WorldWideScience

Sample records for bodipy dyes insight

  1. Expeditious, mechanochemical synthesis of BODIPY dyes

    Directory of Open Access Journals (Sweden)

    Laramie P. Jameson

    2013-04-01

    Full Text Available BODIPY dyes have been synthesized under solvent-free or essentially solvent-free conditions, within about 5 minutes in an open-to-air setup by using a pestle and mortar, with yields that are comparable to those obtained via traditional routes that typically require reaction times of several hours to days.

  2. Perylene-fused BODIPY dye with near-IR absorption/emission and high photostability

    KAUST Repository

    Jiao, Chongjun

    2011-02-18

    A N-annulated perylene unit was successfully fused to the meso-and β-positions of a boron dipyrromethene (BODIPY) core. The newly synthesized BODIPY dye 1b exhibits intensified near-infrared (NIR) absorption and the longest emission maximum ever observed for all BODIPY derivatives. In addition, this dye possesses excellent solubility and photostability, beneficial to practical applications. © 2011 American Chemical Society.

  3. Diphenylacrylonitrile-connected BODIPY dyes: fluorescence enhancement based on dark and AIE resonance energy transfer.

    Science.gov (United States)

    Lin, Liangbin; Lin, Xiaoru; Guo, Hongyu; Yang, Fafu

    2017-07-19

    This study focuses on the construction of novel diphenylacrylonitrile-connected BODIPY dyes with high fluorescence in both solution and an aggregated state by combining DRET and FRET processes in a single donor-acceptor system. The first BODIPY derivatives with one, two, or three AIE-active diphenylacrylonitrile groups were designed and synthesized in moderate yields. Strong fluorescence emissions were observed in the THF solution under excitation at the absorption wavelength of non-emissive diphenylacrylonitrile chromophores, implying the existence of the DRET process between the dark diphenylacrylonitrile donor and the emissive BODIPY acceptor. In the THF/H 2 O solution, the fluorescence intensity of the novel BODIPY derivatives gradually increased under excitation at the absorption wavelength of diphenylacrylonitrile chromophores, suggesting a FRET process between diphenylacrylonitrile and BODIPY moieties. A greater number of diphenylacrylonitrile units led to higher energy-transfer efficiencies. The pseudo-Stokes shift for both DRET and FRET processes was as large as 190 nm.

  4. Syntheses and photodynamic activity of some glucose-conjugated BODIPY dyes.

    Science.gov (United States)

    Shivran, Neelam; Tyagi, Mrityunjay; Mula, Soumyaditya; Gupta, Pooja; Saha, Bhaskar; Patro, Birija S; Chattopadhyay, Subrata

    2016-10-21

    The syntheses of three water-soluble glucose-conjugated BODIPY dyes with different wavelength emissions and studies of their photodynamic therapeutic (PDT) action on human lung cancer A549 cell line are disclosed. Amongst the chosen compounds, the BODIPY dye 4 possessing a glycosylated styryl moiety at the C-3 position showed best PDT property against the A549 cell line. In particular, it induced reactive oxygen species-mediated caspase-8/caspase-3-dependent apoptosis as revealed from the increased sub G1 cell population and changes in cell morphology. These results along with its localization in the endoplasmic reticulum, as revealed by confocal microscopy suggested that mitochondria may not be directly involved in the photo-cytotoxicity of 4. Compound 4 did not induce any dark toxicity to the A549 cells, and was non-toxic to normal lung cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Photophysics of BODIPY Dyes as Readily-Designable Photosensitisers in Light-Driven Proton Reduction

    Directory of Open Access Journals (Sweden)

    Laura Dura

    2017-04-01

    Full Text Available A series of boron dipyrromethene (BODIPY dyes was tested as photosensitisers for light-driven hydrogen evolution in combination with the complex [Pd(PPh3Cl2]2 as a source for catalytically-active Pd nanoparticles and triethylamine as a sacrificial electron donor. In line with earlier reports, halogenated dyes showed significantly higher hydrogen production activity. All BODIPYs were fully characterised using stationary absorption and emission spectroscopy. Time-resolved spectroscopic investigations on meso-mesityl substituted compounds revealed that reduction of the photo-excited BODIPY by the sacrificial agent occurs from an excited singlet state, while, in halogenated species, long-lived triplet states are present, determining electron transfer processes from the sacrificial agent. Quantum chemical calculations performed at the time-dependent density functional level of theory indicate that the differences in the photocatalytic performance of the present series of dyes can be correlated to the varying efficiency of intersystem crossing in non-halogenated and halogenated species and not to alterations in the energy levels introduced upon substitution.

  6. BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation.

    Science.gov (United States)

    Wang, Zhuyuan; Hong, Xuehua; Zong, Shenfei; Tang, Changquan; Cui, Yiping; Zheng, Qingdong

    2015-07-27

    Photodynamic therapy (PDT) is a promising modality for cancer treatment. The essential element in PDT is the photosensitizer, which can be excited by light of a specific wavelength to generate cytotoxic oxygen species (ROS) capable of killing tumor cells. The effectiveness of PDT is limited in part by the low yield of ROS from existing photosensitizers and the unwanted side effects induced by the photosensitizers toward normal cells. Thus the design of nanoplatforms with enhanced PDT is highly desirable but remains challenging. Here, we developed a heavy atom (I) containing dipyrromethene boron difluoride (BODIPY) dye with a silylated functional group, which can be covalently incorporated into a silica matrix to form dye-doped nanoparticles. The incorporated heavy atoms can enhance the generation efficiency of ROS. Meanwhile, the covalently dye-encapsulated nanoparticles can significantly reduce dye leakage and subsequently reduce unwanted side effects. The nanoparticles were successfully taken up by various tumor cells and showed salient phototoxicity against these cells upon light irradiation, demonstrating promising applications in PDT. Moreover, the incorporated iodine atom can be replaced by a radiolabeled iodine atom (e.g., I-124, I-125). The resulting nanoparticles will be good contrast agents for positron emission tomography (PET) imaging with their PDT functionality retained.

  7. Near-infrared fluorescent aza-BODIPY dye-loaded biodegradable polymeric nanoparticles for optical cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hamon, Casey L.; Dorsey, Christopher L. [Texas State University, Department of Chemistry and Biochemistry (United States); Özel, Tuğba [Texas State University, Materials Science, Engineering, and Commercialization Program (United States); Barnes, Eugenia M.; Hudnall, Todd W.; Betancourt, Tania, E-mail: tb26@txstate.edu [Texas State University, Department of Chemistry and Biochemistry (United States)

    2016-07-15

    Nanoparticles are being readily investigated as carriers for the delivery of imaging and therapeutic agents for the detection, monitoring, and treatment of cancer and other diseases. In the present work, the preparation of biodegradable polymeric nanoparticles loaded with a near-infrared fluorescent aza-boron dipyrromethene (NIR-BODIPY) derivative, and their use as contrast agents for optical imaging in cancer are described. Nanoparticles were prepared by nanoprecipitation of amphiphilic block copolymers of poly(lactic acid) and poly(ethylene glycol). The size, morphology, dye loading, spectral properties, quantum yield, cytocompatibility, and in vitro NIR imaging potential of the nanoparticles in breast and ovarian cancer cells were evaluated. Spherical nanoparticles of 30–70 nm in diameter were loaded with 0.73 w/w% BODIPY derivative. At this loading, the dye presented a fluorescence quantum yield in the same order of magnitude as in solution. Nanoparticle suspensions at concentrations up to 580 μg/mL were cytocompatible to breast (MDA-MB-231) and ovarian (SKOV-3 and Caov-3) cancer cells after a four-hour incubation period. Fluorescence microscopy images demonstrated the ability of the nanoparticles to act as imaging agents in all three cell lines in as little as 1 hour. The results shown indicate the potential of these NIR-BODIPY-loaded nanoparticles as contrast agents for near-infrared optical imaging in cancer.Graphical abstract.

  8. Rationalizing the photophysical properties of BODIPY laser dyes via aromaticity and electron-donor-based structural perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Paul G.; Liu, Xiaogang; Zhao, Teng; Cole, Jacqueline M.

    2015-05-01

    The absorption and fluorescence properties of six boron dipyrromethene (BODIPY) laser dyes with simple non-aromatic substituents are rationalized by relating them to observable structural perturbations within the molecules of the dyes. An empirical relationship involving the structure and the optical properties is derived using a combination of single-crystal X-ray diffraction data, quantum chemical calculations and electronic constants: i.e. the tendency of the pyrrole bond lengths towards aromaticity and the UV-vis absorption and fluorescence wavelengths correlating with the electron-donor properties of the substituents. The effect of molecular conformation on the solid-state optical properties of the dyes is also discussed. The findings in this study also demonstrate the usefulness and limitations of using crystal structure data to develop structure-property relationships in this class of optical materials, contributing to the growing effort to design optoelectronic materials with tunable properties via molecular engineering.

  9. Evaluation of ¹⁸F-labeled BODIPY dye as potential PET agents for myocardial perfusion imaging.

    Science.gov (United States)

    Liu, Shuanglong; Li, Dan; Shan, Hong; Gabbaï, Francois P; Li, Zibo; Conti, Peter S

    2014-01-01

    Despite the great potential of positron emission tomography/computed tomography (PET/CT) in cardiovascular disease imaging, one of the major limitations is the availability of PET probes with desirable half-lives and reasonable cost. In this report, we hypothesized that lipophilic cationic BODIPY dye could be selectively accumulated in cardiac muscle, possibly for the development of novel PET myocardial perfusion imaging (MPI) probes. A (18)F-labeled BODIPY dye ([(18)F]1) was synthesized efficiently through a fluoride exchange reaction catalyzed by the Lewis acid tin chloride (SnCl₄). The compound was first evaluated by a cellular uptake assay in vitro, followed by biodistribution and microPET imaging studies in vivo. [(18)F]1 was obtained in more than 90% labeling yield, with >98% radiochemical purity. The HEK-293 cellular uptake assay showed that the preferential uptake of [(18)F]1 could be related to the cell membrane potential. The biodistribution data demonstrated high levels of [(18)F]1 accumulation in the heart. In the biodistribution study in mice, the radioactivity uptake in the heart, blood, liver and lung was 3.01 ± 0.44, 0.39 ± 0.09, 0.69 ± 0.07, 1.71 ± 0.27%ID/g, respectively, at 3h post-injection (p.i.). The heart-to-lung and heart-to-liver ratios are 1.76 ± 0.14 and 4.37 ± 0.51 at 3h p.i., respectively. Volume-of-interest analysis of the microPET images correlated well with the biodistribution studies in mice. The heart was clearly visualized in normal rats, with 0.72 ± 0.18, 0.69 ± 0.18, 0.67 ± 0.20 and 0.59 ± 0.17%ID/g uptake at 0.5, 1, 2 and 4h p.i., respectively. (18)F-labeled BODIPY dye showed good heart uptake and heart-to-blood and heart-to-lung contrast. A (18)F-labeled BODIPY dyes may represent a new category of cationic PET agents for myocardial perfusion imaging. © 2013.

  10. Anthracene-fused BODIPYs as near-infrared dyes with high photostability

    KAUST Repository

    Zeng, Lintao

    2011-11-18

    An anthracene unit was successfully fused to the zigzag edge of a boron dipyrromethene (BODIPY) core by an FeCl 3-mediated oxidative cyclodehydrogenation reaction. Meanwhile, a dimer was also formed by both intramolecular cyclization and intermolecular coupling. The anthracene-fused BODIPY monomer 7a and dimer 7b showed small energy gaps (∼1.4 eV) and near-infrared absorption/emission. Moreover, they exhibited high photostability. © 2011 American Chemical Society.

  11. How Parallel Are Excited State Potential Energy Surfaces from Time-Independent and Time-Dependent DFT? A BODIPY Dye Case Study.

    Science.gov (United States)

    Komoto, Keenan T; Kowalczyk, Tim

    2016-10-06

    To support the development and characterization of chromophores with targeted photophysical properties, excited-state electronic structure calculations should rapidly and accurately predict how derivatization of a chromophore will affect its excitation and emission energies. This paper examines whether a time-independent excited-state density functional theory (DFT) approach meets this need through a case study of BODIPY chromophore photophysics. A restricted open-shell Kohn-Sham (ROKS) treatment of the S 1 excited state of BODIPY dyes is contrasted with linear-response time-dependent density functional theory (TDDFT). Vertical excitation energies predicted by the two approaches are remarkably different due to overestimation by TDDFT and underestimation by ROKS relative to experiment. Overall, ROKS with a standard hybrid functional provides the more accurate description of the S 1 excited state of BODIPY dyes, but excitation energies computed by the two methods are strongly correlated. The two approaches also make similar predictions of shifts in the excitation energy upon functionalization of the chromophore. TDDFT and ROKS models of the S 1 potential energy surface are then examined in detail for a representative BODIPY dye through molecular dynamics sampling on both model surfaces. We identify the most significant differences in the sampled surfaces and analyze these differences along selected normal modes. Differences between ROKS and TDDFT descriptions of the S 1 potential energy surface for this BODIPY derivative highlight the continuing need for validation of widely used approximations in excited state DFT through experimental benchmarking and comparison to ab initio reference data.

  12. Enhanced NLO response in BODIPY-coumarin hybrids: density ...

    Indian Academy of Sciences (India)

    YOGESH ERANDE

    2017-07-27

    Jul 27, 2017 ... IPY dyes.6–9 Studies in NLO properties of the BODIPY dyes have recently attracted attention.10–13 The property of two photon excitation of BODIPY dyes has been used in imaging and telecommunication applications.2,14–16. Optoelectronic properties of polyacetylenes containing. BODIPY pendants with ...

  13. From Dark to Light to Fluorescence Resonance Energy Transfer (FRET): Polarity-Sensitive Aggregation-Induced Emission (AIE)-Active Tetraphenylethene-Fused BODIPY Dyes with a Very Large Pseudo-Stokes Shift.

    Science.gov (United States)

    Şen, Esra; Meral, Kadem; Atılgan, Serdar

    2016-01-11

    The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor-acceptor system. In this respect, a series of donor-acceptor architectures of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor-acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation-induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo-Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non-emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy-transfer processes, namely, FRET and DRET, in one polarity-sensitive donor-acceptor pair system. The accuracy of the dark-emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A fast-responsive fluorescent probe based on BODIPY dye for sensitive detection of hypochlorite and its application in real water samples.

    Science.gov (United States)

    Wang, Yun; Xia, Jinchen; Han, Juan; Bao, Xu; Li, Yuanyuan; Tang, Xu; Ni, Liang; Wang, Lei; Gao, Mengmeng

    2016-12-01

    Hypochlorite serves as a powerful antimicrobial agent in human immune system, the detection of which is of great significance. Herein a novel fluorescent probe based on BODIPY dye and diaminomaleonitrile has been synthesized and characterized to sense hypochlorite. The fluorescence of the system is dramatically enhanced by ClO - due to the removal of C=N isomerization effect in physiological pH condition. The complete reaction only needs a few seconds, which enables the probe to facilitate real-time detection. This probe also has satisfactory selectivity for ClO - even in the presence of other interferential ions and shows high sensitivity with a detection limit of 19.8nM. Furthermore, Probe 1 has been successfully applied to detect ClO - in real water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Sequestering ability to Cu2+of a new bodipy-based dye and its behavior as in vitro fluorescent sensor.

    Science.gov (United States)

    Papalia, Teresa; Barattucci, Anna; Barreca, Davide; Bellocco, Ersilia; Bonaccorsi, Paola; Minuti, Lucio; Nicolò, Marco Sebastiano; Temperini, Andrea; Foti, Claudia

    2017-02-01

    A Bodipy (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivative has been conceived and synthesized starting from l-aspartic acid, as a selective turn-off sensor of Cu 2+ ions. Its acid-base properties were determined to study the formation of metal/sensor complex species by titration of solutions each containing a different metal ion, such as Cu 2+ , Ca 2+ , Zn 2+ , Pb 2+ and Hg 2+ and different metal/sensor ratios. The speciation models allowed us to simulate the distribution of the metal/sensor complex species at the normal concentrations of the corresponding metals present in biological fluids. The distribution diagrams, obtained by varying the concentration of sensor 1, clearly indicate that sensor 1 responds selectively to Cu 2+ at micromolar concentrations, even in the presence of other more abundant metal cations Ca 2+ . Finally, we analyzed the cellular uptake of sensor 1 on human erythrocytes and its ability to chelate Cu 2+ in the cellular environment. Results indicate that it crosses the plasmatic membrane and colors the cells of a bright fluorescent red. Exposing the fluorescent cells to Cu 2+ results in a complete cellular photobleaching of the red fluorescence, indicating that sensor 1 is able to detect metal changes in the cytosolic environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Benzene-fused BODIPYs: Synthesis and the impact of fusion mode

    KAUST Repository

    Ni, Yong

    2013-01-01

    BODIPY derivatives with one or two benzene units fused at different positions are prepared using novel synthetic methods. The resulting dye 1 shows deep red fluorescence with a large Stokes shift. Dyes 2 and 3 are reported for the first time and 3 exhibits near infrared absorption. The impact of benzannulation at different positions of BODIPY is discussed, and the geometry and electronic structure are studied by DFT calculations. This journal is © 2013 The Royal Society of Chemistry.

  17. Meso-ester and carboxylic acid substituted BODIPYs with far-red and near-infrared emission for bioimaging applications

    KAUST Repository

    Ni, Yong

    2014-01-21

    A series of meso-ester-substituted BODIPY derivatives 1-6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core (3-6) become partially soluble in water, and their absorptions and emissions are located in the far-red or near-infrared region. Three synthetic approaches are attempted to access the meso-carboxylic acid (COOH)-substituted BODIPYs 7 and 8 from the meso-ester-substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso-COOH-substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time-dependent density functional theory calculations are conducted to understand the structure-optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso-ester-substituted BODIPYs (1 and 3-6) and one of the meso-COOH-substituted BODIPYs (8) are very membrane-permeable. These features make these meso-ester- and meso-COOH-substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Towards meso -Ester BODIPYs with Aggregation-Induced Emission Properties: The Effect of Substitution Positions

    KAUST Repository

    Chua, Ming Hui

    2015-06-17

    Three meso-ester boron dipyrromethene (BODIPY) dyes have been synthesized and functionalized with aggregation-induced emission (AIE)-active tetraphenylethene or triphenylethene moieties. It was found that functionalizing at the different positions of the BODIPY core resulted in the final dye having different emission properties in response to aggregation: from aggregation-induced quenching (ACQ) to being AIE active. X-ray crystallographic analysis was thus performed to provide an explanation for these differences. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. In Search of the Perfect Photocage: Structure-Reactivity Relationships in meso-Methyl BODIPY Photoremovable Protecting Groups.

    Science.gov (United States)

    Slanina, Tomáš; Shrestha, Pradeep; Palao, Eduardo; Kand, Dnyaneshwar; Peterson, Julie A; Dutton, Andrew S; Rubinstein, Naama; Weinstain, Roy; Winter, Arthur H; Klán, Petr

    2017-10-25

    A detailed investigation of the photophysical parameters and photochemical reactivity of meso-methyl BODIPY photoremovable protecting groups was accomplished through systematic variation of the leaving group (LG) and core substituents as well as substitutions at boron. Efficiencies of the LG release were evaluated using both steady-state and transient absorption spectroscopies as well as computational analyses to identify the optimal structural features. We find that the quantum yields for photorelease with this photocage are highly sensitive to substituent effects. In particular, we find that the quantum yields of photorelease are improved with derivatives with higher intersystem crossing quantum yields, which can be promoted by core heavy atoms. Moreover, release quantum yields are dramatically improved by boron alkylation, whereas alkylation in the meso-methyl position has no effect. Better LGs are released considerably more efficiently than poorer LGs. We find that these substituent effects are additive, for example, a 2,6-diiodo-B-dimethyl BODIPY photocage features quantum yields of 28% for the mediocre LG acetate and a 95% quantum yield of release for chloride. The high chemical and quantum yields combined with the outstanding absorption properties of BODIPY dyes lead to photocages with uncaging cross sections over 10 000 M -1 cm -1 , values that surpass cross sections of related photocages absorbing visible light. These new photocages, which absorb strongly near the second harmonic of an Nd:YAG laser (532 nm), hold promise for manipulating and interrogating biological and material systems with the high spatiotemporal control provided by pulsed laser irradiation, while avoiding the phototoxicity problems encountered with many UV-absorbing photocages. More generally, the insights gained from this structure-reactivity relationship may aid in the development of new highly efficient photoreactions.

  20. Antimicrobial and anti-biofilm effect of a novel BODIPY photosensitizer against Pseudomonas aeruginosa PAO1

    DEFF Research Database (Denmark)

    Orlandi, Viviana Teresa; Rybtke, Morten; Caruso, Enrico

    2014-01-01

    Photodynamic therapy (PDT) combines the use of organic dyes (photosensitizers, PSs) and visible light in order to elicit a photo-oxidative stress which causes bacterial death. GD11, a recently synthesized PS belonging to the boron-dipyrromethene (BODIPY) class, was demonstrated to be efficient...

  1. Unusual Fluorescent Responses of Morpholine-functionalized Fluorescent Probes to pH via Manipulation of BODIPY's HOMO and LUMO Energy Orbitals for Intracellular pH Detection.

    Science.gov (United States)

    Zhang, Jingtuo; Yang, Mu; Mazi, Wafa; Adhikari, Kapil; Fang, Mingxi; Xie, Fei; Valenzano, Loredana; Tiwari, Ashutosh; Luo, Fen-Tair; Liu, Haiying

    2016-02-26

    Three uncommon morpholine-based fluorescent probes ( A , B and C ) for pH were prepared by introducing morpholine residues to BODIPY dyes at 4,4'- and 2,6-positions, respectively. In contrast to morpholine-based fluorescent probes for pH reported in literature, these fluorescent probes display high fluorescence in a basic condition while they exhibit very weak fluorescence in an acidic condition. The theoretical calculation confirmed that morpholine is unable to function as either an electron donor or an electron acceptor to quench the BODIPY fluorescence in the neutral and basic condition via photo-induced electron transfer (PET) mechanism because the LUMO energy of morpholine is higher than those of the BODIPY dyes while its HOMO energy is lower than those of the BODIPY dyes. However, the protonation of tertiary amines of the morpholine residues in an acidic environment leads to fluorescence quenching of the BODIPY dyes via d-PET mechanism. The fluorescence quenching is because the protonation effectively decreases the LUMO energy which locates between the HOMO and LUMO energies of the BODIPY dyes. Fluorescent probe C with deep-red emission has been successfully used to detect pH changes in mammalian cells.

  2. Divinyl BODIPY derivative: Synthesis, photophysical properties, crystal structure, photostability and bioimaging.

    Science.gov (United States)

    Yang, Liutao; Liu, Ying; Liu, Wei; Ma, Chunping; Zhang, Chun; Li, Yang

    2015-12-15

    4,4-Difluoro-3,5-bis(3,3-dimethyl-1-butenyl)-8-anthryl-4-bora-3a,4a-diaza-s-indacene (1), a symmetric fluorescent difluoroboron dipyrromethene dye, was produced in Knoevenagel reaction involving 4,4-difluoro-3,5-bis(methyl)-8-anthryl-4-bora-3a,4a-diaza-s-indacene (2) and pivaldehyde. Its crystal structure was determined by single crystal X-ray diffraction analysis, and the photophysical properties were investigated. The BODIPY 1 exhibits significant bathochromic shifts in both absorption and fluorescence spectrum compared with the BODIPY 2. In addition, the BODIPY 1 exhibited small energy gaps (2.11eV). The extensive π conjugation is responsible for their red-shifted emission. Cell imaging experiments demonstrated its potential application as a biological fluorescent probe due to its excellent imaging contrast. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. High-Efficiency BODIPY-Based Organic Photovoltaics

    KAUST Repository

    Chen, John J.

    2015-01-14

    © 2014 American Chemical Society. A benzannulated boron dipyrromethene (BODIPY, bDIP) molecule exhibiting strong absorption at 640 nm was synthesized. The organic dye was used in an organic solar cell as the electron donor with C60 as the acceptor. The BODIPY dye demonstrated the best performance in lamellar architecture (indium tin oxide (ITO)/bDIP/C60/bathocuproine/Al), giving power conversion efficiency up to 4.5% with short-circuit current (JSC) of 8.7 mA/cm2 and an open-circuit voltage (VOC) of 0.81 V. Neutron reflectivity experiments were performed on the bilayer film to investigate the thickness dependence of JSC. A 13 nm mixed layer was found to be present at the donor/acceptor interface in the bilayer device, formed when the C60 was deposited onto a room temperature bDIP film. Planar-mixed heterojunction devices were fabricated to understand the extent of spontaneous mixing between the donor and acceptor materials. The native mixed region in the bilayer device was shown to most resemble 1:3 bDIP:C60 layer in the structure: (ITO/bDIP/bDIP:C60 blend/C60/bathocuproine/Al).

  4. Tuning the solid-state luminescence of BODIPY derivatives with bulky arylsilyl groups: synthesis and spectroscopic properties.

    Science.gov (United States)

    Lu, Hua; Wang, Qiuhong; Gai, Lizhi; Li, Zhifang; Deng, Yuan; Xiao, Xuqiong; Lai, Guoqiao; Shen, Zhen

    2012-06-18

    Boron dipyrromethenes (BODIPYs) with bulky triphenylsilylphenyl(ethynyl) and triphenylsilylphenyl substituents on pyrrole sites were prepared via Hagihara-Sonogashira and Suzuki-Miyaura cross-coupling with ethynyl-terminated tetraphenylsilane and boronic acid-terminated tetraphenylsilane. The chromophores are designed to prevent intermolecular π-π stacking interaction and enhance fluorescence in the solid state. Single crystals of 1 a and 2 b for X-ray structural analysis were obtained, and weak π-π stacking interactions of the neighboring BODIPY molecules were observed. Spectroscopic properties of all of the dyes in various solvents and in films were investigated. Triphenylsilylphenyl-substituted BODIPYs generally show more pronounced increases in solid-state emission than triphenylsilylphenyl(ethynyl)-substituted BODIPYs. Although the simple BODIPYs do not exhibit any fluorescence in the solid state (Φ=0), arylsilyl-substituted BODIPYs exhibit weak to moderate solid-state fluorescence with quantum yields of 0.03, 0.07, 0.10, and 0.25. The structure-property relationships were analyzed on the basis of X-ray crystallography, optical spectroscopy, cyclic voltammetry, and theoretical calculations. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Recent Advances of Individual BODIPY and BODIPY-Based Functional Materials in Medical Diagnostics and Treatment.

    Science.gov (United States)

    Marfin, Yuriy S; Solomonov, Alexey V; Timin, Alexander S; Rumyantsev, Evgeniy V

    2017-01-01

    The group of fluorophores on boron dipyrrin platform (4,4- difluoro-4-bora3a,4a-diaza-s-indacene, also known as BODIPY) has attracted much attention in the field of molecular sensorics, including sensing of biomolecules and bioprocesses. Structural diversity of existing BODIPY with ample opportunities of directed modification of compounds makes this class of fluorophores attractive for medical and biological purposes. The recent progress in the design and functionalization of BODIPY allows using them for modification of drug micro- and nanocarriers in order to improve their therapeutic effect in cancer treatment. At the same time, integration of BODIPY into drug carriers provides the possibility of in vitro and in vivo real time imaging of used drug carriers. The high fluorescent intensity and low toxicity of BODIPY granted for conjugation with different biomolecules. The present review focuses on the recent advances for application of individual BODIPY in medical diagnostics, antimicrobial activity, as well as establishing the role of BODIPY in labeling of biomolecules (e.g. proteins, hormones and DNA). Also the review highlights the potential of BODIPY in functionalization of drug micro- and nanocarriers in order to achieve better therapeutic efficiency compared with non-modified materials. The advantages derived from the use of BODIPY for preparation and modification of drug carriers are critically evaluated and potential for future challenges, especially concerning the design of innovative multi-functional BODIPY-based nanocarriers, is discussed in detail using representative examples from literature. Our objective was to show that BODIPY are powerful tools for bioimaging, labeling of biomolecules and construction of new multifunctional drug carriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. BODIPY derivatives as molecular photoacoustic contrast agents

    Science.gov (United States)

    Laoui, Samir; Bag, Seema; Dantiste, Olivier; Frenette, Mathieu; Hatamimoslehabadi, Maryam; Bellinger-Buckley, Stephanie; Tseng, Jen-Chieh; Rochford, Jonathan; Yelleswarapu, Chandra

    2014-03-01

    Photoacoustic imaging (PAI) is emerging as a key in vivo imaging technique. Endogenous contrast agents alone are insufficient to obtain high contrast images necessitating a need for synthetic exogenous contrast agents. In recent years a great deal of research has been devoted to the development of nanoparticle based contrast agents with little effort on molecular systems. Here we report on the design and evaluation of BODIPY inspired molecular photoacoustic contrast agents (MPACs). Through chemical modification of the established BODIPY fluorophore, increasing its vibrational freedom and appending with non-emissive functionalities, it is demonstrated that the S0-S1 absorbed excitation energy is redirected towards a nonradiative excited-state decay pathway. Optical and photoacoustic characterization of the modified BODIPY MPACs demonstrates a stronger photoacoustic signal compared to the corresponding fluorescent BODIPY probes.

  7. BODIPY associates in organic matrices: Spectral properties, photostability and evaluation as OLED emitters

    Energy Technology Data Exchange (ETDEWEB)

    Merkushev, D.A.; Usoltsev, S.D. [Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo (Russian Federation); Marfin, Yu.S., E-mail: marfin@isuct.ru [Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo (Russian Federation); Pushkarev, A.P., E-mail: pushkarev@iomc.ras.ru [G.A. Razuvaev Institute of Organometallic Chemistry RAS, Tropinina 49, 603950 Nizhny Novgorod (Russian Federation); Volyniuk, D.; Grazulevicius, J.V. [Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Rumyantsev, E.V. [Ivanovo State University of Chemistry and Technology, Sheremetevskiy Avenue 7, 153000 Ivanovo (Russian Federation)

    2017-02-01

    In the present study four BODIPY (boron dipyrromethene: 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes with π-extended substituents in C-8 position were investigated in solvents and polymer mediums. High aggregation degree was observed for the dyes in the solid state. Association and twisted intramolecular charge transfer processes were found to affect the spectral properties of the compounds causing bathochromic shifts in absorption and fluorescence spectra. The extension of substituent π-conjugation gains molecular association evoked presumably by π-π interaction between the substituents of the adjacent molecules. Photostability of the complexes in different forms was analyzed and the distorted form stabilized by polymer matrix was found to be the most stable. The substituent nature did not affect strongly the photostability of dyes. Displacement of monomer-associate equilibrium in hybrid materials with polymethylmethacrylate and poly(9-vinylcarbazole) was exploited for tuning spectral characteristics of the materials. Two dyes readily forming aggregates at the lowest concentrations were applied for the fabrication of organic light-emitting diodes. The fabricated devices exhibited electroluminescence in the appropriate spectral ranges with moderate efficiency. - Highlights: • Four BODIPY dyes with π-extended substituents in 8-position were investigated in solvents and polymers. • Substituent influence on photophysical properties and photostability of the compounds are discussed. • Aggregation induced spectral changes were observed. • Displacement of monomer-aggregate equilibrium was exploited for tuning electroluminescent characteristics of OLED devices.

  8. Synthesis and spectral properties of preorganized BODIPYs in solutions and Langmuir-Schaefer films

    Science.gov (United States)

    Marfin, Yuriy S.; Usoltsev, Sergey D.; Kazak, Alexandr V.; Smirnova, Antonina I.; Rumyantsev, Evgeniy V.; Molchanov, Evgeniy E.; Kuznetsov, Vladimir V.; Chumakov, Alexey S.; Glukhovskoy, Evgeny G.

    2017-12-01

    In order to investigate the influence of molecular structure peculiarities of boron-dipyrrine dyes (BODIPYs) on their properties in solutions and supramolecular organization in Langmuir-Schaefer (LS) films, four new BODIPY dyes with various aliphatic, aromatic or mixed nature meso-subtituents were synthesized and investigated. Spectral characteristics (electronic absorption and fluorescence) of the synthesized compounds in organic solvents and LS-films were studied. Floating monolayers of the BODIPYs were formed from chloroform solutions placed onto water subphase in Langmuir-Blodgett through. Thin films were prepared using the Langmuir-Schaefer technique by the transfer of floating monolayers onto standard polished glass, ITO covered glass or pure silicon substrate. The variation of the dye structure we consider as a preorganization aiming to influence the structure of LS-films. The morphology and structure of the LS-films was examined by fluorescent microscopy, scanning electron microscopy, atomic force microscopy and small angle X-ray diffraction analysis. It was found that the introduced substituents have no substantial influence on the position of the absorption and fluorescence bands in dilute solutions. In contrast, the fluorescent characteristics of the LS-films significantly depend on the substituent nature. Therefore, this strategy could be used for the direct tuning of compounds fluorescent properties in LS-films. Concerning the LS-film surface characteristics it was proved that the films are homogeneous, without disruptions and only some widely-spaced microcrystals could be observed. With respect to the LS-film structure, the change of the substituents introduced to the BODIPY molecule did not influence the average given periodicity of layers (d = 0.3-0.4 nm). This value corresponds to a single-layer arrangement of BODIPY molecules located parallel to the substrate surface. Nevertheless, the diffraction peak intensities depended on the molecular

  9. Proton Induced Modulation of ICT and PET Processes in an Imidazo-phenanthroline Based BODIPY Fluorophores.

    Science.gov (United States)

    Thakare, Shrikant S; Chakraborty, Goutam; Kothavale, Shantaram; Mula, Soumyaditya; Ray, Alok K; Sekar, Nagaiyan

    2017-11-01

    BODIPY fluorophores linked with an imidazo-phenanthroline donor at α and β positions have been synthesized. Intriguing intramolecular charge transfer phenomenon is observed in both the dyes which has been extensively investigated using UV-vis absorption, steady-state and time-resolved fluorescence measurements. H-bonding and intrinsic polarity of the solvents has modulated the absorption and emission bands of these fluorophores strongly causing significant increase in the Stokes shifts. In spite of having difference only in terms of the position of donor subunit, the photophysics of these dyes are not only significantly different from each other, but contradictory too. Interestingly, acidochromic studies revealed the shuttling mechanism between ICT and PET processes for BDP 2. Quantum chemical calculations have been employed further to support experimental findings. DFT and TD-DFT method of analysis have been used to optimize ground and excited state geometries of the synthesized dyes.

  10. The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae.

    Science.gov (United States)

    Rumin, Judith; Bonnefond, Hubert; Saint-Jean, Bruno; Rouxel, Catherine; Sciandra, Antoine; Bernard, Olivier; Cadoret, Jean-Paul; Bougaran, Gaël

    2015-01-01

    Microalgae are currently emerging as one of the most promising alternative sources for the next generation of food, feed, cosmetics and renewable energy in the form of biofuel. Microalgae constitute a diverse group of microorganisms with advantages like fast and efficient growth. In addition, they do not compete for arable land and offer very high lipid yield potential. Major challenges for the development of this resource are to select lipid-rich strains using high-throughput staining for neutral lipid content in microalgae species. For this purpose, the fluorescent dyes most commonly used to quantify lipids are Nile red and BODIPY 505/515. Their fluorescent staining for lipids offers a rapid and inexpensive analysis tool to measure neutral lipid content, avoiding time-consuming and costly gravimetric analysis. This review collates and presents recent advances in algal lipid staining and focuses on Nile red and BODIPY 505/515 staining characteristics. The available literature addresses the limitations of fluorescent dyes under certain conditions, such as spectral properties, dye concentrations, cell concentrations, temperature and incubation duration. Moreover, the overall conclusion of the present review study gives limitations on the use of fluorochrome for screening of lipid-rich microalgae species and suggests improved protocols for staining recalcitrant microalgae and recommendations for the staining quantification.

  11. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Lund, Frederik Wendelboe; Röhrl, Clemens

    2016-01-01

    is to use intrinsically fluorescent sterols, as dehydroergosterol (DHE), having minimal chemical alteration compared to cholesterol but giving low fluorescence signals in the UV region of the spectrum. Alternatively, one can use dye-tagged cholesterol analogs and in particular BODIPY-cholesterol (BChol...... photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). We also describe pulse-chase studies from the PM using BChol in direct comparison to DHE. Based on the gathered imaging data, we present a two-step kinetic model for sterol transport between PM and recycling endosomes. In addition, we...

  12. 3-/3,5-Pyrrole-substituted BODIPY derivatives and their ...

    Indian Academy of Sciences (India)

    opment of near-infrared (NIR) derivatives of BODIPY have recently gained much attention for their appli- cations in fluorescence imaging and in photodynamic therapy. For example, pyrrole-containing BODIPYs such as BODIPY 576/589 and BODIPY 650/665 have been commercialized and their analogues have been.

  13. Nitroolefin-based BODIPY as a novel water-soluble ratiometric fluorescent probe for detection of endogenous thiols

    Science.gov (United States)

    Kang, Jin; Huo, Fangjun; Chao, Jianbin; Yin, Caixia

    2018-04-01

    Small molecule biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play many crucial roles in physiological processes. In this work, we have prepared a nitroolefin-based BODIPY fluorescent probe with excellent water solubility for detection thiols, which displayed ratiometric fluorescent signal for thiols. Incorporation of a nitroolefin unit to the BODIPY dye would transform it into a strong Michael acceptor, which would be highly susceptible to sulfhydryl nucleophiles. This probe shows an obvious ratio change upon response with thiols, an increase of the emission at 517 nm along with a concomitant decrease of fluorescence peak at 573 nm. Moreover, these successes of intracellular imaging experiments in A549 cells indicated that this probe is suitable for imaging of ex-/endogenous thiols in living cells.

  14. Modulation of ICT probability in bi(polyarene)-based O-BODIPYs: towards the development of low-cost bright arene-BODIPY dyads.

    Science.gov (United States)

    Gartzia-Rivero, Leire; Sánchez-Carnerero, Esther M; Jiménez, Josue; Bañuelos, Jorge; Moreno, Florencio; Maroto, Beatriz L; López-Arbeloa, Iñigo; de la Moya, Santiago

    2017-09-12

    We report the synthesis, and spectroscopic and electrochemical properties of a selected library of novel spiranic O-BODIPYs bearing a phenol-based bi(polyarene) unit tethered to the boron center through oxygen atoms. These dyes constitute an interesting family of arene-BODIPY dyads useful for the development of photonic applications due to their synthetic accessibility and tunable photonic properties. It is demonstrated that the electron-donor capability of the involved arene moiety switches on a non-emissive intramolecular charge transfer (ICT) state, which restricts the fluorescence efficiency of the dyad. Interestingly, the influence of this non-radiative deactivation channel can be efficiently modulated by the substitution pattern, either at the dipyrrin ligand or at the polyarene moiety. Thus, dyads featuring electron-rich dipyrrin and electron-poor polyarene show lower or almost negligible ICT probability, and hence display bright fluorescence upon dual excitation at far-away spectral regions. This synthetic approach has allowed the easy development of low-cost efficient ultraviolet-absorbing visible-emitting cassettes by selecting properly the substitution pattern of the involved key units, dipyrrin and bi(polyarene), to modulate not only absorption and emission wavelengths, but also fluorescence efficiencies.

  15. Synthesis of 2-aminoBODIPYs by palladium catalysed amination.

    Science.gov (United States)

    Alnoman, Rua B; Stachelek, Patrycja; Knight, Julian G; Harriman, Anthony; Waddell, Paul G

    2017-09-20

    Palladium catalysed coupling of the 2-iodoBODIPY 3 with a range of anilines and a primary alkylamine succeeds in generating the corresponding 2-aminoBODIPYs. These 2-aminoBODIPY derivatives are non-emissive and quantum chemical calculations and electrochemistry are consistent with charge transfer from the amine substituent. Attenuation of this charge transfer pathway by conversion of the 1,2-phenylenediamine derivative 9 into the corresponding benzimidazolone 10 restores the fluorescence and has been used as the basis for a fluorescence sensor for phosgene.

  16. Boron-Dipyrromethene Dyes for Ion Recognition Studies

    Indian Academy of Sciences (India)

    pc

    Porphyrins: Pigments of LIFE. 18π system. M. Photosynthesis. O. 2 and CO. 2. Transport .... Synthesis of Brominated BODIPYs 1-6. Lakshmi, V.; Ravikanth, M. Dalton Trans. 2012, 41, 5903-5911 ... b sorp tion. Wavelength. Absorption and Emission Spectra. V. Lakshmi and M. Ravikanth Dyes and pigments, 2013, 3, 665-671 ...

  17. Straightforward synthetic protocol for the introduction of stabilized C nucleophiles in the BODIPY core for advanced sensing and photonic applications.

    Science.gov (United States)

    Gutiérrez-Ramos, Brenda D; Bañuelos, Jorge; Arbeloa, Teresa; López Arbeloa, Iñigo; González-Navarro, Paulina E; Wrobel, Kazimierz; Cerdán, Luis; García-Moreno, Inmaculada; Costela, Angel; Peña-Cabrera, Eduardo

    2015-01-19

    A straightforward synthetic protocol to directly incorporate stabilized 1,3-dicarbonyl C nucleophiles to the meso position of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) is reported. Soft nucleophiles generated by deprotonation of 1,3-dicarbonyl derivatives smoothly displace the 8-methylthio group from 8-(methylthio)BODIPY analogues in the presence of Cu(I) thiophenecarboxylate in stoichiometric amounts at room temperature. Seven highly fluorescent new derivatives are prepared with varying yields (20-92%) in short reaction times (5-30 min). The excellent photophysical properties of the new dyes allow focusing on applications never analyzed before for BODIPYs substituted with stabilized C nucleophiles such as pH sensors and lasers in liquid and solid state, highlighting the relevance of the synthetic protocol described in the present work. The attainment of these dyes, with strong UV absorption and highly efficient and stable laser emission in the green spectral region, concerns to one of the greatest challenges in the ongoing development of advanced photonic materials with relevant applications. In fact, organic dyes with emission in the green are the only ones that allow, by frequency-doubling processes, the generation of tunable ultraviolet (250-350 nm) radiation, with ultra-short pulses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rational Design of in Vivo Tau Tangle-Selective Near-Infrared Fluorophores: Expanding the BODIPY Universe.

    Science.gov (United States)

    Verwilst, Peter; Kim, Hye-Ri; Seo, Jinho; Sohn, Nak-Won; Cha, Seung-Yun; Kim, Yeongmin; Maeng, Sungho; Shin, Jung-Won; Kwak, Jong Hwan; Kang, Chulhun; Kim, Jong Seung

    2017-09-27

    The elucidation of the cause of Alzheimer's disease remains one of the greatest questions in neurodegenerative research. The lack of highly reliable low-cost sensors to study the structural changes in key proteins during the progression of the disease is a contributing factor to this lack of insight. In the current work, we describe the rational design and synthesis of two fluorescent BODIPY-based probes, named Tau 1 and Tau 2. The probes were evaluated on the molecular surface formed by a fibril of the PHF6 ( 306 VQIVYK 311 ) tau fragment using molecular docking studies to provide a potential molecular model to rationalize the selectivity of the new probes as compared to a homologous Aβ-selective probe. The probes were synthesized in a few steps from commercially available starting products and could thus prove to be highly cost-effective. We demonstrated the excellent photophysical properties of the dyes, such as a large Stokes shift and emission in the near-infrared window of the electromagnetic spectrum. The probes demonstrated a high selectivity for self-assembled microtubule-associated protein tau (Tau protein), in both solution and cell-based experiments. Moreover, the administration to an acute murine model of tauopathy clearly revealed the staining of self-assembled hyperphosphorylated tau protein in pathologically relevant hippocampal brain regions. Tau 1 demonstrated efficient blood-brain barrier penetrability and demonstrated a clear selectivity for tau tangles over Aβ plaques, as well as the capacity for in vivo imaging in a transgenic mouse model. The current work could open up avenues for the cost-effective monitoring of the tau protein aggregation state in animal models as well as tissue staining. Furthermore, these fluorophores could serve as the basis for the development of clinically relevant sensors, for example based on PET imaging.

  19. Insights into the Mechanism of a Covalently Linked Organic Dye-Cobaloxime Catalyst System for Dye-Sensitized Solar Fuel Devices.

    Science.gov (United States)

    Pati, Palas Baran; Zhang, Lei; Philippe, Bertrand; Fernández-Terán, Ricardo; Ahmadi, Sareh; Tian, Lei; Rensmo, Håkan; Hammarström, Leif; Tian, Haining

    2017-06-09

    A covalently linked organic dye-cobaloxime catalyst system based on mesoporous NiO is synthesized by a facile click reaction for mechanistic studies and application in a dye-sensitized solar fuel device. The system is systematically investigated by photoelectrochemical measurements, density functional theory, time-resolved fluorescence, transient absorption spectroscopy, and photoelectron spectroscopy. The results show that irradiation of the dye-catalyst on NiO leads to ultrafast hole injection into NiO from the excited dye, followed by a fast electron transfer process to reduce the catalyst. Moreover, the dye adopts different structures with different excited state energies, and excitation energy transfer occurs between neighboring molecules on the semiconductor surface. The photoelectrochemical experiments also show hydrogen production by this system. The axial chloride ligands of the catalyst are released during photocatalysis to create the active sites for proton reduction. A working mechanism of the dye-catalyst system on the photocathode is proposed on the basis of this study. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Optimized excitation energy transfer in a three-dye luminescent solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Sheldon T.; Lokey, Gretchen E.; Hanes, Melinda S.; McLafferty, Jason B.; Beaumont, Gregg T.; Wittmershaus, Bruce P. [School of Science, Pennsylvania State University: Erie, The Behrend College, Erie, PA 16563-0203 (United States); Shearer, John D.M.; Baseler, Timothy T.; Layhue, Joshua M.; Broussard, Dustin R. [School of Engineering, Pennsylvania State University: Erie, The Behrend College, Erie, PA 16563-1701 (United States); Zhang, Yu-Zhong [Molecular Probes Inc., 4849 Pitchford Ave., Eugene, OR 97402-9165 (United States)

    2007-01-05

    The spectral range of sunlight absorbed by a luminescent solar concentrator (LSC) is increased by using multiple dyes. Absorption, fluorescence, and fluorescence excitation spectra, and relative light output are reported for LSCs made with one, two, or three BODIPY dyes in a thin polymer layer on glass. Losses caused by multiple emission and reabsorption events are minimized by optimizing resonance excitation energy transfer between dyes. Increases in the outputs from the multiple-dye LSCs are directly proportional to increases in the number of photons absorbed. The output of the three-dye LSC is 45-170% higher than those of the single-dye LSCs. (author)

  1. Mechanistic Insights into Dye-Decolorizing Peroxidase Revealed by Solvent Isotope and Viscosity Effects

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Ruben [Department; Huang, Gaochao [Department; Meekins, David A. [Department; Geisbrecht, Brian V. [Department; Li, Ping [Department

    2017-08-18

    Dye-decolorizing peroxidases (DyPs) are a family of H2O2-dependent heme peroxidases that have shown potential applications in lignin degradation and valorization. However, the DyP kinetic mechanism remains underexplored. Using structural biology and solvent isotope (sKIE) and viscosity effects, many mechanistic characteristics have been determined for the B-class ElDyP from Enterobacter lignolyticus. Its structure revealed that a water molecule acts as the sixth axial ligand and two channels at diameters of ~3.0 and 8.0 Å lead to the heme center. A conformational change of ERS* to ERS, which have identical spectral characteristics, was proposed as the final step in DyPs’ bisubstrate Ping-Pong mechanism. This step is also the rate-determining step in ABTS oxidation. The normal KIE of wild-type ElDyP with D2O2 at pD 3.5 suggested that compound 0 deprotonation by the distal aspartate is rate-limiting in the formation of compound I, which is more reactive under acidic pH than under neutral or alkaline pH. The viscosity effects and other biochemical methods implied that the reducing substrate binds with compound I instead of the free enzyme. The significant inverse sKIEs of kcat/KM and kERS* suggested that the aquo release in ElDyP is mechanistically important and may explain the enzyme’s adoption of two-electron reduction for compound I. The distal aspartate is catalytically more important than the distal arginine and plays key roles in determining ElDyP’s optimum acidic pH. The kinetic mechanism of D143H-ElDyP was also briefly studied. The results obtained will pave the way for future protein engineering to improve DyPs’ lignolytic activity.

  2. Mechanistic Insights into Dye-Decolorizing Peroxidase Revealed by Solvent Isotope and Viscosity Effects.

    Science.gov (United States)

    Shrestha, Ruben; Huang, Gaochao; Meekins, David A; Geisbrecht, Brian V; Li, Ping

    2017-09-01

    Dye-decolorizing peroxidases (DyPs) are a family of H 2 O 2 -dependent heme peroxidases, which have shown potential applications in lignin degradation and valorization. However, the DyP kinetic mechanism remains underexplored. Using structural biology and solvent isotope (sKIE) and viscosity effects, many mechanistic characteristics have been uncovered for the B-class El DyP from Enterobacter lignolyticus . Its structure revealed that a water molecule acts as the sixth axial ligand with two channels at diameters of ~3.0 and 8.0 Å leading to the heme center. A conformational change of ERS * to ERS, which have identical spectral characteristics, was proposed as the final step in DyPs' bisubstrate Ping-Pong mechanism. This step is also the rate-determining step in ABTS oxidation. The normal KIE of wild-type El DyP with D 2 O 2 at pH 3.5 suggested that cmpd 0 deprotonation by the distal aspartate is rate-limiting in the formation of cmpd I, which is more reactive under acidic pH than under neutral or alkaline pH. The viscosity effects and other biochemical methods implied that the reducing substrate binds with cmpd I instead of the free enzyme. The significant inverse sKIEs of k cat / K M and k ERS* suggested that the aquo release in DyPs is mechanistically important and may explain the enzyme's adoption of two-electron reduction for cmpd I. The distal aspartate is catalytically more important than the distal arginine and plays key roles in determining DyPs' acidic pH optimum. The kinetic mechanism of D143H- El DyP was also briefly studied. The results obtained will pave the way for future protein engineering to improve DyPs' lignolytic activity.

  3. How Well Does BODIPY-Cholesteryl Ester Mimic Unlabeled Cholesteryl Esters in High Density Lipoprotein Particles?

    DEFF Research Database (Denmark)

    Karilainen, Topi; Vuorela, Timo; Vattulainen, Ilpo

    2015-01-01

    We compare the behavior of unlabeled and BODIPY-labeled cholesteryl ester (CE) in high density lipoprotein by atomistic molecular dynamics simulations. We find through replica exchange umbrella sampling and unbiased molecular dynamics simulations that BODIPY labeling has no significant effect...... on the partitioning of CE between HDL and the water phase. However, BODIPY-CE was observed to diffuse more slowly and locate itself closer to the HDL-water interface than CE due to the BODIPY probe that is constrained to the surface region, and because the CE body in BODIPY-CE prefers to align itself away from...

  4. Porphyrin-Azobenzene-Bodipy Triads: Syntheses, Structures, and Photophysical Properties.

    Science.gov (United States)

    Yin, Bangshao; Kim, Taeyeon; Zhou, Mingbo; Huang, Weiming; Kim, Dongho; Song, Jianxin

    2017-05-19

    Cyclic and acyclic azobenzene bridged porphyrin-dipyrrin derivatives were successfully prepared via Suzuki-Miyaura coupling reaction of α,α'-diborylated dipyrromethane with bromoazophenyl porphyrin or reaction of borylated porphyrin with dibromoazophenyl dipyrrin, and the corresponding porphyrin-Bodipy derivatives were obtained by subsequent boron complexation. The cyclic porphyrin-dipyrrin compound 3Ni was confirmed by X-ray diffraction. The low fluorescence quantum yields of azobenzene bridged porphyrin-Bodipy can be ascribed to the presence of the intramolecular charge transfer state.

  5. Permeant lipophilicity and vehicle composition influence accumulation of dyes in hair follicles of human skin.

    Science.gov (United States)

    Grams, Ylva Y; Alaruikka, Soile; Lashley, Lisa; Caussin, Julia; Whitehead, Lynne; Bouwstra, Joke A

    2003-04-01

    In skin and hair research drug targeting to the hair follicle is of great interest. Therefore the influence of permeant lipophilicity and vehicle composition on local accumulation has been examined using confocal laser scanning microscopy (CLSM). Formulations saturated with either Oregon Green 488, Bodipy FL C(5) or Bodipy 564/570 C(5) were prepared. The dyes were applied in citric acid buffer, 8% (w/v) surfactants in citric acid buffer or 8% (w/v) surfactants/20% (w/v) propylene glycol in citric acid buffer. Flow-through diffusion experiments were performed with fresh human scalp skin, after which the skin was imaged using CLSM. Diffusion studies showed for Oregon Green 488 (low lipophilicity) a higher flux when applied in citric acid buffer compared to surfactants. In contrast the fluxes of the more lipophilic dyes (Bodipy FL C(5) and Bodipy 564/570 C(5)) are highest when applied in surfactants/propylene glycol. CLSM studies revealed that follicular accumulation increased with (i) a lipophilic dye and (ii) application of lipophilic dyes in surfactants-propylene glycol. Therefore we conclude that targeting to the hair follicle can be increased by the use of lipophilic drugs in combination with surfactant solutions and propylene glycol.

  6. Activation and deprotection of F-BODIPYs using boron trihalides.

    Science.gov (United States)

    Lundrigan, Travis; Cameron, T Stanley; Thompson, Alison

    2014-07-07

    The activation of F-BODIPYs with boron trihalides, followed by treatment with a nucleophile, effects facile substitution at boron; using water as the nucleophile promotes deprotective removal of the -BF2 moiety and thereby production of the corresponding parent dipyrrin salt in quantitative yield under extremely mild conditions.

  7. Nanoscale insight into the exfoliation mechanism of graphene with organic dyes: effect of charge, dipole and molecular structure.

    Science.gov (United States)

    Schlierf, Andrea; Yang, Huafeng; Gebremedhn, Elias; Treossi, Emanuele; Ortolani, Luca; Chen, Liping; Minoia, Andrea; Morandi, Vittorio; Samorì, Paolo; Casiraghi, Cinzia; Beljonne, David; Palermo, Vincenzo

    2013-05-21

    We study the mechanism of surface adsorption of organic dyes on graphene, and successive exfoliation in water of these dye-functionalized graphene sheets. A systematic, comparative study is performed on pyrenes functionalized with an increasing number of sulfonic groups. By combining experimental and modeling investigations, we find an unambiguous correlation between the graphene-dye interaction energy, the molecular structure and the amount of graphene flakes solubilized. The results obtained indicate that the molecular dipole is not important per se, but because it facilitates adsorption on graphene by a "sliding" mechanism of the molecule into the solvent layer, facilitating the lateral displacement of the water molecules collocated between the aromatic cores of the dye and graphene. While a large dipole and molecular asymmetry promote the adsorption of the molecule on graphene, the stability and pH response of the suspensions obtained depend on colloidal stabilization, with no significant influence of molecular charging and dipole.

  8. Color-Tunable Solid-State Fluorescence Emission from Carbazole-Based BODIPYs.

    Science.gov (United States)

    Maeda, Chihiro; Todaka, Takumi; Ueda, Tomomi; Ema, Tadashi

    2016-05-23

    Several carbazole-based boron dipyrromethene (BODIPY) dyes were synthesized by organometallic approaches. Thiazole, benzothiazole, imidazole, benzimidazole, triazole, and indolone substituents were introduced at the 1-position of the carbazole moiety, and boron complexation of each dipyrrin generated the corresponding compounds 1, 2 a, and 3-6. The properties of these products were investigated by UV/Vis and fluorescence spectroscopy, cyclic voltammetry, X-ray crystallography, and DFT calculations. These compounds exhibited large Stokes shifts, and compounds 1, 2 a, and 3-5 fluoresced both in solution and in the solid state. Complex 2 a showed the highest fluorescence quantum yield (ΦF ) in the solid state, therefore boron complexes of the carbazole-benzothiazole hybrids 2 b-f, which had several different substituents, were prepared and the effects of the substituents on the photophysical properties of the compounds were examined. The fluorescence properties showed good correlation with the results of crystal-packing analyses, and the dyes exhibited color-tunable solid-state fluorescence. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Near infrared imaging-guided photodynamic therapy under an extremely low energy of light by galactose targeted amphiphilic polypeptide micelle encapsulating BODIPY-Br2.

    Science.gov (United States)

    Liu, Le; Ruan, Zheng; Li, Tuanwei; Yuan, Pan; Yan, Lifeng

    2016-10-18

    Near infrared (NIR) imaging-guided photodynamic therapy (PDT) is attractive, especially the utilization of one dye as both a photosensitizer and fluorescent probe, and the as-synthesized BODIPY-Br 2 molecule is a candidate. Here, a galactose targeted amphiphilic copolymer of a polypeptide was synthesized and its micelles work as nanocarriers for BODIPY for targeting the NIR imaging-guided PDT of hepatoma cancer cells. At the same time, BODIPY could light up the cytoplasm for real-time imaging and kill cancer cells when the light was switched on. In vitro tests performed on both HepG2 and HeLa cells confirmed that the as-prepared PMAGP-POEGMA-PLys-B micelles showed efficient cell suppression of the cells with galactose receptors in the presence of light under an extremely low energy density (6.5 J cm -2 ). This protocol highlights the potential of polypeptides as biodegradable carriers for NIR image-guided and confined targeting photodynamic therapy.

  10. Synthesis, Photophysics, Electrochemistry and Electrogenerated Chemiluminescence of a Homologous Set of BODIPY-Appended Bipyridine Derivatives.

    Science.gov (United States)

    Rosenthal, Joel; Nepomnyashchii, Alexander B; Kozhukh, Julia; Bard, Allen J; Lippard, Stephen J

    2011-09-15

    Two new 2,2'-bipyridine (bpy) based ligands with ancillary BODIPY chromophores attached at the 4 and 4'-positions were prepared and characterized, which vary in the substitution pattern about the BODIPY periphery by either excluding (BB1) or including (BB2) a β-alkyl substituent. Both absorb strongly throughout the visible region and are strongly emissive. The basic photophysics and electrochemical properties of BB1 and BB2 are comparable to those of the BODIPY monomers on which they are based. The solid-state structures and electronic structure calculations both indicate that there is negligible electronic communication between the BODIPY moieties and the intervening bpy spacers. Electrogenerated chemiluminescence spectra of the two Bpy-BODIPY derivatives are similar to their recorded fluorescence profiles and are strongly influenced by substituents on the BODIPY chromophores. These 2,2'-bipyridine derivatives represent a new set of ligands that should find utility in applications including light-harvesting, photocatalysis, and molecular electronics.

  11. Insight into the effects of modifying chromophores on the performance of quinoline-based dye-sensitized solar cells

    Science.gov (United States)

    Mao, Mao; Wang, Jian-Bo; Liu, Xiu-Lin; Wu, Guo-Hua; Fang, Xia-Qin; Song, Qin-Hua

    2018-02-01

    A series of organic dyes based on quinoline as an electron-deficient π-linker, were designed and synthesized for dye sensitized solar cells (DSSC) application. These push-pull conjugated dyes, sharing same anchoring group with distinctive electron-rich donating groups such as N,N-diethyl (DEA-Q), 3,6-dimethoxy carbazole (CBZ-Q), bis(4-butoxyphenyl)amine (BPA-Q), were synthesized by Riley oxidation of sbnd CH3 followed by Knoevenagel condensation of the corresponding aldehyde precursors 2a-c with cyanoacrylic acid. The optical, electrochemical, theoretical calculation and photovoltaic properties with these three dyes were systematically investigated. Compared to DEA-Q and CBZ-Q, BPA-Q possesses better light harvesting properties with regard to extended conjugate length, red-shifted intramolecular charge transfer band absorption and broaden light-responsive IPCE spectrum, resulting in a greater short circuit photocurrent density output. BPA-Q also has improved open-circuit voltage due to the apparent large charge recombination resistance. Consequently, assembled with iodine redox electrolytes, the device with BPA-Q achieved the best overall conversion efficiency value of 3.07% among three dyes under AM 1.5G standard conditions. This present investigation demonstrates the importance of various N-substituent chromophores in the prevalent D-π-A type organic sensitizers for tuning the photovoltaic performance of their DSSCs.

  12. Theoretical Insight into Organic Dyes Incorporating Triphenylamine-Based Donors and Binary π-Conjugated Bridges for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Shuxian Wei

    2014-01-01

    Full Text Available The design of light-absorbent sensitizers with sustainable and environment-friendly material is one of the key issues for the future development of dye-sensitized solar cells (DSSCs. In this work, a series of organic sensitizers incorporating alkoxy-substituted triphenylamine (tpa donors and binary π-conjugated bridges were investigated using density functional theory (DFT and time-dependent DFT (TD-DFT. Molecular geometry, electronic structure, and optical absorption spectra are analyzed in the gas phase, chloroform, and dimethylformamide (DMF solutions. Our results show that properly choosing the heteroaromatic atoms and/or adding one more alkoxy-substituted tpa group can finely adjust the molecular orbital energy. The solvent effect renders the HOMO-LUMO gaps of the tpa-based sensitizers decrease in the sequence of DMF solution < chloroform solution < gas phase. The absorption spectra are assigned to the ligand-to-ligand charge transfer (LLCT characteristics via transitions mainly from tpa, 3,4-ethylenedioxythiophene (edot, and alkyl-substituted dithienosilole (dts groups to edot, dts, and cyanoacrylic acid groups. The binary π-conjugated bridges play different roles in balancing the electron transfer and recombination for the different tpa-based sensitizers. The protonation/deprotonation effect has great effect on the HOMO-LUMO gaps and thus has great influence on the bands at the long wavelength region, but little influence on the bands at the short wavelength region.

  13. BODIPY-based fluorescent liposomes with sesquiterpene lactone trilobolide

    Czech Academy of Sciences Publication Activity Database

    Škorpilová, Ludmila; Rimpelová, S.; Jurášek, M.; Buděšínský, Miloš; Lokajová, Jana; Effenberg, R.; Slepička, P.; Ruml, T.; Kmoníčková, Eva; Drašar, P. B.; Wimmer, Zdeněk

    2017-01-01

    Roč. 13, JUL 4 (2017), s. 1316-1324 ISSN 1860-5397 R&D Projects: GA MŠk LD15012; GA MŠk(CZ) LO1304 Institutional support: RVO:61389030 ; RVO:61388963 ; RVO:68378041 Keywords : BODIPY conjugates * Cancer targeting * Drug delivery * Liposomes * Natural compounds * Sesquiterpene lactone trilobolide Subject RIV: CC - Organic Chemistry; FR - Pharmacology ; Medidal Chemistry (UEM-P) OBOR OECD: Organic chemistry; Pharmacology and pharmacy (UEM-P) Impact factor: 2.337, year: 2016

  14. Glutathione-mediated release of Bodipy® from PEG cofunctionalized gold nanoparticles

    Science.gov (United States)

    Kumar, Dhiraj; Meenan, Brian J; Dixon, Dorian

    2012-01-01

    Gold nanoparticles synthesized via sodium citrate reduction of chloroauric acid (HAuCl4) were functionalized with either various concentrations of thiol-terminated Bodipy® FL L-cystine (0.5, 1.0, 1.5, and 2.0 μg/mL) or Bodipy-poly(ethylene glycol) at concentrations of 0.5–18.75, 1.0–12.50, and 1.5–6.25 μg/mL to form a mixed monolayer of BODIPY-PEG. Thiol-terminated Bodipy, a fluorescing molecule, was used as the model drug, while PEG is widely used in drug-delivery applications to shield nanoparticles from unwanted immune responses. Understanding the influence of PEG-capping on payload release is critical because it is the most widely used type of nanoparticle functionalization in drug delivery studies. It has been previously reported that glutathione can trigger release of thiol-bound payloads from gold nanoparticles. Bodipy release from Bodipy capped and from Bodipy-PEG functionalized gold nanoparticles was studied at typical intracellular glutathione levels. It was observed that the addition of PEG capping inhibits the initial burst release observed in gold nanoparticles functionalized only with Bodipy and inhibits nanoparticle aggregation. Efficient and controlled payload release was observed in gold nanoparticles cofunctionalized with only a limited amount of PEG, thus enabling the coattachment of large amounts of drug, targeting groups or other payloads. PMID:22915847

  15. π-Extended tetrathiafulvalene BODIPY (ex-TTF-BODIPY): A redox switched "on-off-on" electrochromic system with two near-infrared fluorescent outputs

    DEFF Research Database (Denmark)

    Bill, N. L.; Lim, J. M.; Davis, C. M.

    2014-01-01

    A pi-extended tetrathiafulvalene-boradiazaindacene chimera, ex-TTF-BODIPY, has been prepared. The resulting system undergoes sequential one-electron oxidations, allowing access to both the mono-oxidized radical cationic and dicationic states. Additionally, ex-TTF-BODIPY displays electrochromic an...... and electrofluorochromic behaviour in the near-IR portion of the electromagnetic spectrum and functions as a redox switched "on-off-on'' emissive system....

  16. Carbazole-based BODIPYs with ethynyl substituents at the boron center: solid-state excimer fluorescence in the VIS/NIR region.

    Science.gov (United States)

    Maeda, Chihiro; Nagahata, Keiji; Ema, Tadashi

    2017-09-26

    Carbazole-based BODIPYs 1-6 with several different substituents at the boron atom site were synthesized. These dyes fluoresced in the solid state, and 3a with phenylethynyl groups exhibited a red-shifted and broad fluorescence spectrum, which suggested an excimer emission. Its derivatives 3b-n were synthesized, and the relationship between the solid-state emission and crystal packing was investigated. The X-ray crystal structures revealed cofacial dimers that might form excimers. From the structural optimization results, we found that the introduction of mesityl groups hindered intermolecular access and led to reduced interactions between the dimers. In addition, the red-shifted excimer fluorescence suppressed self-absorption, and dyes with ethynyl groups showed solid-state fluorescence in the vis/NIR region.

  17. The sensitivity and selectivity properties of a fluorescence sensor based on quinoline-Bodipy

    Energy Technology Data Exchange (ETDEWEB)

    Nuri Kursunlu, Ahmed, E-mail: ankursunlu@gmail.com; Guler, Ersin

    2014-01-15

    A novel florescence sensor (Q-BODIPY) based on quinoline-Bodipy (quinoline-boradiazaindacene) was prepared by ‘click chemistry’ in several stages. The sensing actions of Q-BODIPY were confirmed by UV–vis titration, emission and excitation spectroscopic studies in presence of Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}, Sn{sup 2+}, Hg{sup 2+}, Pb{sup 2+}, La{sup 3+}, Ga{sup 3+}, Er{sup 3+} and Yb{sup 3+} ions in methanol:H{sub 2}O (1:1) medium. Whereas some metal ions can only cause quenching effect on the fluorescence intensity of Q-BODIPY, some of them show an increase in fluorescence intensity. The stoichiometry of host–guest complexes formed was determined by Job′s plot method. The binding constants were calculated by Stern–Volmer method. As a fluorescence sensor, Q-BODIPY shows the best selectivity performance against Zn{sup 2+} ions in according to all spectroscopic data. -- Highlights: • Q-BODIPY prepared by several techniques shows a fluorescent behavior toward p, d and f block metal ions. • Q-BODIPY has both a more sensitivity and more effective ability for the detection of Zn(II) ion. • The synthesis strategies to produce Bodipy′s with metal coordinating offer a new approach for the design of novel fluorescence sensors.

  18. 3-/3,5-Pyrrole-substituted BODIPY derivatives and their ...

    Indian Academy of Sciences (India)

    application of BODIPY is their use in the up-conversion of energy by triplet-triplet annihilation due to their low ... umn chromatography was performed using silica gel of 100–200 mesh size. The 1H and 13C-NMR (δ in .... molecular ion peak for 1–4 confirms the formation of these BODIPY derivatives. 3.2 Photophysical ...

  19. Insight

    Science.gov (United States)

    Ramesh, Priya; Wei, Annan; Welter, Elisabeth; Bamps, Yvan; Stoll, Shelley; Bukach, Ashley; Sajatovic, Martha; Sahoo, Satya S

    2015-11-01

    Insight is a Semantic Web technology-based platform to support large-scale secondary analysis of healthcare data for neurology clinical research. Insight features the novel use of: (1) provenance metadata, which describes the history or origin of patient data, in clinical research analysis, and (2) support for patient cohort queries across multiple institutions conducting research in epilepsy, which is the one of the most common neurological disorders affecting 50 million persons worldwide. Insight is being developed as a healthcare informatics infrastructure to support a national network of eight epilepsy research centers across the U.S. funded by the U.S. Centers for Disease Control and Prevention (CDC). This paper describes the use of the World Wide Web Consortium (W3C) PROV recommendation for provenance metadata that allows researchers to create patient cohorts based on the provenance of the research studies. In addition, the paper describes the use of descriptive logic-based OWL2 epilepsy ontology for cohort queries with "expansion of query expression" using ontology reasoning. Finally, the evaluation results for the data integration and query performance are described using data from three research studies with 180 epilepsy patients. The experiment results demonstrate that Insight is a scalable approach to use Semantic provenance metadata for context-based data analysis in healthcare informatics.

  20. Molecular Engineering, Photophysical and Electrochemical Characterizations of Novel Ru(II) and BODIPY Sensitizers for Mesoporous TiO2 Solar Cells

    Science.gov (United States)

    Cheema, Hammad Arshad

    precludes coplanarity of the naphthalene moiety, thus decreasing the extracted photocurrent response from solar device. The findings were published in Dyes and Pigments (doi:10.1016/j.dyepig.2014.08.005). For HD-7 and HD-8, intriguing difference caused by structural isomerization based on anthracene and phenanthrene stilbazole type ancillary ligands, respectively in Ru (II) sensitizers was investigated using femtosecond transient absorption spectroscopy. It was found that the excited electrons in HD-7 are prone to ISC (intersystem crossing) much more than that in HD-8 and those triplet electrons are not being injected in TiO2 efficiently as discussed in Chapter 5. To achieve long term stability, we combined the strong electron donor characteristics of carbazole and the hydrophobic nature of long alkyl chains, C7 (HD-14 ), C18 (HD-15) and C2 (NCSU-10), tethered to N-carbazole. HD-15 showed strikingly good long term light soaking stability and maintained up to 98% of initial efficiency value compared to 92% for HD-14 and 78% for NCSU-10, as discussed in Chapter 6. Boron dipyromethene (BODIPY) dyes HB-1, HB-2 and HB-3 were synthesized and fully characterized for dye solar cells. It was found that having long alkyl chains tethered to the donor groups alone are not sufficient for achieving highly efficient photovoltaic response from BODIPY dyes (Chapter 7). Thus, replacement of fluorines from BODIPY core with long alkoxy chains has been suggested for future work.

  1. H-aggregates of oligophenyleneethynylene (OPE)-BODIPY systems in water: guest size-dependent encapsulation mechanism and co-aggregate morphology.

    Science.gov (United States)

    Allampally, Naveen Kumar; Florian, Alexander; Mayoral, María José; Rest, Christina; Stepanenko, Vladimir; Fernández, Gustavo

    2014-08-18

    The synthesis of a new oligophenyleneethynylene (OPE)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) bolaamphiphile 1 and its aqueous self-assembly are reported. Compound 1 forms H-type aggregates in aqueous and polar media, as demonstrated by UV/Vis and fluorescence experiments. Concentration-dependent (1)H NMR studies in CD3CN reveal that the BODIPY units are arranged on top of each other into π-stacks with H-type excitonic coupling, as supported by ROESY NMR and theoretical calculations and visualized by Cryo-SEM studies. A detailed analysis of the spectral changes observed in temperature-dependent UV/Vis studies reveals that 1 self-assembles in a non-cooperative (isodesmic) fashion in water. The hydrophobic interior of these self-assembled structures can be exploited to encapsulate hydrophobic dyes, such as tetracene and anthracene. Both dyes absorb in a complementary region of the UV/Vis spectrum and are small enough to interact with the hydrophobic segments of 1. Temperature-dependent UV/Vis studies reveal that the spectral changes associated to the encapsulation mechanism of tetracene can be fitted to a Boltzmann function, and the initially flexible fibres of 1 rigidify upon guest addition. In contrast, the co-assembly of 1 and anthracene is a highly cooperative process, which suggests that a different class of (more-ordered) aggregates is formed. TEM and Cryo SEM imaging show the formation of uniform spherical nanoparticles, indicating that a subtle change in the guest molecular structure induces a significant change in the encapsulation mechanism and, consequently, the aggregate morphology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Di- and tri-oxalkyl derivatives of a boron dipyrromethene (BODIPY) rotor dye in lipid bilayers

    Czech Academy of Sciences Publication Activity Database

    Olšinová, Marie; Jurkiewicz, Piotr; Pozník, M.; Šachl, Radek; Prausová, T.; Hof, Martin; Kozmik, V.; Teplý, Filip; Svoboda, J.; Cebecauer, Marek

    2014-01-01

    Roč. 16, č. 22 (2014), s. 10688-10697 ISSN 1463-9076 R&D Projects: GA ČR GAP305/11/0459 Institutional support: RVO:61388955 ; RVO:61388963 Keywords : PLASMA-MEMBRANE VESICLES * MOLECULAR ROTOR * FLUORESCENCE POLARIZATION Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.493, year: 2014

  3. Locally Excited State-Charge Transfer State Coupled Dyes as Optically Responsive Neuron Firing Probes.

    Science.gov (United States)

    Sirbu, Dumitru; Butcher, John B; Waddell, Paul G; Andras, Peter; Benniston, Andrew C

    2017-10-17

    A selection of NIR-optically responsive neuron probes was produced comprising of a donor julolidyl group connected to a BODIPY core and several different styryl and vinylpyridinyl derived acceptor moieties. The strength of the donor-acceptor interaction was systematically modulated by altering the electron withdrawing nature of the aryl unit. The fluorescence quantum yield was observed to decrease as the electron withdrawing effect of the aryl subunit increased in line with changes of the Hammett parameter. The effectiveness of these fluorophores as optically responsive dyes for neuronal imaging was assessed by measuring the toxicity and signal-to-noise ratio (SNR) of each dye. A great improvement of SNR was obtained when compared to the first-generation BODIPY-based voltage sensitive dyes with concomitant toxicity decrease. The mechanism for the optical response is disparate from conventional cyanine-based dyes, opening up a new way to produce effective voltage sensitive dyes that respond well into the NIR region. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol

    Science.gov (United States)

    Sankaranarayanan, Sandhya; Kellner-Weibel, Ginny; de la Llera-Moya, Margarita; Phillips, Michael C.; Asztalos, Bela F.; Bittman, Robert; Rothblat, George H.

    2011-01-01

    Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantitating cholesterol efflux involves labeling cells with [3H]cholesterol and measuring release of the labeled sterol. Using [3H]cholesterol is not ideal for the development of a high-throughput assay to screen large numbers of serum as would be required in studying the link between efflux and CAD. We compared efflux using a fluorescent sterol (boron dipyrromethene difluoride linked to sterol carbon-24, BODIPY-cholesterol) with that of [3H]cholesterol in J774 macrophages. Fractional efflux of BODIPY-cholesterol was significantly higher than that of [3H]cholesterol when apo A-I, HDL3, or 2% apoB-depleted human serum were used as acceptors. BODIPY-cholesterol efflux correlated significantly with [3H]cholesterol efflux (p cholesterol efflux correlated significantly with preβ-1 (r2 = 0.6) but not with total HDL-cholesterol. Reproducibility of the BODIPY-cholesterol efflux assay was excellent between weeks (r2 = 0.98, inter-assay CV = 3.31%). These studies demonstrate that BODIPY-cholesterol provides an efficient measurement of efflux compared with [3H]cholesterol and is a sensitive probe for ABCA1-mediated efflux. The increased sensitivity of BODIPY-cholesterol assay coupled with the simplicity of measuring fluorescence results in a sensitive, high-throughput assay that can screen large numbers of sera, and thus establish the relationship between cholesterol efflux and atherosclerosis. PMID:21957199

  5. BODIPY-pyrene and perylene dyads as heavy atom-free singlet oxygen sensitizers

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-23

    Dyads combining BODIPY as an electron acceptor and pyrene or perylene as electron donor subunits were prepared and studied their photophysical properties studied by steady-state and transient spectroscopy. Depending on the structure of the subunits and polarity of the media, the dyads show either bright fluorescence or photo-induced electron transfer (PeT) in solution. Charge-transfer (CT) states formed as a result of PeT and were found to yield triplet excited states of the BODIPY. In the presence of molecular oxygen, the dyads sensitize singlet oxygen (1O2) with quantum yields of up to 0.75.

  6. Laser Dyes

    Indian Academy of Sciences (India)

    treatments, including port-wine stain and tattoo removal, diag- nostic measurements, lithotripsy, activation of photosensitive drugs for photodynamic therapy, etc. In the field of medical applications, dye lasers have potential advantages over other lasers. Dye lasers are unique sources of tunable coherent radiation, from the ...

  7. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  8. Tuning the BODIPY Core for its Potential Use in DSSC: A Quantum ...

    Indian Academy of Sciences (India)

    59

    On the basis of empirical relationship, we have also calculated .... of substitution of the donor groups have been analyzed in 2 and 3 positions in the BODIPY backbone keeping, cyanoacrylic acid as ..... [37] Ni Y, Zeng L, Kang N Y, Huang K W, Wang L, Zeng Z, Chang Y T, Wu J 2014 Chem. Europ. J. 20 2301. [38] Tomasi J ...

  9. Membrane orientation and lateral diffusion of BODIPY-cholesterol as a function of probe structure

    DEFF Research Database (Denmark)

    Solanko, Lukasz Michal; Wüstner, Daniel; Lund, Frederik Wendelboe

    2013-01-01

    -24 of cholesterol (B-P-Chol). Using two-photon fluorescence polarimetry in giant unilamellar vesicles and in the plasma membrane (PM) of living intact and actin-disrupted cells, we show that the BODIPY-groups in B-Chol and B-P-Chol are oriented perpendicular and almost parallel to the bilayer normal...

  10. AcetylacetonateBODIPY-Biscyclometalated Iridium(III) Complexes: Effective Strategy towards Smarter Fluorescent Photosensitizer Agents.

    Science.gov (United States)

    Palao, Eduardo; Sola-Llano, Rebeca; Tabero, Andrea; Manzano, Hegoi; Agarrabeitia, Antonia R; Villanueva, Angeles; López-Arbeloa, Iñigo; Martínez-Martínez, Virginia; Ortiz, Maria J

    2017-07-26

    Biscyclometalated Ir III complexes involving boron-dipyrromethene (BODIPY)-based ancillary ligands, where the BODIPY unit is grafted to different chelating cores (acetylacetonate for Ir-1 and Ir-2, and bipyridine for Ir-3) by the BODIPY meso position, have been synthesized and characterized. Complexes with the BODIPY moiety directly grafted to acetylacetonate (Ir-1 and Ir-2) exhibit higher absorption coefficients (ϵ≈4.46×10 4  m -1  cm -1 and 3.38×10 4  m -1  cm -1 at 517 nm and 594 nm, respectively), higher moderate fluorescence emission (φ fl ≈0.08 and 0.22 at 528 nm and 652 nm, respectively) and, in particular, more efficient singlet oxygen generation upon visible-light irradiation (φ Δ ≈0.86 and 0.59, respectively) than that exhibited by Ir-3 (φ Δ ≈0.51, but only under UV light). Phosphorescence emission, nanosecond time-resolved transient absorption, and DFT calculations suggest that BODIPY-localized long-lived 3 IL states are populated for Ir-1 and Ir-2. In vitro photodynamic therapy (PDT) activity studied for Ir-1 and Ir-2 in HeLa cells shows that such complexes are efficiently internalized into the cells, exhibiting low dark- and high photocytoxicity, even at significantly low complex concentration, making them potentially suitable as theranostic agents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Tuning Electronic Structure, Redox, and Photophysical Properties in Asymmetric NIR-Absorbing Organometallic BODIPYs.

    Science.gov (United States)

    Zatsikha, Yuriy V; Maligaspe, Eranda; Purchel, Anatolii A; Didukh, Natalia O; Wang, Yefeng; Kovtun, Yuriy P; Blank, David A; Nemykin, Victor N

    2015-08-17

    Stepwise modification of the methyl groups at the α positions of BODIPY 1 was used for preparation of a series of mono- (2, 4, and 6) and diferrocene (3) substituted donor-acceptor dyads in which the organometallic substituents are fully conjugated with the BODIPY π system. All donor-acceptor complexes have strong absorption in the NIR region and quenched steady-state fluorescence, which can be partially restored upon oxidation of organometallic group(s). X-ray crystallography of complexes 2-4 and 6 confirms the nearly coplanar arrangement of the ferrocene groups and the BODIPY π system. Redox properties of the target systems were studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the first oxidation process in all dyads is ferrocene centered, while the separation between the first and the second ferrocene-centered oxidation potentials in diferrocenyl-containing dyad 3 is ∼150 mV. The density functional theory-polarized continuum model (DFT-PCM) and time-dependent (TD) DFT-PCM methods were used to investigate the electronic structure as well as explain the UV-vis and redox properties of organometallic compounds 2-4 and 6. TDDFT calculations allow for assignment of the charge-transfer and π → π* transitions in the target compounds. The excited state dynamics of the parent BODIPY 1 and dyads 2-4 and 6 were investigated using time-resolved transient spectroscopy. In all organometallic dyads 2-4 and 6 the initially excited state is rapidly quenched by electron transfer from the ferrocene ligand. The lifetime of the charge-separated state was found to be between 136 and 260 ps and demonstrates a systematic dependence on the electronic structure and geometry of BODIPYs 2-4 and 6.

  12. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    Science.gov (United States)

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A general synthetic strategy for the design of new BODIPY fluorophores based on pyrroles with polycondensed aromatic and metallocene substituents.

    Science.gov (United States)

    Schmidt, Elena Yu; Zorina, Nadezhda V; Dvorko, Marina Yu; Protsuk, Nadezhda I; Belyaeva, Kseniya V; Clavier, Gilles; Méallet-Renault, Rachel; Vu, Thanh T; Mikhaleva, Al'bina I; Trofimov, Boris A

    2011-03-07

    BODIPYrrole: A general strategy for the design of novel BODIPY fluorophores based on pyrroles with polycondensed aromatic and metallocene substituents has been developed. The strategy involves the acylation of the condensed substituent and treatment of the acylated derivative (as oxime) with acetylene in MOH/DMSO (M = alkali metal) to give pyrroles that were then used for assembly of the BODIPY fluorophores (see scheme). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Why do TD-DFT excitation energies of BODIPY/Aza-BODIPY families largely deviate from experiment? Answers from electron correlated and multireference methods.

    Science.gov (United States)

    Momeni, Mohammad R; Brown, Alex

    2015-06-09

    The vertical excitation energies of 17 boron-dipyrromethene (BODIPY) core structures with a variety of substituents and ring sizes are benchmarked using time-dependent density functional theory (TD-DFT) with nine different functionals combined with the cc-pVTZ basis set. When compared to experimental measurements, all functionals provide mean absolute errors (mean AEs) greater than 0.3 eV, larger than the 0.1-0.3 eV differences typically expected from TD-DFT. Due to the high linear correlation of TD-DFT results with experiment, most functionals can be used to predict excitation energies if corrected empirically. Using the CAM-B3LYP functional, 0-0 transition energies are determined, and while the absolute difference is improved (mean AE = 0.478 eV compared to 0.579 eV), the correlation diminishes substantially (R(2) = 0.961 to 0.862). Two very recently introduced charge transfer (CT) indices, q(CT) and d(CT), and electron density difference (EDD) plots demonstrate that CT does not play a significant role for most of the BODIPYs examined and, thus, cannot be the source of error in TD-DFT. To assess TD-DFT methods, vertical excitation energies are determined utilizing TD-HF, configuration interaction CIS and CIS(D), equation of motion EOM-CCSD, SAC-CI, and Laplace-transform based local coupled-cluster singles and approximate doubles LCC2* methods. Moreover, multireference CASSCF and CASPT2 vertical excitation energies were also obtained for all species (except CASPT2 was not feasible for the four largest systems). The SAC-CI/cc-pVDZ, LCC2*/cc-pVDZ, and CASPT2/cc-pVDZ approaches are shown to have the smallest mean AEs of 0.154, 0.109, and 0.100 eV, respectively; the utility of the LCC2* approach is demonstrated for eight extended BODIPYs and aza-BODIPYs. We found that the problems with TD-DFT arise from difficulties in dealing with the differential electron correlation (as assessed by comparing CCS, CC2, LR-CCSD, CCSDR(T), and CCSDR(3) vertical excitation energies for

  15. A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging

    Science.gov (United States)

    He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun

    2018-04-01

    In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765 nm when excited at 704 nm. The emission at 765 nm responded differently to Cu2+ and Mn2+ ions, respectively. The BPN coordinated with Cu2+ forming [BPNCu]2+ complex with quenched emission, while Mn2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu2+ ions in serum with linear detection range of 0.45 μM-36.30 μM. Results indicate that BPN is a good sensor for the detection of Cu2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood.

  16. Parallel fluorescent probe synthesis based on the large-scale preparation of BODIPY FL propionic acid.

    Science.gov (United States)

    Katoh, Taisuke; Yoshikawa, Masato; Yamamoto, Takeshi; Arai, Ryosuke; Nii, Noriyuki; Tomata, Yoshihide; Suzuki, Shinkichi; Koyama, Ryoukichi; Negoro, Nobuyuki; Yogo, Takatoshi

    2017-03-01

    We describe a methodology for quick development of fluorescent probes with the desired potency for the target of interest by using a method of parallel synthesis, termed as Parallel Fluorescent Probe Synthesis (Parallel-FPS). BODIPY FL propionic acid 1 is a widely used fluorophore, but it is difficult to prepare a large amount of 1, which hinders its use in parallel synthesis. Optimization of a synthetic scheme enabled us to obtain 50g of 1 in one batch. With this large quantity of 1 in hand, we performed Parallel-FPS of BODIPY FL-labeled ligands for estrogen related receptor-α (ERRα). An initial trial of the parallel synthesis with various linkers provided a potent ligand for ERRα (Reporter IC 50 =80nM), demonstrating the usefulness of Parallel-FPS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells.

    Science.gov (United States)

    Su, Dongdong; Teoh, Chai Lean; Gao, Nengyue; Xu, Qing-Hua; Chang, Young-Tae

    2016-08-31

    Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY)-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM).

  18. Triplet-triplet annihilation upconversion kinetics of C60-Bodipy dyads as organic triplet photosensitizers.

    Science.gov (United States)

    Wei, Yaxiong; Zhou, Miaomiao; Zhou, Qiaohui; Zhou, Xiaoguo; Liu, Shilin; Zhang, Song; Zhang, Bing

    2017-08-23

    Three new triplet photosensitizers consisting of a bodipy derivative and C 60 moieties were synthesized for triplet-triplet annihilation upconversion of perylene. With the extension of the π-conjugated structure of the bodipy derivative, the three photosensitizers exhibited different absorption wavelengths, e.g. 517 nm for B-2, 532 nm for B-4, and 557 nm for B-6. The steady-state and transient absorption, steady-state fluorescence, and upconverted fluorescence emission were investigated to reveal step-by-step the dynamic processes of the above systems. The quantum yields of intramolecular energy transfer, intersystem crossing, and triplet-triplet energy transfer were measured. From the upconverted fluorescence emission spectra, the overall quantum yield of the triplet-triplet annihilation upconversion, Φ UC , was determined to be 5.80% for B-2, 7.95% for B-4, and 4.99% for B-6.

  19. Synthesis, electrochemistry, and electrogenerated chemiluminescence of two BODIPY-appended bipyridine homologues.

    Science.gov (United States)

    Qi, Honglan; Teesdale, Justin J; Pupillo, Rachel C; Rosenthal, Joel; Bard, Allen J

    2013-09-11

    Two new 2,2'-bipyridine (bpy) derivatives containing ancillary BODIPY chromophores attached at the 5- and 5'-positions (BB3) or 6- and 6'-positions (BB4) were prepared and characterized. In this work, the basic photophysics, electrochemistry, and electrogenerated chemiluminescence (ECL) of BB3 and BB4 are compared with those previously reported for a related bpy-BODIPY derivative (BB2) (J. Phys. Chem. C 2011, 115, 17993-18001). Cyclic voltammetry revealed that BB3 and BB4 display reversible 2e(-) oxidation and reduction waves, which consist of two closely spaced (50-70 mV) 1e(-) events. This redox behavior is consistent with the frontier molecular orbitals calculated for BB3 and BB4 and indicates that the 2,2'-bipyridine spacer of each bpy-BODIPY homologue does not facilitate efficient electronic communication between the tethered indacene units. In the presence of a coreactant such as tri-n-propylamine (TPA) or benzoyl peroxide (BPO), BB3 and BB4 exhibit strong ECL and produce spectra that are very similar to their corresponding photoluminescence profiles. The ECL signal obtained under annihilation conditions, however, is significantly different and is characterized by two distinct bands. One of these bands is centered at ∼570 nm and is attributed to emission via an S- or T-route. The second band occurs at longer wavelengths and is centered around ∼740 nm. The shape and concentration dependence of this long-wavelength ECL signal is not indicative of emission from an excimer or aggregate, but rather it suggests that a new emissive species is formed from the bpy-BODIPY luminophores during the annihilation process.

  20. Synthesis, Electrochemistry and Electrogenerated Chemiluminesce of two BODIPY-Appended Bipyridine Homologues

    Science.gov (United States)

    Qi, Honglan; Teesdale, Justin J.; Pupillo, Rachel C.

    2014-01-01

    Two new 2,2’-bipyridine (bpy) derivatives containing ancillary BODIPY chromophores attached at the 5- and 5’-positions (BB3) or 6- and 6’-positions (BB4) were prepared and characterized. In this work, the basic photophysics, electrochemistry and electrogenerated chemiluminescence (ECL) of BB3 and BB4 are compared with those previously reported for a related bpy-BODIPY derivative (BB2) (J. Phys. Chem. C 2011, 115, 17993–18001). Cyclic voltammetry revealed that BB3 and BB4 display reversible 2e− oxidation and reduction waves, which consist of two closely spaced (50 – 70 mV) 1e− events. This redox behavior is consistent with the frontier molecular orbitals calculated for BB3 and BB4 and indicates that the 2,2’-bipyridine spacer of each bpy- BODIPY homologue does not facilitate efficient electronic communication between the tethered indacene units. In the presence of a coreactant such as tri-n-propylamine (TPA) or benzoyl peroxide (BPO), BB3 and BB4 exhibit strong ECL and produce spectra that are very similar to their corresponding photoluminescence profiles. The ECL signal obtained under annihilation conditions, however, is significantly different and is characterized by two distinct bands. One of these bands is centered at ~570 nm and is attributed to emission via an S- or T-route. The second band, occurs at longer wavelengths and is centered around ~740 nm. The shape and concentration dependence of this long-wavelength ECL signal is not indicative of emission from an excimer or aggregate, but rather is suggests that a new emissive species is formed from the bpy-BODIPY luminophores during the annihilation process. PMID:23980850

  1. Helically labile bis(haloBODIPYs): an advantageous platform for the development of CPL-SOMs

    OpenAIRE

    Ray, C��sar; S��nchez-Carnerero, Esther M.; Moreno, Florencio; Maroto, Beatriz L.; Agarrabeitia, Antonia R.; Ortiz, Mar��a J.; L��pez-Arbeloa, ����igo; Ba��uelos, Jorge; Cohovi, Komlan D.; Lunkley, Jamie L.; Muller, Gilles; de la Moya, Santiago

    2016-01-01

    Simple organic molecules (SOM) based on bis(haloBODIPY) are shown to enable circularly polarized luminescence (CPL), giving rise to a new structural design for technologically valuable CPL-SOMs. The established design comprises together synthetic accessibility, labile helicity, possibility of reversing the handedness of the circularly polarized emission, and reactive functional groups, making it unique and attractive as advantageous platform for the development of smart CPL-SOMs.

  2. Distribution of BODIPY-labelled phosphatidylethanolamines in lipid bilayers exhibiting different curvatures

    Czech Academy of Sciences Publication Activity Database

    Šachl, Radek; Mikhalyov, I.; Gretskaya, N.; Olžyńska, Agnieszka; Hof, Martin; Johansson, B.-A.

    2011-01-01

    Roč. 13, č. 24 (2011), s. 11694-11701 ISSN 1463-9076 R&D Projects: GA ČR GAP208/10/1090; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z40400503 Keywords : BODIPY-labelled phosphatidylethanolamines * lipid bilayers * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011

  3. Exploring viscosity, polarity and temperature sensitivity of BODIPY-based molecular rotors.

    Science.gov (United States)

    Vyšniauskas, Aurimas; López-Duarte, Ismael; Duchemin, Nicolas; Vu, Thanh-Truc; Wu, Yilei; Budynina, Ekaterina M; Volkova, Yulia A; Peña Cabrera, Eduardo; Ramírez-Ornelas, Diana E; Kuimova, Marina K

    2017-09-27

    Microviscosity is a key parameter controlling the rate of diffusion and reactions on the microscale. One of the most convenient tools for measuring microviscosity is by fluorescent viscosity sensors termed 'molecular rotors'. BODIPY-based molecular rotors in particular proved extremely useful in combination with fluorescence lifetime imaging microscopy, for providing quantitative viscosity maps of living cells as well as measuring dynamic changes in viscosity over time. In this work, we investigate several new BODIPY-based molecular rotors with the aim of improving on the current viscosity sensing capabilities and understanding how the structure of the fluorophore is related to its function. We demonstrate that due to subtle structural changes, BODIPY-based molecular rotors may become sensitive to temperature and polarity of their environment, as well as to viscosity, and provide a photophysical model explaining the nature of this sensitivity. Our data suggests that a thorough understanding of the photophysics of any new molecular rotor, in environments of different viscosity, temperature and polarity, is a must before moving on to applications in viscosity sensing.

  4. Synthesis, photodynamic activity, and quantitative structure-activity relationship modelling of a series of BODIPYs.

    Science.gov (United States)

    Caruso, Enrico; Gariboldi, Marzia; Sangion, Alessandro; Gramatica, Paola; Banfi, Stefano

    2017-02-01

    Here we report the synthesis of eleven new BODIPYs (14-24) characterized by the presence of an aromatic ring on the 8 (meso) position and of iodine atoms on the pyrrolic 2,6 positions. These molecules, together with twelve BODIPYs already reported by us (1-12), represent a large panel of BODIPYs showing different atoms or groups as substituent of the aromatic moiety. Two physico-chemical features ( 1 O 2 generation rate and lipophilicity), which can play a fundamental role in the outcome as photosensitizers, have been studied. The in vitro photo-induced cell-killing efficacy of 23 PSs was studied on the SKOV3 cell line treating the cells for 24h in the dark then irradiating for 2h with a green LED device (fluence 25.2J/cm 2 ). The cell-killing efficacy was assessed with the MTT test and compared with that one of meso un-substituted compound (13). In order to understand the possible effect of the substituents, a predictive quantitative structure-activity relationship (QSAR) regression model, based on theoretical holistic molecular descriptors, was developed. The results clearly indicate that the presence of an aromatic ring is fundamental for an excellent photodynamic response, whereas the electronic effects and the position of the substituents on the aromatic ring do not influence the photodynamic efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions.

    Science.gov (United States)

    Niu, Li-Ya; Li, Hui; Feng, Liang; Guan, Ying-Shi; Chen, Yu-Zhe; Duan, Chun-Feng; Wu, Li-Zhu; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-05-02

    A BODIPY(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)-based fluorometric sensor array has been developed for the highly sensitive detection of eight heavy-metal ions at micromolar concentration. The di-2-picolyamine (DPA) derivatives combine high affinities for a variety of heavy-metal ions with the capacity to perturb the fluorescence properties of BODIPY, making them perfectly suitable for the design of fluorometric sensor arrays for heavy-metal ions. 12 cross-reactive BODIPY fluorescent indicators provide facile identification of the heavy-metal ions using a standard chemometric approach (hierarchical clustering analysis); no misclassifications were found over 45 trials. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative interpolation of the heavy-metal concentration is obtained by comparing the total Euclidean distance of the measurement with a set of known concentrations in the library. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Laser Dyes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 9. Laser Dyes. G S Shankarling K J Jarag. General Article Volume 15 Issue 9 September ... Author Affiliations. G S Shankarling1 K J Jarag1. Dyestuff Technology, Department Institute of Chemical Technology, Matunga Mumbai 400 019, India.

  7. Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies.

    Science.gov (United States)

    Stawiński, Wojciech; Węgrzyn, Agnieszka; Dańko, Tomasz; Freitas, Olga; Figueiredo, Sónia; Chmielarz, Lucjan

    2017-04-01

    Additional treatment with NaOH of acid activated vermiculite results in even higher increase in the adsorption capacity in comparison to samples modified only in acidic solution (first step of activation) with respect to raw material. Optimization of treatment conditions and adsorption capacity for two cationic dyes (methylene blue (MB) and astrazon red (AR)), also as binary mixture, was evaluated. The capacity, based on column studies, increased from 48 ± 2 to 203 ± 4 mg g -1 in the case of methylene blue and from 51 ± 1 to 127 ± 2 mg g -1 in the case of astrazon red on starting and acid-base treated material, respectively. It was shown that adsorption mechanism changes for both cationic dyes after NaOH treatment and it results in decrease of adsorption rate. In binary mixtures methylene blue is bound stronger by adsorbent and astrazon red may be removed in initial stage of adsorption. Extensive studies on desorption/regeneration process proved high efficiency in recyclable use of all materials. Although cation exchange capacity decreases due to acid treatment, after base treatment exchange properties are used more efficiently. On the other hand, increased specific surface area has less significant contribution into the adsorption potential of studied materials. Obtained adsorbents worked efficiently in 7 adsorption-regeneration cycles and loss of adsorption capacity was observed only in two first cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Theoretical Insight into the Spectral Characteristics of Fe(II-Based Complexes for Dye-Sensitized Solar Cells—Part I: Polypyridyl Ancillary Ligands

    Directory of Open Access Journals (Sweden)

    Xiaoqing Lu

    2011-01-01

    Full Text Available The design of light-absorbent dyes with cheaper, safer, and more sustainable materials is one of the key issues for the future development of dye-sensitized solar cells (DSSCs. We report herein a theoretical investigation on a series of polypyridyl Fe(II-based complexes of FeL2(SCN2, [FeL3]2+, [FeL′(SCN3]-, [FeL′2]2+, and FeL′′(SCN2 (L = 2,2′-bipyridyl-4,4′-dicarboxylic acid, L′ = 2,2′,2″-terpyridyl-4,4′,4″-tricarboxylic acid, L″ = 4,4‴-dimethyl-2,2′ : 6′,2″ :6″,2‴-quaterpyridyl-4′,4″-biscarboxylic acid by density functional theory (DFT and time-dependent DFT (TD-DFT. Molecular geometries, electronic structures, and optical absorption spectra are predicted in both the gas phase and methyl cyanide (MeCN solution. Our results show that polypyridyl Fe(II-based complexes display multitransition characters of Fe → polypyridine metal-to-ligand charge transfer and ligand-to-ligand charge transfer in the range of 350–800 nm. Structural optimizations by choosing different polypyridyl ancillary ligands lead to alterations of the molecular orbital energies, oscillator strength, and spectral response range. Compared with Ru(II sensitizers, Fe(II-based complexes show similar characteristics and improving trend of optical absorption spectra along with the introduction of different polypyridyl ancillary ligands.

  9. Photocatalytic Conversion of CO2 to CO using Rhenium Bipyridine Platforms Containing Ancillary Phenyl or BODIPY Moieties

    Science.gov (United States)

    Andrade, Gabriel A.; Pistner, Allen J.; Yap, Glenn P.A.; Lutterman, Daniel A.; Rosenthal, Joel

    2013-01-01

    Harnessing of solar energy to drive the reduction of carbon dioxide to fuels requires the development of efficient catalysts that absorb sunlight. In this work, we detail the synthesis, electrochemistry and photophysical properties of a set of homologous fac-ReI(CO)3 complexes containing either an ancillary phenyl (8) or BODIPY (12) substituent. These studies demonstrate that both the electronic properties of the rhenium center and BODIPY chromophore are maintained for these complexes. Photolysis studies demonstrate that both assemblies 8 and 12 are competent catalysts for the photochemical reduction of CO2 to CO in DMF using triethanolamine (TEOA) as a sacrificial reductant. Both compounds 8 and 12 display TOFs for photocatalytic CO production upon irradiation with light (λex ≥ 400 nm) of ~5 hr−1 with TON values of approximately 20. Although structural and photophysical measurements demonstrate that electronic coupling between the BODIPY and fac-ReI(CO)3 units is limited for complex 12, this work clearly shows that the photoactive BODIPY moiety is tolerated during catalysis and does not interfere with the observed photochemistry. When taken together, these results provide a clear roadmap for the development of advanced rhenium bipyridine complexes bearing ancillary BODIPY groups for the efficient photocatalytic reduction of CO2 using visible light. PMID:24015374

  10. Synthesis, spectroscopic properties and photodynamic activity of two cationic BODIPY derivatives with application in the photoinactivation of microorganisms.

    Science.gov (United States)

    Agazzi, Maximiliano L; Ballatore, M Belén; Reynoso, Eugenia; Quiroga, Ezequiel D; Durantini, Edgardo N

    2017-01-27

    Two cationic BODIPYs 3 and 4 were synthesized by acid-catalyzed condensation of the corresponding pyrrole and benzaldehyde, followed by complexation with boron and methylation. Compound 3 contains methyl at the 1,3,5 and 7 positions of the s-indacene ring and a N,N,N-trimethylamino group attached to the phenylene unit, while 4 is not substituted by methyl groups and the cationic group is bound by an aliphatic spacer. UV-visible absorption spectra of these BODIPYs show an intense band at ∼500 nm in solvents of different polarities and n-heptane/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water reverse micelles. Compound 3 exhibits a higher fluorescence quantum yield (Φ F  = 0.29) than 4 (Φ F  = 0.030) in N,N-dimethylformamide (DMF) due to sterically hindered rotation of the phenylene ring. BODIPYs 3 and 4 induce photosensitized oxidation of 1,3-diphenylisobenzofuran (DPBF) with yields of singlet molecular oxygen of 0.07 and 0.03, respectively. However, the photodynamic activity increases in a microheterogenic medium formed by AOT micelles. Also, both BODIPYs sensitize the photodecomposition of l-tryptophan (Trp). In presence of diazabicyclo[2.2.2]octane (DABCO) or D-mannitol, a reduction in the photooxidation of Trp was found, indicating a contribution of type I photoprocess. Moreover, the addition of KI produces fluorescence quenching of BODIPYs and reduces the photooxidation of DPBF. In contrast, this inorganic salt increases the photoinduced decomposition of Trp, possibly due to the formation of reactive iodine species. The effect of KI was also observed in the potentiation of the photoinactivation of microorganisms. Therefore, the presence of KI could increase the decomposition of biomolecules induced by these BODIPYs in a biological media, leading to a higher cell photoinactivation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal-Organic Framework.

    Science.gov (United States)

    Atilgan, Ahmet; Islamoglu, Timur; Howarth, Ashlee J; Hupp, Joseph T; Farha, Omar K

    2017-07-26

    Effective detoxification of chemical warfare agents is a global necessity. As a powerful photosensitizer, a halogenated BODIPY ligand is postsynthetically appended to the Zr 6 nodes of the metal-organic framework (MOF), NU-1000, to enhance singlet oxygen generation from the MOF. The BODIPY/MOF material is then used as a heterogeneous photocatalyst to produce singlet oxygen under green LED irradiation. The singlet oxygen selectively detoxifies the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES), to the less toxic sulfoxide derivative (2-chloroethyl ethyl sulfoxide, CEESO) with a half-life of approximately 2 min.

  12. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  13. NIR absorbing diferrocene-containing meso-cyano-BODIPY with a UV-Vis-NIR spectrum remarkably close to that of magnesium tetracyanotetraferrocenyltetraazaporphyrin.

    Science.gov (United States)

    Didukh, Natalia O; Zatsikha, Yuriy V; Rohde, Gregory T; Blesener, Tanner S; Yakubovskyi, Viktor P; Kovtun, Yuriy P; Nemykin, Victor N

    2016-10-04

    Diferrocene-containing meso-cyano-BODIPY (4) was prepared by the direct cyanation/oxidation reaction of symmetric BODIPY 1 followed by Knoevenagel condensation with ferrocenealdehyde. Ferrocene-containing BODIPY 4 was characterized by a variety of spectroscopic, electrochemical, and theoretical methods and its UV-Vis-NIR spectrum has a striking similarity with a UV-Vis-NIR spectrum of the previously reported magnesium 2(3),7(8),12(13),17(18)-tetracyano-3(2),8(7),13(12),18(17)-tetraferrocenyl-5,10,15,20-tetraazaporphyrin.

  14. Daylight-driven photocatalytic degradation of ionic dyes with negatively surface-charged In2S3 nanoflowers: dye charge-dependent roles of reactive species

    Science.gov (United States)

    Ge, Suxiang; Cai, Lejuan; Li, Dapeng; Fa, Wenjun; Zhang, Yange; Zheng, Zhi

    2015-12-01

    Even though dye degradation is a successful application of semiconductor photocatalysis, the roles of reactive species in dye degradation have not received adequate attention. In this study, we systematically investigated the degradation of two cationic dyes (rhodamine B and methylene blue) and two anionic dyes (methyl orange and orange G) over negatively surface-charged In2S3 nanoflowers synthesized at 80 °C under indoor daylight lamp irradiation. It is notable to find In2S3 nanoflowers were more stable in anionic dyes degradation compared to that in cationic dyes removal. The active species trapping experiments indicated photogenerated electrons were mainly responsible for cationic dyes degradation, but holes were more important in anionic dyes degradation. A surface-charge-dependent role of reactive species in ionic dye degradation was proposed for revealing such interesting phenomenon. This study would provide a new insight for preparing highly efficient daylight-driven photocatalyst for ionic dyes degradation.

  15. Phase Partitioning of GM1 and Its Bodipy-Labeled Analog Determine Their Different Binding to Cholera Toxin

    DEFF Research Database (Denmark)

    Rissanen, Sami; Grzybek, Michal; Orłowski, Adam

    2017-01-01

    membrane vesicles and giant unilamellar vesicles, specific binding of Cholera Toxin (CTxB) to GM1 glycolipids is a commonly used strategy to label raft domains or Lo membrane environments. However, these studies often use acyl-chain labeled bodipy-GM1 (bdGM1), whose headgroup accessibility and membrane...

  16. A NIR-BODIPY derivative for sensing copper(II) in blood and mitochondrial imaging.

    Science.gov (United States)

    He, Shao-Jun; Xie, Yu-Wen; Chen, Qiu-Yun

    2018-04-15

    In order to develop NIR BODIPY for mitochondria targeting imaging agents and metal sensors, a side chain modified BODIPY (BPN) was synthesized and spectroscopically characterized. BPN has NIR emission at 765nm when excited at 704nm. The emission at 765nm responded differently to Cu 2+ and Mn 2+ ions, respectively. The BPN coordinated with Cu 2+ forming [BPNCu] 2+ complex with quenched emission, while Mn 2+ induced aggregation of BPN with specific fluorescence enhancement. Moreover, BPN can be applied to monitor Cu 2+ in live cells and image mitochondria. Further, BPN was used as sensor for the detection of Cu 2+ ions in serum with linear detection range of 0.45μM-36.30μM. Results indicate that BPN is a good sensor for the detection of Cu 2+ in serum and image mitochondria. This study gives strategies for future design of NIR sensors for the analysis of metal ions in blood. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Fluorescent sensors based on BODIPY derivatives for aluminium ion recognition: an experimental and theoretical study.

    Science.gov (United States)

    Keawwangchai, Tasawan; Morakot, Nongnit; Wanno, Banchob

    2013-03-01

    Two BODIPY derivative sensors for metal ion recognition containing 10-(4-hydroxyphenyl) (L1) and 10-(3,4-dihydroxyphenyl) (L2) were synthesized in a one-pot reaction of benzaldehyde derivative and 2,4-dimethylpyrrole in the presence of trifluoroacetic acid as catalyst. The binding abilities between these sensors and 50 equivalents of Na(+), K(+), Ag(+), Ca(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Pb(2+), Al(3+) and Cr(3+) ions were studied using UV-vis and fluorescent spectroscopic methods. Of all the metal ions tested, Al(3+) ion showed the greatest decrease in intensity in the spectra of the sensors, and therefore Al(3+) ion forms the strongest complex. The binding abilities of BODIPY receptors with Na(+), Ag(+), Ca(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) and Al(3+) ions were also investigated using density functional theory (DFT) calculations at B3LYP/LanL2DZ theoretical level. The calculated results point to the same conclusion. DFT calculations also provided the HOMO-LUMO energy levels, which can explain the spectrum change upon complexation.

  18. Extraction of dye

    African Journals Online (AJOL)

    Mordants help in binding of dyes to fabric by forming a chemical bridge from dye to fiber thus improving the staining ability of a dye with increasing its fastness properties (Padma, 2000). Some of these mordants are chemical agents which are not eco-friendly therefore it is important to use natural dyes with eco-friendly ...

  19. Predicting Solar-Cell Dyes for Cosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Sam L. [Cavendish; Cole, Jacqueline M. [Cavendish; Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Institute; Waddell, Paul G. [Cavendish; Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234, Australia; McKechnie, Scott [Cavendish; Liu, Xiaogang [Cavendish

    2014-06-19

    A major limitation of using organic dyes for dye-sensitized solar cells (DSCs) has been their lack of broad optical absorption. Co-sensitization, in which two complementary dyes are incorporated into a DSC, offers a route to combat this problem. Here we construct and implement a design route for materials discovery of new dyes for co-sensitization, beginning with a chemically compatible series of existing laser dyes which are without an anchor group necessary for DSC use. We determine the crystal structures for this dye series, and use their geometries to establish the DSC molecular design prerequisites aided by density-functional theory and time-dependent density-functional theory calculations. Based on insights gained from these existing dyes, modified sensitizers are computationally designed to include a suitable anchor group. A DSC co-sensitization strategy for these modified sensitizers is predicted, using the central features of highest-occupied, and lowest-unoccupied molecular orbital positioning, optical absorption properties, intramolecular charge-transfer characteristics, and steric effects as selection criteria. Through this molecular engineering of a series of existing non-DSC dyes, we predict new materials for DSC co-sensitization.

  20. Triplet Excited State of BODIPY Accessed by Charge Recombination and Its Application in Triplet-Triplet Annihilation Upconversion.

    Science.gov (United States)

    Chen, Kepeng; Yang, Wenbo; Wang, Zhijia; Iagatti, Alessandro; Bussotti, Laura; Foggi, Paolo; Ji, Wei; Zhao, Jianzhang; Di Donato, Mariangela

    2017-10-12

    The triplet excited state properties of two BODIPY phenothiazine dyads (BDP-1 and BDP-2) with different lengths of linker and orientations of the components were studied. The triplet state formation of BODIPY chromophore was achieved via photoinduced electron transfer (PET) and charge recombination (CR). BDP-1 has a longer linker between the phenothiazine and the BODIPY chromophore than BDP-2. Moreover, the two chromophores in BDP-2 assume a more orthogonal geometry both at the ground and in the first excited state (87°) than that of BDP-1 (34-40°). The fluorescence of the BODIPY moiety was significantly quenched in the dyads. The charge separation (CS) and CR dynamics of the dyads were studied with femtosecond transient absorption spectroscopy (k CS = 2.2 × 10 11 s -1 and 2 × 10 12 s -1 for BDP-1 and BDP-2, respectively; k CR = 4.5 × 10 10 and 1.5 × 10 11 s -1 for BDP-1 and BDP-2, respectively; in acetonitrile). Formation of the triplet excited state of the BODIPY moiety was observed for both dyads upon photoexcitation, and the triplet state quantum yield depends on both the linker length and the orientation of the chromophores. Triplet state quantum yields are 13.4 and 97.5% and lifetimes are 13 and 116 μs for BDP-1 and BDP-2, respectively. The spin-orbit charge transfer (SO-CT) mechanism is proposed to be responsible for the efficient triplet state formation. The dyads were used for triplet-triplet annihilation (TTA) upconversion, showing an upconversion quantum yield up to 3.2%.

  1. Carbazole-based sensitizers for potential application to dye ...

    Indian Academy of Sciences (India)

    potential of iodine/iodide system (0.2 V vs SCE)46 for these dyes, allowing for working DSSC devices. 3.1 Theoretical investigation. In order to obtain insight into the effect of differing donor groups (on carbazole scaffold) on the electronic, optical and geometrical properties of CAR-THIOHX and CAR-TPA, these two dyes ...

  2. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  3. Design and synthesis of the BODIPY-BSA complex for biological applications.

    Science.gov (United States)

    Vedamalai, Mani; Gupta, Iti

    2018-02-01

    A quinoxaline-functionalized styryl-BODIPY derivative (S1) was synthesized by microwave-assisted Knoevenagel condensation. It exhibited fluorescence enhancement upon micro-encapsulation into the hydrophobic cavity of bovine serum albumin (BSA). The S1-BSA complex was characterized systematically using ultraviolet (UV)-visible absorption, fluorescence emission, kinetics, circular dichroism and time-resolved lifetime measurements. The binding nature of BSA towards S1 was strong, and was found to be stable over a period of days. The studies showed that the S1-BSA complex could be used as a new biomaterial for fluorescence-based high-throughput assay for kinase enzymes. Copyright © 2017 John Wiley & Sons, Ltd.

  4. A "distorted-BODIPY"-based fluorescent probe for imaging of cellular viscosity in live cells.

    Science.gov (United States)

    Zhu, Hao; Fan, Jiangli; Li, Miao; Cao, Jianfang; Wang, Jingyun; Peng, Xiaojun

    2014-04-14

    Cellular viscosity is a critical factor in governing diffusion-mediated cellular processes and is linked to a number of diseases and pathologies. Fluorescent molecular rotors (FMRs) have recently been developed to determine viscosity in solutions or biological fluid. Herein, we report a "distorted-BODIPY"-based probe BV-1 for cellular viscosity, which is different from the conventional "pure rotors". In BV-1, the internal steric hindrance between the meso-CHO group and the 1,7-dimethyl group forced the boron-dipyrrin framework to be distorted, which mainly caused nonradiative deactivation in low-viscosity environment. BV-1 gave high sensitivity (x=0.62) together with stringent selectivity to viscosity, thus enabling viscosity mapping in live cells. Significantly, the increase of cytoplasmic viscosity during apoptosis was observed by BV-1 in real time. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Potential energy surface of excited semiconductors: Graphene quantum dot and BODIPY

    Energy Technology Data Exchange (ETDEWEB)

    Colherinhas, Guilherme [Departamento de Física-CEPAE, Universidade Federal de Goiás, 74690-900 Goiânia (Brazil); Fileti, Eudes Eterno [Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, 12231-280 São José dos Campos, SP (Brazil); Chaban, Vitaly V., E-mail: vvchaban@gmail.com [Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, 12231-280 São José dos Campos, SP (Brazil)

    2016-08-02

    Graphical abstract: Excitation of graphene quantum dot significantly alters its interaction with water. - Abstract: Binding energy (BE) is an important descriptor in chemistry, which determines thermodynamics and phase behavior of a given substance. BE between two molecules is not directly accessible from the experiment. It has to be reconstructed from cohesive energies, vaporization heats, etc. We report BE for the excited states of two semiconductor molecules – boron-dipyrromethene (BODIPY) and graphene quantum dot (GQD) – with water. We show, for the first time, that excitation increases BE twofold at an optimal separation (energy minimum position), whereas higher separations lead to higher differences. Interestingly, the effects of excitation are similar irrespective of the dominant binding interactions (van der Waals or electrostatic) in the complex. This new knowledge is important for simulations of the excited semiconductors by simplified interaction functions.

  6. Benzidine Dyes Action Plan

    Science.gov (United States)

    This Action Plan addresses the use of benzidine-based dyes and benzidine congener-based dyes, both metalized and non-metalized, in products that would result in consumer exposure, such as for use to color textiles.

  7. Measurement of time of travel in streams by dye tracing

    Science.gov (United States)

    Kilpatrick, F.A.; Wilson, James F.

    1989-01-01

    The use of fluorescent dyes and tracing techniques provides a means for measuring the time-of-travel and dispersion characteristics of steady and gradually varied flow in streams. Measurements of the dispersion and concentration of dyes give insight into the behavior of soluble contaminants that may be introduced into a stream. This manual describes methods of measuring time of travel of water and waterborne solutes by dye tracing. The fluorescent dyes, measuring equipment used, and the field and laboratory procedures are also described. Methods of analysis and presentation to illustrate time-oftravel and dispersion characteristics of streams are provided.

  8. Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent BODIPY-Benzoporphyrin Platinum Complex

    KAUST Repository

    Whited, Matthew T.

    2011-01-12

    Multichromophoric arrays provide one strategy for assembling molecules with intense absorptions across the visible spectrum but are generally focused on systems that efficiently produce and manipulate singlet excitations and therefore are burdened by the restrictions of (a) unidirectional energy transfer and (b) limited tunability of the lowest molecular excited state. In contrast, we present here a multichromophoric array based on four boron dipyrrins (BODIPY) bound to a platinum benzoporphyrin scaffold that exhibits intense panchromatic absorption and efficiently generates triplets. The spectral complementarity of the BODIPY and porphryin units allows the direct observation of fast bidirectional singlet and triplet energy transfer processes (k ST(1BDP→1Por) = 7.8×1011 s-1, kTT(3Por→3BDP) = 1.0×1010 s-1, kTT(3BDP→ 3Por) = 1.6×1010 s-1), leading to a long-lived equilibrated [3BDP][Por]=[BDP][3Por] state. This equilibrated state contains approximately isoenergetic porphyrin and BODIPY triplets and exhibits efficient near-infrared phosphorescence (λem = 772 nm, φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable redistribution of energy from the core back onto the antennae. © 2010 American Chemical Society.

  9. Control of triplet state generation in heavy atom-free BODIPY-anthracene dyads by media polarity and structural factors.

    Science.gov (United States)

    Filatov, Mikhail A; Karuthedath, Safakath; Polestshuk, Pavel M; Callaghan, Susan; Flanagan, Keith J; Telitchko, Maxime; Wiesner, Thomas; Laquai, Frédéric; Senge, Mathias O

    2018-03-28

    A family of heavy atom-free BODIPY-anthracene dyads (BADs) exhibiting triplet excited state formation from charge-transfer states is reported. Four types of BODIPY scaffolds, different in the alkyl substitution pattern, and four anthracene derivatives have been used to access BADs. Fluorescence and intersystem crossing (ISC) in these dyads depend on donor-acceptor couplings and can be accurately controlled by substitution or media polarity. Under conditions that do not allow charge transfer (CT), the dyads exhibit fluorescence with high quantum yields. Formation of charge-transfer states triggers ISC and the formation of long-lived triplet excited states in the dyads. The excited state properties were studied by steady-state techniques and ultrafast pump-probe spectroscopy to determine the parameters of the observed processes. Structural information for various BADs was derived from single crystal X-ray structure determinations alongside DFT molecular geometry optimization, revealing the effects of mutual orientation of subunits on the photophysical properties. The calculations showed that alkyl substituents on the BODIPY destabilize CT states in the dyads, thus controlling the charge transfer between the subunits. The effect of the dyad structure on the ISC efficiency was considered at the M06-2X level of theory, and a correlation between mutual orientation of the subunits and the energy gap between singlet and triplet CT states was studied using a multireference CASSCF method.

  10. An unprecedented amplification of near-infrared emission in a Bodipy derived π-system by stress or gelation.

    Science.gov (United States)

    Cherumukkil, Sandeep; Ghosh, Samrat; Praveen, Vakayil K; Ajayaghosh, Ayyappanpillai

    2017-08-01

    We report an unprecedented strategy to generate and amplify near-infrared (NIR) emission in an organic chromophore by mechanical stress or gelation pathways. A greenish-yellow emitting film of π-extended Bodipy-1 , obtained from n -decane, became orange-red upon mechanical shearing, with a 15-fold enhancement in NIR emission at 738 nm. Alternatively, a DMSO gel of Bodipy-1 exhibited a 7-fold enhancement in NIR emission at 748 nm with a change in emission color from yellow to orange-red upon drying. The reason for the amplified NIR emission in both cases is established from the difference in chromophore packing, by single crystal analysis of a model compound ( Bodipy-2 ), which also exhibited a near identical emission spectrum with red to NIR emission (742 nm). Comparison of the emission features and WAXS and FT-IR data of the sheared n -decane film and the DMSO xerogel with the single crystal data supports a head-to-tail slipped arrangement driven by the N-H···F-B bonding in the sheared or xerogel states, which facilitates strong exciton coupling and the resultant NIR emission.

  11. Structural, electronic and spectral properties of carborane-containing boron dipyrromethenes (BODIPYs): A first-principles study.

    Science.gov (United States)

    Li, Xiaojun

    2017-10-05

    In this work, we reported the geometrical structures, electronic and spectral properties of the carborane-containing BODIPYs complexes using the density functional theory calculations. In two structures, the calculated main bond lengths and bond angels of structural framework are consistent with X-ray experiment, and the two BODIPYs complexes are thermodynamically and kinetically stable. The strongest DOS band is mainly dominated by the BB and BH σ-bonds of carborane fragment, whereas the π-type MOs on the pyrromethene fragment contribute to the high-energy DOS bands. Analysis of the AdNDP chemical bonding indicates that the carborane cage can be stabilized by eleven delocalized 3c2e and two delocalized 4c2e σ-bonds, while the pyrromethene fragment corresponds to five delocalized 3c2e π-bonds. In addition, the main characteristic peaks of the two simulated IR spectra for the BODIPYs complexes are properly assigned. Hopefully, all these results will be helpful for understanding the electronic structures, and further stimulate the study on the biological and medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ultrafast dynamics of differently aligned COOH-DTE-BODIPY conjugates linked to the surface of TiO2

    Science.gov (United States)

    Schweighöfer, Felix; Yüce, Imanuel; Dworak, Lars; Guo, Peng; Zastrow, Marc; Mayer, Kerstin; Barta, Christoph; Liebmann, Diana; Ziebart, Nandor; Rück-Braun, Karola; Wachtveitl, Josef

    2018-02-01

    The photoinduced dynamics of two DTE-BODIPY conjugates A, B with carboxylic acid anchoring groups coupled to the surface of TiO2 were studied by ultrafast transient absorption spectroscopy. For compound A, with an orthogonal orientation of the BODIPY chromophore and the photoswitchable DTE unit, a charge separated state could not be reliably detected. Nevertheless, besides the energy transfer from the BODIPY to the ring-closed DTE-c, indications for an electron transfer reaction were found by analyzing fluorescence quenching on TiO2 in steady state fluorescence measurements. For compound B with a parallel orientation of chromophore and photoswitch, a charge separated state was conclusively identified for the coupled dyad (TiO2) via the observation of a positive absorption signal (at λ pr  >  610 nm) at later delay times. An electron transfer rate of 7  ×  1010 s‑1 can be extracted, indicating slower processes in the dyads in comparison to previously published electron transfer reactions of DTE compounds coupled to TiO2.

  13. Control of triplet state generation in heavy atom-free BODIPY-anthracene dyads by media polarity and structural factors

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-12

    A family of heavy atom-free BODIPY-anthracene dyads (BADs) exhibiting triplet excited state formation from charge-transfer states is reported. Four types of BODIPY scaffolds, different in the alkyl substitution pattern, and four anthracene derivatives have been used to access BADs. The fluorescence and intersystem crossing (ISC) in these dyads depend on donor-acceptor couplings and can be accurately controlled by the substitution or media polarity. Under conditions that do not allow charge transfer (CT), the dyads exhibit fluorescence with high quantum yields. Formation of charge-transfer states triggers ISC and the formation of long-lived triplet excited states in the dyads. The excited state properties were studied by steady-state techniques and ultrafast pump-probe spectroscopy to determine the parameters of the observed processes. Structural information for various BADs was derived from single crystal X-ray structure determinations alongside DFT molecular geometry optimization, revealing the effects of mutual orientation of subunits on the photophysical properties. The calculations showed that alkyl substituents on the BODIPY destabilize CT states in the dyads, thus controlling the charge transfer between the subunits. The effect of the dyad structure on the ISC efficiency was considered at M06-2X level of theory and a correlation between mutual orientation of the subunits and the energy gap between singlet and triplet CT states was studied using multireference CASSCF method.

  14. Hair dye contact allergy

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rastogi, Suresh Chandra; Andersen, Klaus Ejner

    2004-01-01

    Colouring of hair can cause severe allergic contact dermatitis. The most frequently reported hair dye allergens are p-phenylenediamine (PPD) and toluene-2,5-diamine, which are included in, respectively, the patch test standard series and the hairdressers series. The aim of the present study...... was to identify dye precursors and couplers in hair dyeing products causing clinical hair dye dermatitis and to compare the data with the contents of these compounds in a randomly selected set of similar products. The patient material comprised 9 cases of characteristic clinical allergic hair dye reaction, where...... exposure history and patch testing had identified a specific hair dye product as the cause of the reaction. The 9 products used by the patients were subjected to chemical analysis. 8 hair dye products contained toluene-2,5-diamine (0.18 to 0.98%). PPD (0.27%) was found in 1 product, and m-aminophenol (0...

  15. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    Science.gov (United States)

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.

  16. DFT and TD-DFT insights, photolysis and photocatalysis investigation of three dyes with similar structure under UV irradiation with and without TiO2 as a catalyst: Effect of adsorption, pH and light intensity

    Science.gov (United States)

    Bendjabeur, Seyfeddine; Zouaghi, Razika; Zouchoune, Bachir; Sehili, Tahar

    2018-02-01

    TiO2-mediated photocatalytic degradation of three triphenylmethane dyes (basic fuchsin, acid fuchsin and Gentian violet), was investigated in aqueous suspensions in the presence and the absence of titanium dioxide P25 Degussa as photocatalyst. The photodegradation process was investigated using UV-A (365 nm) and UV-C (254 nm) light alone and UV-A in the presence of TiO2·The effects of various operational parameters were investigated such as: the effect of adsorption in the dark, the influence of pH, the influence of irradiation wavelength and the effect of light intensity. The study of the effect of various parameters reveals that the photolysis of dyes increases with the increase of light intensity, the degradation rate under UV-C (254 nm) was found better than under UV-A 365 nm. The photocatalytic degradation was found to follow the same order of adsorption. The decolorization and the degradation kinetics were found to follow the pseudo-first-order kinetics. The mineralization of dye was found to follow the same order of disappearance as the photocatalytic degradation and depended directly to its functional groups and its number of carbons. Additionally, density functional theory (DFT) was applied for calculations of both electronic structure and spectroscopic properties of the studied compounds, where the obtained results of the three dyes show that the theoretical electronic spectra and the experimental UV-visible ones are similar in shapes, positions and intensities.

  17. Novel fluorescent sensor for silver (I) based on the 3,4-bis-triazole Bodipy via dual-click chemistry

    Science.gov (United States)

    Kursunlu, Ahmed Nuri; Güler, Ersin

    2017-04-01

    This investigation paper relates with a novel dual-Bodipy derivative obtained by using 'click' chemistry. The synthesized compounds were characterized by some techniques as 1H NMR, 13C NMR, 11B-NMR, 19F NMR, FT-IR, Uv-vis, spectrofluorimetry, mass, elemental analysis, melting point. The photophysical measurements were conducted on 4,4-difluoro-8-(4-(3-{8-{3,4-Bis{1,2,3 triazolomethoxy}benzaldehyde)}propoxy))phenyl-4-bora-3a,4a, diaza-s-indacene (Bodipy-T) in presence of different metal ions. General trends were performed for emission, absorption, excitation, complex stoichiometry, different concentrations, competing ion, binding constants etc. in methanolic medium. Bodipy-T can be potentially served as a sensitive and selective ratiometric sensor for Ag (I) ion, moreover, it includes a modifiable group (aldehyde) for the preparing of its new derivatives.

  18. Paddle-Wheel BODIPY-Triphenylene Conjugates - Participation of Redox- Active Hexaoxatriphenylene in Excited State Charge Separation to Yield High-Energy Charge Separated States.

    Science.gov (United States)

    Cantu, Robert; Seetharaman, Sairaman; Babin, Eric M; Karr, Paul A; D'Souza, Francis

    2018-03-27

    Hexaoxatriphenylene, a scaffold linker often utilized in building covalent organic frameworks, is shown to be electroactive and a useful entity to build light energy harvesting donor-acceptor systems. To demonstrate this, new donor-acceptor conjugates have been synthesized by employ-ing BODIPY as a sensitizer. Excited state electron transfer leading to high energy charge sepa-rated states, useful to drive energy demanding photocatalytic reactions, from the electron rich hexa oxa triphenylene to 1BODIPY*, in the synthesized tri BODIPY-triphenylene 'paddle-wheel' conjugates, has been successfully demonstrated using femtosecond transient absorption spectroscopy. The measured rate of charge separation was in the range of ~3-10 x 1011 s-1 reveal-ing ultrafast charge separation.

  19. A Cu2+-selective fluorescent chemosensor based on BODIPY with two pyridine ligands and logic gate

    Science.gov (United States)

    Huang, Liuqian; Zhang, Jing; Yu, Xiaoxiu; Ma, Yifan; Huang, Tianjiao; Shen, Xi; Qiu, Huayu; He, Xingxing; Yin, Shouchun

    2015-06-01

    A novel near-infrared fluorescent chemosensor based on BODIPY (Py-1) has been synthesized and characterized. Py-1 displays high selectivity and sensitivity for sensing Cu2+ over other metal ions in acetonitrile. Upon addition of Cu2+ ions, the maximum absorption band of Py-1 in CH3CN displays a red shift from 603 to 608 nm, which results in a visual color change from pink to blue. When Py-1 is excited at 600 nm in the presence of Cu2+, the fluorescent emission intensity of Py-1 at 617 nm is quenched over 86%. Notably, the complex of Py-1-Cu2+ can be restored with the introduction of EDTA or S2-. Consequently, an IMPLICATION logic gate at molecular level operating in fluorescence mode with Cu2+ and S2- as chemical inputs can be constructed. Finally, based on the reversible and reproducible system, a nanoscale sequential memory unit displaying "Writing-Reading-Erasing-Reading" functions can be integrated.

  20. Ultrasensitive reversible chromophore reaction of BODIPY functions as high ratio double turn on probe.

    Science.gov (United States)

    Hu, Dehui; Zhang, Tao; Li, Shayu; Yu, Tianjun; Zhang, Xiaohui; Hu, Rui; Feng, Jiao; Wang, Shuangqing; Liang, Tongling; Chen, Jianming; Sobenina, Lyubov N; Trofimov, Boris A; Li, Yi; Ma, Jinshi; Yang, Guoqiang

    2018-01-24

    Chromophore reactions with changes to conjugation degree, especially those between the conjugated and unconjugated state, will bring a large spectral variation. To realize such a process, a meso-naked BODIPY (MNBOD) with two electron-withdrawing groups around the core is designed and synthesized. The resulting system is extremely sensitive to bases. The red, highly fluorescent solution readily becomes colorless and non-fluorescent after base addition; however, the color and fluorescence can be totally and instantly restored by addition of acid or formaldehyde. Analyses show that two identical MNBODs are connected by a C-C single bond (sp 3 ) at the meso-position through a radical reaction that results in an unconjugated, colorless dimer complexed with bases. When the bases are consumed, the dimer immediately dissociates into the red, highly fluorescent, conjugated MNBOD monomer. With 260 nm spectral change and over 120,000 turn-on ratio, this chromophore-reaction can be utilized as a sensitive reaction-based dual-signal probe.

  1. [Anaphylaxis to blue dyes].

    Science.gov (United States)

    Langner-Viviani, F; Chappuis, S; Bergmann, M M; Ribi, C

    2014-04-16

    In medicine, vital blue dyes are mainly used for the evaluation of sentinel lymph nodes in oncologic surgery. Perioperative anaphylaxis to blue dyes is a rare but significant complication. Allergic reactions to blue dyes are supposedly IgE-mediated and mainly caused by triarylmethanes (patent blue and isosulfane blue) and less frequently by methylene blue. These substances usually do not feature on the anesthesia record and should not be omitted from the list of suspects having caused the perioperative reaction, in the same manner as latex and chlorhexidine. The diagnosis of hypersensitivity to vital blue dyes can be established by skin test. We illustrate this topic with three clinical cases.

  2. Unusual Intramolecular Hydrogen Transfer in 3,5-Di(triphenylethylenyl) BODIPY Synthesis and 1,2-Migratory Shift in Subsequent Scholl Type Reaction

    KAUST Repository

    Chua, Ming Hui

    2015-08-17

    The straightforward synthesis of 3,5-di(triphenylethylenyl) BODIPYs 1–3 from the condensation of 2-(triphenylethylenyl) pyrrole with aryl aldehydes are surprisingly found to produce side products that are hydrogenated at one of the two triphenylethylene substituents. It was also observed that the subsequent Scholl type reaction of 1 resulted in a “1,2-migratory shift” of one triphenylethylene substituent in addition to a ring closing reaction. Preliminary investigations, including DFT calculations and isolation of intermediates, were conducted to study these unusual observations on BODIPY chemistry.

  3. Oxazine laser dyes

    Science.gov (United States)

    Hammond, Peter R.; Field, George F.

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  4. Chemistry of Natural Dyes

    Indian Academy of Sciences (India)

    The sulfonated oils, which possess better metal bind- ing capacity than the natural oils due to the presence of sulfonic acid group, bind to metal ions forming a complex with the dye to give superior fastness and hue. Limitations of Natural Dyes. Tedious extraction of colouring component from the raw mate- rial, low colour ...

  5. for aqueous dye lasers

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... inclusion complex of RhB with the container molecule cucurbit[7]uril (CB[7]). Keywords. Temperature-dependent fluorescence; Rhodamine B; cucurbit[7]uril; host–guest complex; dye laser. PACS Nos 36.20.kd; 83.60.pq; 87.64.kv. 1. Introduction. Rhodamine B (RhB) is an efficient and photostable laser dye ...

  6. Anaerobic azo dye reduction

    NARCIS (Netherlands)

    Zee, van der F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also

  7. 2D and 3D surface photopatterning via laser-promoted homopolymerization of a perfluorophenyl azide-substituted BODIPY.

    Science.gov (United States)

    Raffy, Guillaume; Bofinger, Robin; Tron, Arnaud; Guerzo, André Del; McClenaghan, Nathan D; Vincent, Jean-Marc

    2017-11-09

    An innovative photopatterning process is described that allows, in a single laser-promoted operation, the covalent attachment of a molecule on a surface (2D patterning - xy dimensions) and its photopolymerization to grow micro-/nanostructures with spatial control in a third z-dimension. The surface patterning process, based on nitrene reactivity, was harnessed using the highly fluorescent azide-substituted boron difluoride dipyrromethene (BODIPY) 1 that was prepared in a single synthetic step from the parent pentafluorophenyl BODIPY on reacting with NaN 3 . Using the laser of a fluorescence microscope (375 nm or 532 nm) 1 could be grafted on adapted surfaces and then homopolymerised. In this study we show that using glass coverslips coated with PEG/high density alkyne groups (density of ∼1 × 10 14 per cm 2 ), the patterning process was much more spatially confined than when using PEG only coating. Varying the irradiation time (1 to 15 s) or laser power (0.14-3.53 μW) allowed variation of the amount of deposited BODIPY to afford, in the extreme case, pillars of a height up to 800 nm. AFM and MS studies revealed that the nano/microstructures were formed of particles of photopolymerized 1 having a mean diameter of ca. 30 nm. The emission spectra and fluorescence lifetimes for the patterned structures were measured, revealing a red-shift (from ∼560 nm up to 620 nm) of the maximum emission and a shortening (from ∼6 ns to 0.8 ns) of the fluorescence lifetimes in areas where the density of BODIPY is high. As an application of the patterning process, a figure formed of 136 dots/pillars was prepared. The confocal hyperspectral fluorescence image revealed that the figure is clearly resolved and constituted by highly photoluminescent red dots whose fluorescence intensities and emission color proved to be highly reproducible. SEM and AFM studies showed that the luminescent dots were pillars with a conical shape, an average height of 710 ± 28 nm and a FWHM of 400 ± 20

  8. BODIPY-based azamacrocyclic ensemble for selective fluorescence detection and quantification of homocysteine in biological applications.

    Science.gov (United States)

    Li, Zan; Geng, Zhi-Rong; Zhang, Cui; Wang, Xiao-Bo; Wang, Zhi-Lin

    2015-10-15

    Considering the significant role of plasma homocysteine in physiological processes, two ensembles (F465-Cu(2+) and F508-Cu(2+)) were constructed based on a BODIPY (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) scaffold conjugated with an azamacrocyclic (1,4,7-triazacyclononane and 1,4,7,10-tetraazacyclododecane) Cu(2+) complex. The results of this effort demonstrated that the F465-Cu(2+) ensemble could be employed to detect homocysteine in the presence of other biologically relevant species, including cysteine and glutathione, under physiological conditions with high selectivity and sensitivity in the turn-on fluorescence mode, while the F508-Cu(2+) ensemble showed no fluorescence responses toward biothiols. A possible mechanism for this homocysteine-specific specificity involving the formation of a homocysteine-induced six-membered ring sandwich structure was proposed and confirmed for the first time by time-dependent fluorescence spectra, ESI-MS and EPR. The detection limit of homocysteine in deproteinized human serum was calculated to be 241.4 nM with a linear range of 0-90.0 μM and the detection limit of F465 for Cu(2+) is 74.7 nM with a linear range of 0-6.0 μM (F508, 80.2 nM, 0-7.0 μM). We have demonstrated the application of the F465-Cu(2+) ensemble for detecting homocysteine in human serum and monitoring the activity of cystathionine β-synthase in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Direct thermal dyes

    Science.gov (United States)

    Ehlinger, Edward

    1990-07-01

    Direct thermal dyes are members of a class of compounds referred to in the imaging industry as color formers or leuco dyes. The oldest members of that class have simple triarylmethane structures, and have been employed for years in various dyeing applications. More complex triarylmethane compounds, such as phthalides and fluorans, are now used in various imaging systems to produce color. Color is derived from all of these compounds via the same mechanism, on a molecular level. That is, an event of activation produces a highly resonating cationic system whose interaction with incident light produces reflected light of a specific color. The activation event in the case of a direct thermal system is the creation of a melt on the paper involving dye and an acidic developer. The three major performance parameters in a thermal system are background color, image density, and image stability. The three major dye physical parameters affecting thermal performance are chemical constituency, purity, and particle size. Those dyes having the best combination of characteristics which can also be manufactured economically dominate the marketplace. Manufacturing high performance dyes for the thermal market involves multi-step, convergent reaction sequences performed on large scale. Intermediates must be manufactured at the right time, and at the right quality to be useful.

  10. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Alya M. Al-Etaibi

    2016-06-01

    Full Text Available The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

  11. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity

    International Nuclear Information System (INIS)

    Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung

    2015-01-01

    Graphical abstract: A simple, enzyme-free, label-free, sensitive and selective system was developed for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles as an efficient quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate and as a recognition element for adenosine. - Highlights: • The proposed method can detect adenosine with more than 1000-fold selectivity. • The analysis of adenosine is rapid (∼6 min) using the proposed method. • This method provided better sensitivity for adenosine as compared to aptamer-based sensors. • This method can be applied for the determination of adenosine in urine. - Abstract: This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the

  12. Dye Application, Manufacture of Dye Intermediates and Dyes

    Science.gov (United States)

    Freeman, H. S.; Mock, G. N.

    It is difficult if not impossible to determine when mankind first systematically applied color to a textile substrate. The first colored fabrics were probably nonwoven felts painted in imitation of animal skins. The first dyeings were probably actually little more than stains from the juice of berries. Ancient Greek writers described painted fabrics worn by the tribes of Asia Minor. But just where did the ancient craft have its origins? Was there one original birthplace or were there a number of simultaneous beginnings around the world?

  13. Time dependent – density functional theory characterization of organic dyes for dye-sensitized solar cells

    KAUST Repository

    Hilal, Rifaat

    2017-06-19

    We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations are utilized to study the geometry, electronic structure, electrostatic potential (ESP) and absorption spectrum, for a representative donor-π bridge-acceptor (D–π–A) dye for DSSC. The coplanar geometry of the dye (D1) facilitates strong conjugation and considerable delocalization originating the π CT interaction from donor to acceptor orbitals and the hyper-conjugative interactions involving Rydberg states. A model simulating the adsorption of the dye on the TiO surface is utilized to estimate binding energies. The effect of fluorine substituents in the π-spacer on the quantum efficiency of DSSCs was investigated. Gibb’s free energy values, redox potentials, excited state lifetime, non-linear optical properties (NLO) and driving forces for D1 and its fluorinated derivatives were computed.

  14. Quantitative assessment of sterol traffic in living cells by dual labeling with dehydroergosterol and BODIPY-cholesterol

    DEFF Research Database (Denmark)

    Wustner, D.; Solanko, L.; Sokol, Olena

    2011-01-01

    kinetics. This transport pathway was strongly reduced after energy depletion of cells or expression of the dominant-negative clathrin heavy chain. The partitioning into lipid droplets of BHK and HeLa cells was higher for BCh2 than for DHE. Within droplets, the photodegradation of BCh2 was enhanced...... simultaneous imaging of both sterols in model membranes and living cells. BCh2 had a lower affinity than DHE for the biologically relevant liquid-ordered phase in model membranes. Still, DHE and BCh2 trafficked from the plasma membrane to the endocytic recycling compartment (ERC) of BHK cells with identical...... and followed a stretched exponential decay, while the fluorescence lifetime of BCh2 was comparable in various cellular regions. Our results indicate that BCh2 is suitable for analyzing sterol uptake pathways and inter-organelle sterol flux in living cells. The BODIPY-moiety affects lipid phase preference...

  15. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    Fungal growth was not observed at pH 2. Maximum fungal decolourisation ocurred at pH 3 for anionic reactive dyes (RR, RBB, RB) and pH 6 for cationic MB dye. The fungal dye bioremoval was associated with the surface charge of the fungus due to electrostatic interactions. Growing R. arrhizus strain decolourised 100% of ...

  16. Water soluble laser dyes

    Science.gov (United States)

    Hammond, Peter R.; Feeman, James F.; Field, George F.

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  17. Hair cosmetics: dyes.

    Science.gov (United States)

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  18. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  19. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    We present the first observation, to our knowledge, of lasing from a levitated, dye droplet. The levitated droplets are created by computer controlled pico-liter dispensing into one of the nodes of a standing ultrasonic wave (100 kHz), where the droplet is trapped. The free hanging droplet forms...... a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  20. Measurement of time of travel and dispersion in streams by dye tracing

    Science.gov (United States)

    Hubbard, E.F.; Kilpatrick, F.A.; Martens, L.A.; Wilson, J.F.

    1982-01-01

    The use of fluorescent dyes and tracing techniques provides a means for measuring the time-of-travel and dispersion characteristics of steady and gradually varied flow in streams. Measurements of the dispersion and concentration of dyes give insight into the behavior of soluble contaminants that may be introduced into a stream. This manual describes methods of measuring time of travel of water and waterborne solutes by dye tracing. The fluorescent dyes, measuring equipment used, and the field and laboratory procedures are also described. Methods of analysis and presentation to illustrate time-oftravel and dispersion characteristics of streams are provided.

  1. REUSE OF DECOLORIZED DYEING EFFLUENTS IN REPEATED DYEINGS

    Directory of Open Access Journals (Sweden)

    ÖNER Erhan

    2016-05-01

    Full Text Available In this experimental work, the effluents of the reactive and disperse dyeings were reused in the next dyeing after the decolourization by ozone gas. Accordingly, the polyester woven samples were dyed with C.I. Disperse Yellow 160, C.I. Disperse Red 77 and C.I. Disperse Blue 79:1, and the cotton woven samples were dyed with C.I. Reactive Yellow 176, C.I. Reactive Red 239 and C.I. Reactive Blue 221. The effluents of the dyeings with these dyes and also with their mixtures were decolorized by ozone gas. The colours of the samples dyed with the decolorized effluents were compared with the original dyeings (standards and the colour differences were calculated. Under the experimental conditions of this investigation, the many of the dyeing effluents were decolorized successfully, except the effluent of C.I. Disperse Red 77. In the case that this red disperse dye present in the dyebath, the decolorized effluent had a slight reddish colour. The colour differences between the original dyeing (standard and the samples dyed with the decolorized effluent are mostly below the tolerance (DE<1 or slightly above the tolerance. The solid colours and uniform dyeings were achieved in the dyeings. The method seems promising in decreasing the amount of water used in textile dyeings.

  2. OPTIMIZATION OF DYEING PARAMETERS TO DYE COTTON WITH CARROT EXTRACTION

    Directory of Open Access Journals (Sweden)

    MIRALLES Verónica

    2017-05-01

    Full Text Available Natural dyes derived from flora and fauna are believed to be safe because of non-toxic, non-carcinogenic and biodegradable nature. Furthermore, natural dyes do not cause pollution and waste water problems. Natural dyes as well as synthetic dyes need the optimum parameters to get a good dyeing. On some occasions, It is necessary the use of mordants to increase the affinity between cellulose fiber and natural dye, but there are other conditions to optimize in the dyeing process, like time, temperature, auxiliary porducts, etc. In addition, the optimum conditions are different depends on the type of dye and the fiber nature. The aim of this work is the use of carrot extract to dye cotton fabric by exhaustion at diverse dyeing conditions. Diffferent dyeing processes were carried out to study the effect of pH condition and the temperature, using 7, 6 and 4 pH values and 95 ºC and 130ºC for an hour. As a result some images of dyed samples are shown. Moreover, to evaluate the colour of each sample CIELAB parameters are analysed obtained by reflexion spectrophotometre. The results showed that the temperature used has an important influence on the colour of the dyed sample.

  3. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

    KAUST Repository

    Filatov, Mikhail A.

    2017-04-14

    Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.

  4. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  5. Synthesis of azo pyridone dyes

    OpenAIRE

    Mijin, Dušan Ž.; Ušćumlić, Gordana S.; Valentić, Nataša V.; Marinković, Aleksandar D.

    2011-01-01

    Over 50% of all colorants which are used nowdays are azo dyes and pigments, and among them arylazo pyridone dyes (and pigments) have became of interest in last several decades due to the high molar extinction coefficient, and the medium to high light and wet fastness properties. They find application generally as disperse dyes. The importance of disperse dyes increased in the 1970s and 1980s due to the use of polyester and nylon as the main synthetic fibers. Also, disperse dyes were use...

  6. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  7. Conjugated Polymers Containing BODIPY and Fluorene Units for Sensitive Detection of CN− Ions: Site-Selective Synthesis, Photo-Physical and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Tian He

    2017-10-01

    Full Text Available Conjugated polymers containing distinct molecular units are expected to be very interesting because of their unique properties endowed by these units and the formed conjugated polymers. Herein, four new conjugated copolymers based on fluorene and 4,4’-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY have been designed and synthesized via Sonogashira polymerization. The fluorene unit was attached to the 3,5- or 2,6-positions of BODIPY by ethynylenes or p-diacetylenebenzene. The obtained polymers show good thermal stability and broad absorption in the wavelength range from 300 to 750 nm. The effects of site-selective copolymerization and conjugation length along the polymer backbone on the optoelectronic and electrochemical properties of these copolymers were systematically studied by UV-Vis spectroscopy, photoluminescence (PL and cyclic voltammetry. Besides, it is found that the BODIPY-based copolymers exhibit selectively sensitive responses to cyanide anions, resulting in obvious change of UV-Vis absorption spectra and significant fluorescence quenching of the polymers among various common anions.

  8. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging

    International Nuclear Information System (INIS)

    Sukato, Rangsarit; Sangpetch, Nuanphan; Palaga, Tanapat; Jantra, Suthikorn; Vchirawongkwin, Viwat; Jongwohan, Chanantida; Sukwattanasinitt, Mongkol; Wacharasindhu, Sumrit

    2016-01-01

    Highlights: • A novel salicylaldehyde-BODIPY fluorescent sensor is prepared. • The sensor shows dual colorimetric & turn-on fluorescence response to cyanide ion. • Detection limit is 0.88 μM (below WHO standard for drinking water). • It is effective for cyanide detection an in vitro cellular system. - Abstract: Development of cyanide sensor is important as the anion is harmful to human health and the environment. Herein, a new colorimetric and fluorescent probe GSB based on boron dipyrrole-methene (BODIPY) containing salicylaldehyde group for cyanide detection has been reported. GSB undergoes exclusive colorimetric change from orange to colorless and exhibits selective fluorescence turn-on at 504 nm upon the addition of cyanide. Other 13 anions give almost no interference under physiological condition. Detection limit of the new cyanide-sensing GSB is 0.88 μM, which is below World Health Organization (WHO) recommended level in drinking water. A calculation by density functional theory (DFT) shows suppression of photoinduced electron transfer (PET) mechanism along with the interruption of π-conjugation between salicylaldehyde and BODIPY core by cyanide anion. Cell imaging studies demonstrated that GSB is compatible and capable of sensing cyanide anion in living cells.

  9. Design and synthesis of BODIPY-clickate based Hg(2+) sensors: the effect of triazole binding mode with Hg(2+) on signal transduction.

    Science.gov (United States)

    Vedamalai, Mani; Kedaria, Dhaval; Vasita, Rajesh; Mori, Shigeki; Gupta, Iti

    2016-02-14

    BODIPY-clickates, F1 and F2, for the detection of Hg(2+) have been designed, synthesized and characterized. Both F1 and F2 showed hyperchromic shifts in the UV-visible spectra in response to increasing Hg(2+) concentrations. Hg(2+) ion binding caused perturbation of the emission quenching process and chelation induced enhanced bathochromic emission of F1 and F2 to 620 nm and 660 nm, respectively. Job's plot clearly indicated that the binding ratio of F1 and F2 with Hg(2+) was 1 : 1. The NMR titration of BODIPY-clickates with Hg(2+) confirmed that aromatic amines and triazoles were involved in the binding event. Furthermore, HRMS data of F1-Hg(2+) and F2-Hg(2+) supported the formation of mercury complexes of BODIPY-clickates. The dissociation constant for the interaction between fluorescent probes F1 and F2 with Hg(2+) was found to be 24.4 ± 5.1 μM and 22.0 ± 3.9 μM, respectively. The Hg(2+) ion induced fluorescence enhancement was almost stable in a pH range of 5 to 8. Having less toxicity to live cells, both the probes were successfully used to map the Hg(2+) ions in live A549 cells.

  10. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sukato, Rangsarit [Program of Petrochemistry and Polymer Science, Chulalongkorn University, Bangkok 10330 (Thailand); Sangpetch, Nuanphan; Palaga, Tanapat [Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Jantra, Suthikorn; Vchirawongkwin, Viwat; Jongwohan, Chanantida [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Sukwattanasinitt, Mongkol [Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Wacharasindhu, Sumrit, E-mail: sumrit.w@chula.ac.th [Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2016-08-15

    Highlights: • A novel salicylaldehyde-BODIPY fluorescent sensor is prepared. • The sensor shows dual colorimetric & turn-on fluorescence response to cyanide ion. • Detection limit is 0.88 μM (below WHO standard for drinking water). • It is effective for cyanide detection an in vitro cellular system. - Abstract: Development of cyanide sensor is important as the anion is harmful to human health and the environment. Herein, a new colorimetric and fluorescent probe GSB based on boron dipyrrole-methene (BODIPY) containing salicylaldehyde group for cyanide detection has been reported. GSB undergoes exclusive colorimetric change from orange to colorless and exhibits selective fluorescence turn-on at 504 nm upon the addition of cyanide. Other 13 anions give almost no interference under physiological condition. Detection limit of the new cyanide-sensing GSB is 0.88 μM, which is below World Health Organization (WHO) recommended level in drinking water. A calculation by density functional theory (DFT) shows suppression of photoinduced electron transfer (PET) mechanism along with the interruption of π-conjugation between salicylaldehyde and BODIPY core by cyanide anion. Cell imaging studies demonstrated that GSB is compatible and capable of sensing cyanide anion in living cells.

  11. Efficiency enhancement of dye-sensitized solar cells (DSSC) by addition of synthetic dye into natural dye (anthocyanin)

    Science.gov (United States)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2017-02-01

    This article reported combination of anthocyanin and synthetic dyes in dye-sensitized solar cells (DSSC) applications. This study aims was to improve the performance of DSSC by addition of synthetic dye into anthocyanin dye. Anthocyanin dye was extracted from red cabbage and synthetic dye was obtained from N719. We prepared anthocyanin and synthetic dyes at 2 different volume, anthocyanin dye at volume of 10 ml and combination dyes with anthocyanin and synthetic dyes at volume of 8 mL : 2 mL. The DSSCs were designed into sandwich structure on the fluorine-doped tin oxide (FTO) substrates using TiO2 electrode, carbon electrode, anthocyanin and synthetic dyes, and redox electrolyte. The absorption wavelength of anthocyanin dye of red cabbage was 450 nm - 580 nm, the combination of anthocyanin and synthetic dyes can increase the absorbance peak only. The IPCE characteristic with anthocyanin dye of red cabbage and combination dyes resulted quantum efficiency of 0.081% and 0.092% at wavelength maximum about 430 nm. The DSSC by anthocyanin dye of red cabbage achieved a conversion efficiency of 0.024%, while the DSSC by combination dyes achieved a conversion efficiency of 0.054%, combination dyes by addition synthetic dye into anthocyanin dye enhanced the conversion efficiency up to 125%.

  12. Bodipy-FL-Verapamil: A Fluorescent Probe for the Study of Multidrug Resistance Proteins

    Directory of Open Access Journals (Sweden)

    Anna Rosati

    2004-01-01

    Full Text Available Most of the substances used as fluorescent probes to study drug transport and the effect of efflux blockers in multidrug resistant cells have many drawbacks, such as toxicity, unspecific background, accumulation in mitochondria. New fluorescent compounds, among which Bodipy‐FL‐verapamil (BV, have been therefore proposed as more useful tools. The uptake of BV has been evaluated by cytofluorimetry and fluorescence microscopy using cell lines that overexpress P‐glycoprotein (P388/ADR and LLC‐PK1/ADR or MRP (multidrug resistance‐related protein (PANC‐1 and clinical specimens from patients. The effect of specific inhibitors for P‐glycoprotein (verapamil and vinblastine or MRP (MK571 and probenecid has been also studied. BV intracellular concentrations were significantly lower in the two P‐glycoprotein overexpressing cell lines in comparison with the parental lines. In addition, verapamil and vinblastine increased the intracellular concentrations of the dye; MK571 and probenecid, two MRP inhibitors, increased BV levels in PANC‐1 cells, that express this protein. These findings were confirmed in clinical specimens from patients. Fluorescence microscopy revealed a faint fluorescence emission in P‐glycoprotein or MRP expressing cell lines; however, treatment with specific inhibitors significantly increased the fluorescence. BV is a useful tool for studying multidrug resistance proteins with different techniques such as cytofluorimetry and fluorescence microscopy, but does not discriminate between P‐glycoprotein and MRP. In comparison with other classic fluorescent probes, the assay with this dye is extremely rapid, simple, not toxic for cells, devoid of fluorescent background, and can be useful in the clinical settings.

  13. Detection of lipid peroxidation in frozen-thawed avian spermatozoa using C(11)-BODIPY(581/591).

    Science.gov (United States)

    Partyka, Agnieszka; Lukaszewicz, Ewa; Niżański, Wojciech; Twardoń, Jan

    2011-06-01

    The aim of this study was to perform flow cytometric analysis of C11-BODIPY581/591 oxidation in fowl and geese sperm as a marker for membrane lipid peroxidation (LPO) and to establish if the cryopreservation process would make sperm membranes more susceptible to oxidative stress. The experiment was carried out on 10 meat type line Flex roosters and 10 White Koluda® geese. The semen was collected two times a week, by dorso-abdominal massage method and pooled from 10 individuals of each species. Fowl semen samples were subjected to cryopreservation using the "pellet" method and Dimethylacetamide (DMA) as a cryoprotectant. Geese semen samples were cryopreserved in plastic straws in a programmable freezing unit with Dimethyloformamide (DMF) as the cryoprotectant. A fluorescent lipid probe C11-BODIPY581/591 provided with two double bonds that are oxidized during their contact with ROS, was used for the purpose of the assessment of the LPO in freshly diluted semen samples and frozen-thawed semen samples. This probe changes its color according to its state (non peroxidized: red; peroxidized: green). Flow cytometric analysis was used to monitor these changes. The White Koluda® geese fresh semen had a higher level of LPO than the Flex fresh semen (P > 0.01). The cryopreservation of fowl semen significantly (P > 0.01) increased the percentage of live and dead spermatozoa with lipid peroxidation. In frozen-thawed semen of White Koluda® geese the percentage of live spermatozoa with LPO significantly decreased (P > 0.05) whereas significantly (P > 0.01) higher level of dead cells with LPO was observed. There were significant differences between the two studied species. After thawing, the percentage of live and dead spermatozoa with lipid peroxidation was higher in fowl semen than in geese semen (P > 0.01). In conclusion, our data clearly indicate the existence of species specific differences in susceptibility of spermatozoa to the oxidation of PUFAs in the cell membranes

  14. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  15. A new BODIPY-derived ratiometric senor with internal charge transfer (ICT) effect: colorimetric/fluorometric sensing of Ag.

    Science.gov (United States)

    Zhang, Changli; Han, Zhong; Wang, Mengjia; Yang, Zhenghao; Ran, Xueqin; He, Weijiang

    2018-02-13

    With a 4-aminostyryl group introduced at its 3-position, a BODIPY BDP-ODTAC was derived as a new ratiometric sensor for Ag + by modifying 4-amino group as a Ag + chelator, 1-oxa-4,10-dithia-7-azacyclododecane (ODTAC). In addition to the specific Ag + -induced hypsochromic absorption shift from 606 to 562 nm, this sensor demonstrated an excitation shift from 600 to 560 nm due to the internal charge transfer (ICT) effect endowed by the introduced α-4-aminostyryl group. The Ag + -induced recovery and enhancement of the intrinsic local emission band was also observed. The different sensing behavior of ODTAC-BDP with chelator ODTAC substituting on the meso-phenyl group infers that the ratiometric sensing behavior of BDP-ODTAC is correlated to the amino group in ODTAC acting as the electron donor for the ICT effect. With high Ag + selectivity over interfering cations such as Hg 2+ and Pb 2+ , BDP-ODTAC displays a fluorometric limit of detection (LOD) of ∼17 nM (∼0.002 ppm), which is distinctly lower than EPA and WHO standards for drinking water (500 nM, ∼0.055 ppm). Moreover, the BDP-ODTAC-doped PVC film shows the Ag + sensitivity of 1 ppm with a color switch from blue to purple, providing this sensor the ability to determine Ag + in totally aqueous solution sensitively via naked-eye detection.

  16. A convenient colorimetric and ratiometric fluorescent probe for detection of cyanide based on BODIPY derivative in aqueous media

    Directory of Open Access Journals (Sweden)

    Yanhua Yu

    2017-06-01

    Full Text Available A convenient colorimetric and ratiometric fluorescent probe based on BODIPY derivative for cyanide detection has been synthesized, whose structural contains a dicyanovinyl group used as a sensing unit. Among the tested analytes, such as CN−, F−, Cl−, Br−, I−, ClO4−, AcO−, NO3−, H2PO4− HSO4−, S2− and N3−, only CN− could react with dicyanovinyl moiety by nucleophilic addition, which disrupted the π-conjugation of the probe and hindered the intramolecular charge transfer (ICT, leading a blue shift of absorption and fluorescence spectrum and a concomitant color change from yellow to light pink. The detection limit of this probe was calculated to be 0.98 μM, which is lower than the maximum concentration in drinking water (1.9 μM permitted by the World Health Organization (WHO. Moreover, the probe showed excellent selectivity and anti-interference ability towards CN− over other anions. The reaction mechanism was fully supported by 1H NMR and MS spectrum.

  17. Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent ...

    Indian Academy of Sciences (India)

    Compared with organic dyes, inorganic metal complex dyes have high thermal and chemical stability. Among these complexes, polypyridyl ruthenium sensitizers were widely used and investi- gated for their high stability and outstanding redox properties and good response to natural visible sunlight. The sensitizers an-.

  18. Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 9. Metal Complex Dyes for Dye-Sensitized Solar Cells: ... Author Affiliations. N Sekar1 Vishal Y Gehlot. Dyestuff Technology Department Institute of Chemical Technology (Formerly UDCT) Nathalal Parekh Marg Matunga Mumbai 400 019, India.

  19. Dye solar cell research

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-01

    Full Text Available Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 27 November 2009 CONTENT head2rightBackground head2rightCSIR Dye Solar Cell Research head2... rightCollaborations and Links © CSIR 2007 www.csir.co.za head2rightAcknowledgements BACKGROUND head2rightSA is dry: Annual rainfall average of 450 mm compared with a world average of 860 mm head2rightOn upside, we have some...

  20. Dyeing and characterization of regenerated cellulose nanofibers with vat dyes.

    Science.gov (United States)

    Khatri, Muzamil; Ahmed, Farooq; Shaikh, Irfan; Phan, Duy-Nam; Khan, Qamar; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo

    2017-10-15

    Recent advancement in dyeing of nanofibers has been accelerated to improve their aesthetic properties, however, achieving good color fastness remains a challenge. Therefore, we attempt to improve the color fastness properties nanofibers. Vat dyes are known for better color fastness and their application on nanofibers has not been investigated to date. Herein, we report dyeing of regenerated cellulose nanofibers (RCNF) that were produced from precursor of cellulose acetate (CA) followed by deacetylation process. The resultant RCNF was dyed with two different vat dyes and the color attributes were examined under spectrophotometer which showed outstanding color build-up. Morphological of CA before and after deacetylation and before and after vat dyeing was investigated under TEM, FE-SEM and SEM respectively. The vat dyed RCNF were further characterized by FTIR and WAXD. Excellent color fastness results demonstrate that vat dyed RCNF can potentially be considered for advanced apparel applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Biological treatment of effluent containing textile dyes

    OpenAIRE

    Gomes, Arlindo Caniço; Amorim, M. T. P.; Porter, R. S.; Gonçalves, Isolina Cabral; Ferra, M. I. A.

    2010-01-01

    Colour removal of textile dyes from effluent was evaluated using a laboratory upflow anaerobic sludge blanket reactor. Several commercial dyes were selected to study the effect of dye structure on colour removal. The anaerobic reactor was fed with glucose, an easily biodegradable organic matter and selected individual dyes. Results show that some of the dyes are readily reduced under anaerobic conditions even at high concentration of 700 mg/l. The average removal efficiency for acid dyes usin...

  2. Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process.

    Science.gov (United States)

    Morshedi, Dina; Mohammadi, Zeinab; Akbar Boojar, Masoud Mashhadi; Aliakbari, Farhang

    2013-12-01

    The ever-increasing applications of hazardous azo dyes as industrialized coloring agents have led to serious remediation challenges. In this study, proteinaceous nanofibrils were examined as coagulants for decolorization of azo dyes in aqueous solutions. The results provided some insight regarding the mechanism of dye removal. The strength of nanofibrils to remove dyes from solution was evaluated by remediation of acid red 88, Bismarck brown R, direct violet 51, reactive black 5, and Congo red. However, the efficiency of nanofibrils to coagulate with different dyes was variable (60-98%) and dependent on the structures of dyes and the physicochemical conditions of the solutions. Increasing the temperature or ionic strength declined the coagulation time and induced the rate of dye removal. Changing pH had contradictory effects on the dye removal efficiency which was more affected by the chemical structure of the dye rather than the change in stability of the coagulant. The efficiency of nanofibrils to remove dyes was more than that of charcoal, which is considered as one of the most common substances used for azo dye remediation which may be due to its well dispersion in the aqueous solutions, and slower rates of the coagulation than that of the adsorption process. Furthermore, cytotoxicity was not detected after treating cell cultures with the decolorized solutions. Accordingly, by integrating biological and biophysicochemical processes, proteinaceous nanofibrils can be promising candidates for treatment of colored wastewaters. Ease of production, proper and quick dispersion in water, without the production of dangerous dye by-products and derivatives, are some of the main advantages of nanofibrils. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Contact allergy to textile dyes. Clinical and experimental studies on disperse azo dyes

    OpenAIRE

    Malinauskiene, Laura

    2012-01-01

    Disperse dyes are the most common allergens among textile dyes. It is not known whether the purified dyes, impurities in the commercial dyes, or metabolites are the actual sensitisers. Moreover, it is not known whether those disperse dyes that are now present in test series are actually used in textile dyeing today. The aim of this thesis was A) to evaluate the significance of the impurities found in the commercial dyes Disperse Orange 1 and Disperse Yellow 3 and their potential metabolit...

  4. A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials.

    Science.gov (United States)

    Climent, Estela; Biyikal, Mustafa; Gawlitza, Kornelia; Dropa, Tomáš; Urban, Martin; Costero, Ana M; Martínez-Máñez, Ramón; Rurack, Knut

    2016-08-01

    Test strips that in combination with a portable fluorescence reader or digital camera can rapidly and selectively detect chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB), and Soman (GD) and their simulants in the gas phase have been developed. The strips contain spots of a hybrid indicator material consisting of a fluorescent BODIPY indicator covalently anchored into the channels of mesoporous SBA silica microparticles. The fluorescence quenching response allows the sensitive detection of CWAs in the μg m(-3) range in a few seconds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. FLUX OF IONIC DYES ACROSS MICRONEEDLE-TREATED SKIN: EFFECT OF DYE MOLECULAR CHARACTERISTICS

    Science.gov (United States)

    Gomaa, Yasmine A.; Garland, Martin J.; McInnes, Fiona; Donnelly, Ryan F.; El-Khordagui, Labiba K.; Wilson, Clive

    2014-01-01

    Drug flux across microneedle (MN)-treated skin is influenced by the characteristics of the MN array, microconduits and drug molecules in addition to the overall diffusional resistance of microconduits and viable tissue. Relative implication of these factors has not been fully explored. In the present study, the in vitro permeation of a series of six structurally related ionic xanthene dyes with different molecular weights (MW) and chemical substituents, across polymer MN-pretreated full thickness porcine skin was investigated in relation of their molecular characteristics. Phosphate buffer saline pH 7.4, the medium used in skin permeation experiments, was used to determine the equilibrium solubility of the dyes and their partition coefficient both in the isotropic n-octanol/ aqueous system and porcine skin/ aqueous system. Additionally, dissociation constants were determined potentiometrically. Results indicated that for rhodamine dyes, skin permeation of the zwitterionic form which predominates at physiological pH, was significantly reduced by an increase in MW, the presence of the chemically reactive isothiocyanate substituent reported to interact with stratum corneum proteins and the skin thickness. These factors were generally shown to override aqueous solubility, an important determinant of drug diffusion in an aqueous milieu. Findings provided more insight into the mechanism of drug permeation across MN-treated skin, of importance to both the design of MN-based transdermal drug delivery systems and in vitro skin permeation research. PMID:22960319

  6. Dye-sensitized solar cells: Atomic scale investigation of interface structure and dynamics

    International Nuclear Information System (INIS)

    Ma Wei; Zhang Fan; Meng Sheng

    2014-01-01

    Recent progress in dye-sensitized solar cells (DSC) research is reviewed, focusing on atomic-scale investigations of the interface electronic structures and dynamical processes, including the structure of dye adsorption onto TiO 2 , ultrafast electron injection, hot-electron injection, multiple-exciton generation, and electron—hole recombination. Advanced experimental techniques and theoretical approaches are briefly summarized, and then progressive achievements in photovoltaic device optimization based on insights from atomic scale investigations are introduced. Finally, some challenges and opportunities for further improvement of dye solar cells are presented. (invited review — international conference on nanoscience and technology, china 2013)

  7. Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates.

    Science.gov (United States)

    Berlier, Judith E; Rothe, Anca; Buller, Gayle; Bradford, Jolene; Gray, Diane R; Filanoski, Brian J; Telford, William G; Yue, Stephen; Liu, Jixiang; Cheung, Ching-Ying; Chang, Wesley; Hirsch, James D; Beechem, Joseph M; Haugland, Rosaria P; Haugland, Richard P

    2003-12-01

    Amine-reactive N-hydroxysuccinimidyl esters of Alexa Fluor fluorescent dyes with principal absorption maxima at about 555 nm, 633 nm, 647 nm, 660 nm, 680 nm, 700 nm, and 750 nm were conjugated to antibodies and other selected proteins. These conjugates were compared with spectrally similar protein conjugates of the Cy3, Cy5, Cy5.5, Cy7, DY-630, DY-635, DY-680, and Atto 565 dyes. As N-hydroxysuccinimidyl ester dyes, the Alexa Fluor 555 dye was similar to the Cy3 dye, and the Alexa Fluor 647 dye was similar to the Cy5 dye with respect to absorption maxima, emission maxima, Stokes shifts, and extinction coefficients. However, both Alexa Fluor dyes were significantly more resistant to photobleaching than were their Cy dye counterparts. Absorption spectra of protein conjugates prepared from these dyes showed prominent blue-shifted shoulder peaks for conjugates of the Cy dyes but only minor shoulder peaks for conjugates of the Alexa Fluor dyes. The anomalous peaks, previously observed for protein conjugates of the Cy5 dye, are presumably due to the formation of dye aggregates. Absorption of light by the dye aggregates does not result in fluorescence, thereby diminishing the fluorescence of the conjugates. The Alexa Fluor 555 and the Alexa Fluor 647 dyes in protein conjugates exhibited significantly less of this self-quenching, and therefore the protein conjugates of Alexa Fluor dyes were significantly more fluorescent than those of the Cy dyes, especially at high degrees of labeling. The results from our flow cytometry, immunocytochemistry, and immunohistochemistry experiments demonstrate that protein-conjugated, long-wavelength Alexa Fluor dyes have advantages compared to the Cy dyes and other long-wavelength dyes in typical fluorescence-based cell labeling applications.

  8. Liquid Redox Electrolytes for Dye-Sensitized Solar Cells

    OpenAIRE

    Yu, Ze

    2012-01-01

    This thesis focuses on liquid redox electrolytes in dye-sensitized solar cells (DSCs). A liquid redox electrolyte, as one of the key constituents in DSCs, typically consists of a redox mediator, additives and a solvent. This thesis work concerns all these three aspects of liquid electrolytes, aiming through fundamental insights to enhance the photovoltaic performances of liquid DSCs. Initial attention has been paid to the iodine concentration effects in ionic liquid (IL)-based electrolytes. I...

  9. Selective labelling of cell-surface proteins using CyDye DIGE Fluor minimal dyes.

    Science.gov (United States)

    Hagner-McWhirter, Asa; Winkvist, Maria; Bourin, Stephanie; Marouga, Rita

    2008-11-26

    Surface proteins are central to the cell's ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.

  10. Development of AVLIS dye laser system

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Nakayama, Tsuyoshi; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    CVL pumped single mode dye laser was performed. It was found that pressure tuning has some excellent feature in comparison to mechanical tuning in dye laser frequency control. For evaluation of dye laser amplifier, two-dimensional rate equation was proposed. Calculated data by this equation agreed with experimental data in large diameter input dye laser beam condition. (author)

  11. Studies on Dyeing Performance of Novel Acid Azo Dyes and Mordent Acid Azo Dyes Based on 2,4-Dihydroxybenzophenone

    OpenAIRE

    Dixit, Bharat C.; Patel, Hitendra M.; Desai, Dhirubhai J.; Dixit, Ritu B.

    2009-01-01

    Novel acid azo and mordent acid azo dyes have been prepared by the coupling of diazo solution of different aminonaphthol sulphonic acids and aromatic amino acids with 2,4-dihydroxybenzophenone. The resultant dyes were characterized by elemental analysis as well as IR and 1H NMR spectral studies. The UV-visible spectral data have also been discussed in terms of structure property relationship. The dyeing assessments of all the dyes were evaluated on wool and silk textile fibers. The dyeing of ...

  12. Treatment of dye house effluents

    International Nuclear Information System (INIS)

    Waheed, S.; Ashraf, C.M.

    1999-01-01

    Environmental considerations play an increasingly important role in processing of textiles. For textile, limits on particular substances have been and are being laid down either by law or as a result of the demands of clothing manufactures. One of the most complex areas in textile processing is textile printing and dyeing. Here, virtually all dye classes are used. In some printing processes such as reactive printing, many of products used end up in the wastewater. A study of the optimisation of wastewater treatment systems and the systematic management of water and the problems of dyeing are reviewed in this article. (author)

  13. Hair dye poisoning and rhabdomyolysis.

    Science.gov (United States)

    Bokutz, Munira; Nasir, Nosheen; Mahmood, Faisal; Sajid, Sara

    2015-04-01

    Hair dye ingestion is a rare cause of toxicity in Pakistan. We are presenting the case report of a 55 year old male who presented with accidental hair dye ingestion and developed laryngeal oedema requiring emergent tracheostomy. He had also developed aspiration pneumonitis and chemical oesophagitis. However, the most alarming manifestation was rhabdomyolysis. Hair dye toxicity can be fatal if not recognized early. There is no antidote available. Rhabdomyolysis is a complication and needs to be managed aggressively in order to prevent long term morbidity.

  14. Survery on Actual Conditions of Food Dyes

    OpenAIRE

    佐藤, ひろみ

    1981-01-01

    Many food dyes are widely used as food additives in Japan, and many investigations have been pointed the problems of safety of these food dyes used in Japanese food. There are two types of commercial food dyes, one is synthetic dyes and the other is natural dyes.Recently Japanese food is not stained so colourfully, but it is stained faintly in colour near to natural food by using of mixed synthetic dyes. On their hand, many consumers have a tendency to prefer natural food dyes because they ha...

  15. Dye purity and dye standardization for biological staining

    DEFF Research Database (Denmark)

    Lyon, H O

    2002-01-01

    for separating, identifying and assaying dye components. In the second part of the review, descriptions are given of the standardized staining method approach using standard staining methods for assessing stains, and practical responses to stain impurity including commercial quality control, third-party quality...... control and standardization of reagents, protocols and documentation. Finally, reference is made to the current state of affairs in the dye field....

  16. Hair Dyes and Cancer Risk

    Science.gov (United States)

    ... cancer: evidence from a case-control study in Spain. European Journal of Cancer 2006; 42(10):1448–1454. [PubMed Abstract] Lin J, Dinney CP, Grossman HB, Wu X. Personal permanent hair dye use is not ...

  17. Photocatalytic degradation of textile dyes.

    Science.gov (United States)

    Mahadwad, O K; Jasra, R V; Parikh, P A; Tayade, R J

    2010-07-01

    The photocatalytic degradation of commonly used textile dyes, namely, Reactive Black-5 (RB-5), Red (ME4BL), Golden Yellow (MERL), Blue-222, Methylene Blue, and Malachite Green, has been studied, using TiO2 (P25) as a photocatalyst. All the dye solutions could be decolorized. Kinetics of RB-5 oxidation reaction has been studied and was found to be of first order in dye concentration. Effects of different parameters such as catalyst amount, initial concentration of the dyes, and pH of solution along with biological parameters (TOC and COD) on the rate of degradation were studied. Experimental results showed that photocatalytic degradation of commonly used RB-5 was very effective at the optimum catalyst quantity of 2.5 g/L.

  18. Ultrasound for low temperature dyeing of wool with acid dye.

    Science.gov (United States)

    Ferrero, F; Periolatto, M

    2012-05-01

    The possibility of reducing the temperature of conventional wool dyeing with an acid levelling dye using ultrasound was studied in order to reach exhaustion values comparable to those obtained with the standard procedure at 98 °C, obtaining dyed samples of good quality. The aim was to develop a laboratory method that could be transferred at industrial level, reducing both the energy consumption and fiber damage caused by the prolonged exposure to high temperature without the use of polluting auxiliary agents. Dyeings of wool fabrics were carried out in the temperature range between 60 °C and 80 °C using either mechanical or ultrasound agitation of the bath and coupling the two methods to compare the results. For each dyeing, the exhaustion curves of the dye bath were determined and the better results of dyeing kinetics were obtained with ultrasound coupled with mechanical stirring. Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasonic efficiency were calculated in comparison with mechanical stirring alone. In the presence of ultrasound the absorption rate constants increased by at least 50%, at each temperature, confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound was ascribed to the pre-exponential factor of the Arrhenius equation. It was also shown that the effect of ultrasound at 60 °C was just on the dye bath, practically unaffecting the wool fiber surface, as confirmed by the results of SEM analysis. Finally, fastness tests to rubbing and domestic laundering yielded good values for samples dyed in ultrasound assisted process even at the lower temperature. These results suggest the possibility, thanks to the use of ultrasound, to obtain a well equalized dyeing on wool working yet at 60°C, a temperature process strongly lower than 98°C, currently used in industry

  19. Adsorption of dyes using different types of clay: a review

    Science.gov (United States)

    Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon

    2017-05-01

    Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.

  20. Cosensitization process effect of D-A-π-A featured dyes on photovoltaic performances

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2016-04-01

    Full Text Available Cosensitization based on two or multiple dyes as “dye cocktails” can hit the target on compensating and broadening light-harvesting region. Two indoline D-A-π-A motif sensitizers (WS-2 and WS-39 that possess similar light response area but distinctly reversed feature in photovoltaic performance are selected as the specific cosensitization couple. That is, WS-2 shows quite high photocurrent but low photovoltage, and WS-39 gives relatively low photocurrent but quite high photovoltage. Due to the obvious “barrel effect”, both dyes show medium PCE around 8.50%. In contrast with the previous cosensitization strategy mostly focused on the compensation of light response region, herein we perform different cosensitization sequence, for taking insight into the balance of photocurrent and photovoltage, and achieving the synergistic improvement in power conversion efficiency (PCE. Electronic impedance spectra (EIS indicate that exploiting dye WS-39 with high VOC value as the primary sensitizer can repress the charge recombination more effectively, resulting in superior VOC rather than using dye WS-2 with high JSC as the primary sensitizer. As a consequence, a high PCE value of 9.48% is obtained with the delicate cosensitization using WS-39 as primary dye and WS-2 as accessory dye, which is higher than the corresponding devices sensitized by each individual dye (around 8.48–8.67%. It provides an effective optimizing strategy of cosensitization how to combine the individual dye advantages for developing highly efficient solar cells. Keywords: Indoline dye, Cosensitization, Adsorption sequence, Charge recombination, Photovoltaic performances

  1. Natural dyes as photosensitizers for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Sancun; Wu, Jihuai; Huang, Yunfang; Lin, Jianming [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, Fujian 362021 (China)

    2006-02-15

    The dye-sensitized solar cells (DSC) were assembled by using natural dyes extracted from black rice, capsicum, erythrina variegata flower, rosa xanthina, and kelp as sensitizers. The I{sub SC} from 1.142mA to 0.225mA, the V{sub OC} from 0.551V to 0.412V, the fill factor from 0.52 to 0.63, and P{sub max} from 58{mu}W to 327{mu}W were obtained from the DSC sensitized with natural dye extracts. In the extracts of natural fruit, leaves and flower chosen, the black rice extract performed the best photosensitized effect, which was due to the better interaction between the carbonyl and hydroxyl groups of anthocyanin molecule on black rice extract and the surface of TiO{sub 2} porous film. The blue-shift of absorption wavelength of the black rice extract in ethanol solution on TiO{sub 2} film and the blue-shift phenomenon from absorption spectrum to photoaction spectrum of DSC sensitized with black rice extract are discussed in the paper. Because of the simple preparation technique, widely available and low cheap cost natural dye as an alternative sensitizer for dye-sensitized solar cell is promising. (author)

  2. Evidence for transfer of radicals between oil-in-water emulsion droplets as detected by the probe (E,E)-3,5-Bis(4-phenyl-1,3-butadienyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, BODIPY665/676

    DEFF Research Database (Denmark)

    Raudsepp, Piret; Brüggemann, Dagmar Adeline; Andersen, Mogens Larsen

    2014-01-01

    /676), resulting in lower rates of probe oxidation. Confocal microscopy studies with BODIPY(665/676) as a radical-sensitive probe combined with oxygen consumption measurements of mixtures of oil-in-water emulsions showed that radicals could be transferred between oil droplets and thereby spread radical...... di-tert-butyl peroxide and 2,2'-azobis(2,4-dimethyl)valeronitrile (AMVN). In both cases the fluorescence of BODIPY(665/676) changed more in saturated medium-chain triglyceride oil than in linseed or sunflower oils, where the high degree of unsaturation is expected to give more pronounced radical......-derived lipid oxidation. It was suggested that BODIPY(665/676), as the only available oxidizable substance in the saturated oil, was directly attacked by radicals, resulting in high rates of probe oxidation, while in the unsaturated oils, radicals attacked either unsaturated fatty acids or BODIPY(665...

  3. Discovery of Black Dye Crystal Structure Polymorphs: Implications for Dye Conformational Variation in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Cole, Jacqueline M; Low, Kian Sing; Gong, Yun

    2015-12-23

    We present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world's leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiple conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO2 interfaces in DSSCs, at least for ruthenium-based dye complexes.

  4. Diffusion dynamics in microfluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2007-01-01

    We have investigated the bleaching dynamics that occur in opto-fluidic dye lasers, where the liquid laser dye in a channel is locally bleached due to optical pumping. Our studies suggest that for micro-fluidic devices, the dye bleaching may be compensated through diffusion of dye molecules alone....... By relying on diffusion rather than convection to generate the necessary dye replenishment, our observation potentially allows for a significant simplification of opto-fluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip micro-fluidic pumping...

  5. Time and depth resolved visualisation of the diffusion of a lipophilic dye into the hair follicle of fresh unfixed human scalp skin.

    Science.gov (United States)

    Grams, Ylva Y; Whitehead, Lynne; Cornwell, Paul; Bouwstra, Joke A

    2004-08-27

    Visualising the penetration pathway of a lipophilic model dye into the hair follicle of fresh unfixed human skin would facilitate optimisation of drug formulations for local delivery to the pilosebaceous unit. A block of fresh human scalp skin was mechanically fixed in a newly designed combination of cutting device/on-line diffusion cell, manual cross-sectioned perpendicular to the skin surface and sealed to create the donor and acceptor compartment. The donor phase consisted of a saturated solution of Bodipy FL C(5) in a citric acid buffer solution. Images were obtained on-line by confocal laser scanning microscopy (CLSM) every 30 min for 16 h. For each time point and each skin region relative intensity values were calculated. The on-line visualisation showed a fast diffusion of the label into the gap of the hair follicle followed by a fluorescent staining in the gap itself. The data strongly indicate that the fluorescence in the cuticle originates mainly from the dye of the gap and not from the surrounding epidermis. The on-line visualisation provides a new and excellent tool to monitor simultaneous changes in distribution profiles in the various skin layers including the hair follicle. This information can be used to determine penetration pathways in the skin.

  6. Determining the Mechanism and Efficiency of Industrial Dye Adsorption through Facile Structural Control of Organo-montmorillonite Adsorbents.

    Science.gov (United States)

    Huang, Peng; Kazlauciunas, Algy; Menzel, Robert; Lin, Long

    2017-08-09

    The structural evolution of cost-effective organo-clays (montmorillonite modified with different loadings of CTAB (cetyltrimethylammonium bromide)) is investigated and linked to the adsorption uptake and mechanism of an important industrial dye (hydrolyzed Remazol Black B). Key organo-clay characteristics, such as the intergallery spacing and the average number of well-stacked layers per clay stack, are determined by low-angle X-ray diffraction, while differential thermogravimetric analysis is used to differentiate between surface-bound and intercalated CTAB. Insights into the dye adsorption mechanism are gained through the study of the adsorption kinetics and through the characterization of the organo-clay structure and surface charge after dye adsorption. It is shown that efficient adsorption of anionic industrial dyes is driven by three key parameters: (i) sufficiently large intergallery spacing to enable accommodation of the relatively large dye molecules, (ii) crystalline disorder in the stacking direction of the clay platelets to facilitate dye access, (iii) and positive surface charge to promote interaction with the anionic dyes. Specifically, it is shown that, at low modifier loadings (0.5 cation exchange capacity (0.5CEC)), CTAB molecules exclusively intercalate as a monolayer into the clay intergallery spaces, while, with increasing modifier loadings, the CTAB molecules adopt a bilayer arrangement and adsorb onto the exterior clay surface. Bilayer intercalation results in sufficiently large expansion of the intergallery spaces and significant disordering along the (001) stacking direction to enable high and relatively fast dye uptake via intraparticle diffusion. Poor and slow dye uptake is observed for the organo-clays with a monolayer structure, suggesting relatively inefficient dye adsorption at the clay edges. The optimized bilayer organo-clays (montmorillonite modified with 3CEC of CTAB) also show enhanced adsorption efficiencies for other important

  7. Dye Sensitized Tandem Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  8. Optofluidic ring resonator dye lasers

    Science.gov (United States)

    Sun, Yuze; Suter, Jonathan D.; Fan, Xudong

    2010-02-01

    We overview the recent progress on optofluidic ring resonator (OFRR) dye lasers developed in our research group. The fluidics and laser cavity design can be divided into three categories: capillary optofluidic ring resonator (COFRR), integrated cylindrical optofluidic ring resonator (ICOFRR), and coupled optofluidic ring resonator (CpOFRR). The COFRR dye laser is based on a micro-sized glass capillary with a wall thickness of a few micrometers. The capillary circular cross-section forms the ring resonator and supports the whispering gallery modes (WGMs) that interact evanescently with the gain medium in the core. The laser cavity structure is versatile to adapt to the gain medium of any refractive index. Owing to the high Q-factor (>109), the lasing threshold of 25 nJ/mm2 is achieved. Besides directly pump the dye molecules, lasing through fluorescence resonance energy transfer (FRET) between the donor and acceptor dye molecules is also studied in COFRR laser. The energy transfer process can be further controlled by designed DNA scaffold labeled with donor/acceptor molecules. The ICOFRR dye laser is based on a cylindrical ring resonator fused onto the inner surface of a thick walled glass capillary. The structure has robust mechanical strength to sustain rapid gain medium circulation. The CpOFRR utilizes a cylindrical ring resonator fused on the inner surface of the COFRR capillary. Since the capillary wall is thin, the individual WGMs of the cylindrical ring resonator and the COFRR couples strongly and forms Vernier effect, which provides a way to generate a single mode dye laser.

  9. Textile dyeing by dyestuffs of natural origin

    Directory of Open Access Journals (Sweden)

    Šmelcerović Miodrag

    2006-01-01

    Full Text Available The textile industry is one of the biggest industrial consumers of water especially dye houses which utilize synthetic dyes and other chemicals. Natural dyes are generally environmental friendly and have many advantages over synthetic dyes with respect to production and application. In recent years, there has been an interest in the application of these dyes due to their bio-degradability and higher compatibility with the environment. A review of previous work in the field of applying dyestuffs of natural source as possible textile dyes is given. From an ecological viewpoint, the substitution of chemical dyes by 'natural products' in textile dyeing may be feasible and may represent not only a strategy to reduce risks and pollutants, but also an opportunity for new markets and new businesses which can develop from the inclusion of ecology in trade policy.

  10. Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent ...

    Indian Academy of Sciences (India)

    Dye-sensitized solar cells (DSSC) provide a technically and economically credible alternative concept to present day p–n junction photovoltaic devices. In contrast to the conventional systems where the semiconductor acts as light absorbent and charge carrier transport, the two functions are separated in DSSC.

  11. Effect of dye structure and redox mediators on anaerobic azo and anthraquinone dye reduction

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2012-01-01

    Full Text Available We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1 achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.

  12. Preparation of a Novel Chitosan Based Biopolymer Dye and Application in Wood Dyeing

    Directory of Open Access Journals (Sweden)

    Xiaoqian Wang

    2016-09-01

    Full Text Available A novel chitosan-based biopolymer dye possessing antibacterial properties was synthesized by reaction of O-carboxymethyl chitosan and Acid Red GR. The synthesized materials were characterized by Fourier transform infrared spectroscopy (FTIR, degree of substitution (DS, X-ray photoelectron spectroscopy (XPS, thermogravimetric analysis (TG, X-ray diffraction (XRD, water solubility test, antibacterial property test, and dyeing performance, including dye uptake, color difference, and fastness. Results showed that the synthesized dye was combined by –NH3+ of O-carboxymethyl chitosan and the sulfonic group of Acid Red GR. According to the comprehensive analysis of XRD and water solubility, the introduction of the carboxymethyl group and acid dye molecule changed the structure of the chitosan from compact to loose, which improved the synthesized dye’s water solubility. However, the thermal stability of the synthesized dye was decreased. The antibacterial property of the poplar wood dyed with the synthesized dye was enhanced and its antibacterial rate, specifically against Staphylococcus aureus and Escherichia coli, also increased to a rate of more than 99%. However, the dye uptake of the synthesized dye was lower than that of the original dye. Despite this, though, the dyeing effect of the synthesized dye demonstrated better water-fastness, and light-fastness than the original dye. Therefore, the novel chitosan-based biopolymer dye can be a promising product for wood dyeing.

  13. Studies on Dyeing Performance of Novel Acid Azo Dyes and Mordent Acid Azo Dyes Based on 2,4-Dihydroxybenzophenone

    Directory of Open Access Journals (Sweden)

    Bharat C. Dixit

    2009-01-01

    Full Text Available Novel acid azo and mordent acid azo dyes have been prepared by the coupling of diazo solution of different aminonaphthol sulphonic acids and aromatic amino acids with 2,4-dihydroxybenzophenone. The resultant dyes were characterized by elemental analysis as well as IR and 1H NMR spectral studies. The UV-visible spectral data have also been discussed in terms of structure property relationship. The dyeing assessments of all the dyes were evaluated on wool and silk textile fibers. The dyeing of chrome pretreated wool and silk have also been monitored. The result shows that better hue was obtained on mordented fiber. Results of bactericidal studies of chrome pretreated fibers revealed that the toxicity of mordented dyes against bacteria is fairly good. Dyeing on wool and silk fibers resulted in yellowish pink to reddish brown colourations having excellent light fastness and washing fastness.

  14. Advanced oxidation of acid and reactive dyes

    DEFF Research Database (Denmark)

    Arslan-Alaton, I.; Gursoy, B.H.; Schmidt, Jens Ejbye

    2008-01-01

    M) for 10:hsp sp="0.25" min Fenton treatment at pH 3, resulting in reduced chemical oxygen demand and dissolved organic carbon removal efficiencies; only acetate was detected as a stable dye oxidation end product. During anaerobic digestion, 100, 29% and no inhibition in methane production was observed...... for the untreated blue, red and orange dyes, respectively. The inhibitory effect of the blue reactive dye on methane production was ∼21% after Fenton treatment. Neither untreated nor treated dyes exhibited an inhibitory effect on denitrification. Aerobic glucose degradation was inhibited by 23-29% by untreated dyes...

  15. Anaphylaxis to annatto dye: a case report.

    Science.gov (United States)

    Nish, W A; Whisman, B A; Goetz, D W; Ramirez, D A

    1991-02-01

    Annatto dye is an orange-yellow food coloring extracted from the seeds of the tree Bixa orellana. It is commonly used in cheeses, snack foods, beverages, and cereals. Previously reported adverse reactions associated with annatto dye have included urticaria and angioedema. We present a patient who developed urticaria, angioedema, and severe hypotension within 20 minutes following ingestion of milk and Fiber One cereal, which contained annatto dye. Subsequent skin tests to milk, wheat, and corn were negative. The patient had a strong positive skin test to annatto dye, while controls had no response. The nondialyzable fraction of annatto dye on SDS-PAGE demonstrated two protein staining bands in the range of 50 kD. Immunoblotting demonstrated patient IgE-specific for one of these bands, while controls showed no binding. Annatto dye may contain contaminating or residual seed proteins to which our patient developed IgE hypersensitivity. Annatto dye is a potential rare cause of anaphylaxis.

  16. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    Science.gov (United States)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  17. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  18. APPLICATION OF NATURAL DYES ON TEXTILE: A REVIEW

    OpenAIRE

    Tassew Alemayehu, Zenebesh Teklemariam

    2017-01-01

    This paper reviews the characterization and chemical/biochemical analysis of natural dyes. Extraction of colorants from different natural sources, effects of different mordents and application of binary mixture of natural dyes. Natural dyes are different sources such as plant dyes animal dyes mineral dyes etc. and characteristics of natural dyes such as chemical/biochemical analysis by using UV-visible spectroscopic and chromatographic analysis.

  19. Adsorption Properties of Lac Dyes on Wool, Silk, and Nylon

    OpenAIRE

    Wei, Bo; Chen, Qiu-Yuan; Chen, Guoqiang; Tang, Ren-Cheng; Zhang, Jun

    2013-01-01

    There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes ...

  20. COMPARATIVE STUDY OF TWO DYEING METHODS USING REACTIVE DYE

    Directory of Open Access Journals (Sweden)

    HINOJOSA Belén

    2016-05-01

    Full Text Available Environment preservation is a common worry not only for people but for companies as well. Industry is more and more concern about the necessity of developing new and more respectful processes. Dye is one of the most important processes in the textile industry but it is also considered as no too safe regarding environment issues. This process uses large amounts of water and generates big volumes of wastewater. Following this issue, new regulations and laws emerge to control the waste generated. This leads to the companies and increased costs in terms of wastewater treatments and high water consumption. In this research we compare two systems on garment finishing application, the conventional bath process and the new Ecofinish system that is able to save water and product. To compare these processes, we carried out a reactive dyeing using both systems in order to determine the quality differences in the final product. For this purpose, the samples have been tested to washing and rubbing fastness, according to UNE EN ISO 105 C10 and UNE- EN ISO 105 X12 standards, respectively. This study confirms that this system achieves water savings and reduces the wastewater produced, getting a good dyeing. This process can be considered as an alternative to the conventional one.

  1. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    Science.gov (United States)

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-11-07

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications.

  2. Biochemical study of some environmental pollutants dyes Part II: disperse dyes

    International Nuclear Information System (INIS)

    Shakra, S.; Ahmed, F.A.; Fetyan, N.A.

    2005-01-01

    This work was aimed to develop a method for removal of the dyes color from the textile wastewater that is well be much less costly than the other chemical or physical methods used. It therefore included: 1. Preparation of three disperses dyes. 2. Isolation of dyes degradable microorganisms from wastewater effluents and soil after adding 200 ppm of each dye individually. 3. Decolorisation and biodegradation of the dyes in liquid culture of the isolated bacteria (Bacillus thuringiensis). 4. Identification of the probable byproducts by different instruments. 5. Toxicity assessment of the dyes and their biodegraded products

  3. [Benzidine dyes and risk of bladder cancer].

    Science.gov (United States)

    Miyakawa, M; Yoshida, O

    1989-12-01

    Until the early 1970's there was little concern about dyes which contain benzidine as an integral part of their chemical structure. Furthermore, use of the finished dyes was not considered dangerous. To ascertain whether azo dyes are associated with risk of development of bladder tumors in workers who handpaint Yuzen-type silk kimonos in Kyoto, we investigated the disintegration of dyes to benzidine. In these studies, we found that in rats and mice benzidine-based dyes are metabolized to benzidine and that the azo linkage of benzidine dyes is reduced by Escherichia coli and soil bacteria. These experimental findings were reported previously. In this report, we outline an approach to these studies. Many of the dyes used to color paper, textiles, lipstick, bait used by fishermen, as well as hair dyes, and dyes used in research, for pharmaceutical products, and by defence personnel for the detection of liquid chemical warfare agents, have been shown to be potentially mutagenic or carcinogenic. We review the literature on these dyes.

  4. Africa Insight

    African Journals Online (AJOL)

    Africa Insight is a quarterly, peer-reviewed journal of the Africa Institute of South Africa. It is accredited by the South African National Department of Higher Education and Training (DHET) and is indexed in the International Bibliography of Social Science (IBSS). It is a multi-disciplinary journal primarily focusing on African ...

  5. Pneumatically tunable optofluidic dye laser

    OpenAIRE

    Song, W.; Psaltis, D.

    2010-01-01

    We presented a tunable optofluidic dye laser with integrated elastomeric air-gap etalon controlled by air pressure. The chip was fabricated with polydimethylsiloxane (PDMS) via replica molding. It comprises a liquid waveguide and microscale air-gap mirrors providing the feedback. The lasing wavelength is chosen by the interference between two parallel PDMS-air interfaces inside the internal tunable air-gap etalon, of which pneumatic tuning can be realized by inflating the air-gap etalon with ...

  6. Broad band exciplex dye lasers

    International Nuclear Information System (INIS)

    Dienes, A.; Shank, C.V.; Trozzolo, A.M.

    1975-01-01

    The disclosure is concerned with exciplex dye lasers, i.e., lasers in which the emitting species is a complex formed only from a constituent in an electronically excited state. Noting that an exciplex laser, favorable from the standpoint of broad tunability, results from a broad shift in the peak emission wavelength for the exciplex relative to the unreacted species, a desirable class resulting in such broad shift is described. Preferred classes of laser media utilizing specified resonant molecules are set forth. (auth)

  7. Dataset on analysis of dyeing property of natural dye from Thespesia populnea bark on different fabrics

    Directory of Open Access Journals (Sweden)

    Kuchekar Mohini

    2018-02-01

    Full Text Available The natural dyes separated from plants are of gaining interest as substitutes for synthetic dyes in food and cosmetics. Thespesia populnea (T. populnea is widely grown plant and used in the treatment of various diseases. This study was aimed to separate natural dye from T. populnea bark and analysis of its dyeing property on different fabrics. In this investigation pharmacognostic study was carried out. The pharmacognostic study includes morphological study, microscopical examination, proximate analysis along with the phytochemical study. The dyeing of different fabric was done with a natural dye extracted from T. populnea bark. The fabrics like cotton, butter crep, polymer, chiken, lone, ulene and tarakasa were dye with plant extract. The various evaluation parameters were studied. It includes effect of washing with water, effect of soap, effect of sunlight, effect of alum, effect of Cupric sulphate, microscopical study of fabrics and visual analysis of dyeing by common people were studied. In results, natural dye isolated from T. populnea bark could be used for dyeing fabrics with good fastness properties. The studies reveals that, the dyeing property of fabrics after washing with water and soap, exposed to sunlight does not get affected. It was observed that cotton and tarakasa stains better as compared with other fabrics. It was concluded that the ethanolic extract having good dyeing property. Keywords: Plant, Thespesia populnea, Bark, Natural dye, Fabrics

  8. Batchwise dyeing of bamboo cellulose fabric with reactive dye using ultrasonic energy.

    Science.gov (United States)

    Larik, Safdar Ali; Khatri, Awais; Ali, Shamshad; Kim, Seong Hun

    2015-05-01

    Bamboo is a regenerated cellulose fiber usually dyed with reactive dyes. This paper presents results of the batchwise dyeing of bamboo fabric with reactive dyes by ultrasonic (US) and conventional (CN) dyeing methods. The study was focused at comparing the two methods for dyeing results, chemicals, temperature and time, and effluent quality. Two widely used dyes, CI Reactive Black 5 (bis-sulphatoethylsulphone) and CI Reactive Red 147 (difluorochloropyrimidine) were used in the study. The US dyeing method produced around 5-6% higher color yield (K/S) in comparison to the CN dyeing method. A significant savings in terms of fixation temperature (10°C) and time (15 min), and amounts of salt (10 g/L) and alkali (0.5-1% on mass of fiber) was realized. Moreover, the dyeing effluent showed considerable reductions in the total dissolved solids content (minimum around 29%) and in the chemical oxygen demand (minimum around 13%) for the US dyebath in comparison to the CN dyebath. The analysis of colorfastness tests demonstrated similar results by US and CN dyeing methods. A microscopic examination on the field emission scanning electron microscope revealed that the US energy did not alter the surface morphology of the bamboo fibers. It was concluded that the US dyeing of bamboo fabric produces better dyeing results and is a more economical and environmentally sustainable method as compared to CN dyeing method. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    Energy Technology Data Exchange (ETDEWEB)

    Gladfelter, Wayne L. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Blank, David A. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Mann, Kent R. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry

    2017-06-22

    The overall energy conversion efficiency of photovoltaic cells depends on the combined efficiencies of light absorption, charge separation and charge transport. Dye-sensitized solar cells are photovoltaic devices in which a molecular dye absorbs light and uses this energy to initiate charge separation. The most efficient dye-sensitized solar cells (DSSCs) use nanocrystal titanium dioxide films to which are attached ruthenium complexes. Numerous studies have provided valuable insight into the dynamics of these and analogous photosystems, but the lack of site homogeneity in binding dye molecules to metal oxide films and nanocrystals (NCs) is a significant impediment to extracting fundamental details about the electron transfer across the interface. Although zinc oxide is emerging as a potential semiconducting component in DSSCs, there is less known about the factors controlling charge separation across the dye/ZnO interface. Zinc oxide crystallizes in the wurtzite lattice and has a band gap of 3.37 eV. One of the features that makes ZnO especially attractive is the remarkable ability to control the morphology of the films. Using solution deposition processes, one can prepare NCs, nanorods and nanowires having a variety of shapes and dimensions. This project solved problems associated with film heterogeneity through the use of dispersible sensitizer/ZnO NC ensembles. The overarching goal of this research was to study the relationship between structure, energetics and dynamics in a set of synthetically controlled donor-acceptor dyads and triads. These studies provided access to unprecedented understanding of the light absorption and charge transfer steps that lie at the heart of DSSCs, thus enabling significant future advances in cell efficiencies. The approach began with the construction of well-defined dye-NC dyads that were sufficiently dispersible to allow the use of state of the art pulsed laser spectroscopic and kinetic methods to understand the charge transfer

  10. Synthesis and characterization of reactive dye-cassava mesocarp ...

    African Journals Online (AJOL)

    The synthesis of triazine based reactive dyes was carried out. The resultant dyes were characterized by thin layers chromatography, molecular weight, infrared and ultra- violet spectroscopy, and used in dyeing cassava mesocarp to produce dye modified cellulosic substrates. The dyed substrates were tested for dye fixation, ...

  11. Biological wastewater treatment of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A. (Environmental Protection Agency, Cincinnati, OH (USA))

    1988-09-01

    EPA Water Engineering Research Laboratory, Office of Research and Development, undertook a study to determine the fate of specific water soluble azo dye compounds in the activated sludge process (ASP). The study was approached by dosing the feed to the pilot ASP systems with various water soluble azo dyes and by monitoring each dye compound through the system, analyzing both liquid and sludge samples. The fate of the parent dye compound was assessed via mass balance calculations. These data could determine if the compound was removed by adsorption, apparent biodegradation, or not removed at all. The paper presents results for 18 dye compounds tested from June 1985 through August 1987. The study was conducted at EPAs Test and Evaluation Facility in Cincinnati, Ohio. The objective of this study was to determine the partitioning of water soluble azo dyes in the ASP.

  12. Azo dyes and human health: A review.

    Science.gov (United States)

    Chung, King-Thom

    2016-10-01

    Synthetic azo dyes are widely used in industries. Gerhardt Domagk discovered that the antimicrobial effect of red azo dye Prontosil was caused by the reductively cleaved (azo reduction) product sulfanilamide. The significance of azo reduction is thus revealed. Azo reduction can be accomplished by human intestinal microflora, skin microflora, environmental microorganisms, to a lesser extent by human liver azoreductase, and by nonbiological means. Some azo dyes can be carcinogenic without being cleaved into aromatic amines. However, the carcinogenicity of many azo dyes is due to their cleaved product such as benzidine. Benzidine induces various human and animal tumors. Another azo dye component, p-phenylenediamine, is a contact allergen. Many azo dyes and their reductively cleaved products as well as chemically related aromatic amines are reported to affect human health, causing allergies and other human maladies.

  13. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.

    2009-06-21

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.

  14. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    Science.gov (United States)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  15. Disperse Dyes Based on Thiazole, Their Dyeing Application on Polyester Fiber and Their Antimicrobial Activity

    OpenAIRE

    Zadafiya, S. K.; Tailor, J. H.; Malik, G. M.

    2013-01-01

    Various diazotized aryl amines were coupled with N-(4-nitrophenyl)-2-[(4-phenyl-1,3-thiazol-2-yl)amino]acetamide to give the corresponding various azo disperse dyes (D1-D13). These dyes were applied to polyester fiber by HTHP method and their fastness properties were evaluated. Dyes were characterized by IR, elemental analysis, and NMR spectral studies. These dyes showed very good antibacterial and antifungal activities.

  16. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    Science.gov (United States)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-05

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Tunable Optofluidic Third Order DFB Dye Laser

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye......We present a low-threshold polymer-based nanofluidic dye laser. By employing a third order DFB laser resonator, we demonstrate a threshold fluence of ~7 muJ/mm2 and a tunability of 45 nm using a single laser dye...

  18. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  19. The microbial degradation of azo dyes: minireview.

    Science.gov (United States)

    Chengalroyen, M D; Dabbs, E R

    2013-03-01

    The removal of dyes in wastewater treatment plants still involves physical or chemical processes. Yet numerous studies currently exist on degradation based on the use of microbes-which is a well-studied field. However progress in the use of biological methods to deal with this environmentally noxious waste is currently lacking. This review focuses on the largest dye class, that is azo dyes and their biodegradation. We summarize the bacteria identified thus far which have been implicated in dye decolorization and discuss the enzymes involved and mechanisms by which these colorants are broken down.

  20. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  1. Solvent-free fluidic organic dye lasers.

    Science.gov (United States)

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-06

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

  2. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    Science.gov (United States)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  3. Ultrasonic assisted dyeing: dyeing of acrylic fabrics C.I. Astrazon Basic Red 5BL 200%.

    Science.gov (United States)

    Kamel, M M; Helmy, H M; Mashaly, H M; Kafafy, H H

    2010-01-01

    The dyeing of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% has been studied with both conventional and ultrasonic techniques. The effect of dye concentration, dye bath pH, ultrasonic power, dyeing time and temperature were studied and the resulting shades obtained by dyeing with both techniques were compared. Colour strength values obtained were found to be higher with ultrasonic than with conventional heating. The results of fastness properties of the dyed fabrics were studied. X-ray and Scanning Electron Microscope SEM were carried out on dyed samples using both methods of dyeing to find out an explanation for the better dyeability of acrylic fabrics with (US) method. Dyeing kinetics of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% using conventional and ultrasonic conditions were compared. The time/dye-uptake isotherms are revealing the enhanced dye-uptake in the second phase of dyeing. The values of dyeing rate constant, half-time of dyeing and standard affinity and ultrasonic efficiency have been calculated and discussed.

  4. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes.

    Science.gov (United States)

    Abdou, E M; Hafez, H S; Bakir, E; Abdel-Mottaleb, M S A

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k=1.6, 2.1 and 1.9×10(-3)min(-1) for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100mWcm(-2), reveals highly stable DSSCs. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Adapting vat dye as an alternate dyeing agent for vegetable tanned ...

    African Journals Online (AJOL)

    The research explores the use of vat dye, a selected dye that is available locally in the Ghanaian market in large quantities, with varied colour ranges to identify their suitability as effective colourants on vegetable tanned leather. Four different experiments were performed with vat dye, and two others were tried with suede ...

  6. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    Science.gov (United States)

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Dye Sensitized Solar Cell, DSSC

    Directory of Open Access Journals (Sweden)

    Pongsatorn Amornpitoksuk

    2003-07-01

    Full Text Available A dye sensitized solar cell is a new type of solar cell. The operating system of this solar cell type is similar to plant’s photosynthesis process. The sensitizer is available for absorption light and transfer electrons to nanocrystalline metal oxide semiconductor. The ruthenium(II complexes with polypyridyl ligands are usually used as the sensitizers in solar cell. At the present time, the complex of [Ru(2,2',2'’-(COOH3- terpy(NCS3] is the most efficient sensitizer. The total photon to current conversion efficiency was approximately 10% at AM = 1.5.

  8. Rational molecular design towards Vis/NIR absorption and fluorescence by using pyrrolopyrrole aza-BODIPY and its highly conjugated structures for organic photovoltaics.

    Science.gov (United States)

    Shimizu, Soji; Iino, Taku; Saeki, Akinori; Seki, Shu; Kobayashi, Nagao

    2015-02-09

    Pyrrolopyrrole aza-BODIPY (PPAB) developed in our recent study from diketopyrrolopyrrole by titanium tetrachloride-mediated Schiff-base formation reaction with heteroaromatic amines is a highly potential chromophore due to its intense absorption and fluorescence in the visible region and high fluorescence quantum yield, which is greater than 0.8. To control the absorption and fluorescence of PPAB, particularly in the near-infrared (NIR) region, further molecular design was performed using DFT calculations. This results in the postulation that the HOMO-LUMO gap of PPAB is perturbed by the heteroaromatic moieties and the aryl-substituents. Based on this molecular design, a series of new PPAB molecules was synthesized, in which the largest redshifts of the absorption and fluorescence maxima up to 803 and 850 nm, respectively, were achieved for a PPAB consisting of benzothiazole rings and terthienyl substituents. In contrast to the sharp absorption of PPAB, a PPAB dimer, which was prepared by a cross-coupling reaction of PPAB monomers, exhibited panchromatic absorption across the UV/Vis/NIR regions. With this series of PPAB chromophores in hand, a potential application of PPAB as an optoelectronic material was investigated. After identifying a suitable PPAB molecule for application in organic photovoltaic cells based on evaluation using time-resolved microwave conductivity measurements, a maximized power conversion efficiency of 1.27 % was achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Real-Time Tracking of BODIPY-C12 Long-Chain Fatty Acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells.

    Directory of Open Access Journals (Sweden)

    Kevin Kolahi

    Full Text Available While the human placenta must provide selected long-chain fatty acids to support the developing fetal brain, little is known about the mechanisms underlying the transport process. We tracked the movement of the fluorescently labeled long-chain fatty acid analogue, BODIPY-C12, across the cell layers of living explants of human term placenta. Although all layers took up the fatty acid, rapid esterification of long-chain fatty acids and incorporation into lipid droplets was exclusive to the inner layer cytotrophoblast cells rather than the expected outer syncytiotrophoblast layer. Cytotrophoblast is a progenitor cell layer previously relegated to a repair role. As isolated cytotrophoblasts differentiated into syncytialized cells in culture, they weakened their lipid processing capacity. Syncytializing cells suppress previously active genes that regulate fatty-acid uptake (SLC27A2/FATP2, FABP4, ACSL5 and lipid metabolism (GPAT3, LPCAT3. We speculate that cytotrophoblast performs a previously unrecognized role in regulating placental fatty acid uptake and metabolism.

  10. A Mn(II) complex of boradiazaindacene (BODIPY) loaded graphene oxide as both LED light and H2O2 enhanced anticancer agent.

    Science.gov (United States)

    Xu, Xiao-Lei; Shao, Jian; Chen, Qiu-Yun; Li, Cheng-Hao; Kong, Meng-Yun; Fang, Fang; Ji, Ling; Boison, Daniel; Huang, Tao; Gao, Jing; Feng, Chang-Jian

    2016-06-01

    Cancer cells are more susceptible to H2O2 induced cell death than normal cells. H2O2-activatable and O2-evolving nanoparticles could be used as photodynamic therapy agents in hypoxic environments. In this report, a photo-active Mn(II) complex of boradiazaindacene derivatives (Mn1) was used as a dioxygen generator under irradiation with LED light in water. Moreover, the in vitro biological evaluation for Mn1 and its loaded graphene oxide (herein called Mn1@GO) on HepG-2 cells in normal and hypoxic conditions has been performed. In particular, Mn1@GO can react with H2O2 resulting active anticancer species, which show high inhibition on both HepG-2 cells and CoCl2-treated HepG-2 cells (hypoxic cancer cells). The mechanism of LED light enhanced anticancer activity for Mn1@GO on HepG-2 cells was discussed. Our results show that Mn(II) complexes of boradiazaindacene (BODIPY) derivatives loaded GO can be both LED light and H2O2-activated anticancer agents in hypoxic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Acid/Base and H2PO4(-) Controllable High-Contrast Optical Molecular Switches with a Novel BODIPY Functionalized [2]Rotaxane.

    Science.gov (United States)

    Arumugaperumal, Reguram; Srinivasadesikan, Venkatesan; Ramakrishnam Raju, Mandapati V; Lin, Ming-Chang; Shukla, Tarun; Singh, Ravinder; Lin, Hong-Cheu

    2015-12-09

    A novel multifunctional mechanically interlocked switchable [2]rotaxane R4 containing two molecular stations and rotaxane arms terminated with boron-dipyrromethene (BODIPY) fluorophores and its derivatives were synthesized for the first time by CuAAC click reaction. The shuttling motion of macrocycle between the dibenzylammonium and triazolium recognition sites and the distance dependent photoinduced electron transfer process of R4 is demonstrated by utilizing external chemical stimuli (acid/base). Interestingly, the reversible self-assembly process of R4 was recognized by the acid-base molecular switch strategy. Notably, two symmetrical triazolium groups acted as molecular stations, H2PO4(-) receptors, and H-bonded donors. Both [2]rotaxane R4 and thread R2 demonstrated excellent optical responses and high selectivity toward H2PO4(-) ion. The specific motion and guest-host interactions of mechanically interlocked machines (MIMs) were also further explored by quantum mechanical calculations. The thread R2 also demonstrated to enable the detection of H2PO4(-) in RAW 264.7 cells successfully.

  12. Effect of pH on the Dye Absorption of Jute Fibre Dyed with Direct Dyes

    OpenAIRE

    H. Mondal; Md. Khademul Islam

    2014-01-01

    Dyeing of direct dyes, viz. Direct Yellow 29, Direct Orange 31 and Titan Yellow, has been carried out on jute fibre in the presence of sodium sulphate as an electrolyte. The effect of pH on dyeing have been studied and the results showed comparatively better dye uptake at pH 8.0. Assesment of light and wash fastness, acid and alkali spottings, and breaking strength of direct dyed jute fibre was carried out. Direct Orange 31 showed comparatively better fastness properties than other dyes.

  13. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    Science.gov (United States)

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows the dye molecules to remain electrochemically addressable.

  14. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho

    2011-01-05

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from the two energy relay dyes to the sensitizing dye. The complementary absorption spectra of the energy relay dyes and high excitation transfer efficiencies result in a 35% increase in photovoltaic performance. © 2011 Wiley-VCH Verlag GmbH& Co. KGaA.

  15. Characterization of Natural Dye Extracted from Wormwood and Purple Cabbage for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ho Chang

    2013-01-01

    Full Text Available This study used natural dyes as sensitizers of dye-sensitized solar cells (DSSCs to replace expensive chemical synthetic dyes. We prepared two natural dyes, chlorophyll dye and anthocyanin dye, by extracting them from wormwood and purple cabbage, respectively. Moreover, we mixed the prepared chlorophyll dye and anthocyanin dye at 5 different volume ratios to form cocktail dyes. For preparation of photoelectrode, P25 TiO2 nanoparticles were used to prepare paste, which was coated on fluorine-doped tin oxide (FTO conductive glass by the spin coating method at different spin coating speeds in order to form TiO2 thin films with different thicknesses. The DSSC prepared by the cocktail dye achieves photoelectric conversion efficiency (η of 1.95%, open-circuit voltage (VOC of 0.765 V, and short-circuit current density (JSC of 5.83 mA/cm2. Moreover, the prepared DSSC sensitized solely by chlorophyll extract of wormwood achieved a photoelectric conversion efficiency (η of 0.9%, whereas the DSSC sensitized solely by anthocyanin extract of purple cabbage achieved a photoelectric conversion efficiency of 1.47%, achieving the longest lifetime of electrons amongst these three dyes.

  16. Simultaneous dyeing and antibacterial finishing for cotton cellulose using a new reactive dye.

    Science.gov (United States)

    Farouk, R; Gaffer, H E

    2013-08-14

    Simultaneous dyeing and antibacterial finishing for cotton fabric using a new antibacterial reactive dye having a modified chemical structure to the commercial reactive dye CI Reactive Red 198 were studied. This modification was carried out by replacing metanilic acid in the commercial dye with 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfadimidine). Optimum exhaustion and fixation values were achieved at 60 g/l sodium sulphate and 20 g/l sodium carbonate for both dyes. The modified dye exhibited higher substantivity, exhaustion and fixation efficiency compared to the commercial dye. Antibacterial activities of the dyed samples at different concentrations of both dyes were studied against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria. The cotton dyed with the modified dye shows higher antibacterial efficacy compared to the dyed cotton fabric using the commercial dye, especially on gram negative (E. coli) bacteria. All the reactive dyeings also exhibited high fastness properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  18. Eco-Friendly Dyeing of Cotton with Indigo Dye By Electrochemical Method

    Science.gov (United States)

    Prabu, H. Gurumallesh; Sarala, K.; Babu, S. Ananda; Savitha, K. U.

    2011-07-01

    Eco-friendly dyeing of cotton was performed in two step process; (i) enzymatic pre-treatment of grey cotton fabric and (ii) Electrochemical dyeing of the pre-treated cotton fabric with indigo. The enzymatic pre-treatment was done in three methods; (i) amylase treatment only, (ii) amylase and hydrogen peroxide treatment and (iii) single bath method. The dyeing was carried out with the pre-treated cotton fabric. The reduction of indigo dye by electrochemical method was initiated by applying potential. Then the dyeing was carried out different concentrations of dye, glucose and NaOH. Conventional method of dyeing was also carried out and compared with the electrochemical method. Dyeability was measured by computer colour matching (CCM) GretagMacbeth colour eye 2180UV instrument.

  19. Quirks of dye nomenclature. 2. Congo red.

    Science.gov (United States)

    Cooksey, C J

    2014-07-01

    The history, origin, identity, chemistry and uses of Congo red are described. Originally patented in 1884, Congo red soon found applications in dyeing cotton, as a pH indicator for chemists and as a biological stain. Unlike the majority of the 19th century synthetic dyes, it still is available commercially.

  20. Supramolecular assemblies based on glycoconjugated dyes

    NARCIS (Netherlands)

    Schmidt, B.

    2016-01-01

    Supramolecular assemblies of glycoconjugated dyes can be tailored with properties that make them attractive for use in biomedical applications. For example, when assemblies of glycoconjugated dyes are displaying carbohydrates on their periphery in a polyvalent manner, these assemblies can be used to

  1. EFFECTS OF MORDANTING METHODS OF DYE FROM ...

    African Journals Online (AJOL)

    The effects analyzed are color fastness to; light, washing, wet and dry rubbing and color characteristics on CIELab color coordinates. The aqueous extraction method was used to extract the dye. Some selected mordants were used for dyeing viz; alum, potassium dichromate, ferrous sulphate, iron water and ash water.

  2. High order Bragg grating microfluidic dye laser

    DEFF Research Database (Denmark)

    Balslev, Søren; Kristensen, Anders

    2004-01-01

    We demonstrate a single mode distributed feedback liquid dye laser, based on a short 133 'rd order Bragg grating defined in a single polymer layer between two glass substrates.......We demonstrate a single mode distributed feedback liquid dye laser, based on a short 133 'rd order Bragg grating defined in a single polymer layer between two glass substrates....

  3. Low-threshold conical microcavity dye lasers

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Schleede, Simone; Hauser, Mario

    2010-01-01

    element simulations confirm that lasing occurs in whispering gallery modes which corresponds well to the measured multimode laser-emission. The effect of dye concentration on lasing threshold and lasing wavelength is investigated and can be explained using a standard dye laser model....

  4. Characterization of Triphenylamino-Based Polymethine Dyes

    Directory of Open Access Journals (Sweden)

    Saleem Ullah

    2013-01-01

    Full Text Available In this high-technology application, age functional dyes especially polymethine dyes have captured much attention of the researchers due to their immense potential for high-tech uses. Polymethine dyes show promising absorption spectra in the visible range, which can be easily exploited for the use of written text copying, photographic imaging, or photothermographic recording materials. Keeping this in mind, our research is composed of an investigation of two triphenylamino-based polymethine dyes, a known polymethine dye 3 and a new one polymethine dye 5, which have been synthesized by the reaction of 4-(diphenylamino benzaldehyde 2 and 4,4′-(phenylazanediyl dibenzaldehyde 4 with 4,4′-vinylidene-bis(N, N-dimethylaniline 1. Based on bis-dimethylaminophenylethylene moiety, the new polymethine dye showed more high absorption spectra in the range of 600–700 nm than that of the known polymethine dye based on bis-dimethylaminophenylethylene moiety. Their maximum spectra were exhibited at 637 nm and 653 nm, respectively. Their leuco-converted reversible colored forms were also investigated.

  5. Dye Sensitizers for Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Harold S. Freeman

    2013-03-01

    Full Text Available Photofrin® was first approved in the 1990s as a sensitizer for use in treating cancer via photodynamic therapy (PDT. Since then a wide variety of dye sensitizers have been developed and a few have been approved for PDT treatment of skin and organ cancers and skin diseases such as acne vulgaris. Porphyrinoid derivatives and precursors have been the most successful in producing requisite singlet oxygen, with Photofrin® still remaining the most efficient sensitizer (quantum yield = 0.89 and having broad food and drug administration (FDA approval for treatment of multiple cancer types. Other porphyrinoid compounds that have received approval from US FDA and regulatory authorities in other countries include benzoporphyrin derivative monoacid ring A (BPD-MA, meta-tetra(hydroxyphenylchlorin (m-THPC, N-aspartyl chlorin e6 (NPe6, and precursors to endogenous protoporphyrin IX (PpIX: 1,5-aminolevulinic acid (ALA, methyl aminolevulinate (MAL, hexaminolevulinate (HAL. Although no non-porphyrin sensitizer has been approved for PDT applications, a small number of anthraquinone, phenothiazine, xanthene, cyanine, and curcuminoid sensitizers are under consideration and some are being evaluated in clinical trials. This review focuses on the nature of PDT, dye sensitizers that have been approved for use in PDT, and compounds that have entered or completed clinical trials as PDT sensitizers.

  6. Performance improvement of dye-sensitized solar cells (DSSC) by using dyes mixture from chlorophyll and anthocyanin

    Science.gov (United States)

    Pratiwi, D. D.; Nurosyid, F.; Kusumandari; Supriyanto, A.; Suryana, R.

    2017-11-01

    This article showed the effect of single and mixture natural dyes on the DSSC performance. The single dyes extracted from moss chlorophyll and mangosteen peels anthocyanin. The dyes mixture was prepared by mixing from both chlorophyll and anthocyanin. The absorbance of dyes solution and the adsorption of the dye onto the working electrode were analyzed using UV-Vis spectroscopy. The photocurrent-photovoltage of DSSCs were measured using I-V meter. The dyes mixture has an increased absorption at visible spectrum range as compared to single dye. The adsorption of the dyes mixture onto the TiO2 electrode has higher absorbance than single dye. The DSSC with single dye from moss chlorophyll and mangosteen peels anthocyanin resulted the conversion efficiency of 0.049% and 0.042% respectively. The dyes mixture of chlorophyll and anthocyanin improved the conversion efficiency of 0.154%.

  7. Photochemistry of triarylmethane dyes bound to proteins

    Science.gov (United States)

    Indig, Guilherme L.

    1996-04-01

    Triarylmethanes represent a class of cationic dyes whose potential as photosensitizers for use in photodynamic therapy of neoplastic diseases has never been comprehensively evaluated. Here, the laser-induced photodecomposition of three triarylmethane dyes, crystal violet, ethyl violet, and malachite green, non-covalently bound to bovine serum albumin (a model biological target) was investigated. Upon laser excitation at 532 nm, the bleaching of the corresponding dye-protein molecular complexes follows spectroscopic patterns that suggest the formation of reduced forms of the dyes as major reaction photoproducts. That implies that an electron or hydrogen atom transfer from the protein to the dye's moiety within the guest-host complex is the first step of the photobleaching process. Since the availability of dissolved molecular oxygen was not identified as a limiting factor for the phototransformations to occur, these dyes can be seen as potential phototherapeutic agents for use in hypoxic areas of tumors. These triarylmethane dyes strongly absorb at relatively long wavelengths (absorption maximum around 600 nm; (epsilon) max approximately equals 105 M-1 cm-1), and only minor changes in their absorption characteristics are observed upon binding to the protein. However the binding event leads to a remarkable increase in their fluorescence quantum yield and photoreactivity.

  8. Ultrasound-assisted dyeing of cellulose acetate.

    Science.gov (United States)

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Dye sequestration using agricultural wastes as adsorbents

    Directory of Open Access Journals (Sweden)

    Kayode Adesina Adegoke

    2015-12-01

    Full Text Available Color is a visible pollutant and the presence of even minute amounts of coloring substance makes it undesirable due to its appearance. The removal of color from dye-bearing effluents is a major problem due to the difficulty in treating such wastewaters by conventional treatment methods. The most commonly used methods for color removal are biological oxidation and chemical precipitation. However, these processes are effective and economic only in the case where the solute concentrations are relatively high. Most industries use dyes and pigments to color their products. The presence of dyes in effluents is a major concern due to its adverse effect on various forms of life. The discharge of dyes in the environment is a matter of concern for both toxicological and esthetical reasons. It is evident from a literature survey of about 283 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for dye removal and the optimal equilibrium time of various dyes with different charcoal adsorbents from agricultural residues is between 4 and 5 h. Maximum adsorptions of acidic dyes were obtained from the solutions with pH 8–10. The challenges and future prospects are discussed to provide a better framework for a safer and cleaner environment.

  10. Ultrasound energy to accelerate dye uptake and dye-fiber interaction of reactive dye on knitted cotton fabric at low temperatures.

    Science.gov (United States)

    Tissera, Nadeeka D; Wijesena, Ruchira N; de Silva, K M Nalin

    2016-03-01

    Acoustic cavitation formed due to propagation of ultrasound wave inside a dye bath was successfully used to dye cotton fabric with a reactive dye at lower temperatures. The energy input to the system during sonication was 0.7 W/cm(2). This was within the energy range that contributes towards forming cavitation during ultra-sonication. The influence of ultrasound treatment on dye particle size and fiber morphology is discussed. Particle size analysis of the dye bath revealed ultra-sonication energy was capable of de-agglomeration of hydrolyzed dye molecules during dyeing. SEM micrograph and AFM topographical image of the fiber surface revealed fiber morphology remains unchanged after the sonication. The study was extended in understanding the contribution of ultrasound method of dyeing towards achieving good color strength on the fabric, compared to the normal heating method of dyeing. Study showed color strength obtained using ultra sound method of dyeing is higher compared to normal heating dyeing. Ultrasound energy was able to achieve the good color strength on cotton fabric at very low temperature such as 30 °C, which was approximately 230% more than the color strength achieved in normal heating method of dyeing. This indicates that energy input to the system using ultrasound was capable of acting as an effective alternative method of dyeing knitted cotton fabrics with reactive dye. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Contact dermatitis to hair dyes in a Danish adult population

    DEFF Research Database (Denmark)

    Søsted, H; Hesse, U; Menné, T

    2005-01-01

    .3% of individuals who had ever used hair dye. Of these, only 15.6% had been in contact with healthcare services after the hair dye reaction. Having had a temporary tattoo was not a significant risk factor for an adverse reaction to hair dyes. CONCLUSIONS: The rate of adverse allergic skin reactions to hair dyes...

  12. Contact allergy to common ingredients in hair dyes

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rustemeyer, Thomas; Gonçalo, Margarida

    2013-01-01

    p-Phenylenediamine (PPD) is the primary patch test screening agent for hair dye contact allergy, and approximately 100 different hair dye chemicals are allowed.......p-Phenylenediamine (PPD) is the primary patch test screening agent for hair dye contact allergy, and approximately 100 different hair dye chemicals are allowed....

  13. Supramolecular hair dyes: a new application of cocrystallization

    DEFF Research Database (Denmark)

    Delori, Amit; Urquhart, Andrew; Oswald, Iain D. H.

    2016-01-01

    The manuscript presents the first report of hair dyes of various colors formed by cocrystallization. Unlike the most popular oxidative hair dye (OHD) products, these dyes are NH3 free and do not require H2O2 as a color developer. The importance of these new hair dyes products is further enhanced...

  14. EXPLORING THE USE OF SUEDE DYE ON LEATHER

    African Journals Online (AJOL)

    User

    In this process, the tanning agent, which renders the skin im- mune to decay and prevents shrinkage is a sub- ... dye is a natural dye that is grounded and is ob- tained from mineral source. The choice of suede dye is ... choice of mordant is very important as different mordants can change the final colour of dyes significantly.

  15. Traditional Cloth Dyeing Enterprise at Ntonso: Challenges and ...

    African Journals Online (AJOL)

    There is a growing awareness to the threats posed by synthetic dyes. Natural plant-based dyes have proved to be important alternatives to synthetic dyes in the textile industry. The study investigated the traditional cottage textile dyeing enterprise at Ntonso, in the Ashanti Region of Ghana, to identify challenges facing the ...

  16. Hypersensitivity to contrast media and dyes.

    Science.gov (United States)

    Brockow, Knut; Sánchez-Borges, Mario

    2014-08-01

    This article updates current knowledge on hypersensitivity reactions to diagnostic contrast media and dyes. After application of a single iodinated radiocontrast medium (RCM), gadolinium-based contrast medium, fluorescein, or a blue dye, a hypersensitivity reaction is not a common finding; however, because of the high and still increasing frequency of those procedures, patients who have experienced severe reactions are nevertheless frequently encountered in allergy departments. Evidence on allergologic testing and management is best for iodinated RCM, limited for blue dyes, and insufficient for fluorescein. Skin tests can be helpful in the diagnosis of patients with hypersensitivity reactions to these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Application of wool reactive dyes for hair coloration

    Science.gov (United States)

    Chae, D.; Koh, J.

    2017-10-01

    In this study, the low temperature dyeing properties of wool reactive dyes were investigated for the feasibility study of hair coloration using wool-reactive dyes. The low temperature (30°C, 40°C) wool reactive dyeing properties were compared to the conventional temperature (80°C) wool reactive dyeing and their dyeing properties were compared with those at high temperature. The experiment results showed that the application of low temperature wool reactive dyeing to hair coloration is sufficiently feasible in terms of dyeability and shampooing fastness.

  18. Unconsumed precursors and couplers after formation of oxidative hair dyes

    DEFF Research Database (Denmark)

    Rastogi, Suresh Chandra; Søsted, Heidi; Johansen, Jeanne Duus

    2006-01-01

    -2,5-diamine) and couplers (3-aminophenol, 4-aminophenol, resorcinol) of oxidative hair dyes during and after hair dyeing. Concentrations of unconsumed precursors and couplers in 8 hair dye formulations for non-professional use were investigated, under the conditions reflecting hair dyeing. Oxidative......, up to 1.1% p-phenylenediamine (PPD), 0.04% toluene-2,5-diamine, 0.02% 3-aminophenol and 0.02% resorcinol were found in the hair dye formulation after the required colour was developed. The consumers are thus exposed to precursors and couplers of oxidative hair dyes, both during and after hair dyeing...

  19. Natural Dye Extracted from Vitex negundo as a Potential Alternative to Synthetic Dyes for Dyeing of Silk

    Science.gov (United States)

    Narayana Swamy, Venkataramanappa; Gowda, Kurikempanadoddi Ninge; Sudhakar, Rajagopal

    2016-04-01

    Since the last decade, the application of natural dyes on textile material has been gaining popularity all over the world, possibly because of the increasing awareness of issues concerning the environment, ecology and pollution control. The present paper investigates extraction of natural dye from leaves of the plant Vitex negundo, which is an abundant, cheap, and readily available agricultural by-product. Water extracts from V. negundo was used to dye silk fabrics. Optimum extraction conditions included pH 9, duration 120 min, and temperature 90 °C. Optimum dyeing conditions included dyeing pH 5 and duration of 60 min. Potash alum, tannic and tartaric acid were used as mordants, all of which are benign to human health and the environment. Color strength and color coordinates in terms of L*, a*, b*, C, and h were examined. A range of shades were obtained when fabrics were dyed with different mordants and mordanting techniques. The extracted dye was tested for some of the eco-parameters using atomic absorption spectrophotometry and GC/MS. The test results were compared with set standards to determine the eco-friendliness of natural dye. Their concentrations were found to be lower than the stipulated limits. Dyed samples were tested for antimicrobial activity against gram-positive and gram-negative bacteria. The dyed silk fabrics showed acceptable fastness properties and were also found to possess antibacterial activity. It can be concluded that the abundantly available agricultural by-product V. negundo has great potential to be effectively utilized as a natural dye for silk.

  20. EFFECT OF TEMPERATURE ON THE DYEING OF COTTON FABRIC WITH MONASCUS PURPUREUS DYE

    OpenAIRE

    Tripti Basant*, Shahnaz Jahan

    2016-01-01

    Textile industry is one of the most significant contributor to world economy and a major consumer of dyes. The nature provides rich and diverse source of dyes all the while being environmentally safe, Nowadays, with the increasing awareness about health, wellness as well as environment among the general populace, there has been a renewed interest in natural sources of pigments for dyes. This is because naturally produced colors are not toxic nor carcinogenic to humans and are more e...

  1. Photophysical and calorimetric investigation on the structural reorganization of poly(A) by phenothiazinium dyes azure A and azure B.

    Science.gov (United States)

    Paul, Puja; Kumar, Gopinatha Suresh

    2014-08-01

    Poly(A) has significant relevance to mRNA stability, protein synthesis and cancer biology. The ability of two phenothiazinium dyes azure A (AA) and azure B (AB) to bind single-stranded poly(A) was studied by spectroscopic and calorimetric techniques. Strong binding of the dyes and the higher affinity of AA over AB were ascertained from absorbance and fluorescence experiments. Significant perturbation of the circular dichroism spectrum of poly(A) in the presence of these molecules with formation of induced CD bands in the 300-700 nm region was observed. Strong emission polarization of the bound dyes and strong energy transfer from the adenine base pairs of poly(A) suggested intercalative binding to poly(A). Intercalative binding was confirmed from fluorescence quenching experiments and was predominantly entropy driven as evidenced from isothermal titration calorimetry data. The negative values of heat capacity indicated involvement of hydrophobic forces and enthalpy-entropy compensation suggested noncovalent interactions in the complexation for both the dyes. Poly(A) formed a self-assembled structure on the binding of both the dyes that was more favored under higher salt conditions. New insights in terms of spectroscopic and thermodynamic aspects into the self-structure formation of poly(A) by two new phenothiazinium dyes that may lead to structural and functional damage of mRNA are revealed from these studies.

  2. Industrial scale salt-free reactive dyeing of cationized cotton fabric with different reactive dye chemistry.

    Science.gov (United States)

    Nallathambi, Arivithamani; Venkateshwarapuram Rengaswami, Giri Dev

    2017-10-15

    Dyeing of knitted cotton goods in the industry has been mostly with reactive dyes. Handling of salt laden coloured effluent arising out of dyeing process is one of the prime concerns of the industry. Cationization of cotton is one of the effective alternative to overcome the above problem. But for cationization to be successful at industrial scale it has to be carried out by exhaust process and should be adoptable for the various dye chemistries currently practiced in the industry. Hence, in the present work, industrial level exhaust method of cationization process was carried out with concentration of 40g/L and 80g/L. The fabrics were dyed with dyes of three different dye chemistry and assessed for its dyeing performance without the addition of salt. Dye shades ranging from medium to extra dark shades were produced without the addition of salt. This study will provide industries the recipe that can be adopted for cationized cotton fabric for the widely used reactive dyes at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability

    Science.gov (United States)

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

  4. Transforming Benzophenoxazine Laser Dyes into Chromophores for Dye-Sensitized Solar Cells: A Molecular Engineering Approach

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Florian A. Y. N. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue Cambridge CB3 0HE UK; Cole, Jacqueline M. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue Cambridge CB3 0HE UK; Argonne National Laboratory, 9700 S. Cass Avenue Argonne IL 60439 USA; International Institute for Complex Adaptive Matter, University of California Davis, Davis CA 95616 USA; Waddell, Paul G. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue Cambridge CB3 0HE UK; Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234 Australia; McKechnie, Scott [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue Cambridge CB3 0HE UK

    2015-02-03

    The re-functionalization of a series of four well-known industrial laser dyes, based on benzophenoxazine, is explored with the prospect of molecularly engineering new chromophores for dye-sensitized solar cell (DSC) applications. Such engineering is important since a lack of suitable dyes is stifling the progress of DSC technology. The conceptual idea involves making laser dyes DSC-active by chemical modification, while maintaining their key property attributes that are attractive to DSC applications. This molecular engineering follows a step-wise approach. Firstly, molecular structures and optical absorption properties are determined for the parent laser dyes: Cresyl Violet (1); Oxazine 170 (2); Nile Blue A (3), Oxazine 750 (4). These reveal structure-property relationships which define the prerequisites for computational molecular design of DSC dyes; the nature of their molecular architecture (D-π-A) and intramolecular charge transfer. Secondly, new DSC dyes are computationally designed by the in silico addition of a carboxylic acid anchor at various chemical substitution points in the parent laser dyes. A comparison of the resulting frontier molecular orbital energy levels with the conduction band edge of a TiO2 DSC photoanode and the redox potential of two electrolyte options I-/I3- and Co(II/III)tris(bipyridyl) suggests promise for these computationally designed dyes as co-sensitizers for DSC applications.

  5. DFT Studies on the electronic structures of indoline dyes for dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    JIE XU

    2010-02-01

    Full Text Available A series of indoline dyes with promising efficiency for dye-sensitized solar cells (DSSCs were studied using the density functional theory at the B3LYP/6-31g (d level. The ground-state geometries, electronic structures and absorption spectra of these dyes are reported. The calculated results indicate that the energy levels of the HOMOs and LUMOs of these dyes are advantageous for electron injection. Their intense and broad absorption bands as well as favorable excited-state energy levels are key factor for their outstanding efficiencies in DSSCs.

  6. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    Science.gov (United States)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  7. Studies of decolorization of azo dyes by ascomycete yeasts

    OpenAIRE

    Ramalho, Patrícia A.; Machado, Manuela D.; Cardoso, M. Helena; Ramalho, Maria Teresa

    2001-01-01

    Poster apresentado no Micro'2001, Póvoa de Varzim, 2001. Azo dyes are the most widely used colored materials in textile industries and its biodegradability is, therefore, an important issue in the biological treatment of dye-containing wastewater. However, these treatments are not totally effective in removing color of textile dye wastewater since dyes are typically resistant to oxidative degradation. Most biodegradation studies on azo dyes involve bacterial species, and anaerobic or micro...

  8. Ozone treatment of aqueous solutions containing commercial dyes

    OpenAIRE

    Shawaqfah, Moayyed; Al Momani, Fares; Al-Anber, Zaid

    2012-01-01

    Degradation by ozone and biodegradability were studied for two different families of non-biodegradable textile dyes(reactive dyes and direct dyes). 95% of color removal ofdye solutions was achieved with ozone dose of 2.5 ppm. However, ozone requirements for reactive dyes degradation were less than that of direct dyes for the same color removal level. Five days biological oxygen demand (BOD5) was found to increase during discoloration process while chemical oxygen demand (COD) decreased. The b...

  9. Review of Recent Progress in Dye-Sensitized Solar Cells

    OpenAIRE

    Fan-Tai Kong; Song-Yuan Dai; Kong-Jia Wang

    2007-01-01

    We introduced the structure and the principle of dye-sensitized solar cell (DSC). The latest results about the critical technology and the industrialization research on dye-sensitized solar cells were reviewed. The development of key components, including nanoporous semiconductor films, dye sensitizers, redox electrolyte, counter electrode, and conducting substrate in dye-sensitized solar cells was reviewed in detail. The developing progress and prospect of dye-sensitized solar cells from sma...

  10. Polymerization of novel methacrylated anthraquinone dyes

    Directory of Open Access Journals (Sweden)

    Christian Dollendorf

    2013-02-01

    Full Text Available A new series of polymerizable methacrylated anthraquinone dyes has been synthesized by nucleophilic aromatic substitution reactions and subsequent methacrylation. Thereby, green 5,8-bis(4-(2-methacryloxyethylphenylamino-1,4-dihydroxyanthraquinone (2, blue 1,4-bis(4-((2-methacryloxyethyloxyphenylaminoanthraquinone (6 and red 1-((2-methacryloxy-1,1-dimethylethylaminoanthraquinone (12, as well as 1-((1,3-dimethacryloxy-2-methylpropan-2-ylaminoanthraquinone (15 were obtained. By mixing of these brilliant dyes in different ratios and concentrations, a broad color spectrum can be generated. After methacrylation, the monomeric dyes can be covalently emplaced into several copolymers. Due to two polymerizable functionalities, they can act as cross-linking agents. Thus, diffusion out of the polymer can be avoided, which increases the physiological compatibility and makes the dyes promising compounds for medical applications, such as iris implants.

  11. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.

    1992-01-01

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs

  12. Green dyeing process of modified cotton fibres using natural dyes extracted from Tamarix aphylla (L.) Karst. leaves.

    Science.gov (United States)

    Baaka, Noureddine; Mahfoudhi, Adel; Haddar, Wafa; Mhenni, Mohamed Farouk; Mighri, Zine

    2017-01-01

    This research work involves an eco-friendly dyeing process of modified cotton with the aqueous extract of Tamarix aphylla leaves. During this process, the dyeing step was carried out on modified cotton by several cationising agents in order to improve its dyeability. The influence of the main dyeing conditions (dye bath pH, dyeing time, dyeing temperature, salt addition) on the performances of this dyeing process were studied. The dyeing performances of this process were appreciated by measuring the colour yield (K/S) and the fastness properties of the dyed samples. The effect of mordant type with different mordanting methods on dyeing quality was also studied. The results showed that mordanting gave deeper shades and enhanced fastness properties. In addition, environmental indicators (BOD 5 , COD and COD/BOD 5 ) were used to describe potential improvements in the biodegradability of the dyebath wastewater. Further, HPLC was used to identify the major phenolic compounds in the extracted dye.

  13. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.

    2010-02-11

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies. © 2010 Optical Society of America.

  14. Synthesis of Bridged Oligophenylene Laser Dyes

    Science.gov (United States)

    1991-05-10

    half an hour, and stirring was continued overnight. A negative starch - iodine test showed the absence of positive halogen. Water (400 mL) and 300 mL...molecules both fluoresced In the yellow (550+ nm). Six new compounds have been submitted to MICOM for testing as flashlamp pumped laser dyes. The naphthalene...exploring various applications of dye laser technology. The Army Missle Command (MICOM) has been testing new chemical substances for their potential as

  15. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  16. Phytoremediation in education: textile dye teaching experiments.

    Science.gov (United States)

    Ibbini, Jwan H; Davis, Lawrence C; Erickson, Larry E

    2009-07-01

    Phytoremediation, the use of plants to clean up contaminated soil and water, has a wide range of applications and advantages, and can be extended to scientific education. Phytoremediation of textile dyes can be used as a scientific experiment or demonstration in teaching laboratories of middle school, high school and college students. In the experiments that we developed, students were involved in a hands-on activity where they were able to learn about phytoremediation concepts. Experiments were set up with 20-40 mg L(-1) dye solutions of different colors. Students can be involved in the set up process and may be involved in the experimental design. In its simplest forms, they use two-week-old sunflower seedlings and place them into a test tube of known volume of dye solution. Color change and/or dye disappearance can be monitored by visual comparison or with a spectrophotometer. Intensity and extent of the lab work depends on student's educational level, and time constraints. Among the many dyes tested, Evan's Blue proved to be the most readily decolorized azo dye. Results could be observed within 1-2 hours. From our experience, dye phytoremediation experiments are suitable and easy to understand by both college and middle school students. These experiments help visual learners, as students compare the color of the dye solution before and after the plant application. In general, simple phytoremediation experiments of this kind can be introduced in many classes including biology, biochemistry and ecological engineering. This paper presents success stories of teaching phytoremediation to middle school and college students.

  17. Corrosion Inhibitors as Penetrant Dyes for Radiography

    Science.gov (United States)

    Novak, Howard L.; Hall, Phillip B.

    2003-01-01

    Liquid/vapor-phase corrosion inhibitors (LVCIs) have been found to be additionally useful as penetrant dyes for neutron radiography (and perhaps also x-radiography). Enhancement of radiographic contrasts by use of LVCIs can reveal cracks, corrosion, and other defects that may be undetectable by ultrasonic inspection, that are hidden from direct optical inspection, and/or that are difficult or impossible to detect in radiographs made without dyes.

  18. Radiolysis of anthraquinone dyes in aqueous solutions

    International Nuclear Information System (INIS)

    Vysotskaya, N.A.; Bortun, L.N.; Ogurtsov, N.A.; Migdalovich, E.A.; Revina, A.A.; Volodko, V.V.; AN SSSR, Moscow. Inst. Ehlektrokhimii)

    1986-01-01

    The commercial anthraquinone dyes (Dark Blue, Light Blue, Green) in aqueous solutions were shown to be decoloured and degrade under the action of ionizing radiation. The degree of decolouration and degradation of aromatic rings was found to increase in presence of oxygen. Hydroxyl radicals were shown to play the key role in the degradation of the dyes under irradiation. The radiolysis intermediate products were studied using the pulse radiolysis technique. (author)

  19. Stability of the elderberry dye in vodkas

    International Nuclear Information System (INIS)

    Pizlo, A.; Jankowska, D.

    2001-01-01

    The effect of light, pH, strength of vodkas and by-products on Sambucus nigra pigments stability was tested in this paper. The elderberry dye was unstable in vodkas during light action in general. It was stated that low strength of vodkas and high pH effected an increase of the vodkas colour stability. The presence of vitamin C caused discolouring effect on elderberry dye but chockeberry distillate effected an increase of the vodkas colour stability

  20. α,β-Unsubstituted meso-Positioning Thienyl BODIPY: A Promising Electron Deficient Building Block for the Development of Near Infrared (NIR) p-type Donor-Acceptor (D-A) Conjugated Polymers

    KAUST Repository

    Squeo, Benedetta

    2018-02-27

    It is demonstrated that α,β-unsubstituted meso-positioning thienyl BODIPY is an electron deficient unit that leads to the development of ultra low optical band gap (Egopt < 1 eV) π-conjugated D-A quarterthiophene polymers. Furthermore, it is revealed that the optoelectronic, electrochemical and charge transporting properties of the resulting α,β-unsubstituted meso-positioning thienyl BODIPY quaterthiophene-based polymers are alkyl side chain positioning dependent. Tail-to-tail (TT) positioning of the alkyl side chains at the two central thiophenes of the quaterthiophene segment results to lower Egopt, higher energy levels and increased hole mobility as compared to head-to-head (HH) positioning. Finally, even though the synthesized polymers exhibit high electron affinity, higher even to that of the fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), they present only p-type behaviour in field effect transistors (FETs) independent to the alkyl side chain positioning.

  1. Photocatalytic degradation of synthetic dye under sunlight

    Directory of Open Access Journals (Sweden)

    Mijin Dušan

    2007-01-01

    Full Text Available Synthetic dyes are widely used in the textile industry. Dye pollutants from the textile industry are an important source of environmental contamination. The majority of these dyes are toxic, mostly non-biodegradable and also resistant to decomposition by physico-chemical methods. Among new oxidation methods or "advanced oxidation processes", heterogeneous photocatalysis appears as an emerging destructive technology leading to the total mineralization of many organic pollutants. CI Basic Yellow 28 (BY28, commonly used as a textile dye, could be photocatalytically degraded using TiU2 as catalyst under sunlight. The effect of some parameters such as the initial catalyst concentration, initial dye concentration, initial NaCl and Na2CO3 concentrations, pH, H2O2 and type of catalyst on the degradation rate of BY28 was examined in details. The presence of NaCl and Na2CO3 led to inhibition of the photodegradation process. The highest photodegradation rate was observed at high pH, while the rate was the lowest at low pH. Increase of the initial H2O2 concentration increased the initial BY28 photodegradation efficiency. ZnO was a better catalyst than TiO2 at low dye concentrations.

  2. Degradation of textile dyes by cyanobacteria.

    Science.gov (United States)

    Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim

    Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Polymers and Dyes: Developments and Applications

    Directory of Open Access Journals (Sweden)

    Carolin Fleischmann

    2015-04-01

    Full Text Available Amongst functional macromolecules, the combination of polymers and dyes is a research field of great potential with regard to high-performance materials. Accordingly, colored polymers have become increasingly important as materials for miscellaneous technical applications in recent years while also being a major part of everyday life. For instance, dye-containing polymers are nowadays widely applied in medicine, painting industries, analytics and gas separation processes. Since these applications are obviously connected to the dye’s nature, which is incorporated into the corresponding polymers, the affinity of certain polymers to dyes is exploited in wastewater work-ups after (textile dyeing procedures. In this review, we wish to point out the great importance of dye-containing polymers, with a comprehensive scope and a focus on azo, triphenylmethane, indigoid, perylene and anthraquinone dyes. Since a large number of synthetic approaches towards the preparation of such materials can be found in the literature, an elaborated overview of different preparation techniques is given as well.

  4. Chitosan derivatives as biosorbents for basic dyes.

    Science.gov (United States)

    Lazaridis, Nikolaos K; Kyzas, George Z; Vassiliou, Alexandros A; Bikiaris, Dimitrios N

    2007-07-03

    The scope of this study was to prepare and evaluate chitosan derivatives as biosorbents for basic dyes. This was achieved by grafting poly (acrylic acid) and poly (acrylamide) through persulfate induced free radical initiated polymerization processes and covalent cross-linking of the prepared materials. Remacryl Red TGL was used as the cationic dye. Equilibrium sorption experiments were carried out at different pH and initial dye concentration values. The experimental equilibrium data for each adsorbent-dye system were successfully fitted to the Langmuir, Freundlich and pH-dependent Langmuir-Freundlich sorption isotherms. Thermodynamic parameters of the adsorption process such as DeltaG degrees, DeltaH degrees, and DeltaS degrees were calculated. The negative values of free energy reflected the spontaneous nature of adsorption. The typical dependence of dye uptake on temperature and the kinetics of adsorption indicated the process to be chemisorption. The grafting modifications greatly enhanced the adsorption performance of the biosorbents, especially in the case of powdered cross-linked chitosan grafted with acrylic acid, which exhibited a maximum adsorption capacity equal to 1.068 mmol/g. Kinetic studies also revealed a significant improvement of sorption rates by the modifications. Diffusion coefficients of the dye molecule were determined to be of the order 10(-13) - 10(-12) m2/s. Furthermore, desorption experiments affirmed the regenerative capability of the loaded material.

  5. Degradation of textile dyes by cyanobacteria

    Directory of Open Access Journals (Sweden)

    Priscila Maria Dellamatrice

    Full Text Available Abstract Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black, and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds.

  6. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    Energy Technology Data Exchange (ETDEWEB)

    Vacchi, Francine Inforcato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil); Ormond, Alexandra B.; Freeman, Harold S. [Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, NC 27695-8301 (United States); Zocolo, Guilherme Juliao; Zanoni, Maria Valnice Boldrin [Departamento de Quimica Analitica, Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Quimica de Araraquara, Araraquara, SP 14801-970 (Brazil); Umbuzeiro, Gisela, E-mail: giselau@ft.unicamp.br [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil)

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: Black-Right-Pointing-Pointer Aqueous solutions of Disperse Red 1 were treated with chlorine. Black-Right-Pointing-Pointer The chlorination products of Disperse Red 1 were identified using LC-ESI-MS/MS. Black-Right-Pointing-Pointer Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. Black-Right-Pointing-Pointer The chlorinated dye was more mutagenic

  7. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    International Nuclear Information System (INIS)

    Vacchi, Francine Inforçato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre; Ormond, Alexandra B.; Freeman, Harold S.; Zocolo, Guilherme Julião; Zanoni, Maria Valnice Boldrin; Umbuzeiro, Gisela

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC–ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: ► Aqueous solutions of Disperse Red 1 were treated with chlorine. ► The chlorination products of Disperse Red 1 were identified using LC–ESI-MS/MS. ► Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. ► The chlorinated dye was more mutagenic than the dye itself. ► Chlorination should be avoided in effluents containing azo-dyes.

  8. Rehydrating dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Christian Hellert

    2017-05-01

    Full Text Available Dye sensitized solar cells (DSSCs are silicon free, simply producible solar cells. Longevity, however, is a longstanding problem for DSSCs. Due to liquid electrolytes being commonly used, evaporation of the electrolyte causes a dramatic drop in electric output as cells continue to be used unmaintained. Stopping evaporation has been tried in different ways in the past, albeit with differing degrees of success. In a recent project, a different route was chosen, exploring ways of revitalizing DSSCs after varying periods of usage. For this, we focused on rehydration of the cells using distilled water as well as the electrolyte contained in the cells. The results show a significant influence of these rehydration procedures on the solar cell efficiency. In possible applications of DSSCs in tents etc., morning dew may thus be used for rehydration of solar cells. Refillable DSSCs can also be used in tropical climates or specific types of farms and greenhouses where high humidity serves the purpose of rehydrating DSSCs.

  9. Nucleophilic Addition of Reactive Dyes on Amidoximated Acrylic Fabrics

    Science.gov (United States)

    El-Shishtawy, Reda M.; El-Zawahry, Manal M.; Abdelghaffar, Fatma; Ahmed, Nahed S. E.

    2014-01-01

    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% owf of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics. PMID:25258720

  10. Nucleophilic addition of reactive dyes on amidoximated acrylic fabrics.

    Science.gov (United States)

    El-Shishtawy, Reda M; El-Zawahry, Manal M; Abdelghaffar, Fatma; Ahmed, Nahed S E

    2014-01-01

    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% of of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics.

  11. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    Science.gov (United States)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  12. Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater

    Directory of Open Access Journals (Sweden)

    Shahid Mahmood

    2011-04-01

    Full Text Available Azo dyes are released into wastewater streams without any pretreatment and pollute water and soilenvironments. To prevent contamination of our vulnerable resources, removal of these dye pollutants is of greatimportance. For this purpose, wastewater samples were collected from dye-contaminated sites of Faisalabad. About200 bacterial isolates were isolated through enrichment and then tested for their potential to remove RemazolBlack-B azo dye in liquid medium. Five bacterial isolates capable of degrading Remazol Black-B azo dye efficientlywere screened through experimentation on modified mineral salt medium. Isolate SS1 (collected from wastewater ofSupreme Textile Industry was able to completely remove the Remazol Black-B dye from the liquid medium in 18 h.Further, the isolate showed the best performance at the dye concentration of 100 mg L-1 medium (pH 7 and attemperature 35oC. Similarly, yeast extract proved to be the best carbon source for decolorization purpose. Theresults imply that the isolate SS1 could be used for the removal of the reactive dyes from textile effluents.

  13. DYEING COTTON WITH EISENIA BICYCLIS AS NATURAL DYE USING DIFFERENT BIOMORDANTS

    Directory of Open Access Journals (Sweden)

    BONET Mª Ángeles

    2015-05-01

    Full Text Available Natural dyes are known for their use in coloring of food substrate, leather as well as natural protein fibers like wool, silk and cotton as major areas of application since pre-historic times. Nowadays, there has been revival of the growing interest on the application of natural dyes on natural fibers due to worldwide environmental consciousness. Some researchers focus their studies on the improvement of these dyes using mordants. Most works use metallic mordants like aluminum or iron are used, but some of them are hazardous. In this work we used a biomordant to solve environmental problems caused by metallic mordants. The effects of chitosan weight molecular in mordanting on the dyeing characteristics and the UV protection property were examined in this study. Chitosan mordanted Eisenia Bicyclis dyed cotton showed better dyeing characteristic and higher UV protection property compared with undyed cotton fabric. To analyze the differences of the dyeing, reflection spectrophotometer was used, evaluating the results of CIELAB color difference values and the strength color (in terms of K/S value. We conclude that the type of chitosan used affect the dyeing efficiency and the UV protection, showing different behavior between dye sample using chitosan with low or medium molecular weight.

  14. Acid-base indicator properties of dyes from local plants I: Dyes from ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    ABSTRACT: The acid-base indicator properties of aqueous and ethanol extracts from calyces of H. sabdariffa (Zobo) and a dye obtained from the ripe fruits of Basella alba (Indian spinach), two local plants, were investigated. A purple coloured dye obtained from the ripe fruits of Basella alba showed a λmax at. 580nm ...

  15. Unravelling the High-Pressure Behaviour of Dye-Zeolite L Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Lara Gigli

    2018-02-01

    Full Text Available Self-assembly of chromophores nanoconfined in porous materials such as zeolite L has led to technologically relevant host-guest systems exploited in solar energy harvesting, photonics, nanodiagnostics and information technology. The response of these hybrid materials to compression, which would be crucial to enhance their application range, has never been explored to date. By a joint high-pressure in situ synchrotron X-ray powder diffraction and ab initio molecular dynamics approach, herein we unravel the high-pressure behaviour of hybrid composites of zeolite L with fluorenone dye. High-pressure experiments were performed up to 6 GPa using non-penetrating pressure transmitting media to study the effect of dye loading on the structural properties of the materials under compression. Computational modelling provided molecular-level insight on the response to compression of the confined dye assemblies, evidencing a pressure-induced strengthening of the interaction between the fluorenone carbonyl group and zeolite L potassium cations. Our results reveal an impressive stability of the fluorenone-zeolite L composites at GPa pressures. The remarkable resilience of the supramolecular organization of dye molecules hyperconfined in zeolite L channels may open the way to the realization of optical devices able to maintain their functionality under extreme conditions.

  16. The construction, fouling and enzymatic cleaning of a textile dye surface.

    Science.gov (United States)

    Onaizi, Sagheer A; He, Lizhong; Middelberg, Anton P J

    2010-11-01

    The enzymatic cleaning of a rubisco protein stain bound onto Surface Plasmon Resonance (SPR) biosensor chips having a dye-bound upper layer is investigated. This novel method allowed, for the first time, a detailed kinetic study of rubisco cleanability (defined as fraction of adsorbed protein removed from a surface) from dyed surfaces (mimicking fabrics) at different enzyme concentrations. Analysis of kinetic data using an established mathematical model able to decouple enzyme transfer and reaction processes [Onaizi, He, Middelberg, Chem. Eng. Sci. 64 (2008) 3868] revealed a striking effect of dyeing on enzymatic cleaning performance. Specifically, the absolute rate constants for enzyme transfer to and from a dye-bound rubisco stain were significantly higher than reported previously for un-dyed surfaces. These increased transfer rates resulted in higher surface cleanability. Higher enzyme mobility (i.e., higher enzyme adsorption and desorption rates) at the liquid-dye interface was observed, consistent with previous suggestions that enzyme surface mobility is likely correlated with overall enzyme cleaning performance. Our results show that reaction engineering models of enzymatic action at surfaces may provide insight able to guide the design of better stain-resistant surfaces, and may also guide efforts to improve cleaning formulations. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Intercalating dye as an acceptor in quantum-dot-mediated FRET

    International Nuclear Information System (INIS)

    Lim, Teck Chuan; Bailey, Vasudev J; Wang, T-H; Ho, Y-P

    2008-01-01

    Fluorescence resonance energy transfer (FRET) is a popular tool to study intermolecular distances and characterize structural or conformational changes of biological macromolecules. We investigate a novel inorganic/organic FRET pair with quantum dots (QDs) as donors and DNA intercalating dyes, BOBO-3, as acceptors by using DNA as a linker. Typically, FRET efficiency increases with the number of stained DNA linked to a QD. However, with the use of intercalating dyes, we demonstrate that FRET efficiency at a fixed DNA:QD ratio can be further enhanced by increasing the number of dyes stained to a DNA strand through the use of an increased staining dye/bp ratio. We exploit this flexibility in the staining ratio to maintain a high FRET efficiency of >0.90 despite a sixfold decrease in DNA concentration. Having characterized this new QD-mediated FRET system, we test this system in a cellular environment using nanocomplexes generated by encapsulating DNA with commercial non-viral gene carriers. Using this novel FRET pair, we are able to monitor the configuration changes and fate of the DNA nanocomplexes during intracellular delivery, thereby providing an insight into the mechanistic study of gene delivery

  18. Bioremediation of coractive blue dye by using Pseudomonas spp. isolated from the textile dye wastewater

    Science.gov (United States)

    Sunar, N. M.; Mon, Z. K.; Rahim, N. A.; Leman, A. M.; Airish, N. A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Wastewater released from the textile industry contains variety substances, mainly dyes that contains a high concentration of color and organic. In this study the potential for bacterial decolorization of coractive blue dye was examined that isolated from textile wastewater. The optimum conditions were determined for pH, temperature and initial concentration of the dye. The bacteria isolated was Pseudomonas spp. The selected bacterium shows high decolorization in static condition at an optimum of pH 7.0. The Pseudomonas spp. could decolorize coractive blue dye by 70% within 24 h under static condition, with the optimum of pH 7.0. Decolorization was confirmed by using UV-VIS spectrophotometer. This present study suggests the potential of Pseudomonas spp. as an approach in sustainable bioremediation that provide an efficient method for decolorizing coractive blue dye.

  19. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    OpenAIRE

    Kęstutis BELEŠKA; Virgilijus VALEIKA; Justa ŠIRVAITYTĖ; Violeta VALEIKIENĖ

    2013-01-01

    The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on...

  20. Bleaching and diffusion dynamics in optofluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Asger

    2007-01-01

    The authors have investigated the bleaching dynamics that occur in optofluidic dye lasers where the liquid laser dye in a microfluidic channel is locally bleached due to optical pumping. They find that for microfluidic devices, the dye bleaching may be compensated through diffusion of dye molecules...... alone. By relying on diffusion rather than convection to generate the necessary dye replenishment, their observation potentially allows for a significant simplification of optofluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip microfluidic...

  1. Review of Recent Progress in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Fan-Tai Kong

    2007-01-01

    Full Text Available We introduced the structure and the principle of dye-sensitized solar cell (DSC. The latest results about the critical technology and the industrialization research on dye-sensitized solar cells were reviewed. The development of key components, including nanoporous semiconductor films, dye sensitizers, redox electrolyte, counter electrode, and conducting substrate in dye-sensitized solar cells was reviewed in detail. The developing progress and prospect of dye-sensitized solar cells from small cells in the laboratory to industrialization large-scale production were reviewed. At last, the future development of DSC was prospective for the tendency of dye-sensitized solar cells.

  2. Cellular localization of kinin B1 receptor in the spinal cord of streptozotocin-diabetic rats with a fluorescent [Nα-Bodipy]-des-Arg9-bradykinin

    Directory of Open Access Journals (Sweden)

    Gaudreau Pierrette

    2009-03-01

    Full Text Available Abstract Background The kinin B1 receptor (B1R is upregulated by pro-inflammatory cytokines, bacterial endotoxins and hyperglycaemia-induced oxidative stress. In animal models of diabetes, it contributes to pain polyneuropathy. This study aims at defining the cellular localization of B1R in thoracic spinal cord of type 1 diabetic rats by confocal microscopy with the use of a fluorescent agonist, [Nα-Bodipy]-des-Arg9-BK (BdABK and selective antibodies. Methods Diabetes was induced by streptozotocin (STZ; 65 mg/kg, i.p.. Four days post-STZ treatment, B1R expression was confirmed by quantitative real-time PCR and autoradiography. The B1R selectivity of BdABK was determined by assessing its ability to displace B1R [125I]-HPP-desArg10-Hoe140 and B2R [125I]-HPP-Hoe 140 radioligands. The in vivo activity of BdABK was also evaluated on thermal hyperalgesia. Results B1R was increased by 18-fold (mRNA and 2.7-fold (binding sites in the thoracic spinal cord of STZ-treated rats when compared to control. BdABK failed to displace the B2R radioligand but displaced the B1R radioligand (IC50 = 5.3 nM. In comparison, IC50 values of B1R selective antagonist R-715 and B1R agonist des-Arg9-BK were 4.3 nM and 19 nM, respectively. Intraperitoneal BdABK and des-Arg9-BK elicited dose-dependent thermal hyperalgesia in STZ-treated rats but not in control rats. The B1R fluorescent agonist was co-localized with immunomarkers of microglia, astrocytes and sensory C fibers in the spinal cord of STZ-treated rats. Conclusion The induction and up-regulation of B1R in glial and sensory cells of the spinal cord in STZ-diabetic rats reinforce the idea that kinin B1R is an important target for drug development in pain processes.

  3. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    Directory of Open Access Journals (Sweden)

    Kęstutis BELEŠKA

    2013-05-01

    Full Text Available The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on temperature. The diffusion coefficient of dye C.I. Acid Red 423 calculated according to Weisz model is higher when dyeing conventional leather. The change of deliming method has influence on chromed leather dyeing but this influence is not significant. The adsorption ability of control leather fibres at 30 ºC and 45 ºC is higher using both dyes as compared to the dyeing the experimental one. The increase of dyeing temperature increases the adsorption ability independently on the sort of leather fibres. Such dependence of the adsorption ability on the temperature shows that hydrophobic action and van der Waals forces prevail between dye and fibres during dyeing process. The Gibbs energy changes show that adsorption of both dyes by leather fibres independently on their sort is a spontaneous process. The affinity of both dyes to conventional leather fibres is higher comparing with experimental one. The change of enthalpy is positive in all cases, and it means that the driving force of the dyeing is the change of entropy.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4431

  4. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  5. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  6. Simulation of FRET dyes allows quantitative comparison against experimental data

    Science.gov (United States)

    Reinartz, Ines; Sinner, Claude; Nettels, Daniel; Stucki-Buchli, Brigitte; Stockmar, Florian; Panek, Pawel T.; Jacob, Christoph R.; Nienhaus, Gerd Ulrich; Schuler, Benjamin; Schug, Alexander

    2018-03-01

    Fully understanding biomolecular function requires detailed insight into the systems' structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function.

  7. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer

    Science.gov (United States)

    Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).

  8. Dyeing of Silk with Anthocyanins Dyes Extract from Liriope platyphylla Fruits

    Directory of Open Access Journals (Sweden)

    Huayin Wang

    2014-01-01

    Full Text Available A new source of natural anthocyanins dyes, from Liriope platyphylla fruit, is proposed. This paper analyzes the dye extracts, the primary color components of the extracts, the color features of the extracts under different pH conditions, and their application in silk dyeing. The research shows that, nine anthocyanins are found in  L. platyphylla fruits by analyzing the results of the HPLC/DAD, MS, and MS/MS spectra. The five major anthocyanins related to delphinidin, petunidin, and malvidin derivatives take up 91.72% of total anthocyanin contents. The color of the solution is red under acidic condition (pH < 3.0 and stays in yellow under alkaline condition with pH values above 7.0. The dye extracts applied to silk fabric with mordant free dyeing show different color under different pH conditions, changing between purple, blue, green, and yellow. However, the dyed colors is light and the dyeing rate is low. Metal mordant such as Sn in chelation enhances the dye depth and improves the fastness of the dyed silk fabrics, especially in silk fabrics dyed by premordanting and metamordanting.

  9. In-situ spectroscopic analysis of the traditional dyeing pigment Turkey red inside textile matrix

    Science.gov (United States)

    Meyer, M.; Huthwelker, T.; Borca, C. N.; Meßlinger, K.; Bieber, M.; Fink, R. H.; Späth, A.

    2018-03-01

    Turkey red is a traditional pigment for textile dyeing and its use has been proven for various cultures within the last three millennia. The pigment is a dye-mordant complex consisting of Al and an extract from R. tinctorum that contains mainly the anthraquinone derivative alizarin. The chemical structure of the complex has been analyzed by various spectroscopic and crystallographic techniques for extractions from textiles or directly in solution. We present an in-situ study of Turkey red by means of μ-XRF mapping and NEXAFS spectroscopy on textile fibres dyed according to a traditional process to gain insight into the coordination chemistry of the pigment in realistic matrix. We find an octahedral coordination of Al that corresponds well to the commonly accepted structure of the Al alizarin complex derived from ex-situ studies.

  10. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    Energy Technology Data Exchange (ETDEWEB)

    Sahmer, Ahmad Zahrin, E-mail: ahmadzsahmer@gmail.com; Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com [Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  11. Novel Tunable Dye Laser for Lidar Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A tunable dye laser for Lidar detection will be fabricated based on the innovative dye-doped Holographic Polymer Dispersed Liquid Crystals (HPDLC) technology. The...

  12. Unconsumed precursors and couplers after formation of oxidative hair dyes

    DEFF Research Database (Denmark)

    Rastogi, Suresh Chandra; Søsted, Heidi; Johansen, Jeanne Duus

    2006-01-01

    Contact allergy to hair dye ingredients, especially precursors and couplers, is a well-known entity among consumers having hair colouring done at home or at a hairdresser. The aim of the present investigation was to estimate consumer exposure to some selected precursors (p-phenylenediamine, toluene......-2,5-diamine) and couplers (3-aminophenol, 4-aminophenol, resorcinol) of oxidative hair dyes during and after hair dyeing. Concentrations of unconsumed precursors and couplers in 8 hair dye formulations for non-professional use were investigated, under the conditions reflecting hair dyeing. Oxidative...... hair dye formation in the absence of hair was investigated using 6 products, and 2 products were used for experimental hair dyeing. In both presence and absence of hair, significant amounts of unconsumed precursors and couplers remained in the hair dye formulations after final colour development. Thus...

  13. Rose bengal-sensitized nanocrystalline ceria photoanode for dye ...

    Indian Academy of Sciences (India)

    Rose bengal-sensitized nanocrystalline ceria photoanode for dye-sensitized solar cell application ... injection and transportation, wide bandgap nanostructured metal oxide semiconductors with dye adsorption surface and higher electron mobility are essential properties for photoanode in dyesensitizedsolar cells (DSSCs).

  14. Continuous-wave organic dye lasers and methods

    Science.gov (United States)

    Shapira, Ofer; Chua, Song-Liang; Zhen, Bo; Lee, Jeongwon; Soljacic, Marin

    2014-09-16

    An organic dye laser produces a continuous-wave (cw) output without any moving parts (e.g., without using flowing dye streams or spinning discs of solid-state dye media to prevent photobleaching) and with a pump beam that is stationary with respect to the organic dye medium. The laser's resonant cavity, organic dye medium, and pump beam are configured to excite a lasing transition over a time scale longer than the associated decay lifetimes in the organic dye medium without photobleaching the organic dye medium. Because the organic dye medium does not photobleach when operating in this manner, it may be pumped continuously so as to emit a cw output beam. In some examples, operation in this manner lowers the lasing threshold (e.g., to only a few Watts per square centimeter), thereby facilitating electrical pumping for cw operation.

  15. Reverse micelles for the removal of dyes from aqueous solutions.

    Science.gov (United States)

    Majhi, S; Sharma, Y C; Upadhyay, S N

    2009-08-01

    The ability of reverse micelles to solvate organic dyes in the aqueous core was investigated with methyl orange (MO) and methylene blue (MB) using hexadecyl trimethyl ammonium bromide (HTAB) and sodium dodecyl benzene sulphonate (SDBS) surfactants in a polar amyl alcohol medium. The removal trend of the dyes from water was studied with different concentrations of the dyes. The effects of NaCl and CaCl2 salts on removal efficiency of the surfactants were investigated and results were compared. It was observed that the separation of dyes from the aqueous phase to the organic phase depends on the electrostatic interaction between the dye molecule and surfactant head groups. In the case of NaCl, with increasing salt concentration, the removal (%) of dye decreases. For CaCl2, removal of methyl orange shows a gradual increase with increasing dye concentration, whereas, for methylene blue, its removal decreases with increasing dye concentration.

  16. Nail psoriasis treated with pulsed dye laser*

    Science.gov (United States)

    Peruzzo, Juliano; Garbin, Gabriela Czarnobay; Maldonado, Gabriela; Cestari, Tania Ferreira

    2017-01-01

    Nail changes are present in about 50% of psoriasis patients and tend to be refractory to conventional treatments. Pulsed dye laser has emerged as an alternative therapy. Our aim is to evaluate the efficacy of pulsed dye laser in nail psoriasis and the impact of treatment on quality of life. Fourteen patients were treated in monthly sessions for three months. The outcome assesment was made by the Nail Psoriasis Severity Index (NAPSI). The median improvement in the scores of the overall NAPSI, nail bed NAPSI, and nail matrix NAPSI were 44.2% (P = 0.002), 50% (P = 0.033) and 65.1% (P = 0.024), respectively. PMID:29364458

  17. Optofluidic third order distributed feedback dye laser

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2006-01-01

    This letter describes the design and operation of a polymer-based third order distributed feedback (DFB) microfluidic dye laser. The device relies on light confinement in a nanostructured polymer film where an array of nanofluidic channels is filled by capillary action with a liquid dye solution...... which has a refractive index lower than that of the polymer. In combination with a third order DFB grating, formed by the array of nanofluidic channels, this yields a low threshold for lasing. The laser is straightforward to integrate on lab-on-a-chip microsystems where coherent, tunable light...

  18. The radiochromic dye dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Thongmitr, W.; Panyatipsakul, Y.; Biramontri, S.; Wanitsuksombat, W.; Rativanich, N.

    1984-12-01

    The possibility of using radiochromic dyes as a dosemeter were studied. The radiochromic dyes were used in the forms of hexa (hydroxy ethyl) pararosaniline cyanide solution, pararosaniline cyanide solution and FWT-60 batch 112 nylon film. The 5 mM hexa (hydroxy ethyl) pararosaniline cyanide solution and the film are exposed to gamma radiation from a gamma beam-650 irradiator in the range of 0.1-1, 1-15 and 1-50 kGy respectively. The results show that the studied dosemeters are responded linearly to gamma radiation. The studies of dose distribution in aluminium containers and in frozen shrimp package are also described

  19. Waste Water Treatment of Dye Contamination

    Directory of Open Access Journals (Sweden)

    Pattana Boonyaprapa

    2009-01-01

    Full Text Available The objectives of this research were to study tie-dye process data and wastewater characteristics from 60 entrepreneurs, and to study the colour density treatment in pilot scale by using upflow anaerobic filters. From 60 filled-out questionnaires, it was found that all tie-dye entrepreneurs used reactive dyes by a hot method. Ninety-eight percent of the tie-dye enterpreneurs produced wastewater at the rate of not more than 1500 liters per day. All of them lacked tie-dye wastewater treatment systems. Eighty-five percent of tie-dye entrepreneurs agreed that there must be wastewater treatment before release into the environment. From group discussions, it was found that the entrepreneurs realized the wastewater problem and wanted to carry out environment friendly tie-dyeing. Our study demonstrated that the average value of the colour density, chemical oxygen demand (COD, total dissolved solids (TDS and pH of the wastewater characteristics were 170 SU (space units, 1584 mg/l, 2487 mg/l and 8, respectively. For the upflow anaerobic filter, 5 sets of experiments, with 24 hours retention time, were designed, with 0, 1, 2, 3 and 4 % of cow’s feces ferment, respectively (sets 1st-5th. The result showed decreasing colour densities from 170 SU to 160 SU (dark colour, 60 SU (very light colour, 12 SU (no colour, 10 SU (no colour and 10 SU (no colour, respectively. We conclude that the upflow anaerobic filter, containing 2% cow’s feces ferment is an efficient way to reduce colour density of the wastewater. Mixing cow’s feces ferment with tie-dye wastewater increased COD and TDS in wastewater. Mean COD was increased by residual organic matter from 1584 mg/l (before treatment to (after-treatment, sets 2nd- 5th 1600 mg/l, 1680 mg/l, 1710 mg/l and 1750 mg/l, respectively. COD aftertreatment was higher than the industrial effluence standard (400 mg/l. Further treatment COD might include wetland procedures. TDS was increased by some residual organic matter

  20. RISK ASSESSMENT FOR THE DYE AND PIGMENT ...

    Science.gov (United States)

    This risk assessment calculates the maximum loadings of constituents found in dyes and pigment industries waste streams which can be disposed in different types of waste management units without causing health benchmarks to be exceeded at plausible receptor locations. The assessment focuses on potential risks from volatilization and leaching to groundwater of constituents disposed in surface impoundments and landfills with either clay liners or composite liners. This product will be used by EPA decision makers to assist in determining whether certain waste streams generated by the dyes and pigments industries should be designated as hazardous.

  1. A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.S.; Cui, Y.; Hara, K. [National Institute of Advanced Industrial, Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Dan-oh, Y.; Kasada, C.; Shinpo, A. [Hayashibara Biochemical Laboratories, Inc., Okayama (Japan)

    2007-04-20

    A new coumarin dye for use in dye-sensitized solar cells (DSSCs) is reported. It exhibits near-unity light harvesting efficiency and incident photon-to-electron conversion efficiency over a wide spectral region in 6 {mu}m transparent TiO{sub 2} films. DSSCs based on this metal-free organic dye show long-term stability and power-conversion efficiencies of around 6 % under continuous light-soaking stress for up to 1000 h. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  2. N-Annulated perylene substituted zinc–porphyrins with different linking modes and electron acceptors for dye sensitized solar cells

    KAUST Repository

    Luo, Jie

    2016-05-03

    Three new N-annulated perylene (NP) substituted porphyrin dyes WW-7-WW-9 with different linking modes and accepting groups were synthesized and applied in Co(ii)/(iii) based dye sensitized solar cells (DSCs). The bay-linked porphyrins WW-7 and WW-8 exhibited moderate power conversion efficiency (PCE = 4.4% and 4.8%, respectively), while the peri-linked porphyrin dye WW-9 showed a PCE up to 9.2% which is slightly lower than that of our reference dye WW-6. Detailed physical measurements (optical and electrochemical), DFT calculations, and photovoltaic characterizations were performed to understand how the structural changes affect their light-harvesting ability, molecular orbital profile, energy level alignment, and eventually the photovoltaic performance. It turned out that the lower efficiencies of the cells based on WW-7 and WW-8 could be ascribed to the weak π-conjugation between the bay-substituted NP and phenylethynyl substituted porphyrin unit. The introduction of a benzothiadiazole acceptor at the anchoring group has induced a significant red shift of the IPCE action spectra of WW-8 and WW-9, by about 90 nm and 50 nm as compared to that of WW-7 and WW-6, respectively. However, less efficient electron injection was observed. Our studies gave some insight into the important role of electronic interactions between different components when one designs a dye for high-efficiency DSCs. © The Royal Society of Chemistry 2016.

  3. Studies on the use of power ultrasound in leather dyeing.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Rao, Paruchuri Gangadhar

    2003-03-01

    Uses of power ultrasound for acceleration/performing the chemical as well as physical processes are gaining importance. In conventional leather processing, the diffusion of chemicals through the pores of the skin/hide is achieved by the mechanical agitation caused by the paddle or drumming action. In this work, the use of power ultrasound in the dyeing of leather has been studied with the aim to improve the exhaustion of dye for a given processing time, to reduce the dyeing time and to improve the quality of dyed leather. The effect of power ultrasound in the dyeing of full chrome cow crust leather in a stationary condition is compared with dyeing in the absence of ultrasound as a control experiment both in a stationary as well as conventional drumming condition. An ultrasonic cleaner (150 W and 33 kHz) was used for the experiments. Actual power dissipated into the system was calculated from the calorimetric measurement. Experiments were carried out with variation in type of dye, amount of dye offer, temperature and time. The results show that there is a significant improvement in the percentage exhaustion of dye due to the presence of ultrasound, when compared to dyeing in absence of ultrasound. Experiments on equilibrium dye uptake carried out with or without ultrasound suggest that ultrasound help to improve the kinetics of leather dyeing. The results indicate that leathers dyed in presence of ultrasound have higher colour values, better dye penetration and fastness properties compared to control leathers. The physical testing results show that strength properties of the dyed leathers are not affected due to the application of ultrasound under the given process conditions. Apparent diffusion coefficient during the initial stage of dyeing process, both in presence and in absence of ultrasound was calculated. The values show that ultrasound helps in improving the apparent diffusion coefficient more for the difficult dyeing conditions such as in the case of metal

  4. Decolorization of synthetic dyes and textile effluents by basidiomycetous fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Diwaniyan, S.; Kharb, D.; Raghukumar, C.; Kuhad, R.C.

    pollution. Most of these dyes are stable to light, temperature, and highly resistant to degradation (O’Neill et al. 1999). Several physico-chemical methods such as adsorption, pre- cipitation, chemical oxidation, photodegradation, or membrane filtration have...), which are toxic, mutagenic, and possibly carcinogenic (Pinheiro et al. 2004). Several actinomycetes have been reported to decolor- ize reactive dyes, including anthraquinone, phthalo- cyanine, and azo dyes, through adsorption of the dyes to the cellular...

  5. Removal of textile dyes with biopolymers xanthan and alginic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Alvarez, J.; Jauregui-Rincon, J.; Mendoza-Diaz, G.; Rodriguez-Vazquez, G.; Frausto-Reyes, C.

    2009-07-01

    Textile industry is an important activity that provides considerable benefits to people, but unfortunately dyeing of yarn and cloth produces pollution of water, a resource that is valuable and scarce. Dyeing of textiles fibers is an inefficient process, in view of the fact that approximately ten percent of total dye is thrown to municipal sewage. Although different treatment systems are applied to wastewater, dyes are resistant to physical, chemical and biological factors because of the way they are designed. (Author)

  6. PHYSICO-CHEMICAL STUDIES OF DISAZO DYES DERIVED ...

    African Journals Online (AJOL)

    DJFLEX

    with disazo disperse dyes on synthetic polymer-fibres. (Venkataraman, 1974; Otutu et al., 2008). In this present study, the physico-chemical studies of disazo dyes derived from p-aminophenol recently prepared by our research group is described. We also described the kinetics of the dyes on nylon 6 fibre. In another study.

  7. Decolorization of reactive dyes under batch anaerobic condition by ...

    African Journals Online (AJOL)

    However, decolorization was lower for the dye of RB 49 than other two dyes in all concentrations despite 72 h incubation period by mixed anaerobic culture. All of the three dyes correlated with 1st order reaction kinetic with respect to decolorization kinetics. The results of the study demonstrated that high decolorization was ...

  8. Aerobic decolourization of two reactive azo dyes under varying ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-01

    Feb 1, 2010 ... PSG by (75%) using yeast extract and lactose. Key words: Bioremediation, decolourization, textile dye, Bacillus cereus. INTRODUCTION. Dyes are organic chemical compounds, which impart colour to other materials by saturating them in aqueous solution. Synthetic dyes have a wide application in the food ...

  9. Rate equation simulation of temporal characteristics of a pulsed dye ...

    Indian Academy of Sciences (India)

    To design and build high-power, pulsed dye laser MOPA systems, it is necessary to have a detailed knowledge of ... equation-based model to study the performance of dye oscillator [5] and amplifiers. [6–10]. In [5], a .... qualitative and reasonably good quantitative agreement with experimental results on two separate dye ...

  10. Column studies for biosorption of dyes from aqueous solutions on ...

    African Journals Online (AJOL)

    Biosorption is becoming a promising alternative to replace or supplement the present dye removal processes from dye wastewaters. Based on the results of batch studies on biosorption of the dyes on powdered fungal biomass, Aspergillus niger, an immobilised fungal biomass was used in column studies for removal of four ...

  11. Photophysical and laser characteristics of pyrromethene 567 dye ...

    Indian Academy of Sciences (India)

    The fringe pattern of the dye laser output was monitored using a Fabry–Perot etalon and linewidth was calculated. For comparing the dye laser efficiencies, the concentra- tions of both the dye solutions were optimized for similar gain depth of the pump beam (at identical OD ∼7 for 1 cm path) at 532 nm pump wavelength.

  12. Integrated and sequential anaerobic/aerobic biodegradation of azo dyes

    NARCIS (Netherlands)

    Tan, N.G.C.

    2001-01-01

    Azo dyes constitute a major class of environmental pollutants accounting for 60 to 70% of all dyes and pigments used. These compounds are characterized by aromatic moieties linked together with azo groups (-N=N-). The release of azo dyes into the environment is a concern due to coloration

  13. Synthesis and application of dyes derived from Schaeffer's acid on ...

    African Journals Online (AJOL)

    A monoazo dye was synthesized and applied to nylon 6,6 fibers. The effect of heat-set and auxiliary treatment on the absorption of acid dyes by nylon fibers was investigated. The dye was synthesized by the diazotization of primary amine to form a diazonium salt and coupling it to a coupling component (Schaeffer's acid).

  14. Sequestration of Congo red Dye from Aqueous Solution using ...

    African Journals Online (AJOL)

    The adsorption of Congo red dye in aqueous solution using locally sourced almond shell adsorbent was investigated in this study. The effect of various factors such as contact time, initial dye concentration and adsorbent dosage on the adsorption capacity of the adsorbent was studied. The adsorption of Congo red dye was ...

  15. 17 EFFECTS OF MORDANTING METHODS OF DYE FROM ...

    African Journals Online (AJOL)

    Frederick Iraki

    dyeing woven cotton with natural dyes from the leaves of Vernonia amygdalina. The effects analyzed are color fastness ... INTRODUCTION. In Uganda, plants have traditionally been utilized as a source of colorants for dyeing mats, ropes and other home based materials for a long time. These plants are a potential source of ...

  16. 40 CFR 721.988 - Pyrazolone azomethine dye (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Pyrazolone azomethine dye (generic... Substances § 721.988 Pyrazolone azomethine dye (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a pyrazolone azomethine dye...

  17. 40 CFR 721.5915 - Polysubstituted phenylazopolysubstitutedphenyl dye.

    Science.gov (United States)

    2010-07-01

    ... phenylazopolysubstitutedphenyl dye. 721.5915 Section 721.5915 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5915 Polysubstituted phenylazopolysubstitutedphenyl dye. (a) Chemical... as a polysubstituted phenylazopolysubstitutedphenyl dye (PMN P-93-658) is subject to reporting under...

  18. 40 CFR 721.9717 - Azo monochloro triazine reactive dye.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Azo monochloro triazine reactive dye... Substances § 721.9717 Azo monochloro triazine reactive dye. (a) Chemical substance and significant new uses... reactive dye (PMN P-96-238) is subject to reporting under this section for the significant new uses...

  19. 40 CFR 721.2527 - Substituted diphenylazo dye (generic name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted diphenylazo dye (generic... Specific Chemical Substances § 721.2527 Substituted diphenylazo dye (generic name). (a) Chemical substance... substituted diphenylazo dye (PMN P-95-514) is subject to reporting under this section for the significant new...

  20. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses... dye (PMN P-94-499) is subject to reporting under this section for the significant new uses described...

  1. 40 CFR 721.5917 - Phenyl azo dye (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phenyl azo dye (generic). 721.5917... Substances § 721.5917 Phenyl azo dye (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a phenyl azo dye (PMN P-02-17) is subject to...

  2. 21 CFR 864.1850 - Dye and chemical solution stains.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dye and chemical solution stains. 864.1850 Section... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical solution stains. (a) Identification. Dye and chemical solution stains for medical purposes are mixtures of...

  3. Biotreatment of anthraquinone dye Drimarene Blue K 2 RL | Siddiqui ...

    African Journals Online (AJOL)

    Drimarene Blue (Db) K2RL is a reactive anthraquinone dye, used extensively in textile industry, due to poor adsorbability to textile fiber; it has a higher exhaustion rate in wastewater. The dye is toxic, carcinogenic, mutagenic and resistant to degradation. Decolorization of this dye was studied in two different systems.

  4. Comparative properties of pure and sulphonated dyes extracted ...

    African Journals Online (AJOL)

    In continuation of our research on the extraction and application of plants, we report the results of the dyeing and fastness properties of dyes extracted from the leaves of Henna and Kolanut plants in chrome-tanned (Wet- Blue) leather. Dyes were extracted from Henna (Lawsonia inermis) and Kolanut (Cola nitida) plants ...

  5. Decolorization of irgalite dye by immobilized Pseuodomonas putida ...

    African Journals Online (AJOL)

    COMPAQ

    of mustard straw as activated carbon materials for removal of dyes from aqueous solution. This biomaterial is low cost agricultural waste residue and is easily available in large quantity in India. The dyes selected as sorbate is irgalite. The effects of various operating parameters on biosorption such as initial pH and dye.

  6. Comparison of dye decolorization efficiencies of indigenous fungal ...

    African Journals Online (AJOL)

    Different physicochemical cultural conditions were optimized for azo dye removal by using Acid Red 151 as a model dye, being of high consumer demand and usage during the present study. The three fungal strains having the dye removal abilities, Aspergillus niger SA1, Aspergillus flavus SA2 and Aspergillus terreus SA3 ...

  7. Optimization of Crystal Violet dye removal from aqueous solution ...

    African Journals Online (AJOL)

    Batch adsorption process involving use of groundnut shell (GS) and orange peel (OP) as adsorbents was employed for the removal of carcinogenic Crystal Violet dye from aqueous solution. Studies were carried out as function of contact time, sorbent dosage, initial dye concentration and pΗ of the dye solution with a view of ...

  8. Development auxiliaries for dyeing polyester with disperse dyes at low temperatures

    Science.gov (United States)

    Carrion-Fite, F. J.; Radei, S.

    2017-10-01

    High-molecular weight organic compounds known as carriers are widely used to expedite polyester dyeing at atmospheric pressure at 100 °C. However, carriers are usually poorly biodegradable and can partially plasticize fibres. Also, dyeing at temperatures above 100 °C in the absence of a carrier entails using expensive equipment. In this work, we developed an alternative method for dyeing polyester at temperatures below 100 °C that reduces energy expenses, dispenses with the need to invest in new equipment and avoids the undesirable effects of non-biodegradable carriers. The method uses disperse dyes in a microemulsion containing a low proportion of a non-toxic organic solvent and either of two alternative development auxiliaries (coumarin and o-vanillin) that is prepared with the aid of ultrasound.

  9. Dye-Sensitized Solar Cells (DSSCs) reengineering using TiO2 with natural dye (anthocyanin)

    Science.gov (United States)

    Subodro, Rohmat; Kristiawan, Budi; Ramelan, Ari Handono; Wahyuningsih, Sayekti; Munawaroh, Hanik; Hanif, Qonita Awliya; Saputri, Liya Nikmatul Maula Zulfa

    2017-01-01

    This research on Dye-Sensitized Solar Cells (DSSCs) reengineering was carried out using TiO2 with natural dye (anthocyanin). The fabrication of active carbon layer/TiO2 DSSC solar cell was based on natural dye containing anthocyanins such as mangosteen peel, red rose flower, black glutinous rice, and purple eggplant peel. DSSC was prepared with TiO2 thin layer doped with active carbon; Natural dye was analyzed using UV-Vis and TiO2 was analyzed using X-ray diffractometer (XRD), meanwhile scanning electron microscope (SEM) was used to obtain the size of the crystal. Keithley instrument test was carried out to find out I-V characteristics indicating that the highest efficiency occurred in DSSCs solar cell with 24-hour soaking with mangosteen peel 0.00047%.

  10. Dye-sensitized solar cells with natural dyes extracted from achiote seeds

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Ortiz, N.M.; Vazquez-Maldonado, I.A.; Azamar-Barrios, J.A.; Oskam, G. [Departamento de Fisica Aplicada, CINVESTAV-IPN, Merida, Yuc. 97310 (Mexico); Perez-Espadas, A.R.; Mena-Rejon, G.J. [Laboratorio de Quimica Organica de Investigacion, Facultad de Quimica, Universidad Autonoma de Yucatan, Merida, Yuc. 97150 (Mexico)

    2010-01-15

    We have explored the application of natural dyes extracted from the seeds of the achiote shrub (Bixa orellana L.) in dye-sensitized solar cells (DSCs). The main pigments are bixin and norbixin, which were obtained by separation and purification from the dark-red extract (annatto). The dyes were characterized using {sup 1}H-NMR, FTIR spectroscopy, and UV-Vis spectrophotometry. Solar cells were prepared using TiO{sub 2} and ZnO nanostructured, mesoporous films and the annatto, bixin, and norbixin as sensitizers. The best results were obtained with bixin-sensitized TiO{sub 2} solar cells with efficiencies of up to 0.53%, illustrating the importance of purification of dyes from natural extracts. (author)

  11. Photochromic dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Noah M. Johnson

    2015-11-01

    Full Text Available We report the fabrication and characterization of photochromic dye sensitized solar cells that possess the ability to change color depending on external lighting conditions. This device can be used as a “smart” window shade that tints, collects the sun's energy, and blocks sunlight when the sun shines, and is completely transparent at night.

  12. Characterising dye-sensitized solar cells

    Science.gov (United States)

    Tobin, Laura L.; O'Reilly, Thomas; Zerulla, Dominic; Sheridan, John T.

    2009-08-01

    With growing energy and environmental concerns due to fossil fuel depletion and global warming there is an increasing attention being attracted by alternative and/or renewable sources of power such as biomass, hydropower, geothermal, wind and solar energy. In today's society there is a vast and in many cases not fully appreciated dependence on electrical power for everyday life and therefore devices such as PV cells are of enormous importance. The more widely used and commercially available silicon (semiconductor) based cells currently have the greatest efficiencies, however the manufacturing of these cells is complex and costly due to the cost and difficulty of producing and processing pure silicon. One new direction being explored is the development of dye-sensitised solar cells (DSSC). The SFI Strategic Research Centre for Solar Energy Conversion is a new research cluster based in Ireland, formed with the express intention of bringing together industry and academia to produce renewable energy solutions. Our specific area of research is in biomimetic dye sensitised solar cells and their electrical properties. We are currently working to develop test equipment, and optoelectronic models describing the performance and behaviors of dye-sensitised solar cells (Grätzel Cells). In this paper we describe some of the background to our work and also some of our initial experimental results. Based on these results we intend to characterise the opto-electrical properties and bulk characteristics of simple dye-sensitised solar cells and then to proceed to test new cell compositions.

  13. Dye-sensitised solar cell (artificial photosynthesis)

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2005-07-01

    Full Text Available A novel system that harnesses solar energy is the nano-crystalline TiO dye-sensitised solar cell (DSC), in conjunction with several new concepts, such as nanotechnology and molecular devices. An efficient and low-cost cell can be produced by using...

  14. Degradation of various dyes using Laccase enzyme.

    Science.gov (United States)

    Dhaarani, S; Priya, A K; Rajan, T Vel; Kartic, D Navamani

    2012-10-01

    Disposal of untreated dyeing effluent in water bodies, from textile industries, cause serious environmental and health hazards. The chemical structures of dye molecules are designed to resist fading on exposure to light or chemical attack, and they prove to be quite resistant towards microbial degradation. Therefore, current conventional biological processes may not be able to meet wastewater discharge criteria and reuse. An enzymatic treatment undergoes oxidative cleavage avoiding formation of toxic amines. Laccase is a multi-copper containing protein that catalyzes the oxidation of a wide range of aromatic substrates concomitantly with the reduction of molecular oxygen to water. UV visible spectral analysis of various synthetic dyes was performed in the study and wavelengths of maximum absorbance determined. Laccase enzyme was obtained from the fungi Pleorotus ostreatus. The enzyme showed high efficiency against Malachite Green, Basic Red and Acid Majanta with decolorization capacities of 97%, 94% and 94% respectively. Further, these dyes can be used for optimization of degradation parameters and analysis of degradation products.

  15. Magnetically modified spent grain for dye removal

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Horská, Kateřina; Šafaříková, Miroslava

    2011-01-01

    Roč. 53, č. 1 (2011), s. 78-80 ISSN 0733-5210 R&D Projects: GA MŠk OC09052; GA MPO 2A-1TP1/094 Institutional research plan: CEZ:AV0Z60870520 Keywords : Spent grain * Magnetic fluid * Adsorption * Dyes Subject RIV: GM - Food Processing Impact factor: 2.073, year: 2011

  16. Dye-sensitised solar cell (artificial photosynthesis)

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2006-02-01

    Full Text Available is the nano- crystalline TiO2dye- sensitised solar cell (DSC), in conjunction with several new concepts, such as nanotechnology and molecular devices. An efficient and low-cost cell can be produced by using simple materials. The production process generates...

  17. Removal of Triphenylmethane Dyes by Bacterial Consortium

    Science.gov (United States)

    Cheriaa, Jihane; Khaireddine, Monia; Rouabhia, Mahmoud; Bakhrouf, Amina

    2012-01-01

    A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L) and malachite green (50 mg/L) dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD) removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes. PMID:22623907

  18. (Hair-dye) and Renal Impairment

    African Journals Online (AJOL)

    Introduction: Paraphenylenediamine (PPD) is widely used in hair dyes and cosmetic skin application. PPD intoxication following oral ingestion could be an important cause of ARF in Sudan, Morocco and the Indian Subcontinent. Repeated and prolonged exposure to PPD may also be associated with Chronic Kidney ...

  19. Triphenylmethane Dye Activation of Beta-Arrestin

    Science.gov (United States)

    2013-01-01

    β-Arrestins regulate G protein-coupled receptor signaling as competitive inhibitors and protein adaptors. Low molecular weight biased ligands that bind receptors and discriminate between the G protein dependent arm and β-arrestin, clathrin-associated arm of receptor signaling are considered therapeutically valuable as a result of this distinctive pharmacological behavior. Other than receptor agonists, compounds that activate β-arrestins are not available. We show that within minutes of exposure to the cationic triphenylmethane dyes malachite green and brilliant green, tissue culture cells recruit β-arrestins to clathrin scaffolds in a receptor-activation independent manner. In the presence of these compounds, G protein signaling is inhibited, ERK and GSK3β signaling are preserved, and the recruitment of the beta2-adaptin, AP2 adaptor complex to clathrin as well as transferrin internalization is reduced. Moreover, malachite green binds β-arrestin2-GFP coated immunotrap beads relative to GFP only coated beads. Triphenylmethane dyes are FDA approved for topical use on newborns as components of triple-dye preparations and are not approved but used effectively as aqueous antibiotics in fish husbandry. As possible carcinogens, their chronic ingestion in food preparations, particularly through farmed fish, is discouraged in the U.S. and Europe. Our results indicate triphenylmethane dyes as a result of novel pharmacology may have additional roles as β-arrestin/clathrin pathway signaling modulators in both pharmacology research and clinical therapy. PMID:23865508

  20. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...

  1. Pulse radiolysis of anthraquinone dye aqueous solution

    International Nuclear Information System (INIS)

    Perkowski, J.; Gebicki, J.L.; Lubis, R.; Mayer, J.

    1988-01-01

    Pulse radiolysis of argon flushed aqueous solutions of 10 -5 -10 -4 mol dm -3 anthraquinone dye (C.I. Acid Blue 62) gives rise to the transients originated from the reactions of e - aq , OH and H. The rate constants of these reactions are determined. (author)

  2. Electrochemistry and dye-sensitized solar cells

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav

    2017-01-01

    Roč. 2, č. 1 (2017), s. 88-98 ISSN 2451-9103 R&D Projects: GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : electrochemistry * dye-sensitized cells * photoelectrode Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

  3. Removal of Triphenylmethane Dyes by Bacterial Consortium

    Directory of Open Access Journals (Sweden)

    Jihane Cheriaa

    2012-01-01

    Full Text Available A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila-(CM-4 was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L and malachite green (50 mg/L dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  4. Nanoimprinted polymer photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Smith, Cameron; Buss, Thomas

    2010-01-01

    with the laser dye Pyrromethene 597. A compact frequency doubled Nd:YAG laser (352 nm, 5 ns pulses) is used to pump the lasers from above the chip. The laser devices are 450 nm thick slab waveguides with a rectangular lattice of 100 nm deep air holes imprinted into the surface. The 2-dimensional rectangular...

  5. COLOR POLLUTION CONTROL IN TEXTILE DYEING INDUSTRY ...

    African Journals Online (AJOL)

    a

    an alternative to commercial coal based activated carbon, activated carbon prepared from dried tannery sludge ... color removal performance of tannery sludge derived activated carbon and commercial coal based activated ..... where qe and Ce are defined as the amount of dye adsorbed (mg g-1) and equilibrium liquid-.

  6. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Md. Khalid Hossain

    Full Text Available In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV–Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell’s (DSSC photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric. Keywords: DSSC, Natural dye, TiO2 photoanode, Dye extracting solvent, Dye-adsorption time

  7. Pond dyes are Culex mosquito oviposition attractants

    Directory of Open Access Journals (Sweden)

    Natali Ortiz Perea

    2017-05-01

    Full Text Available Background British mosquito population distribution, abundance, species composition and potential for mosquito disease transmission are intimately linked to the physical environment. The presence of ponds and water storage can significantly increase the density of particular mosquito species in the garden. Culex pipiens is the mosquito most commonly found in UK gardens and a potential vector of West Nile Virus WNV, although the current risk of transmission is low. However any factors that significantly change the distribution and population of C. pipiens are likely to impact subsequent risk of disease transmission. Pond dyes are used to control algal growth and improve aesthetics of still water reflecting surrounding planting. However, it is well documented that females of some species of mosquito prefer to lay eggs in dark water and/or containers of different colours and we predict that dyed ponds will be attractive to Culex mosquitoes. Methods Black pond dye was used in oviposition choice tests using wild-caught gravid C. pipiens. Larvae from wild-caught C. pipiens were also reared in the pond dye to determine whether it had any impact on survival. An emergence trap caught any adults that emerged from the water. Water butts (80 L were positioned around university glasshouses and woodland and treated with black pond dye or left undyed. Weekly sampling over a six month period through summer and autumn was performed to quantified numbers of larvae and pupae in each treatment and habitat. Results Gravid female Culex mosquitoes preferred to lay eggs in dyed water. This was highly significant in tests conducted under laboratory conditions and in a semi-field choice test. Despite this, survivorship in black dyed water was significantly reduced compared to undyed water. Seasonal analysis of wild larval and pupal numbers in two habitats with and without dye showed no impact of dye but a significant impact of season and habitat. Mosquitoes were more

  8. Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium.

    Science.gov (United States)

    Saratale, R G; Saratale, G D; Chang, J S; Govindwar, S P

    2010-11-01

    A bacterial consortium (consortium GR) consisting of Proteus vulgaris NCIM-2027 and Micrococcus glutamicus NCIM-2168 could rapidly decolorize and degrade commonly-used sulfonated reactive dye Green HE4BD and many other reactive dyes. Consortium GR shows markedly higher decolorization activity than that of the individual strains. The preferable physicochemical parameters were identified to achieve higher dye degradation and decolorization efficiency. The supplementation of cheap co-substrates (e.g., extracts of agricultural wastes) could enhance the decolorization performance of consortium GR. Extent of mineralization was determined with TOC and COD measurements, showing nearly complete mineralization of Green HE4BD by consortium GR (up to 90% TOC and COD reduction) within 24 h. Oxidoreductive enzymes seemed to be involved in fast decolorization/degradation process with the evidence of enzymes induction in the bacterial consortium. Phytotoxicity and microbial toxicity studies confirm that the biodegraded products of Green HE4BD by consortium GR are non-toxic. Consortium GR also shows significant biodegradation and decolorization activities for mixture of reactive dyes as well as the effluent from actual dye manufacturing industry. This confers the possibility of applying consortium GR for the treatment of industrial wastewaters containing dye pollutants.

  9. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Chennai-603110, Tamilnadu (India)

    2016-05-23

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet–visible (UV–vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO{sub 2} and their HOMOs are under the reduction potential energy of the electrolytes (I{sup −}/I{sub 3}{sup −}) which can facilitate electron transfer from the excited dye to TiO{sub 2} and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the “dye 3” can be used as potential sensitizer for DSSC.

  10. Dye-sensitized solar cells with improved performance using cone-calix[4]arene based dyes.

    Science.gov (United States)

    Tan, Li-Lin; Liu, Jun-Min; Li, Shao-Yong; Xiao, Li-Min; Kuang, Dai-Bin; Su, Cheng-Yong

    2015-01-01

    Three cone-calix[4]arene-based sensitizers (Calix-1-Calix-3) with multiple donor-π-acceptor (D-π-A) moieties are designed, synthesized, and applied in dye-sensitized solar cells (DSSCs). Their photophysical and electrochemical properties are characterized by measuring UV/Vis absorption and emission spectra, cyclic voltammetry, and density functional theory (DFT) calculations. Calix-3 has excellent thermo- and photostability, as illustrated by thermogravimetric analysis (TGA) and dye-aging tests, respectively. Importantly, a DSSC using the Calix-3 dye displays a conversion efficiency of 5.48 % in under standard AM 1.5 Global solar illumination conditions, much better than corresponding DSSCs that use the rod-shaped dye M-3 with a single D-π-A chain (3.56 %). The dyes offer advantages in terms of higher molar extinction coefficients, longer electron lifetimes, better stability, and stronger binding ability to TiO2 film. This is the first example of calixarene-based sensitizers for efficient dye-sensitized solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Luminescence and laser performances of coumarin dyes doped in ORMOSILs

    International Nuclear Information System (INIS)

    Yang Yu; Qian Guodong; Su Deliang; Wang Zhiyu; Wang Minquan

    2005-01-01

    Laser dyes such as coumarin 440 (C440) and coumarin 500 (C500) were doped into vinyltriethoxysilane (VTES)-derived organically modified silicates (ORMOSILs) by sol-gel process. The fluorescence properties of these two dyes doped in VTES-derived ORMOSILs with various initial dye concentrations were studied. A longitudinal pumped solid-state dye laser was established with a Q-switched Nd:YAG laser source. The laser performances of C440 and C500 dyes doped in VTES-derived ORMOSILs were also measured

  12. Study on decolorization of dyeing wastewater by electrochemical treatment

    Science.gov (United States)

    Chen, Jianjun; Xiaohui, Wang; Hao, Wu; Qi, Jiang

    2018-02-01

    In view of the decolorization of dyeing wastewater, three different kinds of simulated dyeing wastewater were treated by electrochemical method. The effects of current density, initial pH, electrolyte concentration and initial concentration of dye on the treatment effect were investigated, and the decolorization mechanism and color reversion were studied. The experimental results show that the decolorization rate of the three kinds of dyeing wastewater is more than 90% after 60min treatment. And the decolorization process is mainly chromogenic groups gradually destroyed, the dye molecules are gradually degraded. Moreover, in the natural conditions, aeration conditions, heating conditions, almost no phenomenon of color reversion occured.

  13. Raman Spectroscopic Investigation of Dyes in Spices

    Science.gov (United States)

    Uhlemann, Ute; Ramoji, Anuradha; Rösch, Petra; Da Costa Filho, Paulo Augusto; Robert, Fabien; Popp, Jürgen

    2010-08-01

    In this study, a number of synthetic colorants for spices have been investigated by means of Raman spectroscopy, resonance Raman spectroscopy, and surface enhanced (resonance) Raman spectroscopy (SER(S)). The aim of the study was the determination of limits of detection for each dye separately and in binary mixtures of dyes in spiked samples of the spices. Most of the investigated dyes have been azo dyes, some being water-soluble, the other being fat-soluble. Investigating the composition of food preparations is an ongoing and important branch of analytical sciences. On one hand, new ingredients have to be analyzed with regard to their contents, on the other hand, raw materials that have been tampered have to be eliminated from food production processes. In the last decades, the various Raman spectroscopic methods have proven to be successful in many areas of life and materials sciences. The ability of Raman spectroscopy to distinguish even structural very similar analytes by means of their vibrational fingerprint will also be important in this study. Nevertheless, Raman scattering is a very weak process that is oftentimes overlaid by matrix interferences or fluorescence. In order to achieve limits of detection in the nanomolar range, the signal intensity has to be increased. According to the well-known equations, there are several ways of achieving this increase: •increasing sample concentration •increasing laser power •decreasing the laser wavelength •using electronic resonance •increasing the local electromagnetic field In this study, nearly all of the above-mentioned principles were applied. In a first step, all dyes were investigated in solution at different concentrations to determine a limit of detection. In the second step, spiked spice samples have been extracted with a variety of solvents and process parameters tested. To lower the limit of detection even further, SERS spectroscopy has been used as well in as out of electronic resonance.

  14. Molecular engineering of D-A-π-A dyes with 2-(1,1-dicyanomethylene)rhodanine as an electron-accepting and anchoring group for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Mao, Jiangyi; Zhang, Xiaoyu; Liu, Shih-Hung; Shen, Zhongjin; Li, Xing; Wu, Wenjun; Chou, Pi-Tai; Hua, Jianli

    2015-01-01

    electrochemical properties, device performance and electrochemical impedance spectroscopy (EIS). Supplementary support is given by computational approach to gain in-depth insight into the adsorption states and electron contributions. The theoretical calculation of dye/(TiO 2 ) 38 displayed that the angle between the molecule of RD-III and the surface of TiO 2 was only 31.84 0 in contrast to 97.16 0 for CA-III. This adsorption state can facilitate dye aggregation and charge recombination, resulting in a decrease of short circuit current density (J sc ) and open circuit voltage (V oc ). Further improvement has been successfully made by adding long alkoxy chains with large steric hindrance. After introducing the alkoxy chains, the dihedral angle between RD-IV and TiO 2 increased to 42.61 0 and the steric hindrance can inhibit dye aggregation and charge recombination. Therefore, higher photoelectric conversion efficiency of 5.53 % was obtained with RD-IV in DSSC devices compared with 4.51 % for DSSC based on RD-III.

  15. Evaluation of biotoxicity of textile dyes using two bioassays.

    Science.gov (United States)

    Moawad, Hassan; El-Rahim, Wafaa M Abd; Khalafallah, M

    2003-01-01

    The toxicity of eight textile dyes was evaluated using two bioassays namely: Ames test and seed germination test. The Ames test is widely used for the evaluation of hazardous mutagenic effect of different chemicals, as a short-term screening test for environmental impact assessment. The eight-textile dyes and Eithidium bromide dye (as positive control) were tested with five "his" Salmonella typhimurium strains: TA 100; TA 98; TA 1535; TA 1537; TA 1538. Using six concentrations of each dye (2.5 microg/ml, 4.5 microg/ml, 9 microg/ml, 13.5 microg/ml, 18 microg/ml, and 22.5 microg/ml) revealed that, most of the dyes were mutagenic for the test strains used in this study. The high concentrations of dye eliminated microbial colonies due to the high frequency of mutation causing lethal effect on the cells. In this work the phytotoxicity of different soluble textile dyes was estimated by measuring the relative changes in seed germination of four plants: clover, wheat, tomato and lettuce. The changes in shooting percentages and root length as affected by dye were also measured. Seed germination percent and shoot growth as well as root length were recorded after 6 days of exposure to different concentrations of textile dyes in irrigation water. The results show that high concentrations of dyes were more toxic to seed germination as compared with the lower concentrations. However, the low concentrations of the tested dyes adversely affected the shooting percent significantly.

  16. Photodegradation in multiple-dye luminescent solar concentrators

    International Nuclear Information System (INIS)

    Mooney, Alex M.; Warner, Kathryn E.; Fontecchio, Paul J.; Zhang, Yu-Zhong; Wittmershaus, Bruce P.

    2013-01-01

    Combining multiple organic dyes to form a fluorescence resonance energy transfer (FRET) network is a useful strategy for extending the spectral range of sunlight absorbed by a luminescent solar concentrator (LSC). Excitation transfer out of the higher energy level dyes in the transfer series competes effectively with their photodegradation rates. Improvements in photostability up to a factor of 18 are observed for the first dye in the FRET series. FRET networks are shown to be a viable means of decreasing the rate of photodegradation of organic dyes used in LSCs. This comes at the expense of the final dye in the network; the depository of most of the excitations created by absorbing sunlight. The photostability and performance of an efficient FRET LSC rest heavily on the photostability and fluorescence quantum yield of the final dye. -- Highlights: • Photodegradation kinetics of multiple-dye FRET LSCs are reported. • The FRET network decreased the first dye's photodegradation rate by a factor of 18. • The final dye in the FRET LSC protects other dyes at its own expense. • The final dye must have excellent photostability and fluorescence quantum yield

  17. Photodegradation in multiple-dye luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, Alex M.; Warner, Kathryn E. [School of Science, Pennsylvania State University: Erie, The Behrend College, 4205 College Drive, Erie, PA 16563-0203 (United States); Fontecchio, Paul J. [School of Engineering, Pennsylvania State University: Erie, The Behrend College, 5101 Jordan Road, Erie, PA 16563-1701 (United States); Zhang, Yu-Zhong [Life Technologies Corp., 29851 Willow Creek Road, Eugene, OR 97402 (United States); Wittmershaus, Bruce P., E-mail: bpw2@psu.edu [School of Science, Pennsylvania State University: Erie, The Behrend College, 4205 College Drive, Erie, PA 16563-0203 (United States)

    2013-11-15

    Combining multiple organic dyes to form a fluorescence resonance energy transfer (FRET) network is a useful strategy for extending the spectral range of sunlight absorbed by a luminescent solar concentrator (LSC). Excitation transfer out of the higher energy level dyes in the transfer series competes effectively with their photodegradation rates. Improvements in photostability up to a factor of 18 are observed for the first dye in the FRET series. FRET networks are shown to be a viable means of decreasing the rate of photodegradation of organic dyes used in LSCs. This comes at the expense of the final dye in the network; the depository of most of the excitations created by absorbing sunlight. The photostability and performance of an efficient FRET LSC rest heavily on the photostability and fluorescence quantum yield of the final dye. -- Highlights: • Photodegradation kinetics of multiple-dye FRET LSCs are reported. • The FRET network decreased the first dye's photodegradation rate by a factor of 18. • The final dye in the FRET LSC protects other dyes at its own expense. • The final dye must have excellent photostability and fluorescence quantum yield.

  18. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    International Nuclear Information System (INIS)

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-01-01

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  19. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...... is Rhodamine 6G ClO4. This dye is shown to withstand temperatures up to 240 °C without bleaching, which makes it compatible with the thermal nanoimprint lithography process. The 1.55 µm thick dye-doped PMMA devices are fabricated on a SiO2 substrate, yielding planar waveguiding in the dye-doped PMMA with two...... propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...

  20. Design and development of environment friendly textile dyeing machine

    International Nuclear Information System (INIS)

    Ahmad, N.

    2014-01-01

    This work describes the novel development, installation, and operation of a textile dyeing machine that used one of the most emerging technologies based on Advanced Oxidation Processes (AOPs). The new machine was found to be capable of reducing water consumption by 57% and process time by 40%, without compromising textile dyeing quality. Different shades were dyed on newly built dyeing machine using three different types of reactive dyes, Vinylsulphone, Monofluorotriazine, and Monochlorotriazine. The washing and rinsing of dyed fabrics were carried out at the completion of dyeing, both in conventional and newly developed dyeing machines. Fabrics washed in both machines was compared in terms of color fastness, color alteration, color fading, and final appearance. Overall results from the environment point of view have indicated that the new dyeing machine is a promising alternative to the conventional machine because its wastewater exhibited lower pH, conductivity, and colour strength. (author)

  1. Absorbance and electrochemical properties of natural indigo dye

    Science.gov (United States)

    Basuki, Suyitno, Kristiawan, Budi

    2018-02-01

    The objective of study is to investigate the absorbance and electrochemical properties of natural indigo dyes. The natural indigo dyes were extracted from Indigofera tinctoria leaves. The solution was kept in alkaline condition and the reductor used was Sodium dithionite (Na2S2O4). The absorbance and electrochemical properties were tested by ultraviolet-visible (UV-Vis) spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV). The results show that the absorbance spectrum of dyes was at a wavelength from 375 to 475. The dyes also have C=C, C-H, and C-N which important for anchoring in semiconductors. Moreover, the level energy of highest occupied molecular orbital and that of lowest unoccupied molecular orbital from indigo dyes were -4.89 eV and -4.035 eV, respectively. The findings show that the natural indigo dye has promising properties for dyeing of photo-anode in solar energy harvester.

  2. Planar waveguide nanolaser configured by dye-doped hybrid nanofilm on substrate

    Science.gov (United States)

    Tikhonov, E. A.; Yashchuk, V. P.; Telbiz, G. M.

    2018-04-01

    Dye-doped hybrid silicate/titanium nanofilms on the glass substrate structures of asymmetrical waveguides were studied by way of laser systems. The threshold, spatial and spectral features of the laser oscillation of genuine and hollow waveguides were determined. The pattern of stimulated radiation included two concurrent processes: single-mode waveguide lasing and lateral small divergence emission. Comparison of the open angle of the lateral beams and grazing angles of the waveguide lasing mode provides an insight into the effect of leaky mode emission followed by Lummer-Gehrcke interference.

  3. Theoretical Study of Electron Transfer Properties of Squaraine Dyes for Dye Sensitized Solar Cell

    Science.gov (United States)

    Juwita, Ratna; Tsai, Hui-Hsu Gavin

    2018-01-01

    The environmental issues and high cost of Ru create many scientists to explore cheaper and safer sensitizer as alternative for dye sensitized solar cells (DSCs). Dyes play an important role in solar energy conversion efficiency. The squaraine (SQ) dyes has good spectral match with the solar spectra, therefore, SQ dyes have great potential for the applications in DSCs. SQ01_CA is an unsymmetrical SQ dye, reported by Grätzel and colleagues in 2007, featuring a D–π–spacer–A framework and has a carboxylic acid anchoring group. The electron donating ability of indolium in SQ01_CA and SQ01_CAA dyes is relatively weak, better performance may be achieved by introducing an additional donor moiety into indolium [1]. In this study, we investigate six unsymmetrical SQ dyes adsorbed on a (TiO2)38 cluster [2] using density functional theory (DFT) and time-dependent DFT to study electron transfer properties of squaraine dyes on their photophysical. SQ01_CA, WH-SQ01_CA, and WH-SQ02_CA use a carboxylic acid group as its electron acceptor. Furthermore, SQ01_CAA, WH-SQ01_CAA, and WH-SQ02_CAA use a cyanoacrylic acid group as its electron acceptor. WH-SQ01_CA and WH-SQ01_CAA have an alkyl, while WH-SQ02_CA and WH-SQ02_CAA have alkoxyl substituted diarylamines to the indolium donor of sensitizer SQ01_CA. Our calculations show with additional diarylamines in donor tail of WH-SQ02_CAA, the SQ dyes have red-shifted absorption and have slightly larger probability of electron density transferred to TiO2 moiety. Furthermore, an additional ‑CN group as electron a withdrawing group in the acceptor exhibits red-shifted absorption and enhances the electron density transferred to TiO2 and anchoring moiety after photo-excitation. The tendency of calculated probabilities of electron density being delocalized into TiO2 and driving force for excited-state electron injection of these studied SQ dyes is compatible with their experimentally observed.

  4. Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vinu, R.; Akki, Spurti U. [Department of Chemical Engineering, Indian Institute Of Science, Bangalore, 560012, Karnataka (India); Madras, Giridhar, E-mail: giridhar@chemeng.iisc.ernet.in [Department of Chemical Engineering, Indian Institute Of Science, Bangalore, 560012, Karnataka (India)

    2010-04-15

    The photocatalytic degradation of five anionic, eight cationic and three solvent dyes using combustion-synthesized nano-TiO{sub 2} (CS TiO{sub 2}) and commercial Degussa P-25 TiO{sub 2} (DP-25) were evaluated to determine the effect of the functional group in the dye. The degradation of the dyes was quantified using the initial rate of decolorization and mineralization. The decolorization of the anionic dyes with CS TiO{sub 2} followed the order: indigo carmine > eosin Y > amido black 10B > alizarin cyanine green > orange G. The decolorization of the cationic dyes with DP-25 followed the order: malachite green > pyronin Y > rhodamine 6G > azure B > nile blue sulfate > auramine O {approx} acriflavine {approx} safranin O. CS TiO{sub 2} showed higher rates of decolorization and mineralization for all the anionic dyes compared to DP-25, while DP-25 was better in terms of decolorization for most of the cationic dyes. The solvent dyes exhibited adsorption dependent decolorization. The order of decolorization and mineralization of the anionic and cationic dyes (a) with CS TiO{sub 2} and DP-25 was different and correlated with the surface properties of these catalysts (b) were rationalized with the molecular structure of the dye and the degradation pathway of the dye.

  5. Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2

    International Nuclear Information System (INIS)

    Vinu, R.; Akki, Spurti U.; Madras, Giridhar

    2010-01-01

    The photocatalytic degradation of five anionic, eight cationic and three solvent dyes using combustion-synthesized nano-TiO 2 (CS TiO 2 ) and commercial Degussa P-25 TiO 2 (DP-25) were evaluated to determine the effect of the functional group in the dye. The degradation of the dyes was quantified using the initial rate of decolorization and mineralization. The decolorization of the anionic dyes with CS TiO 2 followed the order: indigo carmine > eosin Y > amido black 10B > alizarin cyanine green > orange G. The decolorization of the cationic dyes with DP-25 followed the order: malachite green > pyronin Y > rhodamine 6G > azure B > nile blue sulfate > auramine O ∼ acriflavine ∼ safranin O. CS TiO 2 showed higher rates of decolorization and mineralization for all the anionic dyes compared to DP-25, while DP-25 was better in terms of decolorization for most of the cationic dyes. The solvent dyes exhibited adsorption dependent decolorization. The order of decolorization and mineralization of the anionic and cationic dyes (a) with CS TiO 2 and DP-25 was different and correlated with the surface properties of these catalysts (b) were rationalized with the molecular structure of the dye and the degradation pathway of the dye.

  6. Towards Rational Designing of Efficient Sensitizers Based on Thiophene and Infrared Dyes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Ahmad Irfan

    2014-01-01

    Full Text Available Geometries, electronic properties, and absorption spectra of the dyes which are a combination of thiophene based dye (THPD and IR dyes (covering IR region; TIRBD1-TIRBD3 were performed using density functional theory (DFT and time dependent density functional theory (TD-DFT, respectively. Different electron donating groups, electron withdrawing groups, and IR dyes have been substituted on THPD to enhance the efficiency. The bond lengths of new designed dyes are almost the same. The lowest unoccupied molecular orbital energies of designed dyes are above the conduction band of TiO2 and the highest occupied molecular orbital energies are below the redox couple revealing that TIRBD1-TIRBD3 would be better sensitizers for dye-sensitized solar cells. The broad spectra and low energy gap also showed that designed materials would be efficient sensitizers.

  7. Use of the ultrasonic cavitation in wool dyeing process: Effect of the dye-bath temperature.

    Science.gov (United States)

    Actis Grande, G; Giansetti, M; Pezzin, A; Rovero, G; Sicardi, S

    2017-03-01

    The present work aims to study the effect of the liquid temperature on the performance of ultrasounds (US) in a dyeing process. The approach was both theoretical and experimental. In the theoretical part the simplified model of a single bubble implosion is used to demonstrate that the "maximum implosion pressure" calculated with the well known Rayleigh-Plesset equation for a single bubble can be correlated with the cavitation intensity experimentally measured with an Ultrasonic Energy Meter (by PPB Megasonics). In particular the model was used to study the influence of the fluid temperature on the cavitation intensity. The "relative" theoretical data calculated from the implosion pressure were satisfactorily correlated with the experimental ones and evidence a zone, between 50 and 60°C, were the cavitation intensity is almost constant and still sufficiently high. Hence an experimental part of wool dyeing was carried out both to validate the previous results and to verify the dyeing quality at low temperatures (40-70°C) in presence of US. A prototype dyeing equipment able to treat textile samples with US system of 600W power, was used. The dyeing performances in the presence and absence of US were verified by measuring ΔE (colour variation), R e,% (reflectance percentage), K/S (colour strength) and colour fastness. The US tests performed in the temperature range of 40-70°C were compared with the conventional wool dyeing at 98°C. The obtained results show that a temperature close to 60°C should be chosen as the recommended US dyeing condition, being a compromise between the cavitation intensity and the kinetics which rules the dyestuff diffusion within the fibres. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Novel diyne-bridged dyes for efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jing-Kun, E-mail: fjk@njust.edu.cn [Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Street No. 200, Nanjing, 210094 (China); Sun, Tengxiao [Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Street No. 200, Nanjing, 210094 (China); Tian, Yi [Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Zhang, Yingjun, E-mail: ZhangYingjun@hec.cn [HEC Pharm Group, HEC R& D Center, Dongguan, 523871 (China); Jin, Chuanfei [HEC Pharm Group, HEC R& D Center, Dongguan, 523871 (China); Xu, Zhimin; Fang, Yu; Hu, Xiangyu; Wang, Haobin [Department of Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei Street No. 200, Nanjing, 210094 (China)

    2017-07-01

    Three new metal free organic dyes (FSD101-103) were synthesized to investigate the influence of diyne unit on dye molecules. FSD101 and FSD102 with diyne unit and FSD103 with monoyne unit were applied as sensitizers in the dye-sensitized solar cells (DSSCs). The optical and electrochemical properties, theoretical studies, and photovoltaic parameters of DSSCs sensitized by these dyes were systematically investigated. By replacing the monoyne unit with a diyne unit, FSD101 exhibited broader absorption spectrum, lower IP, higher EA, lower band gap energy, higher oscillator strength, more efficient electron injection ability, broader IPCE response range and higher τ{sub e} in comparison with FSD103. Hence, DSSC sensitized by FSD101 showed higher J{sub sc} and V{sub oc} values, and demonstrated a power conversion efficiency of 3.12%, about 2-fold as that of FSD103 (1.55%). FSD102 showed similar results as FSD101, with a power conversion efficiency of 2.98%, despite a stronger electron withdraw cyanoacrylic acid group was introduced. This may be due to the lower efficiency of the electron injection from dye to TiO{sub 2} and lower τ{sub e} of FSD102 than that of FSD101. These results indicate that the performance of DSSCs can be significantly improved by introducing a diyne unit into this type of organic dyes. - Highlights: • Diyne-bridge was introduced into dye molecules by a transition-metal-free protocol. • Power conversion efficiency grows from 1.55% to 3.12% by replacing monoyne unit with diyne unit. • FSD101 with diyne unit shows the highest electron lifetime resulting in a higher V{sub oc}.

  9. Evaluation of Bacillus sp. MZS10 for decolorizing Azure B dye and its decolorization mechanism.

    Science.gov (United States)

    Li, Huixing; Zhang, Ruijing; Tang, Lei; Zhang, Jianhua; Mao, Zhonggui

    2014-05-01

    To evaluate decolorization and detoxification of Azure B dye by a newly isolated Bacillus sp. MZS10 strain, the cultivation medium and decolorization mechanism of the isolate were investigated. The decolorization was discovered to be dependent on cell density of the isolate and reached 93.55% (0.04 g/L) after 14 hr of cultivation in a 5 L stirred-tank fermenter at 2.0 g/L yeast extract and 6.0 g/L soluble starch and a small amount of mineral salts. The decolorization metabolites were identified with ultra performance liquid chromatography-tandem mass spectroscopy (UPLC-MS). A mechanism for decolorization of Azure B was proposed as follows: the C=N in Azure B was initially reduced to -NH by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent quinone dehydrogenase, and then the -NH further combined with -OH derived from glucose to form a stable and colorless compound through a dehydration reaction. The phytotoxicity was evaluated for both Azure B and its related derivatives produced by Bacillus sp. MZS10 decolorization, indicating that the decolorization metabolites were less toxic than original dye. The decolorization efficiency and mechanism shown by Bacillus sp. MZS10 provided insight on its potential application for the bioremediation of the dye Azure B. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Theoretical and experimental investigation on the spectroscopic properties of indigo dye

    Science.gov (United States)

    Amat, Anna; Rosi, Francesca; Miliani, Costanza; Sgamellotti, Antonio; Fantacci, Simona

    2011-05-01

    The spectroscopic properties of indigo, one of the most important natural dyes present in nature, have been investigated by means of DFT and TD-DFT calculations and Raman and IR spectroscopies. The absorption spectra of this dye, in vacuo and in different solvents, have been computed. The formation of aggregates in solvent have been investigated by computing the electronic absorption spectra of the dimer and the trimer, thus evaluating the effects of the aggregation on the optical properties of indigo. The IR and Raman spectra have been measured and computed. The comparison between the experimental and theoretical spectra and the potential energy distribution (PED) of the computed normal modes have been used to perform the assignment of the experimental features in terms of functional group displacements. Finally, the effects of the intermolecular hydrogen bond present in the solid state have been evaluated by computing the vibrational spectra of the dimer. The intention of the present work is to give an insight into both the vibrational and optical properties of indigo as well as to evaluate DFT and TD-DFT potentialities in the study of organic dyes' spectroscopic properties of interest in the cultural heritage field.

  11. Stability of dye-sensitized solar cells under extended thermal stress.

    Science.gov (United States)

    Yadav, Surendra K; Ravishankar, Sandheep; Pescetelli, Sara; Agresti, Antonio; Fabregat-Santiago, Francisco; Di Carlo, Aldo

    2017-08-23

    In the last few decades, dye-sensitized solar cell (DSC) technology has been demonstrated to be a promising candidate for low cost energy production due to cost-effective materials and fabrication processes. Arguably, DSC stability is the biggest challenge for making this technology appealing for industrial exploitation. This work provides further insight into the stability of DSCs by considering specific dye-electrolyte systems characterized by Raman and impedance spectroscopy analysis. In particular, two ruthenium-based dyes, Z907 and Ru505, and two commercially available electrolytes, namely, the high stability electrolyte (HSE) and solvent-free Livion 12 (L-12), were tested. After 4700 h of thermal stress at 85 °C, the least stable device composed of Z907/HSE showed an efficiency degradation rate of ∼14%/1000 h, while the Ru505/L-12 system retained 96% of its initial efficiency by losing ∼1% each 1000 h. The present results show a viable route to stabilize the DSC technology under prolonged annealing conditions complying with the IEC standard requirements.

  12. Determination of Sandoz Black Aluminum Coloring Dye Olive Aluminum Coloring Dye and Sodium Dichromate Aluminum Sealing Solutions by UV-Visible Spectrophotometry

    National Research Council Canada - National Science Library

    Sopok, Samuel

    1992-01-01

    The chemical literature lacks an acceptable method to determine and adequately control Sandoz black aluminum coloring dye, olive aluminum coloring dye, and sodium dichromate aluminum sealing solutions...

  13. Detoxification of azo dyes in the context of environmental processes.

    Science.gov (United States)

    Rawat, Deepak; Mishra, Vandana; Sharma, Radhey Shyam

    2016-07-01

    Azo dyes account for >70% of the global industrial demand (∼9 million tons). Owing to their genotoxic/carcinogenic potential, the annual disposal of ∼4,500,000 tons of dyes and/or degraded products is an environmental and socio-economic concern. In comparison to physico-chemical methods, microbe-mediated dye degradation is considered to be low-input, cost-effective and environmentally-safe. However, under different environmental conditions, interactions of chemically diverse dyes with metabolically diverse microbes produce metabolites of varying toxicity. In addition, majority of studies on microbial dye-degradation focus on decolorization with least attention towards detoxification. Therefore, the environmental significance of microbial dye detoxification research of past >3 decades is critically evaluated with reference to dye structure and the possible influence of microbial interactions in different environments. In the absence of ecosystem-based studies, the results of laboratory-based studies on dye degradation, metabolite production and their genotoxic impact on model organisms are used to predict the possible fate and consequences of azo dyes/metabolites in the environment. In such studies, the predominance of fewer numbers of toxicological assays that too at lower levels of biological organization (molecular/cellular/organismic) suggests its limited ecological significance. Based on critical evaluation of these studies the recommendations on inclusion of multilevel approach (assessment at multiple levels of biological organization), multispecies microcosm approach and native species approach in conjunction with identification of dye metabolites have been made for future studies. Such studies will bridge the gap between the fundamental knowledge on dye-microbe-environment interactions and its application to combat dye-induced environmental toxicity. Thus an environmental perspective on dye toxicity in the background of dye structure and effects of

  14. Dye-sensitized nanocrystalline TiO{sub 2} solar cells based on novel coumarin dyes

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Kohjiro; Tachibana, Yasuhiro; Sayama, Kazuhiro; Sugihara, Hideki; Arakawa, Hironori [National Inst. of Advanced Industrial Science and Technology, Ibaraki (Japan). Photoreaction Control Research Center; Ohga, Yasuyo; Shinpo, Akira; Suga, Sadaharu [Hayashibara Biochemical Labs., Okayama (Japan)

    2003-04-30

    We have developed dye-sensitized nanocrystalline TiO{sub 2} solar cells (DSSCs) based on novel coumarin-dye photosensitizers. The absorption spectra of these novel dyes are red-shifted remarkably in the visible region relative to the spectrum of C343, a conventional coumarin dye. Introduction of a methine unit (-CH=CH-) connecting the cyano (-CN) and carboxyl (-COOH) groups into the coumarin framework expanded the {pi}-conjugation in the dye and thus resulted in a wide absorption in the visible region. These novel dyes performed as efficient photosensitizers for DSSCs. A DSSC based on 2-cyano-5-(1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-a= za-benzo[de]anthracen-9-yl)-penta-2,4-dienoic acid (NKX-2311), produced a 6.0% solar energy-to-electricity conversion efficiency ({eta}), the highest performance among DSSCs based on organic-dye photosensitizers, under AM 1.5 irradiation (100 mW cm{sup -2}) with a short-circuit current density (J{sub sc}) of 14.0 mA cm{sup -2}, an open-circuit voltage (V{sub oc}) of 0.60 V, and a fill factor of 0.71. Our results suggests that the structure of NKX-2311 whose carboxyl group is directly connected to the -CH=CH- unit, is advantageous for effective electron injection from the dye into the conduction band of TiO{sub 2}. In addition, the cyano group, owing to its strong electron-withdrawing ability, might play an important role in electron injection in addition to a red shift in the absorption region. On a long-term stability test under continuous irradiation with white light (80 mW cm{sup -2}), stable performance was attained with a solar cell based on the NKX-2311 dye with a turnover number of 2.6x10{sup 7} per one molecule. (Author)

  15. Dye-sensitized nanocrystalline TiO{sup 2} solar cells based on novel coumarin dyes

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Kohjiro; Tachibana, Yasuhiro; Sayama, Kazuhiro; Sugihara, Hideki; Arakawa, Hironori [Photoreaction Control Research Center (PCRC) Science and Technology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Ohga, Yasuyo; Shinpo, Akira; Suga, Sadaharu [Hayashibara Biochemical Laboratories, Inc., 564-176 Fujita, Okayama 701-0221 (Japan)

    2003-04-30

    We have developed dye-sensitized nanocrystalline TiO{sub 2} solar cells (DSSCs) based on novel coumarin-dye photosensitizers. The absorption spectra of these novel dyes are red-shifted remarkably in the visible region relative to the spectrum of C343, a conventional coumarin dye. Introduction of a methine unit (-CH==CH-) connecting the cyano (-CN) and carboxyl (-COOH) groups into the coumarin framework expanded the {pi}-conjugation in the dye and thus resulted in a wide absorption in the visible region. These novel dyes performed as efficient photosensitizers for DSSCs. A DSSC based on 2-cyano-5-(1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a- aza-benzo[de]anthracen-9-yl)-penta-2,4-dienoic acid (NKX-2311), produced a 6.0% solar energy-to-electricity conversion efficiency ({eta}), the highest performance among DSSCs based on organic-dye photosensitizers, under AM 1.5 irradiation (100mWcm{sup -2}) with a short-circuit current density (J{sub sc}) of 14.0mAcm{sup -2}, an open-circuit voltage (V{sub oc}) of 0.60V, and a fill factor of 0.71. Our results suggests that the structure of NKX-2311 whose carboxyl group is directly connected to the -CH==CH- unit, is advantageous for effective electron injection from the dye into the conduction band of TiO{sub 2}. In addition, the cyano group, owing to its strong electron-withdrawing ability, might play an important role in electron injection in addition to a red shift in the absorption region. On a long-term stability test under continuous irradiation with white light (80mWcm{sup -2}), stable performance was attained with a solar cell based on the NKX-2311 dye with a turnover number of 2.6x10{sup 7} per one molecule.

  16. The pattern of hair dyeing in koreans with gray hair.

    Science.gov (United States)

    Jo, Seong Jin; Shin, Hyoseung; Paik, Seung Hwan; Choi, Jae Woo; Lee, Jong Hee; Cho, Soyun; Kwon, Ohsang

    2013-11-01

    Hair graying is considered as a part of normal ageing process. Nonetheless, this process raises a significant cosmetic concern, especially among ethnic Korean elderly whose baseline hair color is black. For this reason, Korean elderly dye their hair with frequency despite the risk of dermatologic problems such as allergic contact dermatitis. In this study, the authors investigate the prevalence and pattern of hair dyeing and its relation with scalp diseases in Korea. Six hundred twenty subjects (330 men and 290 women) with graying hair were given a questionnaire survery and underwent a physical examination. Of the 620 total, 272 subjects (43.9%) dyed their hair. Hair dyeing was significantly more frequent among women than among men (phair dyeing when compared to either younger or older groups. Subjective self-assessment of the extent of hair graying was associated with increased prevalence of hair dyeing, that is, individuals who feel graying has advanced by more than 20% of the overall hair were much more likely to dye their hair (pHair dyeing did not correlate with either alopecia or scalp disease. Our survey has found that the prevalence of hair dyeing is higher among Korean women than men. People in their fifties and sixties and people with more than 20% extent of grayness were more likely to dye their hair than otherwise. Hair dyeing was not associated with any increase in the prevalence of scalp diseases.

  17. Knowledge, attitude, and practice of dyeing and printing workers

    Directory of Open Access Journals (Sweden)

    Paramasivam Parimalam

    2010-01-01

    Full Text Available Background: Millions of workers are occupationally exposed to dyes in the world, but little is known about their knowledge and attitudes toward the effects of dye on their health. Objectives: The aim of this study was to assess the fabric dyers′ and fabric printers′ knowledge, attitude, and practice toward the health hazard of dyes. Materials and Methods: The present study was taken up in the Madurai district which is situated in the Southern Tamil Nadu, India. One hundred and forty-two workers employed in small-scale dyeing and printing units participated in a face-to-face confidential interview . Results: The mean age of fabric dyers and fabric printers was 42 years (΁10.7. When enquired about whether dyes affect body organ(s, all the workers agreed that dye(s will affect skin, but they were not aware that dyes could affect other parts of the body. All the workers believed that safe methods of handling of dyes and disposal of contaminated packaging used for dyes need to be considered. It was found that 34% of the workers were using personal protective equipment (PPE such as rubber hand gloves during work. Conclusion: The workers had knowledge regarding the occupational hazards, and their attitudinal approach toward the betterment of the work environment is positive.

  18. Degradation of azo dyes by environmental microorganisms and helminths

    Energy Technology Data Exchange (ETDEWEB)

    Kingthom Chung; Stevens, S.E. Jr. (Memphis State Univ., TN (United States). Dept. of Biology)

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number of anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.

  19. Solvatochromic dyes detect the presence of homeopathic potencies.

    Science.gov (United States)

    Cartwright, Steven J

    2016-02-01

    A systematic approach to the design of simple, chemical systems for investigating the nature of homeopathic medicines has led to the development of an experimental protocol in which solvatochromic dyes are used as molecular probes of serially diluted and agitated solutions. Electronic spectroscopy has been used to follow changes in the absorbance of this class of dyes across the visible spectrum in the presence of homeopathic potencies. Evidence is presented using six different solvatochromic dyes in three different solvent systems. In all cases homeopathic potencies produce consistent and reproducible changes in the spectra of the dyes. Results suggest that potencies influence the supramolecular chemistry of solvatochromic dyes, enhancing either dye aggregation or disaggregation, depending upon dye structure. Comparable dyes lacking the intramolecular charge transfer feature of solvatochromic dyes are unaffected by homeopathic potencies, suggesting potencies require the oscillating dipole of solvatochromic dyes for effective interaction. The implications of the results presented, both for an eventual understanding of the nature of homeopathic medicines and their mode of action, together with future directions for research in this area, are discussed. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  20. Significance of hair-dye base-induced sensory irritation.

    Science.gov (United States)

    Fujita, F; Azuma, T; Tajiri, M; Okamoto, H; Sano, M; Tominaga, M

    2010-06-01

    Oxidation hair-dyes, which are the principal hair-dyes, sometimes induce painful sensory irritation of the scalp caused by the combination of highly reactive substances, such as hydrogen peroxide and alkali agents. Although many cases of severe facial and scalp dermatitis have been reported following the use of hair-dyes, sensory irritation caused by contact of the hair-dye with the skin has not been reported clearly. In this study, we used a self-assessment questionnaire to measure the sensory irritation in various regions of the body caused by two model hair-dye bases that contained different amounts of alkali agents without dyes. Moreover, the occipital region was found as an alternative region of the scalp to test for sensory irritation of the hair-dye bases. We used this region to evaluate the relationship of sensitivity with skin properties, such as trans-epidermal water loss (TEWL), stratum corneum water content, sebum amount, surface temperature, current perception threshold (CPT), catalase activities in tape-stripped skin and sensory irritation score with the model hair-dye bases. The hair-dye sensitive group showed higher TEWL, a lower sebum amount, a lower surface temperature and higher catalase activity than the insensitive group, and was similar to that of damaged skin. These results suggest that sensory irritation caused by hair-dye could occur easily on the damaged dry scalp, as that caused by skin cosmetics reported previously.

  1. [Application of natural plant pigment in hair dyes].

    Science.gov (United States)

    Hu, Yu-Li; Luo, Jiao-Yang; Zhao, Hong-Zheng; Zhang, Shan-Shan; Yang, Shi-Hai; Yang, Mei-Hua

    2016-09-01

    With the development of living condition, more and more people tend to show unique personality, thus hair dyes as hair cosmetics are highly favored. By the year 2012, the global sales of hair dye had exceeded $15 billion, with a sustained growth at a rate of 8%-10% annually. However, the harm caused by long-term use of hair dyes has aroused widespread public concern, so people begin to seek non-toxic or low toxic natural plant hair dyes. The types of commonly used hair dyes and the corresponding dyeing mechanisms were summarized in this manuscript, and the representative natural botanic dyes were listed. Thereafter, their effective fractions, constituents and application status were described. In addition, the values of botanic hair dyes and their broad market prospect were discussed. Finally, the problems that exist in the research and development of plant hair dyes were issued. This review may help to provide thought for developing novel, green and ecological natural plant hair dyes. Copyright© by the Chinese Pharmaceutical Association.

  2. Pulse radiolysis of rhodamine dye solutions

    International Nuclear Information System (INIS)

    Kucherenko, E.A.; Kartasheva, L.I.; Pikaev, A.K.

    1982-01-01

    Applying the method of pulse radiolysis (5 MeV electrons) a study was made on intermediate products of rhodamine B radiolytic transformations in neutral aqueous and ethanol solutions. Rate constants of reactions of esub(aq) and OH with the dye (they are equal to (2.2+-0.3)x10 10 and (2.1+-0.3)x10 10 e/molxs, accordingly) as well as optical and kinetic characteristics of esub(aq), OH and H interaction products were measured. The nature of these products is concluded. It was found that in ethanol solutions the semirecovered form - electroneutral radical of rhodamine B - was the only intermediate product. It arises during the interaction of the dye with esub(s) (k=(9.2+-1.2)x10 9 e/molxs) and α-et hananol radical (k=(1.1+-0.1)x10 8 l/molxs). Properties of this product were investigated

  3. Synthesis and characterisation of new laser dyes

    International Nuclear Information System (INIS)

    Scala-Valero, Claudine

    1997-01-01

    Rhodamines are very efficient laser dyes for the red part of the visible spectrum: their fluorescence quantum efficiencies are about hundred per cent. However, their conversion efficiencies in dye amplifier are about fifty per cent, due to the presence of S n electronic level which is responsible of the re-absorption of a part of photons. In this research thesis, the author aims at trying to move this S n level out of the stimulated emission bandwidth. Models have been developed to propose new structures derived from rhodamines and theoretically possessing the desired properties. The so-recommended molecules have then been synthesised and characterised in terms of absorption and fluorescence spectra, of quantum efficiency, and of fluorescence lifetime. Two modifications are proposed for the rhodamine 6G structure, either by grafting methyl substitutes, or by grafting variously substituted amines. The searched result is obtained with the second modification [fr

  4. Molecular modification of coumarin dyes for more efficient dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-de-Armas, Rocio; San-Miguel, Miguel A.; Oviedo, Jaime; Sanz, Javier Fdez. [Department of Physical Chemistry, University of Seville, Seville (Spain)

    2012-05-21

    In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH{sub 2}, and -OCH{sub 3}) and two different substituents with steric effect: -CH{sub 2}-CH{sub 2}-CH{sub 2}- and -CH{sub 2}-HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the new dyes. The introduction of a -NH{sub 2} group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH{sub 2}-CH{sub 2}-CH{sub 2}- does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH{sub 2}-HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.

  5. Molecular modification of coumarin dyes for more efficient dye sensitized solar cells

    International Nuclear Information System (INIS)

    Sanchez-de-Armas, Rocio; San-Miguel, Miguel A.; Oviedo, Jaime; Sanz, Javier Fdez.

    2012-01-01

    In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH 2 , and -OCH 3 ) and two different substituents with steric effect: -CH 2 -CH 2 -CH 2 - and -CH 2 -HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the new dyes. The introduction of a -NH 2 group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH 2 -CH 2 -CH 2 - does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH 2 -HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.

  6. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes

    International Nuclear Information System (INIS)

    Liu Guangfei; Wang Jing; Lu Hong; Jin Ruofei; Zhou Jiti; Zhang Long

    2009-01-01

    The mediated effects of reduction products of some ortho-hydroxyl substituted azo dyes on biodecolorization were investigated. The results indicated that the addition of reduction products could effectively accelerate dye decolorization by Shigella sp. QRZ-1. The best accelerating effect was obtained with the addition of reduction products of Acid Red 14 (AR14), resulting in an over 3-fold increase in decolorization efficiency of many azo dyes. In sequencing batch reactor experiments, the accelerating effect of reduction products of AR14 was more obvious (1.5-fold) during the startup of the system. When the dye concentration was increased to 500 mg L -1 , the accelerated decolorization efficiency was still maintained around 95%. The presence of AR14 in the feed enhanced the decolorization performance of anaerobic sludge, indicating that the strategy may be beneficial for practical application. 1-Naphthol-2-amino-4-sulfonic acid, which is one of the reduction products of AR14, may function as redox mediator to speed up azo dye biodecolorization.

  7. Novel conjugated organic dyes for efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Yoshihara, T.; Murai, M.; Kurashige, M.; Arakawa, H. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Ito, S.; Shinpo, A.; Suga, S. [Hayashibara Biochemical Laboratories, Inc., 564-176 Fujita, Okayama 701-0221 (Japan)

    2005-02-01

    Novel conjugated organic dyes that have N,N-dimethylaniline (DMA) moieties as the electron donor and a cyanoacetic acid (CAA) moiety as the electron acceptor were developed for use in dye-sensitized nanocrystalline-TiO{sub 2} solar cells (DSSCs). We attained a maximum solar-energy-to-electricity conversion efficiency ({eta}) of 6.8 % under AM 1.5 irradiation (100 mW cm{sup -2}) with a DSSC based on 2-cyano-7,7-bis(4-dimethylamino-phenyl)hepta-2,4,6-trienoic acid (NKX-2569): short-circuit photocurrent density (J{sub sc}) = 12.9 mA cm{sup -2}, open-circuit voltage (V{sub oc}) = 0.71 V, and fill factor (ff) = 0.74. The high performance of the solar cells indicated that highly efficient electron injection from the excited dyes to the conduction band of TiO{sub 2} occurred. The experimental and calculated Fourier-transform infrared (FT-IR) absorption spectra clearly showed that these dyes were adsorbed on the TiO{sub 2} surface with the carboxylate coordination form. A molecular-orbital calculation indicated that the electron distribution moved from the DMA moiety to the CAA moiety by photoexcitation of the dye. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  8. Starburst triarylamine based dyes for efficient dye-sensitized solar cells.

    Science.gov (United States)

    Ning, Zhijun; Zhang, Qiong; Wu, Wenjun; Pei, Hongcui; Liu, Bo; Tian, He

    2008-05-16

    We report here on the synthesis and photophysical/electrochemical properties of a series of novel starburst triarylamine-based organic dyes (S1, S2, S3, and S4) as well as their application in dye-sensitized nanocrystalline TiO2 solar cells (DSSCs). For the four designed dyes, the starburst triarylamine group and the cyanoacetic acid take the role of electron donor and electron acceptor, respectively. It was found that the introduction of starburst triarylamine group to form the D-D-pi-A configuration brought about superior performance over the simple D-pi-A configuration, in terms of bathochromically extended absorption spectra, enhanced molar extinction coefficients and better thermo-stability. Moreover, the HOMO and LUMO energy levels tuning can be conveniently accomplished by alternating the donor moiety, which was confirmed by electrochemical measurements and theoretical calculations. The DSSCs based on the dye S4 showed the best photovoltaic performance: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 85%, a short-circuit photocurrent density (J(sc)) of 13.8 mA cm(-2), an open-circuit photovoltage (V(oc)) of 0.63 V, and a fill factor (ff) of 0.69, corresponding to an overall conversion efficiency of 6.02% under 100 mW cm(-2) irradiation. This work suggests that the dyes based on starburst triphenylamine donor are promising candidates for improvement of the performance of the DSSCs.

  9. Comparing the mode of action of intraocular lutein-based dyes with synthetic dyes.

    Science.gov (United States)

    Sousa-Martins, Diogo; Caseli, Luciano; Figueiredo, Mafalda C; Sa E Cunha, Claudia; Mota-Filipe, Helder; Souza-Lima, Acácio; Belfort, Rubens; Rodrigues, Eduardo; Maia, Mauricio

    2015-02-19

    To investigate and compare the mechanism by which lutein-based and synthetic intraocular dyes interact with their target membranes during ophthalmic surgeries. Surrogate membrane models were used in order to simulate the different intraocular membranes: internal limiting membrane (ILM), vitreous, anterior capsule (AC), and epiretinal membrane (ERM). Different lutein-based dyes, such as Phacodyne, Retidyne, Retidyne Plus, and Vitreodyne were tested, as well as Trypan Blue (TB), Indocyanine Green (ICG), Brilliant Blue (BB), and Triamcinolone Acetonide (TA). The interactions between the film components occurring at the air-water interface were investigated with surface pressure-area isotherms and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). With the exception of TA and ICG, none of the tested dyes revealed toxicity to the analyzed membranes. The interaction of TA with the vitreous model affected deeply the biointerface structure of the model. A significant condensation of the monolayer is noted when ICG contacted with ILM by the isotherms or even a solubilization of part of the monolayer toward the aqueous subphase. Retidyne Plus may provide the fluidization of the membrane, but maintains intact the structure of proteins present in the model. The present study demonstrates for the first time that lutein-based dyes interact through a physical mechanism of action with membrane models of structures present in human eye. On the other hand, the chemical interaction of synthetic dyes TA and ICG resulted in an alteration of the membrane models. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  10. Novel organic dyes based on phenyl-substituted benzimidazole for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saltan, Gözde Murat [Department of Chemistry, Faculty of Arts and Science, Celal Bayar University, Yunus Emre, 45140 Manisa (Turkey); Dinçalp, Haluk, E-mail: haluk.dincalp@cbu.edu.tr [Department of Chemistry, Faculty of Arts and Science, Celal Bayar University, Yunus Emre, 45140 Manisa (Turkey); Kıran, Merve; Zafer, Ceylan [Solar Energy Institute, Ege University, Bornova, 35100 Izmir (Turkey); Erbaş, Seçil Çelik [Celal Bayar University, Materials Engineering Department, Faculty of Engineering, Yunus Emre, 45140 Manisa (Turkey)

    2015-08-01

    Two new sensitizers derived from benzimidazole core for dye-sensitized solar cell (DSSC) applications were designed and synthesized as D–π–A structures, in which two phenyl-substituted benzimidazole group, a phenyl ring and a cyanoacrylic acid were used as the electron donor, π-conjugated linkage and the electron acceptor, respectively. Effect of methoxy- and N,N-dimetylamino- moieties attached to the phenyl groups of benzimidazole were investigated by means of optical and photovoltaic measurements. The compounds exhibit broad absorption maximum at 387 nm with the tail extending up to 500 nm on TiO{sub 2}-coated thin film. The longer wavelength absorption band around 360 nm and the much longer decay components could be attributed to the existence of charge transfer state of the dyes in solutions. DSSC device fabricated by using methoxy substituted dye (BI5a) as a sensitizer shows much better incident photon-to-current conversion efficiency (IPCE) of 64% giving cell efficiency of 2.68%. - Graphical abstract: Display Omitted - Highlights: • Long decay times suggest the delayed fluorescence caused by the existence of ICT. • The best solar energy conversion efficiency was obtained for BI5a dye (2.68%). • More fluorescent BI5a dye gives higher photocurrent generation.

  11. Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies

    International Nuclear Information System (INIS)

    Wang, Wenxia; Huang, Guohe; An, Chunjiang; Xin, Xiaying; Zhang, Yan; Liu, Xia

    2017-01-01

    Highlights: • Surfactant modified flax shives for removing anionic azo dyes. • The equilibrium and kinetic studies for the adsorption of anionic azo dyes. • The migration patterns of dye pollutants at flax shive-water interface. • New insights from synchrotron infrared-assisted characterization. • Potential as biomass adsorbent for the removal of dyes from wastewater. - Abstract: From the viewpoint of sustainability, biomass adsorbent has a high potential in pollution control and there is an emerging interest to investigate the behaviors of pollutants at the interface between biomass adsorbent and solution. This study investigated the performance of cetyltrimethylammonium bromide surfactant-modified flax shives (MFS) for removal of anionic azo dyes from aqueous solution. The equilibrium and kinetic analysis for the adsorption of Acid Orange 7 (AO-7), Acid Red 18 (AR-18) and Acid Black 1 (AB-1) on MFS were conducted. The surface of MFS was characterized by synchrotron infrared and SEM analysis. The absorbed amount of three anionic azo dyes varied with the change of adsorbent dosage, pH and ionic strength. The adsorption isotherm data well fit to the Langmuir model. The adsorption process followed the pseudo-second-order kinetics and the liquid film diffusion models. Thermodynamic studies indicated that the adsorption of three anionic azo dyes was spontaneous. The adsorption of AR-18 and AB-1 onto MFS was endothermic while the adsorption of AO-7 was exothermic. The results can help better understand the behaviors of organic pollutants at biomass adsorbent-water interface. They also present the potential of using MFS as a suitable adsorbent for the removal of anionic azo dyes from wastewater.

  12. Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxia [MOE Key Laboratory of Resources and Environmental Systems Optimization, Institute for Energy, Environment and Sustainability Research, UR-NCEPU, North China Electric Power University, Beijing, 102206 (China); Huang, Guohe, E-mail: huang@iseis.org [MOE Key Laboratory of Resources and Environmental Systems Optimization, Institute for Energy, Environment and Sustainability Research, UR-NCEPU, North China Electric Power University, Beijing, 102206 (China); An, Chunjiang; Xin, Xiaying [Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2 (Canada); Zhang, Yan [MOE Key Laboratory of Resources and Environmental Systems Optimization, Institute for Energy, Environment and Sustainability Research, UR-NCEPU, North China Electric Power University, Beijing, 102206 (China); Liu, Xia [Canadian Light Source, Saskatoon, S7N 2V3 (Canada)

    2017-05-31

    Highlights: • Surfactant modified flax shives for removing anionic azo dyes. • The equilibrium and kinetic studies for the adsorption of anionic azo dyes. • The migration patterns of dye pollutants at flax shive-water interface. • New insights from synchrotron infrared-assisted characterization. • Potential as biomass adsorbent for the removal of dyes from wastewater. - Abstract: From the viewpoint of sustainability, biomass adsorbent has a high potential in pollution control and there is an emerging interest to investigate the behaviors of pollutants at the interface between biomass adsorbent and solution. This study investigated the performance of cetyltrimethylammonium bromide surfactant-modified flax shives (MFS) for removal of anionic azo dyes from aqueous solution. The equilibrium and kinetic analysis for the adsorption of Acid Orange 7 (AO-7), Acid Red 18 (AR-18) and Acid Black 1 (AB-1) on MFS were conducted. The surface of MFS was characterized by synchrotron infrared and SEM analysis. The absorbed amount of three anionic azo dyes varied with the change of adsorbent dosage, pH and ionic strength. The adsorption isotherm data well fit to the Langmuir model. The adsorption process followed the pseudo-second-order kinetics and the liquid film diffusion models. Thermodynamic studies indicated that the adsorption of three anionic azo dyes was spontaneous. The adsorption of AR-18 and AB-1 onto MFS was endothermic while the adsorption of AO-7 was exothermic. The results can help better understand the behaviors of organic pollutants at biomass adsorbent-water interface. They also present the potential of using MFS as a suitable adsorbent for the removal of anionic azo dyes from wastewater.

  13. Plasmonic Dye-Sensitized Solar Cells

    KAUST Repository

    Ding, I-Kang

    2010-12-14

    This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a plasmonic back reflector, overlaid with simulated field intensity plots when monochromatic light is incident on the device. Plasmonic back reflectors, which consist of 2D arrays of silver nanodomes, can enhance absorption through excitation of plasmonic modes and increased light scattering, as reported by Michael D. McGehee, Yi Cui, and co-workers.

  14. Indanthrone dye revisited after sixty years.

    Science.gov (United States)

    Kotwica, Kamil; Bujak, Piotr; Wamil, Damian; Materna, Mariusz; Skorka, Lukasz; Gunka, Piotr A; Nowakowski, Robert; Golec, Barbara; Luszczynska, Beata; Zagorska, Malgorzata; Pron, Adam

    2014-10-09

    Indanthrone, an old, insoluble dye can be converted into a solution processable, self-assembling and electroluminescent organic semiconductor, namely tetraoctyloxydinaptho[2,3-a:2',3'-h]phenazine (P-C8), in a simple one-pot process consisting of the reduction of the carbonyl group by sodium dithionite followed by the substitution with solubility inducing groups under phase transfer catalysis conditions.

  15. Detection of Red Dye in Diesel Oil

    Directory of Open Access Journals (Sweden)

    B Varughese

    2017-06-01

    Full Text Available Developing a sensitive and effective instrument for detecting the presence of red dye in diesel fuel is very advantageous for governments in preventing tax loss by controlling illegal use of the diesel fuel. The objective of this work has been to investigate and develop an instrument to detect red dye in diesel, based on the principle of absorption. The peaks of absorption in red and pure diesel fuel were measured with the help of UV-spectrometer (Lambda 6/ PECSS. Optical interference filters of wavelengths 405 nm and 616 nm were used to modify the spectral transmittance of an optical system with appropriate spectral absorption characteristics. Two simultaneous light beams of two different colors were sent into the diesel fuel and the transmitted light from the fuel censored by a silicon photo detector. The signal from the detector was then amplified with the help of three operational amplifiers (OP-177 and sent to an analog device (AD 538 which can perform division operation. The voltage produced when the violet light passes through the medium was divided when the red light passes through the medium in the one quadrant division unit (AD 538. The output voltage from the analog device was measured with the help of a digital multi-meter. The results show that the output voltages decreases with the increase in percentage of red dye in diesel fuel.

  16. SUITABLE MORDANTS FOR DYEING POSIDONIA OCEANICA FIBERS

    Directory of Open Access Journals (Sweden)

    ROMÁN Silvia

    2017-05-01

    Full Text Available Posidonia oceanica is the most extended sea grass in the Mediterranean Sea. Important quantities of this alga are accumulated on coasts making necessary the cleaninness of those beaches where it can be found. For this reason, many authors are developmenting new products made by this raw material, like green composites or are studing this material to be used as biomass, for example. The aim of this study is to dye the Posidonia Oceanica fiber using commercial natural dye to change their appearance to get a material more attractive for different areas. To achieve this aim, fibers were scoured and bleached in order to remove the brown colour of the Posidonia Oceanica fibers. Scoured and bleached processes were followed by the treatment done for cellulosic fibers, because some researches indicate that P. Oceanica is composed of high quantity of cellulose. Different types of biomordants were use in the pre-treatment of the fiber to improve the affinity between the fiber and the dye used. To compare the results, we evaluate the colour of each sample using CIELAB parameters and colour differences (ΔE*, which are obtained by reflexion spectrophotometre. The results showed that medium molecular weight chitosan, which was used as biomordant, gets the highest intensity of colour

  17. Plastic encapsulated, dye sensitised photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Potter, R.J.; Otley, L.C.; Durrant, J.R.; Haque, S.; Xu, C. [Imperial College of Science, Technology and Medicine, London (United Kingdom); Holmes, A.B.; Park, T.; Schulte, N. [Cambridge Univ. (United Kingdom)

    2004-07-01

    The report presents the results of a collaborative project that aimed to demonstrate the technical feasibility of a plastic-encapsulated, solid state, dye-sensitised solar cell (DSSC) with an energy conversion efficiency (ECE) of at least 3%. DSSCs offer a possible 'step change' in photovoltaic technology resulting in lower costs compared with existing technologies. The project involved a series of eight main tasks: the development of first and second generation HTM electrolytes; the development of polymer-supported electrolytes; the development of low temperature electrode coating procedures; dye development; cell assembly and testing; component integration; and overall process development. A wide range of innovative HTMs have been synthesised, including materials incorporating both hole-transporting and ion-chelating functional groups. The ruthenium-based dye, N3, remained the preferred sensitising component. The project has produced a system that can routinely achieve over 5% ECE at 0.1 Sun illumination on 1 cm{sup 2} cells using polymer-supported electrolytes.

  18. Molecular design of the diketopyrrolopyrrole-based dyes with varied donor units for efficient dye-sensitized solar cells

    Science.gov (United States)

    Zang, Xu-Feng; Huang, Zu-Sheng; Wu, Han-Lun; Iqbal, Zafar; Wang, Lingyun; Meier, Herbert; Cao, Derong

    2014-12-01

    Three types of novel diketopyrrolopyrrole-based organic dyes (Type 1-3) with phenyl unit as an additional π-bridge and triphenylamine or phenothiazine as the donors are designed and synthesized for dye-sensitized solar cells (DSSCs). Type 1 dyes incorporating the donor segment directly to the diketopyrrolopyrrole core lead to a better electron communication between the donor and acceptor, allowing an efficient charge transfer process. Type 2 and Type 3 dyes with a phenyl unit between the donor and diketopyrrolopyrrole unit show lower delocalization of the excited state. Compared with Type 3 dyes, Type 1 dyes exhibit higher conjugated skeleton co planarity and shorter electron transfer distance from the donor to TiO2, resulting in the red-shifts of absorption and promotion of electron injection, respectively. Moreover, the dyes with triphenylamine as the donor display better UV performance and lower trend of aggregation than the dyes with phenothiazine as the donor. Finally, a power conversion efficiency of 8% with chenodeoxycholic acid as the co-absorbant for the DSSC based on Type 1 dyes with triphenylamine is achieved. The results reveal that the donors, the position and number of phenyl unit of the dyes significantly influence the photovoltaic performance of their DSSCs.

  19. Synthesis and investigation of antimicrobial activity and spectrophotometric and dyeing properties of some novel azo disperse dyes based on naphthalimides.

    Science.gov (United States)

    Shaki, Hanieh; Gharanjig, Kamaladin; Khosravi, Alireza

    2015-01-01

    A series of novel disperse dyes containing azo group were synthesized through a diazotization and coupling process. The 4-amino-N-2-aminomethylpyridine-1,8-naphthalimide was diazotized by nitrosylsulphuric acid and coupled with various aromatic amines such as N,N-diethylaniline, N,N-dihydroxyethylaniline, 8-hydroxyquinoline, and 2-methylindole. Chemical structures of the synthesized dyes were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), proton nuclear magnetic resonance ((1) H NMR), carbon nuclear magnetic resonance ((13) C NMR), elemental analysis, and ultraviolet-visible (UV-visible) spectroscopy. The spectrophotometric data of all dyes were evaluated in various solvents with different polarity. Eventually, the dyes were applied on polyamide fabrics in order to investigate their dyeing properties. The fastness properties of the dyed fabrics such as wash, light, and rubbing fastness degrees were measured by standard methods. Moreover, the color gamut of the synthesized dyes was measured on polyamide fabrics. Results indicated that some of the synthesized dyes were able to dye polyamide fabrics with deep shades. They had very good wash and rubbing fastness degrees and moderate-to-good light fastness on polyamide fabrics. The antibacterial and antifungal activities of the synthesized dyes were evaluated in soluble state and on the dyed fabrics. The results indicated that dye 2 containing N,N-dihydroxyethylaniline as coupler had the highest activity against all the bacteria and fungi used. © 2015 American Institute of Chemical Engineers.

  20. The influence of the addition of dye surface modifier on the performance of transparent dye sensitized solar cells

    Science.gov (United States)

    Rosa, Erlyta Septa; Shobih, Retnaningsih, Lilis; Muliani, Lia; Hidayat, Jojo

    2017-11-01

    The light-harvesting properties and charge injection kinetics of dye molecules play a significant role to improve the performance of dye-sensitized solar cells (DSSC). Dyes based on metal complexes with ruthenium complexes also a variety of metal-organic dyes such as Zn-porphyrin derivatives have been used. The requirements for dye to function as a photosensitizer in DSSC are the absorption in the visible or near-infrared regions of the solar spectrum and the binding to the semiconductor TiO2. In order to interact with the TiO2 surface it is preferable that the dye has a functional group as anchoring group such as carboxylic or other peripheral acidic. The carboxylic group is the most frequently used anchoring group, as in ruthenium-complex based dyes. However, carboxylic acid as an anchoring group is still not enough for conducting in electron injection to TiO2. In this research, 0.87 mg phosphonic acid is added to N719 and Z907 ruthenium-complex based dyes, rspectively, as a surface modifier to strengthen the anchoring group. The addition of dyes surface modifier on the transparent DSSC device performance is investigated. Under illumination of 500 Wm-2, the power conversion efficiency (PCE) of DSSC using N719 ruthenium increases from 2.09 % to 3.22 % by the addition of surface modifier. However, different results are obtained on Z907 dye, where efficiency decreases from 2.02 % to 1.58 %.

  1. Influence of polar medium on the reorganization energy of charge transfer between dyes in a dye sensitized film.

    Science.gov (United States)

    Vaissier, Valérie; Barnes, Piers; Kirkpatrick, James; Nelson, Jenny

    2013-04-07

    We study the kinetics of the lateral hole transfer occurring between dye molecules anchored at the surface of the metal oxide in Dye Sensitized Solar Cells (DSSC). We use Marcus' charge transfer rate equation for which we need the electronic coupling between two molecules (J) and the reorganization energy (λtot). In DSSC the medium surrounding the dyes is highly polar. This means that the contribution of the solvent to the reorganization energy cannot be neglected. Here we elaborate a method to calculate, from first principles, the total (i.e., inner- and outer-sphere) reorganization energy of hole exchange between ruthenium dyes. The influence of the solvent and of the ions in the solvent is incorporated. The inner-sphere reorganization energy depends on the nature of the dye, 0.1 eV for ruthenium dyes with CN ligands, 0.2 eV for ruthenium dyes with NCS ligands. In acetonitrile, the solvent reorganization energy contributes for at least 80% of the total giving a total reorganization energy of around 0.86 eV for ruthenium dyes with CN ligands and 0.95 eV for ruthenium dyes with NCS ligands. We use these results to estimate the rate of hole transfer within Marcus theory. We suggest that low diffusion coefficients observed experimentally may arise from the high polarity of the medium rather than by the chemical structure of the dye.

  2. Dye-Sensitized Approaches to Photovoltaics

    Science.gov (United States)

    Grätzel, Michael

    2008-03-01

    Sensitization of wide band-gap semiconductors to photons of energy less than the band-gap is a key step in two technically important processes - panchromatic photography and photoelectrochemical solar cells. In both cases the photosensitive species is not the semiconductor - silver halide or metal oxide - but rather an electrochemically active dye. The gap between the highest occupied molecular level (HOMO) and the lowest unoccupied molecular level (LUMO) is less than the band-gap of the semiconductor with which it is associated. It can therefore absorb light of a wavelength longer than that to which the semiconductor itself is sensitive. The electrochemical process is initiated when the dye molecule relaxes from its photoexcited level by electron injection into the semiconductor, which therefore acts as a photoanode. If the dye is in contact with a redox electrolyte, the negative charge represented by the lost electron can be recovered from the reduced state of the redox system, which in return is regenerated by charge transfer from a cathode. An external load completes the electrical circuit. The system therefore represents a conversion of the energy of absorbed photons into an electrical current by a regenerative device in every functional respect analogous to a solid-state photovoltaic cell. As in any engineering system, choice of materials, their optimization and their synergy are essential to efficient operation. While a semiconductor-electrolyte contact is analogous to a Schottky contact, in that a barrier is established between two materials of different conduction mechanism, with the possibility of optical absorption, charge carrier pair generation and separation, it should be remembered that the photogenerated valence band hole in the semiconductor represents a powerful oxidizing agent. Given that the band-gap is related to the strength and therefore the stability of chemical bonding within the semiconductor, for narrow-gap materials the most likely

  3. FATE OF WATER SOLUBLE AZO DYES IN THE ACTIVATED SLUDGE PROCESS

    Science.gov (United States)

    The objective of this study was to determine the partitioning of water soluble azo dyes in the activated sludge process (ASP). Azo dyes are of concern because some of the dyes, dye precursors , and/or their degradation products such as aromatic amines (which are also dye precurso...

  4. Ranking of hair dye substances according to predicted sensitization potency

    DEFF Research Database (Denmark)

    Søsted, H; Basketter, D A; Estrada, E

    2004-01-01

    Allergic contact dermatitis following the use of hair dyes is well known. Many chemicals are used in hair dyes and it is unlikely that all cases of hair dye allergy can be diagnosed by means of patch testing with p-phenylenediamine (PPD). The objectives of this study are to identify all hair dye...... in order to help select a number of chemically diverse hair dye substances that could be used in subsequent clinical work. Various information sources, including the Inventory of Cosmetics Ingredients, new regulations on cosmetics, data on total use and ChemId (the Chemical Search Input website provided...... by the National Library of Medicine), were used in order to identify the names and structures of the hair dyes. A QSAR model, developed with the help of experimental local lymph node assay data and topological sub-structural molecular descriptors (TOPS-MODE), was used in order to predict the likely sensitization...

  5. Biosorption of Azo dyes by spent Rhizopus arrhizus biomass

    Science.gov (United States)

    Salvi, Neeta A.; Chattopadhyay, S.

    2017-10-01

    In the present study, spent Rhizopus arrhizus biomass was used for the removal of six azo dyes from aqueous solutions. The dye removal capacity of the biomass was evaluated by conducting batch tests as a function of contact time, biomass dosage, pH and initial dye concentrations. The pseudo-second-order kinetic model fitted well with the experimental data with correlation coefficients greater than 0.999, suggesting that chemisorptions might be the rate limiting step. The equilibrium sorption data showed good fit to the Langmuir isotherm model. Among the six dyes tested, the maximum monolayer adsorption capacity for fast red A and metanil yellow was found to be 108.8 and 128.5 mg/g, respectively. These encouraging results suggest that dead Rhizopus arrhizus biomass could be a potential biomaterial for the removal of azo dyes from aqueous dye solution.

  6. Optical properties of cyanine dyes in nanotubes of chrysotile asbestos

    Science.gov (United States)

    Starovoytov, Anton A.; Vartanyan, Tigran A.; Belotitskii, Vladimir I.; Kumzerov, Yuri A.; Sysoeva, Anna A.

    2017-08-01

    Optical properties of cyanine dye molecules incorporated in nanotubes of natural chrysotile asbestos are studied. The absorption and fluorescence spectra of dye in asbestos have the similar shapes as in the ethanol solution, apart from small blue shift of the maxima. The Stokes shift in asbestos is smaller than in the ethanol solution. The fluorescence decay times of the dyes in asbestos nanotubes are found to be larger than that in the case of thin films of the same dyes formed on the transparent dielectric supports. This observation is rationalized in terms of the stereoisomerization hindrance in the excited electronic state of dye molecules. At the same time linear dichroism and fluorescence anisotropy observed in the experiment indicate that the embedded dye molecules are well-isolated monomer oriented predominantly along asbestos nanotubes.

  7. Dye sensitization of titanium dioxide crystals and nanocrystalline films with a ruthenium based dye

    Science.gov (United States)

    Fillinger, Akiko

    The dye/semiconductor interface of a recently developed highly efficient (overall conversion efficiency >13%) dye sensitized nanocrystalline TiO2 solar cell was investigated. First, the adsorption and desorption rates of the dye (cis-di(thiocyanato)bis(2,2' -bipyridyl-4,4'-dicarboxylate)ruthenium(II):N3), and the relationship between the dye coverage and the photon-to-current conversion efficiencies were examined for nanocrystalline TiO2 films. A two-step dye adsorption mechanism was postulated where initial binding of N3 is through one carboxyl group, with subsequent binding of two or more carboxyl groups. The photon-to-current conversion efficiencies were found to increase abruptly at a coverage of about 0.3 monolayers. To explain the non-linear increases in the conversion efficiencies, a hole-hopping mechanism was proposed. At greater than 30% coverage, hole transfer between adjacent N3 molecules becomes possible and facilitates the regeneration of the oxidized N3 by the redox species (I-) in the matrix of the nanoporous structure. Natural anatase crystals were also investigated as substrates for dye sensitization by N3 to circumvent the complexity of the nanoporous structure of the nanocrystalline TiO2 films. A crystal face dependence of the sensitization yield was observed and explained with the variation in the distances between the Ti binding sites by different crystal faces. The dye sensitized photocurrents with the natural anatase crystals had millisecond rise times. The rise time decreased with greater light intensity and greater dye coverage, suggesting that trapping and detrapping of injected electrons at traps in the crystals is involved in the electron transport in the natural anatase crystals. The absorbed photon to current efficiency of the nanocrystalline films was calculated to be approximately three to seven times greater than that of the single crystals, indicating more recombination in the single crystals. Finally, the surface morphologies of

  8. Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes

    KAUST Repository

    Yum, Jun-Ho

    2009-11-23

    Running relay: Incorporating an energyrelay dye (ERD) into the hole transporter of a dye-sensitized solar cell increased power-conversion efficiency by 29% by extending light harvesting into the blue region. In the operating mechanism (see picture), absorption of red photons by the sensitizer transfers an electron into TiO2 and a hole into the electrolyte. Blue photons absorbed by the ERD are transferred by FRET to the sensitizer. Chemical Equitation Presentation © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Sleep inspires insight.

    Science.gov (United States)

    Wagner, Ullrich; Gais, Steffen; Haider, Hilde; Verleger, Rolf; Born, Jan

    2004-01-22

    Insight denotes a mental restructuring that leads to a sudden gain of explicit knowledge allowing qualitatively changed behaviour. Anecdotal reports on scientific discovery suggest that pivotal insights can be gained through sleep. Sleep consolidates recent memories and, concomitantly, could allow insight by changing their representational structure. Here we show a facilitating role of sleep in a process of insight. Subjects performed a cognitive task requiring the learning of stimulus-response sequences, in which they improved gradually by increasing response speed across task blocks. However, they could also improve abruptly after gaining insight into a hidden abstract rule underlying all sequences. Initial training establishing a task representation was followed by 8 h of nocturnal sleep, nocturnal wakefulness, or daytime wakefulness. At subsequent retesting, more than twice as many subjects gained insight into the hidden rule after sleep as after wakefulness, regardless of time of day. Sleep did not enhance insight in the absence of initial training. A characteristic antecedent of sleep-related insight was revealed in a slowing of reaction times across sleep. We conclude that sleep, by restructuring new memory representations, facilitates extraction of explicit knowledge and insightful behaviour.

  10. Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes

    OpenAIRE

    Shixiong Sheng; Bo Liu; Xiangyu Hou; Bing Wu; Fang Yao; Xinchun Ding; Lin Huang

    2017-01-01

    This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7) to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is dif...

  11. Mycoremediation of Textile Dyes: Application of Novel Autochthonous Fungal Isolates

    OpenAIRE

    Sweety; Sharad Vats; Manoj Kumar; Shivesh Sharma; Vivek Kumar; Shri K. Garg

    2017-01-01

    Four fungal isolates Trichoderma virens, Phlebiopsis cf. ravenelii, Talaromyces stipitatus, Aspergillus niger originally isolated from the textile dye contaminated soil of Meerut (U.P). India. They were used for the decolorization studies of selected textile azo dyes under laboratory conditions. Out of total 74 isolates, selected four fungal strains were picked on the basis of primary screening carried out using agar layer decolorization method. Decolorization efficiency of textile dyes was s...

  12. Mycoremediation of congo red dye by filamentous fungi

    OpenAIRE

    Bhattacharya, Sourav; Das, Arijit; G, Mangai.; K, Vignesh.; J, Sangeetha.

    2011-01-01

    Azo, anthroquinone and triphenylmethane dyes are the major classes of synthetic colourants, which are difficult to degrade and have received considerable attention. Congo red, a diazo dye, is considered as a xenobiotic compound, and is recalcitrant to biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several fungi, under certain environmental conditions, are able to transfer azo dyes to non toxic products using laccases. The aim of this work was t...

  13. Fluorescence study of some xanthine dyes under stepped laser excitation

    International Nuclear Information System (INIS)

    Chirkova, L.V.; Ketsle, G.A.; Ermagambetov, K.T.

    1996-01-01

    Paper is devoted to definition of triplet state in molecules of xanthine dyes and study of intramolecular energy circulation. Stepped two-quanta excitation of dyes has been carried out with help of experimental unit. Intensive luminescence activated by excitation of triplet molecules of dyes within triplet-triplet band with wave length of 1060 nm was registered for eosin. Given luminescence spectrally coincides with fast fluorescence. 5 refs., 6 figs

  14. Taming fluorescence yield of dye insensitive to temperature by non ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... ... and non-radiative decay processes of excited dye molecules. The QYF of RhB dye in water was found to be not sensitive to temperature in the practical operating region 16–25°C of dye laser by adopting supramolecular route to form an inclusion complex of RhB with the container molecule cucurbit[7]uril ...

  15. Photophysical and laser characteristics of pyrromethene 567 dye ...

    Indian Academy of Sciences (India)

    Higher laser efficiency was observed with PM567 dye (~23% peak) in comparison to the commonly used RH6G dye (16.5%), in spite of much lower fluorescence quantum efficiency of the PM567 (0.83) vis-`a-vis RH6G (0.98) dye solutions in ethanol. First principle-based electronic structure calculations were performed on ...

  16. Adsorption Properties of Lac Dyes on Wool, Silk, and Nylon

    Directory of Open Access Journals (Sweden)

    Bo Wei

    2013-01-01

    Full Text Available There has been growing interest in the dyeing of textiles with natural dyes. The research about the adsorption properties of natural dyes can help to understand their adsorption mechanism and to control their dyeing process. This study is concerned with the kinetics and isotherms of adsorption of lac dyes on wool, silk, and nylon fibers. It was found that the adsorption kinetics of lac dyes on the three fibers followed the pseudosecond-order kinetic model, and the adsorption rate of lac dyes was the fastest for silk and the slowest for wool. The activation energies for the adsorption process on wool, silk, and nylon were found to be 107.15, 87.85, and 45.31 kJ/mol, respectively. The adsorption of lac dyes on the three fibers followed the Langmuir mechanism, indicating that the electrostatic interactions between lac dyes and those fibers occurred. The saturation values for lac adsorption on the three fibers decreased in the order of wool > silk > nylon; the Langmuir affinity constant of lac adsorption on nylon was much higher than those on wool and silk.

  17. Radiation resistance of organic azo dyes in aqueous solutions

    International Nuclear Information System (INIS)

    Khabarov, V.N.; Kozlov, L.L.

    1987-01-01

    The resistance to the action of the ionizing radiation of aqueous and aqueous-alcoholic solutions of organic mono- and diazo dyes was studied. The radiation chemical yield of decolorization of the dye, determined from the kinetic decolorization curves served as a quantitative criterion of the radiation resistance. The influence of pH, addition of ethanol, hydroquinone, thiourea, glucose and oxygen on the radiation resistance of the azo dyes was studied. An attempt was made to relate the efficiency of radiation decolorization to the chemical nature of the dye

  18. EFFECT OF DYE CONCENTRATION ON SEQUENCING BATCH REACTOR PERFORMANCE

    Directory of Open Access Journals (Sweden)

    A. A. Vaigan ، M. R. Alavi Moghaddam ، H. Hashemi

    2009-01-01

    Full Text Available Reactive dyes have been identified as problematic compounds in textile industries wastewater as they are water soluble and cannot be easily removed by conventional aerobic biological treatment systems. The treatability of a reactive dye (Brill Blue KN-R by sequencing batch reactor and the influence of the dye concentration on system performance were investigated in this study. Brill Blue KN-R is one of the main dyes that are used in textile industries in Iran. Four cylindrical Plexiglas reactors were run for 36 days (5 days for acclimatization of sludge and 31 days for normal operation at different initial dye concentrations. The dye concentrations were adjusted to be 20, 25, 30 and 40 mg/L in the reactors R1, R2, R3 and R4, respectively. In all reactors, effective volume, influent wastewater flowrate and sludge retention time were 5.5 L, 3.0 L/d and 10 d, respectively. According to the obtained data, average dye removal efficiencies of R1, R2, R3 and R4 were 57% ± 2, 50.18% ± 3, 44.97% ± 3 and 30.98% ± 3, respectively. The average COD removal efficiencies of all reactors were 97% ± 1, 97.12% ± 1, 96.93% ± 1 and 97.22% ± 1, respectively. The dye removal efficiency was decreased by increasing the dye concentration with the correlation coefficient of 0.997.

  19. Excited state chemistry of indigoid dyes. Pt. 4

    International Nuclear Information System (INIS)

    Schulte-Frohlinde, D.; Herrmann, H.; Wyman, G.M.

    1976-01-01

    The triplet-triplet absorption spectra and lifetimes of 6,6'-di-n-hexyloxy thioindigo, 5,5'-diethyl selenoindigo and four 5,5'-dialkyl thioindigo dyes were determined by flash photolysis at 77 K in an EPA-glass matrix. Ring- or N,N'-substituted indigos and a mixed indigo-thioindigo dye gave no evidence for transient formation under these conditions. The excited state behavior of these dyes is discussed from the perspective of parallel oxygen-quenching studies on the photoisomerizable dyes and room-temperature nanosecond laser-flash photolytic measurements on several of these compounds. (orig.) [de

  20. Preparation of Nanoporous TiO2 for Dye-Sensitized Solar Cell (DSSC) Using Various Dyes

    Science.gov (United States)

    Yuliarto, Brian; Fanani, Fahiem; Fuadi, M. Kasyful; Nugraha

    2010-10-01

    This article reports the development of organic dyes as an attempt to reduce material costs of Dye-Sensitized Solar Cell (DSSC). Indonesia, a country with variety and considerable number of botanical resources, is suitable to perform the research. Indonesian black rice, curcuma, papaya leaf, and the combination were chosen as organic dyes source. Dyes were extracted using organic solvent and adsorbed on mesoporous Titanium Dioxide (TiO2) which has been optimized in our laboratory. The best dyes light absorbance and performance obtained from papaya leaf as chlorophyll dyes that gives two peaks at 432 nm and 664 nm from UV-Vis Spectrophotometry and performance under 100 mW/cm2 Xenon light solar simulator gives VOC = 0.566 Volt, JSC = 0.24 mA/cm2, Fill Factor = 0.33, and efficiency of energy conversion 0,045%.

  1. Laser desorption/ionization mass spectrometry of dye-sensitized solar cells: identification of the dye-electrolyte interaction.

    Science.gov (United States)

    Ellis, Hanna; Leandri, Valentina; Hagfeldt, Anders; Boschloo, Gerrit; Bergquist, Jonas; Shevchenko, Denys

    2015-05-01

    Dye-sensitized solar cells (DSCs) have great potential to provide sustainable electricity from sunlight. The photoanode in DSCs consists of a dye-sensitized metal oxide film deposited on a conductive substrate. This configuration makes the photoanode a perfect sample for laser desorption/ionization mass spectrometry (LDI-MS). We applied LDI-MS for the study of molecular interactions between a dye and electrolyte on the surface of a TiO2 photoanode. We found that a dye containing polyoxyethylene groups forms complexes with alkali metal cations from the electrolyte, while a dye substituted with alkoxy groups does not. Guanidinium ion forms adducts with neither of the two dyes. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Natural dye extracted from karkadah and its application in dye-sensitized solar cells: experimental and density functional theory study.

    Science.gov (United States)

    Reda, S M; Soliman, K A

    2016-02-01

    This work presents an experimental and theoretical study of cyanidin natural dye as a sensitizer for ZnO dye-sensitized solar cells. ZnO nanoparticles were prepared using ammonia and oxalic acid as a capping agent. The calculated average size of the synthesized ZnO with different capping agents was found to be 32.1 nm. Electronic properties of cyanidin and delphinidin dye were studied using density functional theory (DFT) and time-dependent DFT with a B3LYP/6-31G(d,p) level. By comparing the theoretical results with the experimental data, the cyanidin dye can be used as a sensitizer in dye-sensitized solar cells. An efficiency of 0.006% under an AM-1.5 illumination at 100  mW/cm(2) was attained. The influence of dye adsorption time on the solar cell performance is discussed.

  3. Cosensitization with Vat-Based Organic Dyes for Enhanced Spectral Response of Dye-Sensitized Solar Cells

    Science.gov (United States)

    Hosseinnezhad, Mozhgan

    2017-04-01

    Cosensitization using two organic dyes with supplementary absorption spectra on a photoelectrode is an effective method for improving the photovoltaic properties of dye-sensitized solar cells. Two organic dyes based on indigo and thioindigo have been synthesized, purified, and used to sensitize solar cells with spectral response extending across the entire visible region. To improve their photoelectric properties, different molar ratios were investigated, yielding total efficiency of 6.17% at dye 1:dye 2 = 4:6. The effect of the concentration of Cheno antiaggregation agent on the performance of the dye-sensitized solar cells was also considered. The results demonstrate that higher conversion efficiency ( η = 6.82%) was achieved with 10 × 10-3 M Cheno. Finally, the performance of cosensitized solar cells was measured at different temperatures between 10°C and 50°C. The results indicated that J sc decreased with increasing temperature, directly affecting the conversion efficiency.

  4. A Note on the Dyeing of Wool Fabrics Using Natural Dyes Extracted from Rotten Wood-Inhabiting Fungi

    Directory of Open Access Journals (Sweden)

    Vicente A. Hernández

    2018-02-01

    Full Text Available Fungal isolates obtained from rotten wood samples were identified and selected by their ability to produce fungal dyes in liquid media. Fungal isolates produced natural extracellular dyes with colors ranging from red to orange, yellow and purple. Dyes from two of these fungi, Talaromyces australis (red and Penicillium murcianum (yellow, were extracted and used to dye wool samples in a Data Color Ahiba IR Pro-Trade (model Top Speed II machine. The protein nature of wool interacted well with the fungal dyes producing colors suitable for textile applications when used to a concentration of 0.1 g·L−1. Results on color fastness when washing confirmed the affinity of the dyes with wool as the dyed samples kept their color in acceptable ranges after washing, without the implementation of mordanting pretreatments or the use of fixing agents.

  5. Kinetics of low temperature polyester dyeing with high molecular weight disperse dyes by solvent microemulsion and agrosourced auxiliaries

    OpenAIRE

    Radei, Shahram; Carrión-Fité, Francisco Javier; Ardanuy Raso, Mònica; Canal Arias, José Ma

    2018-01-01

    This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (o-vanillin and coumarin) using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of n-butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100...

  6. Kinetics of Low Temperature Polyester Dyeing with High Molecular Weight Disperse Dyes by Solvent Microemulsion and AgroSourced Auxiliaries

    OpenAIRE

    Shahram Radei; F. Javier Carrión-Fité; Mònica Ardanuy; José María Canal

    2018-01-01

    This work focused on the evaluation of the kinetics of dyeing polyester fabrics with high molecular weight disperse dyes, at low temperature by solvent microemulsion. This study also compared the effect of two non-toxic agro-sourced auxiliaries (o-vanillin and coumarin) using a non-toxic organic solvent. A dyeing bath consisting of a micro-emulsion system involving a small proportion of n-butyl acetate was used, and the kinetics of dyeing were analysed at four temperatures (83, 90, 95 and 100...

  7. Application of a sequential batch reactor system for textile dyes degradation: comparison between azo and phthalocyanine dyes.

    Science.gov (United States)

    Harrelkas, F; Pons, M N; Zahraa, O; Yaacoubi, A; Lakhal, E K

    2007-01-01

    Photocatalysis on supported TiO2 was combined with aerobic biological treatment in a sequential batch reactor to compare the degradation of two textile dyes: a blue azo dye (DR KBL CDG) and a green phthalocyanine dye (DR K4GN). Three reactors were run in parallel. SBR1 was used as a reference and was fed with urban wastewater only. SBR2 and SBR3 were fed with the same urban wastewater combined with pretreated (for SBR2) and non-pretreated (for SBR3) dye solution. For an azo dye concentration of 12 mg/L decolouration yields of 78 and 27% were achieved, respectively, in SBR2 and SBR3. For the phthalocyanine dye, the decolouration yields decreased to 24 and 15%, respectively. Concerning COD removal it decreases for both dyes with and without pretreatment, when the dye concentration increases. Although a detrimental effect on biomass could be observed, bacteria were able to cope with the inhibitory effect of the dyes.

  8. Effect of mercerization and gamma irradiation on the dyeing behaviour of cotton using stilbene based direct dye

    International Nuclear Information System (INIS)

    Bhatti, Ijaz Ahmad; Adeel, Shahid; Fazal-ur-Rehman; Irshad, Misbah; Abbas, Muhammad

    2012-01-01

    The dyeing behaviour of mercerized and gamma irradiated cotton fabric using stilbene based direct dye has been investigated. The fabric was treated with different concentrations of alkali to optimize the mercerization. The optimum mercerized cotton fabric was irradiated to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature, time of dyeing, pH of dyeing solutions and salt concentration were optimized. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organization (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It was found that mercerized and irradiated cotton have not only improved the colour strength but enhanced the rating of fastness properties also. - Highlights: ► Optimum mercerization condition is 28% and optimum absorbed dose is 2 kGy. ► At optimum conditions colour strength and fastness properties are enhanced. ► Mercerization prior to irradiation saves the amount of doses, time, money and labour. ► Gamma irradiation after mercerization can improve dyeing of mercerized fabrics using other classes of dyes.

  9. Dye sensitized solar cell (DSSC) with natural dyes extracted from Jatropha leaves and purple Chrysanthemum flowers as sensitizer

    Science.gov (United States)

    Tahir, Dahlang; Satriani, Wilda; Gareso, P. L.; Abdullah, B.

    2018-03-01

    DSSC (Dye-Sensitized Solar Cell) prototype has been investigated using Jatropha leaves and purple Chrysanthemum flowers as natural dyes. DSSC consists of working electrode and counter electrode. A working electrode composed of semiconductor nanoparticles TiO2 that has been coated with dye molecules. Dye molecules serve as light photon catchers, while semiconductor nanoparticles TiO2 function to absorb and forward photons into electrons. In the electrode counter given catalyst carbon, serves to accelerate the reaction kinetics of triiodide reduction process on transparent conductive oxide (TCO). DSSC using TiO2 as a semiconductor material and natural dyes as sensitizer from Jatropha leaves and purple Chrysanthemum flowers are successful produced. The physical properties of the working electrode have been determined by using XRD and the chemical properties of the TiO2 powder and dye powder using FTIR and dye solution using UV-Vis. The resulted fabrications are also examined its I-V characteristics. The best performance is generated by mixed dye 1.91 x 10-3 % compared than those DSSC for dye extracted from Jatropha leaves or purple Chrysanthemum. The characterization results show that the higher of the absorption wavelength of the DSSC efficiency is high.

  10. Synthesis, dyeing performance on polyester fiber and antimicrobial studies of some novel pyrazolotriazine and pyrazolyl pyrazolone azo dyes

    Directory of Open Access Journals (Sweden)

    Hala F. Rizk

    2017-05-01

    Full Text Available 5-Amino-4-heterylazo-3-phenyl-1H-pyrazoles (2a–d were diazotized and coupled with malononitrile to give pyrazoloazo malononitrile which by heating in glacial acetic acid gave novel pyrazolo[5,1-c][1,2,4]triazine dyes (3a–d. Also, some diazopyrazolyl pyrazolone dyes (4a–h were synthesized by diazotization of 2a–d and coupled with some pyrazolone derivatives. The structure of the synthesized dyes was determined by elemental analysis and spectral data. All the synthesized compounds were applied as disperse dyes and their dyeing performance on polyester fabric was studied. The fastness and colorimetric properties were measured. The results revealed that the monoazo dyes have good fastness and good to moderate affinity to polyester fabric than diazo dyes. In addition, the synthesized dyes were screened for their antimicrobial activities against Staphylococcus aureus, Pseudomonas aeruginosa (Gram positive, Bacillus subtitles, Escherichia coli (Gram negative and Candida albicans, Aspergillus niger (Fungi. The results revealed that most of the prepared dyes have high antibacterial activity.

  11. Database of two-dimensional polyacrylamide gel electrophoresis of proteins labeled with CyDye DIGE Fluor saturation dye.

    Science.gov (United States)

    Fujii, Kazuyasu; Kondo, Tadashi; Yokoo, Hideki; Okano, Tetsuya; Yamada, Masayo; Yamada, Tesshi; Iwatsuki, Keiji; Hirohashi, Setsuo

    2006-03-01

    CyDye DIGE Fluor saturation dye (saturation dye, GE Healthcare Amersham Biosciences) enables highly sensitive 2-D PAGE. As the dye reacts with all reduced cysteine thiols, 2-D PAGE can be performed with a lower amount of protein, compared with CyDye DIGE Fluor minimal dye (GE Healthcare Amersham Biosciences), the sensitivity of which is equivalent to that of silver staining. We constructed a 2-D map of the saturation dye-labeled proteins of a liver cancer cell line (HepG2) and identified by MS 92 proteins corresponding to 123 protein spots. Functional classification revealed that the identified proteins had chaperone, protein binding, nucleotide binding, metal ion binding, isomerase activity, and motor activity. The functional distribution and the cysteine contents of the proteins were similar to those in the most comprehensive 2-D database of hepatoma cells (Seow et al.., Electrophoresis 2000, 21, 1787-1813), where silver staining was used for protein visualization. Hierarchical clustering on the basis of the quantitative expression profiles of the 123 characterized spots labeled with two charge- and mass-matched saturation dyes (Cy3 and Cy5) discriminated between nine hepatocellular carcinoma cell lines and primary cultured hepatocytes from five individuals, suggesting the utility of saturation dye and our database for proteomic studies of liver cancer.

  12. Study of the Leacril Dyeing Process by a Cationic Dye from an Emulsion System.

    Science.gov (United States)

    Chibowski, E.; Ortega, A. Ontiveros; Espinosa-Jiménez, M.; Perea-Carpio, R.; Holysz, L.

    2001-03-15

    Adsorption studies of a cationic dye, Rhodamine B, from an emulsion phase on Leacril fabric at different temperatures were conducted. The emulsion phase consisted of n-hexadecane emulsified by isopropyl alcohol (1 M) and stabilized by tannic acid. In the alcohol solution Rhodamine B was dissolved. The kinetics of its adsorption and desorption is discussed. The changes in Leacril surface free energy components in the dyeing process were also determined. The adsorption data show that the presence of an emulsion increases the dye adsorption at room temperature (293 K) and at 313 K, while at 333 K it is smaller than that from Rhodamine solution alone. However, Rhodamine desorbs more when adsorbed from the solution. Surface free energy components differ for the Leacril samples dyed at different temperatures, and the most hydrophobic surface was obtained for the samples dyed at 333 K, where the electron-donor component is the lowest one. In general, the work of water spreading is close to zero, except for the above sample for which it is relatively highly negative. Possible mechanisms of the dye adsorption are discussed. Copyright 2001 Academic Press.

  13. Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Nguyen, Thai Anh; Fu, Chun-Chieh; Juang, Ruey-Shin

    2016-11-01

    The ability of the bacterial strain Acidithiobacillus thiooxidans to remove sulfur blue 15 (SB15) dye from water samples was examined. This bacterium could not only oxidize sulfur compounds to sulfuric acid but also promote the attachment of the cells to the surface of sulfidic particles, therefore serving as an efficient biosorbent. The biosorption isotherms were better described by the Langmuir equation than by the Freundlich or Dubinin-Radushkevich equation. Also, the biosorption process followed the pseudo-second-order kinetics. At pH 8.3 and SB15 concentrations up to 2000 mg L(-1) in the biomass/mineral salt solution, the dye removal and decolorization were 87.5% and 91.4%, respectively, following the biosorption process. Biodegradation was proposed as a subsequent process for the remaining dye (250-350 mg L(-1)). A central composite design was used to analyze independent variables in the response surface methodology study. Under the optimal conditions (i.e., initial dye concentration of 300 mg L(-1), initial biomass concentration of 1.0 g L(-1), initial pH of 11.7, and yeast extract dose of 60 mg L(-1)), up to 50% of SB15 was removed after 4 days of biodegradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Dye Oriza sativa glutinosa doped Fe as a active element of Dye Sensitized Solar Cell (DSSC)

    Science.gov (United States)

    Prasada, A. B.; Fadli, U. M.; Cari; Supriyanto, A.

    2016-11-01

    The aims of the research are to determine the effect of doping Fe (III) Sulphate into dye Oriza sativa glutinosa on the characteristics parameters of solar cells, to determine the optical characteristic, functional group and electrical characteristic of dye Oriza sativa glutinosa doped Fe (III) sulphate. TiO2 nano size as much as 0.5 gr dissolved in 3 ml ethanol. 100 gr black sticky rice (Oriza sativa glutinosa) was immersed in 80 ml ethanol solution (95%) and kept at room temperature without exposing to light. Then it was filtered with a filter paper no.42, and the extracted result was process with chromatography. Furthermore, it was doped with Fe (III) sulphate respectively of 10-1 M, 10-2 M, 10-3 M. The characteristic of dye solution was measured using UV-Visible Spectrophotometer Lambda 25 for absorbance, Elkahfi 100/I-V meter for conductivity amd Keithey 2602A for characterization of current and voltage (I-V). The result showed that the area of dye Oriza sativa glutionosa doped Fe (III) sulphate with concentration 10-1 M the largest, because the value of Voc intercept at 6.40 × 10-1 mV and the value Isc intercept at 1.89 × 10-3 mA, with efficiency value is 0.148%.

  15. Efficient dye-sensitized solar cells from mesoporous zinc oxide nanostructures sensitized by N719 dye

    Science.gov (United States)

    Kumara, G. R. A.; Deshapriya, U.; Ranasinghe, C. S. K.; Jayaweera, E. N.; Rajapakse, R. M. G.

    2018-03-01

    Dye-sensitized solar cells (DSCs) have attracted a great deal of attention due to their low-cost and high power conversion efficiencies. They usually utilize an interconnected nanoparticle layer of TiO2 as the electron transport medium. From the fundamental point of view, faster mobility of electrons in ZnO is expected to contribute to better performance in DSCs than TiO2, though the actual practical situation is quite the opposite. In this research, we addressed this problem by first applying a dense layer of ZnO on FTO followed by a mesoporous layer of interconnected ZnO nanoparticle layer, both were prepared by spray pyrolysis technique. The best cell shows a power conversion efficiency of 5.2% when the mesoporous layer thickness is 14 μm and the concentration of the N719 dye in dye coating solution is 0.3 mM, while a cell without a dense layer shows 4.2% under identical conditions. The surface concentration of dye adsorbed in the cell with a dense layer and that without a dense layer are 5.00 × 10‑7 and 3.34 × 10‑7 mol/cm2, respectively. The cell with the dense layer has an electron lifetime of 54.81 ms whereas that without the dense layer is 11.08 ms. As such, the presence of the dense layer improves DSC characteristics of ZnO-based DSCs.

  16. Synthesis of dye linked conducting block copolymers, dye linked conducting homopolymers and preliminary application to photovoltaics

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Hagemann, O.; Jørgensen, M.

    2004-01-01

    A synthetic approach to the synthesis of a large super molecule composed of two chemically different conducting polymer blocks with, respectively, high and low lying electronic energy levels linked through a porphyrin dye molecule is presented. The synthetic strategies to these molecular architec...

  17. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.

    Science.gov (United States)

    Marinado, Tannia; Hagberg, Daniel P; Hedlund, Maria; Edvinsson, Tomas; Johansson, Erik M J; Boschloo, Gerrit; Rensmo, Håkan; Brinck, Tore; Sun, Licheng; Hagfeldt, Anders

    2009-01-07

    Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.

  18. Copper based Fenton's System for the Decolourization of Sythetic Dyes and Dye Industry Effluents

    Czech Academy of Sciences Publication Activity Database

    Shah, Vishal; Bhatt, Manish; Stopka, P.; Nerud, František

    2005-01-01

    Roč. 2, č. 1 (2005), s. 61-64 ISSN 0972-9860 R&D Projects: GA ČR GA526/01/0915 Institutional research plan: CEZ:AV0Z5020903 Keywords : synthetic dye * industrial effluent * decolourization Subject RIV: EE - Microbiology, Virology

  19. Organic Dyes Containing Coplanar Dihexyl-Substituted Dithienosilole Groups for Efficient Dye-Sensitised Solar Cells

    Directory of Open Access Journals (Sweden)

    Ciaran Lyons

    2017-01-01

    Full Text Available A chromophore containing a coplanar dihexyl-substituted dithienosilole (CL1 synthesised for use in dye-sensitised solar cells displayed an energy conversion efficiency of 6.90% under AM 1.5 sunlight irradiation. The new sensitiser showed a similar fill factor and open-circuit voltage when compared with N719. Impedance measurements showed that, in the dark, the charge-transfer resistance of a cell using CL1 in the intermediate-frequency region was higher compared to N719 (69.8 versus 41.3 Ω. Under illumination at AM 1.5G-simulated conditions, the charge-transfer resistances were comparable, indicative of similar recombination rates by the oxidised form of the redox couple. The dye showed instability in ethanol solution, but excellent stability when attached to TiO2. Classical molecular dynamics indicated that interactions between ethanol and the dye are likely to reduce the stability of CL1 in solution form. Time-dependent density functional theory studies were performed to ascertain the absorption spectrum of the dye and assess the contribution of various transitions to optical excitation, which showed good agreement with experimental results.

  20. Difference gel electrophoresis (DIGE) using CyDye DIGE fluor minimal dyes.

    Science.gov (United States)

    Chakravarti, Bulbul; Gallagher, Sean R; Chakravarti, Deb N

    2005-02-01

    One- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1- and 2-D SDS-PAGE) have been widely used for the separation and quantitative estimation of proteins. Following electrophoresis, the gels are stained appropriately to visualize the proteins. Difference gel electrophoresis (DIGE) is a new technique in which different protein samples, individually labeled with specific CyDyes, are combined together followed by electrophoresis and post electrophoretic co-detection and co-analysis on the same gel. CyDye DIGE fluor minimal dyes, which consist of three different CyDyes with different spectral characteristics, have been widely used for such purposes. The technique is highly sensitive with a wide dynamic range for detection of proteins and compatible with state-of-the-art protein identification techniques using mass spectrometry. Although DIGE is mainly used to compare differential expression of various protein samples using 2-D SDS-PAGE, 1-D DIGE also has important applications in quantitative proteomic studies.

  1. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    Science.gov (United States)

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  2. Assessment of different dyes used in leakage studies.

    Science.gov (United States)

    Mente, Johannes; Ferk, Stephan; Dreyhaupt, Jens; Deckert, Andreas; Legner, Milos; Staehle, Hans Joerg

    2010-06-01

    The goal of this in vitro study was to identify the most suitable dye for endodontic dye leakage studies, which could be a further step towards standardisation. The root canals of 70 extracted, single-rooted human adult teeth were enlarged to apical size 50 using hand instruments. The teeth were divided into seven groups (n = 10 each), and all root canals were completely filled by injection with one of the following dyes: methylene blue 0.5% and 5%, blue ink, black ink, eosin 5%, basic fuchsin 0.5% and drawing ink. Transverse root sections from the coronal, middle and apical part of the roots were examined, and the percentage of the dentine penetrated by dye was evaluated by software-supported light microscopy. In addition, the range of particle size of drawing ink particles was evaluated. There were conspicuous differences in the relative dye penetration into the root dentine and the penetration behaviour in the different root sections (two-way ANOVA, both p < 0.0001). One dye (drawing ink) penetrated less into the root dentine compared with all the others (p <0.0001). The particle size of this agent (0.1-2 microm) corresponds best with the size range of a representative selection of 21 species of pathogenic endodontic bacteria. Compared to the other dyes tested, drawing ink appears to be superior for use in endodontic dye leakage studies. The penetration behaviour into the root dentine of all the other dyes tested might be one factor that limits the applicability of these dyes in dye leakage studies.

  3. Textile dye degradation using nano zero valent iron: A review.

    Science.gov (United States)

    Raman, Chandra Devi; Kanmani, S

    2016-07-15

    Water soluble unfixed dyes and inorganic salts are the major pollutants in textile dyeing industry wastewater. Existing treatment methods fail to degrade textile dyes and have limitations too. The inadequate treatment of textile dyeing wastewater is a major concern when effluent is directly discharged into the nearby environment. Long term disposal threatens the environment, which needs reclamation. This article reviews the current knowledge of nano zero valent iron (nZVI) technique in the degradation of textile dyes. The application of nZVI on textile dye degradation is receiving great attention in the recent years because nZVI particles are highly reactive towards the pollutant, less toxic, and economical. The nZVI particles aggregate quickly with respect to time and the addition of supports such as resin, nickel, zinc, bentonite, biopolymer, kaolin, rectorite, nickel-montmorillonite, bamboo, cellulose, biochar, graphene, and clinoptilolite enhanced the stability of iron nanoparticles. Inclusion of supports may in turn introduce additional toxic pollutants, hence green supports are recommended. The majority of investigations concluded dye color removal as textile dye compound removal, which is not factual. Very few studies monitored the removal of total organic carbon and observed the products formed. The results revealed that partial mineralization of the textile dye compound was achieved. Instead of stand alone technique, nZVI can be integrated with other suitable technique to achieve complete degradation of textile dye and also to treat multiple pollutants in the real textile dyeing wastewater. It is highly recommended to perform more bench-scale and pilot-scale studies to apply this technique to the textile effluent contaminated sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. 1983 Annual Report on Laser Dyes.

    Science.gov (United States)

    1984-04-01

    Technical Information Department Collation ............................... Cover, 39 leaves first printiag . . . . . . . . . . . 355...class of’ fluorescent dyes emitting in the blue- CH 3 greetn spectral region. There is mtucht information (I COUMASIN I ’ - 13 1 onl the photochemical and...hN 0vgenl 1 17 I. Fig. I as well ats (he Visul observation (if the lmps 52 NWC TP 6538 A Ite I CIiL in Id ICAtes thaI I each lamIIp Chan11ges S(mx h

  5. Dye solar cell research: EU delegation presentation

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-09

    Full Text Available Franscious Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 13 November 2009 © CSIR 2007 www.csir.co.za CONTENT head2right...Background head2rightCSIR Dye Solar Cell Research head2rightCollaborations and Links head2rightAcknowledgements © CSIR 2007 www.csir.co.za BACKGROUND head2rightSA is dry: Annual rainfall average of 450 mm compared with a world average...

  6. Potential of Henna Leaves as Dye and Its Fastness Properties on Fabric

    OpenAIRE

    Nkem Angela Udeani

    2015-01-01

    Despite the wide spread use of synthetic dyes, natural dyes are still exploited and used to enhance its inherent aesthetic qualities as a major material for beautification of the body. Centuries before the discovery of synthetic dyes, natural dyes were the only source of dye open to mankind. Dyes are extracted from plant - leaves, roots and barks, insect secretions, and minerals. However, research findings have made it clear that of all, plants- leaves, roots, barks or fl...

  7. Utilisation of azo and triphenylmethane dyes as sole source of ...

    African Journals Online (AJOL)

    Ring opening of the aromatic moiety of the dyes and demethylation of malachite green produced the carbon and energy source for the organism. The results show the potential of a bioprocess under nitrate-starvation condition for the treatment of dye wastewater. Keywords: Bacillus sp, primary biodegradation, methyl orange ...

  8. Rate equation simulation of temporal characteristics of a pulsed dye ...

    Indian Academy of Sciences (India)

    equation-based model to study the performance of dye oscillator [5] and amplifiers. [6–10]. In [5], a one-dimensional model with spatially averaged pump .... [1] V S Letokhov, Laser photoionization spectroscopy (Academic, New York, 1987). [2] L Goldman, in: Dye laser principles edited by F J Duarte and L W Hillman.

  9. Comparative studies on dyeing rate migration and wash fastness ...

    African Journals Online (AJOL)

    Migration and diffusion properties of synthesized azo dyes from 2-aminothiazole derivatives applied on commercial grade undyed cellulose acetate (CA) and cellulose triacetate (CTA) were investigated using dyeing conditions of 2% on weight of fabric (owf), 50:1 liquor ratio and subjected to ISO3 and ISO4 standard wash ...

  10. Photocatalytic degradation of rhodamine B dye using hydrothermally ...

    Indian Academy of Sciences (India)

    The photocatalytic behaviour of the prepared ZnO was tested through the degradation of RB. The disappearance of organic molecules follows first-order kinetics. The effect of various parameters such as initial dye concentration, catalyst loading, pH of the medium, temperature of the dye solution, on the photo degradation of ...

  11. Removal of basic dye methylene blue by using bioabsorbents Ulva ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... dye was obtained by using biosorbents. Key words: Methylene blue, adsorption, Ulva, Sargassum, alumina, biosorbents. INTRODUCTION. Dyes are widely use in textile, paper, plastic, food and cosmetic industries. The wastes coming from these in- dustries can effect on our atmosphere causing pollution.

  12. Rose bengal-sensitized nanocrystalline ceria photoanode for dye ...

    Indian Academy of Sciences (India)

    RB dye/carbon-coatedFTO is discussed. These solar cells show VOC ∼ 360 mV, JSC ∼ 0.25 mA cm − 2 and fill factor ∼ 63% with efficiency of 0.23%. These results are better as compared to costly ruthenium dye-sensitized CeO 2 hotoanode.

  13. Types of Hair Dye and Their Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Simone Aparecida da França

    2015-04-01

    Full Text Available Hair color change by dye application is a common procedure among women. Hair dyes are classified, according to color resistance, into temporary, semipermanent, demipermanent and permanent. The first two are based on molecules which are already colored. Temporary dyes act through dye deposition on cuticles, but semipermanent may penetrate a little into the cortex and so the color resists up to six washes. Demipermanent and permanent dyes are based on color precursors, called oxidation dyes, and the final shade is developed by their interactions with an oxidizing agent, but they differ from the alkalizing agent used. In oxidation systems, there is an intense diffusion of the molecules into the cortex, what promotes a longer color resistance. Dyes and color precursors present differences related to chromophore groups, hair fiber affinity, water solubility, and photo stability. The aim of this review is to discuss the differences among hair dye products available in the market and their action mechanisms, molecular structures, application methods, and some aspects of formulations.

  14. Antimicrobial effect of natural dyes on some pathogenic bacteria ...

    African Journals Online (AJOL)

    P. granatum dye was most effective against the test bacteria except E. coli and S. epidermidis. The textile material impregnated with four natural dyes and maximum inhibition rates (respectivelly, 80, 86, 52%) were obtained against B. subtilis of wool samples dyed with P. granatum, A. cepa and R. tinctorum while maximum ...

  15. Photoprocesses of coordination compounds and dyes in solution ...

    Indian Academy of Sciences (India)

    covalently bound to synthetic polymers and investigations of the excited state processes of organic dyes in polymeric micro heterogeneous environment. In recent years excited state processes of organic dyes confined to the nanopores of micro and mesoporous sil- icate hosts have been investigated in the pico and fem-.

  16. Isolasi Dye Organik Alam dan Karakterisasinya Sebagai Sensitizer

    Directory of Open Access Journals (Sweden)

    Nurussaniah Nurussaniah

    2018-03-01

    Full Text Available Tujuan penelitian ini adalah untuk mengetahui cara mengisolasi dan karakteristik dye organik alam sebagai sensitizer. Penelitian ini dilakukan melalui beberapa tahap yaitu persiapan, isolasi dye organik alam, karakterisasi sifat optik, analisis dan menyimpulkan. Isolasi dye organic alam dilakukan untuk memperoleh sari dari bahan-bahan alam. Penelitian ini menggunakan bahan alam yaitu jagung (Zea mays dan labu kuning (Cucurbita moschata. Karakterisasi optik dye organik alam dalam penelitian ini dilihat dari spektrum absorbansi yang diukur menggunakan Spektrophotometer Uv-Vis. Spektrum absorbansi dye diukur dalam kuvet optik, pada panjang gelombang 350-800 . Hasil penelitian menunjukkan bahwa isolasi dye organik alam diperoleh melalui metode ekstraksi, yaitu suatu metode untuk memperoleh sari dari bahan-bahan alam. Proses ekstraksi dilakukan dengan melarutkan biji jagung (Zea mays dan daging buah labu kuning (Cucurbita moschata dalam pelarut etanol dengan konsentrasi 1:5. Karaktistik optik jagung (Zea mays dan labu kuning (Cucurbita moschata  menunjukkan panjang gelombang yaitu berada pada cahaya tampak dengan rentang panjang gelombang 350 – 500 nm.  Dengan demikian  dye  beta-karoten yang berasal dari jagung (Zea mays dan labu kuning (Cucurbita moschata dapat dimanfaatkan sebagai sensitizer dalam prototipe Dye Sensitized Solar Cell (DSSC.

  17. Evaluation of respiratory system in textile-dyeing workers.

    Science.gov (United States)

    Salmani Nodoushan, Mojahede; Mehrparvar, Amir Houshang; Loukzadeh, Ziba; Rahimian, Masoud; Ghove Nodoushan, Mohamad Ali; Jafari Nodoushan, Reza

    2014-01-01

    Despite the presence of many textile and dyeing plants in Iran, we couldn't find similar studies in this country. Forthermore, considering progress in the dyeing process and engineering controls, assessment of respiratory system is important for these workers. The present study was performed to evaluate the respiratory system in dyeing workers. In a cross-sectional study, 101 dyeing workers (all dyeing workers in yazd) and 90 workers without respiratory exposures (control group), were evaluated. A questionnaire was filled for each participant included Venables questionnaire and some other questions about age, work experience, personal or familial history of asthma or atopy, acute and chronic respiratory symptoms; Then spirometry was performed before and after the shift work Results: The frequency of acute and chronic respiratory symptoms was significantly higher among dyeing workers than controls. According to the Venables questionnaire, 11.9% of the dyeing workers suffered from asthma. Means of FVC and FEV1 of pre-shift spirometry were lower than control (prespiratory system in this study showed that despite development in dyeing processes and engineering controls, workers in this job show more prevalent acute and chronic symptoms, and across-shift changes in spirometric parameters were significantly higher in this work group than the control group. Therefore it is necessary to pay attention to the control of respiratory exposures in this job.

  18. Removal of Congo Red Dye from Aqueous Solution using ...

    African Journals Online (AJOL)

    MBI

    2013-01-08

    Jan 8, 2013 ... Keywords: Bambara groundnut shell, Congo red, Sugarcane Bagasse, % Dye Removal. ... inhibit growth of aquatic biota by blocking out sunlight and utilizing dissolved oxygen. Some dyes may cause allergic dermatitis, skin irritation, cancer and mutation ..... carbon cloth using QSPRS as tools to approach.

  19. Rose bengal-sensitized nanocrystalline ceria photoanode for dye ...

    Indian Academy of Sciences (India)

    Abstract. For efficient charge injection and transportation, wide bandgap nanostructured metal oxide semicon- ductors with dye adsorption surface and higher electron mobility are essential properties for photoanode in dye- sensitized solar cells (DSSCs). TiO2-based DSSCs are well established and so far have ...

  20. Aerobic decolourization of two reactive azo dyes under varying ...

    African Journals Online (AJOL)

    Bacillus cereus isolated from dye industrial waste, that is, effluent and soil samples was screened for its ability to decolourize two reactive azo dye – cibacron black PSG and cibacron red P4B under aerobic conditions at pH 7 and incubated at 35°C over a five day period. Different carbon and nitrogen sources were used for ...

  1. Adsorption thermodynamics of some basic dyes uptake from ...

    African Journals Online (AJOL)

    The efficiency of Albizia lebbeck shell for the adsorption of auramine yellow (AY), basic malachite green (BMG) and basic violet (BV) dyes from aqueous solution has been studied in a batch system. The effects of contact time, adsorbent dosage, initial dye concentration, solution pH and temperature have been investigated ...

  2. Toxic textile dyes accumulate in wild European eel Anguilla anguilla.

    Science.gov (United States)

    Belpaire, Claude; Reyns, Tim; Geeraerts, Caroline; Van Loco, Joris

    2015-11-01

    Dyes are used to stain inks, paints, textile, paper, leather and household products. They are omnipresent, some are toxic and may threaten our environment, especially aquatic ecosystems. The presence of residues of sixteen dyes (triarylmethanes, xanthenes, phenothiazines and phenoxazines) and their metabolites was analyzed in muscle tissue samples of individual yellow-phased European eels (Anguilla anguilla) from 91 locations in Belgian rivers, canals and lakes sampled between 2000 and 2009 using ultra performance liquid chromatography-tandem mass spectrometry. Eel was contaminated by dyes in 77% of the sites. Malachite Green, Crystal Violet and Brilliant Green were present in 25-58% of the samples. Dye occurrence was related to the distribution of textile and dye production industries. This field study is the first large-scale survey to document the occurrence of artificial dyes in wildlife. Considering the annual amounts of dyes produced worldwide and the unintentional spillage during their use, our observations warrant additional research in other parts of the world. The presence of these highly toxic dyes in the European eel may form an additional threat to this critically endangered species. The contaminated eels should be considered as not suitable for consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Suppression of cucurbit scab on cucumber leaves by photodynamic dyes

    Science.gov (United States)

    The goal of this study was to test the ability of the photodynamic dyes bengal rose, toluidine blue, and methylene blue, to protect systemically cucumber plants from cucurbit scab. At the stage of one true leaf, water or aqueous solutions of the dyes were applied to the leaf as droplets. When the se...

  4. Novel Fluorescent Dyes for Single DNA Molecule Techniques

    Directory of Open Access Journals (Sweden)

    Alexander Zarkov

    2013-03-01

    Full Text Available To answer the demands of scientific and medical imaging issues, the family of nucleic acid fluorescent dyes is constantly enlarging. Most of the developed dyes reveal high qualities in bulk solution assays but are inefficient to produce a strong and sufficiently stable signal to enable the application of single-molecule techniques. Therefore, we tested 12 novel monomeric and homodimeric cyanine dyes for potential single DNA molecule imaging. Although their qualities in bulk solutions have already been described, nothing was known about their behavior on a single-molecule level. All 12 dyes demonstrated strong emission when intercalated into single DNA molecules and stretched on a silanized surface, which makes them the perfect choice for fluorescent microscopy imaging. A comparison of their fluorescence intensity and photostability with the most applicable dyes in single-molecule techniques, fluorescent dyes YOYO-1 and POPO-3, was carried out. They all exhibited a strong signal, comparable to that of YOYO-1. However, in contrast to YOYO-1, which is visualized under a green filter only, their emission permits red filter visualization. As their photostability highly exceeds that of similar spectrum POPO-3 dye, the studied dyes stand out as the best choice for a broad range of solid surface single-molecule applications when yellow to red DNA backbone fluorescence is needed.

  5. Physico-chemical studies of disazo dyes derived from ...

    African Journals Online (AJOL)

    aminophenol on polyester and nylon 6 substrates are described. It was found that the dyes generally have higher affinities for the polyester fibre than for the nylon 6 fibre. The values of Δμo, ΔHo and ΔSo in the two dye-fibre systems suggest that the ...

  6. Photoelectrode nanostructure dye-sensitized solar cell | Kimpa ...

    African Journals Online (AJOL)

    This study used carica papaya (pawpaw leaf) extracts as natural organic dye for dye sensitized solar cell (DSSC). Pawpaw leaf extract is rich in chlorophyll and was extracted using ethanol as the extracting solvent and serve as the sensitizer for DSSC. The specialty of the DSSC relative to other types of solar cells is the use ...

  7. Decolorization of azo dyes by Pycnoporus sanguineus and ...

    African Journals Online (AJOL)

    Decolorization of azo dyes by Pycnoporus sanguineus and Trametes membranacea. ESL Da Paz, FB Paz Júnior, BB Neto, MAQ Cavalcanti. Abstract. In the present work, decolorization of dyes Orange II and Black V by the fungi Pycnoporus sanguineus and Trametes membranacea was assessed at six, 12 and 18 days, ...

  8. An Interdisciplinary Experiment: Azo-Dye Metabolism by "Staphylococcus Aureus"

    Science.gov (United States)

    Brocklesby, Kayleigh; Smith, Robert; Sharp, Duncan

    2012-01-01

    An interdisciplinary and engaging practical is detailed which offers great versatility in the study of a qualitative and quantitative metabolism of azo-dyes by "Staphylococcus aureus". This practical has broad scope for adaptation in the number and depth of variables to allow a focused practical experiment or small research project. Azo-dyes are…

  9. One electron reduction of triphenyl methane dyes by hydrated electrons

    International Nuclear Information System (INIS)

    Bhasikuttan, A.C.; Shastri, L.V.; Sapre, A.V.; Rama Rao, K.V.S.

    1994-01-01

    Electron reaction rates for the triphenylmethane (TPM) dyes have been evaluated. Spectral characteristics of the resulting dye radicals have been determined. Evolution of the transient spectra shows intramolecular rearrangement in the radical from brilliant green and malachite green. (author). 3 refs., 1 fig., 1 tab

  10. Photostability effect of silica nanoparticles encapsulated fluorescence dye

    Science.gov (United States)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-12-01

    Fluorescence dyes are based on small organic molecules have become of interest in chemical biology and widely used for cell and intracellular imaging. However, fluorescence dyes have limitations such as photo bleaching, poor photochemical stability and has a short Stokes shift. It is less valuable for long-term cell tracking strategies and has very short lifetime. In order to overcome the problems, dye-incorporated nanomaterials become of interest. Nanomaterials encapsulation provides a protection layer around the fluorescence dye which improves the stability of fluorescence dye. In this study, silica nanoparticles encapsulated with 1,1%-dioctadecyl-3,3,3%,3%-tetramethylindocarbocyanine perchlorate (Dil) was successfully synthesised by using micelle entrapment method to investigate the effect of encapsulation of nanoparticles towards the properties of fluorescent dye. The synthesised nanoparticles (SiDil) was characterised by particle size analyser, Transmission Electron Microscopy (TEM), UV-Vis spectrometer and Fluorescent spectrometer. Observation using TEM showed spherical shape of nanoparticles with 53 nm diameter. Monodispersed and well nanoparticles distribution was confirmed by low polydispersity index of 0.063 obtained by particle size analyser. Furthermore, the photoluminescence properties of the SiDil were evaluated and compared with bare Dil dye. Both SiDil and bare Dil was radiated under 200 W of Halogen lamp for 60 minutes and the absorbance intensity was measured using UV-Vis spectrometer. The result showed more stable absorbance intensity for SiDil compared to bare Dil dye, which indicated that Si nanoparticles encapsulation improved the photostability property.

  11. Electronic structure of Fe- vs. Ru-based dye molecules

    DEFF Research Database (Denmark)

    Johnson, Phillip S.; Cook, Peter L.; Zegkinoglou, Ioannis

    2013-01-01

    In order to explore whether Ru can be replaced by inexpensive Fe in dye molecules for solar cells, the differences in the electronic structure of Fe- and Ru-based dyes are investigated by X-ray absorption spectroscopy and first-principles calculations. Molecules with the metal in a sixfold, octah...

  12. Color pollution control in textile dyeing industry effluents using ...

    African Journals Online (AJOL)

    Effective treatment of dyestuff containing textile dyeing industry effluents require advanced treatment technologies such as adsorption for the removal of dyestuffs. Powdered commercial coal based activated carbon has been the most widely used adsorbent for the removal of dyestuffs from dyeing industry effluents.

  13. Photo degradation of synthetic dyes under visible and solar light

    OpenAIRE

    Mijin Dušan Ž.

    2005-01-01

    The photo degradation of synthetic dyes under visible and solar light as a method for the removal of synthetic dyes from water and wastewater was reviewed. The mechanisms of photo degradation are presented. The influence of catalysts, inorganic ions and other substances on photo degradation was discussed.

  14. Photo degradation of synthetic dyes under visible and solar light

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2005-01-01

    Full Text Available The photo degradation of synthetic dyes under visible and solar light as a method for the removal of synthetic dyes from water and wastewater was reviewed. The mechanisms of photo degradation are presented. The influence of catalysts, inorganic ions and other substances on photo degradation was discussed.

  15. optimization of crystal violet dye removal from aqueous solution

    African Journals Online (AJOL)

    maje malamiyo

    -Journal of Chemistry, 6(4):1109-1116. Malik P.K. (2003): Use of activated carbons prepared from sawdust and rice-husk for Adsorption of acid dyes: a case study of acid yellow 36,. Dyes Pigments 56:239-249. Malik, R., Ramteke, D.S., and ...

  16. The Chemistry of Vat Dyes. Palette of Color Monograph Series.

    Science.gov (United States)

    Epp, Dianne N.

    From prehistoric times people have been fascinated with color; from cave paintings to the latest computers, color has been a constant companion. Textiles are made more beautiful by the alteration or application of colorants. This teaching resource investigates vat dyes, a colorant class which includes the oldest dyes known as well as important…

  17. Implementation of a biotechnological process for vat dyeing with woad.

    Science.gov (United States)

    Osimani, Andrea; Aquilanti, Lucia; Baldini, Gessica; Silvestri, Gloria; Butta, Alessandro; Clementi, Francesca

    2012-09-01

    The traditional process for vat dyeing with woad (Isatis tinctoria L.) basically relies on microbial reduction of indigo to its soluble form, leucoindigo, through a complex fermentative process. In the 19th century, cultivation of woad went into decline and use of synthetic indigo dye and chemical reduction agents was established, with a consequent negative impact on the environment due to the release of polluting wastewaters by the synthetic dyeing industry. Recently, the ever-growing demand for environmentally friendly dyeing technologies has led to renewed interest in ecological textile traditions. In this context, this study aims at developing an environmentally friendly biotechnological process for vat dyeing with woad to replace use of polluting chemical reduction agents. Two simple broth media, containing yeast extract or corn steep liquor (CSL), were comparatively evaluated for their capacity to sustain the growth and reducing activity of the strain Clostridium isatidis DSM 15098(T). Subsequently, the dyeing capacity of the CSL medium added with 140 g L⁻¹ of woad powder, providing 2.4 g L⁻¹ of indigo dye, was evaluated after fermentation in laboratory bioreactors under anaerobic or microaerophilic conditions. In all fermentations, a sufficiently negative oxidation/reduction potential for reduction of indigo was reached as early as 24 h and maintained up to the end of the monitoring period. However, clearly faster indigo dye reduction was seen in the broth cultures fermented under strict anaerobiosis, thus suggesting the suitability of the N₂ flushing strategy for enhancement of bacterial-driven indigo reduction.

  18. Structural and spectral properties of 4-phenoxyphthalonitrile dye ...

    Indian Academy of Sciences (India)

    Structural and spectral properties of 4-phenoxyphthalonitrile dye sensitizer for solar cell applications ... electronic structures, polarizabilities and hyperpolarizabilities of organic dye sensitizer 4-phenoxyphthalonitrile was studied based on ab initio HF and density functional theory (DFT) using the hybrid functional B3LYP.

  19. A new class of laser dyes: Benzoxazinone derivatives

    Science.gov (United States)

    Dupuy, F.; Rullière, C.; Le Bris, M. T.; Valeur, B.

    1984-08-01

    Seven new benzoxazinone derivatives were systematically investigated and applied to N 2 laser-pumped dye lasers. All these compounds show laser action in the 5000-6780 Å spectral range. Two of them exhibit interesting features as compared to classical coumarin dyes.

  20. Decolourisation of chemically different dyes by enzymes from spent ...

    African Journals Online (AJOL)

    The optimum veratryl alcohol concentration for RBBR was 4 mM. Based on the effect of hydrogen peroxide on the rate of decolourisation of each dye, the dyes could be divided into two groups. From the results of the present study, it could be concluded that the enzymes extracted from the spent compost of P. sajor-caju ...