-like higher spins
Energy Technology Data Exchange (ETDEWEB)
Francia, Dario [Scuola Normale Superiore and INFN,Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Monaco, Gabriele Lo [Dipartimento di Fisica, Università di Pisa,Piazza Fibonacci, 3, I-56126, Pisa (Italy); Dipartimento di Fisica, Università di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Mkrtchyan, Karapet [Max Planck Institut für Gravitationsphysik,Am Mühlenberg 1, Potsdam 14476 (Germany)
2017-04-12
We study the cubic vertices for Maxwell-like higher-spins in flat and (A)dS background spaces of any dimension. Reducibility of their free spectra implies that a single cubic vertex involving any three fields subsumes a number of couplings among different particles of various spins. The resulting vertices do not involve traces of the fields and in this sense are simpler than their Fronsdal counterparts. We propose an extension of both the free theory and of its cubic deformation to a more general class of partially reducible systems, that one can obtain from the original theory upon imposing trace constraints of various orders. The key to our results is a version of the Noether procedure allowing to systematically account for the deformations of the transversality conditions to be imposed on the gauge parameters at the free level.
Regularizing cubic open Neveu-Schwarz string field theory
International Nuclear Information System (INIS)
Berkovits, Nathan; Siegel, Warren
2009-01-01
After introducing non-minimal variables, the midpoint insertion of Y Y-bar in cubic open Neveu-Schwarz string field theory can be replaced with an operator N ρ depending on a constant parameter ρ. As in cubic open superstring field theory using the pure spinor formalism, the operator N ρ is invertible and is equal to 1 up to a BRST-trivial quantity. So unlike the linearized equation of motion Y Y-bar QV = 0 which requires truncation of the Hilbert space in order to imply QV = 0, the linearized equation N ρ QV = 0 directly implies QV = 0.
Interpolation in numerical optimization. [by cubic spline generation
Hall, K. R.; Hull, D. G.
1975-01-01
The present work discusses the generation of the cubic-spline interpolator in numerical optimization methods which use a variable-step integrator with step size control based on local relative truncation error. An algorithm for generating the cubic spline with successive over-relaxation is presented which represents an improvement over that given by Ralston and Wilf (1967). Rewriting the code reduces the number of N-vectors from eight to one. The algorithm is formulated in such a way that the solution of the linear system set up yields the first derivatives at the nodal points. This method is as accurate as other schemes but requires the minimum amount of storage.
Higher-Order Approximation of Cubic-Quintic Duffing Model
DEFF Research Database (Denmark)
Ganji, S. S.; Barari, Amin; Babazadeh, H.
2011-01-01
We apply an Artificial Parameter Lindstedt-Poincaré Method (APL-PM) to find improved approximate solutions for strongly nonlinear Duffing oscillations with cubic-quintic nonlinear restoring force. This approach yields simple linear algebraic equations instead of nonlinear algebraic equations...... without analytical solution which makes it a unique solution. It is demonstrated that this method works very well for the whole range of parameters in the case of the cubic-quintic oscillator, and excellent agreement of the approximate frequencies with the exact one has been observed and discussed...... of nonlinear evolution equations....
Trace spaces in a pre-cubical complex
DEFF Research Database (Denmark)
Raussen, Martin
arc length which moreover is shown to be invariant under directed homotopies. D-paths up to reparametrization (called traces) can thus be represented by arc length parametrized d-paths. Under weak additional conditions,it is shown that trace spaces in a pre-cubical complex are separable metric spaces......In directed algebraic topology, (spaces of) directed irreversible (d)-paths are studied from a topological and from a categorical point of view. Motivated by models for concurrent computation, we study in this paper spaces of d-paths in a pre-cubical complex. Such paths are equipped with a natural...
Structure and bonding in cubic IV-VI crystals. 1
International Nuclear Information System (INIS)
Enders, P.
1983-01-01
The inherent instability of the cubic structure of IV-VI compounds is considered. Alternatively to the work of Littlewood, the treatment bases on the LCAO method and relates to Harrison's approach as Littlewood's papers do to Phillips'-Van Vechten's one. First Harrison's polarity is calculated from Slater-Koster parameters due to Volkov and coworkers. It indicates predominantly covalent bonding character for the cubic IV-VI compounds. A comparison is given with Littlewood's treatment. The method of special points is used to calculate integral bonding properties. Chadi and Cohen's two point set is shown to be often equivalent to a ligand-field theoretical treatment. (author)
Trace spaces in a pre-cubical complex
DEFF Research Database (Denmark)
Raussen, Martin
2009-01-01
In directed algebraic topology, directed irreversible (d)-paths and spaces consisting of d-paths are studied from a topological and from a categorical point of view. Motivated by models for concurrent computation, we study in this paper spaces of d-paths in a pre-cubical complex. Such paths...... are equipped with a natural arc length which moreover is shown to be invariant under directed homotopies. D-paths up to reparametrization (called traces) can thus be represented by arc length parametrized d-paths. Under weak additional conditions, it is shown that trace spaces in a pre-cubical complex...
Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.
Biesiekierski, Arne; Ping, Dehai; Li, Yuncang; Lin, Jixing; Munir, Khurram S; Yamabe-Mitarai, Yoko; Wen, Cuie
2017-04-15
While titanium alloys represent the current state-of-the-art for orthopedic biomaterials, concerns still remain over their modulus. Circumventing this via increased porosity requires high elastic admissible strains, yet also limits traditional thermomechanical strengthening techniques. To this end, a novel β-type Ti-Zr-Ta alloy system, comprised of Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta, was designed and characterized mechanically and microstructurally. As-cast, this system displayed extremely high yield strengths and elastic admissible strains, up to 1.4GPa and potentially 1.48%, respectively. This strength was attributed to a nanoscaled, cuboidal structure of semi-coherent, dual body-centered cubic (BCC) phases, arising from the thermodynamics of interaction between Ta and Zr; this morphology occurring with dual BCC-phases is heretofore unreported in Ti-based alloys. Further, cell proliferation investigated by MTS assay suggests this was achieved without sacrificing biocompatibility, with no significant difference to either empty-well or commercially-pure Ti controls noted. The current research details microstructural, mechanical, and biological investigations into four novel biomedical alloys in a hitherto uninvestigated region of the Ti-Zr-Ta alloy system; Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta. We find that the investigated alloys display 0.2% yield strengths of up to 1.40GPa and elastic admissible strains of up to 1.48%, along with biological properties comparable to that seen in the conventional metallic biomaterial ASTM Grade-2 CP-Ti, achieved in the complete absence of traditional thermomechanical processing techniques. This is attributed to the presence of a dual-BCC cuboidal nanostructure, achieved via spinodal decomposition; while similar structures have been reported in e.g. Ni-based superalloys, we believe this is the first such structure investigated in a Ti-based material. As such, this work is felt to be of
Frick, Maximilian; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Schneider, Michael
2017-04-01
This study aims at a better understanding of the present-day thermal and hydraulic configuration below the major urban center of Berlin, capital city of Germany. The study area is located in the Northeast German Basin, showing an infill of several kilometers of sediments. Herein, the shallow sedimentary succession is made up of a sequence of alternating aquifers and aquitards, most importantly the local aquitard of the Rupelian clay. This geological unit represents a natural barrier between the deeper saline aquifers and the shallow fresh water aquifers from whom Berlin produces 100% of its drinking water. Additionally, the shallow thermal and hydraulic configuration has been anthropogenically overprinted which may also influence deeper domains to some extent. In this study we make use of 3D thermohydraulic models of the subsurface, focusing on the coupling of surface water bodies to the underground, based on newly available hydraulic data integrated into a 3D hydrogeological model. The results of the study show, that the coupling of surface water bodies and groundwater might lead to significant modifications of predicted subsurface temperatures and fluid flow field. These modifications are most prominent, where differences in hydraulic head between surface water bodies and the adjacent aquifers are highest. Consequently, the predicted surface to groundwater flow field differs most in these areas and it also results in differences in predicted temperatures as a consequence of advective heat transport. Quantitatively, the presence of major lakes may account for temperature differences up to 5°C, while considering rivers only accounts for modifications up to 1°C. Additionally, the models created in this study set up a basis for future thermohaline simulations as saline groundwater may represent a threat to drinking water supply. First results from the models run in this study already indicate, that uprising heated water from deeper domains may rise to shallow
Directory of Open Access Journals (Sweden)
A Shah Mohammadi
2001-06-01
Full Text Available This study was designed to determine if body mass index was predictive of mortality in a sample of seriously ill hospitalized patients in intensive care unit (ICU of Childrens Hospital Medical Center. There were 160 children from 1 month to 14 years in this prospective study for a period of 3 months in 1377. For all of the patients after calculation of BMI, the relation between age, sex, duration of illness, underlying diseases, positive family history of serious diseases, duration of admission in ICU, history of previous hospitalization, mechanical ventilation, albumin and PRISM score with mortality risk and outcome were determined. The percentile rank of BMI between 15 to 85 accepted as normal according to previous studies. In this survey the relation between BMI and outcome of the children in ICU were significant (P=0.0001. Also this relation was significant with the children in ages of 1 to 6 months, duration of hospitalization less than one or more than seven days, no surgery, mechanically ventilated patients. BMI, a simple anthropometric measurement of nutrition employed in community epidemiologic studies, has now been demonstrated to be a predictor of mortality in acutely ill children in ICU. Future studies examining variables predictive of mortality should include BMI.
C2-rational cubic spline involving tension parameters
Indian Academy of Sciences (India)
preferred which preserves some of the characteristics of the function to be interpolated. In order to tackle such ... Shape preserving properties of the rational (cubic/quadratic) spline interpolant have been studied ... tension parameters which is used to interpolate the given monotonic data is described in. [6]. Shape preserving ...
Rigid isotopy classification of real three-dimensional cubics
Energy Technology Data Exchange (ETDEWEB)
Krasnov, Vyacheslav A [Yaroslavl Demidov State University (Russian Federation)
2006-08-31
We prove that the space of non-singular real three-dimensional cubics has precisely nine connected components. We also study the space of real canonical curves of genus 4 and prove, in particular, that it consists of eight connected components.
Computation of conjugate depths in cubic-shape open channels ...
African Journals Online (AJOL)
Determining conjugate depths for a given discharge and initial depth requires the solution of a cubic equation for the conjugate depth and there are currently two approaches to avoiding this difficulty in general. One approach is to iteratively try different depths until one is obtained which gives the same value of the ...
Influence of strontium on the cubic to ordered hexagonal phase
Indian Academy of Sciences (India)
... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 23; Issue 6. Influence of strontium on the cubic to ordered hexagonal phase transformation in barium magnesium niobate. M Thirumal A K Ganguli. Phase Transitions Volume 23 Issue 6 December 2000 pp 495-498 ...
Influence of strontium on the cubic to ordered hexagonal phase ...
Indian Academy of Sciences (India)
... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 23; Issue 6. Influence of strontium on the cubic to ordered hexagonal phase transformation in barium magnesium niobate. M Thirumal A K Ganguli. Phase Transitions Volume 23 Issue 6 December 2000 pp 495-498 ...
Global Well-Posedness for Cubic NLS with Nonlinear Damping
Antonelli, Paolo
2010-11-04
We study the Cauchy problem for the cubic nonlinear Schrödinger equation, perturbed by (higher order) dissipative nonlinearities. We prove global in-time existence of solutions for general initial data in the energy space. In particular we treat the energy-critical case of a quintic dissipation in three space dimensions. © Taylor & Francis Group, LLC.
Cubic spline approximation techniques for parameter estimation in distributed systems
Banks, H. T.; Crowley, J. M.; Kunisch, K.
1983-01-01
Approximation schemes employing cubic splines in the context of a linear semigroup framework are developed for both parabolic and hyperbolic second-order partial differential equation parameter estimation problems. Convergence results are established for problems with linear and nonlinear systems, and a summary of numerical experiments with the techniques proposed is given.
Connecting the Dots Parametrically: An Alternative to Cubic Splines.
Hildebrand, Wilbur J.
1990-01-01
Discusses a method of cubic splines to determine a curve through a series of points and a second method for obtaining parametric equations for a smooth curve that passes through a sequence of points. Procedures for determining the curves and results of each of the methods are compared. (YP)
C2-rational cubic spline involving tension parameters
Indian Academy of Sciences (India)
In the present paper, 1-piecewise rational cubic spline function involving tension parameters is considered which produces a monotonic interpolant to a given monotonic data set. It is observed that under certain conditions the interpolant preserves the convexity property of the data set. The existence and uniqueness of a ...
Thermal expansion coefficient and characteristic temperature of cubic dodecaborides
International Nuclear Information System (INIS)
Mojseenko, L.L.
1980-01-01
Temperature dependence of the thermal expansion coefficient (TEC) of cubic dodecaborides was studied within the 77-1200 K range. The Debye characteristic temperatures were determined from the experimental results of the TEC. Application of various ratios to calculate the Debye temperatures is analyzed relative to the ratios validity. These temperatures are compared with characteristic ones determined by X-raying
Phonons in face-centred cubic calcium and strontium
International Nuclear Information System (INIS)
Singh, S.P.; Rathore, R.P.S.
1984-01-01
The axially symmetric and unpaired forces are employed to analyse the phonon dispersion and elastic behaviour of face centred cubic calcium and strontium which have so far not been studied adequately. The model with three parameters predicts the results which agree marvellously with the recently measured data. (author)
Initial post dynamic buckling of a quadratic-cubic column ...
African Journals Online (AJOL)
In this investigation, we determine the dynamic buckling load of an imperfect finite column resting on a mixed quadratic-cubic nonlinear elastic foundation trapped by an explicitly time dependent sinusoidally slowly varying dynamic load .The resultant coefficients are dynamically slowly varying and the formulation contains ...
The traveling salesman problem on cubic and subcubic graphs
S. Boyd; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen)
2014-01-01
htmlabstractWe study the traveling salesman problem (TSP) on the metric completion of cubic and subcubic graphs, which is known to be NP-hard. The problem is of interest because of its relation to the famous 4/3-conjecture for metric TSP, which says that the integrality gap, i.e., the worst case
A Unified Approach to Teaching Quadratic and Cubic Equations.
Ward, A. J. B.
2003-01-01
Presents a simple method for teaching the algebraic solution of cubic equations via completion of the cube. Shows that this method is readily accepted by students already familiar with completion of the square as a method for quadratic equations. (Author/KHR)
Tangent Lines without Derivatives for Quadratic and Cubic Equations
Carroll, William J.
2009-01-01
In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)
Cubic Equations and the Ideal Trisection of the Arbitrary Angle
Farnsworth, Marion B.
2006-01-01
In the year 1837 mathematical proof was set forth authoritatively stating that it is impossible to trisect an arbitrary angle with a compass and an unmarked straightedge in the classical sense. The famous proof depends on an incompatible cubic equation having the cosine of an angle of 60 and the cube of the cosine of one-third of an angle of 60 as…
Aspects on mediated glucose oxidation at a supported cubic phase.
Aghbolagh, Mahdi Shahmohammadi; Khani Meynaq, Mohammad Yaser; Shimizu, Kenichi; Lindholm-Sethson, Britta
2017-12-01
A supported liquid crystalline cubic phase housing glucose oxidase on an electrode surface has been suggested as bio-anode in a biofuel. The purpose of this investigation is to clarify some aspect on the mediated enzymatic oxidation of glucose in such a bio-anode where the mediator ferrocene-carboxylic acid and glucose were dissolved in the solution. The enzyme glucose oxidase was housed in the water channels of the mono-olein cubic phase. The system was investigated with cyclic voltammetry at different scan rates and the temperature was varied between 15°C and 30°C. The diffusion coefficient of the mediator and also the film resistance was estimated showing a large decrease in the mass-transport properties as the temperature was decreased. The current from mediated oxidation of glucose at the electrode surface increased with decreasing film thickness. The transport of the mediator in the cubic phase was the rate-limiting step in the overall reaction, where the oxidation of glucose took place at the outer surface of the cubic phase. Copyright © 2017 Elsevier B.V. All rights reserved.
Trapping of cubic ZnO nanocrystallites at ambient conditions
DEFF Research Database (Denmark)
Decremps, F.; Pellicer-Porres, J.; Datchi, F.
2002-01-01
Dense powder of nanocrystalline ZnO has been recovered at ambient conditions in the metastable cubic structure after a heat treatment at high pressure (15 GPa and 550 K). Combined x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) experiments have been performed to probe both long-ra...
Cubic Interval-Valued Intuitionistic Fuzzy Sets and Their Application in BCK/BCI-Algebras
Directory of Open Access Journals (Sweden)
Young Bae Jun
2018-01-01
Full Text Available As a new extension of a cubic set, the notion of a cubic interval-valued intuitionistic fuzzy set is introduced, and its application in B C K / B C I -algebra is considered. The notions of α -internal, β -internal, α -external and β -external cubic IVIF set are introduced, and the P-union, P-intersection, R-union and R-intersection of α -internal and α -external cubic IVIF sets are discussed. The concepts of cubic IVIF subalgebra and ideal in B C K / B C I -algebra are introduced, and related properties are investigated. Relations between cubic IVIF subalgebra and cubic IVIF ideal are considered, and characterizations of cubic IVIF subalgebra and cubic IVIF ideal are discussed.
To, Siu-ming; Kan, Siu-mee Iu; Ngai, Steven Sek-yum
2015-01-01
This study examined the interaction effects between Hong Kong adolescents' exposure to sexually explicit online materials (SEOM) and individual, family, peer, and cultural factors on their beliefs about gender role equality and body-centered sexuality. Based on a survey design with a sample of 503 high school students in Hong Kong, the results…
DEFF Research Database (Denmark)
Arya, Alay; Liang, Xiaodong; von Solms, Nicolas
2017-01-01
precipitation onset condition during gas injection. The modeling approach is used with the Soave Redlich Kwong, Soave Redlich Kwong-Plus-Huron Vidal mixing rule and cubic-plus-association (CPA) equations of state (EoS). Six different reservoir fluids are studied with respect to asphaltene onset precipitation...
A local cubic smoothing in an adaptation mode
International Nuclear Information System (INIS)
Dikoussar, N.D.
2001-01-01
A new approach to a local curve approximation and the smoothing is proposed. The relation between curve points is defined using a special cross-ratio weight functions. The coordinates of three curve points are used as parameters for both the weight functions and the tree-point cubic model (TPS). A very simple in computing and stable to random errors cubic smoother in an adaptation mode (LOCUS) is constructed. The free parameter of TPS is estimated independently of the fixed parameters by recursion with the effective error suppression and can be controlled by the cross-ratio parameters. Efficiency and the noise stability of the algorithm are confirmed by examples and by comparison with other known non-parametric smoothers
The Piecewise Cubic Method (PCM) for computational fluid dynamics
Lee, Dongwook; Faller, Hugues; Reyes, Adam
2017-07-01
We present a new high-order finite volume reconstruction method for hyperbolic conservation laws. The method is based on a piecewise cubic polynomial which provides its solutions a fifth-order accuracy in space. The spatially reconstructed solutions are evolved in time with a fourth-order accuracy by tracing the characteristics of the cubic polynomials. As a result, our temporal update scheme provides a significantly simpler and computationally more efficient approach in achieving fourth order accuracy in time, relative to the comparable fourth-order Runge-Kutta method. We demonstrate that the solutions of PCM converges at fifth-order in solving 1D smooth flows described by hyperbolic conservation laws. We test the new scheme on a range of numerical experiments, including both gas dynamics and magnetohydrodynamics applications in multiple spatial dimensions.
Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure
Suteewong, Teeraporn
2011-01-19
Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.
Data reduction using cubic rational B-splines
Chou, Jin J.; Piegl, Les A.
1992-01-01
A geometric method is proposed for fitting rational cubic B-spline curves to data that represent smooth curves including intersection or silhouette lines. The algorithm is based on the convex hull and the variation diminishing properties of Bezier/B-spline curves. The algorithm has the following structure: it tries to fit one Bezier segment to the entire data set and if it is impossible it subdivides the data set and reconsiders the subset. After accepting the subset the algorithm tries to find the longest run of points within a tolerance and then approximates this set with a Bezier cubic segment. The algorithm uses this procedure repeatedly to the rest of the data points until all points are fitted. It is concluded that the algorithm delivers fitting curves which approximate the data with high accuracy even in cases with large tolerances.
Plasma simulation with the Differential Algebraic Cubic Interpolated Propagation scheme
Energy Technology Data Exchange (ETDEWEB)
Utsumi, Takayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
A computer code based on the Differential Algebraic Cubic Interpolated Propagation scheme has been developed for the numerical solution of the Boltzmann equation for a one-dimensional plasma with immobile ions. The scheme advects the distribution function and its first derivatives in the phase space for one time step by using a numerical integration method for ordinary differential equations, and reconstructs the profile in phase space by using a cubic polynomial within a grid cell. The method gives stable and accurate results, and is efficient. It is successfully applied to a number of equations; the Vlasov equation, the Boltzmann equation with the Fokker-Planck or the Bhatnagar-Gross-Krook (BGK) collision term and the relativistic Vlasov equation. The method can be generalized in a straightforward way to treat cases such as problems with nonperiodic boundary conditions and higher dimensional problems. (author)
Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem
Directory of Open Access Journals (Sweden)
Xiaomei Zhang
2012-01-01
Full Text Available We present some sufficient global optimality conditions for a special cubic minimization problem with box constraints or binary constraints by extending the global subdifferential approach proposed by V. Jeyakumar et al. (2006. The present conditions generalize the results developed in the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or binary constraints was considered. In addition, a special diagonal matrix is constructed, which is used to provide a convenient method for justifying the proposed sufficient conditions. Then, the reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also applicable to the quadratic minimization problem with box or binary constraints considered in the works of V. Jeyakumar et al. (2006 and Y. Wang et al. (2010. Finally some examples demonstrate that our optimality conditions can effectively be used for identifying global minimizers of the certain nonconvex cubic minimization problem.
Twin wall of proper cubic-tetragonal ferroelastics
Curnoe, S. H.; Jacobs, A. E.
2000-11-01
We derive solutions for the twin wall linking two tetragonal variants of proper cubic-tetragonal ferroelastics, including the dilatational and shear energies and strains. Our solutions satisfy the compatibility relations exactly and are obtained at all temperatures. They require four nonvanishing strains except at the Barsch-Krumhansl temperature TBK (where only the two deviatoric strains are needed). Between the critical temperature and TBK, material in the wall region is dilated, while below TBK it is compressed; we estimate a compression of ~1% for Fe-Pd alloys. In agreement with experiment and more general theory, the twin wall lies in a cubic 110-type plane. We obtain the wall energy numerically as a function of temperature and we derive a simple estimate which agrees well with these values.
Anodic etching of p-type cubic silicon carbide
Harris, G. L.; Fekade, K.; Wongchotigul, K.
1992-01-01
p-Type cubic silicon carbide was anodically etched using an electrolyte of HF:HCl:H2O. The etching depth was determined versus time with a fixed current density of 96.4 mA/sq cm. It was found that the etching was very smooth and very uniform. An etch rate of 22.7 nm/s was obtained in a 1:1:50 HF:HCl:H2O electrolyte.
Orientational anharmonicity of interatomic interaction in cubic monocrystals
International Nuclear Information System (INIS)
Belomestnykh, Vladimir N.; Tesleva, Elena P.
2010-01-01
Anharmonicity of interatomic interaction from a position of physical acoustics under the standard conditions is investigated. It is shown that the measure of anharmonicity of interatomic interaction (Grilneisen parameter) is explicitly expressed through velocities of sound. Calculation results of orientation anharmonicity are shown on the example of 116 cubic monocrystals with different lattice structural type and type of chemical bond. Two types of anharmonicity interatomic interaction anisotropy are determined. Keywords: acoustics, orientational anharmonicity, Gruneisen parameter, velocity of sound
Synthesis and Optical Properties of Cubic Gold Nanoframes
Au, Leslie; Chen, Yeechi; Zhou, Fei; Camargo, Pedro H. C.; Lim, Byungkwon; Li, Zhi-Yuan; Ginger, David S.; Xia, Younan
2008-01-01
This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl2−. A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms. The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single na...
Higher-order numerical solutions using cubic splines
Rubin, S. G.; Khosla, P. K.
1976-01-01
A cubic spline collocation procedure was developed for the numerical solution of partial differential equations. This spline procedure is reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy of a nonuniform mesh. Solutions using both spline procedures, as well as three-point finite difference methods, are presented for several model problems.
Cubic Splines for Trachea and Bronchial Tubes Grid Generation
Directory of Open Access Journals (Sweden)
Eliandro Rodrigues Cirilo
2006-02-01
Full Text Available Grid generation plays an important role in the development of efficient numerical techniques for solving complex flows. Therefore, the present work develops a method for bidimensional blocks structured grid generation for geometries such as the trachea and bronchial tubes. A set of 55 blocks completes the geometry, whose contours are defined by cubic splines. Besides, this technique build on early ones because of its simplicity and efficiency in terms of very complex geometry grid generation.
Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.
Weierstall, Uwe; James, Daniel; Wang, Chong; White, Thomas A; Wang, Dingjie; Liu, Wei; Spence, John C H; Bruce Doak, R; Nelson, Garrett; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Kupitz, Christopher; Zatsepin, Nadia A; Liu, Haiguang; Basu, Shibom; Wacker, Daniel; Han, Gye Won; Katritch, Vsevolod; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Koglin, Jason E; Marvin Seibert, M; Klinker, Markus; Gati, Cornelius; Shoeman, Robert L; Barty, Anton; Chapman, Henry N; Kirian, Richard A; Beyerlein, Kenneth R; Stevens, Raymond C; Li, Dianfan; Shah, Syed T A; Howe, Nicole; Caffrey, Martin; Cherezov, Vadim
2014-01-01
Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.
Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)
International Nuclear Information System (INIS)
Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.
2002-01-01
Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application
Cubic and hexagonal liquid crystals as drug delivery systems.
Chen, Yulin; Ma, Ping; Gui, Shuangying
2014-01-01
Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed.
Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems
Directory of Open Access Journals (Sweden)
Yulin Chen
2014-01-01
Full Text Available Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed.
Potsi, Georgia; Ladavos, Athanasios K.; Petrakis, Dimitrios; Douvalis, Alexios P.; Sanakis, Yiannis; Katsiotis, Marios S.; Papavassiliou, Georgios; Alhassan, Saeed; Gournis, Dimitrios; Rudolf, Petra
2018-01-01
Novel pillared structures were developed from the intercalation of iron-substituted cubic silsesquioxanes in a sodium and an acid-activated montmorillonite nanoclay and evaluated as acid catalysts. Octameric cubic oligosiloxanes were formed upon controlled hydrolytic polycondensation of the
Rahan, Nur Nadiah Mohd; Ishak, Siti Noor Shahira; Hamid, Nur Nadiah Abd; Majid, Ahmad Abd.; Azmi, Amirah
2017-04-01
In this research, the nonlinear Benjamin-Bona-Mahony (BBM) equation is solved numerically using the cubic B-spline (CuBS) and cubic trigonometric B-spline (CuTBS) collocation methods. The CuBS and CuTBS are utilized as interpolating functions in the spatial dimension while the standard finite difference method (FDM) is applied to discretize the temporal space. In order to solve the nonlinear problem, the BBM equation is linearized using Taylor's expansion. Applying the von-Neumann stability analysis, the proposed techniques are shown to be unconditionally stable under the Crank-Nicolson scheme. Several numerical examples are discussed and compared with exact solutions and results from the FDM.
Frolov, Alexei M.
2018-03-01
The universal variational expansion for the non-relativistic three-body systems is explicitly constructed. This universal expansion can be used to perform highly accurate numerical computations of the bound state spectra in various three-body systems, including Coulomb three-body systems with arbitrary particle masses and electric charges. Our main interest is related to the adiabatic three-body systems which contain one bound electron and two heavy nuclei of hydrogen isotopes: the protium p, deuterium d and tritium t. We also consider the analogous (model) hydrogen ion ∞H2+ with the two infinitely heavy nuclei.
Proton disorder in cubic ice: Effect on the electronic and optical properties
International Nuclear Information System (INIS)
Garbuio, Viviana; Pulci, Olivia; Cascella, Michele; Kupchak, Igor; Seitsonen, Ari Paavo
2015-01-01
The proton disorder in ice has a key role in several properties such as the growth mode, thermodynamical properties, and ferroelectricity. While structural phase transitions from proton disordered to proton ordered ices have been extensively studied, much less is known about their electronic and optical properties. Here, we present ab initio many body perturbation theory-based calculations of the electronic and optical properties of cubic ice at different levels of proton disorder. We compare our results with those from liquid water, that acts as an example of a fully (proton- and oxygen-)disordered system. We find that by increasing the proton disorder, a shrinking of the electronic gap occurs in ice, and it is smallest in the liquid water. Simultaneously, the excitonic binding energy decreases, so that the final optical gaps result to be almost independent on the degree of proton disorder. We explain these findings as an interplay between the local dipolar disorder and the electronic correlation
Cao, Xiuxia; Zhou, Xianming; Meng, Chuanmin
2015-06-01
The shock-induced optical emission from yttria (Y2O3) -doped cubic zircon single crystal ( and crystal orientations) under the pressure range from 30 to 52 GPa was measured by the time-resolved 40-channel optical pyrometer at discrete wavelengths ranging from 400 to 800 nm. Clear periodic fluctuation was observed in spectral radiance history of ZrO2, while a noise fluctuation was found in ZrO2. The gray-body function was used to fit the spectral radiance histories. We found that the obtained apparent temperature varied slightly with time, but the emissivity history showed a fluctuate increase with time. Moreover, all the temperature data were independent of shock stress and were well above the calculated Lindeman melting temperature. Present result suggests that the optical emission relates to the shock-induced local hot spots, and its crystal orientation effect is attributed to the different dynamic deformation response between and ZrO2.
Cubic Interval-Valued Intuitionistic Fuzzy Sets and Their Application in BCK/BCI-Algebras
Young Bae Jun; Seok-Zun Song; Seon Jeong Kim
2018-01-01
As a new extension of a cubic set, the notion of a cubic interval-valued intuitionistic fuzzy set is introduced, and its application in B C K / B C I -algebra is considered. The notions of α -internal, β -internal, α -external and β -external cubic IVIF set are introduced, and the P-union, P-intersection, R-union and R-intersection of α -internal and α -external cubic IVIF sets are discussed. The concepts of cubic IVIF subalgebra and ideal in B C K / B...
Synthesis and Optical Properties of Cubic Gold Nanoframes.
Au, Leslie; Chen, Yeechi; Zhou, Fei; Camargo, Pedro H C; Lim, Byungkwon; Li, Zhi-Yuan; Ginger, David S; Xia, Younan
2008-12-01
This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl(2) (-). A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms. The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single nanoparticle spectroscopy. With their hollow and open structures, the Au nanoframes represent a novel class of substrates for applications including surface plasmonics and surface-enhanced Raman scattering.
Bistable Helmholtz solitons in cubic-quintic materials
International Nuclear Information System (INIS)
Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.
2007-01-01
We propose a nonlinear Helmholtz equation for modeling the evolution of broad optical beams in media with a cubic-quintic intensity-dependent refractive index. This type of nonlinearity is appropriate for some semiconductor materials, glasses, and polymers. Exact analytical soliton solutions are presented that describe self-trapped nonparaxial beams propagating at any angle with respect to the reference direction. These spatially symmetric solutions are, to the best of our knowledge, the first bistable Helmholtz solitons to be derived. Accompanying conservation laws (both integral and particular forms) are also reported. Numerical simulations investigate the stability of the solitons, which appear to be remarkably robust against perturbations
Cubic Plus Association Equation of State for Flow Assurance Projects
DEFF Research Database (Denmark)
dos Santos, Leticia Cotia; Abunahman, Samir Silva; Tavares, Frederico Wanderley
2015-01-01
-built model: To validate the implementation, we show calulations for binary systems containing hydrate inhibitors and water or hydrocarbons using the Cubic Plus Association (CPA) and Soave-Redlich-Kwong (SRK) equation of states, also comparing against experimental data. For streams containing natural gas......Thermodynamic hydrate inhibitors such as methanol, ethanol, (mono) ethylene glycol (MEG), and triethylene glycol (TEG) are widely used in the oil and gas industry. On modeling these compounds, we show here how the CPA equation of state was implemented in an in-house process simulator as an in...
Soliton interaction in quadratic and cubic bulk media
DEFF Research Database (Denmark)
Johansen, Steffen Kjær; Bang, Ole
2000-01-01
Summary form only given. The understanding of how and to what extend the cubic nonlinearity affects beam propagation and spatial soliton formation in quadratic media is of vital importance in fundamental and applied nonlinear physics. We consider beam propagation under type-I SHG conditions...... in lossless bulk second order nonlinear optical materials with a nonvanishing third order nonlinearity. It is known that in pure second order systems a single soliton can never collapse whereas in systems with both nonlinearities and that stable single soliton propagation can only in some circumstances...
X-Ray Elastic Constants for Cubic Materials
Energy Technology Data Exchange (ETDEWEB)
Malen, K.
1974-10-15
The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account
X-Ray Elastic Constants for Cubic Materials
International Nuclear Information System (INIS)
Malen, K.
1974-10-01
The stress-strain relation to be used in X-ray stress measurements in anisotropic texture-free media is studied. The method for evaluation of appropriate elastic constants for a cubic medium is described. Some illustrative numerical examples have been worked out including line broadening due to elastic anisotropy. The elastic stress and strain compatibility at grain boundaries is taken into account using Kroner's method. These elastic constants obviously only apply when no internal stresses due to plastic deformation are present. The case of reorientation of free interstitials in the stress field can be taken into account
Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride
Directory of Open Access Journals (Sweden)
Kuruc Marcel
2014-12-01
Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.
Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.
Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul
2017-09-07
Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.
Sweatman, Martin B; Atamas, Alexander; Leyssale, Jean-Marc
2009-01-14
The self-referential (SR) method incorporating thermodynamic integration (TI) [Sweatman et al., J. Chem. Phys. 128, 064102 (2008)] is extended to treat systems of rigid linear bodies. The method is then applied to obtain the canonical ensemble Helmholtz free energy of the alpha-N(2) and plastic face centered cubic phases of systems of hard and Lennard-Jones dumbbells using Monte Carlo simulations. Generally good agreement with reference literature data is obtained, which indicates that the SR-TI method is potentially very general and robust.
Pressure dependence of the antiferromagnetic ordering temperature of face-centered-cubic iron
International Nuclear Information System (INIS)
Onodera, Akifumi; Tsunoda, Yorihiko; Kunitomi, Nobuhiko; Pringle, O.A.; Nicklow, R.M.; Moon, R.M.
1993-01-01
The Neel temperature T N of fcc Fe has been measured as a function of pressure to 8.7 kbar by neutron diffraction using a high pressure cell of supported-cylinder type. Cold-pressed zirconia was employed for the material of the cylinder. A sample with 2.77 at% of fcc Fe, precipitated in a Cu matrix, and having precipitates size between 500 and 600 A, undergoes antiferromagnetic ordering at 67±2 K at ambient pressure. With increasing pressure, T N decreases following a relation; T N (K) = 67 - 1.28p - 1.11 x 10 -1 p 2 - 6.17 x 10 -3 p 3 , where p is in kbar. (author)
Anisotropic spin–orbit stark effect in cubic semiconductors without an inversion center
International Nuclear Information System (INIS)
Alekseev, P. S.
2015-01-01
The effect of external electric and magnetic fields on shallow donor levels in a semiconductor of the T d crystallographic class is analyzed. Application of an electric field eliminates the symmetry of the donor potential with respect to space inversion; as a result, corrections from the momentum-odd spin–orbit Dresselhaus term appear in the donor levels. In a strong electric field, such corrections determine the anisotropy of spin splitting of the donor levels relative to the directions of the external fields in the crystallographic coordinate system. Analytic expressions are derived for the spin splitting anisotropy for various relations between the magnitudes of the magnetic and electric fields. The results of this study can be used to determine the Dresselhaus spin–orbit interaction constant by a new method (in experiments on spin splitting of donor levels)
Anisotropic spin–orbit stark effect in cubic semiconductors without an inversion center
Energy Technology Data Exchange (ETDEWEB)
Alekseev, P. S., E-mail: pavel.alekseev@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)
2015-09-15
The effect of external electric and magnetic fields on shallow donor levels in a semiconductor of the T{sub d} crystallographic class is analyzed. Application of an electric field eliminates the symmetry of the donor potential with respect to space inversion; as a result, corrections from the momentum-odd spin–orbit Dresselhaus term appear in the donor levels. In a strong electric field, such corrections determine the anisotropy of spin splitting of the donor levels relative to the directions of the external fields in the crystallographic coordinate system. Analytic expressions are derived for the spin splitting anisotropy for various relations between the magnitudes of the magnetic and electric fields. The results of this study can be used to determine the Dresselhaus spin–orbit interaction constant by a new method (in experiments on spin splitting of donor levels)
Study of point defects and matter transport in cubic face centered concentrated alloys
International Nuclear Information System (INIS)
Hersant, D.
1991-01-01
It is shown that the second moment approximation to the tight binding method allows a functional to be set up which describes transition metals, noble metals and their alloys. It is assumed that the local electronic density of states is rectangular and that the width varies from site to site. It is then shown how the Monte Carlo method can be used to study order in solid solution with a large difference in size between components: atoms of different nature are exchanged and their neighbours are simultaneously displaced in accordance with the microscopic theory of elasticity. The phase diagram of the simulated alloys is then constructed. Experimental results are qualitatively well reproduced but transition temperatures are difficult to evaluate accurately because of a bad estimation of the vibration entropy. A local tendency towards ordering due to chemical effects is shown at the defect proximity. 40 figs., 100 refs
Computer simulations of low energy displacement cascades in a face centered cubic lattice
International Nuclear Information System (INIS)
Schiffgens, J.O.; Bourquin, R.D.
1976-09-01
Computer simulations of atomic motion in a copper lattice following the production of primary knock-on atoms (PKAs) with energies from 25 to 200 eV are discussed. In this study, a mixed Moliere-Englert pair potential is used to model the copper lattice. The computer code COMENT, which employs the dynamical method, is used to analyze the motion of up to 6000 atoms per time step during cascade evolution. The atoms are specified as initially at rest on the sites of an ideal lattice. A matrix of 12 PKA directions and 6 PKA energies is investigated. Displacement thresholds in the [110] and [100] are calculated to be approximately 17 and 20 eV, respectively. A table showing the stability of isolated Frenkel pairs with different vacancy and interstitial orientations and separations is presented. The numbers of Frenkel pairs and atomic replacements are tabulated as a function of PKA direction for each energy. For PKA energies of 25, 50, 75, 100, 150, and 200 eV, the average number of Frenkel pairs per PKA are 0.4, 0.6, 1.0, 1.2, 1.4, and 2.2 and the average numbers of replacements per PKA are 2.4, 4.0, 3.3, 4.9, 9.3, and 15.8
Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals.
Huang, Yanhua; Zong, Wenjun
2014-01-01
In this work, molecular dynamics simulations are performed to investigate the influence of material properties on the nanometric cutting of single crystal copper and aluminum with a diamond cutting tool. The atomic interactions in the two metallic materials are modeled by two sets of embedded atom method (EAM) potential parameters. Simulation results show that although the plastic deformation of the two materials is achieved by dislocation activities, the deformation behavior and related physical phenomena, such as the machining forces, machined surface quality, and chip morphology, are significantly different for different materials. Furthermore, the influence of material properties on the nanometric cutting has a strong dependence on the operating temperature.
Surface relaxation and surface energy of face –centered Cubic ...
African Journals Online (AJOL)
DR. MIKE HORSFALL
only need to evaluate the contribution of a single nonequivalent atom per plane. Moreover, only two to three planes have to be considered in this calculation: atoms in the fourth plane and below find themselves in equilibrium, bulk-like environment. The data by. Bozzolo et al (1993) shows the (100) surface of Fcc metals.
High Cubic-Phase Purity InN on MgO (001) Using Cubic-Phase GaN as a Buffer Layer
International Nuclear Information System (INIS)
Sanorpim, S.; Kuntharin, S.; Parinyataramas, J.; Yaguchi, H.; Iwahashi, Y.; Orihara, M.; Hijikata, Y.; Yoshida, S.
2011-01-01
High cubic-phase purity InN films were grown on MgO (001) substrates by molecular beam epitaxy with a cubic-phase GaN buffer layer. The cubic phase purity of the InN grown layers has been analyzed by high resolution X-ray diffraction, μ-Raman scattering and transmission electron microscopy. It is evidenced that the hexagonal-phase content in the InN overlayer much depends on hexagonal-phase content in the cubic-phase GaN buffer layer and increases with increasing the hexagonal-phase GaN content. From Raman scattering measurements, in addition, the InN layer with lowest hexagonal component (6%), only Raman characteristics of cubic TO InN and LO InN modes were observed, indicating a formation of a small amount of stacking faults, which does not affect on vibrational property.
Analyzing Single Molecule Localization Microscopy Data Using Cubic Splines.
Babcock, Hazen P; Zhuang, Xiaowei
2017-04-03
The resolution of super-resolution microscopy based on single molecule localization is in part determined by the accuracy of the localization algorithm. In most published approaches to date this localization is done by fitting an analytical function that approximates the point spread function (PSF) of the microscope. However, particularly for localization in 3D, analytical functions such as a Gaussian, which are computationally inexpensive, may not accurately capture the PSF shape leading to reduced fitting accuracy. On the other hand, analytical functions that can accurately capture the PSF shape, such as those based on pupil functions, can be computationally expensive. Here we investigate the use of cubic splines as an alternative fitting approach. We demonstrate that cubic splines can capture the shape of any PSF with high accuracy and that they can be used for fitting the PSF with only a 2-3x increase in computation time as compared to Gaussian fitting. We provide an open-source software package that measures the PSF of any microscope and uses the measured PSF to perform 3D single molecule localization microscopy analysis with reasonable accuracy and speed.
Numerical simulation of Burgers' equation using cubic B-splines
Lakshmi, C.; Awasthi, Ashish
2017-03-01
In this paper, a numerical θ scheme is proposed for solving nonlinear Burgers' equation. By employing Hopf-Cole transformation, the nonlinear Burgers' equation is linearized to the linear Heat equation. The resulting Heat equation is further solved by cubic B-splines. The time discretization of linear Heat equation is carried out using Crank-Nicolson scheme (θ = {1 \\over 2}) as well as backward Euler scheme (θ = 1). Accuracy in temporal direction is improved by using Richardson extrapolation. This method hence possesses fourth order accuracy both in space and time. The system of matrix which arises by using cubic splines is always diagonal. Therefore, working with splines has the advantage of reduced computational cost and easy implementation. Stability of the schemes have been discussed in detail and shown to be unconditionally stable. Three examples have been examined and the L2 and L∞ error norms have been calculated to establish the performance of the method. The numerical results obtained on applying this method have shown to give more accurate results than existing works of Kutluay et al. [1], Ozis et al. [2], Dag et al. [3], Salkuyeh et al. [4] and Korkmaz et al. [5].
String scattering amplitudes and deformed cubic string field theory
Directory of Open Access Journals (Sweden)
Sheng-Hong Lai
2018-01-01
Full Text Available We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz–Christoffel mapping.
Special geometry, cubic polynomials and homogeneous quaternionic spaces
de Wit, Bernard
1992-01-01
The existing classification of homogeneous quaternionic spaces is not complete. We study these spaces in the context of certain $N=2$ supergravity theories, where dimensional reduction induces a mapping between {\\em special} real, K\\"ahler and quaternionic spaces. The geometry of the real spaces is encoded in cubic polynomials, those of the K\\"ahler and quaternionic manifolds in homogeneous holomorphic functions of second degree. We classify all cubic polynomials that have an invariance group that acts transitively on the real manifold. The corresponding K\\"ahler and quaternionic manifolds are then homogeneous. We find that they lead to a well-defined subset of the normal quaternionic spaces classified by \\Al\\ (and the corresponding special K\\"ahler spaces given by Cecotti), but there is a new class of rank-3 spaces of quaternionic dimension larger than 3. We also point out that some of the rank-4 \\Al\\ spaces were not fully specified and correspond to a finite variety of inequivalent spaces. A simpler version...
Anomalous diffusion in body-centred and face-centred cubic metals
International Nuclear Information System (INIS)
Zanghi, J.-P.
1975-10-01
The initial rates of contraction due to self-irradiation damage at 4.2K in three PuSc alloys (5, 12, 18 at % Sc) stabilized in f.c.c. delta-phase were measured. The high negative value of the formation volume of a Frenkel pair which is deduced by extrapolating for pure Pu, can only be explained by assuming that the interstitial Pu may partly recover its distortion energy by creating bonds with its neighbours, by a localized enhancement of the d.f. hybridization and especially by provoking the formation of bonds between its very neighbours. It is shown that about twenty atoms around the interstitial Pu are affected by these bonds. The self-irradiation at 4.2K of a b.c.c. UPuMo alloy was also studied. The activation volume for self-diffusion of Pu in b.c.c. PuZr alloys (10 and 40 at % Zr) was determined. So the validity of Nachtrieb's melting-diffusion correlation could be checked. Indeed, in the Pu 40 at % Zr alloy, which has a pressure temperature diagram the liquidus of which has a positive slope, a positive activation volume was found, whereas in pure epsilon Pu which as a negative slope, the activation volume is negative. A self-diffusion mechanism in PuZr alloys is proposed. A study of the diffusion of Am in these alloys showed that Am and Pu likely diffuse by the same mechanism [fr
Directory of Open Access Journals (Sweden)
Sophia Constancio
2012-12-01
Full Text Available OBJETIVO: Caracterizar os tipos de dores corporais apresentados por teleoperadores e verificar sua relação com o uso da voz em atividades laborais. MÉTODOS: Duzentos e trinta e cinco teleoperadores e 235 indivíduos da população geral responderam um questionário contendo questões fechadas sobre dores corporais proximais e distais à laringe, problemas de voz, atuação profissional e consulta à especialista. Investigou-se se há relação e/ou associação de cada tipo de dor com os demais aspectos do questionário. RESULTADOS: As dores corporais foram referidas por ambos os grupos, entretanto, os teleoperadores as referiram em maior número. Teleoperadores tiveram maior necessidade de se afastar do trabalho e relataram mais dores corporais (ombros, pescoço, cabeça, costas, braços, mãos e ouvidos que a população geral. Houve relação da maioria das dores corporais com problemas vocais, afastamento do trabalho por problemas vocais e consulta ao otorrinolaringologista no grupo de teleoperadores. Na população geral houve tendência de relação entre jornada de trabalho e dores no peito e nas mãos. Não houve diferença na comparação de presença de dores corporais entre os gêneros em ambos os grupos. CONCLUSÃO: Teleoperadores sofrem mais dores distais e proximais à laringe e têm maior necessidade de se afastar do trabalho por problemas de voz que a população geral, evidenciando o desgaste vocal e físico desses profissionais.PURPOSE: To characterize types of body aches presented by call center operators and to verify the relationship of the selected body aches with voice use in work activities. METHODS: 235 call center operators and 235 individuals from the general population responded to a questionnaire with closed questions about body aches (classified into proximal and distal larynx aches, voice problems, professional activity and search for specialized help. It was investigated whether there was a relationship between
Perbaikan Metode Penghitungan Debit Sungai Menggunakan Cubic Spline Interpolation
Directory of Open Access Journals (Sweden)
Budi I. Setiawan
2007-09-01
Full Text Available Makalah ini menyajikan perbaikan metode pengukuran debit sungai menggunakan fungsi cubic spline interpolation. Fungi ini digunakan untuk menggambarkan profil sungai secara kontinyu yang terbentuk atas hasil pengukuran jarak dan kedalaman sungai. Dengan metoda baru ini, luas dan perimeter sungai lebih mudah, cepat dan tepat dihitung. Demikian pula, fungsi kebalikannnya (inverse function tersedia menggunakan metode. Newton-Raphson sehingga memudahkan dalam perhitungan luas dan perimeter bila tinggi air sungai diketahui. Metode baru ini dapat langsung menghitung debit sungaimenggunakan formula Manning, dan menghasilkan kurva debit (rating curve. Dalam makalah ini dikemukaan satu canton pengukuran debit sungai Rudeng Aceh. Sungai ini mempunyai lebar sekitar 120 m dan kedalaman 7 m, dan pada saat pengukuran mempunyai debit 41 .3 m3/s, serta kurva debitnya mengikuti formula: Q= 0.1649 x H 2.884 , dimana Q debit (m3/s dan H tinggi air dari dasar sungai (m.
Principal spectra describing magnetooptic permittivity tensor in cubic crystals
Energy Technology Data Exchange (ETDEWEB)
Hamrlová, Jana [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Legut, Dominik [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Veis, Martin [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Pištora, Jaromír [Nanotechnology Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Hamrle, Jaroslav, E-mail: jaroslav.hamrle@vsb.cz [IT4Innovations Centre, VSB – Technical University of Ostrava, listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16 Czech Republic (Czech Republic); Department of Physics, VSB – Technical University of Ostrava, 17. listopadu 15, Ostrava, 708 33 Czech Republic (Czech Republic)
2016-12-15
We provide unified phenomenological description of magnetooptic effects being linear and quadratic in magnetization. The description is based on few principal spectra, describing elements of permittivity tensor up to the second order in magnetization. Each permittivity tensor element for any magnetization direction and any sample surface orientation is simply determined by weighted summation of the principal spectra, where weights are given by crystallographic and magnetization orientations. The number of principal spectra depends on the symmetry of the crystal. In cubic crystals owning point symmetry we need only four principal spectra. Here, the principal spectra are expressed by ab initio calculations for bcc Fe, fcc Co and fcc Ni in optical range as well as in hard and soft x-ray energy range, i.e. at the 2p- and 3p-edges. We also express principal spectra analytically using modified Kubo formula.
Lipidic cubic phase serial millisecond crystallography using synchrotron radiation
Directory of Open Access Journals (Sweden)
Przemyslaw Nogly
2015-03-01
Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.
Quantum-Carnot engine for particle confined to cubic potential
Energy Technology Data Exchange (ETDEWEB)
Sutantyo, Trengginas Eka P., E-mail: trengginas.eka@gmail.com; Belfaqih, Idrus H., E-mail: idrushusin21@gmail.com; Prayitno, T. B., E-mail: teguh-budi@unj.ac.id [Department of Physics, State University of Jakarta, Jl. Pemuda No.10, Rawamangun, Jakarta Timur 13220 (Indonesia)
2015-09-30
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system.
Quantum-Carnot engine for particle confined to cubic potential
International Nuclear Information System (INIS)
Sutantyo, Trengginas Eka P.; Belfaqih, Idrus H.; Prayitno, T. B.
2015-01-01
Carnot cycle consists of isothermal and adiabatic processes which are reversible. Using analogy in quantum mechanics, these processes can be well explained by replacing variables in classical process with a quantum system. Quantum system which is shown in this paper is a particle that moves under the influence of a cubic potential which is restricted only to the state of the two energy levels. At the end, the efficiency of the system is shown as a function of the width ratio between the initial conditions and the farthest wall while expanding. Furthermore, the system efficiency will be considered 1D and 2D cases. The providing efficiencies are different due to the influence of the degeneration of energy and the degrees of freedom of the system
Linear electro-optic effect in cubic silicon carbide
Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.
1991-01-01
The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.
A cubic spline approximation for problems in fluid mechanics
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
Genetic and environmental smoothing of lactation curves with cubic splines.
White, I M; Thompson, R; Brotherstone, S
1999-03-01
Most approaches to modeling lactation curves involve parametric curves with fixed or random coefficients. In either case, the resulting models require the specification on an underlying parametric curve. The fitting of splines represents a semiparametric approach to the problem. In the context of animal breeding, cubic smoothing splines are particularly convenient because they can be incorporated into a suitably constructed mixed model. The potential for the use of splines in modeling lactation curves is explored with a simple example, and the results are compared with those using a random regression model. The spline model provides greater flexibility at the cost of additional computation. Splines are shown to be capable of picking up features of the lactation curve that are missed by the random regression model.
Testing for cubic smoothing splines under dependent data.
Nummi, Tapio; Pan, Jianxin; Siren, Tarja; Liu, Kun
2011-09-01
In most research on smoothing splines the focus has been on estimation, while inference, especially hypothesis testing, has received less attention. By defining design matrices for fixed and random effects and the structure of the covariance matrices of random errors in an appropriate way, the cubic smoothing spline admits a mixed model formulation, which places this nonparametric smoother firmly in a parametric setting. Thus nonlinear curves can be included with random effects and random coefficients. The smoothing parameter is the ratio of the random-coefficient and error variances and tests for linear regression reduce to tests for zero random-coefficient variances. We propose an exact F-test for the situation and investigate its performance in a real pine stem data set and by simulation experiments. Under certain conditions the suggested methods can also be applied when the data are dependent. © 2010, The International Biometric Society.
Viscous flow solutions with a cubic spline approximation
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is used for the solution of several problems in fluid mechanics. This procedure provides a high degree of accuracy even with a nonuniform mesh, and leads to a more accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several typical integration schemes are presented. For two-dimensional flows a spline-alternating-direction-implicit (SADI) method is evaluated. The spline procedure is assessed and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
High-order numerical solutions using cubic splines
Rubin, S. G.; Khosla, P. K.
1975-01-01
The cubic spline collocation procedure for the numerical solution of partial differential equations was reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy for a nonuniform mesh and overall fourth-order accuracy for a uniform mesh. Application of the technique was made to the Burger's equation, to the flow around a linear corner, to the potential flow over a circular cylinder, and to boundary layer problems. The results confirmed the higher-order accuracy of the spline method and suggest that accurate solutions for more practical flow problems can be obtained with relatively coarse nonuniform meshes.
Bistable dark solitons of a cubic-quintic Helmholtz equation
International Nuclear Information System (INIS)
Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.
2010-01-01
We provide a report on exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation and nondegenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.
Bifurcation diagram of a cubic three-parameter autonomous system
Directory of Open Access Journals (Sweden)
Lenka Barakova
2005-07-01
Full Text Available In this paper, we study the cubic three-parameter autonomous planar system $$displaylines{ dot x_1 = k_1 + k_2x_1 - x_1^3 - x_2,cr dot x_2 = k_3 x_1 - x_2, }$$ where $k_2, k_3$ are greater than 0. Our goal is to obtain a bifurcation diagram; i.e., to divide the parameter space into regions within which the system has topologically equivalent phase portraits and to describe how these portraits are transformed at the bifurcation boundaries. Results may be applied to the macroeconomical model IS-LM with Kaldor's assumptions. In this model existence of a stable limit cycles has already been studied (Andronov-Hopf bifurcation. We present the whole bifurcation diagram and among others, we prove existence of more difficult bifurcations and existence of unstable cycles.
Spatial 't Hooft loop to cubic order in hot QCD
Giovannangeli, P.
2002-01-01
Spatial 't Hooft loops of strength k measure the qualitative change in the behaviour of electric colour flux in confined and deconfined phase of SU (N) gauge theory. They show an area law in the deconfined phase, known analytica lly to two loop order with a ``k-scaling'' law k(N-k). In this paper we comput e the O(g^3) correction to the tension. It is due to neutral gluon fields that get their mass through interaction with the wall. The simple k-scaling is lost in cubic order. The generic problem of non-convexity shows up in this order an d the cure is provided. The result for large N is explicitely given. We show tha t nonperturbative effects appear at O(g^5).
THERMODYNAMIC PARAMETERS OF LEAD SULFIDE CRYSTALS IN THE CUBIC PHASE
Directory of Open Access Journals (Sweden)
T. O. Parashchuk
2016-07-01
Full Text Available Geometric and thermodynamic parameters of cubic PbS crystals were obtained using the computer calculations of the thermodynamic parameters within density functional theory method DFT. Cluster models for the calculation based on the analysis of the crystal and electronic structure. Temperature dependence of energy ΔE and enthalpy ΔH, Gibbs free energy ΔG, heat capacity at constant pressure CP and constant volume CV, entropy ΔS were determined on the basis of ab initio calculations of the crystal structure of molecular clusters. Analytical expressions of temperature dependences of thermodynamic parameters which were approximated with quantum-chemical calculation points have been presented. Experimental results compared with theoretically calculated data.
Quantum corrections for the cubic Galileon in the covariant language
Energy Technology Data Exchange (ETDEWEB)
Saltas, Ippocratis D. [Institute of Astrophysics and Space Sciences, Faculty of Sciences, Campo Grande, PT1749-016 Lisboa (Portugal); Vitagliano, Vincenzo, E-mail: isaltas@fc.ul.pt, E-mail: vincenzo.vitagliano@ist.utl.pt [Multidisciplinary Center for Astrophysics and Department of Physics, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2017-05-01
We present for the first time an explicit exposition of quantum corrections within the cubic Galileon theory including the effect of quantum gravity, in a background- and gauge-invariant manner, employing the field-reparametrisation approach of the covariant effective action at 1-loop. We show that the consideration of gravitational effects in combination with the non-linear derivative structure of the theory reveals new interactions at the perturbative level, which manifest themselves as higher-operators in the associated effective action, which' relevance is controlled by appropriate ratios of the cosmological vacuum and the Galileon mass scale. The significance and concept of the covariant approach in this context is discussed, while all calculations are explicitly presented.
The electric field of a uniformly charged cubic shell
McCreery, Kaitlin; Greenside, Henry
2018-01-01
As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.
Traveling kinks in cubic nonlinear Ginzburg-Landau equations.
Rosu, H C; Cornejo-Pérez, O; Ojeda-May, P
2012-03-01
Nonlinear cubic Euler-Lagrange equations of motion in the traveling variable are usually derived from Ginzburg-Landau free energy functionals frequently encountered in several fields of physics. Many authors considered in the past damped versions of such equations, with the damping term added by hand simulating the friction due to the environment. It is known that even in this damped case kink solutions can exist. By means of a factorization method, we provide analytic formulas for several possible kink solutions of such equations of motion in the undriven and constant field driven cases, including the recently introduced Riccati parameter kinks, which were not considered previously in such a context. The latter parameter controls the delay of the switching stage of the kinks. The delay is caused by antikink components that are introduced in the structure of the solution through this parameter.
A cubic autocatalytic reaction in a continuous stirred tank reactor
Energy Technology Data Exchange (ETDEWEB)
Yakubu, Aisha Aliyu; Yatim, Yazariah Mohd [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang Malaysia (Malaysia)
2015-10-22
In the present study, the dynamics of the cubic autocatalytic reaction model in a continuous stirred tank reactor with linear autocatalyst decay is studied. This model describes the behavior of two chemicals (reactant and autocatalyst) flowing into the tank reactor. The behavior of the model is studied analytically and numerically. The steady state solutions are obtained for two cases, i.e. with the presence of an autocatalyst and its absence in the inflow. In the case with an autocatalyst, the model has a stable steady state. While in the case without an autocatalyst, the model exhibits three steady states, where one of the steady state is stable, the second is a saddle point while the last is spiral node. The last steady state losses stability through Hopf bifurcation and the location is determined. The physical interpretations of the results are also presented.
Magnetic properties of Ising thin films with cubic lattices
Laosiritaworn, Y.; Poulter, J.; Staunton, J. B.
2004-09-01
We have used Monte Carlo simulations and mean-field analysis to observe the magnetic behavior of Ising thin films with cubic lattice structures as a function of temperature and thickness, especially in the critical region. Magnetization and magnetic susceptibility, including layer variation, are investigated. We find that the magnetic behavior changes from two-dimensional to three-dimensional character with increasing film thickness. Both the crossover of the critical temperature from a two-dimensional to a bulk value and the shift exponent are observed. Nevertheless, with support from a scaling function, the simulations show that the effective critical exponents for films with large enough layer extents only vary a little from their two-dimensional values. This, in particular, provides an indication of two-dimensional universality in the thin films.
Preparation of ohmic n-type cubic boron nitride contacts
Wang Cheng Xin; Li Xun; Zhang Tie Chen; Han Yong; Luo Ji Feng; Shen Cai Xia; Gao Chun Xi; Zou Guang Tian
2002-01-01
Ohmic electrodes in the form of n-type (Si-doped) cubic boron nitride (c-BN) bulk crystals were fabricated by utilizing a covering technique, depositing Ti(10 nm)/Mo/(20 nm)/Pt-Au(200 nm) ohmic contact metal on both the sides of the c-BN substrate. The size of the specimen electrode was 100 x 100 mu m sup 2 on one side and 300 x 300 mu m sup 2 on the other side. Measurements on the specimen were made using a specially made device. Linear current-voltage characteristics were obtained. It is considered that the contact between the Ti-and Si-doped c-BN was ohmic.
Bounce universe and black holes from critical Einsteinian cubic gravity
Feng, Xing-Hui; Huang, Hyat; Mai, Zhan-Feng; Lü, Hong
2017-11-01
We show that there exists a critical point for the coupling constants in Einsteinian cubic gravity in which the linearized equations on the maximally symmetric vacuum vanish identically. We construct an exact isotropic bounce universe in the critical theory in four dimensions. The comoving time runs from minus infinity to plus infinity, yielding a smooth universe bouncing between two de Sitter vacua. In five dimensions, we adopt a numerical approach to construct a bounce solution, in which a singularity occurs before the bounce takes place. We then construct exact anisotropic bounces that connect two isotropic de Sitter spacetimes with flat spatial sections. We further construct exact anti-de Sitter black holes in the critical theory in four and five dimensions and obtain an exact anti-de Sitter worm brane in four dimensions.
The parameter space of Cubic Galileon models for cosmic acceleration
Bellini, Emilio
2013-01-01
We use recent measurements of the expansion history of the universe to place constraints on the parameter space of cubic Galileon models. This gives strong constraints on the Lagrangian of these models. Most dynamical terms in the Galileon Lagrangian are constraint to be small and the acceleration is effectively provided by a constant term in the scalar potential, thus reducing, effectively, to a LCDM model for current acceleration. The effective equation of state is indistinguishable from that of a cosmological constant w = -1 and the data constraint it to have no temporal variations of more than at the few % level. The energy density of the Galileon can contribute only to about 10% of the acceleration energy density, being the other 90% a cosmological constant term. This demonstrates how useful direct measurements of the expansion history of the universe are at constraining the dynamical nature of dark energy.
Dian, Linghui; Yang, Zhiwen; Li, Feng; Wang, Zhouhua; Pan, Xin; Peng, Xinsheng; Huang, Xintian; Guo, Zhefei; Quan, Guilan; Shi, Xuan; Chen, Bao; Li, Ge; Wu, Chuanbin
2013-01-01
In order to improve the oral bioavailability of ibuprofen, ibuprofen-loaded cubic nanoparticles were prepared as a delivery system for aqueous formulations. The cubic inner structure was verified by cryogenic transmission electron microscopy. With an encapsulation efficiency greater than 85%, the ibuprofen-loaded cubic nanoparticles had a narrow size distribution around a mean size of 238 nm. Differential scanning calorimetry and X-ray diffraction determined that ibuprofen was in an amorphous and molecular form within the lipid matrix. The in vitro release of ibuprofen from cubic nanoparticles was greater than 80% at 24 hours, showing sustained characteristics. The pharmacokinetic study in beagle dogs showed improved absorption of ibuprofen from cubic nanoparticles compared to that of pure ibuprofen, with evidence of a longer half-life and a relative oral bioavailability of 222% (P ibuprofen-loaded cubic nanoparticles provide a promising carrier candidate with an efficient drug delivery for therapeutic treatment. PMID:23468008
Cubic nonlinear optical properties of platinum-terminated polyynediyl chains.
Samoc, Marek; Dalton, Gulliver T; Gladysz, John A; Zheng, Qinglin; Velkov, Yasen; Agren, Hans; Norman, Patrick; Humphrey, Mark G
2008-11-03
The wavelength dependence of the cubic nonlinearity of ligated platinum-terminated polyynes trans, trans-{(p-MeC6H4)3P}2(p-MeC6H4)Pt(C[triple bond]C)n Pt(p-C6H4Me){P(p-C6H4Me)3}2 (n = 3-6, 8, 10, 12) has been examined by femtosecond Z-scan studies in the wavelength range 520-1500 nm and the results rationalized by density functional theory calculations on the model complexes trans, trans-(H3P)2(C6H5)Pt(C[triple bond]C)n Pt(C6H5)(PH3)2 (n = 2-8, 10, 12). Although the final states for one- and two-photon transitions are not the same in these centrosymmetric molecules, the Z-scan studies reveal coincidences in one-photon absorption with features in the frequency dependencies of both real and imaginary parts of the cubic hyperpolarizability, as well as inflections in the frequency dependencies of the real part of gamma that correspond to resonances in the imaginary part of gamma. The theoretical studies suggest that the linear absorption spectra are dominated by X(1)A g --> n(1)B(3u) transitions, with the first state of B(3u) symmetry playing a steadily diminishing role upon oligoyne chain lengthening. The theoretical studies also predict a red-shift of two-photon absorption (TPA) profile with increasing conjugation length, and a significant enhancement on proceeding from the shortest to the longest chromophore, trends that are observed experimentally. The experimental low-energy TPA maxima for these complexes can be approximated by a simple Gaussian profile. The sp-carbon chain-length dependence of linear and nonlinear absorption maxima enable an estimate (neglecting saturation) of 660 and 1000 nm for the infinite carbon chain, carbyne.
Energy Technology Data Exchange (ETDEWEB)
Alfaro L, M.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)
1998-10-15
The existence of the Center of Storage of Radioactive Wastes (CADER) in the Municipality of Temascalapa, Estado de Mexico has generated restlessness among the inhabitants from it installation. In March 1998, its appeared in diverse media, notes and reports attributing illnesses and sufferings to the CADER activities. In coordination with the health authorities of the Estado de Mexico and of the Municipality of Temascalapa, the doctors of the ININ assisted people that converged to the centers. For the above-mentioned, in the period understood among the months of May to September 1998, its were carried out measurements in 338 urine samples and 45 whole-body of voluntary people of the surroundings of the CADER. This document has the purpose of presenting the information on the carried out measurements. (Author)
Non-spherical micelles in an oil-in-water cubic phase
DEFF Research Database (Denmark)
Leaver, M.; Rajagopalan, V.; Ulf, O.
2000-01-01
The cubic phase formed between the microemulsion and hexagonal phases of the ternary pentaethylene glycol dodecyl ether (C12E5)-decane-water system and that doped with small amounts of sodium dodecylsulfate (SDS) have been investigated. The presence of discrete oil-swollen micelles in the cubic...... scattering experiments indicate that the lattice parameter for the cubic phase is inconsistent with a simple packing of micelles. Whilst insufficient reflections were observed to establish the space group of the cubic phase uniquely, those that were are consistent with two commonly observed space groups...
Bayer, J; Reising, K; Kuminack, K; Südkamp, N P; Strohm, P C
2015-01-01
Whole-body computed tomography is accepted as the standard procedure in the primary diagnostic of polytraumatised adults in the emergency room. Up to now there is still controversial discussion about the same algorithm in the primary diagnostic of children. The aim of this study was to survey the participation of German trauma-centres in the care of polytraumatised children and the hospital dependant use of whole-body computed tomography for initial patient work-up. A questionnaire was mailed to every Department of Traumatology registered in the DGU (German Trauma Society) databank. We received 60,32% of the initially sent questionnaires and after applying exclusion criteria 269 (53,91%) were applicable to statistical analysis. In the three-tiered German hospital system no statistical difference was seen in the general participation of children polytrauma care between hospitals of different tiers (p = 0.315). Even at the lowest hospital level 69,47% of hospitals stated to participate in polytrauma care for children, at the intermediate and highest level hospitals 91,89% and 95,24% stated to be involved in children polytrauma care, respectively. Children suspicious of multiple injuries or polytrauma received significantly fewer primary whole-body CTs in lowest level compared to intermediate level hospitals (36,07% vs. 56,57%; p = 0.015) and lowest level compared to highest level hospitals (36,07% vs. 68,42%; p = 0.001). Comparing the use of whole-body CT in intermediate to highest level hospitals a not significant increase in its use could be seen in highest level hospitals (56,57% vs. 68,42%; p = 0.174). According to our survey, taking care of polytraumatised children in Germany is not limited to specialised hospitals or a defined hospital level-of-care. Additionally, there is no established radiologic standard in work-up of the polytraumatised child. However, in higher hospital care -levels a higher percentage of hospitals employs whole-body CTs for primary
DEFF Research Database (Denmark)
Arya, Alay; Liang, Xiaodong; von Solms, Nicolas
2017-01-01
Gas injection is a proven enhanced oil recovery technique. The gas injection changes the reservoir oil composition, temperature, and pressure conditions, which may result in asphaltene precipitation. In this work, we have used a modeling approach from the literature in order to predict asphaltene...... precipitation onset condition during gas injection. The modeling approach is used with the Soave Redlich Kwong, Soave Redlich Kwong-Plus-Huron Vidal mixing rule and cubic-plus-association (CPA) equations of state (EoS). Six different reservoir fluids are studied with respect to asphaltene onset precipitation...... on asphaltene onset conditions. The CPA EoS is more reliable than the other two models, which are sensitive to asphaltene molecular weight and sometimes predict highly nonlinear behavior outside the experimental temperature range used for fitting the model parameters....
Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi
2016-02-01
A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.
New cubic structure compounds as actinide host phases
Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S.
2010-03-01
Various compounds with fluorite (cubic zirconia) and fluorite-derived (pyrochlore, zirconolite) structures are considered as promising actinide host phases at immobilization of actinide-bearing nuclear wastes. Recently some new cubic compounds — stannate and stannate-zirconate pyrochlores, murataite and related phases, and actinide-bearing garnet structure compounds were proposed as perspective matrices for complex actinide wastes. Zirconate pyrochlore (ideally Gd2Zr2O7) has excellent radiation resistance and high chemical durability but requires high temperatures (at least 1500 °C) to be produced by hot-pressing from sol-gel derived precursor. Partial Sn4+ substitution for Zr4+ reduces production temperature and the compounds REE2ZrSnO7 may be hot-pressed or cold pressed and sintered at ~1400 °C. Pyrochlore, A2B2O7-x (two-fold elementary fluorite unit cell), and murataite, A3B6C2O20-y (three-fold fluorite unit cell), are end-members of the polysomatic series consisting of the phases whose structures are built from alternating pyrochlore and murataite blocks (nano-sized modules) with seven- (2C/3C/2C), five- (2C/3C), eight- (3C/2C/3C) and three-fold (3C — murataite) fluorite unit cells. Actinide content in this series reduces in the row: 2C (pyrochlore) > 7C > 5C > 8C > 3C (murataite). Due to congruent melting murataite-based ceramics may be produced by melting and the firstly segregated phase at melt crystallization is that with the highest fraction of the pyrochlore modules in its structure. The melts containing up to 10 wt. % AnO2 (An = Th, U, Np, Pu) or REE/An fraction of HLW form at crystallization zoned grains composed sequentially of the 5C → 8C → 3C phases with the highest actinide concentration in the core and the lowest — in the rim of the grains. Radiation resistance of the "murataite" is comparable to titanate pyrochlores. One more promising actinide hosts are ferrites with garnet structure. The matrices containing sometime complex fluorite
Characterization, Microstructure, and Dielectric properties of cubic pyrochlore structural ceramics
Li, Yangyang
2013-05-01
The (BMN) bulk materials were sintered at 1050°C, 1100°C, 1150°C, 1200°C by the conventional ceramic process, and their microstructure and dielectric properties were investigated by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM) (including the X-ray energy dispersive spectrometry EDS and high resolution transmission electron microscopy HRTEM) and dielectric impedance analyzer. We systematically investigated the structure, dielectric properties and voltage tunable property of the ceramics prepared at different sintering temperatures. The XRD patterns demonstrated that the synthesized BMN solid solutions had cubic phase pyrochlore-type structure when sintered at 1050°C or higher, and the lattice parameter (a) of the unit cell in BMN solid solution was calculated to be about 10.56Å. The vibrational peaks observed in the Raman spectra of BMN solid solutions also confirmed the cubic phase pyrochlore-type structure of the synthesized BMN. According to the Scanning Electron Microscope (SEM) images, the grain size increased with increasing sintering temperature. Additionally, it was shown that the densities of the BMN ceramic tablets vary with sintering temperature. The calculated theoretical density for the BMN ceramic tablets sintered at different temperatures is about 6.7521 . The density of the respective measured tablets is usually amounting more than 91% and 5 approaching a maximum value of 96.5% for sintering temperature of 1150°C. The microstructure was investigated by using Scanning Transmission Electron Microscope (STEM), X-ray diffraction (XRD). Combined with the results obtained from the STEM and XRD, the impact of sintering temperature on the macroscopic and microscopic structure was discussed. The relative dielectric constant ( ) and dielectric loss ( ) of the BMN solid solutions were measured to be 161-200 and (at room temperature and 100Hz-1MHz), respectively. The BMN solid
Electric quadrupole interaction in cubic BCC α-Fe
Energy Technology Data Exchange (ETDEWEB)
Błachowski, A.; Komędera, K. [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Ruebenbauer, K., E-mail: sfrueben@cyf-kr.edu.pl [Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, ul. Podchorążych 2, PL-30-084 Kraków (Poland); Cios, G.; Żukrowski, J. [AGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Av. A. Mickiewicza 30, PL-30-059 Kraków (Poland); Górnicki, R. [RENON, ul. Gliniana 15/15, PL-30-732 Kraków (Poland)
2016-07-15
Mössbauer transmission spectra for the 14.41-keV resonant line in {sup 57}Fe have been collected at room temperature by using {sup 57}Co(Rh) commercial source and α-Fe strain-free single crystal as an absorber. The absorber was magnetized to saturation in the absorber plane perpendicular to the γ-ray beam axis applying small external magnetic field. Spectra were collected for various orientations of the magnetizing field, the latter lying close to the [110] crystal plane. A positive electric quadrupole coupling constant was found practically independent on the field orientation. One obtains the following value V{sub zz} = +1.61(4) × 10{sup 19} Vm{sup −2} for the (average) principal component of the electric field gradient (EFG) tensor under assumption that the EFG tensor is axially symmetric and the principal axis is aligned with the magnetic hyperfine field acting on the {sup 57}Fe nucleus. The nuclear spectroscopic electric quadrupole moment for the first excited state of the {sup 57}Fe nucleus was adopted as +0.17 b. Similar measurement was performed at room temperature using as-rolled polycrystalline α-Fe foil of high purity in the zero external field. Corresponding value for the principal component of the EFG was found as V{sub zz} = +1.92(4) × 10{sup 19} Vm{sup −2}. Hence, it seems that the origin of the EFG is primarily due to the local (atomic) electronic wave function distortion caused by the spin–orbit interaction between effective electronic spin S and incompletely quenched electronic angular momentum L. It seems as well that the lowest order term proportional to the product L·λ·S dominates, as no direction dependence of the EFG principal component is seen. The lowest order term is isotropic for a cubic symmetry as one has λ=λ 1 for cubic systems with the symbol 1 denoting unit operator and λ being the coupling parameter. - Highlights: • Precision of MS the same as MAPON • Real scans versus magnetization direction • A challenge
2012-01-01
Introduction Fever is frequently observed in critically ill patients. An independent association of fever with increased mortality has been observed in non-neurological critically ill patients with mixed febrile etiology. The association of fever and antipyretics with mortality, however, may be different between infective and non-infective illness. Methods We designed a prospective observational study to investigate the independent association of fever and the use of antipyretic treatments with mortality in critically ill patients with and without sepsis. We included 1,425 consecutive adult critically ill patients (without neurological injury) requiring > 48 hours intensive care admitted in 25 ICUs. We recorded four-hourly body temperature and all antipyretic treatments until ICU discharge or 28 days after ICU admission, whichever occurred first. For septic and non-septic patients, we separately assessed the association of maximum body temperature during ICU stay (MAXICU) and the use of antipyretic treatments with 28-day mortality. Results We recorded body temperature 63,441 times. Antipyretic treatment was given 4,863 times to 737 patients (51.7%). We found that treatment with non-steroidal anti-inflammatory drugs (NSAIDs) or acetaminophen independently increased 28-day mortality for septic patients (adjusted odds ratio: NSAIDs: 2.61, P = 0.028, acetaminophen: 2.05, P = 0.01), but not for non-septic patients (adjusted odds ratio: NSAIDs: 0.22, P = 0.15, acetaminophen: 0.58, P = 0.63). Application of physical cooling did not associate with mortality in either group. Relative to the reference range (MAXICU 36.5°C to 37.4°C), MAXICU ≥ 39.5°C increased risk of 28-day mortality in septic patients (adjusted odds ratio 8.14, P = 0.01), but not in non-septic patients (adjusted odds ratio 0.47, P = 0.11). Conclusions In non-septic patients, high fever (≥ 39.5°C) independently associated with mortality, without association of administration of NSAIDs or
Sakamoto, Tsukasa; Oikawa, Tetsuo
2007-10-01
Light microscopy of Eurytrema pancreaticum and Eurytrema coelomaticum collected from cattle in Japan, China, Thailand, and Brazil showed many cubic crystal inclusions in the neodermis (tegument) of all flukes. The crystal inclusions were histochemically positive for protein. Scanning electron microscopy showed many cubic protrusions containing cubic crystal protein inclusions on the surface of the neodermis. Transmission electron microscopy showed that cubic crystal protein inclusions appeared in the perikarya of subtegumental parts, passed through the cytoplasmic bridge, moved into the syncytial neodermal cytoplasm, and then protruded from, and finally separated from, the neodermal cytoplasm. Cubic crystal protein inclusions were hexahedral with each side 2-18 microm long. High-resolution microscopy of ultrathin sections of crystal inclusions showed a lattice fringe at spacings of about 0.52 nm by using a filtering processing. Diffractograms were obtained by Fourier transform of the images. The lattice structure of the crystal protein inclusions was shown by inverse Fourier transform, indicating that the cubic crystal protein inclusions were single crystals. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis estimated the molecular weight of protein in the cubic crystal inclusion as 36.6 kDa. Energy-dispersive X-ray spectroscopy proved that the cubic crystal protein inclusions were composed of protein and sulfur.
Cubic and quartic anharmonic potential energy functions for octahedral XY6 molecules
International Nuclear Information System (INIS)
Fox, K.; Krohn, B.J.; Shaffer, W.H.
1979-01-01
We give the cubic and quartic anharmonic potential energy functions for XY 6 molecules of O/sub h/ symmetry in terms of normal coordinates. The numbers of independent cubic and quartic potential constants are 22 and 92, respectively. A standard form, introduced here, is related to the tensor formalism developed for the potential energy of tetrahedral XY 4 molecules by Hecht
Feasibility Study on the Implementation of Cubic Motion Curve for Vehicle Trajectory Planning
Directory of Open Access Journals (Sweden)
M. F. Mat Ghani
2015-01-01
Full Text Available Cubic Motion curve has been introduced to integrate the information of path and motion. Since this is a new approach, a feasibility study has been carried out to analyse the practicality of Cubic Motion curves used as the input for the study of vehicle dynamic response. This study requires the development of three modules, namely, the Cubic Motion module, the vehicle dynamic model, the driver model (VDM-DM module, and, lastly, the integrated module. The Cubic Motion module will generate Cubic Motion curve. The VDM-DM module applies the 2 DOF bicycle model and links it with Reński's driver model. Finally, an integrated module will merge both previous modules as a complete system for trajectory and vehicle response as the output. The double lane change and the Slalom test were the case studies used to develop an understanding of the applicability of the three types of Cubic Motion input, namely, natural, adjusted tangent, and additional vertex cubic motion. The finding of this study is that Cubic Motion is in fact a compact representation of curve with motion attributes and can be directly associated with a vehicle dynamic response study.
On the number of longest and almost longest cycles in cubic graphs
DEFF Research Database (Denmark)
Chia, Gek Ling; Thomassen, Carsten
2012-01-01
We consider the questions: How many longest cycles must a cubic graph have, and how many may it have? For each k >= 2 there are infinitely many p such that there is a cubic graph with p vertices and precisely one longest cycle of length p-k. On the other hand, if G is a graph with p vertices, all...
On the dynamic buckling of a lightly damped elastic cubic model ...
African Journals Online (AJOL)
... technique to determine the dynamic buckling load of a lightly and viscously damped elastic cubic model structure modulated by a sinusoidally slowly varying dynamic load. The imperfect elastic cubic (nonlinear) structure is itself a generalization of most elastic physical structures that have been investigated over the years.
Cubic Invariant Spherical Surface Harmonics in Conjunction With Diffraction Strain Pole-Figures
Brakman, C.M.
1986-01-01
Four kinds of cubic invariant spherical surface harmonics are introduced. It has been shown previously that these harmonics occur in the equations relating measured diffraction (line-shift) elastic strain and macro-stresses generating these strains for the case of textured cubic materials. As a
The double-end-pumped cubic Nd:YVO4 laser: Temperature ...
Indian Academy of Sciences (India)
Abstract. Thermal effects of a double-end-pumped cubic Nd:YVO4 laser crystal are investigated in this paper. A detailed analysis of temperature distribution and thermal stress in cubic crystal with circular shape pumping is discussed. It has been shown that by considering the total input powers as constant, the ...
Classifying cubic edge-transitive graphs of order 8p8p8p
Indian Academy of Sciences (India)
It is proved that, every cubic edge-transitive graph of order 8p is symmetric, and then all such graphs are .... The following Corollary gives a classification of all cubic edge-transitive graphs of order 8p. COROLLARY 1.2. Let p be a ..... on the elementary abelian regular covering, Linear Algebra Appl. 373 (2003) 101–119 ...
On orbital topological equivalence of cubic ODEs in two-dimensional algebras
Balanov, Zolman; Krawcewicz, Wiesław; Zur, Shira
2005-01-01
Cubic differential systems in real commutative two-dimensional algebras are classified up to orbital topological equivalence via the solubility of polynomial equations in algebras. As a by-product, existence of bounded solutions in such systems is studied via complex structures in the algebras. Application to the existence of periodic solutions to $n$-dimensional differential systems "cubic at infinity" is given.
Some Curious Properties and Loci Problems Associated with Cubics and Other Polynomials
de Alwis, Amal
2012-01-01
The article begins with a well-known property regarding tangent lines to a cubic polynomial that has distinct, real zeros. We were then able to generalize this property to any polynomial with distinct, real zeros. We also considered a certain family of cubics with two fixed zeros and one variable zero, and explored the loci of centroids of…
Extending a Property of Cubic Polynomials to Higher-Degree Polynomials
Miller, David A.; Moseley, James
2012-01-01
In this paper, the authors examine a property that holds for all cubic polynomials given two zeros. This property is discovered after reviewing a variety of ways to determine the equation of a cubic polynomial given specific conditions through algebra and calculus. At the end of the article, they will connect the property to a very famous method…
Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides
DenHartog, HW
1996-01-01
In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the
Gunawan, Y.; Winarto, H.
2017-08-01
The side effects of chemotherapy, a treatment modality of ovarian cancer, can disrupt overall treatment. To date, the clinical and laboratory profiles of ovarian cancer patients during chemotherapy have not been investigated. This study aimed to elucidate the clinical and laboratory profiles of patients with advanced-stage epithelial ovarian cancer who received chemotherapy in Dr. Cipto Mangunkusumo Hospital, including body mass index (BMI), hemoglobin (Hb), and absolute neutrophil count (ANC). To generate these clinical and laboratory profiles, we collected secondary data from the medical records of advanced-stage epithelial ovarian cancer patients who received six cycles of carboplatin and paclitaxel chemotherapy. We enrolled 23 patients with advanced-stage epithelial ovarian cancer patients who received six cycles of chemotherapy. Mean patient BMI before and after chemotherapy was 22.86 kg/m2 and 21.78 kg/m2, respectively. Hb levels before chemotherapy were 8-13 g/dl, with Hb Hb ≥ 10 g/dl in 22 patients (95.65%). Mean ANC was 5845.6 ± 3325.0. An average of 24.65% of patients experienced anemia after each cycle of chemotherapy. Mean ANC before chemotherapy was 3.5582 ± 3.3250. An average of 26.81% of patients had ANC Hb ≥ 10 g/dl before chemotherapy, 16 (72.72%) experienced a decrease in ANC during chemotherapy. Of the 20 patients (60.87%) with normal BMI or higher, 14 experienced a decrease in ANC during chemotherapy. The mean patient body weight decreased after six cycles of chemotherapy. Hb and ANC were persistently decreased in approximately a quarter of the 23 subjects. The decrease in ANC was not influenced by initial Hb and BMI.
Cubic helimagnets in magnetic field and at pressure
International Nuclear Information System (INIS)
Maleyev, S.V.
2009-01-01
Cubic helimagnets with B20 structure display several unusual properties such as anisotropy of the spin-wave spectrum al small momenta q, rotation of the helix vector k in magnetic field and quantum phase transition at pressure. We demonstrate that first two phenomena are a result of umklapp processes mixing excitations with momenta q, q+k and q-k. At very low magnetic field perpendicular to k the helical structure remains stable due to spin-wave gap Δ. Its square is sum of two parts. The first one is a result of the magnon interaction and the second negative part stems from magneto-elastic interaction. It is suggested that competition between these parts leads to the quantum phase transition observed in MnSi and FeGe. For MnSi from rough estimations at ambient pressure was shown that both parts are comparable with the experimentally observed gap. The magneto-elastic interaction is also responsible for 2k modulation of the lattice and contributes to the magnetic anisotropy. Experimental observation by X-ray and neutron scattering of this lattice modulation allows to determine the strength of the magneto-elastic interaction responsible for above phenomena and the lattice helicity
Cubic Phase Formation in Phospholipid and PEG-Lipid Mixtures
Murley, Kimberly; Cunningham, Beth; Wolfe, David; Williams, Patrick
2005-03-01
Lipid systems modeling cell membranes are capable of self-assembling into various liquid crystal mesophases with varying geometry and dimensions. We have suggested that it is possible to engineer the lipid systems through the incorporation of covalently attached polymer lipids to produce unique effects. The results of this engineering process include both the stabilization of lipid phases that normally exist over very limited temperature ranges and the induction of novel phases that are not normally present in the parent lipid. In this study, we used x-ray diffraction and NMR to investigate the phase behavior of the DOPE:PEG:MO and MO:PEG:D2O systems with varying molar ratios and PEG sizes. The phase diagram which we have generated indicates the conditions necessary to induce specific phase structures and sizes into three-dimensional cubic lipid systems. This information may be useful to create nanostructures which will be valuable in applications such as protein crystallization and protein biochip development.
Research of Cubic Bezier Curve NC Interpolation Signal Generator
Directory of Open Access Journals (Sweden)
Shijun Ji
2014-08-01
Full Text Available Interpolation technology is the core of the computer numerical control (CNC system, and the precision and stability of the interpolation algorithm directly affect the machining precision and speed of CNC system. Most of the existing numerical control interpolation technology can only achieve circular arc interpolation, linear interpolation or parabola interpolation, but for the numerical control (NC machining of parts with complicated surface, it needs to establish the mathematical model and generate the curved line and curved surface outline of parts and then discrete the generated parts outline into a large amount of straight line or arc to carry on the processing, which creates the complex program and a large amount of code, so it inevitably introduce into the approximation error. All these factors affect the machining accuracy, surface roughness and machining efficiency. The stepless interpolation of cubic Bezier curve controlled by analog signal is studied in this paper, the tool motion trajectory of Bezier curve can be directly planned out in CNC system by adjusting control points, and then these data were put into the control motor which can complete the precise feeding of Bezier curve. This method realized the improvement of CNC trajectory controlled ability from the simple linear and circular arc to the complex project curve, and it provides a new way for economy realizing the curve surface parts with high quality and high efficiency machining.
Hyperfine interactions in the cubic semiconductor CdO
International Nuclear Information System (INIS)
Desimoni, J.; Bibiloni, A.G.; Massolo, C.P.; Renteria, M.
1990-01-01
The time-differential perturbed angular correlation technique has been applied using 111 In probes, which decay through electron capture to 111 Cd, to study the hyperfine interaction in cubic cadmium oxide, in the temperature range RT--740 degree C (RT denotes room temperature). The main fraction of probes are located in perfect-lattice sites, with null electric field gradient in agreement with crystalline-structure considerations. Around 25% of the total intensity shows an electric-field-gradient distribution around V zz =0. This corresponds to probes located in sites perturbed by the vicinity of oxygen vacancies in the lattice. The temperature-independent behavior of the measured hyperfine parameters is discussed in terms of conductivity and band-structure properties of the semiconductor. No time-dependent interaction arising from nuclear electron-capture aftereffects are seen in this experiment. This is in agreement with a previously reported model of aftereffect processes which states that only holes trapped in impurity levels inside the band gap of the semiconductor can give rise to detectable fluctuating interactions
Hyperfine interactions in the cubic semiconductor CdO
Energy Technology Data Exchange (ETDEWEB)
Desimoni, J.; Bibiloni, A.G.; Massolo, C.P.; Renteria, M. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo No. 67, 1900 La Plata, Argentina (AR))
1990-01-15
The time-differential perturbed angular correlation technique has been applied using {sup 111}In probes, which decay through electron capture to {sup 111}Cd, to study the hyperfine interaction in cubic cadmium oxide, in the temperature range RT--740 {degree}C (RT denotes room temperature). The main fraction of probes are located in perfect-lattice sites, with null electric field gradient in agreement with crystalline-structure considerations. Around 25% of the total intensity shows an electric-field-gradient distribution around {ital V}{sub {ital zz}}=0. This corresponds to probes located in sites perturbed by the vicinity of oxygen vacancies in the lattice. The temperature-independent behavior of the measured hyperfine parameters is discussed in terms of conductivity and band-structure properties of the semiconductor. No time-dependent interaction arising from nuclear electron-capture aftereffects are seen in this experiment. This is in agreement with a previously reported model of aftereffect processes which states that only holes trapped in impurity levels inside the band gap of the semiconductor can give rise to detectable fluctuating interactions.
Arsenic mediated reconstructions on cubic (001) GaN
Energy Technology Data Exchange (ETDEWEB)
Feuillet, G.; Hamaguchi, H.; Ohta, K.; Hacke, P.; Okumura, H.; Yoshida, S. [Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki, 305 (Japan)
1997-02-01
The 4{times}1 (respectively 1{times}1) (001) GaN surfaces obtained when molecular-beam-epitaxy (MBE) growth is carried out on (001) cubic SiC were exposed to an As background pressure in the MBE chamber: The reconstructions rapidly and irreversibly changed to 2{times}2 [respectively {ital c}(2{times}2)] as usually observed for GaN growth on (001) GaAs. The usual reversible 2{times}2/{ital c}(2{times}2) transitions were consequently observed when bringing the Ga flux up or down. The respective positions for the 4{times}1/1{times}1 and 2{times}2/{ital c}(2{times}2) transitions were worked out as a function of the growth parameters. These observations indicate that the 2{times}2 and {ital c}(2{times}2) GaN surface reconstructions are mediated by As atoms which we tentatively assign to a surfactant effect. A simple structural model involving As dimers is proposed that accounts for Ga coverages of 0.5 and 1 monolayer for the 2{times}2 and {ital c}(2{times}2) growth regimes, respectively. {copyright} {ital 1997 American Institute of Physics.}
Modeling and testing treated tumor growth using cubic smoothing splines.
Kong, Maiying; Yan, Jun
2011-07-01
Human tumor xenograft models are often used in preclinical study to evaluate the therapeutic efficacy of a certain compound or a combination of certain compounds. In a typical human tumor xenograft model, human carcinoma cells are implanted to subjects such as severe combined immunodeficient (SCID) mice. Treatment with test compounds is initiated after tumor nodule has appeared, and continued for a certain time period. Tumor volumes are measured over the duration of the experiment. It is well known that untreated tumor growth may follow certain patterns, which can be described by certain mathematical models. However, the growth patterns of the treated tumors with multiple treatment episodes are quite complex, and the usage of parametric models is limited. We propose using cubic smoothing splines to describe tumor growth for each treatment group and for each subject, respectively. The proposed smoothing splines are quite flexible in modeling different growth patterns. In addition, using this procedure, we can obtain tumor growth and growth rate over time for each treatment group and for each subject, and examine whether tumor growth follows certain growth pattern. To examine the overall treatment effect and group differences, the scaled chi-squared test statistics based on the fitted group-level growth curves are proposed. A case study is provided to illustrate the application of this method, and simulations are carried out to examine the performances of the scaled chi-squared tests. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterizing vaccine-associated risks using cubic smoothing splines.
Brookhart, M Alan; Walker, Alexander M; Lu, Yun; Polakowski, Laura; Li, Jie; Paeglow, Corrie; Puenpatom, Tosmai; Izurieta, Hector; Daniel, Gregory W
2012-11-15
Estimating risks associated with the use of childhood vaccines is challenging. The authors propose a new approach for studying short-term vaccine-related risks. The method uses a cubic smoothing spline to flexibly estimate the daily risk of an event after vaccination. The predicted incidence rates from the spline regression are then compared with the expected rates under a log-linear trend that excludes the days surrounding vaccination. The 2 models are then used to estimate the excess cumulative incidence attributable to the vaccination during the 42-day period after vaccination. Confidence intervals are obtained using a model-based bootstrap procedure. The method is applied to a study of known effects (positive controls) and expected noneffects (negative controls) of the measles, mumps, and rubella and measles, mumps, rubella, and varicella vaccines among children who are 1 year of age. The splines revealed well-resolved spikes in fever, rash, and adenopathy diagnoses, with the maximum incidence occurring between 9 and 11 days after vaccination. For the negative control outcomes, the spline model yielded a predicted incidence more consistent with the modeled day-specific risks, although there was evidence of increased risk of diagnoses of congenital malformations after vaccination, possibly because of a "provider visit effect." The proposed approach may be useful for vaccine safety surveillance.
Liquid water in the domain of cubic crystalline ice Ic.
Jenniskens, P; Banham, S F; Blake, D F; McCoustra, M R
1997-07-22
Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.
Plasmon polaritons in cubic lattices of spherical metallic nanoparticles
Lamowski, Simon; Mann, Charlie-Ray; Hellbach, Felicitas; Mariani, Eros; Weick, Guillaume; Pauly, Fabian
2018-03-01
We theoretically investigate plasmon polaritons in cubic lattices of spherical metallic nanoparticles. The nanoparticles, each supporting triply-degenerate localized surface plasmons, couple through the Coulomb dipole-dipole interaction, giving rise to collective plasmons that extend over the whole metamaterial. The latter hybridize with photons forming plasmon polaritons, which are the hybrid light-matter eigenmodes of the system. We derive general analytical expressions to evaluate both plasmon and plasmon-polariton dispersions and the corresponding eigenstates. These are obtained within a Hamiltonian formalism, which takes into account retardation effects in the dipolar interaction between the nanoparticles and considers the dielectric properties of the nanoparticles as well as their surrounding. Within this model we predict polaritonic splittings in the near-infrared to the visible range of the electromagnetic spectrum that depend on polarization, lattice symmetry, and wave-vector direction. Finally, we show that the predictions of our model are in excellent quantitative agreement with conventional finite-difference frequency-domain simulations, but with the advantages of analytical insight and significantly reduced computational cost.
Serial femtosecond crystallography of soluble proteins in lipidic cubic phase
Energy Technology Data Exchange (ETDEWEB)
Fromme, Raimund; Ishchenko, Andrii; Metz, Markus; Chowdhury, Shatabdi Roy; Basu, Shibom; Boutet, Sébastien; Fromme, Petra; White, Thomas A.; Barty, Anton; Spence, John C. H.; Weierstall, Uwe; Liu, Wei; Cherezov, Vadim
2015-08-04
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals of soluble proteins, enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.
Twinning of cubic diamond explains reported nanodiamond polymorphs.
Németh, Péter; Garvie, Laurence A J; Buseck, Peter R
2015-12-16
The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin ( rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications.
Non-spherical micelles in an oil-in-water cubic phase
DEFF Research Database (Denmark)
Leaver, M.; Rajagopalan, V.; Ulf, O.
2000-01-01
The cubic phase formed between the microemulsion and hexagonal phases of the ternary pentaethylene glycol dodecyl ether (C12E5)-decane-water system and that doped with small amounts of sodium dodecylsulfate (SDS) have been investigated. The presence of discrete oil-swollen micelles in the cubic...... phase, both with and without SDS, was established by NMR self-diffusion. In addition H-2 NMR relaxation experiments have demonstrated that the micelles in the cubic phase are non-spherical, having grown and changed shape upon formation of the cubic phase from the micellar solution. Small angle...... associated with the micellar cubic phase, Pm3n and Fd3m. The micellar volumes calculated for these space groups are similar and are consistent with a change in micellar geometry from spherical to prolate....
Re-sintered boron-rich polycrystalline cubic boron nitride and method for making same
Energy Technology Data Exchange (ETDEWEB)
Lavens, T.R.; Corrigan, F.R.; Shott, R.L.; Bovenkerk, H.P.
1987-06-16
A method is described for making re-sintered polycrystalline cubic boron nitride (CBN) which comprises: (a) placing sintered substantially catalyst-free boron-rich polycrystalline cubic boron nitride particles in a high pressure/high temperature apparatus, the particles being substantially free of sintering inhibiting impurities; (b) subjecting the boron-rich cubic boron nitride particles to a pressure and a temperature adequate to re-sinter the particles, the temperature being below the CBN reconversion temperature; (c) maintaining the temperature and pressure for a time sufficient to re-sinter the boron-rich cubic boron nitride particles in the apparatus, and (d) recovering the re-sintered polycrystalline cubic boron nitride from the apparatus.
Numerical solution of the 1D kinetics equations using a cubic reduced nodal scheme
International Nuclear Information System (INIS)
Gomez T, A.M.; Valle G, E. del; Delfin L, A.; Alonso V, G.
2003-01-01
In this work a finite differences technique centered in mesh based on a cubic reduced nodal scheme type finite element to solve the equations of the kinetics 1 D that include the equations corresponding to the concentrations of precursors of delayed neutrons is described. The technique of finite elements used is that of Galerkin where so much the neutron flux as the concentrations of precursors its are spatially approached by means of a three grade polynomial. The matrices of rigidity and of mass that arise during this discretization process are numerically evaluated using the open quadrature non standard of Newton-Cotes and that of Radau respectively. The purpose of the application of these quadratures is the one of to eliminate in the global matrices the couplings among the values of the flow in points of the discretization with the consequent advantages as for the reduction of the order of the matrix associated to the discreet problem that is to solve. As for the time dependent part the classical integration scheme known as Θ scheme is applied. After carrying out the one reordering of unknown and equations it arrives to a reduced system that it can be solved but quickly. With the McKin compute program developed its were solved three benchmark problems and those results are shown for the relative powers. (Author)
Dong, Huan; Cox, Mougnyan; Selvarajan, Santosh; Roth, Christopher; Deshmukh, Sandeep
2016-05-01
Single brain malignancy (SBM) often poses a diagnostic dilemma, with differential diagnosis of primary brain malignancy (PBM) versus metastasis commonly rendered. This study assesses the yield of preoperative computed tomography (CT) of the chest, abdomen, and pelvis (CTCAP) in patients with SBM. Institutional review board (IRB)-approved retrospective review of the imaging database at a tertiary-care center was performed for patients with magnetic resonance findings compatible with a diagnosis of SBM. Demographic information, lesion characteristics (location and size), and pathology were recorded. Findings of CTCAP for metastatic workup prior to SBM excisional biopsy were also documented, if performed. Eighty-six of 92 patients with new diagnosis of SBM on MR imaging had subsequent lesion resection and pathology consistent with malignancy. PBM accounted for 51 cases (59%) and metastasis accounted for 35 cases (41%). When stratified by age group, PBM was more common in patients metastatic disease were identified in older patients. When stratified by lesion size, PBM was more common in tumors ≥40 mm (25 of 31 (81%)), whereas similar rates of PBM and metastatic disease were identified in smaller lesions. Lung cancer was the most common CTCAP and pathology-confirmed source of metastatic SBM (68% and 66%, respectively). The yield of preoperative CTCAP can be increased by targeting patients older than 50 years of age with SBMs smaller than 40 mm in size. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Effect of Dipolar Interactions on the Magnetization of Single-Molecule Magnets in a cubic lattice
Alcantara Ortigoza, Marisol
2005-03-01
Since the one-body tunnel picture of single-molecule magnets (SMM) is not always sufficient to explain the fine structure of experimental hysteresis loops, the effect of intermolecular dipolar interactions has been investigated on an ensemble of 100 3D-systems of 5X5X4 particles, each with spin S = 5, arranged in a cubic lattice. We have solved the Landau-Lifshitz-Gilbert equation for several values of the damping constant, the field sweep rate and the lattice constant. We find that the smaller the damping constant is, the stronger the maximum field needs to be to produce hysteresis. Furthermore, the shape of the hysteresis loops also depends on the damping constant. We also find that the system magnetizes and demagnetizes faster with decreasing sweep rates, resulting in smaller hysteresis loops. Variations of the lattice constant within realistic values (1.5nm and 2.5nm) show that the dipolar interaction plays an important role in magnetic hysteresis by controlling the relaxation process. Examination of temperature dependencies (0.1K and 0.7K) of the above will be presented and compared with recent experimental data on SMM.
Cubic zirconia in >2370 °C impact melt records Earth's hottest crust
Timms, Nicholas E.; Erickson, Timmons M.; Zanetti, Michael R.; Pearce, Mark A.; Cayron, Cyril; Cavosie, Aaron J.; Reddy, Steven M.; Wittmann, Axel; Carpenter, Paul K.
2017-11-01
Bolide impacts influence primordial evolution of planetary bodies because they can cause instantaneous melting and vaporization of both crust and impactors. Temperatures reached by impact-generated silicate melts are unknown because meteorite impacts are ephemeral, and established mineral and rock thermometers have limited temperature ranges. Consequently, impact melt temperatures in global bombardment models of the early Earth and Moon are poorly constrained, and may not accurately predict the survival, stabilization, geochemical evolution and cooling of early crustal materials. Here we show geological evidence for the transformation of zircon to cubic zirconia plus silica in impact melt from the 28 km diameter Mistastin Lake crater, Canada, which requires super-heating in excess of 2370 °C. This new temperature determination is the highest recorded from any crustal rock. Our phase heritage approach extends the thermometry range for impact melts by several hundred degrees, more closely bridging the gap between nature and theory. Profusion of >2370 °C superheated impact melt during high intensity bombardment of Hadean Earth likely facilitated consumption of early-formed crustal rocks and minerals, widespread volatilization of various species, including hydrates, and formation of dry, rigid, refractory crust.
Relative Lyapunov Center Bifurcations
DEFF Research Database (Denmark)
Wulff, Claudia; Schilder, Frank
2014-01-01
Relative equilibria (REs) and relative periodic orbits (RPOs) are ubiquitous in symmetric Hamiltonian systems and occur, for example, in celestial mechanics, molecular dynamics, and rigid body motion. REs are equilibria, and RPOs are periodic orbits of the symmetry reduced system. Relative Lyapunov...... center bifurcations are bifurcations of RPOs from REs corresponding to Lyapunov center bifurcations of the symmetry reduced dynamics. In this paper we first prove a relative Lyapunov center theorem by combining recent results on the persistence of RPOs in Hamiltonian systems with a symmetric Lyapunov...... center theorem of Montaldi, Roberts, and Stewart. We then develop numerical methods for the detection of relative Lyapunov center bifurcations along branches of RPOs and for their computation. We apply our methods to Lagrangian REs of the N-body problem....
Directory of Open Access Journals (Sweden)
Євген Іванович Іванов
2015-11-01
Full Text Available This article describes the processing optimization and minimizing the number of tool changes. Two versions for setting the processing scheme, according to the rules for processing scheme setting for the «processing center» machines were offered. In the first version, according to the classical technology processing of each hole is carried out over all the passes, providing for the required accuracy of sizes and shapes. In the second version the number of tool changes is minimized. This method consists of dividing all the holes into groups according to their diameters. All the holes of the same diameter are processed over one pass; then the tools are changed and the holes of some other diameter are processed and so on. Let us consider the optimization problem. The traveling salesman problem - is one of the most famous problems in the theory of combinatorics. The problem is as follows: a travelling salesman (hawker must find the most advantageous route coming out of a town and visiting all other towns from 2,3,…to...n just once in an unknown order and come back to the first town. The distances between all the towns are known. It is necessary to determine in what order the Salesman must visit the towns so that the route should be the shortest. There exists just one absolutely precise algorithm - sorting options. This option is the longest, so the most inefficient. There are also simpler methods to solve the traveling salesman problem: the branch and bound algorithm and ant colony method and method of genetic algorithms
Krieger, Nancy; Waterman, Pamela D.; Kosheleva, Anna; Chen, Jarvis T.; Carney, Dana R.; Smith, Kevin W.; Bennett, Gary G.; Williams, David R.; Freeman, Elmer; Russell, Beverley; Thornhill, Gisele; Mikolowsky, Kristin; Rifkin, Rachel; Samuel, Latrice
2011-01-01
Background To date, research on racial discrimination and health typically has employed explicit self-report measures, despite their potentially being affected by what people are able and willing to say. We accordingly employed an Implicit Association Test (IAT) for racial discrimination, first developed and used in two recent published studies, and measured associations of the explicit and implicit discrimination measures with each other, socioeconomic and psychosocial variables, and smoking. Methodology/Principal Findings Among the 504 black and 501 white US-born participants, age 35–64, randomly recruited in 2008–2010 from 4 community health centers in Boston, MA, black participants were over 1.5 times more likely (pdiscrimination exposure was also 2.5 to 3.7 times higher (pdiscrimination occurred for the black versus white participants: for “black person vs. white person”: 0.26 vs. 0.13; and for “me vs. them”: 0.24 vs. 0.19. In both groups, only low non-significant correlations existed between the implicit and explicit discrimination measures; social desirability was significantly associated with the explicit but not implicit measures. Although neither the explicit nor implicit discrimination measures were associated with odds of being a current smoker, the excess risk for black participants (controlling for age and gender) rose in models that also controlled for the racial discrimination and psychosocial variables; additional control for socioeconomic position sharply reduced and rendered the association null. Conclusions Implicit and explicit measures of racial discrimination are not equivalent and both warrant use in research on racial discrimination and health, along with data on socioeconomic position and social desirability. PMID:22125618
Krieger, Nancy; Waterman, Pamela D; Kosheleva, Anna; Chen, Jarvis T; Smith, Kevin W; Carney, Dana R; Bennett, Gary G; Williams, David R; Thornhill, Gisele; Freeman, Elmer R
2013-01-01
To date, limited and inconsistent evidence exists regarding racial discrimination and risk of cardiovascular disease (CVD). Cross-sectional observational study of 1005 US-born non-Hispanic black (n = 504) and white (n = 501) participants age 35-64 randomly selected from community health centers in Boston, MA (2008-2010; 82.4% response rate), using 3 racial discrimination measures: explicit self-report; implicit association test (IAT, a time reaction test for self and group as target vs. perpetrator of discrimination); and structural (Jim Crow status of state of birth, i.e. legal racial discrimination prior 1964). Black and white participants both had adverse cardiovascular and socioeconomic profiles, with black participants most highly exposed to racial discrimination. Positive crude associations among black participants occurred for Jim Crow birthplace and hypertension (odds ratio (OR) 1.92, 95% confidence interval (CI) 1.28, 2.89) and for explicit self-report and the Framingham 10 year CVD risk score (beta = 0.04; 95% CI 0.01, 0.07); among white participants, only negative crude associations existed (for IAT for self, for lower systolic blood pressure (SBP; beta = -4.86; 95% CI -9.08, -0.64) and lower Framingham CVD score (beta = -0.36, 95% CI -0.63, -0.08)). All of these associations were attenuated and all but the white IAT-Framingham risk score association were rendered null in analyses that controlled for lifetime socioeconomic position and additional covariates. Controlling for racial discrimination, socioeconomic position, and other covariates did not attenuate the crude black excess risk for SBP and hypertension and left unaffected the null excess risk for the Framingham CVD score. Despite worse exposures among the black participants, racial discrimination and socioeconomic position were not associated, in multivariable analyses, with risk of CVD. We interpret results in relation to constrained variability of exposures and outcomes and discuss implications
Bhatnagar, Bhavana; Rapoport, Aaron P; Fang, Hong-Bin; Ilyas, Can; Marangoz, Deniz; Akbulut, Vinil; Ruehle, Kathleen; Badros, Ashraf; Yanovich, Saul; Akpek, Görgün
2014-04-01
We retrospectively evaluated the tolerability and efficacy of fractionated total body irradiation (TBI) (1,200 cGy) and melphalan (MEL) (100-110 mg/m(2)) myeloablative conditioning in 48 patients with nonremission AML (n = 14), ALL (n = 10), NHL (n = 18), and other refractory hematologic malignancies (n = 6) who received allogeneic stem cell transplantation (SCT) between 2002 and 2011. Median age was 48 years (22 to 68); 14 out of 26 leukemia patients (54 %) had circulating blasts at transplant, 20 (50 %) evaluable patients had poor-risk cytogenetics, 12 (25 %) had prior SCT, and 10 (21 %) received stem cells from a mismatch donor. All patients received tacrolimus with or without methotrexate for GVHD prophylaxis. At the time of analysis, 13 patients (27 %) were alive and disease free. Engraftment was complete in all patients. The median time to ANC recovery (>500) was 12 days (range, 6-28). The most common grade III and IV toxicities were mucositis and infections. Eighteen patients (43 %) developed grade II-IV acute GVHD, and eight (26 %) had extensive chronic GVHD. Of 44 evaluable patients for response, 28 (64 %) achieved a complete remission (CR), and seven (15 %) had a partial remission after the transplant. With a median follow-up of 30 months (4 to 124 months) for surviving patients, the cumulative incidence of relapse was 45 % at 1 year, and the probability of overall survival (OS) at 5 years was 22.5 %. Multivariate analysis showed that platelet count (500 IU/L) at SCT were associated with relapse. Age less than 53 years and CR after SCT were associated with better OS. Our data suggest that TBI-MEL can result in CR in two thirds, durable remission in one third, and 5-year survival in about one quarter of patients with nonremission hematologic malignancies. Further studies with TBI-MEL in standard risk transplant patients are warranted.
Atomistic simulation of fatigue in face centred cubic metals
International Nuclear Information System (INIS)
Fan, Zhengxuan
2016-01-01
Fatigue is one of the major damage mechanisms of metals. It is characterized by strong environmental effects and wide lifetime dispersions which must be better understood. Different face centred cubic metals, al, Cu, Ni, and Ag are analyzed. The mechanical behaviour of surface steps naturally created by the glide of dislocations subjected to cyclic loading is examined using molecular dynamics simulations in vacuum and in air for Cu and Ni. an atomistic reconstruction phenomenon is observed at these surface steps which can induce strong irreversibility. Three different mechanisms of reconstruction are defined. Surface slip irreversibility under cyclic loading is analyzed. all surface steps are intrinsically irreversible under usual fatigue laboratory loading amplitude without the arrival of opposite sign dislocations on direct neighbor plane.With opposite sign dislocations on non direct neighbour planes, irreversibility cumulates cycle by cycle and a micro-notch is produced whose depth gradually increases.Oxygen environment affects the surface (first stage of oxidation) but does not lead to higher irreversibility as it has no major influence on the different mechanisms linked to surface relief evolution.a rough estimation of surface irreversibility is carried out for pure edge dislocations in persistent slip bands in so-called wavy materials. It gives an irreversibility fraction between 0.5 and 0.75 in copper in vacuum and in air, in agreement with recent atomic force microscopy measurements.Crack propagation mechanisms are simulated in inert environment. Cracks can propagate owing to the irreversibility of generated dislocations because of their mutual interactions up to the formation of dislocation junctions. (author) [fr
Study of nonlinear waves described by the cubic Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Walstead, A.E.
1980-03-12
The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables.
Directory of Open Access Journals (Sweden)
Nancy Krieger
Full Text Available To date, limited and inconsistent evidence exists regarding racial discrimination and risk of cardiovascular disease (CVD.Cross-sectional observational study of 1005 US-born non-Hispanic black (n = 504 and white (n = 501 participants age 35-64 randomly selected from community health centers in Boston, MA (2008-2010; 82.4% response rate, using 3 racial discrimination measures: explicit self-report; implicit association test (IAT, a time reaction test for self and group as target vs. perpetrator of discrimination; and structural (Jim Crow status of state of birth, i.e. legal racial discrimination prior 1964.Black and white participants both had adverse cardiovascular and socioeconomic profiles, with black participants most highly exposed to racial discrimination. Positive crude associations among black participants occurred for Jim Crow birthplace and hypertension (odds ratio (OR 1.92, 95% confidence interval (CI 1.28, 2.89 and for explicit self-report and the Framingham 10 year CVD risk score (beta = 0.04; 95% CI 0.01, 0.07; among white participants, only negative crude associations existed (for IAT for self, for lower systolic blood pressure (SBP; beta = -4.86; 95% CI -9.08, -0.64 and lower Framingham CVD score (beta = -0.36, 95% CI -0.63, -0.08. All of these associations were attenuated and all but the white IAT-Framingham risk score association were rendered null in analyses that controlled for lifetime socioeconomic position and additional covariates. Controlling for racial discrimination, socioeconomic position, and other covariates did not attenuate the crude black excess risk for SBP and hypertension and left unaffected the null excess risk for the Framingham CVD score.Despite worse exposures among the black participants, racial discrimination and socioeconomic position were not associated, in multivariable analyses, with risk of CVD. We interpret results in relation to constrained variability of exposures and outcomes and discuss
International Nuclear Information System (INIS)
Linsenmeier, Claudia; Thoennessen, Daniel; Negretti, Laura; Streller, Tino; Luetolf, Urs Martin; Bourquin, Jean-Pierre; Oertel, Susanne; Heidelberg Univ.
2010-01-01
To retrospectively analyze patient characteristics, treatment, and treatment outcome of pediatric patients with hematologic diseases treated with total body irradiation (TBI) between 1978 and 2006. 32 pediatric patients were referred to the Department of Radiation-Oncology at the University of Zurich for TBI. Records of regular follow-up of 28 patients were available for review. Patient characteristics as well as treatment outcome regarding local control and overall survival were assessed. A total of 18 patients suffered from acute lymphoblastic leukemia (ALL), 5 from acute and 2 from chronic myelogenous leukemia, 1 from non-Hodgkin lymphoma, and 2 from anaplastic anemia. The cohort consisted of 15 patients referred after first remission and 13 patients with relapsed leukemia. Mean follow-up was 34 months (2-196 months) with 15 patients alive at the time of last follow-up. Eight patients died of recurrent disease, 1 of graft vs. host reaction, 2 of sepsis, and 2 patients died of a secondary malignancy. The 5-year overall survival rate (OS) was 60%. Overall survival was significantly inferior in patients treated after relapse compared to those treated for newly diagnosed leukemia (24% versus 74%; p=0.004). At the time of last follow-up, 11 patients survived for more than 36 months following TBI. Late effects (RTOG ≥3) were pneumonitis in 1 patient, chronic bronchitis in 1 patient, cardiomyopathy in 2 patients, severe cataractogenesis in 1 patient (48 months after TBI with 10 Gy in a single dose) and secondary malignancies in 2 patients (36 and 190 months after TBI). Growth disturbances were observed in all patients treated prepubertally. In 2 patients with identical twins treated at ages 2 and 7, a loss of 8% in final height of the treated twin was observed. As severe late sequelae after TBI, we observed 2 secondary malignancies in 11 patients who survived in excess of 36 months. However, long-term morbidity is moderate following treatment with the fractionated
Energy Technology Data Exchange (ETDEWEB)
Linsenmeier, Claudia; Thoennessen, Daniel; Negretti, Laura; Streller, Tino; Luetolf, Urs Martin [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Bourquin, Jean-Pierre [University Children' s Hospital Zurich (Switzerland). Dept. of Hemato-Oncology; Oertel, Susanne [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Heidelberg Univ. (Germany). Dept. of Radiation Oncology
2010-11-15
To retrospectively analyze patient characteristics, treatment, and treatment outcome of pediatric patients with hematologic diseases treated with total body irradiation (TBI) between 1978 and 2006. 32 pediatric patients were referred to the Department of Radiation-Oncology at the University of Zurich for TBI. Records of regular follow-up of 28 patients were available for review. Patient characteristics as well as treatment outcome regarding local control and overall survival were assessed. A total of 18 patients suffered from acute lymphoblastic leukemia (ALL), 5 from acute and 2 from chronic myelogenous leukemia, 1 from non-Hodgkin lymphoma, and 2 from anaplastic anemia. The cohort consisted of 15 patients referred after first remission and 13 patients with relapsed leukemia. Mean follow-up was 34 months (2-196 months) with 15 patients alive at the time of last follow-up. Eight patients died of recurrent disease, 1 of graft vs. host reaction, 2 of sepsis, and 2 patients died of a secondary malignancy. The 5-year overall survival rate (OS) was 60%. Overall survival was significantly inferior in patients treated after relapse compared to those treated for newly diagnosed leukemia (24% versus 74%; p=0.004). At the time of last follow-up, 11 patients survived for more than 36 months following TBI. Late effects (RTOG {>=}3) were pneumonitis in 1 patient, chronic bronchitis in 1 patient, cardiomyopathy in 2 patients, severe cataractogenesis in 1 patient (48 months after TBI with 10 Gy in a single dose) and secondary malignancies in 2 patients (36 and 190 months after TBI). Growth disturbances were observed in all patients treated prepubertally. In 2 patients with identical twins treated at ages 2 and 7, a loss of 8% in final height of the treated twin was observed. As severe late sequelae after TBI, we observed 2 secondary malignancies in 11 patients who survived in excess of 36 months. However, long-term morbidity is moderate following treatment with the fractionated
Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins.
Rizwan, Shakila B; Boyd, Ben J; Rades, Thomas; Hook, Sarah
2010-10-01
Self-assembling lipid-based liquid crystalline systems are a broad and active area of research. Of these mesophases, the cubic phase with its highly twisted bilayer and two non-intersecting water channels has been investigated extensively for drug delivery. The cubic phase has been shown to accommodate and control the release of drugs with varying physicochemical properties. Also, the lipids used to prepare these delivery systems are generally cheap, safe and biodegradable, making these systems highly attractive. Early research investigating the potential of cubic phases as delivery systems showed that several peptides or proteins entrapped within these gel-based systems showed retarded release. Furthermore, entrapment within the cubic phase protected the selected peptide or protein from chemical and physical degradation with its native confirmation and bioactivity retained. In this review, the literature pertaining to the delivery of various bioactives from cubic liquid crystalline phases is examined, with a particular focus on peptides and proteins. The scope and limitations of the cubic phases in this respect and the future of cubic liquid crystalline systems as sustained delivery systems are highlighted. The reader will be able to gain an understanding of the properties of the bicontinuous cubic phase and how its structural attributes make these systems desirable for sustained delivery of bioactives, in particular peptides and proteins, but also how these same structural properties have hindered progress towards clinical applications. Current strategies to overcome these issues will also be discussed. The bicontinuous cubic phase offers great potential in the field of peptide and protein delivery, but limited research in this area precludes definite conclusions to its future in this respect.
A cubic-anvil high-pressure device for pulsed neutron powder diffraction.
Abe, J; Arakawa, M; Hattori, T; Arima, H; Kagi, H; Komatsu, K; Sano-Furukawa, A; Uwatoko, Y; Matsubayashi, K; Harjo, S; Moriai, A; Ito, T; Aizawa, K; Arai, M; Utsumi, W
2010-04-01
A compact cubic-anvil high-pressure device was developed for in situ neutron powder diffraction studies. In this device, a cubic shaped pressure medium is compressed by six anvils, and neutron beams pass through gaps between the anvils. The first high-pressure experiment using this device was conducted at J-PARC and clearly showed the neutron diffraction patterns of Pb. Combining the cubic-anvil high-pressure device with a pulsed neutron source will prove to be a useful tool for neutron diffraction experiments.
Structural study on cubic-tetragonal transition of CH3NH3PbI3
International Nuclear Information System (INIS)
Kawamura, Yukihiko; Mashiyama, Hiroyuki; Hasebe, Katsuhiko
2002-01-01
The cubic-tetragonal phase transition of CH 3 NH 3 PbI 3 was investigated by single crystal X-ray diffractometry. The crystal structure was refined at five temperatures in the tetragonal phase. The PbI 6 octahedron rotates around the c-axis alternatively to construct the SrTiO 3 -type tetragonal structure. A methylammonium ion is partially ordered; 24 disordered states in the cubic phase are reduced to 8. With decreasing temperature, the rotation angle of the octahedron increases monotonically, which indicates it is an order parameter of the cubic-tetragonal transition. (author)
d and f electrons in a qp-quantized cubical field
International Nuclear Information System (INIS)
Kibler, M.; Sztucki, J.
1993-03-01
A procedure for qp-quantizing a crystal-field potential V with an arbitrary symmetry G is developed. Such a procedure is applied to the case where V involves cubic components (G=0) of the degrees 4 and 6. This case corresponds to d and f electrons in a qp-quantized cubical potential. It is shown that the qp-quantization of the considered cubical potential is equivalent to a symmetry breaking of type O→D 4 . A general conjecture about this symmetry breaking phenomenon is given. (author) 21 refs
Radiation response of cubic mesoporous silicate and borosilicate thin films
Manzini, Ayelén; Alurralde, Martín; Luca, Vittorio
2018-01-01
The radiation response has been studied of cubic mesoporous silicate and borosilicate thin films having different boron contents prepared using the block copolymer template Brij 58 and the dip coating technique. The degree of pore ordering of the films was analysed using low-angle X-ray diffraction and film thickness measured by X-ray reflectivity. For films calcined at 350 °C, the incorporation of boron resulted in a reproducible oscillatory variation in the d-spacing and intensity of the primary reflection as a function of boron content. A clear peak was observed in the d-spacing at 5-10 mol% boron incorporation. For borosilicate films of a given composition an overall suppression of d-spacing was observed as a function of aging time relative to films that did not contain boron. This was ascribed to a slow condensation process. The films were irradiated in pile with neutrons and with iodine ions at energies of 180 keV and 70 MeV. Neutron irradiation of the silicate thin films for periods up to 30 days and aged for 400 days resulted in little reduction in either d-spacing or intensity of the primary low-angle X-ray reflection indicating that the films retained their mesopore ordering. In contrast borosilicate films for which the B (n, α) reaction was expected to result in enhanced displacement damage showed much larger variations in X-ray parameters. For these films short irradiation times resulted in a reduction of the d-spacing and intensity of the primary reflections considerably beyond that observed through aging. It is concluded that prolonged neutron irradiation and internal α irradiation have only a small, although measurable, impact on mesoporous borosilicate thin films increasing the degree of condensation and increasing unit cell contraction. When these borosilicate films were irradiated with iodine ions, more profound changes occurred. The pore ordering of the films was significantly degraded when low energy ions were used. In some cases the degree
Directory of Open Access Journals (Sweden)
Tian Zhou Xu
2012-01-01
Full Text Available The objective of the present paper is to determine the generalized Hyers-Ulam stability of the mixed additive-cubic functional equation in n-Banach spaces by the direct method. In addition, we show under some suitable conditions that an approximately mixed additive-cubic function can be approximated by a mixed additive and cubic mapping.
Unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials
DEFF Research Database (Denmark)
Willatzen, Morten; Wang, Zhong Lin
2015-01-01
A unified treatment of coupled optical and acoustic phonons in piezoelectric cubic materials is presented whereby the lattice displacement vector and the internal ionic displacement vector are found simultaneously. It is shown that phonon couplings exist in pairs only; either between the electric...... piezoelectricity in a cubic structured material slab. First, it is shown that isolated optical phonon modes generally cannot exist in piezoelectric cubic slabs. Second, we prove that confined acousto-optical phonon modes only exist for a discrete set of in-plane wave numbers in piezoelectric cubic slabs. Third...... potential and the lattice displacement coordinate perpendicular to the phonon wave vector or between the two other lattice displacement components. The former leads to coupled acousto-optical phonons by virtue of the piezoelectric effect. We then establish three new conjectures that entirely stem from...
Study of unsteady cavitation on NACA66 hydrofoil using dynamic cubic nonlinear subgrid-scale model
Directory of Open Access Journals (Sweden)
Xianbei Huang
2015-11-01
Full Text Available In this article, we describe the use of a new dynamic cubic nonlinear model, a new nonlinear subgrid-scale model, for simulating the cavitating flow around an NACA66 series hydrofoil. For comparison, the dynamic Smagorinsky model is also used. It is found that the dynamic cubic nonlinear model can capture the turbulence spectrum, while the dynamic Smagorinsky model fails. Both models reproduce the cavity growth/destabilization cycle, but the results of the dynamic cubic nonlinear model are much smoother. The re-entrant jet is clearly captured by the models, and it is shown that the re-entrant jet cuts the cavity into two parts. In general, the dynamic cubic nonlinear model provides improvement over the dynamic Smagorinsky model for the calculation of cavitating flow.
Numerical treatment of Hunter Saxton equation using cubic trigonometric B-spline collocation method
Hashmi, M. S.; Awais, Muhammad; Waheed, Ammarah; Ali, Qutab
2017-09-01
In this article, authors proposed a computational model based on cubic trigonometric B-spline collocation method to solve Hunter Saxton equation. The nonlinear second order partial differential equation arises in modeling of nematic liquid crystals and describes some aspects of orientation wave. The problem is decomposed into system of linear equations using cubic trigonometric B-spline collocation method with quasilinearization. To show the efficiency of the proposed method, two numerical examples have been tested for different values of t. The results are described using error tables and graphs and compared with the results existed in literature. It is evident that results are in good agreement with analytical solution and better than Arbabi, Nazari, and Davishi, Optik 127, 5255-5258 (2016). In current problem, it is also observed that the cubic trigonometric B-spline gives better results as compared to cubic B-spline.
CHARACTERIZATION OF PRECIPITATES IN CUBIC SILICON CARBIDE IMPLANTED WITH 25Mg+ IONS
Energy Technology Data Exchange (ETDEWEB)
Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Edwards, Danny J.; Schreiber, Daniel K.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang
2016-09-26
The aim of this study is to characterize precipitates in Mg+ ion implanted and high-temperature annealed cubic silicon carbide using scanning transmission electron microscopy, electron energy loss spectroscopy and atom probe tomography.
Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier
DEFF Research Database (Denmark)
Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel
2016-01-01
We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...
Cubic membranes: a legend beyond the Flatland* of cell membrane organization.
Almsherqi, Zakaria A; Kohlwein, Sepp D; Deng, Yuru
2006-06-19
Cubic membranes represent highly curved, three-dimensional nanoperiodic structures that correspond to mathematically well defined triply periodic minimal surfaces. Although they have been observed in numerous cell types and under different conditions, particularly in stressed, diseased, or virally infected cells, knowledge about the formation and function of nonlamellar, cubic structures in biological systems is scarce, and research so far is restricted to the descriptive level. We show that the "organized smooth endoplasmic reticulum" (OSER; Snapp, E.L., R.S. Hegde, M. Francolini, F. Lombardo, S. Colombo, E. Pedrazzini, N. Borgese, and J. Lippincott-Schwartz. 2003. J. Cell Biol. 163:257-269), which is formed in response to elevated levels of specific membrane-resident proteins, is actually the two-dimensional representation of two subtypes of cubic membrane morphology. Controlled OSER induction may thus provide, for the first time, a valuable tool to study cubic membrane formation and function at the molecular level.
Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials
National Research Council Canada - National Science Library
Krell, Andreas; Hutzler, Thomas; Klimke, Jens
2006-01-01
Sintered sub-micrometer alumina (alpha-Al2O3) is the hardest transparent armor. However, its trigonal structure gives rise to a strong thickness effect that makes thicker components translucent. Cubic ceramics (no birefringence...
Energy Technology Data Exchange (ETDEWEB)
Morey, M.S.; O' Brien, S.; Schwarz, S.; Stucky, G.D.
2000-04-01
The authors describe the introduction of titanium centers to cubic MCM-48 was hydrothermally prepared with a gemini surfactant that favors the cubic phase and leads to a high degree of long-range pore ordering. This phase was chosen due to its high surface area (1100--1300 m{sup 2}/g) and its three-dimensional, bicontinuous pore array. SBA-15, synthesized with a block copolymer template under acidic conditions, has a surface area from 600 to 900 m{sup 2}/g and an average pore diameter of 69 {angstrom}, compared to 24--27 {angstrom} for MCM-48. Alkoxide precursors of titanium were used to prepare samples of Ti-MCM-48 and Ti-SBA-15. The authors have detailed the bulk and molecular structure of both the silica framework and the local bonding environment of the titanium ions within each matrix. X-ray powder diffraction and nitrogen adsorption shows the pore structure is maintained despite some shrinkage of the pore diameter at high Ti loadings by grafting methods. UV-visible and Raman spectroscopy indicate that grafting produces the least amount of Ti-O-Ti bonds and instead favors isolated tetrahedral and octahedral titanium centers. High-resolution photoacoustic FTIR spectra demonstrated the presence of intermediate range order within the silicate walls of MCM-48, established the consumption of surface silanols to form Si-O-Ti bonds by grafting, and resolved the characteristic IR absorbance at 960 cm{sup {minus}1}, occurring in titanium silicates, into two components. All three spectroscopic techniques, including in situ Raman, reveal the reactive intermediates formed when the materials are contacted with hydrogen peroxide.
On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces
Directory of Open Access Journals (Sweden)
Cho YJ
2008-01-01
Full Text Available Abstract Recently, the stability of the cubic functional equation in fuzzy normed spaces was proved in earlier work; and the stability of the additive functional equations , in random normed spaces was proved as well. In this paper, we prove the stability of the cubic functional equation in random normed spaces by an alternative proof which provides a better estimation. Finally, we prove the stability of the quartic functional equation in random normed spaces.
Cubic and quartic planar differential systems with exact algebraic limit cycles
Directory of Open Access Journals (Sweden)
Ahmed Bendjeddou
2011-01-01
Full Text Available We construct cubic and quartic polynomial planar differential systems with exact limit cycles that are ovals of algebraic real curves of degree four. The result obtained for the cubic case generalizes a proposition of [9]. For the quartic case, we deduce for the first time a class of systems with four algebraic limit cycles and another for which nested configurations of limit cycles occur.
Tao Yang; Liqin Zhang; Xinmei Hou; Junhong Chen; Kuo-Chih Chou
2016-01-01
Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS...
Stolt, Matthew J; Li, Zi-An; Phillips, Brandon; Song, Dongsheng; Mathur, Nitish; Dunin-Borkowski, Rafal E; Jin, Song
2017-01-11
Magnetic skyrmions are topologically stable vortex-like spin structures that are promising for next generation information storage applications. Materials that host magnetic skyrmions, such as MnSi and FeGe with the noncentrosymmetric cubic B20 crystal structure, have been shown to stabilize skyrmions upon nanostructuring. Here, we report a chemical vapor deposition method to selectively grow nanowires (NWs) of cubic FeGe out of three possible FeGe polymorphs for the first time using finely ground particles of cubic FeGe as seeds. X-ray diffraction and transmission electron microscopy (TEM) confirm that these micron-length NWs with ∼100 nm to 1 μm diameters have the cubic B20 crystal structure. Although Fe 13 Ge 8 NWs are also formed, the two types of NWs can be readily differentiated by their faceting. Lorentz TEM imaging of the cubic FeGe NWs reveals a skyrmion lattice phase under small applied magnetic fields (∼0.1 T) at 233 K, a skyrmion chain state at lower temperatures (95 K) and under high magnetic fields (∼0.4 T), and a larger skyrmion stability window than bulk FeGe. This synthetic approach to cubic FeGe NWs that support stabilized skyrmions opens a route toward the exploration of new skyrmion physics and devices based on similar nanostructures.
Log-cubic method for generation of soil particle size distribution curve.
Shang, Songhao
2013-01-01
Particle size distribution (PSD) is a fundamental physical property of soils. Traditionally, the PSD curve was generated by hand from limited data of particle size analysis, which is subjective and may lead to significant uncertainty in the freehand PSD curve and graphically estimated cumulative particle percentages. To overcome these problems, a log-cubic method was proposed for the generation of PSD curve based on a monotone piecewise cubic interpolation method. The log-cubic method and commonly used log-linear and log-spline methods were evaluated by the leave-one-out cross-validation method for 394 soil samples extracted from UNSODA database. Mean error and root mean square error of the cross-validation show that the log-cubic method outperforms two other methods. What is more important, PSD curve generated by the log-cubic method meets essential requirements of a PSD curve, that is, passing through all measured data and being both smooth and monotone. The proposed log-cubic method provides an objective and reliable way to generate a PSD curve from limited soil particle analysis data. This method and the generated PSD curve can be used in the conversion of different soil texture schemes, assessment of grading pattern, and estimation of soil hydraulic parameters and erodibility factor.
On Application of Non-cubic EoS to Compositional Reservoir Simulation
DEFF Research Database (Denmark)
Yan, Wei; Michelsen, Michael Locht; Stenby, Erling Halfdan
Compositional reservoir simulation uses almost exclusively cubic equations of state (EoS) such as the SRK EoS and the PR EoS. This is in contrast with process simulation in the downstream industry where more recent and advanced thermodynamic models are quickly adopted. Many of these models are non-cubic...... EoS, such as the PC-SAFT EoS. A major reason for the use of the conventional cubic EoS in reservoir simulation is the concern over computation time. Flash computation is the most time consuming part in compositional reservoir simulation, and the extra complexity of the non-cubic EoS may significantly...... increase the time consumption. In addition to this, the non-cubic EoS also needs a C7+ characterization. The main advantage of the non-cubic EoS is that it provides for a more accurate descrition of fluid properties, and it is therefore of interest to investigate the computational aspects of using...
International Nuclear Information System (INIS)
Kostela, J.; Elmgren, M.; Almgren, M.
2005-01-01
The objective of this study was to investigate the electrochemical behaviour of the divalent redox active surfactant, N-cetyl-N'-methylviologen (CMV), in bicontinuous cubic and lamellar phases. The liquid crystalline phases were prepared from the system glycerolmonooleate (GMO)-water (and brine)-cationic surfactant. A comparison of the phase behaviour of GMO with the monovalent cetyltrimethylammonium bromide (CTAB) and the divalent CMV surfactant showed that the surfactants gave about the same effect at the same surface charge density. The electrochemical measurements were made with a mixture of CTAB and CMV as the surfactant. Cyclic voltammetry was used to study the electrochemistry of CMV incorporated in the cubic and lamellar phases that were spread on a gold electrode. The E 0 -values in the cubic samples were more negative (-0.55 V versus SCE) than in the lamellar samples (-0.53 V versus SCE). This can be explained by the higher charge density in the lamellar phase. The diffusion coefficients were also measured in the cubic phase. The mass transport is slowed down about fifty times in the cubic phase compared to in the pure electrolyte. The concentration dependence on the diffusion coefficient was also investigated. No electron hopping could be observed, which suggest that diffusional movement of the redox probe is the main source of charge transport. By placing the samples on a conducting glass slide, spectroelectrochemical investigations were performed. In the lamellar phase strong dimerization was detected at high concentration of viologen, but much less in the cubic phase
... girlshealth.gov/ Home Body Puberty Body hair Body hair Even before you get your first period , you ... removing pubic hair Ways to get rid of hair top Removing body hair can cause skin irritation, ...
... Scientists Join Forces Read more HASTINGS CENTER NEWS Artificial intelligence and brain-computer interfaces could revolutionize the treatment ... more HASTINGS CENTER NEWS With the power of artificial intelligence, machines can perform increasingly complex tasks, such as ...
Kaimura, Michiko; Oda, Masako; Mitsubuchi, Hiroshi; Ohba, Takashi; Katoh, Takahiko
2017-01-01
The purpose of this study was to identify participant characteristics in the Kumamoto University Regional Center of the Japan Environment and Children's Study (K-JECS) and to investigate the association of pregnancy outcomes with pregestational maternal body mass index (BMI) and maternal weight gain during pregnancy (MWG). The subjects were women with singleton birth, who had been recruited by the K-JECS, and were registered in the data systems for the first and second questionnaires and transcripts of medical records. The subjects were categorized by BMI with further classification by MWG. The chi-squared test and one-way analysis of variance were performed to determine the correlations of BMI and MWG with perinatal outcomes. Logistic regression analysis was performed to examine perinatal outcome risks. The subject characteristics were similar to the trends observed in the Japanese general population. The odds ratio for natural delivery was low in the overweight groups (OW) and normal weight groups (NW) with excessive weight gain. On the other hand, the risk of cesarean section was high in the OW, and risk of induced or accelerated delivery was high in the NW with excessive weight gain. The risks of preterm birth and LBW were high in the insufficient weight gain groups regardless of BMI. The risks of pregnancy-induced hypertension and gestational diabetes were high in the OW.
Cubic zirconia as a high-quality facet coating for semiconductor lasers
Energy Technology Data Exchange (ETDEWEB)
Chin, A.K.; Satyanarayan, A.; Zarrabi, J.H.; Vetterling, W.
1988-08-01
In this paper we describe the properties of high-quality, semiconductor laser facet coatings based on yttria-stabilizied cubic zirconia (90-m% ZrO/sub 2//10-m% Y/sub 2/O/sub 3/). We have found that cubic zirconia films can be reproducibly deposited by electron-beam evaporation with an index of refraction of 1.98 at 6328 A, almost ideal for use as a single-layer antireflection coating for GaAs/GaAlAs-based lasers. ZrO/sub 2/ has a monoclinic crystal structure at room temperature, but changes to tetragonal, hexagonal, and cubic phases upon heating to higher temperatures. However, the addition of the Y/sub 2/O/sub 3/ stabilizes ZrO/sub 2/ in the cubic form, thus allowing electron-beam deposition of thin films of this material to be more controllable and reproducible without the usual addition of oxygen into the vacuum chamber during deposition. Preliminary aging tests of high-power GaAs/GaAlAs lasers show that cubic zirconia films suppress the photo-enhanced oxidation of laser facets that degrades device performance.
Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices
Gao, Xuzhen; Zeng, Jianhua
2018-02-01
The nonlinear lattice — a new and nonlinear class of periodic potentials — was recently introduced to generate various nonlinear localized modes. Several attempts failed to stabilize two-dimensional (2D) solitons against their intrinsic critical collapse in Kerr media. Here, we provide a possibility for supporting 2D matter-wave solitons and vortices in an extended setting — the cubic and quintic model — by introducing another nonlinear lattice whose period is controllable and can be different from its cubic counterpart, to its quintic nonlinearity, therefore making a fully "nonlinear quasi-crystal". A variational approximation based on Gaussian ansatz is developed for the fundamental solitons and in particular, their stability exactly follows the inverted Vakhitov-Kolokolov stability criterion, whereas the vortex solitons are only studied by means of numerical methods. Stability regions for two types of localized mode — the fundamental and vortex solitons — are provided. A noteworthy feature of the localized solutions is that the vortex solitons are stable only when the period of the quintic nonlinear lattice is the same as the cubic one or when the quintic nonlinearity is constant, while the stable fundamental solitons can be created under looser conditions. Our physical setting (cubic-quintic model) is in the framework of the Gross-Pitaevskii equation or nonlinear Schrödinger equation, the predicted localized modes thus may be implemented in Bose-Einstein condensates and nonlinear optical media with tunable cubic and quintic nonlinearities.
The formation of cubic ice under conditions relevant to Earth's atmosphere.
Murray, Benjamin J; Knopf, Daniel A; Bertram, Allan K
2005-03-10
An important mechanism for ice cloud formation in the Earth's atmosphere is homogeneous nucleation of ice in aqueous droplets, and this process is generally assumed to produce hexagonal ice. However, there are some reports that the metastable crystalline phase of ice, cubic ice, may form in the Earth's atmosphere. Here we present laboratory experiments demonstrating that cubic ice forms when micrometre-sized droplets of pure water and aqueous solutions freeze homogeneously at cooling rates approaching those found in the atmosphere. We find that the formation of cubic ice is dominant when droplets freeze at temperatures below 190 K, which is in the temperature range relevant for polar stratospheric clouds and clouds in the tropical tropopause region. These results, together with heat transfer calculations, suggest that cubic ice will form in the Earth's atmosphere. If there were a significant fraction of cubic ice in some cold clouds this could increase their water vapour pressure, and modify their microphysics and ice particle size distributions. Under specific conditions this may lead to enhanced dehydration of the tropopause region.
Conformal Interpolating Algorithm Based on Cubic NURBS in Aspheric Ultra-Precision Machining
International Nuclear Information System (INIS)
Li, C G; Zhang, Q R; Cao, C G; Zhao, S L
2006-01-01
Numeric control machining and on-line compensation for aspheric surface are key techniques in ultra-precision machining. In this paper, conformal cubic NURBS interpolating curve is applied to fit the character curve of aspheric surface. Its algorithm and process are also proposed and imitated by Matlab7.0 software. To evaluate the performance of the conformal cubic NURBS interpolation, we compare it with the linear interpolations. The result verifies this method can ensure smoothness of interpolating spline curve and preserve original shape characters. The surface quality interpolated by cubic NURBS is higher than by line. The algorithm is benefit to increasing the surface form precision of workpieces in ultra-precision machining
Cubic B-spline solution for two-point boundary value problem with AOR iterative method
Suardi, M. N.; Radzuan, N. Z. F. M.; Sulaiman, J.
2017-09-01
In this study, the cubic B-spline approximation equation has been derived by using the cubic B-spline discretization scheme to solve two-point boundary value problems. In addition to that, system of cubic B-spline approximation equations is generated from this spline approximation equation in order to get the numerical solutions. To do this, the Accelerated Over Relaxation (AOR) iterative method has been used to solve the generated linear system. For the purpose of comparison, the GS iterative method is designated as a control method to compare between SOR and AOR iterative methods. There are two examples of proposed problems that have been considered to examine the efficiency of these proposed iterative methods via three parameters such as their number of iterations, computational time and maximum absolute error. The numerical results are obtained from these iterative methods, it can be concluded that the AOR iterative method is slightly efficient as compared with SOR iterative method.
Numerical Simulation of Sloshing Phenomena in Cubic Tank with Multiple Baffles
Directory of Open Access Journals (Sweden)
Mi-An Xue
2012-01-01
Full Text Available A two-phase fluid flow model solving Navier-Stokes equations was employed in this paper to investigate liquid sloshing phenomena in cubic tank with horizontal baffle, perforated vertical baffle, and their combinatorial configurations under the harmonic motion excitation. Laboratory experiment of liquid sloshing in cubic tank with perforated vertical baffle was carried out to validate the present numerical model. Fairly good agreements were obtained from the comparisons between the present numerical results and the present experimental data, available numerical data. Liquid sloshing in cubic tank with multiple baffles was investigated numerically in detail under different external excitation frequencies. Power spectrum of the time series of free surface elevation was presented with the aid of fast Fourier transform technique. The dynamic impact pressures acting on the normal and parallel sidewalls were discussed in detail.
Directory of Open Access Journals (Sweden)
Bagiyo Suwasono
2011-05-01
Full Text Available Ability of production processes associated with state-of-the-art technology, which allows the shipbuilding, is customized with modern equipment. It will give impact to level of productivity and competitiveness. This study proposes a nonparametric regression cubic spline approach with 1 knot, 2 knots, and 3 knots. The application programs Tibco Spotfire S+ showed that a cubic spline with 2 knots (4.25 and 4.50 gave the best result with the value of GCV = 56.21556, and R2 = 94.03%.Estimation result of cubic spline with 2 knots for the PT. Batamec shipyard = 35.61 MH/CGT, PT. Dok & Perkapalan Surabaya = 27.49 MH/CGT, PT. Karimun Sembawang Shipyard = 27.49 MH/CGT, and PT. PAL Indonesia = 19.89 MH/CGT.
Cubic MnSb: Epitaxial growth of a predicted room temperature half-metal
Aldous, James D.; Burrows, Christopher W.; Sánchez, Ana M.; Beanland, Richard; Maskery, Ian; Bradley, Matthew K.; Dos Santos Dias, Manuel; Staunton, Julie B.; Bell, Gavin R.
2012-02-01
Epitaxial films including bulklike cubic and wurtzite polymorphs of MnSb have been grown by molecular beam epitaxy on GaAs via careful control of the Sb4/Mn flux ratio. Nonzero-temperature density functional theory was used to predict ab initio the half-metallicity of the cubic polymorph and compare its spin polarization as a function of reduced magnetization with that of the well known half-metal NiMnSb. In both cases, half-metallicity is lost at a threshold magnetization reduction, corresponding to a temperature T*350 K, making epitaxial cubic MnSb a promising candidate for efficient room temperature spin injection into semiconductors.
Directory of Open Access Journals (Sweden)
A. Beléndez
2012-01-01
Full Text Available Accurate approximate closed-form solutions for the cubic-quintic Duffing oscillator are obtained in terms of elementary functions. To do this, we use the previous results obtained using a cubication method in which the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a cubic Duffing equation. Explicit approximate solutions are then expressed as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function cn. Then we obtain other approximate expressions for these solutions, which are expressed in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean is used and the rational harmonic balance method is applied to obtain the periodic solution of the original nonlinear oscillator.
Radial reduction and cubic interaction for higher spins in (A)dS space
International Nuclear Information System (INIS)
Manvelyan, Ruben; Mkrtchyan, Ruben; Rühl, Werner
2013-01-01
We present a new version of the radial reduction formalism to obtain a cubic interaction of higher spin gauge fields in AdS d+1 space from the corresponding cubic interaction in a flat (d+2)-dimensional background. We modify the radial reduction procedure proposed previously by T. Biswas and W. Siegel in 2002 [54] and applied to the free higher spin Lagrangian by K. Hallowell and A. Waldron in 2005 [55]. This modified radial reduction scheme is applied to interacting massless higher spin fields in Fronsdal's formulation, and all results are expressed in a direct AdS d+1 invariant way with AdS covariant derivatives. We present a consistent algorithm and define new procedure to obtain all corrections proportional to powers of the cosmological constant, and apply these to the main term of the cubic self-interaction
International Nuclear Information System (INIS)
Adam, S.; Adam, G.; Corciovei, A.
1977-01-01
The crystal-field Hamiltonian for cubic compounds is brought into the standard form of the crystal-field theory by a general symmetrization technique which uses point group considerations only. The obtained crystal-field coefficients are expressed as products between those given by Hutchings and some geometrical structure factors, which include the relative contribution of all the neighbouring ions to the crystal-field. Assuming point charges in vacuum, numerical values are reported for the geometrical structure factors of several cubic structures and significant departures from Hutchings' results are found in some cases. Then, the screening effect of the conduction electrons in cubic metallic structures is investigated supposing a screened Coulomb interionic potential. (author)
... SearchingPediatrics.com Pediatrics Common Questions, Quick Answers Foreign Body Donna D'Alessandro, M.D. Lindsay Huth, B. ... I call the doctor? What is a foreign body? A foreign body is when an object is ...
The n-component cubic model and flows: subgraph break-collapse method
International Nuclear Information System (INIS)
Essam, J.W.; Magalhaes, A.C.N. de.
1988-01-01
We generalise to the n-component cubic model the subgraph break-collapse method which we previously developed for the Potts model. The relations used are based on expressions which we recently derived for the Z(λ) model in terms of mod-λ flows. Our recursive algorithm is similar, for n = 2, to the break-collapse method for the Z(4) model proposed by Mariz and coworkers. It allows the exact calculation for the partition function and correlation functions for n-component cubic clusters with n as a variable, without the need to examine all of the spin configurations. (author) [pt
Preconditioning cubic spline collocation method by FEM and FDM for elliptic equations
Energy Technology Data Exchange (ETDEWEB)
Kim, Sang Dong [KyungPook National Univ., Taegu (Korea, Republic of)
1996-12-31
In this talk we discuss the finite element and finite difference technique for the cubic spline collocation method. For this purpose, we consider the uniformly elliptic operator A defined by Au := -{Delta}u + a{sub 1}u{sub x} + a{sub 2}u{sub y} + a{sub 0}u in {Omega} (the unit square) with Dirichlet or Neumann boundary conditions and its discretization based on Hermite cubic spline spaces and collocation at the Gauss points. Using an interpolatory basis with support on the Gauss points one obtains the matrix A{sub N} (h = 1/N).
Kirkpatrick, J. C.
1976-01-01
A tabulation of selected altitude-correlated values of pressure, density, speed of sound, and coefficient of viscosity for each of six models of the atmosphere is presented in block data format. Interpolation for the desired atmospheric parameters is performed by using cubic spline functions. The recursive relations necessary to compute the cubic spline function coefficients are derived and implemented in subroutine form. Three companion subprograms, which form the preprocessor and processor, are also presented. These subprograms, together with the data element, compose the spline fit atmosphere package. Detailed FLOWGM flow charts and FORTRAN listings of the atmosphere package are presented in the appendix.
Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging.
Proppert, Sven; Wolter, Steve; Holm, Thorge; Klein, Teresa; van de Linde, Sebastian; Sauer, Markus
2014-05-05
In recent years three-dimensional (3D) super-resolution fluorescence imaging by single-molecule localization (localization microscopy) has gained considerable interest because of its simple implementation and high optical resolution. Astigmatic and biplane imaging are experimentally simple methods to engineer a 3D-specific point spread function (PSF), but existing evaluation methods have proven problematic in practical application. Here we introduce the use of cubic B-splines to model the relationship of axial position and PSF width in the above mentioned approaches and compare the performance with existing methods. We show that cubic B-splines are the first method that can combine precision, accuracy and simplicity.
On the structure of critical energy levels for the cubic focusing NLS on star graphs
International Nuclear Information System (INIS)
Adami, Riccardo; Noja, Diego; Cacciapuoti, Claudio; Finco, Domenico
2012-01-01
We provide information on a non-trivial structure of phase space of the cubic nonlinear Schrödinger (NLS) on a three-edge star graph. We prove that, in contrast to the case of the standard NLS on the line, the energy associated with the cubic focusing Schrödinger equation on the three-edge star graph with a free (Kirchhoff) vertex does not attain a minimum value on any sphere of constant L 2 -norm. We moreover show that the only stationary state with prescribed L 2 -norm is indeed a saddle point. (fast track communication)
Limit cycles from a cubic reversible system via the third-order averaging method
Directory of Open Access Journals (Sweden)
Linping Peng
2015-04-01
Full Text Available This article concerns the bifurcation of limit cycles from a cubic integrable and non-Hamiltonian system. By using the averaging theory of the first and second orders, we show that under any small cubic homogeneous perturbation, at most two limit cycles bifurcate from the period annulus of the unperturbed system, and this upper bound is sharp. By using the averaging theory of the third order, we show that two is also the maximal number of limit cycles emerging from the period annulus of the unperturbed system.
Analysis of moderately thin-walled beam cross-sections by cubic isoparametric elements
DEFF Research Database (Denmark)
Høgsberg, Jan Becker; Krenk, Steen
2014-01-01
In technical beam theory the six equilibrium states associated with homogeneous tension, bending, shear and torsion are treated as individual load cases. This enables the formulation of weak form equations governing the warping from shear and torsion. These weak form equations are solved...... numerically by introducing a cubic-linear two-dimensional isoparametric element. The cubic interpolation of this element accurately represents quadratic shear stress variations along cross-section walls, and thus moderately thin-walled cross-sections are effectively discretized by these elements. The ability...
Cubic systems with invariant affine straight lines of total parallel multiplicity seven
Directory of Open Access Journals (Sweden)
Alexandru Suba
2013-12-01
Full Text Available In this article, we study the planar cubic differential systems with invariant affine straight lines of total parallel multiplicity seven. We classify these system according to their geometric properties encoded in the configurations of invariant straight lines. We show that there are only 17 different topological phase portraits in the Poincar\\'e disc associated to this family of cubic systems up to a reversal of the sense of their orbits, and we provide representatives of every class modulo an affine change of variables and rescaling of the time variable.
Tennyson, R. C.; Nanyaro, A. P.; Wharram, G. E.
1980-01-01
A comparative failure analysis is presented based on the application of quadratic and cubic forms of the tensor polynomial lamina strength criterion to various composite structural configurations in a plane stress state. Failure loads have been predicted for off-angle laminates under simple loading conditions and for symmetric-balanced laminates subject to varying degrees of biaxial tension, including configurations subject to multimode failures. Some experimental data are also provided to support these calculations. From these results, the necessity of employing a cubic strength criterion to accurately predict the failure of composite laminae is demonstrated.
Lattice vibrations and cubic to tetragonal phase transition in ZrO2
International Nuclear Information System (INIS)
Negita, K.
1989-01-01
On the basis of analyses of phonon modes in ZrO 2 , it is suggested that condensation of a phonon X 2 - at the cubic Brillouin zone boundary X point, (0, 0, 2 π/a), is associated with the cubic to tetragonal phase transition in ZrO 2 . Free energy consideration shows that spontaneous volume and shear strains, e Alg = (e 1 +e 2 +e 3 ) and e Eg = (2e 3 - e 1 - e 2 )/ Λ3, are induced in the tetragonal phase as a result of indirect couplings of the X 2 - mode to homogeneous elastic strains; the tetragonal phase is improper ferroelastic
Energy Technology Data Exchange (ETDEWEB)
Stalin, S. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Senthilvelan, M., E-mail: velan@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)
2011-10-17
In this Letter, we formulate an exterior differential system for the newly discovered cubically nonlinear integrable Camassa-Holm type equation. From the exterior differential system we establish the integrability of this equation. We then study Cartan prolongation structure of this equation. We also discuss the method of identifying conservation laws and Baecklund transformation for this equation from the identified exterior differential system. -- Highlights: → An exterior differential system for a cubic nonlinear integrable equation is given. → The conservation laws from the exterior differential system is derived. → The Baecklund transformation from the Cartan-Ehresmann connection is obtained.
High-resolution transmission electron microscopy of cubic Si3N4
Zhang, Ming; He, Hongliang; Xu, F. F.; Sekine, T.; Kobayashi, T.; Bando, Y.
2000-09-01
A cubic Si3N4 phase/nanostructure has been characterized by means of high-resolution analytical electron microscopy. The specimen prepared from β-Si3N4 powders at a high pressure and temperature by shock wave compression contained nanometer-sized Si3N4 crystallites. The results of nano-beam electron diffraction analysis and high-resolution lattice images as well as computer simulations revealed that the Si3N4 crystallites had a cubic symmetry with spinel structure. The electron energy loss spectrum suggested that the chemical compositions of these nanostructures were close to Si3N4.
GA Based Rational cubic B-Spline Representation for Still Image Interpolation
Directory of Open Access Journals (Sweden)
Samreen Abbas
2016-12-01
Full Text Available In this paper, an image interpolation scheme is designed for 2D natural images. A local support rational cubic spline with control parameters, as interpolatory function, is being optimized using Genetic Algorithm (GA. GA is applied to determine the appropriate values of control parameter used in the description of rational cubic spline. Three state-of-the-art Image Quality Assessment (IQA models with traditional one are hired for comparison with existing image interpolation schemes and perceptual quality check of resulting images. The results show that the proposed scheme is better than the existing ones in comparison.
Neutron diffraction study of cubic titanium carbohydride at the homogeneity lower limit
International Nuclear Information System (INIS)
Khidirov, I.; Mirzaev, B.B.; Mukhtarova, N.N.
2004-01-01
Cubic carbohydride TiC 0.47H0.22 was prepared by means of quenching from 1200 deg.C followed by the heat treatment using special regime for preventing the hydrogen yield out the lattice. It is shown that at the lower limit of homogeneity range of the cubic carbohydride, hydrogen atoms occupy the tetrahedral interstices 8(c) of the disordered cubic structure with space group of Fm3m. It is found that carbon and hydrogen atoms are partially ordered by annealing at 900-700 deg.C. The ordered structure is face-centred cubic lattice with the parameter a ≅2a 0 , where a 0 is the lattice parameter in disordered structure. The crystal structure of the disordered phase is described within the framework of space group Fd3m, where the carbon atoms occupy mainly (70%) octahedral interstices 16(c) and another ones of carbon and all hydrogen atoms occupy the octahedral interstices 16(d). (author)
DEFF Research Database (Denmark)
Castelli, Ivano Eligio; Landis, David; Thygesen, Kristian Sommer
2012-01-01
screening of around 19 000 oxides, oxynitrides, oxysulfides, oxyfluorides, and oxyfluoronitrides in the cubic perovskite structure with PEC applications in mind. We address three main applications: light absorbers for one- and two-photon water splitting and high-stability transparent shields to protect...
Classifying cubic edge-transitive graphs of order 8p8p8p
Indian Academy of Sciences (India)
Annals of Discrete. Math. 34 (1987) 273–286. [14] Klin M L, On edge but not vertex transitive regular graphs, Colloq-Math. Soc. Janos. Bolyai, 25, Algebric Methods in Graph Theory (Szeged, Hungary, Budapest) (1981) pp. 399–403. [15] Lu Z, Wang C Q and Xu M Y, On semisymmetric cubic graphs of order 6p2, Science in.
Criticality of the anisotropic quantum Heisenberg model on a simple cubic lattice
International Nuclear Information System (INIS)
Mariz, A.M.; Tsallis, C.; Santos, R.M.Z. dos; Santos, Raimundo R. dos.
1984-11-01
Within a Real Space Renormalization Group Framework, the criticality (phase diagram, and critical thermal and crossover exponents) of the spin 1/2 - anisotropic quantum Heisenberg ferromagnet on a simple cubic lattice is studied. The results obtained are in antisfactory agreement with known results whenever available. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Lee, H.; Habas, S.E.; Somorjai, G.A.; Yang, P.
2008-03-20
Binary Pt/Pd nanoparticles were synthesized by localized overgrowth of Pd on cubic Pt seeds for the investigation of electrocatalytic formic acid oxidation. The binary particles exhibited much less self-poisoning and a lower activation energy relative to Pt nanocubes, consistent with the single crystal study.
Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion
DEFF Research Database (Denmark)
Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel
2014-01-01
We use density functional theory calculations to investigate the stability of cubic perovskites for photo-electrochemical water splitting taking both materials in their bulk crystal structure and dissolved phases into account. The method is validated through a detailed comparison of the calculated...
A modified linear algebraic approach to electron scattering using cubic splines
International Nuclear Information System (INIS)
Kinney, R.A.
1986-01-01
A modified linear algebraic approach to the solution of the Schrodiner equation for low-energy electron scattering is presented. The method uses a piecewise cubic-spline approximation of the wavefunction. Results in the static-potential and the static-exchange approximations for e - +H s-wave scattering are compared with unmodified linear algebraic and variational linear algebraic methods. (author)
On the dynamic Stability of a quadratic-cubic elastic model structure ...
African Journals Online (AJOL)
The main substance of this investigation is the determination of the dynamic buckling load of an imperfect quadratic-cubic elastic model structure , which ,in itself, is a Mathematical generalization of some of the many physical structures normally encountered in engineering practice and allied fields. The load function in ...
DEFF Research Database (Denmark)
Folas, Georgios; Derawi, Samer; Michelsen, Michael Locht
2005-01-01
The cubic-plus-association equation of state (CPA EoS) has been extended to phase equilibria of industrially important binary mixtures of alcohol-hydrocarbon, alcohol/glycol-water systems and mixtures with organic acids. The ability of the model to predict different types of equilibria was tested...
DEFF Research Database (Denmark)
Kruger, Francois; Kontogeorgis, Georgios M.; von Solms, Nicolas
2018-01-01
Accurate thermodynamic predictions for systems containing glycols are essential for the design and commissioning of novel subsea natural gas dehydration units. Previously it has been shown that the Cubic-Plus-Association (CPA) equation of state can be used to model VLE, SLE and LLE for mixtures...
Qualitative analysis on a cubic predator-prey system with diffusion
Directory of Open Access Journals (Sweden)
Qunyi Bie
2011-04-01
Full Text Available In this paper, we study a cubic predator-prey model with diffusion. We first establish the global stability of the trivial and nontrivial constant steady states for the reaction diffusion system, and then prove the existence and non-existence results concerning non-constant positive stationary solutions by using topological argument and the energy method, respectively.
The bulk modulus of cubic spinel selenides: an experimental and theoretical study
DEFF Research Database (Denmark)
Waskowska, A.; Gerward, Leif; Olsen, J.S.
2009-01-01
It is argued that mainly the selenium sublattice determines the overall compressibility of the cubic spinel selenides, AB2Se4, and that the bulk modulus for these compounds is about 100GPa. The hypothesis is supported by experiments using high-pressure X-ray diffraction and synchrotron radiation...
Application of the cubic-plus-association (CPA) equation of state to cross-associating systems
DEFF Research Database (Denmark)
Folas, Georgios; Gabrielsen, Jostein; Michelsen, Michael Locht
2005-01-01
The cubic-plus-association (CPA) equation of state (EoS) is applied, using different combining rules, to vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE) of alcohol-water systems. It is demonstrated that the Elliott combining rule (ECR) with a common temperature...
Analysis and prediction of the alpha-function parameters used in cubic equations of state
DEFF Research Database (Denmark)
Privata, Romain; Viscontea, Maxime; Zazoua-Khames, Anis
2015-01-01
The performance of two generalized alpha functions (Soave and generalized Twu functions requiring the acentric factor as input parameter) and two parameterizable alpha functions (Mathias-Copeman and Twu) incorporated in cubic equations of state (Redlich-Kwong and Peng-Robinson) are evaluated...
Analytic smoothing effect for the cubic hyperbolic Schrodinger equation in two space dimensions
Directory of Open Access Journals (Sweden)
Gaku Hoshino
2016-01-01
Full Text Available We study the Cauchy problem for the cubic hyperbolic Schrodinger equation in two space dimensions. We prove existence of analytic global solutions for sufficiently small and exponential decaying data. The method of proof depends on the generalized Leibniz rule for the generator of pseudo-conformal transform acting on pseudo-conformally invariant nonlinearity.
Extension of the cubic-plus-association (CPA) equation of state to amines
DEFF Research Database (Denmark)
Kaarsholm, Mads Kristian; Derawi, Samer; Michelsen, Michael Locht
2005-01-01
The cubic-plus-association (CPA) equation of state has been extended to modeling mixtures containing amines. Special focus was given to primary and secondary amines, which are known to self-associate, thus forming hydrogen bonds in mixtures with alkanes. Pure-compound parameters have been...
Determination of asphaltene onset conditions using the cubic plus association equation of state
DEFF Research Database (Denmark)
Arya, Alay; von Solms, Nicolas; Kontogeorgis, Georgios M.
2015-01-01
The cubic-plus-association (CPA) equation of state (EoS) has already been proven to be a successful model for phase equilibrium calculations for systems containing associating components and has already been applied for asphaltene modeling by few researchers. In the present work, we apply the CPA...
DEFF Research Database (Denmark)
Arya, Alay; Liang, Xiaodong; von Solms, Nicolas
2017-01-01
In this study, different modeling approaches using the Cubic Plus Association (CPA) equation of state (EoS) are developed to calculate the asphaltene precipitation onset condition and asphaltene yield from degassed crude oil during the addition of n-paraffin. A single model parameter is fitted...
Epitaxial relationships for hexagonal-to-cubic phase transition in a block copolymer mixture
DEFF Research Database (Denmark)
Schulz, M.F.; Bates, F.S.; Almdal, K.
1994-01-01
Small-angle neutron scattering experiments have revealed an epitaxial relationship between the hexagonal cylinder phase, and a bicontinuous cubic phase with Ia3dBAR space group symmetry, in a poly(styrene)-poly(2-vinylpyridine) diblock copolymer mixture. Proximity to the order-disorder transition...
Robustness of Multiple High Speed TCP CUBIC Connections Under Severe Operating Conditions
DEFF Research Database (Denmark)
Pilimon, Artur; Ruepp, Sarah Renée; Berger, Michael Stübert
2015-01-01
We study the adaptation capabilities and robustness of the high-speed TCP CUBIC algorithm. For this purpose we consider a network environment with variable and high random packet loss and a large Bandwidth-Delay product, shared by multiple heterogeneous TCP connections. The analysis is based...
Estimating load weights with Huber's Cubic Volume formula: a field trial.
Dale R. Waddell
1989-01-01
Log weights were estimated from the product of Huber's cubic volume formula and green density. Tags showing estimated log weights were attached to logs in the field, and the weights were tallied into a single load weight as logs were assembled for aerial yarding. Accuracy of the estimated load weights was evaluated by comparing the predicted with the actual load...
Converting among log scaling methods : Scriber, International, and Doyle versus cubic
Henry Spelter
2004-01-01
Sawlogs in the United States, whether scaled on the ground or cruised on the stump, have traditionally been measured in terms of their lumber yield. The three commonly used measurement rules generally underestimate true recoveries. Moreover, they do so inconsistently, complicating the comparisons of volumes obtained by different board foot rules as well as by the cubic...
Pore direction in relation to anisotropy of mechanical strength in a cubic starch compact
Wu, Yu San; van Vliet, Lucas J; Frijlink, Henderik W; Stokroos, Ietse; van der Voort Maarschalk, Kees
The purpose of this research was to evaluate the relation between preferential direction of pores and mechanical strength of cubic starch compacts. The preferential pore direction was quantified in SEM images of cross sections of starch compacts using a previously described algorithm for
Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice
Energy Technology Data Exchange (ETDEWEB)
Engel, Edgar A., E-mail: eae32@cam.ac.uk; Needs, Richard J. [TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Monserrat, Bartomeu [TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019 (United States)
2015-12-28
Electron-phonon coupling in hexagonal and cubic water ice is studied using first-principles quantum mechanical methods. We consider 29 distinct hexagonal and cubic ice proton-orderings with up to 192 molecules in the simulation cell to account for proton-disorder. We find quantum zero-point vibrational corrections to the minimum electronic band gaps ranging from −1.5 to −1.7 eV, which leads to improved agreement between calculated and experimental band gaps. Anharmonic nuclear vibrations play a negligible role in determining the gaps. Deuterated ice has a smaller band-gap correction at zero-temperature of −1.2 to −1.4 eV. Vibrations reduce the differences between the electronic band gaps of different proton-orderings from around 0.17 eV to less than 0.05 eV, so that the electronic band gaps of hexagonal and cubic ice are almost independent of the proton-ordering when quantum nuclear vibrations are taken into account. The comparatively small reduction in the band gap over the temperature range 0 − 240 K of around 0.1 eV does not depend on the proton ordering, or whether the ice is protiated or deuterated, or hexagonal, or cubic. We explain this in terms of the atomistic origin of the strong electron-phonon coupling in ice.
Estimating cubic volume of small diameter tree-length logs from ponderosa and lodgepole pine.
Marlin E. Plank; James M. Cahill
1984-01-01
A sample of 351 ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and 509 lodgepole pine (Pinus contorta Dougl. ex Loud.) logs were used to evaluate the performance of three commonly used formulas for estimating cubic volume. Smalian's formula, Bruce's formula, and Huber's formula were tested to determine which...
A classification of cubic symmetric graphs of order 16p2
Indian Academy of Sciences (India)
In this paper, we classify all connected cubic symmetric graphs of order 16p2 for each prime p. Keywords. Regular coverings; symmetric graphs; invariant subspaces. 1. Introduction. Throughout this paper, graphs are assumed to be finite, simple, undirected and connected. For the group-theoretic concepts and notations not ...
Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih
2016-04-25
Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50-15000 μmoL L(-1) (cubic SiC NWs) and 5-8000 μmoL L(-1) (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L(-1) respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility.
Semisymmetric cubic graphs of order 16p2 16p2 16p2
Indian Academy of Sciences (India)
Abstract. An undirected graph without isolated vertices is said to be semisymmetric if its full automorphism group acts transitively on its edge set but not on its vertex set. In this paper, we inquire the existence of connected semisymmetric cubic graphs of order. 16p2. It is shown that for every odd prime p, there exists a ...
On an infinite series of invariant measures for the cubic nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Zhidkov, P.E.
1996-01-01
We consider the Cauchy problem periodic in the spatial variable for the usual cubic nonlinear Schroedinger equation. We construct invariant measures associated with the highest conservation laws for dynamical systems generated by this problem on appropriate phase spaces. In addition, we obtained sufficient conditions for the boundedness of the measures constructed. 25 refs
Ogbonnaya, Ugorji I.; Mogari, David L.; Machisi, Eric
2013-01-01
In this study, repeated measures design was employed to compare low performing students' achievements in factoring cubic polynomials using three strategies. Twenty-five low-performing Grade 12 students from a secondary school in Limpopo province took part in the study. Data was collected using achievement test and was analysed using repeated…
Semisymmetric cubic graphs of order 16p2 16p2 16p2
Indian Academy of Sciences (India)
An undirected graph without isolated vertices is said to be semisymmetric if its full automorphism group acts transitively on its edge set but not on its vertex set. In this paper, we inquire the existence of connected semisymmetric cubic graphs of order 162. It is shown that for every odd prime , there exists a semisymmetric ...
International Nuclear Information System (INIS)
Khidirov, I.; Sultanova, S.Kh.; Mukhtarova, N.N.; Mirzaev, B.B.
2006-01-01
Full text: Earlier we have shown that the complex distribution of interstitial atoms takes place in the crystal lattice of cubic zirconium carbohydrides prepared by self-propagating high-temperature synthesis (SHS). One of the features of SHS-synthesis of inorganic compounds is high burning temperature and fast cooling from combustion temperature after synthesis. At that, self-hardening of the prepared product takes place, and structural state of the compound can correspond to high-temperature state. But the question about distribution of interstitial atoms over the crystal structure of cubic carbohydrides at the relatively low temperatures (T 2 C; secondly, the temperature of the order - disorder transition in zirconium carbohydrides is above 1100 deg C. It is shown that unlike in Zr-C system, in cubic zirconium carbohydrides the temperature of the order - disorder transition is much higher, and over the wide homogeneity range in the temperature interval of 1000-500 deg C the formation of trigonal ordered phase is not observed. Hence, hydrogen suppresses the formation of the ordered trigonal phase, expanding temperature range of stability of the ordered cubic phase. (author)
Study of helium diffusion, implanted at a cyclotron, in face-centered cubic metals: Au, Ag and Al
International Nuclear Information System (INIS)
Sciani, V.
1985-01-01
Helium in metals is produced by nuclear reactions of energetic particles. In nuclear technology the interest on helium in metals is import, due to its production by (n, α) reaction. Because helium has extremely low solubility in metals, the precipitation in the form of filled bubbles at elevated temperatures occurs, which have detrimental effects on mechanical properties and may limit the lifetime of structural components. One typical example is the high temperature embrittlement. The nucleation and growth of the bubbles strongly depends on the mobility of the helium. This work presents the study of helium diffusion in Au, Ag and Al at temperatures above room temperature. The helium created by (n, α) reactions has been simulated by homogeneous alpha particles implantation in cyclotron, at room temperature, in specimens of thicknesses between 5 and 50 μm and helium concentration between 10 -3 to 10 ppm. After implantation, the specimens were dropped in a furnace in a UHV-chamber and the diffusion was measured by observing the He-release during linear and isothermal annealings. The occurence of free diffusion was comparing the dependence of release kinetics on helium concentration, sample thickness, time and heating rate to diffusion theory and is clearly separeted from agglomeration process. The diffusion constants of helium in Au, Ag and Al follow an Arrhenius behavior, with: Au:D o =10 -1.0 cm 2 /s ΔH=1.70eV Ag:D 0 =10 -1.2 cm 2 /s ΔH=1.51eV Al:D o =10 +0.5 cm 2 /s ΔH=1.40eV. The results are compared to self-diffusion and to the diffusion of other gases in these metals. Comparison with theoretical estimates favours the vacancy mechanism for helium diffusion in Au, Ag and Al. (author) [pt
International Nuclear Information System (INIS)
Bitzek, Erik; Gumbsch, Peter
2004-01-01
Atomistic simulations of an accelerating edge dislocation were carried out to study the effects of drag and inertia. Using an embedded atom potential for nickel, the Peierls stress, the effective mass and the drag coefficient of an edge dislocation were determined for different temperatures and stresses in a simple slab geometry. The effect of {1 1 1} surfaces on an intersecting edge dislocation were studied by appropriately cutting the slab. A dislocation intersecting a surface step was used as a model system to demonstrate the importance of inertial effects for dynamically overcoming short range obstacles. Significant effects were found even at room temperature. A simple model based on the dislocation-obstacle interaction energies was used to describe the findings
An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method
International Nuclear Information System (INIS)
Belendez, A.; Mendez, D.I.; Fernandez, E.; Marini, S.; Pascual, I.
2009-01-01
The nonlinear oscillations of a Duffing-harmonic oscillator are investigated by an approximated method based on the 'cubication' of the initial nonlinear differential equation. In this cubication method the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain explicit approximate formulas for the frequency and the solution as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function, respectively. These explicit formulas are valid for all values of the initial amplitude and we conclude this cubication method works very well for the whole range of initial amplitudes. Excellent agreement of the approximate frequencies and periodic solutions with the exact ones is demonstrated and discussed and the relative error for the approximate frequency is as low as 0.071%. Unlike other approximate methods applied to this oscillator, which are not capable to reproduce exactly the behaviour of the approximate frequency when A tends to zero, the cubication method used in this Letter predicts exactly the behaviour of the approximate frequency not only when A tends to infinity, but also when A tends to zero. Finally, a closed-form expression for the approximate frequency is obtained in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean as well as Legendre's formula to approximately obtain this mean are used.
Cui, Zhongmin; Kolen, Michael J.
2009-01-01
This article considers two new smoothing methods in equipercentile equating, the cubic B-spline presmoothing method and the direct presmoothing method. Using a simulation study, these two methods are compared with established methods, the beta-4 method, the polynomial loglinear method, and the cubic spline postsmoothing method, under three sample…
A novel cubic phase of medium chain lipid origin for the delivery of poorly water soluble drugs.
Kossena, Greg A; Charman, William N; Boyd, Ben J; Porter, Christopher J H
2004-09-30
The existence of a novel cubic liquid crystalline phase is described within the pseudo-ternary system comprising lauric acid, monolaurin, and simulated endogenous intestinal fluid (SEIF). This phase behaviour has been characterized using cross-polarizing light microscopy (CPLM), and the structure of the cubic phase identified by small angle X-ray scattering (SAXS). The presence of the cubic phase was found to be temperature sensitive within the 20-37 degrees C range making it putative material for in situ gelation purposes. The cubic phase was shown to have a high capacity to solubilise a model poorly water-soluble drug, cinnarizine, and initial in vitro release data highlight the potential of this phase to provide sustained release. Absorption of cinnarizine from the cubic phase was studied in an unconscious rat model via duodenal administration and blood sampling via the carotid artery. The rate of absorption was significantly reduced when compared to a simple suspension formulation, a likely combination of retarded erosion of the cubic phase together with hindered drug release from the cubic matrix. The results of this study suggest that this cubic phase may potentially be of benefit in the delivery of poorly water-soluble compounds due to its high loading capacity and potential for sustained release. The ability to manipulate this system using temperature may warrant further interest in delivery applications via other routes of administration.
International Nuclear Information System (INIS)
Xu Tianzhou; Rassias, John Michael; Xu Wanxin
2010-01-01
We establish some stability results concerning the general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces. In addition, we establish some results of approximately general mixed additive-cubic mappings in non-Archimedean fuzzy normed spaces. The results improve and extend some recent results.
Structural instability of cubic perovskite BaxSr1-xCo1-yFeyO3-d
Svarcova, Silvie; Wiik, Kjell; Tolchard, Julian; Bouwmeester, Henricus J.M.; Grande, Tor
2008-01-01
Cubic perovskites BaxSr1 − xCo0.8Fe0.2O3 − δ (BSCF) are among the most promising oxygen permeable membrane materials and high-performance cathode materials for intermediate temperature solid oxide fuel cells. Here, we show that cubic BSCF becomes unstable in air at intermediate temperatures and
DEFF Research Database (Denmark)
Kleinaltenkamp, Michael; Plewa, Carolin; Gudergan, Siegfried
2017-01-01
Purpose: The purpose of this paper is to advance extant theorizing around resourceintegration by conceptualizing and delineating the notion of a usage center. Ausage center consists of a combination of interdependent actors that draw onresources across their individual usage processes to create...... value.Design/methodology/approach:This paper provides a conceptual inquiry into the usage center. Findings: This paper delineates the notion of a usage center by way of focal andperipheral resource integrators, as well as focal and peripheral resources thatform part of interdependent resource usage...... processes. The conceptual analysisreveals the need for resources to be accessible and shareable to focal andperipheral actors, with rivalry and emergence central factors influencing theactor’s usage processes.Originality/value: Responding to recent calls for research developing insights intomulti...
... affect body image Pre-baby body Pregnancy and eating disorders Looking for information on mental health conditions? Visit ... Mental health section. Fact sheets Anorexia nervosa Binge eating disorder Bulimia nervosa Cosmetics and your health Depression during ...
International Nuclear Information System (INIS)
Lefevre, J.
2008-01-01
This experimental work has consisted in the study of point defects induced by an electronic irradiation in the cubic crystallographic structure of silicon carbide with low temperature photoluminescence and electron spin resonance spectroscopies. The first one of these measurement tools has allowed to estimate the displacement threshold energy in the silicon sub-lattice and then to analyze the thermal stability of the irradiation defects in the low temperature range: (10-300 K) and then in the high temperature range: (300-1400 K). Besides, on the base of a recent theoretical model, this thesis has confirmed the proposition of the isolated silicon antisite for the D1 center whose running beyond the nominal running temperature of fission nuclear reactors (generation IV), for which SiC is in part intended, seems to be particularly problematic. Measurements carried out by ESR under lighting have at last allowed to detect a new defect in its metastable spin state S=1, possibly associated to a silicon interstitial configuration. (O.M.)
Nonlinear bias compensation of ZiYuan-3 satellite imagery with cubic splines
Cao, Jinshan; Fu, Jianhong; Yuan, Xiuxiao; Gong, Jianya
2017-11-01
Like many high-resolution satellites such as the ALOS, MOMS-2P, QuickBird, and ZiYuan1-02C satellites, the ZiYuan-3 satellite suffers from different levels of attitude oscillations. As a result of such oscillations, the rational polynomial coefficients (RPCs) obtained using a terrain-independent scenario often have nonlinear biases. In the sensor orientation of ZiYuan-3 imagery based on a rational function model (RFM), these nonlinear biases cannot be effectively compensated by an affine transformation. The sensor orientation accuracy is thereby worse than expected. In order to eliminate the influence of attitude oscillations on the RFM-based sensor orientation, a feasible nonlinear bias compensation approach for ZiYuan-3 imagery with cubic splines is proposed. In this approach, no actual ground control points (GCPs) are required to determine the cubic splines. First, the RPCs are calculated using a three-dimensional virtual control grid generated based on a physical sensor model. Second, one cubic spline is used to model the residual errors of the virtual control points in the row direction and another cubic spline is used to model the residual errors in the column direction. Then, the estimated cubic splines are used to compensate the nonlinear biases in the RPCs. Finally, the affine transformation parameters are used to compensate the residual biases in the RPCs. Three ZiYuan-3 images were tested. The experimental results showed that before the nonlinear bias compensation, the residual errors of the independent check points were nonlinearly biased. Even if the number of GCPs used to determine the affine transformation parameters was increased from 4 to 16, these nonlinear biases could not be effectively compensated. After the nonlinear bias compensation with the estimated cubic splines, the influence of the attitude oscillations could be eliminated. The RFM-based sensor orientation accuracies of the three ZiYuan-3 images reached 0.981 pixels, 0.890 pixels, and 1
The phase space of the focused cubic Schroedinger equation: A numerical study
Energy Technology Data Exchange (ETDEWEB)
Burlakov, Yuri O. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
1998-05-01
In a paper of 1988 [41] on statistical mechanics of the nonlinear Schroedinger equation, it was observed that a Gibbs canonical ensemble associated with the nonlinear Schroedinger equation exhibits behavior reminiscent of a phase transition in classical statistical mechanics. The existence of a phase transition in the canonical ensemble of the nonlinear Schroedinger equation would be very interesting and would have important implications for the role of this equation in modeling physical phenomena; it would also have an important bearing on the theory of weak solutions of nonlinear wave equations. The cubic Schroedinger equation, as will be shown later, is equivalent to the self-induction approximation for vortices, which is a widely used equation of motion for a thin vortex filament in classical and superfluid mechanics. The existence of a phase transition in such a system would be very interesting and actually very surprising for the following reasons: in classical fluid mechanics it is believed that the turbulent regime is dominated by strong vortex stretching, while the vortex system described by the cubic Schroedinger equation does not allow for stretching. In superfluid mechanics the self-induction approximation and its modifications have been used to describe the motion of thin superfluid vortices, which exhibit a phase transition; however, more recently some authors concluded that these equations do not adequately describe superfluid turbulence, and the absence of a phase transition in the cubic Schroedinger equation would strengthen their argument. The self-induction approximation for vortices takes into account only very localized interactions, and the existence of a phase transition in such a simplified system would be very unexpected. In this thesis the authors present a numerical study of the phase transition type phenomena observed in [41]; in particular, they find that these phenomena are strongly related to the splitting of the phase space into
Holder for rotating glass body
International Nuclear Information System (INIS)
Kolleck, F.W.
1978-01-01
A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint
Epitaxy and Characterization of Cubic GaN and Ga1-xInxN on Micropatterned Si(001)
Durniak, Mark Timothy
Cubic GaInN/GaN heterostructures in the cubic lattice variant have the potential to overcome the limitations of wurtzite structures as commonly used for light emitting and laser diodes. Wurtzite GaInN (0001), suffers from large internal polarization fields, which force design compromises towards ultra-narrow quantum wells and reduced recombination volume and efficiency, particularly in the green, yellow, and red visible spectral regions. Cubic GaInN microstripes, grown here by metal-organic vapor phase epitaxy (MOVPE), on micropatterned Si (001), with {111} v-grooves oriented along Si 〈011¯〉, offer a system free of internal polarization fields, wider quantum wells, and a smaller bandgap energy. This thesis focuses on improving understanding of the growth mechanisms of the metastable cubic phase, evaluating the viability of wide quantum well structures, and the development of new cubic LED fabrication techniques. A reduction in the size of unwanted polycrystalline GaN grains was achieved by growth at high nitrogen to gallium (V/III) ratios without affecting cubic GaN nucleation. Grain sizes decreased from 0.5 to 0.02 microm2 as the V/III ratio increased from approximately 10,000 to 26,000. It is desirable to have wide stripes of cubic GaN for devices and the deeper within the groove the cubic GaN nucleates, the wider the stripe is at the top surface. Groove bottom geometry was found to play a role in this point of nucleation. For grooves with bottom-widths between 0 and 250 nm the cubic nucleation occurred deeper within the groove when the grooves had wider bottoms. Beyond 250 nm the nucleation depth hits a theoretical limit, dictated by the crystallographic geometry. These growth studies led to the development of micron-wide cubic GaN stripes on which we prepared wide, 3-30 nm, Ga1-xIn xN/GaN single quantum well structures. Photoluminescent (PL) spectra of these structures exhibited peak wavelengths from 520-570 nm, depending on the temperature of well growth
Cubic Zig-Zag Enrichment of the Classical Kirchhoff Kinematics for Laminated and Sandwich Plates
Nemeth, Michael P.
2012-01-01
A detailed anaylsis and examples are presented that show how to enrich the kinematics of classical Kirchhoff plate theory by appending them with a set of continuous piecewise-cubic functions. This analysis is used to obtain functions that contain the effects of laminate heterogeneity and asymmetry on the variations of the inplane displacements and transverse shearing stresses, for use with a {3, 0} plate theory in which these distributions are specified apriori. The functions used for the enrichment are based on the improved zig-zag plate theory presented recently by Tessler, Di Scuva, and Gherlone. With the approach presented herein, the inplane displacements are represented by a set of continuous piecewise-cubic functions, and the transverse shearing stresses and strains are represented by a set of piecewise-quadratic functions that are discontinuous at the ply interfaces.
Plane problems of cubic quasicrystal media with an elliptic hole or a crack
Energy Technology Data Exchange (ETDEWEB)
Gao, Yang, E-mail: gaoyangg@gmail.com [Institute of Mechanics, University of Kassel, Kassel 34125 (Germany); Ricoeur, Andreas [Institute of Mechanics, University of Kassel, Kassel 34125 (Germany); Zhang, Liangliang [College of Science, China Agricultural University, Beijing 100083 (China)
2011-07-11
Based on the complex potential method, plane problems of cubic quasicrystal media containing an elliptic hole subjected to uniform remote loadings are solved. The explicit solutions for the coupled fields are given in the closed form. Degenerating the elliptic hole into a crack, the asymptotic distribution of the phonon and phason stress fields near the crack tip exhibits inverse square root singularities. Explicit expressions for the stress intensity factors, crack opening displacements and strain energy release rate are also presented. -- Highlights: → Lekhnitskii's formalism is extended to cubic QC solids. → The plane problem of an elliptic hole or crack is investigated. → Analytical expressions for both entire and asymptotic fields are determined. → The stress intensity factors are independent of material constants. → The coupled field strongly affects the configuration and strain energy of the crack.
pH-responsive lyotropic liquid crystals for the preparation of pure cubic zirconia nanoparticles
Energy Technology Data Exchange (ETDEWEB)
He, Wei Yan; Liu, Jin Rong; He, Zhang; Cao, Zhen Zhu; Li, Cai Hong; Gao, Yan Fang [Inner Mongolia University of Technology, School of Chemical Engineering, Hohhot (China)
2016-07-15
We present a lyotropic liquid crystal system consisting of SDS/Triton X-100/water at 25 C. This system is respond to pH variations with a phase switch. When pH is altered from alkaline (pH 13) to acidic (pH 2) conditions, phase change occurs from a bicontinuous hexagonal phase to a partially hexagonal phase until it disappears. The hexagonal phase under alkaline conditions is stable. Thus, this system is an ideal candidate for the preparation of pure cubic ZrO{sub 2} nanoparticles. XRD results confirm that the as-synthesized powder is composed of pure cubic ZrO{sub 2}. These nanoparticles also exhibit a thermal stability of up to 800 C. The size and morphological characteristics of the nanoparticles are greatly affected by ZrOCl{sub 2} concentration. The mechanism of zirconia nanoparticle synthesis in a lyotropic hexagonal phase was proposed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lastras-Martinez, L.F.; Balderas-Navarro, R.E.; Castro-Garcia, R.; Herrera-Jasso, R.; Lastras-Martinez, A. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico); Chavira-Rodriguez, M. [Departamento de Fisico Matematicas, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico)
2011-01-15
The technique to measure optical anisotropies (OA) in cubic semiconductors is termed either reflectance difference spectroscopy (RDS) or reflectance anisotropy spectroscopy (RAS). In this paper we report on the application of RDS/RAS to a number of cubic semiconductors. We discuss RD spectra of GaAs, Si, CdTe, GaP, InP and GaSb (001) surfaces, induced by an uniaxial stress applied along [110] crystal directions. We show that all RD spectra can be explained in terms of a phenomenological model based on a perturbative Hamiltonian. We further report on measurements of spatial-resolved RDS measurements of GaAs employing a newly developed micro-RD spectrometer with a spatial resolution of 5 {mu}m. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Tran Hy, J
1998-01-01
This thesis describes some new studies of the effects of cubic nonlinearities arising from image-charge forces and octupole magnets on the transverse beam dynamics of proton synchrotrons and storage rings, and also a study of the damping of coherent oscillations using a feed-back damper. In the latter case, various corrective algorithms were modeled using linear one-turn maps. Kicks of fixed amplitude but appropriate sign were shown to provide linear damping and no coherent tune shift, though the rate predicted analytically was somewhat higher than that observed in simulations. This algorithm gave much faster damping (for equal power) than conventional proportional kicks, which damp exponentially. Two single-particle effects of the image-change force were investigated: distortion of the momentum dispersion function and amplitude dependence of the betatron tunes (resulting in tune spread). The former is calculated using transfer maps and the method of undetermined coefficients, the latter by solving the cubic ...
High-temperature and high-pressure cubic zirconia anvil cell for Raman spectroscopy.
Chen, Jinyang; Zheng, Haifei; Xiao, Wansheng; Zeng, Yishan
2003-10-01
A simple and inexpensive cubic zirconia anvil cell has been developed for the performance of in situ Raman spectroscopy up to the conditions of 500 degrees C and 30 kbar pressure. The design and construction of this cell are fully described, as well as its applications for Raman spectroscopy. Molybdenum heater wires wrapped around ceramic tubes encircling two cubic zirconia anvils are used to heat samples, and the temperatures are measured and controlled by a Pt-PtRh thermocouple adhered near the sample chamber and an intelligent digital control apparatus. With this cell, Raman spectroscopic measurements have been satisfactorily performed on water at 6000 bar pressure to 455 degrees C and on ice of room temperature to 24 kbar, in which the determinations of pressures make use of changes of the A1 Raman modes of quartz and the shift of the sharpline (R-line) luminescence of ruby, respectively.
Cubic spline interpolation of functions with high gradients in boundary layers
Blatov, I. A.; Zadorin, A. I.; Kitaeva, E. V.
2017-01-01
The cubic spline interpolation of grid functions with high-gradient regions is considered. Uniform meshes are proved to be inefficient for this purpose. In the case of widely applied piecewise uniform Shishkin meshes, asymptotically sharp two-sided error estimates are obtained in the class of functions with an exponential boundary layer. It is proved that the error estimates of traditional spline interpolation are not uniform with respect to a small parameter, and the error can increase indefinitely as the small parameter tends to zero, while the number of nodes N is fixed. A modified cubic interpolation spline is proposed, for which O((ln N/N)4) error estimates that are uniform with respect to the small parameter are obtained.
Survival estimation through the cumulative hazard function with monotone natural cubic splines.
Bantis, Leonidas E; Tsimikas, John V; Georgiou, Stelios D
2012-07-01
In this paper we explore the estimation of survival probabilities via a smoothed version of the survival function, in the presence of censoring. We investigate the fit of a natural cubic spline on the cumulative hazard function under appropriate constraints. Under the proposed technique the problem reduces to a restricted least squares one, leading to convex optimization. The approach taken in this paper is evaluated and compared via simulations to other known methods such as the Kaplan Meier and the logspline estimator. Our approach is easily extended to address estimation of survival probabilities in the presence of covariates when the proportional hazards model assumption holds. In this case the method is compared to a restricted cubic spline approach that involves maximum likelihood. The proposed approach can be also adjusted to accommodate left censoring.
International Nuclear Information System (INIS)
Singh, A V; Ferri, M; Tamplenizza, M; Borghi, F; Lenardi, C; Piazzoni, C; Podestà, A; Milani, P; Divitini, G; Ducati, C; Merlini, M
2012-01-01
Nanostructured cubic zirconia is a strategic material for biomedical applications since it combines superior structural and optical properties with a nanoscale morphology able to control cell adhesion and proliferation. We produced nanostructured cubic zirconia thin films at room temperature by supersonic cluster beam deposition of nanoparticles produced in the gas phase. Precise control of film roughness at the nanoscale is obtained by operating in a ballistic deposition regime. This allows one to study the influence of nanoroughness on cell adhesion, while keeping the surface chemistry constant. We evaluated cell adhesion on nanostructured zirconia with an osteoblast-like cell line using confocal laser scanning microscopy for detailed morphological and cytoskeleton studies. We demonstrated that the organization of cytoskeleton and focal adhesion formation can be controlled by varying the evolution of surface nanoroughness. (paper)
Energy Technology Data Exchange (ETDEWEB)
Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Department of Physics, Pollachi Institute of Engineering and Technology, Pollachi 642 205 (India); Ananthapadmanabhan, P.V.; Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Vision for Wisdom, Temple of Consciousness, Aliyar 642 101 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Suresh, G. [Department of Physics, Park College of Engineering and Technology, Coimbatore 641 659 (India); Su, L.T.; Tok, A.I.Y. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)
2013-06-15
Pure zirconium oxide powders with particle size 2–33 nm are synthesized by reactive plasma processing. Transmission electron microscopy investigation of these particles revealed size dependent behavior for their phase stabilization. The monoclinic phase is found to be stable when particle size is ≥20 nm; Tetragonal is found to be stabilized in the range of 7–20 nm and as the particle size decreases to 6 nm and less, the cubic phase is stabilized. - Highlights: ► Direct conversion of micron-sized zirconium hydride powder to single crystal ZrO{sub 2} nanopowder. ► Size dependent stabilization of cubic, tetragonal and monoclinic phases in the reactive plasma synthesized ZrO{sub 2} nanopowder. ► Transmission electron microscopic investigation to identify particles of different sizes and their corresponding phase structure.
Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime
Kirchheim, A. P.
2009-02-26
Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) have been used to study the microstructural changes and phase development that take place during the hydration of cubic (pure) and orthorhombic (Na-doped) tricalcium aluminate (C3A) and gypsum in the absence and presence of lime. The results demonstrate that important differences occur in the hydration of each C3A polymorph and gypsum when no lime is added; orthorhombic C3A reacts faster with gypsum than the cubic phase, forming longer ettringite needles; however, the presence of lime slows down the formation of ettringite in the orthorhombic sample. Additional rheometric tests showed the possible effects on the setting time in these cementitious mixes.
Modeling of type-2 fuzzy cubic B-spline surface for flood data problem in Malaysia
Bidin, Mohd Syafiq; Wahab, Abd. Fatah
2017-08-01
Malaysia possesses a low and sloping land areas which may cause flood. The flood phenomenon can be analyzed if the surface data of the study area can be modeled by geometric modeling. Type-2 fuzzy data for the flood data is defined using type-2 fuzzy set theory in order to solve the uncertainty of complex data. Then, cubic B-spline surface function is used to produce a smooth surface. Three main processes are carried out to find a solution to crisp type-2 fuzzy data which is fuzzification (α-cut operation), type-reduction and defuzzification. Upon conducting these processes, Type-2 Fuzzy Cubic B-Spline Surface Model is applied to visualize the surface data of the flood areas that are complex uncertainty.
Analytic cubic and quartic force fields using density-functional theory
Energy Technology Data Exchange (ETDEWEB)
Ringholm, Magnus; Gao, Bin; Thorvaldsen, Andreas J.; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Jonsson, Dan [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); High Performance Computing Group, University of Tromsø—The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm, Sweden and PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Ekström, Ulf; Helgaker, Trygve [Center for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo (Norway)
2014-01-21
We present the first analytic implementation of cubic and quartic force constants at the level of Kohn–Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange–correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree–Fock results. The Hartree–Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.
REVIEW ARTICLE: Nucleation, growth and characterization of cubic boron nitride (cBN) films
Zhang, W. J.; Chong, Y. M.; Bello, I.; Lee, S. T.
2007-10-01
Cubic BN (cBN) has a set of extreme properties similar or even superior to diamond. The advance of science and technology of cBN has however been severely hampered by the poor quality of the material available (random orientation, limited film thickness, poor crystallinity and adhesion with substrates due to a non-cubic BN interlayer). This paper reviews the recent progress in the nucleation, growth and characterization techniques of cBN films. It describes various successful approaches in interface engineering and growth techniques in increasing film thickness, improving crystallinity and adhesion of cBN films to the substrate, which are the major issues hindering cBN films for both mechanical and electronic applications. Based on observations of the surface and interface structures, we further discuss the growth mechanisms of cBN films via physical and chemical routes.
International Nuclear Information System (INIS)
Mittal, R.C.; Rohila, Rajni
2016-01-01
In this paper, we have applied modified cubic B-spline based differential quadrature method to get numerical solutions of one dimensional reaction-diffusion systems such as linear reaction-diffusion system, Brusselator system, Isothermal system and Gray-Scott system. The models represented by these systems have important applications in different areas of science and engineering. The most striking and interesting part of the work is the solution patterns obtained for Gray Scott model, reminiscent of which are often seen in nature. We have used cubic B-spline functions for space discretization to get a system of ordinary differential equations. This system of ODE’s is solved by highly stable SSP-RK43 method to get solution at the knots. The computed results are very accurate and shown to be better than those available in the literature. Method is easy and simple to apply and gives solutions with less computational efforts.
Li, Xinxiu
2012-10-01
Physical processes with memory and hereditary properties can be best described by fractional differential equations due to the memory effect of fractional derivatives. For that reason reliable and efficient techniques for the solution of fractional differential equations are needed. Our aim is to generalize the wavelet collocation method to fractional differential equations using cubic B-spline wavelet. Analytical expressions of fractional derivatives in Caputo sense for cubic B-spline functions are presented. The main characteristic of the approach is that it converts such problems into a system of algebraic equations which is suitable for computer programming. It not only simplifies the problem but also speeds up the computation. Numerical results demonstrate the validity and applicability of the method to solve fractional differential equation.
Influence of Urban Traffic Driving Conditions and Vehicle Cubic Capacity on CO and VOC Emissions
Directory of Open Access Journals (Sweden)
Arina Negoitescu
2013-09-01
Full Text Available The reports regarding the global warming warn on the urgent need to reduce pollutant emissions and in particular greenhouse emissions. The performed analysis shows that cars equipped with engines operating on petrol, lead to a lower level of pollution, from the point of view of CO (carbon monoxide and VOCs (volatile organic compounds emissions at speeds above 50km/ h. Since driving in urban traffic mode involves driving with a speed up to 50km/h, it was comparatively analyzed the automobile engines operation with different cubic capacities. In conclusion, in terms of the analyzed emissions in accordance with the emission standards requirements for urban driving situations, it results that the accepted values of these emissions are recorded for automobile engines of low cubic capacities (under 1.4 l.
Olsson, Emilia; Aparicio-Anglès, Xavier; de Leeuw, Nora H
2016-12-14
SmCoO 3 is a perovskite material that has gained attention as a potential substitute for La 1-x Sr x MnO 3-d as a solid oxide fuel cell cathode. However, a number of properties have remained unknown due to the complexity of the material. For example, we know from experimental evidence that this perovskite exists in two different crystal structures, cubic and orthorhombic, and that the cobalt ion changes its spin state at high temperatures, leading to a semiconductor-to-metal transition. However, little is known about the precise magnetic structure that causes the metallic behavior or the spin state of the Co centers at high temperature. Here, we therefore present a systematic DFT+U study of the magnetic properties of SmCoO 3 in order to determine what magnetic ordering is the one exhibited by the metallic phase at different temperatures. Similarly, mechanical properties are difficult to measure experimentally, which is why there is a lack of data for the two different phases of SmCoO 3 . Taking advantage of our DFT calculations, we have determined the mechanical properties from our calculated elastic constants, finding that both polymorphs exhibit similar ductility and brittleness, but that the cubic structure is harder than the orthorhombic phase.
Mirror symmetry breaking in cubic phases and isotropic liquids driven by hydrogen bonding.
Alaasar, Mohamed; Poppe, Silvio; Dong, Qingshu; Liu, Feng; Tschierske, Carsten
2016-11-24
Achiral supramolecular hydrogen bonded complexes between rod-like 4-(4-alkoxyphenylazo)pyridines and a taper shaped 4-substituted benzoic acid form achiral (Ia3[combining macron]d) and chiral "Im3[combining macron]m-type" bicontinuous cubic (I432) phases and a chiral isotropic liquid mesophase (Iso 1 [ * ] ). The chiral phases, resulting from spontaneous mirror symmetry breaking, represent conglomerates of macroscopic chiral domains eventually leading to uniform chirality.
The topological classification of Fano surfaces of real three-dimensional cubics
Energy Technology Data Exchange (ETDEWEB)
Krasnov, Vyacheslav A [Yaroslavl Demidov State University (Russian Federation)
2007-10-31
We consider surfaces whose points are the lines on the real three-dimensional varieties of degree 3. These surfaces are called Fano surfaces. This paper deals with finding the topological types, that is, a topological classification, of real Fano surfaces. Moreover, we prove that the equivariant topological type of the corresponding complex Fano surface with the involution of complex conjugation determines the rigid isotopy class of the corresponding real three-dimensional cubic.
A Galerkin Solution for Burgers' Equation Using Cubic B-Spline Finite Elements
Soliman, A. A.
2012-01-01
Numerical solutions for Burgers’ equation based on the Galerkins’ method using cubic B-splines as both weight and interpolation functions are set up. It is shown that this method is capable of solving Burgers’ equation accurately for values of viscosity ranging from very small to large. Three standard problems are used to validate the proposed algorithm. A linear stability analysis shows that a numerical scheme based on a Cranck-Nicolson approximation in time is unconditionally stable.
A Galerkin Solution for Burgers' Equation Using Cubic B-Spline Finite Elements
Directory of Open Access Journals (Sweden)
A. A. Soliman
2012-01-01
Full Text Available Numerical solutions for Burgers’ equation based on the Galerkins’ method using cubic B-splines as both weight and interpolation functions are set up. It is shown that this method is capable of solving Burgers’ equation accurately for values of viscosity ranging from very small to large. Three standard problems are used to validate the proposed algorithm. A linear stability analysis shows that a numerical scheme based on a Cranck-Nicolson approximation in time is unconditionally stable.
Board-foot and cubic-foot volume tables for western red cedar in southeast Alaska.
Donald J. DeMars
1996-01-01
Four tables give cubic-foot and board-foot volume estimates for western redcedar given breast height diameter outside bark (DBHOB) and either total tree height or number of logs to a 6-inch top. The values for DBHOB and total tree height (or number of logs in the tree) that are in the tables have been limited to the ranges these variables had in the sample data.
El-Safty, Sherif A
2008-03-15
Design of nanocatalysts for efficient heterogeneous catalytic systems is needed to high ingredients for environmental cleanup of organic pollutant species. Here, well-defined order NiO-silica monolithic catalysts with hexagonal P6mm and cubic Pm3n mesostructures were successfully fabricated by using an instant direct-templating method of lyotropic and microemulsion phases of Brij 76 (C18H37(OCH2CH2)10 OH, C18EO 10). Ordered hexagonal P6mm NiO/HOM-2 monoliths could be fabricated in lyotropic system of Brij 76 at phase composition domains of TMOS/Brij 76 (50 wt%). However, periodically ordered cubic Pm3n NiO-supported monoliths were synthesized in microemulsion system formed by addition of C12-alkane to the hexagonal phase domains. This synthetic strategy also revealed that the NiO particles were well-dispersed into the silicate pore surface matrices of mesostructures. Monolithic NiO-silica composites with 2D hexagonal and 3D cubic geometries and with large particle morphologies show promise to act as catalysts. The current study revealed evidence of the advantages of nanoscale pore geometry and shape, and particle morphology of the supported silica monoliths in the design of nanocatalysts that can efficiently enhance the catalytic functionality in terms of stability, reversibility and reactivity. Furthermore, a key finding in our study was that 2D hexagonal and 3D cubic mesostructured NiO-silica catalysts retained the specific activity towards the oxidation reaction even after several regeneration/reuse cycles. Significant study of the mechanistic cyclization of the organic reactant using the density functional (DFT) calculations provided evidence of the key components of conformations of the functional model during the formation of the oxidation product.
Cubic spline reflectance estimates using the Viking lander camera multispectral data
Park, S. K.; Huck, F. O.
1976-01-01
A technique was formulated for constructing spectral reflectance estimates from multispectral data obtained with the Viking lander cameras. The output of each channel was expressed as a linear function of the unknown spectral reflectance producing a set of linear equations which were used to determine the coefficients in a representation of the spectral reflectance estimate as a natural cubic spline. The technique was used to produce spectral reflectance estimates for a variety of actual and hypothetical spectral reflectances.
Bolard, P; Quantin, C; Abrahamowicz, M; Esteve, J; Giorgi, R; Chadha-Boreham, H; Binquet, C; Faivre, J
2002-01-01
The Cox model is widely used in the evaluation of prognostic factors in clinical research. However, in population-based studies, which assess long-term survival of unselected populations, relative-survival models are often considered more appropriate. In both approaches, the validity of proportional hazards hypothesis should be evaluated. We propose a new method in which restricted cubic spline functions are employed to model time-by-covariate interactions in relative survival analyses. The method allows investigation of the shape of possible dependence of the covariate effect on time without having to specify a particular functional form. Restricted cubic spline functions allow graphing of such time-by-covariate interactions, to test formally the proportional hazards assumption, and also to test the linearity of the time-by-covariate interaction. Application of our new method to assess mortality in colon cancer provides strong evidence against the proportional hazards hypothesis, which is rejected for all prognostic factors. The results corroborate previous analyses of similar data-sets, suggesting the importance of both modelling of non-proportional hazards and relative survival approach. We also demonstrate the advantages of using restricted cubic spline functions for modelling non-proportional hazards in relative-survival analysis. The results provide new insights in the estimated impact of older age and of period of diagnosis. Using restricted cubic splines in a relative survival model allows the representation of both simple and complex patterns of changes in relative risks over time, with a single parsimonious model without a priori assumptions about the functional form of these changes.
Inelastic collision of two solitons for generalized BBM equation with cubic nonlinearity
Directory of Open Access Journals (Sweden)
Jingdong Wei
2015-06-01
Full Text Available We study the inelastic collision of two solitary waves of different velocities for the generalized Benjamin-Bona-Mahony (BBM equation with cubic nonlinearity. It shows that one solitary wave is smaller than the other one in the H^1(R energy space. We explore the sharp estimates of the nonzero residue due to the collision, and prove the inelastic collision of two solitary waves and nonexistence of a pure 2-soliton solution.
Structural and optoelectronic properties of cubic perovskite RbPbF3
Indian Academy of Sciences (India)
3.1 Structural properties. The total energy per unit cell of RbPbF3 in the cubic perovskite structure is shown in figure 1. The volume vs energy is fitted by the Birch–Murnaghan equation of state. (Murnaghan 1944). From this fit, we can get the equilibrium lattice constant (a0), bulk modlus (B0) and pressure derivate of the bulk ...
Metamagnetic transitions in cubic La(FexAl1-x)13 intermetallic compounds
Palstra, T.T.M.; Werij, H.G.C.; Nieuwenhuys, G.J.; Mydosh, J.A.; Boer, F.R. de; Buschow, K.H.J.
1984-01-01
Cubic NaZn13-type compounds of the form La(FexAl1-x)13 were stabilised with compositions between LaFe6Al7 and LaFe12Al1. For compositions above LaFe11.2Al1.8 (x = 0.861) a low-temperature antiferromagnetic state is present in small external fields. However. upon increasing the field to a few tesla,
Platonic polyhedra tune the three-sphere: II. Harmonic analysis on cubic spherical three-manifolds
International Nuclear Information System (INIS)
Kramer, Peter
2009-01-01
From the homotopy groups of two distinct cubic spherical three-manifolds, we construct the isomorphic groups of deck transformations acting on the three-sphere. These groups become the cyclic group of order eight and the quaternion group, respectively. By reduction of representations from the orthogonal group to the identity representation of these subgroups we provide two subgroup-periodic bases for the harmonic analysis on the three-manifolds, which have applications to cosmic topology.
Analysis of RIA standard curve by log-logistic and cubic log-logit models
International Nuclear Information System (INIS)
Yamada, Hideo; Kuroda, Akira; Yatabe, Tami; Inaba, Taeko; Chiba, Kazuo
1981-01-01
In order to improve goodness-of-fit in RIA standard analysis, programs for computing log-logistic and cubic log-logit were written in BASIC using personal computer P-6060 (Olivetti). Iterative least square method of Taylor series was applied for non-linear estimation of logistic and log-logistic. Hear ''log-logistic'' represents Y = (a - d)/(1 + (log(X)/c)sup(b)) + d As weights either 1, 1/var(Y) or 1/σ 2 were used in logistic or log-logistic and either Y 2 (1 - Y) 2 , Y 2 (1 - Y) 2 /var(Y), or Y 2 (1 - Y) 2 /σ 2 were used in quadratic or cubic log-logit. The term var(Y) represents squares of pure error and σ 2 represents estimated variance calculated using a following equation log(σ 2 + 1) = log(A) + J log(y). As indicators for goodness-of-fit, MSL/S sub(e)sup(2), CMD% and WRV (see text) were used. Better regression was obtained in case of alpha-fetoprotein by log-logistic than by logistic. Cortisol standard curve was much better fitted with cubic log-logit than quadratic log-logit. Predicted precision of AFP standard curve was below 5% in log-logistic in stead of 8% in logistic analysis. Predicted precision obtained using cubic log-logit was about five times lower than that with quadratic log-logit. Importance of selecting good models in RIA data processing was stressed in conjunction with intrinsic precision of radioimmunoassay system indicated by predicted precision. (author)
Explicit Gaussian quadrature rules for C^1 cubic splines with symmetrically stretched knot sequence
Ait-Haddou, Rachid
2015-06-19
We provide explicit expressions for quadrature rules on the space of C^1 cubic splines with non-uniform, symmetrically stretched knot sequences. The quadrature nodes and weights are derived via an explicit recursion that avoids an intervention of any numerical solver and the rule is optimal, that is, it requires minimal number of nodes. Numerical experiments validating the theoretical results and the error estimates of the quadrature rules are also presented.
On the reflection of solitons of the cubic nonlinear Schrödinger equation
Katsaounis, Theodoros
2016-07-05
In this paper, we perform a numerical study on the interesting phenomenon of soliton reflection of solid walls. We consider the 2D cubic nonlinear Schrödinger equation as the underlying mathematical model, and we use an implicit-explicit type Crank-Nicolson finite element scheme for its numerical solution. After verifying the perfect reflection of the solitons on a vertical wall, we present the imperfect reflection of a dark soliton on a diagonal wall.
Ion-induced stress relaxation during the growth of cubic boron nitride thin films
Energy Technology Data Exchange (ETDEWEB)
Abendroth, B.E.
2004-08-01
in this thesis the deposition of cubic boron nitride films by magnetron sputtering is described. The deposition process is analyzed by Langmuir-probe measurement and energy resolved mass spectroscopy. the films are studied by stress measurement, spectroscopic ellipsometry, infrared spectroscopy, elastic recoil detection analysis, Rutherford backscattering spectroscopy, X-ray absorption near edge spectroscopy, X-ray diffraction, and transmission electron microscopy. Discussed are the stress relaxation and the microstructure and bonding characteristics together with the effects of ion bombardement. (HSI)
Directory of Open Access Journals (Sweden)
Rian Fahrizal
2015-04-01
Full Text Available High speed computer networks with a large waiting time is a common from of network in the future. In this network are commonly used TCP algorithms have difficullty in sending data. There are several algorithms that has used the BIC, CUBIC and HTCP. These algorithms needs to be tested to determine its performance when apllied to the network topology with two dumbbells, and simple network. Teh results obtained testing the algorithms is best HTCP performance by having the smallest value.
A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid
Sulaimanov, Z. M.; Shumilov, B. M.
2017-10-01
For cubic splines with nonuniform nodes, splitting with respect to the even and odd nodes is used to obtain a wavelet expansion algorithm in the form of the solution to a three-diagonal system of linear algebraic equations for the coefficients. Computations by hand are used to investigate the application of this algorithm for numerical differentiation. The results are illustrated by solving a prediction problem.
The classification of 3-dimensional noetherian cubic Calabi-Yau algebras
Mori, Izuru; Ueyama, Kenta
2016-01-01
It is known that every 3-dimensional noetherian Calabi-Yau algebra generated in degree 1 is isomorphic to a Jacobian algebra of a superpotential. Recently, S. P. Smith and the first author classified all superpotentials whose Jacobian algebras are 3-dimensional noetherian quadratic Calabi-Yau algebras. The main result of this paper is to classify all superpotentials whose Jacobian algebras are 3-dimensional noetherian cubic Calabi-Yau algebras. As an application, we show that if $S$ is a 3-di...
Fiske, David R.
2004-01-01
In an earlier paper, Misner (2004, Class. Quant. Grav., 21, S243) presented a novel algorithm for computing the spherical harmonic components of data represented on a cubic grid. I extend Misner s original analysis by making detailed error estimates of the numerical errors accrued by the algorithm, by using symmetry arguments to suggest a more efficient implementation scheme, and by explaining how the algorithm can be applied efficiently on data with explicit reflection symmetries.
Mori, Hajime; Shukunami, Chisa; Furuyama, Akiko; Notsu, Hiroyuki; Nishizaki, Yuriko; Hiraki, Yuji
2007-06-08
The supramolecular architecture of the extracellular matrix and the disposition of its specific accessory molecules give rise to variable heterotopic signaling cues for single cells. Here we have described the successful occlusion of human fibroblast growth factor-2 (FGF-2) into the cubic inclusion bodies (FGF-2 polyhedra) of the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV). The polyhedra are proteinous cubic crystals of several microns in size that are insoluble in the extracellular milieu. Purified FGF-2 polyhedra were found to stimulate proliferation and phosphorylation of p44/p42 mitogen-activated protein kinase in cultured fibroblasts. Moreover, cellular responses were blocked by a synthetic inhibitor of the FGF signaling pathway, SU5402, suggesting that FGF-2 polyhedra indeed act through FGF receptors. Furthermore, FGF-2 polyhedra retained potent growth stimulatory properties even after desiccation. We have demonstrated that BmCPV polyhedra microcrystals that occlude extracellular signaling proteins are a novel and versatile tool that can be employed to analyze cellular behavior at the single cell level.
Effect of electrostatic interactions on phase stability of cubic phases of biomembranes.
Li, Shu Jie; Masum, Shah Md; Yamashita, Yuko; Tamba, Yukihiro; Yamazaki, Masahito
2002-06-01
We investigated effect of electrostatic interactions due to surfacecharges on structures and stability of cubic phases of monoolein (MO)membrane using the small-angle X-ray scattering method. Firstly, wechanged the surface charge density of the membrane by usingdioleoylphosphatidic acid (DOPA). As increasing DOPA concentration in themembrane at 30 wt % lipid concentration, a Q(224) to Q(229) phasetransition occurred at 0.6 mol % DOPA, and at and above 25 mol %, DOPA/MOmembranes were in the L(α) phase. NaCl in the bulk phase reduced theeffect of DOPA. These results indicate that as the electrostaticinteractions increase, the most stable phase changes as follows: Q(224)⇒ Q(229) ⇒ L(α). The increase in DOPAconcentration reduced the absolute value of spontaneous curvature of themembrane, | H(0) |. Secondly, we changed the surface charge of themembrane by adding a de novo designed peptide, which has netpositive charges and a binding site on the electrically neutral membraneinterface. The peptide-1 (WLFLLKKK) induced a Q(224) to Q(229)phase transition in the MO membrane at low peptide concentration. As NaClconcentration increases, the MO/peptide-1 membrane changed from Q(229)to Q(224) phase. The increase in peptide-1 concentration reduced |H(0) |. Based on these results, the stability of the cubic phases and themechanism of phase transition between cubic phase and L(α) phase arediscussed.
Structure and optical properties of cubic gallium oxynitride synthesized by solvothermal route
International Nuclear Information System (INIS)
Oberländer, Andreas; Kinski, Isabel; Zhu, Wenliang; Pezzotti, Giuseppe; Michaelis, Alexander
2013-01-01
Cubic gallium oxynitride was synthesized using a solvothermal processing route. Crystal structure, chemical composition, optical properties and the influence of heat treatment in either reactive or inert atmospheres have been investigated. Despite a strongly distorted lattice revealed using X-ray diffraction, the Raman active modes of a cubic gallium oxynitride structure could be observed. With diffusive reflectance UV–Vis spectroscopy a band gap at around 4.8 eV has been observed. Additionally, cathodoluminescence spectroscopy exhibited observable luminescence caused by defect-related transitions within the optical gap. Cathodoluminescence and photoluminescence spectra collected after heat treatments showed significant changes in the defect structure. In particular, for annealing in ammonia the main spectral modifications were related to the substitution of oxygen by nitrogen on anion sites. - Graphical abstract: CL spectra of gallium oxynitride: As-prepared and heat-treated at temperatures of 500 °C in different atmospheres. Highlights: ► Raman spectrum of cubic gallium oxynitride. ► Experimental determination of optical band gap. ► Shift of band gap energy due to heat treatment. ► Nitrogen incorporation leads to deep level acceptor states. ► Red shifted luminescence spectrum
Synthesis and characterization of gold cubic nanoshells using water-soluble GeO₂templates.
Wang, Cen; Tang, Peisong; Ge, Mingyuan; Xu, Xiaobin; Cao, Feng; Jiang, J Z
2011-04-15
Size-tunable GeO₂ nanocubes were initially prepared by a modified sono-assisted reverse micelle method and then functionalized with an amino-terminated silanizing agent. Subsequently, gold decorated GeO₂ nanocomposites were prepared at pH ≈ 7 and 80 °C. It was found that well-dispersed gold nanoparticles on GeO₂ nanocubes could be obtained only if gold salt is abundant to favor simultaneous, homogeneous nucleation of gold particles. Additional gold ions were reduced onto these attached 'seed' particles accompanied by synchronous dissolution of water-soluble GeO₂ cores, resulting in gold hollow cubic shells. The GeO₂ nanocubes and Au/GeO₂ nanocomposites as well as gold hollow cubic shells were characterized by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and UV-visible spectroscopy. In particular, gold hollow cubic shells feature a plasmon resonance peak at above 900 nm, which renders it quite promising in biochemical applications.
Synthesis and characterization of gold cubic nanoshells using water-soluble GeO2 templates
Wang, Cen; Tang, Peisong; Ge, Mingyuan; Xu, Xiaobin; Cao, Feng; Jiang, J. Z.
2011-04-01
Size-tunable GeO2 nanocubes were initially prepared by a modified sono-assisted reverse micelle method and then functionalized with an amino-terminated silanizing agent. Subsequently, gold decorated GeO2 nanocomposites were prepared at pH ≈ 7 and 80 °C. It was found that well-dispersed gold nanoparticles on GeO2 nanocubes could be obtained only if gold salt is abundant to favor simultaneous, homogeneous nucleation of gold particles. Additional gold ions were reduced onto these attached 'seed' particles accompanied by synchronous dissolution of water-soluble GeO2 cores, resulting in gold hollow cubic shells. The GeO2 nanocubes and Au/GeO2 nanocomposites as well as gold hollow cubic shells were characterized by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and UV-visible spectroscopy. In particular, gold hollow cubic shells feature a plasmon resonance peak at above 900 nm, which renders it quite promising in biochemical applications.
Synthesis and characterization of gold cubic nanoshells using water-soluble GeO2 templates
International Nuclear Information System (INIS)
Wang Cen; Ge Mingyuan; Xu Xiaobin; Jiang, J Z; Tang Peisong; Cao Feng
2011-01-01
Size-tunable GeO 2 nanocubes were initially prepared by a modified sono-assisted reverse micelle method and then functionalized with an amino-terminated silanizing agent. Subsequently, gold decorated GeO 2 nanocomposites were prepared at pH ∼ 7 and 80 deg. C. It was found that well-dispersed gold nanoparticles on GeO 2 nanocubes could be obtained only if gold salt is abundant to favor simultaneous, homogeneous nucleation of gold particles. Additional gold ions were reduced onto these attached 'seed' particles accompanied by synchronous dissolution of water-soluble GeO 2 cores, resulting in gold hollow cubic shells. The GeO 2 nanocubes and Au/GeO 2 nanocomposites as well as gold hollow cubic shells were characterized by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and UV-visible spectroscopy. In particular, gold hollow cubic shells feature a plasmon resonance peak at above 900 nm, which renders it quite promising in biochemical applications.
Cubic Gallium Nitride on Micropatterned Si (001) for Longer Wavelength LEDs
Energy Technology Data Exchange (ETDEWEB)
Durniak, Mark T. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Materials Science and Engineering; Chaudhuri, Anabil [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Smith, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Material Sciences; Allerman, Andrew A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Material Sciences; Lee, S. C. [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Brueck, S. R. J. [Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials; Wetzel, Christian [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Physics, Applied Physics, and Astronomy and Dept. of Materials Science and Engineering
2016-03-01
GaInN/GaN heterostructures of cubic phase have the potential to overcome the limitations of wurtzite structures commonly used for light emitting and laser diodes. Wurtzite GaInN suffers from large internal polarization fields, which force design compromises ( 0001 ) towards ultra-narrow quantum wells and reduce recombination volume and efficiency. Cubic GaInN microstripes grown at Rensselaer Polytechnic Institute by metal organic vapor phase epitaxy on micropatterned Si , with {111} v-grooves oriented along Si ( 001 ) , offer a system free of internal polarization fields, wider quantum wells, and smaller <00$\\bar1$> bandgap energy. We prepared 6 and 9 nm Ga _{x} In _{1-x} N/GaN single quantum well structures with peak wavelength ranges from 520 to 570 nm with photons predominately polarized perpendicular to the grooves. We estimate a cubic InN composition range of 0 < x < 0.5 and an upper limit of the internal quantum efficiency of 50%. Stripe geometry and polarization may be suitable for mode confinement and reduced threshold stimulated emission.
Mazor, A.; Bishop, A. R.
Described here is one set of results from a comprehensive study of the cubic-tetragonal Martensitic transformations in ferroelastic materials. The model being used is the soliton model of Barsch and Krumhansl which exhibits a first-order cubic-tetragonal martensitic phase transition. This is a nonlinear and nonlocal three-dimensional continuum model, with a two-component strain order parameter. The structure and the energy of the static (or traveling) soliton strain boundaries, associated with the minimal total free energy, is calculated at all temperatures. Insight is also gained of the corresponding type of trajectories in the order parameter space. Approaching the first-order transition temperature from below, the tetragonal-tetragonal soliton wall splits gradually into two cubic-tetragonal solitons of finite width. Their separation, however, diverges at the transition temperature. This temperature is the border point between two topologically different classes of domain walls, which apparently have also different time-dependence. Below the transition point the kink-like solutions are of traveling type, but above the transition temperature the pulse-like walls are not.
Energy Technology Data Exchange (ETDEWEB)
Mazor, A.; Bishop, A.R.
1987-01-01
Described here is one set of results from a comprehensive study of the cubic-tetragonal Martensitic transformations in ferroelastic materials. The model being used is the soliton model of Barsch and Krumhansl which exhibits a first-order cubic-tetragonal martensitic phase transition. This is a nonlinear and nonlocal three-dimensional continuum model, with a two-component strain order parameter. The structure and the energy of the static (or traveling) soliton strain boundaries, associated with the minimal total free energy, is calculated at all temperatures. Insight is also gained of the corresponding type of trajectories in the order parameter space. Approaching the first-order transition temperature from below, the tetragonal-tetragonal soliton wall splits gradually into two cubic-tetragonal solitons of finite width. Their separation, however, diverges at the transition temperature. This temperature is the border point between two topologically different classes of domain walls, which apparently have also different time-dependence. Below the transition point the kink-like solutions are of traveling type, but above the transition temperature the pulse-like walls are not.
Ab Initio High Pressure and Temperature Investigation on Cubic PbMoO3 Perovskite
Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar
2017-12-01
A combined high pressure and temperature investigation on recently reported cubic perovskite PbMoO3 have been performed within the most accurate density functional theory (DFT). The structure was found stable in cubic paramagnetic phase. The DFT calculated analytical and experimental lattice constant were found in good agreement. The analytical tolerance factor as well as the elastic properties further verifies the cubic stability for PbMoO3. The spin polarized electronic band structure and density of states presented metallic nature with symmetry in up and down states. The insignificant magnetic moment also confirms the paramagnetic nature for the compound. The high pressure elastic and mechanical study up to 35 GPa reveal the structural stability of the material in this pressure range. The compound was found to establish a ductile nature. The electrical conductivity obtained from the band structure results show a decreasing trend with increasing temperature. The temperature dependence of thermodynamic parameters such as specific heat ( C v), thermal expansion ( α) has also been evaluated.
Computer study of the solidification and fusion of an alloy in a porous cubic matrix
International Nuclear Information System (INIS)
Godoy S, Mauricio; Moraga B, Nelson
2004-01-01
A computer study is presented of the solidification and fusion of a metal, that is non reactively infiltrated in a cubic porous matrix. The entire porous cubic cavity is saturated with the metal and has four adiabatic and two opposing vertical walls at different temperatures. The modeling is based on continuity, Navier Stokes and energy equations. The Darcy-Brinkman-Forchheimer model is used for the description of the porous medium. The discreet equations, with finite volumes, are resolved by using the SIMPLE algorithm. The aim is to study the phase change, solidification and fusion in the porous medium of the cubic cavity, considering natural convection in the liquid phase, constant porosity of the matrix and variable porosity in the soft zone. A one dimensional model is built, the distributions of speed, U.V.W. and temperature θ are determined, as well as the phase change fronts over time. The validation used data that is available in the literature for 2D and experimental models (Beckermann, 1988) (CW)
Strain mismatch induced tilted heteroepitaxial (000l) hexagonal ZnO films on (001) cubic substrates
Energy Technology Data Exchange (ETDEWEB)
Kang, Bo Soo [Department of Applied Physics, Hanyang University Ansan (Korea, Republic of); Stan, Liliana; Usov, Igor O.; DePaula, Raymond F.; Arendt, Paul N.; Nastasi, Michael; Jia, Quanxi [Los Alamos National Laboratory, Los Alamos, NM (United States); Lee, Jung-Kun [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA (United States); Harriman, Tres A.; Lucca, Don A. [School of Mechanical and Aerospace Engineering, Oklahoma State University Stillwater, OK (United States); MacManus-Driscoll, Judith L. [Department of Materials Science and Metallurgy, University of Cambridge (United Kingdom); Park, Bae Ho [Division of Quantum Phases and Devices, Department of Physics, Konkuk University Seoul (Korea, Republic of)
2011-12-15
A novel strain mismatch induced tilted epitaxy method has been demonstrated for producing high quality (000l) hexagonal films on (001) cubic substrates. Highly oriented hexagonal (000l) ZnO films are grown on cubic (001) MgO substrates using Sm{sub 0.28}Zr{sub 0.72}O{sub 2-{delta}} (SZO) as a template. The large lattice mismatch of >13% between the obvious crystallographic matching directions of the template and substrate means that cube-on-cube epitaxy is energetically unfavorable, leading to growth instead of two high index, low energy compact planes, close to the {l_brace}111{r_brace} orientation. These planes give three different in-plane orientations resulting from coincidence site lattice matching (12 in-plane orientations in total) and provide a pseudo-hexagonal symmetry surface for the ZnO to grow on. The texture of the ensuing (000l) ZnO layer is markedly improved over the template. The work opens up both a new avenue for growing technologically important hexagonal structures on a range of readily available, (001) cubic substrates, as well as showing that there are wide possibilities for heteroepitaxial growth of a range of dissimilar materials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Application of Cubic Box Spline Wavelets in the Analysis of Signal Singularities
Directory of Open Access Journals (Sweden)
Rakowski Waldemar
2015-12-01
Full Text Available In the subject literature, wavelets such as the Mexican hat (the second derivative of a Gaussian or the quadratic box spline are commonly used for the task of singularity detection. The disadvantage of the Mexican hat, however, is its unlimited support; the disadvantage of the quadratic box spline is a phase shift introduced by the wavelet, making it difficult to locate singular points. The paper deals with the construction and properties of wavelets in the form of cubic box splines which have compact and short support and which do not introduce a phase shift. The digital filters associated with cubic box wavelets that are applied in implementing the discrete dyadic wavelet transform are defined. The filters and the algorithme à trous of the discrete dyadic wavelet transform are used in detecting signal singularities and in calculating the measures of signal singularities in the form of a Lipschitz exponent. The article presents examples illustrating the use of cubic box spline wavelets in the analysis of signal singularities.