International Nuclear Information System (INIS)
Toor, P.M.
1998-01-01
The stress intensity solutions presented herein were obtained using an energy method in conjunction with a two-dimensional finite element program in order to explicitly account for curvature effect for fully circumferential cracks. The magnification factors for a specific crack depth were calculated by successively loading the crack surface by a uniform, linear, quadratic, and a cubic loading distribution. The magnification factors can be used to calculate the stress intensity factors by superposition method. The functions for each load condition in terms of radius to thickness ratio (R/t) and a fractional distance in terms of crack depth to thickness ratio (a/t) were developed. The validity of these functions is R/t = 1.5 to 10.0 and for 0.0125 ≤ a/t ≤ 0.8125. The functions agree to within 1% of the finite elements solutions for most magnification factors
Photoelastic Analysis of Cracked Thick Walled Cylinders
Pastramă, Ştefan Dan
2017-12-01
In this paper, the experimental determination of the stress intensity factor in thick walled cylinders subject to uniform internal pressure and having longitudinal non-penetrating cracks is presented. Photoelastic measurements were used together with the expressions of the stress field near the crack tip for Mode I crack extension and a specific methodology for stress intensity factor determination. Two types of longitudinal cracks - internal and external - were considered. Four plane models were manufactured and analyzed in a plane polariscope at different values of the applied internal pressure. The values of the normalized stress intensity factor were calculated and the results were compared to those reported by other authors. A good accuracy was noticed, showing the reliability of the experimental procedure.
Faraday effect in hollow quantum cylinder of finite thickness
International Nuclear Information System (INIS)
Ismailov, T.G.; Jabrailova, G.G.
2009-01-01
The interband Faraday rotation in hollow quantum cylinder of finite thickness is theoretically investigated. Faraday rotation in the dependence on incident light energy for different values of cylinder thickness. It is seen that the resonance peaks appear on Faraday rotation curve. The roles of selection are obtained
Relaxation of Thick-Walled Cylinders and Spheres
DEFF Research Database (Denmark)
Saabye Ottosen, N.
1982-01-01
Using the nonlinear creep law proposed by Soderberg, (1936) closed-form solutions are derived for the relaxation of incompressible thick-walled spheres and cylinders in plane strain. These solutions involve series expressions which, however, converge very quickly. By simply ignoring these series...... expressions, extremely simple approximate solutions are obtained. Despite their simplicity these approximations possess an accuracy that is superior to approximations currently in use. Finally, several physical aspects related to the relaxation of cylinders and spheres are discussed...
Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders
International Nuclear Information System (INIS)
Bao, Y.; Palacios, R.; Graham, M.; Sherwin, S.
2016-01-01
We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural model of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.
Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders
Energy Technology Data Exchange (ETDEWEB)
Bao, Y., E-mail: ybao@sjtu.edu.cn [Department of Civil Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai (China); Department of Aeronautics, Imperial College London, South Kensington Campus, London (United Kingdom); Palacios, R., E-mail: r.palacios@imperial.ac.uk [Department of Aeronautics, Imperial College London, South Kensington Campus, London (United Kingdom); Graham, M., E-mail: m.graham@imperial.ac.uk [Department of Aeronautics, Imperial College London, South Kensington Campus, London (United Kingdom); Sherwin, S., E-mail: s.sherwin@imperial.ac.uk [Department of Aeronautics, Imperial College London, South Kensington Campus, London (United Kingdom)
2016-09-15
We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural model of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.
Optimized thick-wall cylinders by virtue of Poisson's ratio selection
International Nuclear Information System (INIS)
Whitty, J.P.M.; Henderson, B.; Francis, J.; Lloyd, N.
2011-01-01
The principal stress distributions in thick-wall cylinders due to variation in the Poisson's ratio are predicted using analytical and finite element methods. Analyses of appropriate brittle and ductile failure criteria show that under the isochoric pressure conditions investigated that auextic (i.e. those possessing a negative Poisson's ratio) materials act as stress concentrators; hence they are predicted to fail before their conventional (i.e. possessing a positive Poisson's ratio) material counterparts. The key finding of the work presented shows that for constrained thick-wall cylinders the maximum tensile principal stress can vanish at a particular Poisson's ratio and aspect ratio. This phenomenon is exploited in order to present an optimized design criterion for thick-wall cylinders. Moreover, via the use of a cogent finite element model, this criterion is also shown to be applicable for the design of micro-porous materials.
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; Au, Whitlow; Larsen, Jan
1999-01-01
This paper describes a method integrating neural networks into a system for recognizing underwater objects. The system is based on a combination of simulated dolphin sonar signals, simulated auditory filters and artificial neural networks. The system is tested on a cylinder wall thickness...... difference experiment and demonstrates high accuracy for small wall thickness differences. Results from the experiment are compared with results obtained by a false killer whale (pseudorca crassidens)....
Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders
Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang
2018-02-01
In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.
International Nuclear Information System (INIS)
Xu Shuanqiang; Yu Maohong
2005-01-01
Most previous studies on shakedown of thick-walled cylinders were based on the assumption that the compressive and tensile strengths of the materials were identical. In this paper the shakedown of an internally pressurized cylinder made of a material with a strength-difference and intermediate principal stress effects is dealt with by using a unified strength criterion which consists of a family of convex piecewise linear strength criteria. Through an elasto-plastic analysis the solutions for the loading stresses, residual stresses, elastic limit, plastic limit and shakedown limit of the cylinder are derived. It is shown that the present solutions include the classical plasticity solutions as special cases and have the ability to account for the strength-difference and intermediate principal stress effects. Finally, the influence of the two effects on the shakedown limit of the cylinder is investigated. The results show that the shakedown limit depends on the two effects and is underestimated if these effects are neglected as in the classical plasticity solution based on the Tresca criterion
Behavior of deep flaws in a thick-wall cylinder under thermal shock loading
International Nuclear Information System (INIS)
Cheverton, R.D.
1979-01-01
Behavior of inner-surface flaws in thick-walled vessels was studied in a 991-mm OD x 152 mm wall x 1220 mm length cylinder with toughness properties similar to those for HSST Plate. The initial temperature of 93 0 C and a thermal shock medium of liquid nitrogen (-197 0 C) were employed. The initial flaw selected was a sharp, 16 mm deep, long (1220 mm) axial crack. Crack arrest methodology was shown to be valid for deep flaws under severe thermal shock
Thick-Walled Cylinder Theory Applied on a Conical Wedge Anchorage
DEFF Research Database (Denmark)
Bennitz, Anders; Grip, Niklas; Schmidt, Jacob Wittrup
2011-01-01
for further development of the anchorage.In this paper, we derive and examine an analytical model for the internal stresses and strains within the anchorage for a prescribed presetting distance. This model is derived from the theory of thick walled cylinders under the assumptions regarding plane stress...... and axial symmetry. We simplify the resulting system of ten nonlinear equations and derive a method for solving them numerically. A comparison of plotted results for three different angles on the wedge’s outer surface and six different presetting distances follows.These results are also compared to both axi...
Load capacity of a thick-walled cylinder with a radial hole
International Nuclear Information System (INIS)
Laczek, S.; Rys, J.; Zielinski, A.P.
2010-01-01
The paper deals with elastic-plastic analysis of the stress-strain state in the vicinity of a hole in a thick-walled cylindrical pressure vessel. The investigations have been inspired by the phenomenon of ductile fracture observed in a high-pressure reactor. Using finite element calculations, different failure criteria are proposed to aid design and control of high-pressure vessels with piping attachments. They are compared with suggestions of American (ASME) and European (EN) standards. A simple shakedown analysis of the structure is also presented. The local stress distribution near the hole results in a specific failure of the vessel. A plastic zone appears in the vicinity of the internal cylinder surface and propagates along the hole side. The vessel unloading can cause local reverse plasticity, which leads to plastic shakedown in the small zone and then to progressive ductile fracture in this zone. This is dangerous for the whole structure.
The use of thick-walled hollow cylinder creep tests for evaluating flow criteria for rock salt
International Nuclear Information System (INIS)
Morgan, H.S.; Wawersik, W.R.
1990-01-01
Finite element simulations of two laboratory creep tests on thick-walled hollow cylinders of rock salt are evaluated to determine if such bench-scale experiments can be used to establish applicability of either von Mises or Tresca stress measures and associated flow conditions. In the tests, the cylinders were loaded axially and pressurized both internally and externally to produce stress fields similar to those found around underground excavations in rock salt. Several different loading stages were used in each test. The simulations show that for each of two creep models studied, quite different deformations of the cylinders are predicted with the Mises and Tresca flow criteria, especially if friction between the cylinders and axial loading platens is ignored. When friction is included in the simulations, the differences in deformation are changed but are sill clearly distinguishable. 10 refs., 10 figs
A borehole stability study by newly designed laboratory tests on thick-walled hollow cylinders
Directory of Open Access Journals (Sweden)
S.S. Hashemi
2015-10-01
Full Text Available At several mineral exploration drilling sites in Australia, weakly consolidated formations mainly consist of sand particles that are poorly bonded by cementing agents such as clay, iron oxide cement or calcite. These formations are being encountered when drilling boreholes to the depth of up to 200 m. To study the behaviour of these materials, thick-walled hollow cylinder (TWHC and solid cylindrical synthetic specimens were designed and prepared by adding Portland cement and water to sand grains. The effects of different parameters such as water and cement contents, grain size distribution and mixture curing time on the characteristics of the samples were studied to identify the mixture closely resembling the formation at the drilling site. The Hoek triaxial cell was modified to allow the visual monitoring of grain debonding and borehole breakout processes during the laboratory tests. The results showed the significance of real-time visual monitoring in determining the initiation of the borehole breakout. The size-scale effect study on TWHC specimens revealed that with the increasing borehole size, the ductility of the specimen decreases, however, the axial and lateral stiffnesses of the TWHC specimen remain unchanged. Under different confining pressures the lateral strain at the initiation point of borehole breakout is considerably lower in a larger size borehole (20 mm compared to that in a smaller one (10 mm. Also, it was observed that the level of peak strength increment in TWHC specimens decreases with the increasing confining pressure.
Erdol, R.; Erdogan, F.
1976-01-01
The elastostatic axisymmetric problem for a long thick-walled cylinder containing a ring-shaped internal or edge crack is considered. Using the standard transform technique the problem is formulated in terms of an integral equation which has a simple Cauchy kernel for the internal crack and a generalized Cauchy kernel for the edge crack as the dominant part. As examples the uniform axial load and the steady-state thermal stress problems have been solved and the related stress intensity factors have been calculated. Among other findings the results show that in the cylinder under uniform axial stress containing an internal crack the stress intensity factor at the inner tip is always greater than that at the outer tip for equal net ligament thicknesses and in the cylinder with an edge crack which is under a state of thermal stress the stress intensity factor is a decreasing function of the crack depth, tending to zero as the crack depth approaches the wall thickness.
Numerical Simulation and Experiment of a Lifting Body with Leading-Edge Rotating Cylinder
A. Badarudin; C. S. Oon; S. N. Kazi; N. Nik-Ghazali; Y. J. Lee; W. T. Chong
2013-01-01
An experimental and simulation flight test has been carried out to evaluate the longitudinal gliding characteristics of a lifting body with blunted half-cone geometry. The novelty here is the lifting body's pitch control mechanism, which consists of a pair of leading-edge rotating cylinders. Flight simulation uses aerodynamic data from computational fluid dynamics supported by wind-tunnel test. Flight test consists of releasing an aluminum lifting body model from a moving vehicle at the appro...
Electromagnetic Fields at the Surface of Human-Body Cylinders
DEFF Research Database (Denmark)
Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper
2016-01-01
transverse electric and transverse magnetic polarization. The results show that the material assumption when modeling the human body as a homogeneous material is very important. Furthermore, it is shown that one assumption might lead to higher fields for a specific polarization, angle of incidence...
Thermal fatigue crack growth tests and analyses of thick wall cylinder made of Mod.9Cr–1Mo steel
Energy Technology Data Exchange (ETDEWEB)
Wakai, Takashi, E-mail: wakai.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-cho Oarai, Ibaraki 3111393 (Japan); Inoue, Osamu [IX Knowledge Inc., 3-22-23 MSC Center Bldg, Kaigan Minato-ku, Tokyo 1080022 Japan (Japan); Ando, Masanori; Kobayashi, Sumio [Japan Atomic Energy Agency, 4002 Narita-cho Oarai, Ibaraki 3111393 (Japan)
2015-12-15
Highlights: • A thermal fatigue crack growth test was performed using Mod.9Cr–1Mo steel cylinder. • Axial/circumferential notches were machined on the inner surface of the cylinder. • Simplified analytical results were compared to the test data. • Crack length could not be predicted by the analyses because of crack conjunctions. • If there are no surface cracks, the calculations might agree with the observations. - Abstract: In Japan, the basic designing works for a demonstration plant of Japan Sodium cooled Fast Reactor (JSFR) are now conducted. JSFR is an advanced loop type reactor concept. To enhance the safety and the economic competitiveness, JSFR employs modified 9% chromium–1% molybdenum (Mod.9Cr–1Mo) steel as a material for coolant pipes and components, because the steel has both excellent high temperature strength and thermal properties. The steel has been standardized as a nuclear material in Japan Society of Mechanical Engineers (JSME) code in 2012. In JSFR pipes, demonstration of Leak Before Break (LBB) aspect is strongly expected because the safety assessment may be performed on the premise of leak rate where the LBB aspect is assured. Although the authors have already performed a series of thermal fatigue crack growth tests of austenitic stainless steel cylinders (Wakai et al., 2005), crack growth behavior in the structures made of Mod.9Cr–1Mo steel has not been investigated yet. Especially for the welded joints of Mod.9Cr–1Mo steel, “Type-IV” cracking may occur at heat affected zone (HAZ). Therefore, this study performed a series of thermal fatigue crack growth tests of thick wall cylinders made of Mod.9Cr–1Mo steel including welds, to obtain the crack growth data under cyclic thermal transients. The test results were compared to the analytical results obtained from JAEA's simplified methods (Wakai et al., 2005).
Numerical simulation and optimization of Al alloy cylinder body by low pressure die casting
Directory of Open Access Journals (Sweden)
Mi Guofa
2008-05-01
Full Text Available Shrinkage defects can be formed easily at Critical location during low pressure die casting (LPDC of aluminum alloy cylinder body. It has harmful effect on the products. Mold fi lling and solidifi cation process of a cylinder body was simulated by using of Z-CAST software. The casting method was improved based on the simulation results. In order to create effective feeding passage, the structure of casting was modifi ed by changing the location of strengthening ribs at the bottom, without causing any adverse effect on the part’s performance. Inserting copper billet at suitable location of the die is a valid way to create suitable solidifi cation sequence that is benefi cial to the feeding. Using these methods, the shrinkage defect was completely eliminated at the critical location.
International Nuclear Information System (INIS)
Whitty, J.P.M.; Henderson, B.; Francis, J.
2011-01-01
Highlights: → Incontrovertible evidence is presented that thermal stresses in cylindrical components which include nuclear reactors and containment vessels are shown to be highly dependent on the Poisson's ratio of the materials. → The key novelty is concerned with the identification of a new potential thermal applications for negative Poisson's ratio (auxetic) materials; i.e. those that get fatter when they are stretched. → Negative Poisson's ratio (auxetic) materials exhibit lower thermal stress build-up than conventional positive Poisson's ratio materials, this conjecture being proven using thermal surface plots. - Abstract: Analytical and numerical modelling have been employed to show that the choice of Poisson's ratio is one of the principal design criteria in order to reduce thermal stress build-up in isotropic materials. The modelling procedures are all twofold; consisting of a solution to a steady-state heat conduction problem followed by a linear static solution. The models developed take the form of simplistic thick-wall cylinders such model systems are applicable at macro-structural and micro-structural levels as the underlining formulations are based on the classical theory of elasticity. Generally, the results show that the Poisson's ratio of the material has a greater effect on the magnitude of the principal stresses than the aspect ratio of the cylinders investigated. Constraining the outside of these models significantly increases the thermal stresses induced. The most significant and original finding presented is that the for both freely expanding and constrained thick-wall cylinders the optimum Poisson's ratio is minus unity.
Counts-in-Cylinders in the Sloan Digital Sky Survey with Comparisons to N-Body
Energy Technology Data Exchange (ETDEWEB)
Berrier, Heather D.; Barton, Elizabeth J.; /UC, Irvine; Berrier, Joel C.; /Arkansas U.; Bullock, James S.; /UC, Irvine; Zentner, Andrew R.; /Pittsburgh U.; Wechsler, Risa H. /KIPAC, Menlo Park /SLAC
2010-12-16
Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments and a vital test of models of galaxy formation within the prevailing, hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey, Data Release 4. We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations, and data from SDSS DR4 to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent, empirical models of galaxy clustering that match observed two- and three-point clustering statistics well fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3 and 6-h{sup -1}Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6-h{sup -1} Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h{sup -1} Mpc cylinder than the galaxies in any of the models we use. Simple, phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.
A novel approach to forced vibration behavior of thick-walled cylinders
International Nuclear Information System (INIS)
Baba, Samet; Keles, Ibrahim
2016-01-01
This study is to investigate the effect of anisotropy on the forced vibration behavior of hollow cylinders under dynamic internal pressure. The problems are solved analytically in the Laplace domain, and the results obtained are transformed to the real-time space using the modified Durbin's numerical inversion method. Durbin's numerical inverse method into the analysis of transient thermal stresses in annular fins is a novel approach. Durbin's numerical inverse method successfully implements the boundary value problem which can be solved in Laplace space. Various material models from the literature are used and corresponding radial displacement distributions and stress distributions are computed. Verification of the proposed method is done using benchmark solutions available in the literature for some special cases and virtually exact results are obtained. The anisotropy constant is a useful parameter from a design point of view in that it can be tailored for specific applications to control the stress distribution. - Highlights: • Dynamic analysis of pressure vessel structures is performed. • A novel unified approach; Laplace transforms and Durbin's numerical inversion method is implemented. • The method used allows the presence of continuous as well as discrete functions. • The unified method used is accurate and more efficient than the conventional methods.
2016-09-01
refined finite element model. Note that the longitudinal seam weld at θ = 0° (= 360°) runs along the green area and through the centre of the red...Longitudinal seam weld is a theta = 0/360 deg UNCLASSIFIED DST-Group-TN-1521 UNCLASSIFIED 7 Figure 2. Example of thickness distribution in the... weld seam at 0° is clearly evident. Inspection of similar graphs for all sections indicates similarly good comparison between the measured and
Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.
2015-11-01
Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.
International Nuclear Information System (INIS)
Liu, Mingtao; Li, Yongchi; Hu, Xiuzhang; Hu, Haibo
2014-01-01
The formation of an adiabatic shear band (ASB) experiences three stages: stable plastic flow, nucleation and a fluid-like stage. For different stages, the microstructures of the material undergo great changes. The mechanical behavior of the material in each stage has its own unique characteristics. To describe these characteristics, a multi-stage model for the shear band is proposed. For the stable plastic flow stage, a modified adiabatic J–C constitutive relationship is used. For the nucleation stage, the effects of work hardening and temperature softening are described by a power function of plastic strain. A Newtonian fluid model is used for the fluid-like stage. The formation of a shear band is an instability process. Various defects in the material are perturbation sources, which change the local yield stress. To describe the disturbances, a probability factor is introduced into the macroscopic constitutive relationship. The yield stress in the material is assumed to obey a Gaussian distribution. The multi-stage model combined with a probability factor is applied to simulate the rupture of thick-walled cylinder in 304 Stainless Steel (304SS). A close agreement is found between the simulation and experimental results, such as the failure mechanism, shear band spacing and propagating velocity of the shear band. By combining the experimental results with the simulation results, the importance of the nucleation stage is emphasized. (paper)
Directory of Open Access Journals (Sweden)
Tejeet Singh
2009-12-01
Full Text Available The steady state creep in Al- SiCP composite cylinder subjected to internal pressure was investigated. The creep behavior of the material were described by threshold stress based creep law by assuming a stress exponent of 5. The effect of size and content of the reinforcement (SiCP , and operating temperature on the stresses and strain rates in the composite cylinder were investigated. The stresses in the cylinder did not have significant variation with varying size and content of the reinforcement, and operating temperature. However, the tangential as well as radial strain rates in the cylinder could be reduced to a significant extent by decreasing size of SiCP, increasing the content of SiCP and decreasing operating temperature.
International Nuclear Information System (INIS)
Li, Yuebing; Lei, Yuebao; Gao, Zengliang
2014-01-01
Global limit load solutions for thick-walled cylinders with circumferential internal/external surface and through-wall defects under combined positive/negative axial force, positive/negative global bending moment and internal pressure have been developed in Part I of this paper. In this Part II, elastic-perfectly plastic 3-D finite element (FE) analyses are performed for selected cases, covering a wide range of geometries and load combinations, to validate the developed limit load solutions. The results show that these limit load solutions can predict the FE data very well for the cases with shallow or deep and short cracks and are conservative. For the cases with very long and deep cracks, the predictions are reasonably accurate and more conservative. -- Highlights: • Elastic-perfectly plastic 3D finite element limiting analyses of cylinders. • Thin/thick-walled cylinders with circumferential surface defects. • Combined loading for pressure, end-force and global bending moment. • Totally 1458 cases analysed and tabulated normalised results provided. • Results used to validate the developed limit load solutions in Part I of this paper
Prediction of External Corrosion for Steel Cylinders--2007 Report
Energy Technology Data Exchange (ETDEWEB)
Schmoyer, Richard L [ORNL
2008-01-01
Depleted uranium hexafluoride (DUF{sub 6}) is stored in over 62,000 containment cylinders at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. Over 4,800 of the cylinders at Portsmouth were recently moved there from the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. The cylinders range in age up to 56 years and come in various models, but most are 48-inch diameter 'thin-wall'(312.5 mil) and 'thick-wall' (625 mil) cylinders and 30-inch diameter '30A' (including '30B') cylinders with 1/2-inch (500 mil) walls. Most of the cylinders are carbon steel, and they are subject to corrosion. The United States Department of Energy (DOE) manages the cylinders to maintain them and the DUF{sub 6} they contain. Cylinder management requirements are specified in the System Requirements Document (LMES 1997a), and the activities to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). This report documents activities that address DUF{sub 6} cylinder management requirements involving measuring and forecasting cylinder wall thicknesses. As part of these activities, ultrasonic thickness (UT) measurements are made on samples of cylinders. For each sampled cylinder, multiple measurements are made in an attempt to find, approximately, the minimum wall thickness. Some cylinders have a skirt, which is an extension of the cylinder wall to protect the head (end) and valve. The head/skirt interface crevice is thought to be particularly vulnerable to corrosion, and for some skirted cylinders, in addition to the main body UT measurements, a separate suite of measurements is also made at the head/skirt interface. The main-body and head/skirt minimum thickness data are used to fit models relating minimum thickness to cylinder age, nominal thicknesses, and cylinder functional groups defined in terms of plant site, storage yard
COUNTS-IN-CYLINDERS IN THE SLOAN DIGITAL SKY SURVEY WITH COMPARISONS TO N-BODY SIMULATIONS
International Nuclear Information System (INIS)
Berrier, Heather D.; Barton, Elizabeth J.; Bullock, James S.; Berrier, Joel C.; Zentner, Andrew R.; Wechsler, Risa H.
2011-01-01
Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments, and a vital test of models of galaxy formation within the prevailing hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey Data Release 4 (SDSS DR4). We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations and data from SDSS DR4, to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent empirical models of galaxy clustering, that match observed two- and three-point clustering statistics well, fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3, and 6 h -1 Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6 h -1 Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h -1 Mpc cylinder than the galaxies in any of the models we use. Simple phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.
Johnston, J L; Leong, M S; Checkland, E G; Zuberbuhler, P C; Conger, P R; Quinney, H A
1988-12-01
Body density and skinfold thickness at four sites were measured in 140 normal boys, 168 normal girls, and 6 boys and 7 girls with cystic fibrosis, all aged 8-14 y. Prediction equations for the normal boys and girls for the estimation of body-fat content from skinfold measurements were derived from linear regression of body density vs the log of the sum of the skinfold thickness. The relationship between body density and the log of the sum of the skinfold measurements differed from normal for the boys and girls with cystic fibrosis because of their high body density even though their large residual volume was corrected for. However the sum of skinfold measurements in the children with cystic fibrosis did not differ from normal. Thus body fat percent of these children with cystic fibrosis was underestimated when calculated from body density and invalid when calculated from skinfold thickness.
Triceps skin fold thickness as a measure of body fat in Nigerian
African Journals Online (AJOL)
owner
2012-11-26
Nov 26, 2012 ... and body fat distribution.2,3 Skin fold thickness measure- ments are a well ... different recognized areas for the measurement of SFT, ..... 'western children.' These .... Asia Pacific J Clin ... sity in children and young people:.
Majumder, Santanu; Roychowdhury, Amit; Pal, Subrata
2013-01-01
Hip fracture depends on various anthropometric parameters such as trochanteric soft tissue thickness, body height and body weight. The objective was to evaluate the responses to the variations in anthropometric parameters during sideways fall, and to identify the most dominant parameter among them. Seven finite element models were developed having anthropometric variations in trochanteric soft tissue thickness (5-26 mm), body height (1.70-1.88 m), and body weight (63-93.37 kg). These were simulated for sideways fall with ANSYS-LS-DYNA® code. Significant effect of trochanteric soft tissue thickness variation was found on 'normalized peak impact force with respect to the body weight' (p=0.004, r²=0.808) and strain ratio (p=0.083, r²=0.829). But, variation in body height was found to be less significant on normalized peak impact force (p=0.478, r²=0.105) and strain ratio (p=0.292, r²=0.217). Same was true for the variation in body weight on normalized peak impact force (p=0.075, r²=0.456) and strain ratio (p=0.857, r²=0.007). The risk factor for fracture was also well correlated to the strain ratio for the inter-trochanteric zone (pfractures are clinically observed to happen. Trochanteric soft tissue thickness was found likely to be the most dominant parameter over body height and body weight, signifying that a slimmer elderly person, taller or shorter, with less trochanteric soft tissue thickness should be advised to take preventive measures against hip fracture under sideways fall. © 2013.
Variation in thickness of the large cryosections cut for whole-body autoradiography
International Nuclear Information System (INIS)
Ito, Tsunao; Brill, A.B.
1991-01-01
A method to assess variation in thickness of the large cryosections for whole-body autoradiography (WBARG) was described, and the degree of intraslice and interslice variations were determined for our cryomicrotome system (LKB PMV-2250). Intraslice variation in thickness of the 180 x 80 mm cryosection was 0.72-0.92 μm within the range of section thickness for WBARG (15-50 μm), and interslice variation was 0.89-1.21 μm. These potential variations in section thickness should be kept in mind whenever working with quantitative WBARG. (author)
Triceps skin fold thickness as a measure of body fat in Nigerian ...
African Journals Online (AJOL)
Background: Skin fold thickness (SFT) at selected areas offers a simple method of subcutaneous fat assessment and provides a good estimate of obesity and body fat distribution. The triceps SFT has been shown to be one of the best and most popular sites for SFT measurement in children. Objective: To assess the body fat ...
Energy Technology Data Exchange (ETDEWEB)
Azadi, Mohammad [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Azadi, Mahboobeh [Shiraz University, Shiraz (Iran, Islamic Republic of)
2009-10-15
Nonlinear transient heat transfer and thermoelastic stress analyses of a thick-walled FGM cylinder with temperature dependent materials are performed by using the Hermitian transfinite element method. Temperature-dependency of the material properties has not been taken into account in transient thermoelastic analysis, so far. Due to the mentioned dependency, the resulting governing FEM equations of transient heat transfer are highly nonlinear. Furthermore, in all finite element analysis performed so far in the field, Lagrangian elements have been used. To avoid an artificial local heat source at the mutual boundaries of the elements, Hermitian elements are used instead in the present research. Another novelty of the present paper is simultaneous use of the transfinite element method and updating technique. Time variations of the temperature, displacements, and stresses are obtained through a numerical Laplace inversion. Finally, results obtained considering the temperature-dependency of the material properties are compared with those derived based on temperature independency assumption. Furthermore, the temperature distribution and the radial and circumferential stresses are investigated versus time, geometrical parameters and index of power law. Results reveal that the temperature-dependency effect is significant
The effect of body postures on the distribution of air gap thickness and contact area.
Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M
2017-02-01
The heat and mass transfer in clothing is predominantly dependent on the thickness of air layer and the magnitude of contact area between the body and the garment. The air gap thickness and magnitude of the contact area can be affected by the posture of the human body. Therefore, in this study, the distribution of the air gap and the contact area were investigated for different body postures of a flexible manikin. In addition, the effect of the garment fit (regular and loose) and style (t-shirts, sweatpants, jacket and trousers) were analysed for the interaction between the body postures and the garment properties. A flexible manikin was scanned using a three-dimensional (3D) body scanning technique, and the scans were post-processed in dedicated software. The body posture had a strong effect on the air gap thickness and the contact area for regions where the garment had a certain distance from the body. Furthermore, a mathematical model was proposed to estimate the possible heat transfer coefficient for the observed air layers and their change with posture. The outcome of this study can be used to improve the design of the protective and functional garments and predict their effect on the human body.
Quantitative CT: Associations between Emphysema, Airway Wall Thickness and Body Composition in COPD
DEFF Research Database (Denmark)
Rutten, Erica P A; Grydeland, Thomas B; Pillai, Sreekumar G
2011-01-01
The objective of the present study was to determine the association between CT phenotypes-emphysema by low attenuation area and bronchitis by airway wall thickness-and body composition parameters in a large cohort of subjects with and without COPD. In 452 COPD subjects and 459 subjects without COPD......, CT scans were performed to determine emphysema (%LAA), airway wall thickness (AWT-Pi10), and lung mass. Muscle wasting based on FFMI was assessed by bioelectrical impedance. In both the men and women with COPD, FFMI was negatively associated with %LAA. FMI was positively associated with AWT-Pi10...... in both subjects with and without COPD. Among the subjects with muscle wasting, the percentage emphysema was high, but the predictive value was moderate. In conclusion, the present study strengthens the hypothesis that the subgroup of COPD cases with muscle wasting have emphysema. Airway wall thickness...
Quantitative CT: Associations between Emphysema, Airway Wall Thickness and Body Composition in COPD
DEFF Research Database (Denmark)
Rutten, Erica P A; Grydeland, Thomas B; Pillai, Sreekumar G
2011-01-01
, CT scans were performed to determine emphysema (%LAA), airway wall thickness (AWT-Pi10), and lung mass. Muscle wasting based on FFMI was assessed by bioelectrical impedance. In both the men and women with COPD, FFMI was negatively associated with %LAA. FMI was positively associated with AWT-Pi10......The objective of the present study was to determine the association between CT phenotypes-emphysema by low attenuation area and bronchitis by airway wall thickness-and body composition parameters in a large cohort of subjects with and without COPD. In 452 COPD subjects and 459 subjects without COPD...... in both subjects with and without COPD. Among the subjects with muscle wasting, the percentage emphysema was high, but the predictive value was moderate. In conclusion, the present study strengthens the hypothesis that the subgroup of COPD cases with muscle wasting have emphysema. Airway wall thickness...
Of mice, men and elephants: the relation between articular cartilage thickness and body mass.
Directory of Open Access Journals (Sweden)
Jos Malda
Full Text Available Mammalian articular cartilage serves diverse functions, including shock absorption, force transmission and enabling low-friction joint motion. These challenging requirements are met by the tissue's thickness combined with its highly specific extracellular matrix, consisting of a glycosaminoglycan-interspersed collagen fiber network that provides a unique combination of resilience and high compressive and shear resistance. It is unknown how this critical tissue deals with the challenges posed by increases in body mass. For this study, osteochondral cores were harvested post-mortem from the central sites of both medial and lateral femoral condyles of 58 different mammalian species ranging from 25 g (mouse to 4000 kg (African elephant. Joint size and cartilage thickness were measured and biochemical composition (glycosaminoclycan, collagen and DNA content and collagen cross-links densities were analyzed. Here, we show that cartilage thickness at the femoral condyle in the mammalian species investigated varies between 90 µm and 3000 µm and bears a negative allometric relationship to body mass, unlike the isometric scaling of the skeleton. Cellular density (as determined by DNA content decreases with increasing body mass, but gross biochemical composition is remarkably constant. This however need not affect life-long performance of the tissue in heavier mammals, due to relatively constant static compressive stresses, the zonal organization of the tissue and additional compensation by joint congruence, posture and activity pattern of larger mammals. These findings provide insight in the scaling of articular cartilage thickness with body weight, as well as in cartilage biochemical composition and cellularity across mammalian species. They underscore the need for the use of appropriate in vivo models in translational research aiming at human applications.
Of Mice, Men and Elephants: The Relation between Articular Cartilage Thickness and Body Mass
Malda, Jos; de Grauw, Janny C.; Benders, Kim E. M.; Kik, Marja J. L.; van de Lest, Chris H. A.; Creemers, Laura B.; Dhert, Wouter J. A.; van Weeren, P. René
2013-01-01
Mammalian articular cartilage serves diverse functions, including shock absorption, force transmission and enabling low-friction joint motion. These challenging requirements are met by the tissue’s thickness combined with its highly specific extracellular matrix, consisting of a glycosaminoglycan-interspersed collagen fiber network that provides a unique combination of resilience and high compressive and shear resistance. It is unknown how this critical tissue deals with the challenges posed by increases in body mass. For this study, osteochondral cores were harvested post-mortem from the central sites of both medial and lateral femoral condyles of 58 different mammalian species ranging from 25 g (mouse) to 4000 kg (African elephant). Joint size and cartilage thickness were measured and biochemical composition (glycosaminoclycan, collagen and DNA content) and collagen cross-links densities were analyzed. Here, we show that cartilage thickness at the femoral condyle in the mammalian species investigated varies between 90 µm and 3000 µm and bears a negative allometric relationship to body mass, unlike the isometric scaling of the skeleton. Cellular density (as determined by DNA content) decreases with increasing body mass, but gross biochemical composition is remarkably constant. This however need not affect life-long performance of the tissue in heavier mammals, due to relatively constant static compressive stresses, the zonal organization of the tissue and additional compensation by joint congruence, posture and activity pattern of larger mammals. These findings provide insight in the scaling of articular cartilage thickness with body weight, as well as in cartilage biochemical composition and cellularity across mammalian species. They underscore the need for the use of appropriate in vivo models in translational research aiming at human applications. PMID:23437402
Allostatic Load Is Linked to Cortical Thickness Changes Depending on Body-Weight Status
Directory of Open Access Journals (Sweden)
Jonatan Ottino-González
2017-12-01
Full Text Available Objective: Overweight (body mass index or BMI ≥ 25 kg/m2 and stress interact with each other in complex ways. Overweight promotes chronic low-inflammation states, while stress is known to mediate caloric intake. Both conditions are linked to several avoidable health problems and to cognitive decline, brain atrophy, and dementia. Since it was proposed as a framework for the onset of mental illness, the allostatic load model has received increasing attention. Although changes in health and cognition related to overweight and stress are well-documented separately, the association between allostatic load and brain integrity has not been addressed in depth, especially among overweight subjects.Method: Thirty-four healthy overweight-to-obese and 29 lean adults underwent blood testing, neuropsychological examination, and magnetic resonance imaging to assess the relationship between cortical thickness and allostatic load, represented as an index of 15 biomarkers (this is, systolic and diastolic arterial tension, glycated hemoglobin, glucose, creatinine, total cholesterol, HDL and LDL cholesterol, triglycerides, c-reactive protein, interleukin-6, insulin, cortisol, fibrinogen, and leptin.Results: Allostatic load indexes showed widespread positive and negative significant correlations (p < 0.01 with cortical thickness values depending on body-weight status.Conclusion: The increase of allostatic load is linked to changes in the gray matter composition of regions monitoring behavior, sensory-reward processing, and general cognitive function.
Allostatic Load Is Linked to Cortical Thickness Changes Depending on Body-Weight Status
Ottino-González, Jonatan; Jurado, María A.; García-García, Isabel; Segura, Bàrbara; Marqués-Iturria, Idoia; Sender-Palacios, María J.; Tor, Encarnació; Prats-Soteras, Xavier; Caldú, Xavier; Junqué, Carme; Garolera, Maite
2017-01-01
Objective: Overweight (body mass index or BMI ≥ 25 kg/m2) and stress interact with each other in complex ways. Overweight promotes chronic low-inflammation states, while stress is known to mediate caloric intake. Both conditions are linked to several avoidable health problems and to cognitive decline, brain atrophy, and dementia. Since it was proposed as a framework for the onset of mental illness, the allostatic load model has received increasing attention. Although changes in health and cognition related to overweight and stress are well-documented separately, the association between allostatic load and brain integrity has not been addressed in depth, especially among overweight subjects. Method: Thirty-four healthy overweight-to-obese and 29 lean adults underwent blood testing, neuropsychological examination, and magnetic resonance imaging to assess the relationship between cortical thickness and allostatic load, represented as an index of 15 biomarkers (this is, systolic and diastolic arterial tension, glycated hemoglobin, glucose, creatinine, total cholesterol, HDL and LDL cholesterol, triglycerides, c-reactive protein, interleukin-6, insulin, cortisol, fibrinogen, and leptin). Results: Allostatic load indexes showed widespread positive and negative significant correlations (p < 0.01) with cortical thickness values depending on body-weight status. Conclusion: The increase of allostatic load is linked to changes in the gray matter composition of regions monitoring behavior, sensory-reward processing, and general cognitive function. PMID:29375342
Free Body Dynamics of a Spinning Cylinder with Planar Restraint-(a.k.a. Barrel of Fun). Part 2
Moraru, Laurentiu; Dimofte, Florin; Hendricks, Robert C.
2011-01-01
The dynamic motion of a cylinder is analyzed based on rotation about its center of mass and is restrained by a plane normal to the axis passing through its center of mass at an angle. The first part of this work presented an analysis of the stability of the motion. In the current report, the governing equations are numerically integrated in time and the steady state is obtained as a limit of the transient numerical solution. The calculated data are compared with observed behaviors.
Directory of Open Access Journals (Sweden)
Emma Pomeroy
Full Text Available Low birth weight has been consistently associated with adult chronic disease risk. The thrifty phenotype hypothesis assumes that reduced fetal growth impacts some organs more than others. However, it remains unclear how birth weight relates to different body components, such as circumferences, adiposity, body segment lengths and limb proportions. We hypothesized that these components vary in their relationship to birth weight.We analysed the relationship between birth weight and detailed anthropometry in 1270 singleton live-born neonates (668 male from the Mater-University of Queensland Study of Pregnancy (Brisbane, Australia. We tested adjusted anthropometry for correlations with birth weight. We then performed stepwise multiple regression on birth weight of: body lengths, breadths and circumferences; relative limb to neck-rump proportions; or skinfold thicknesses. All analyses were adjusted for sex and gestational age, and used logged data.Circumferences, especially chest, were most strongly related to birth weight, while segment lengths (neck-rump, thigh, upper arm, and especially lower arm and lower leg were relatively weakly related to birth weight, and limb lengths relative to neck-rump length showed no relationship. Skinfolds accounted for 36% of birth weight variance, but adjusting for size (neck-rump, thigh and upper arm lengths, and head circumference, this decreased to 10%. There was no evidence that heavier babies had proportionally thicker skinfolds.Neonatal body measurements vary in their association with birth weight: head and chest circumferences showed the strongest associations while limb segment lengths did not relate strongly to birth weight. After adjusting for body size, subcutaneous fatness accounted for a smaller proportion of birth weight variance than previously reported. While heavier babies had absolutely thicker skinfolds, this was proportional to their size. Relative limb to trunk length was unrelated to birth
Results of ultrasonic testing evaluations on UF6 storage cylinders
International Nuclear Information System (INIS)
Lykins, M.L.
1997-02-01
The three site cylinder management program is responsible for the safe storage of the DOE owned UF 6 storage cylinders at PORTS, PGDP and at the K-25 site. To ensure the safe storage of the UF 6 in the cylinders, the structural integrity of the cylinders must be evaluated. This report represents the latest cylinder integrity investigation that utilized wall thickness evaluations to identify thinning due to atmospheric exposure
Pascual Huerta, Javier; García, Juan Maria Alarcón; Matamoros, Eva Cosin; Matamoros, Julia Cosin; Martínez, Teresa Díaz
2008-01-01
We sought to investigate the thickness of plantar fascia, measured by means of ultrasonographic evaluation in healthy, asymptomatic subjects, and its relationship to body mass index, ankle joint dorsiflexion range of motion, and foot pronation in static stance. One hundred two feet of 51 healthy volunteers were examined. Sonographic evaluation with a 10-MHz linear array transducer was performed 1 and 2 cm distal to its insertion. Physical examination was also performed to assess body mass index, ankle joint dorsiflexion, and degree of foot pronation in static stance. Both examinations were performed in a blinded manner. Body mass index showed moderate correlation with plantar fascia thickness at the 1- and 2-cm locations. Ankle dorsiflexion range of motion showed no correlation at either location. Foot pronation showed an inverse correlation with plantar fascia thickness at the 2-cm location and no correlation at the 1-cm location. Body mass index and foot supination at the subtalar joint are related to increased thickness at the plantar fascia in healthy, asymptomatic subjects. Although the changes in thickness were small compared with those in patients with symptomatic plantar fasciitis, they could play a role in the mechanical properties of plantar fascia and in the development of plantar fasciitis.
Cranial thickness in relation to age, sex and general body build in a Danish forensic sample
DEFF Research Database (Denmark)
Lynnerup, N
2001-01-01
thickness and these parameters. This study, thus, adds to other studies showing that cranial thickness cannot be used in aging or sexing human remains. Likewise, in a forensic pathological setting, cranial thickness cannot be inferred from the individuals stature and build, which may be an issue in cases......The cranial thickness was measured in 64 individuals (43 males, 21 females) autopsied at our institute. The thickness was measured by taking a biopsy with a trephine at four specific locations on the skull. Complete medical records and pathologic autopsy results were available. While none...
Gossen, N; Fietze, S; Mösenfechtel, S; Hoedemaker, M
2006-05-01
It was the aim of this study to compare body condition scoring with ultrasonographic back fat thickness. Additionally, the relationship between back fat thickness and fertility, milk yield, number of parity and stage of lactation in dairy cows was examined. Body condition of 211 cows (German Black Pied/HF) was determined by means of ultrasonographic back fat thickness (BFT) and body condition scoring (BCS). The BFT and the BCS were measured at four different stages during the course of lactation (Time point 1 (T1) = 1.-3. d postpartum (pp); T2 = 40.-42. d pp; T3 = 90.-92. d pp and T4 = 130.-150. d pp). Number of parity, 100-day-milk-yield, incidence of ovarian cysts, incidence of acyclicity and fertility measures were recorded. There was a significant correlation between body condition scoring and ultrasonographic measurement of back fat thickness at the four time points (r = 0.68 to 0.74). Therefore, both methods were suitable to evaluate body condition. The number of lactations had an influence on body condition. At T1, the BFT in older cows was significantly higher than in younger cows (P cows was higher than in older cows (P body condition from T1 to T2 and T3. At T4, body condition increased, but did not reach the level of the postcalving values. In addition, cows with a high BFT at the beginning of lactation had a higher milk yield and a higher loss of body fat than cows with lower milk yield. Heifers compensated this loss of body fat significantly faster than older cows. Particularly at T3, body condition had an impact on fertility. Cows with a high loss of body condition between T1 and T3 developed significantly more often ovarian cysts than cows with low loss of back fat thickness. Cows with the lowest BFT at T3 had the longest calving to first service intervall and the highest 200-day-non-pregnancy index. In conclusion, our results suggest that there might be a certain relationship between body condition and fertility (delayed first service, ovarian
International Nuclear Information System (INIS)
Hu Longfei; Fang Yang; Wang Yishun; Wang Long
2014-01-01
In prospecting and mining of a broken thick large uranium ore body, uncertain prospecting and shallow-hole shrinkage mining method resulted in large dilution rate and resource waste problems. Aimed at these problems, improvement schemes of enhancing the strength force of 'drilling prospecting instead of pit prospecting' and employing filling method stoping ore body were applied, and improvement result was analyzed. Experience was accumulated and evidence was provided for late prospecting and stoping work. (authors)
Sterkenburg, Anthe S.; Hoffmann, Anika; Reichel, Julia; Lohle, Kristin; Eveslage, Maria; Warmuth-Metz, Monika
2016-01-01
Context: Hypothalamic obesity, cardiovascular disease (CVD), and relapse/progression have a major impact on prognosis in childhood-onset craniopharyngioma (CP). We analyzed nuchal skinfold thickness (NST) on magnetic resonance imaging performed for follow-up monitoring as a novel parameter for body composition (BC) and CVD in CP. Objective: The objective of the study was to identify the association of NST with body mass index (BMI), waist to height ratio (WHtR), functional capacity, and blood pressure (BP) in CP and controls. Design: This was a cross-sectional and longitudinal prospective study in CP patients. Setting: The study was conducted at HIT-Endo, KRANIOPHARYNGEOM 2000/2007. Patients: Participants included 94 CP patients and 75 controls. Interventions: There were no interventions. Main Outcome Measures: Association of NST with BC and BP in 43 CP and 43 controls was measured. Results: NST correlated with BMI SD score (SDS; r = 0.78; P < .001; n = 169) and WHtR (r = 0.85; P < .001; n = 86) in the total cohort and CP patients (NST-BMI SDS: r = 0.77, P < .001, n = 94); NST-WHtR: r = 0.835, P < .001, n=43) and controls (NST-BMI SDS: r = 0.792, P < .001, n = 75; NST-WHtR: r = 0.671, P < .001, n = 43). In CP, systolic BP correlated with NST (r = 0.575, P < .001), BMI SDS (r = 0.434, P = .004), and WHtR (r = 0.386, P = .011). Similar results were observed for diastolic BP in CP. In multivariate analyses, NST had a predictive value for hypertension in postpubertal CP and controls (odds ratio 6.98, 95% confidence interval [1.65, 29.5], P = .008). During a longitudinal follow-up, changes in NST correlated with changes in BMI SDS (P < .001) and WHtR (P = .01) but not with changes in BP and functional capacity. Conclusions: Because monitoring of magnetic resonance imaging and BC is essential for follow-up in CP, NST could serve as a novel and clinically relevant parameter for longitudinal assessment of BC and CVD risk in CP. PMID:27680877
Prediction of External Corrosion for Steel Cylinders--2004 Report
Energy Technology Data Exchange (ETDEWEB)
Schmoyer, RLS
2004-07-07
Depleted uranium hexafluoride (UF{sub 6}) is stored in over 60,000 steel cylinders at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The cylinders range in age from 4 to 53 years. Although when new the cylinders had wall thicknesses specified to within manufacturing tolerances, over the years corrosion has reduced their actual wall thicknesses. The UF{sub 6} Cylinder Project is managed by the United States Department of Energy (DOE) to safely maintain the UF{sub 6} and the cylinders containing it. This report documents activities that address UF{sub 6} Cylinder Project requirements and actions involving forecasting cylinder wall thicknesses. These requirements are delineated in the System Requirements Document (LMES 1997a), and the actions needed to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). The report documents cylinder wall thickness projections based on models fit to ultrasonic thickness (UT) measurement data. UT data is collected at various locations on randomly sampled cylinders. For each cylinder sampled, the minimum UT measurement approximates the actual minimum thickness of the cylinder. Projections of numbers of cylinders expected to fail various thickness criteria are computed from corrosion models relating minimum wall thickness to cylinder age, initial thickness estimates, and cylinder subpopulations defined in terms of plant site, yard, top or bottom storage positions, nominal thickness, etc. In this report, UT data collected during FY03 is combined with UT data collected in earlier years (FY94-FY02), and all of the data is inventoried chronologically and by various subpopulations. The UT data is used to fit models of maximum pit depth and minimum thickness, and the fitted models are used to extrapolate minimum thickness estimates into the future and in
Prediction of External Corrosion for Steel Cylinders--2004 Report
International Nuclear Information System (INIS)
Schmoyer, RLS
2004-01-01
Depleted uranium hexafluoride (UF 6 ) is stored in over 60,000 steel cylinders at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The cylinders range in age from 4 to 53 years. Although when new the cylinders had wall thicknesses specified to within manufacturing tolerances, over the years corrosion has reduced their actual wall thicknesses. The UF 6 Cylinder Project is managed by the United States Department of Energy (DOE) to safely maintain the UF 6 and the cylinders containing it. This report documents activities that address UF 6 Cylinder Project requirements and actions involving forecasting cylinder wall thicknesses. These requirements are delineated in the System Requirements Document (LMES 1997a), and the actions needed to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). The report documents cylinder wall thickness projections based on models fit to ultrasonic thickness (UT) measurement data. UT data is collected at various locations on randomly sampled cylinders. For each cylinder sampled, the minimum UT measurement approximates the actual minimum thickness of the cylinder. Projections of numbers of cylinders expected to fail various thickness criteria are computed from corrosion models relating minimum wall thickness to cylinder age, initial thickness estimates, and cylinder subpopulations defined in terms of plant site, yard, top or bottom storage positions, nominal thickness, etc. In this report, UT data collected during FY03 is combined with UT data collected in earlier years (FY94-FY02), and all of the data is inventoried chronologically and by various subpopulations. The UT data is used to fit models of maximum pit depth and minimum thickness, and the fitted models are used to extrapolate minimum thickness estimates into the future and in turn to compute
Skinfold thickness, body fat percentage and body mass index in obese and non-obese Indian boys.
Chatterjee, Satipati; Chatterjee, Pratima; Bandyopadhyay, Amit
2006-01-01
Childhood obesity is presently increasing worldwide and has created enormous concern for researchers working in the field of obesity related diseases with special interest in child health and development. Selected anthropometric measurements including stature, body mass, and skinfolds are globally accepted sensitive indicators of growth patterns and health status of a child. The present study was therefore aimed not only at evaluating the body mass index (BMI), skinfolds, body fat percentage (%fat) in obese school going boys of West Bengal, India, but also aimed to compare these data with their non-obese counterparts. Ten to sixteen year old obese boys (N = 158) were separated from their non-obese counterparts using the age-wise international cut-off points of BMI. Skinfolds were measured using skinfold calipers, BMI and %fat were calculated from standard equations. Body mass, BMI, skinfolds and %fat were significantly (Pimportance in order to identify or categorize obese boys, and to take preventative steps to minimise serious health problems that appear during the later part of life.
Lavagnino, Luca; Mwangi, Benson; Bauer, Isabelle E; Cao, Bo; Selvaraj, Sudhakar; Prossin, Alan; Soares, Jair C
2016-08-01
Unhealthy eating behaviors often develop in the setting of inadequate inhibitory control, a function broadly ascribed to the prefrontal cortex (PFC). Regulation of inhibitory control by the PFC and its anatomical components and their contribution to increasing body mass index (BMI) are poorly understood. To study the role of PFC in the regulation of inhibitory control and body weight, we examined measures of cortical thickness in PFC sub-regions, inhibitory control (color-word interference task (CWIT)), and BMI in 91 healthy volunteers. We tested the predictive effect of PFC sub-regional cortical thickness on BMI and mediation by inhibitory control measured with CWIT. Measures of depression (BDI-II), anxiety (STAI-T) and trauma-related symptoms (TSC-40) were collected; the disinhibition scale of the three-factor eating questionnaire (TFEQ) was used to assess disinhibited eating. We then tested the relationship between BD-II, STAI-T, TSC-40, TFEQ, CWIT, and BMI with correlation analyses. Right superior frontal gyrus cortical thickness significantly predicted BMI (β=-0.91; t=-3.2; p=0.002). Mediation analysis showed a significant indirect effect of cortical thickness on BMI mediated by inhibitory control (95% CI=-6.1, -0.67). BMI was unrelated to BDI-II, STAI-T, TSC-40, or TFEQ scores. We found an inverse relationship between cortical thickness in the right-superior frontal gyrus and BMI, which was fully mediated by inhibitory control neurocognitive performance. Our results suggest possible targets for neuromodulation in obesity (ie superior frontal gyrus) and a quantifiable mediator of their effects (ie inhibitory control).
International Nuclear Information System (INIS)
Kashir, Babak; Tabejamaat, Sadegh; Jalalatian, Nafiseh
2015-01-01
Highlights: • Characteristics of C 3 H 8 –H 2 bluff-body stabilized flames are investigated. • Decreasing the bluff-body lip thickness led into enhanced flame length. • CO mass fraction is increased with reducing hydrogen content in the fuel stream. • Augmenting hydrogen content increased the maximum temperature. • Jet-like zone in propane–hydrogen bluff-body stabilized flames is very unstable. - Abstract: At the beginning of this study, the well-known turbulent bluff-body stabilized diffusion flame of HM1 is simulated by a coupled flamelet/radiation approach. The HM1 flame comprises a CH 4 :H 2 [50:50 Vol.] jet flame at a Reynolds number of 15,800. The results showed reasonable agreement for the flow field and species. Afterwards, the abovementioned approach is employed to investigate the effects of hydrogen addition on bluff-body stabilized flames of propane–hydrogen. Adding hydrogen to the blended fuel of propane/hydrogen shifts the recirculation zone outwards the bluff-body and thus culminates in increased flame length. Besides this, the flame length is predicted to be enhanced with decreasing the lip thickness of the bluff-body configuration. The CO emission level is found to be decreased with hydrogen addition in near-burner and far field regions which might be attributed to the decrease of inflow carbon atoms. The local radiative heat power reveals higher values for fuel blends with decreased contents of hydrogen at the recirculation and jet-like zones. This might be attributed to the increased local heat release rate due to breaking further carbon bonds
Cylinder wakes in flowing soap films
International Nuclear Information System (INIS)
Vorobieff, P.; Ecke, R.E.; Vorobieff, P.
1999-01-01
We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. copyright 1999 The American Physical Society
Radiation levels on empty cylinders containing heel material
Energy Technology Data Exchange (ETDEWEB)
Shockley, C.W. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)
1991-12-31
Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.
International Nuclear Information System (INIS)
Abdalkhail, B.; Shawky, S.
2002-01-01
Adolescence is an important period in an individual's life. Overweight and obesity are fraught with several health problems even late in life. The objective of this study was estimate the overweight, obesity, body fat and muscle content of Saudi adolescents as compared to a recognized reference population. Data were collected from a sample of Saudi adolescents in Jeddah from 42 boys' and 42 girls' school during the month of April 2000. Data collection was done by personal interviews to collect sociodemograhic factors and by direct measurement of weight, height, triceps skin fold thickness (TSF) and mid-arm circumference (MAC). The 50th, 85th and 95th percentiles(P50, P85 and P95) for body mass index (BMI) and triceps skin fold thickness (TSF) were taken, then the 50th, 90th, and 95th percentiles (P50, P90 and P95) for the mid-arm muscle circumference (MAMC) were calculated. These measurements were compared with corresponding values of the National Health and Nutrition Examination Survey I (NHANES I). The P85 and P95 for the BMI and TSF were higher for Saudi adolescents than the NHANES I and the difference was wider for P95. Conversely, there was a lower MAMC at P90 and P95thane the NHANES I reference population curves. The lower MAMC curves were less marked in girls than in boys. On the other hand Saudi boys and girls showed on average similar body mass index indicated by MBI at P50, which was misleading, since those adolescents showing similar body mass index had more fatness than of average reference population indicated by TSF and P50, and less muscularity on average than reference population indicated MAMC at P-50. Overweight and obesity with increased body fat content and decreased body muscle content appear to be widespread among Saudi adolescents even among those adolescents showing average body index. Public health interventions are required to improve quality of food, encourage physical, activity and exercise, as well as correct the perception of
Ma, Ka Wing; Chok, Kenneth S H; Chan, Albert C Y; Tam, Henry S C; Dai, Wing Chiu; Cheung, Tan To; Fung, James Y Y; Lo, Chung Mau
2017-09-01
The objective of this article is to derive a more accurate and easy-to-use formula for finding estimated standard liver volume (ESLV) using novel computed tomography (CT) measurement parameters. New formulas for ESLV have been emerging that aim to improve the accuracy of estimation. However, many of these formulas contain body surface area measurements and logarithms in the equations that lead to a more complicated calculation. In addition, substantial errors in ESLV using these old formulas have been shown. An improved version of the formula for ESLV is needed. This is a retrospective cohort of consecutive living donor liver transplantations from 2005 to 2016. Donors were randomly assigned to either the formula derivation or validation groups. Total liver volume (TLV) measured by CT was used as the reference for a linear regression analysis against various patient factors. The derived formula was compared with the existing formulas. There were 722 patients (197 from the derivation group, 164 from the validation group, and 361 from the recipient group) involved in the study. The donor's body weight (odds ratio [OR], 10.42; 95% confidence interval [CI], 7.25-13.60; P Liver Transplantation 23 1113-1122 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.
International Nuclear Information System (INIS)
Peng Zicheng
2004-01-01
The oxide contents of TiO 2 , MnO, SrO and Fe 2 O 3 in the body and glaze layers of the Jiao-Tan-Xia (JTX) and Lao-Hu-Dong (LHD) porcelains in Southern Song Dynasty (1127-1279 A.D.) have been determined using an International Eagle-II μ-probe EDXRF spectrometer. The results show that the contents in the body are much different from those in the glaze one. Therefore, the transient thickness (TT) between the body and glaze layers can be measured through determination of a distance of the drift change in the chemical contents. The TT average for the JTX porcelains is 161 μm, while that for the LHD porcelains is 258 μm, which are consistent with a range of 0.15-0.3 mm in the Ru-Yao porcelains. The different TT is related to the variances in firing temperature and raw material for manufacturing the respective porcelains. (authors)
Schnitzer, Emanuel; Hathaway, Melvin E
1953-01-01
An approximate method for computing water loads and pressure distributions on lightly loaded elliptical cylinders during oblique water impacts is presented. The method is of special interest for the case of emergency water landings of helicopters. This method makes use of theory developed and checked for landing impacts of seaplanes having bottom cross sections of V and scalloped contours. An illustrative example is given to show typical results obtained from the use of the proposed method of computation. The accuracy of the approximate method was evaluated through comparison with limited experimental data for two-dimensional drops of a rigid circular cylinder at a trim of 0 degrees and a flight -path angle of 90 degrees. The applicability of the proposed formulas to the design of rigid hulls is indicated by the rough agreement obtained between the computed and experimental results. A detailed computational procedure is included as an appendix.
Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: Fabrication and testing
Wu, Hao; Lai, Changlian; Sun, Fangfang; Li, Ming; Ji, Bin; Wei, Weiyi; Liu, Debo; Zhang, Xi; Fan, Hualin
2018-04-01
To get strong, stiff and light cylindrical shell, carbon fiber reinforced hierarchical orthogrid stiffened cylinders are designed and fabricated. The cylinder is stiffened by two-scale orthogrid. The primary orthogrid has thick and high ribs and contains several sub-orthogrid cells whose rib is much thinner and lower. The primary orthogrid stiffens the bending rigidity of the cylinder to resist the global instability while the sub-orthogrid stiffens the bending rigidity of the skin enclosed by the primary orthogrid to resist local buckling. The cylinder is fabricated by filament winding method based on a silicone rubber mandrel with hierarchical grooves. Axial compression tests are performed to reveal the failure modes. With hierarchical stiffeners, the cylinder fails at skin fracture and has high specific strength. The cylinder will fail at end crushing if the end of the cylinder is not thickened. Global instability and local buckling are well restricted by the hierarchical stiffeners.
Instantaneous flow field above the free end of finite-height cylinders and prisms
International Nuclear Information System (INIS)
Rostamy, N.; Sumner, D.; Bergstrom, D.J.; Bugg, J.D.
2013-01-01
Highlights: • PIV measurements of the flow above the free end of finite-height bodies. • Effect of cross-sectional shape of the models on the instantaneous flow. • Small-scale structures generated by the separated shear layer were revealed. • Effect of aspect ratio on the reattachment of the separated flow on the free end. -- Abstract: The flow above the free ends of surface-mounted finite-height circular cylinders and square prisms was studied experimentally using particle image velocimetry (PIV). Cylinders and prisms with aspect ratios of AR = 9, 7, 5, and 3 were tested at a Reynolds number of Re = 4.2 × 10 4 . The bodies were mounted normal to a ground plane and were partially immersed in a turbulent zero-pressure-gradient boundary layer, where the boundary layer thickness relative to the body width was δ/D = 1.6. PIV measurements were made above the free ends of the bodies in a vertical plane aligned with the flow centreline. The present PIV results provide insight into the effects of aspect ratio and body shape on the instantaneous flow field. The recirculation zone under the separated shear layer is larger for the square prism of AR = 3 compared to the more slender prism of AR = 9. Also, for a square prism with low aspect ratio (AR = 3), the influence of the reverse flow over the free end surface becomes more significant compared to that for a higher aspect ratio (AR = 9). For the circular cylinder, a cross-stream vortex forms within the recirculation zone. As the aspect ratio of the cylinder decreases, the reattachment point of the separated flow on the free end surface moves closer to the trailing edge. For both the square prism and circular cylinder cases, the instantaneous velocity vector field and associated in-plane vorticity field revealed small-scale structures mostly generated by the separated shear layer
Engine Cylinder Temperature Control
Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick
2005-09-27
A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.
Energy Technology Data Exchange (ETDEWEB)
Alderson, J.H. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)
1991-12-31
Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.
Directory of Open Access Journals (Sweden)
Hoffman Jay R
2012-10-01
Full Text Available Abstract Background Phosphatidic acid (PA has been reported to activate the mammalian target of rapamycin (mTOR signaling pathway and is thought to enhance the anabolic effects of resistance training. The purpose of this pilot study was to examine if oral phosphatidic acid administration can enhance strength, muscle thickness and lean tissue accruement during an 8-week resistance training program. Methods Sixteen resistance-trained men were randomly assigned to a group that either consumed 750 mg of PA (n = 7, 23.1 ± 4.4 y; 176.7 ± 6.7 cm; 86.5 ± 21.2 kg or a placebo (PL, n = 9, 22.5 ± 2.0 y; 179.8 ± 5.4 cm; 89.4 ± 13.6 kg group. During each testing session subjects were assessed for strength (one repetition maximum [1-RM] bench press and squat and body composition. Muscle thickness and pennation angle were also measured in the vastus lateralis of the subject’s dominant leg. Results Subjects ingesting PA demonstrated a 12.7% increase in squat strength and a 2.6% increase in LBM, while subjects consuming PL showed a 9.3% improvement in squat strength and a 0.1% change in LBM. Although parametric analysis was unable to demonstrate significant differences, magnitude based inferences indicated that the Δ change in 1-RM squat showed a likely benefit from PA on increasing lower body strength and a very likely benefit for increasing lean body mass (LBM. Conclusions Results of this study suggest that a combination of a daily 750 mg PA ingestion, combined with a 4-day per week resistance training program for 8-weeks appears to have a likely benefit on strength improvement, and a very likely benefit on lean tissue accruement in young, resistance trained individuals.
Antennas on circular cylinders
DEFF Research Database (Denmark)
Knudsen, H. L.
1959-01-01
On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...
Delamination of Composite Cylinders
Davies, Peter; Carlsson, Leif A.
The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.
Approximation by Cylinder Surfaces
DEFF Research Database (Denmark)
Randrup, Thomas
1997-01-01
We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...
Directory of Open Access Journals (Sweden)
Annika eWillems
2015-11-01
Full Text Available Field-based assessments provide a cost–effective and accessible alternative to dual-energy X-ray absorptiometry (DXA for practitioners determining body composition in athletic populations. It remains unclear how the range of physical impairments classifiable in wheelchair sports may affect the utility of field-based body composition techniques. The present study assessed body composition using DXA in 14 wheelchair games players who were either wheelchair dependent (non-walkers; n =7 or relied on a wheelchair for sports participation only (walkers; n =7. Anthropometric measurements were used to predict body fat percentage with existing regression equations established for able-bodied persons by Sloan & Weir, Durnin & Womersley, Lean et al, Gallagher et al and Pongchaiyakul et al. In addition, linear regression analysis was performed to calculate the association between body fat percentage and BMI, waist circumference, sum of 6 skinfold thicknesses and sum of 8 skinfold thicknesses. Results showed that non-walkers had significantly lower total lean tissue mass (46.2±=6.6 kg vs. 59.4±8.2 kg, P =.006 and total body mass (65.8 ±4.2 kg vs. 79.4 ±14.9 kg; P =0.05 than walkers. Body fat percentage calculated from most existing regression equations was significantly lower than that from DXA, by 2 to 9% in walkers and 8 to14% in non-walkers. Of the anthropometric measurements, the sum of 8 skinfold thicknesses had the lowest standard error of estimation in predicting body fat content. In conclusion, existing anthropometric equations developed in able-bodied populations substantially underestimated body fat content in wheelchair athletes, particularly non-walkers. Impairment specific equations may be needed in wheelchair athletes.
UF{sub 6} pressure excursions during cylinder heating
Energy Technology Data Exchange (ETDEWEB)
Brown, P.G. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)
1991-12-31
As liquid UF{sub 6} inside a cylinder changes from a liquid to a solid, it forms a porous solid which occupies approximately the same volume as that of the liquid before cooling. Simultaneously as the liquid cools, UF{sub 6} vapor in the cylinder ullage above the liquid desublimes on the upper region of the inner cylinder wall. This solid is a dense, glass-like material which can accumulate to a significant thickness. The thickness of the solid coating on the upper cylinder wall and directly behind the cylinder valve area will vary depending on the conditions during the cooling stage. The amount of time lapsed between UF{sub 6} solidification and UF{sub 6} liquefaction can also affect the UF{sub 6} coating. This is due to the daily ambient heat cycle causing the coating to sublime from the cylinder wall to cooler areas, thus decreasing the thickness. Structural weakening of the dense UF{sub 6} layer also occurs due to cylinder transport vibration and thermal expansion. During cylinder heating, the UF{sub 6} nearest the cylinder wall will liquefy first. As the solid coating behind the cylinder valve begins to liquefy, it results in increased pressure depending upon the available volume for expansion. At the Paducah Gaseous Diffusion Plant (PGDP) during the liquefaction of the UF{sub 6} in cylinders in the UF{sub 6} feed and sampling autoclaves, this pressure increase has resulted in the activation of the systems rupture discs which are rated at 100 pounds per square inch differential.
Fiber Tracking Cylinder Nesting
International Nuclear Information System (INIS)
Stredde, H.
1999-01-01
The fiber tracker consists of 8 concentric carbon fiber cylinders of varying diameters, from 399mm to 1032.2mm and two different lengths. 1.66 and 2.52 meters. Each completed cylinder is covered over the entire o.d. with scintillating fiber ribbons with a connector on each ribbon. These ribbons are axial (parallel to the beam line) at one end and stereo (at 3 deg. to the beam line) at the other. The ribbon connectors have dowel pins which are used to match with the connectors on the wave guide ribbons. These dowel pins are also used during the nesting operation, locating and positioning measurements. The nesting operation is the insertion of one cylinder into another, aligning them with one another and fastening them together into a homogeneous assembly. For ease of assembly. the nesting operation is accomplished working from largest diameter to smallest. Although the completed assembly of all 8 cylinders glued and bolted together is very stiff. individual cylinders are relatively flexible. Therefore. during this operation, No.8 must be supported in a manner which maintains its integrity and yet allows the insertion of No.7. This is accomplished by essentially building a set of dummy end plates which replicate a No.9 cylinder. These end plates are mounted on a wheeled cart that becomes the nesting cart. Provisions for a protective cover fastened to these rings has been made and will be incorporated in finished product. These covers can be easily removed for access to No.8 and/or the connection of No.8 to No.9. Another wheeled cart, transfer cart, is used to push a completed cylinder into the cylinder(s) already mounted in the nesting cart.
Masy, J.; Niu, F.; Levander, A.; Schmitz, M.
2012-12-01
The Caribbean (CAR) and South American (SA) plate boundary in Venezuela is a broad zone of diffuse deformation and faulting. GPS measurements indicate that the CAR is moving approximately 2 cm/yr respect to SA, parallel to the strike slip fault system in the east, but with an oblique convergence component in the west (Weber et al., 2001). Along the central and eastern Venezuela coast, most of the motion is accommodated by both transpression and transtension along the right lateral strike-slip San Sebastian- El Pilar fault system. The main tectonic features of the area include accretionary wedges and coastal thrust belts with their associated foreland basins (e.g. Sierra del Interior and Espino Graben). Southern of the plate boundary is located the Guayana Shield, which is part of the Amazonian Craton, and is an elevated plain consisting of Precambrian rocks. BOLIVAR (Broadband Onshore-Offshore Lithospheric Investigation of Venezuela and the Antilles Arc Region) was a multidisciplinary, international investigation to determine the evolution of the CAR-SA plate boundary (Levander et al., 2006) that included a 47 station broadband seismic array to complement the 40 station Venezuelan national array operated by FUNVISIS. The goal of this study is to map out lithosphere thickness across the region in order to understand its role for the various types of deformations observed at surface. We combined surface wave tomography and body wave reflectivity to locate the depth of the lithosphere-asthenosphere boundary (LAB). To generate a coherent 3D reflectivity volume of the study area, we used both P- and S-wave receiver-function data, as well as the ScS reverberation records of two deep earthquakes occurring in South America. We also measured Rayleigh phase velocities in the frequency range of 20-100 s using the two plane-wave method to remove multi-pathing effects (Forsyth and Li, 2005). Finite-frequency kernels were computed for a total of 63 teleseismic events to improve
Suresh, Ashwin; Liu, Anthony; Poulton, Alison; Quinton, Ann; Amer, Zara; Mongelli, Max; Martin, Andrew; Benzie, Ronald; Peek, Michael; Nanan, Ralph
2012-10-01
Obesity in pregnancy is associated with a number of adverse outcomes. The effects of central versus general obesity in pregnancy have not been well established. To compare subcutaneous fat thickness (SFT) with body mass index (BMI) as a marker for pregnancy outcomes. A stratified retrospective cohort study was performed on 1200 pregnancies, selected from a total of 4862 nulliparous, nonsmoking women between 2006 and 2010. SFT was measured on routine ultrasound at 18-22 weeks gestation. BMI and SFT measurements were compared for estimating risks for obesity-related pregnancy outcomes using logistic regression adjusted for maternal age. The median SFT was 18.2 mm (range 6.3-50.9 mm), the median BMI was 23.8 kg/m(2) (range 15.2-52.5), and the correlation between SFT and BMI was 0.53. For every 5 mm increase in SFT and every 5 kg/m(2) increase in BMI, the odds ratios for developing gestational diabetes mellitus were 1.40 (CI 1.22-1.61, P gestational age 1.28 (CI 1.16-1.47, P = 0.001) and 1.10 (CI 0.95-1.28, P = 0.16) and cumulative adverse obesity-related pregnancy outcomes 1.16 (CI 1.10-1.28, P = 0.002) and 1.05 (CI 0.95-1.16, P = 0.45), respectively. SFT at 18-22 weeks gestation is better than BMI as a marker for obesity-related pregnancy outcomes. As SFT is considered a surrogate measure for visceral fat, these results suggest that central obesity is a stronger risk factor than general adiposity in pregnancy. © 2012 The Authors ANZJOG © 2012 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.
Stress analysis of cylinder to cylinder intersections
International Nuclear Information System (INIS)
Revesz, Z.
1983-01-01
Cylinder to cylinder intersections have numerous applications in the power industry from different piping junctions to pressure vessel nozzles. A specific purpose computer program has been installed at the author's establishment for finite element analysis of such geometries. Some of the experiences are presented giving a short overview of the analysis of unreinforced man-holes, demonstrating how a more economical design has been verified by analysis. The program installed has linear-elastic and elasto-plastic capabilities. Further, it is prepared for heat transfer analysis with subsequent thermal stress computation. An efficient pre- and post-processor has also been installed and enhanced by the author. The software used is at its present stage capable for problem definition with input data such as outside/ inside diameters, length and number of subdivisions. Similarly simple is the load definition and the graphic representation of the full output. (author)
An investigation of the fluid-structure interaction of piston/cylinder interface
Pelosi, Matteo
The piston/cylinder lubricating interface represents one of the most critical design elements of axial piston machines. Being a pure hydrodynamic bearing, the piston/cylinder interface fulfills simultaneously a bearing and sealing function under oscillating load conditions. Operating in an elastohydrodynamic lubrication regime, it also represents one of the main sources of power loss due to viscous friction and leakage flow. An accurate prediction of the time changing tribological interface characteristics in terms of fluid film thickness, dynamic pressure field, load carrying ability and energy dissipation is necessary to create more efficient interface designs. The aim of this work is to deepen the understanding of the main physical phenomena defining the piston/cylinder fluid film and to discover the impact of surface elastic deformations and heat transfer on the interface behavior. For this purpose, a unique fully coupled multi-body dynamics model has been developed to capture the complex fluid-structure interaction phenomena affecting the non-isothermal fluid film conditions. The model considers the squeeze film effect due to the piston micro-motion and the change in fluid film thickness due to the solid boundaries elastic deformations caused by the fluid film pressure and by the thermal strain. The model has been verified comparing the numerical results with measurements taken on special designed test pumps. The fluid film calculated dynamic pressure and temperature fields have been compared. Further validation has been accomplished comparing piston/cylinder axial viscous friction forces with measured data. The model has been used to study the piston/cylinder interface behavior of an existing axial piston unit operating at high load conditions. Numerical results are presented in this thesis.
Gas Cylinder Safety, Course 9518
Energy Technology Data Exchange (ETDEWEB)
Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-10-27
This course, Gas Cylinder Safety (#9518), presents an overview of the hazards and controls associated with handling, storing, using, and transporting gas cylinders. Standard components and markings of gas cylinders are also presented, as well as the process for the procurement, delivery, and return of gas cylinders at Los Alamos National Laboratory (LANL).
Prediction of external corrosion for steel cylinders
International Nuclear Information System (INIS)
Lyon, B.F.
1997-02-01
The US Department of Energy (DOE) currently manages the UF 6 Cylinder Program (the program). The program was formed to address the depleted-uranium hexafluoride (UF 6 ) stored in approximately 50,000 carbon steel cylinders. The cylinders are located at three DOE sites: the K-25 site (K-25) at Oak Ridge, Tennessee; the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The System Requirements Document (SRD) (LMES 1996a) delineates the requirements of the program. The appropriate actions needed to fulfill these requirements are then specified within the System Engineering Management Plan (SEMP) (LMES 1996b). The report presented herein documents activities that in whole or in part satisfy specific requirements and actions stated in the UF 6 Cylinder Program SRD and SEMP with respect to forecasting cylinder conditions. The wall thickness projections made in this report are based on the assumption that the corrosion trends noted will continue. Some activities planned may substantially reduce the rate of corrosion, in which case the results presented here are conservative. The results presented here are intended to supersede those presented previously, as the quality of several of the datasets has improved
Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 2
International Nuclear Information System (INIS)
Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.
1975-10-01
Model 2 in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. Both the cylinder and the nozzle of model 2 had outside diameters of 10 in., giving a d 0 /D 0 ratio of 1.0, and both had outside diameter/thickness ratios of 100. Sixteen separate loading cases in which one end of the cylinder was rigidly held were analyzed. An internal pressure loading, three mutually perpendicular force components, and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. In addition to these 13 loadings, 3 additional loads were applied to the nozzle (in-plane bending moment, out-of-plane bending moment, and axial force) with the free end of the cylinder restrained. The experimental stress distributions for each of the 16 loadings were obtained using 152 three-gage strain rosettes located on the inner and outer surfaces. All the 16 loading cases were also analyzed theoretically using a finite-element shell analysis. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good general agreement, and it is felt that the analysis would be satisfactory for most engineering purposes. (auth)
A constant-density Gurney approach to the Cylinder test
Energy Technology Data Exchange (ETDEWEB)
Reaugh, John E.; Souers, P. Clark [Energetic Materials Center, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)
2004-04-01
The previous analysis of the Cylinder test required the treatment of different wall thicknesses and wall materials separately. To fix this, the Gurney analysis is used, but this results in low values for full-wall standard, ideal explosives relative to CHEETAH analyses. A new constant metal-density model is suggested, which takes account of the thinning metal wall as the cylinder expands. With this model, the inner radius of the metal cylinder moves faster than the measured outer radius. Additional small corrections occur in all cylinders because of energy trapped in the copper walls. Also, the half-wall cylinders have a small correction because the relative volumes of the gas products are smaller at a given outside wall displacement. The Fabry-Perot and streak camera measurements are compared. The Fabry method is shown to equate to the constant density model. (Abstract Copyright [2004], Wiley Periodicals, Inc.)
Evaluation of Concrete Cylinder Tests Using Finite Elements
DEFF Research Database (Denmark)
Saabye Ottosen, Niels
1984-01-01
Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete is emplo......Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete...... uniaxial strength the use of geometrically matched loading plates seems to be advantageous. Finally, it is observed that for variations of the element size within limits otherwise required to obtain a realistic analysis, the results are insensitive to the element size....
Proximity functions for general right cylinders
International Nuclear Information System (INIS)
Kellerer, A.M.
1981-01-01
Distributions of distances between pairs of points within geometrical objects, or the closely related proximity functions and geometric reduction factors, have applications to dosimetric and microdosimetric calculations. For convex bodies these functions are linked to the chord-length distributions that result from random intersections by straight lines. A synopsis of the most important relations is given. The proximity functions and related functions are derived for right cylinders with arbitrary cross sections. The solution utilizes the fact that the squares of the distances between two random points are sums of independently distributed squares of distances parallel and perpendicular to the axis of the cylinder. Analogous formulas are derived for the proximity functions or geometric reduction factors for a cylinder relative to a point. This requires only a minor modification of the solution
Numerical simulation of VAWT on the effects of rotation cylinder
Xing, Shuda; Cao, Yang; Ren, Fuji
2017-06-01
Based on Finite Element Analysis Method, studying on Vertical Axis Wind Turbine (VAWT) which is added rotating cylinder in front of its air foils, especially focusing on the analysis of NACA6 series air foils about variation of lift to drag ratio. Choosing the most suitable blades with rotary cylinder added on leading edge. Analysis indicates that the front rotating cylinders on the VAWT is benefit to lift rise and drag fall. The most suitable air foil whose design lift coefficient is 0.8, the blades relative thickness is 20%, and the optimistic tip speed ratio is about 7.
Dogan, Soner; Duivenvoorden, Raphaël; Grobbee, E. Diederick; Kastelein, John J. P.; Shear, Charles L.; Evans, Gregory W.; Visseren, Frank L.; Bots, Michiel L.
2010-01-01
Aim: Ultrasound protocols to measure carotid intima media thickness (CIMT) differ considerably with regard to the inclusion of the number of carotid segments and angles used. Detailed information on the completeness of CIMT information is often lacking in published reports, and at most, overall
DEFF Research Database (Denmark)
Margheritini, Lucia; Taraborrelli, Valeria Taraborrelli
Margheritini and Valeria Taraborrelli(valeria.taraborrelli@hotmail.it) with a total of 3 day visit from the developers. Laboratory tests in irregular waves will be performed by Lucia Margheritini. The report is aimed at the first stage testing of the Rolling Cylinder wave energy device. This phase includes...
Soh, Nerissa L; Touyz, Stephen; Dobbins, Timothy A; Clarke, Simon; Kohn, Michael R; Lee, Ee Lian; Leow, Vincent; Ung, Ken E K; Walter, Garry
2009-01-01
To investigate the relationship between skinfold thickness and body mass index (BMI) in North European Caucasian and East Asian young women with and without anorexia nervosa (AN) in two countries. Height, weight and skinfold thicknesses were assessed in 137 young women with and without AN, in Australia and Singapore. The relationship between BMI and the sum of triceps, biceps, subscapular and iliac crest skinfolds was analysed with clinical status, ethnicity, age and country of residence as covariates. For the same BMI, women with AN had significantly smaller sums of skinfolds than women without AN. East Asian women both with and without AN had significantly greater skinfold sums than their North European Caucasian counterparts after adjusting for BMI. Lower BMI goals may be appropriate when managing AN patients of East Asian ancestry and the weight for height diagnostic criterion should be reconsidered for this group.
Prediction of External Corrosion for Steel Cylinders--2002 Report
International Nuclear Information System (INIS)
Schmoyer, RLS
2002-01-01
The United States Department of Energy (DOE) manages the UF 6 Cylinder Project. The project was formed to maintain and safely manage the depleted uranium hexafluoride (UF 6 ) stored in approximately 50,000 carbon steel cylinders. The cylinders are located at three DOE sites: the East Tennessee Technology Park (ETTP) site in Oak Ridge, Tennessee; the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The System Requirements Document (SRD) (LMES 1997a) delineates the requirements of the project, and the actions needed to fulfill these requirements are specified in the System Engineering Management Plan (SEMP) (LMES 1997b). This report documents activities that in whole or part satisfy specific requirements and actions stated in the UF 6 Cylinder Project SRD and SEMP with respect to forecasting cylinder conditions. The results presented here supercede those presented by Lyon (1995, 1996, 1997, 1998, 2000), and Schmoyer and Lyon (2001). Many of the wall thickness projections made in this report are conservative, because they are based on the assumption that corrosion trends will continue, despite activities such as improved monitoring, relocations to better storage, painting, and other improvements in storage conditions relative to the conditions at the times most of the wall thickness measurements were made. For thin-wall cylinders (design nominal wall thickness 312.5 mils), the critical minimum wall thicknesses criteria used in this report are 0 (breach), 62.5 mils, and 250 mils (1 mil = 0.001 in.). For thick-wall cylinders (design nominal wall thickness 625 mils), the thickness criteria used in this report are 0, 62.5 mils, and 500 mils. The criteria triples are preliminary boundaries identified within the project that indicate (1) loss of material (UF 6 ), (2) safe handling and stacking operations, and (3) standards for off-site transport and contents transfer criteria, respectively
Assembly for electrical conductivity measurements in the piston cylinder device
Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA
2012-06-05
An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.
El Jalbout, Ramy; Cloutier, Guy; Cardinal, Marie-Hélène Roy; Henderson, Mélanie; Lapierre, Chantale; Soulez, Gilles; Dubois, Josée
2018-05-09
Common carotid artery intima-media thickness is a marker of subclinical atherosclerosis. In children, increased intima-media thickness is associated with obesity and the risk of cardiovascular events in adulthood. To compare intima-media thickness measurements using B-mode ultrasound, radiofrequency (RF) echo tracking, and RF speckle probability distribution in children with normal and increased body mass index (BMI). We prospectively measured intima-media thickness in 120 children randomly selected from two groups of a longitudinal cohort: normal BMI and increased BMI, defined by BMI ≥85th percentile for age and gender. We followed Mannheim recommendations. We used M'Ath-Std for automated B-mode imaging, M-line processing of RF signal amplitude for RF echo tracking, and RF signal segmentation and averaging using probability distributions defining image speckle. Statistical analysis included Wilcoxon and Mann-Whitney tests, and Pearson correlation coefficient and intra-class correlation coefficient (ICC). Children were 10-13 years old (mean: 11.7 years); 61% were boys. The mean age was 11.4 years (range: 10.0-13.1 years) for the normal BMI group and 12.0 years (range: 10.1-13.5 years) for the increased BMI group. The normal BMI group included 58% boys and the increased BMI group 63% boys. RF echo tracking method was successful in 79 children as opposed to 114 for the B-mode method and all 120 for the probability distribution method. Techniques were weakly correlated: ICC=0.34 (95% confidence interval [CI]: 0.27-0.39). Intima-media thickness was significantly higher in the increased BMI than normal BMI group using the RF techniques and borderline for the B-mode technique. Mean differences between weight groups were: B-mode, 0.02 mm (95% CI: 0.00 to 0.04), P=0.05; RF echo tracking, 0.03 mm (95% CI: 0.01 to 0.05), P=0.01; and RF speckle probability distribution, 0.03 mm (95% CI: 0.01 to 0.05), P=0.002. Though techniques are not interchangeable, all showed
CYLINDER OF THE DISPOSABLE MASS EXCHANGE DEVICE FOR HEMOSORPTION
Directory of Open Access Journals (Sweden)
F. I. Kazakov
2015-01-01
Full Text Available BACKGROUND. Hemocarboperfusion, previously widely used in our country, can universally pass out of use due to the lack of industrial production of disposable mass exchange devices.MATERIAl AND METHODS. Physicochemical properties of materials and design features of the body samples elements of various sizes have been studied.RESULTS. The elements and materials properties of the hemosorption mass exchanger cylinder have been studied. Hydrodynamic parameters of manipulation using the developed cylinders at different perfusion rates have been studied in bench experiments.CONCLUSION. The original cylinder of the disposable mass exchange device for hemosorption, which meets the current clinical needs, has been developed.
Langston, L. S.
1980-01-01
Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.
Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 3
International Nuclear Information System (INIS)
Gwaltney, R.C.; Bolt, S.E.; Corum, J.M.; Bryson, J.W.
1975-06-01
The third in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: the experimental data provide design information directly applicable to nozzles in cylindrical vessels; and the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 3 had a 10 in. OD and the nozzle had a 1.29 in. OD, giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios for the cylinder and the nozzle were 50 and 7.68 respectively. Thirteen separate loading cases were analyzed. In each, one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for all the loadings were obtained using 158 three-gage strain rosettes located on the inner and outer surfaces. The loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)
Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 4
International Nuclear Information System (INIS)
Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.
1975-06-01
The last in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models in the series are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: (1) the experimental data provide design information directly applicable to nozzles in cylindrical vessels, and (2) the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 4 had an outside diameter of 10 in., and the nozzle had an outside diameter of 1.29 in., giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios were 50 and 20.2 for the cylinder and nozzle respectively. Thirteen separate loading cases were analyzed. For each loading condition one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for each of the 13 loadings were obtained using 157 three-gage strain rosettes located on the inner and outer surfaces. Each of the 13 loading cases was also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)
High Reynolds number oscillations of a circular cylinder
Hirata, Miguel H.; Pereira, Luiz Antonio A.; Recicar, Jan N.; Moura, Washington H. de
2008-01-01
This paper concerns the numerical simulation of the flow around an oscillating circular cylinder, which moves with constant velocity in a quiescent Newtonian fluid with constant properties. For each time step of the simulation a number of discrete Lamb vortices is placed close to the body surface; the intensity of each of these is determined such as to satisfy the no-slip boundary condition. The aerodynamic loads acting on the surface of cylinder are computed using the integral formulation de...
Magnus effect on laminar flow around a rotating cylinder
International Nuclear Information System (INIS)
Amarante, J.C.A.
1989-01-01
The laminar flow around a rotating cylinder is studied, through the numerical solution of the full Navier-Stokes equations, for Reynolds number, based on cylinder radius, varying between 0.5 and 25 and for non-dimensional tangential velocities of the body surface between zero and 8. The Taylor and Hughes method is employed in the theoretical investigation. The Magnus lift coefficient and the drag coefficient are obtained and the presure and vorticity distribution are calculated. (author)
The Passive Neutron Enrichment Meter for Uranium Cylinder Assay
Energy Technology Data Exchange (ETDEWEB)
Miller, Karen A.; Menlove, Howard O.; Swinhoe, Martyn T.; Marlow, Johanna B. [Safeguards Science and Technology Group (N-1), Los Alamos National Laboratory, Los Alamos (United States)
2011-12-15
As fuel cycle technology becomes more prevalent around the world, international safeguards have become increasingly important in verifying that nuclear materials have not been diverted. Uranium enrichment technology is a critical pathway to nuclear weapons development, making safeguards of enrichment facilities especially important. Independently-verifiable material accountancy is a fundamental measure in detecting diversion of nuclear materials. This paper is about a new instrument for uranium cylinder assay for enrichment plant safeguards called the Passive Neutron Enrichment Meter (PNEM). The measurement objective is to simultaneously verify uranium mass and enrichment in Uf6 cylinders. It can be used with feed, product, and tails cylinders. Here, we consider the enrichment range up to 5% {sup 235}U. The concept is to use the Doubles-to-Singles count rate to give a measure of the {sup 235}U enrichment and the Singles count rate to provide a measure of the total uranium mass. The cadmium ratio is an additional signature for the enrichment that is especially useful for feed and tails cylinders. PNEM is a {sup 3}He-based system that consists of two portable detector pods. Uranium enrichment in UF{sub 6} cylinders is typically determined using a gamma-ray-based method that only samples a tiny volume of the cylinder's content and requires knowledge of the cylinder wall thickness. The PNEM approach has several advantages over gamma-ray-based methods including a deeper penetration depth into the cylinder, meaning it can be used with heterogeneous isotopic mixtures of UF{sub 6}. In this paper, we describe a Monte Carlo modelling study where we have examined the sensitivity of the system to systematic uncertainties such as the distribution of UF{sub 6} within the cylinder. We also compare characterization measurements of the PNEM prototype to the expected measurements calculated with Monte Carlo simulations.
Alternative method of retesting UF{sub 6} cylinders
Energy Technology Data Exchange (ETDEWEB)
Christ, R. [Nuclear Crago + Service GmbH, Hanau (Germany)
1991-12-31
The paper describes an alternative method to perform the periodic inspection of UF{sub 6} cylinders. The hydraulic test is replaced by ultrasonic checking of wall thickness and by magnetic particle testing of all the weld seams. Information about the legal background, the air leak test and the qualification of inspectors is also given.
Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi; Fukuhara, Akimasa
The purpose of this study is to develop a lightweight and intelligent soft actuator which can be safely attached to the human body. A novel flexible pneumatic cylinder that can be used even if it is deformed by external force had been proposed. The cylinder can realize both pushing and pulling motions even if the cylinder bends. In this paper, a flexible pneumatic cylinder with a built-in flexible linear encoder is proposed and tested. The encoder can detect the cylinder displacement even if the cylinder bends. In the next step, to realize an intelligent flexible cylinder, it is essential to recognize the angle of deflection of the cylinder to estimate the direction of the external force. Therefore, a flexible bending sensor that can measure the directional angle by attaching it to the end of the cylinder is also proposed and tested. The tested bending sensor also consists of four inexpensive photo-reflectors set on the circumferential surface to the cylinder tube every 90 degrees from the center of the tube. By measuring the distance between the photo reflector and the surface of the tube at each point, the bending directional angle of the cylinder can be obtained. A low cost measuring system using a micro-computer incorporating a programmed Up/Down counter to measure the displacement of the cylinder is also developed. As a result, it was confirmed that the measuring accuracy of the bending directional angle was good, less than 0.7 degrees as a standard deviation.
Approximation of Surfaces by Cylinders
DEFF Research Database (Denmark)
Randrup, Thomas
1998-01-01
We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
Fabrication of thin cadmium cylinder coated with aluminum for neutron irradiation capsules
International Nuclear Information System (INIS)
Takeyama, Tomonori; Chiba, Masaaki
2001-03-01
In order to fabricate the irradiation capsule screened thermal neutron, a thin cadmium cylinder coated with aluminum was developed. The capsule is used for the fast neutron irradiation test. Requested specification of the cylinder are the thickness of 5.5 mm, the inner diameter of 23 mm, the length of 750 mm and the coated thickness of aluminum of 0.75 mm. Moreover, cadmium and aluminum adhere to each other. The cylinder was developed and fabricated by means of casting. The a new vacuum chamber in which solving and casting work is possible was fabricated to prevent cadmium oxidation and work safely from poison of cadmium. (author)
Leong, Khai Gene; Chee, Jia Lian; Karahalios, Amalia; Skelley, Annabelle; Wong, Kim
2018-01-01
Malnutrition is common in patients on hemodialysis (prevalence of 30% to 50%) and is associated with higher mortality. Lean body mass (LBM) assessment is an accurate way of assessing nutritional status. The dual-energy X-ray absorptiometry (DEXA) scan is a reliable method in assessing body compositions and LBM; however, it is expensive and largely inaccessible. Anthropometric skinfold thickness measurement (ASFM) is useful in assessing LBM. It is cheaper and accessible, but underutilized clinically. The subjective global score (SGA) is a well-established method of assessing nutritional status. All three methods of assessing nutritional status were compared. In this pilot observational study, there was a significant correlation between LBM% estimated by DEXA and ASFM (mean difference -1.46% [95% CI -4.09 to 1.18]; LOA -14.0 to 11.1). Nutritional status by SGA could only detect those severely malnourished when using LBM% by ASFM as comparison. Our study demonstrated that ASFM is a useful method of assessing LBM and nutritional status, which can be easily utilized clinically. Copyright© by the American Nephrology Nurses Association.
An efficient cost function for the optimization of an n-layered isotropic cloaked cylinder
International Nuclear Information System (INIS)
Paul, Jason V; Collins, Peter J; Coutu, Ronald A Jr
2013-01-01
In this paper, we present an efficient cost function for optimizing n-layered isotropic cloaked cylinders. Cost function efficiency is achieved by extracting the expression for the angle independent scatterer contribution of an associated Green's function. Therefore, since this cost function is not a function of angle, accounting for every bistatic angle is not necessary and thus more efficient than other cost functions. With this general and efficient cost function, isotropic cloaked cylinders can be optimized for many layers and material parameters. To demonstrate this, optimized cloaked cylinders made of 10, 20 and 30 equal thickness layers are presented for TE and TM incidence. Furthermore, we study the effect layer thickness has on optimized cloaks by optimizing a 10 layer cloaked cylinder over the material parameters and individual layer thicknesses. The optimized material parameters in this effort do not exhibit the dual nature that is evident in the ideal transformation optics design. This indicates that the inevitable field penetration and subsequent PEC boundary condition at the cylinder must be taken into account for an optimal cloaked cylinder design. Furthermore, a more effective cloaked cylinder can be designed by optimizing both layer thickness and material parameters than by additional layers alone. (paper)
Elastic torsional buckling of thin-walled composite cylinders
Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.
1974-01-01
The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.
Buckling Experiment on Anisotropic Long and Short Cylinders
Directory of Open Access Journals (Sweden)
Atsushi Takano
2016-07-01
Full Text Available A buckling experiment was performed on anisotropic, long and short cylinders with various radius-to-thickness ratios. The 13 cylinders had symmetric and anti-symmetric layups, were between 2 and 6 in terms of the length-to-radius ratio, between 154 and 647 in radius-to-thickness ratio, and made of two kinds of carbon fiber reinforced plastic (CFRP prepreg with high or low fiber modulus. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length and compared with the test results. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length. The knockdown factor, defined as the ratio of the experimental value to the theoretical value, was found to be between 0.451 and 0.877. The test results indicated that a large length-to-radius ratio reduces the knockdown factor, but the radius-to-thickness ratio and other factors do not affect it.
Ferjak, E N; Cavinder, C A; Burnett, D D; Argo, C Mc; Dinh, T T N
2017-10-01
Body condition score and percent body fat (BF; %) of horses are positively correlated with reproductive efficiency and are indicative of metabolic issues. However, BF in horses may be poorly predicted because current procedures are either subjective or dependent on one anatomical location. Therefore, the objectives of the current study were to compare 2 methods of predicting BF using rump fat thickness (RFT) and deuterium oxide (DO) dilution with actual tissue fat analysis by near-infrared spectroscopy (NIRS) in stock-type horses and to identify the relationship between BF and BCS. Twenty-four stock-type horses were selected to be humanely euthanized based on 3 primary criteria: geriatric, crippled, and/or unsafe. Approximately 20 h before slaughter, horses were weighed and BCS assessed to be 1 ( = 1; 433 kg), 2 ( = 1; 415 kg), 3 ( = 1; 376 kg), 4 ( = 7; 468 ± 13 kg), 5 ( = 10; 455 ± 11 kg), and 6 ( = 4; 493 ± 12 kg) and RFT was measured using ultrasonography. Blood samples were collected immediately before and 4 h after DO infusion (0.12 g/kg BW). Deuterium oxide concentration of plasma was determined by gas isotope ratio mass spectrometry. Horses were housed in a dry lot overnight before being individually sedated (1.1 mg xylazine/kg BW) and anesthetized using a jugular venipuncture (2.2 mg ketamine/kg BW), and potassium chloride (KCl) solution was administered to cease cardiac function before exsanguination. After euthanasia, horse carcasses were processed and dissected and tissues were collected for NIRS analysis. Body fat predicted by DO dilution was correlated with BF measured by NIRS analysis on various weight bases ( = 0.76 to 0.81, horses.
Photon compression in cylinders
International Nuclear Information System (INIS)
Ensley, D.L.
1977-01-01
It has been shown theoretically that intense microwave radiation is absorbed non-classically by a newly enunciated mechanism when interacting with hydrogen plasma. Fields > 1 Mg, lambda > 1 mm are within this regime. The predicted absorption, approximately P/sub rf/v/sub theta/sup e/, has not yet been experimentally confirmed. The applications of such a coupling are many. If microwave bursts approximately > 5 x 10 14 watts, 5 ns can be generated, the net generation of power from pellet fusion as well as various military applications becomes feasible. The purpose, then, for considering gas-gun photon compression is to obtain the above experimental capability by converting the gas kinetic energy directly into microwave form. Energies of >10 5 joules cm -2 and powers of >10 13 watts cm -2 are potentially available for photon interaction experiments using presently available technology. The following topics are discussed: microwave modes in a finite cylinder, injection, compression, switchout operation, and system performance parameter scaling
Analysis of residual stresses in a long hollow cylinder
International Nuclear Information System (INIS)
Tokovyy, Yuriy V.; Ma, Chien-Ching
2011-01-01
This paper presents an analytical method for solving the axisymmetric stress problem for a long hollow cylinder subjected to locally-distributed residual (incompatible) strains. This method is based on direct integration of the equilibrium and compatibility equations, which thereby have been reduced to the set of two governing equations for two key functions with corresponding boundary and integral conditions. The governing equations were solved by making use of the Fourier integral transformation. Application of the method is illustrated with an analysis of the welding residual stresses in a butt-welded thick-walled pipe. - Highlights: → A solution to the axisymmetric stress problem for a hollow cylinder is constructed. → The cylinder is subjected to a field of locally-distributed residual strains. → The method is based on direct integration of the equilibrium equations. → An application of our solution to analysis of welding residual stresses is considered.
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.
Directory of Open Access Journals (Sweden)
Mohammad Zamani Nejad
2014-01-01
Full Text Available Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT. These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM is also presented and good agreement was found.
Pressure cylinders under fire condition
Directory of Open Access Journals (Sweden)
Jan Hora
2016-03-01
Full Text Available The presence of pressure cylinders under fire conditions significantly increases the risk rate for the intervening persons. It is considerably problematic to predict the pressure cylinders behaviour during heat exposition, its destruction progress and possible following explosion of the produced air–gas mixture because pressure cylinders and its environment generate a highly complicated dynamic system during an uncontrolled destruction. The large scale tests carried out by the Pilsen Fire and Rescue Department and the Rapid Response Unit of the Czech Republic Police in October 2012 and in May 2014 in the Military area Brdy and in the area of the former Lachema factory in Kaznějov had several objectives, namely, to record, qualify and quantify some of the aspects of an uncontrolled heat destruction procedure of an exposed pressure cylinder in an enclosed space and to qualify and describe the process of a controlled destruction of a pressure cylinder by shooting through it including basic tactical concepts. The article describes the experiments that were carried out.
Gentile, Marco; Iannuzzi, Arcangelo; Iannuzzo, Gabriella; Covetti, Giuseppe; Panico, Salvatore; Mattiello, Amalia; De Michele, Mario; Rubba, Paolo
2012-10-01
The aim of this study was to evaluate whether overweight and obesity are associated with arterial abnormalities in postmenopausal women and the contribution of the metabolic syndrome. A total of 390 postmenopausal women (mean age, 63.1 ± 7.7 y) living in the metropolitan area of Naples, Southern Italy, and participating in a population-based cohort study (Progetto Atena) were offered an ultrasound examination of the carotid arteries; 370 women accepted. Blood pressure, serum high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, fasting glucose, insulin, apolipoprotein B, and high-sensitivity C-reactive protein were measured in all participants. Women in the second and third tertiles of body mass index showed a greater common carotid intima-media thickness compared with those in the first tertile (tertile II vs I, odds ratio, 2.15; P = 0.013; tertile III vs I, odds ratio, 2.24; P = 0.018), adjusted for age and metabolic syndrome. Obese and overweight postmenopausal women showed greater common carotid lumen diameters as compared with lean postmenopausal women (mean ± SD, 6.36 ± 0.86, 6.16 ± 0.65, and 5.96 ± 0.59 mm, respectively; P women. The statistical significance between obese and lean postmenopausal women was retained even after adding the components of the metabolic syndrome as covariates. These findings indicate an association between overweight, obesity, and preclinical carotid artery abnormalities, independently of the metabolic syndrome, in a population of postmenopausal women.
Experimental vibration study of in-air and fluid coupled co-axial cylinders
International Nuclear Information System (INIS)
Chu, M.; Brown, S.; Lestingi, J.
1979-01-01
It was the objective of this study to develop and carry out an experimental program which would provide additional insight into the mechanics of fluid--solid interaction with respect to the response of a set of coaxial cylinders with water in the annulus. Such configurations are found in nuclear reactors in the vessel wall-thermal liner. The effects of cylinder thickness and the fluid filled annulus gap size on the resonant frequencies and mode shapes of the cylinders (either singly or coupled in air and a water environment) are presented in this paper; also included is an evaluation of damping for selected gaps and cylinder thicknesses. Details of the experimental setup and procedures are also outlined
Nonlinear Fracture Mechanics and Plasticity of the Split Cylinder Test
DEFF Research Database (Denmark)
Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik
2006-01-01
properties. This implies that the linear elastic interpretation of the ultimate splitting force in term of the uniaxial tensile strength of the material is only valid for special situations, e.g. for very large cylinders. Furthermore, the numerical analysis suggests that the split cylinder test is not well...... models are presented, a simple semi-analytical model based on analytical solutions for the crack propagation in a rectangular prismatic body, and a finite element model including plasticity in bulk material as well as crack propagation in interface elements. A numerical study applying these models...... demonstrates the influence of varying geometry or constitutive properties. For a split cylinder test in load control it is shown how the ultimate load is either plasticity dominated or fracture mechanics dominated. The transition between the two modes is related to changes in geometry or constitutive...
Study of influence of an experiment scale on cylinder test results
Directory of Open Access Journals (Sweden)
Waldemar A. Trzciński
2014-03-01
Full Text Available In the work, influence of a scale of experiment on the results of cylindrical test used todetermine the acceleration capabilities of explosives was analyzed. Explosives used in ammunition(TNT, hexogen and explosives for civil purpose (ammonals were selected for testing. Copper tubeswith different diameters and wall thickness were used. Conclusions are drawn regarding the advisabilityof increasing or decreasing the scale of the cylinder test.[b]Keywords[/b]: explosives, acceleration ability, cylinder test
An Unattended Verification Station for UF6 Cylinders: Development Status
International Nuclear Information System (INIS)
Smith, E.; McDonald, B.; Miller, K.; Garner, J.; March-Leuba, J.; Poland, R.
2015-01-01
In recent years, the International Atomic Energy Agency (IAEA) has pursued innovative techniques and an integrated suite of safeguards measures to address the verification challenges posed by advanced centrifuge technologies and the growth in separative work unit capacity at modern centrifuge enrichment plants. These measures would include permanently installed, unattended instruments capable of performing the routine and repetitive measurements previously performed by inspectors. Among the unattended instruments currently being explored by the IAEA is an Unattended Cylinder Verification Stations (UCVS) that could provide independent verification of the declared relative enrichment, U-235 mass and total uranium mass of all declared cylinders moving through the plant, as well as the application and verification of a ''Non-destructive Assay Fingerprint'' to preserve verification knowledge on the contents of each cylinder throughout its life in the facility. As IAEA's vision for a UCVS has evolved, Pacific Northwest National Laboratory (PNNL) and Los Alamos National Laboratory have been developing and testing candidate non-destructive assay (NDA) methods for inclusion in a UCVS. Modeling and multiple field campaigns have indicated that these methods are capable of assaying relative cylinder enrichment with a precision comparable to or substantially better than today's high-resolution handheld devices, without the need for manual wall-thickness corrections. In addition, the methods interrogate the full volume of the cylinder, thereby offering the IAEA a new capability to assay the absolute U-235 mass in the cylinder, and much-improved sensitivity to substituted or removed material. Building on this prior work, and under the auspices of the United States Support Programme to the IAEA, a UCVS field prototype is being developed and tested. This paper provides an overview of: a) hardware and software design of the prototypes, b) preparation
Induced-charge electroosmosis around conducting and Janus cylinder in microchip
Directory of Open Access Journals (Sweden)
Zhang Kai
2012-01-01
Full Text Available The induced-charge elecetroosmosis around conducting/Janus cylinder with arbitrary Debye thickness is studied numerically, when an direct current weak electric filed is suddenly applied in a confined microchannel. It’s found that there are four large circulations around the conducting cylinder, and the total flux in the microchannel is zero; there are two smaller circulations around the Janus cylinder, and they are compressed to wall. A bulk flux, which has a parabolic relation with the applied electric field, is also predicted.
Facilities for the examination of radioactive bodies
International Nuclear Information System (INIS)
Ginniff, M.E.; Richardson, E.K.
1981-01-01
A facility for the examination of radioactive bodies comprises carriages, each transporting one or more radioactive bodies, e.g. nuclear fuel elements, which travel along a shielded passage to bring the bodies to examination stations spaced along the passage. The passage comprises a circular section tube surrounded by a thick cylinder of shielding material e.g. lead. The transverse sectional dimensions of the passage are not much larger than the corresponding dimensions of the carriages in order to maintain the radioactive region as small as possible. Equipment for the examination of the radioactive bodies is located outside the shielded passage, and may be for metallurgical examination, e.g. by ultrasonics, radiography or other non-destructive testing means, or for mensuration to identify changes in shape, dimensions or weight. (author)
International Nuclear Information System (INIS)
Balick, L.K.; Bowman, D.R.
1997-02-01
The US DOE manages the safe storage of approximately 650,000 tons of depleted uranium hexafluoride remaining from the Cold War. This slightly radioactive, but chemically active, material is contained in more than 46,000 steel storage cylinders that are located at Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Some of the cylinders are more than 40 years old, and approximately 17,500 are considered problem cylinders because their physical integrity is questionable. These cylinders require an annual visual inspection. The remainder of the 46,000-plus cylinders must be visually inspected every four years. Currently, the cylinder inspection program is extremely labor intensive. Because these inspections are accomplished visually, they may not be effective in the early detection of leaking cylinders. The inspection program requires approximately 12--14 full-time-equivalent (FTE) employees. At the cost of approximately $125K per FTE, this translates to $1,500K per annum just for cylinder inspection. As part of the technology-development portion of the DOE Cylinder Management Program, the DOE Office of Facility Management requested the Remote Sensing Laboratory (RSL) to evaluate remote sensing techniques that have potential to increase the effectiveness of the inspection program and, at the same time, reduce inspection costs and personnel radiation exposure. During two site visits (March and May 1996) to the K-25 Site at Oak Ridge, TN, RSL personnel tested and characterized seven different operating systems believed to detect leakage, surface contamination, thickness and corrosion of cylinder walls, and general area contamination resulting from breached cylinders. The following techniques were used and their performances are discussed: Laser-induced fluorescent imaging; Long-range alpha detection; Neutron activation analysis; Differential gamma-ray attenuation; Compton scatterometry; Active infrared inspection; and Passive thermal infrared imaging
... in individuals with nail fungus (onychomycosis), psoriasis and hypothyroidism. Those who have problems with the thickness of their toenails should consult a foot and ankle surgeon for proper diagnosis and treatment. Find an ACFAS Physician Search Search Tools Find ...
Natural convective heat transfer from square cylinder
Energy Technology Data Exchange (ETDEWEB)
Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 1, 010 26 Žilina (Slovakia)
2016-06-30
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.
Label inspection of approximate cylinder based on adverse cylinder panorama
Lin, Jianping; Liao, Qingmin; He, Bei; Shi, Chenbo
2013-12-01
This paper presents a machine vision system for automated label inspection, with the goal to reduce labor cost and ensure consistent product quality. Firstly, the images captured from each single-camera are distorted, since the inspection object is approximate cylindrical. Therefore, this paper proposes an algorithm based on adverse cylinder projection, where label images are rectified by distortion compensation. Secondly, to overcome the limited field of viewing for each single-camera, our method novelly combines images of all single-cameras and build a panorama for label inspection. Thirdly, considering the shake of production lines and error of electronic signal, we design the real-time image registration to calculate offsets between the template and inspected images. Experimental results demonstrate that our system is accurate, real-time and can be applied for numerous real- time inspections of approximate cylinders.
Bubbly flows around a two-dimensional circular cylinder
Lee, Jubeom; Park, Hyungmin
2016-11-01
Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
DEFF Research Database (Denmark)
Hourigan, K.; Rao, A.; Brøns, Morten
2013-01-01
The wake transitions of generic bluff bodies, such as a circular cylinder, near a wall are important because they provide understanding of different transition paths towards turbulence, and give some insight into the effect of surface modifications on the flow past larger downstream structures......-annihilate with opposite-signed vorticity, and can be stored at a free surface, thus conserving the total vorticity, or circulation. Vorticity generation, diffusion and storage are demonstrated for a cylinder translating and rotating near a wall. The wake characteristics and the wake transitions are shown to change...... dramatically under the influence of cylinder rotation and wall proximity. At gaps between the cylinder and the wall of less than approximately 0.25 cylinder diameter, the wake becomes three dimensional prior to becoming unsteady, while for larger gaps the initial transition is to an unsteady two...
Cylinder components properties, applications, materials
2016-01-01
Owing to the ever-increasing requirements to be met by gasoline and diesel engines in terms of CO2 reduction, emission behavior, weight, and service life, a comprehensive understanding of combustion engine components is essential today. It is no longer possible for professionals in automotive engineering to manage without the corresponding expertise, whether they work in the field of design, development, testing, or maintenance. This technical book provides in-depth answers to questions about design, production, and machining of cylinder components. In this second edition, every section has been revised and expanded to include the latest developments in the combustion engine. Content Piston rings Piston pins and piston pin circlips Bearings Connecting rods Crankcase and cylinder liners Target audience Engineers in the field of engine development and maintenanceLecturers and students in the areas of mechanical engineering, engine technology, and vehicle constructionAnyone interested in technology Publisher MAH...
Control of flow structure in the wake region of circular cylinder with meshy wire in deep water
Directory of Open Access Journals (Sweden)
Burcu Oğuz
2016-08-01
Full Text Available In this study the aim is decreasing the effect and the intensity of the temporary loads resulted from vortex shedding that have an impact on the cylinder (chimneys, high buildings etc. located in deep water and the object or objects in the wake region and definition of the optimum values (wire thickness and porosity β With different thickness and different porosity ratios the effect of meshy wire that surrounded a circular cylinder of D=50 mm diameter was observed at Re_D=5000. The porosity ratios were four different values between a range of β=0.5-0.8 with an interval of 0.1. The thicknesses of wire were 1 mm, 2 mm, 3 mm and 4 mm. The flow structure in the wake region of circular cylinder was tried to be controlled by meshy wire that surrounded the cylinder. Experiments were carried out by using particle image velocimetry (PIV technique. Comparing with bare cylinder results, turbulence kinetic energy (TKE and Reynolds shear stress values increase with wire thicknesses of b=1 mm, 2 mm for all porosity ratios and decrease with b=3 mm, 4 mm. With porosity ratio of β=0.6 and wire thickness of b=4 mm TKE and Reynolds shear stress results show that meshy wire controls the flow in the wake region of the cylinder. Frequency value results also define that best flow control is obtained with β=0.6 and b=4 mm.
Vortex shedding from tandem cylinders
Alam, Md. Mahbub; Elhimer, Mehdi; Wang, Longjun; Jacono, David Lo; Wong, C. W.
2018-03-01
An experimental investigation is conducted on the flow around tandem cylinders for ranges of diameter ratio d/ D = 0.25-1.0, spacing ratio L/ d = 5.5-20, and Reynolds number Re = 0.8 × 104-2.42 × 104, where d and D are the diameters of the upstream and downstream cylinders, respectively, L is the distance from the upstream cylinder center to the forward stagnation point of the downstream one. The focus is given on examining the effects of d/ D, L/ d and Re on Strouhal number St, flow structures and fluid forces measured using hotwire, particle image velocimetry (PIV) and load cell measurement techniques, respectively. Changes in d/ D and L/ d in the ranges examined lead to five flow regimes, namely lock-in, intermittent lock-in, no lock-in, subharmonic lock-in and shear-layer reattachment regimes. Time-mean drag coefficient ( C D) and fluctuating drag and lift coefficients ({C^'D} and {C^'L}) are more sensitive to L/ d than d/ D. The scenario is opposite for St where d/ D is more prominent than L/ d to change the St. The detailed facet of the dependence on d/ D and L/ d of C D, {C^'D}, {C^'L} and St is discussed based on shear-layer velocity, approaching velocity, vortex formation length, and wake width.
Lattice Boltzmann simulation of viscoelastic flow past a confined free rotating cylinder
Xia, Yi; Zhang, Peijie; Lin, Jianzhong; Ku, Xiaoke; Nie, Deming
2018-05-01
To study the dynamics of rigid body immersed in viscoelastic fluid, an Oldroyd-B fluid flow past an eccentrically situated, free rotating cylinder in a two-dimensional (2D) channel is simulated by a novel lattice Boltzmann method. Two distribution functions are employed, one of which is aimed to solve Navier-Stokes equation and the other to the constitutive equation, respectively. The unified interpolation bounce-back scheme is adopted to treat the moving curved boundary of cylinder, and the novel Galilean invariant momentum exchange method is utilized to obtain the hydrodynamic force and torque exerted on the cylinder. Results show that the center-fixed cylinder rotates inversely in the direction where a cylinder immersed in Newtonian fluid do, which generates a centerline-oriented lift force according to Magnus effect. The cylinder’s eccentricity, flow inertia, fluid elasticity and viscosity would affect the rotation of cylinder in different ways. The cylinder rotates more rapidly when located farther away from the centerline, and slows down when it is too close to the wall. The rotation frequency decreases with increasing Reynolds number, and larger rotation frequency responds to larger Weissenberg number and smaller viscosity ratio, indicating that the fluid elasticity and low solvent viscosity accelerates the flow-induced rotation of cylinder.
effect of gasket of varying thickness on spark ignition engines
African Journals Online (AJOL)
DJFLEX
In the study of Toyota, In-line, 4 cylinders, spark ignition engine using gaskets of varying thicknesses. (1.75mm, 3.5mm, 5.25mm, 7mm and 8.75mm) between the cylinder head and the engine block, the performance characteristics of the engine was investigated via the effect of engine speed on brake power, brake thermal ...
Experimental and finite element prediction of bursting pressure in compound cylinders
International Nuclear Information System (INIS)
Majzoobi, G.H.; Farrahi, G.H.; Pipelzadeh, M.K.; Akbari, A.
2004-01-01
Aluminium cylinders with a constant ratio of outer to inner radii, k=2.2, with different diametral interferences and various shrinkage radii were subjected to bursting and autofrettage pressures. Numerical simulations of the compound cylinders were also performed using the finite element code, NISA. The results can predict the optimum shrinkage radius to a reasonable accuracy with the use of finite element analysis. This radius corresponds to the situation when the maximum von-Mises stress at the internal radii of both the inner and outer cylinders become equal. It was shown that the maximum von-Mises stress across the wall of the cylinder is at the minimum at this shrinkage radius. The optimum diametral interference was found to be that which sufficiently brought the contact surface of the inner and outer cylinders to the point of yielding. Should the shrinkage pressure exceed the elastic limit, the pressure capacity of the cylinder will not be improved. The numerical and experimental results show that autofrettage had no effect on the bursting pressure of the thick-walled compound cylinder for the material tested
International Nuclear Information System (INIS)
Sankhla, Rajesh; Singh, I.S.; Rao, D.D.
2016-01-01
The whole body counting using Shadow Shield Whole Body Monitor (SSWBM) proved to be a popular method for assessment of internal contamination due to high energy gamma (E>200 keV) emitting radio nuclides that got inadvertently incorporated in the occupational workers. Currently ∼ 5 SSWBMs are operational at various DAE nuclear facilities throughout the country. The shielding of SSWBMs are said to be designed for 102 mm x 76 mm NaI(Tl) detector and over a period of time, the same concept is being followed. At present, the number of subjects monitored per annum has increased significantly compared to earlier years due to the increase in nuclear facilities at different sites and also increase in number of contract personnel. Aim of this study is to develop/upgrade the existing SSWBMs to increase their capabilities in terms of throughput without compromising on sensitivity. This work includes response studies of individual detectors of sizes 102 mm x 76 mm and 203 mm x 102 mm housed in SSWBM in terms of background, efficiency and Minimum Detection Activity (MDA) for different gamma emitting radio nuclides using Bhabha Atomic Research Centre reference Bottle Mannequin ABsorption (BOMAB) phantom
Flow around a cylinder surrounded by a permeable cylinder in shallow water
Energy Technology Data Exchange (ETDEWEB)
Ozkan, Gokturk M.; Akilli, Huseyin; Sahin, Besir [Cukurova University, Department of Mechanical Engineering, Faculty of Engineering and Architecture, Adana (Turkey); Oruc, Vedat [Dicle University, Department of Mechanical Engineering, Diyarbakir (Turkey)
2012-12-15
The change in flow characteristics downstream of a circular cylinder (inner cylinder) surrounded by an outer permeable cylinder was investigated in shallow water using particle image velocimetry technique. The diameter of the inner cylinder and the water height were kept constant during the experiments as d=50 mm and h{sub w}=25 mm, respectively. The depth-averaged free-stream velocity was also kept constant as U=170 mm/s which corresponded to a Reynolds number of Re{sub d}=8,500 based on the inner cylinder diameter. In order to examine the effect of diameter and porosity of the outer cylinder on flow characteristics of the inner cylinder, five different outer cylinder diameters (D=60, 70, 80, 90 and 100 mm) and four different porosities ({beta}=0.4, 0.5, 0.6 and 0.7) were used. It was shown that both porosity and outer cylinder diameter had a substantial effect on the flow characteristics downstream of the circular cylinder. Turbulent statistics clearly demonstrated that in comparison with the bare cylinder (natural case), turbulent kinetic energy and Reynolds stresses decreased remarkably when an outer cylinder was placed around the inner cylinder. Thereby, the interaction of shear layers of the inner cylinder has been successfully prevented by the presence of outer cylinder. It was suggested by referring to the results that the outer cylinder having 1.6{<=}D/d{<=}2.0 and 0.4{<=}D/d{<=}0.6 should be preferred to have a better flow control in the near wake since the peak magnitude of turbulent kinetic energy was considerably low in comparison with the natural case and it was nearly constant for these mentioned porosities {beta}, and outer cylinder to inner cylinder diameter ratios D/d. (orig.)
Fire testing of bare uranium hexafluoride cylinders
Energy Technology Data Exchange (ETDEWEB)
Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)
1991-12-31
In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.
Fire testing of bare uranium hexafluoride cylinders
Energy Technology Data Exchange (ETDEWEB)
Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)
1991-12-31
In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.
Mesa, Hector; Drawz, Sarah; Dykoski, Richard; Manivel, Juan Carlos
2015-10-01
An increased amount of submucosal (SM) fat in the colon on imaging is considered to be characteristic of inflammatory bowel disease (IBD); however, a recent study in patients without IBD reported a correlation between colonic SM fat deposition and body weight (BW). The aim of this study was to perform a morphometric investigation of SM thickness in areas of fat deposition in the terminal ileum (TI), ileocaecal valve (ICV), and colonic sections, to determine whether there are variations by site, and whether it shows a correlation with BW, body mass index (BMI), or age. Representative samples of TI, ICV and colonic sections were collected prospectively from 115 autopsy cases without IBD. All of the study subjects were male (Veterans Hospital). SM thickness was measured in areas of fat deposition. Correlation analysis was performed between SM thickness and BW, BMI, and age. Fat deposition was common; however, with the exception of the ICV, it was neither consistent nor prominent, and it did not show a statistical correlation with BW, BMI, or age. SM fat deposition is common but not uniform or conspicuous in the TI or colon. In contrast to extravisceral intra-abdominal fat, it does not show a correlation with BW or BMI, and is not associated with ageing. As all study subjects were male, gender-dependent variability cannot be excluded. © 2015 John Wiley & Sons Ltd.
Cylinder valve packing nut studies
Energy Technology Data Exchange (ETDEWEB)
Blue, S.C. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)
1991-12-31
The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.
Magnetothermoelastic creep analysis of functionally graded cylinders
International Nuclear Information System (INIS)
Loghman, A.; Ghorbanpour Arani, A.; Amir, S.; Vajedi, A.
2010-01-01
This paper describes time-dependent creep stress redistribution analysis of a thick-walled FGM cylinder placed in uniform magnetic and temperature fields and subjected to an internal pressure. The material creep, magnetic and mechanical properties through the radial graded direction are assumed to obey the simple power law variation. Total strains are assumed to be the sum of elastic, thermal and creep strains. Creep strains are time, temperature and stress dependent. Using equations of equilibrium, stress-strain and strain-displacement a differential equation, containing creep strains, for displacement is obtained. Ignoring creep strains in this differential equation a closed form solution for the displacement and initial magnetothermoelastic stresses at zero time is presented. Initial magnetothermoelastic stresses are illustrated for different material properties. Using Prandtl-Reuss relation in conjunction with the above differential equation and the Norton's law for the material uniaxial creep constitutive model, the radial displacement rate is obtained and then the radial and circumferential creep stress rates are calculated. Creep stress rates are plotted against dimensionless radius for different material properties. Using creep stress rates, stress redistributions are calculated iteratively using magnetothermoelastic stresses as initial values for stress redistributions. It has been found that radial stress redistributions are not significant for different material properties, however major redistributions occur for circumferential and effective stresses.
Directory of Open Access Journals (Sweden)
Pankaj Thakur
2014-01-01
Full Text Available Thermal stress and strain rates in a thick walled rotating cylinder under steady state temperature has been derived by using Seth’s transition theory. For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder having smaller radii ratios requires lesser angular velocity to become fully plastic as compared to cylinder having higher radii ratios The circumferential stress becomes larger and larger with the increase in temperature. With increase in thickness ratio stresses must be decrease. For the creep stage, it is seen that circumferential stresses for incompressible materials maximum at the internal surface as compared to compressible material, which increase with the increase in temperature and measure n.
International Nuclear Information System (INIS)
Sabir, A.B.
1983-01-01
A finite element solution to the problems of stress distribution for cylindrical shells with circular and elliptical holes and also for normally intersecting thin elastic cylindrical shells is given. Quadrilateral and triangular curved finite elements are used in the analysis. The elements are of a new class, based on simple independent generalised strain functions insofar as this is allowed by the compatibility equations. The elements also satisfy exactly the requirements of strain-free-rigid body displacements and uses only the external 'geometrical' nodal degrees of freedom to avoid the difficulties associated with unnecessary internal degrees of freedom. We first develop strain based quadrilateral and triangular elements and apply them to the solution of the problem of stress concentrations in the neighbourhood of small and large circular and elliptical holes when the cylinders are subjected to a uniform axial tension. These results are compared with analytical solutions based on shallow shell approximations and show that the use of these strain based elements obviates the need for using an inordinately large number of elements. Normally intersecting cylinders are common configurations in structural components for nuclear reactor systems and design information for such configurations are generally lacking. The opportunity is taken in the present paper to provide a finite element solution to this problem. A method of substructing will be introduced to enable a solution to the large number of non banded set of simultaneous equations encountered. (orig./HP)
Inner cylinder of the CMS vacuum tank.
Patrice Loïez
2002-01-01
The vacuum tank of the CMS magnet system consists of inner and outer stainless-steel cylinders and houses the superconducting coil. The inner cylinder contains all the barrel sub-detectors, which it supports via a system of horizontal rails. The cylinder is pictured here in the vertical position on a yellow platform mounted on the ferris-wheel support structure. This will allow it to be pivoted and inserted into the outer cylinder already attached to the innermost ring of the barrel yoke.
Fire exposure of empty 30B cylinders
Energy Technology Data Exchange (ETDEWEB)
Ziehlke, K.T. [MJB Technical Associates, Inc., Knoxville, TN (United States)
1991-12-31
Cylinders for UF{sub 6} handling, transport, and storage are designed and built as unfired pressure vessels under ASME Boiler and Pressure Vessel Code criteria and standards. They are normally filled and emptied while UF{sub 6} is in its liquid phase. Transport cylinders such as the Model 30B are designed for service at 200 psi and 250{degrees}F, to sustain the process conditions which prevail during filling or emptying operations. While in transport, however, at ambient temperature the UF{sub 6} is solid, and the cylinder interior is well below atmospheric pressure. When the cylinders contain isotopically enriched product (above 1.0 percent U-235), they are transported in protective overpacks which function to guard the cylinders and their contents against thermal or mechanical damage in the event of possible transport accidents. Two bare Model 30B cylinders were accidentally exposed to a storage warehouse fire in which a considerable amount of damage was sustained by stored materials and the building structure, as well as by the cylinder valves and valve protectors. The cylinders were about six years old, and had been cleaned, inspected, hydrotested, and re-certified for service, but were still empty at the time of the fire. The privately-owned cylinders were transferred to DOE for testing and evaluation of the fire damage.
Overseas shipments of 48Y cylinders
Energy Technology Data Exchange (ETDEWEB)
Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)
1991-12-31
This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.
Optimization and improvement of Halbach cylinder design
DEFF Research Database (Denmark)
Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders
2008-01-01
possible volume of magnets with a given mean flux density in the cylinder bore. The volume of the cylinder bore could also be significantly increased by only slightly increasing the volume of the magnets, for a fixed mean flux density. Placing additional blocks of magnets on the end faces of the Halbach...... that this parameter was optimal for long Halbach cylinders with small rex. Using the previously mentioned additional blocks of magnets can improve the parameter by as much as 15% as well as improve the homogeneity of the field in the cylinder bore. ©2008 American Institute of Physics...
Swap your propane cylinder with SWOP
International Nuclear Information System (INIS)
Anon.
1997-01-01
A very successful propane cylinder exchange program operated by South Western Ontario Propane (SWOP) Inc., was described. The company specializes in propane cylinder exchange and in the refurbishing and marketing of top quality domestic and commercial propane cylinders. The company, currently operating out of Bradford, Ontario, was started in 1991. It employs a staff of 25 in peak season. It has some 200 exchange outlets throughout Ontario and has accepted outdated tanks from as far west as Manitoba and as far east as Quebec. A typical transaction involves bringing an empty cylinder to the nearest SWOP location and exchanging it for a full SWOP cylinder. SWOP does about 50,000 to 60,000 exchanges a year. For the consumer, the program is said to be cheaper, safer and more convenient than getting refills. As far as dealers are concerned operating a SWOP exchange outlet can add extra profits, attract new customers, and build additional consumer loyalty without the need for extra staff or additional indoor space. SWOP delivers full cylinders to exchange outlets on a weekly basis when it also picks up the empty cylinders. At dealer locations, the cylinders (full or empty) are stored in company -designed vandal-proof metal cages. Major expansion of the network of outlets and the cylinder refurbishing and refilling facilities are planned for 1998
Energy Technology Data Exchange (ETDEWEB)
Gao, Yangyang; Sun, Zhilin [Ocean College, Zhejiang University, Hangzhou 310058 (China); Tan, Danielle S [Maritime Research Centre, Nanyang Technological University, Singapore 639798 (Singapore); Yu, Dingyong [College of Engineering, Ocean University of China, 266100 (China); Tan, Soon Keat, E-mail: yygao@zju.edu.cn [Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 639798 (Singapore)
2014-04-01
The flow patterns around a cylinder oscillating freely in the wake of a larger cylinder upstream were investigated using the particle image velocimetry technique. The upstream cylinder was fixed at both ends while the downstream smaller cylinder was held by springs such that it was free to oscillate in the transverse direction. The flow patterns, amplitudes of oscillation and vortex shedding frequencies were compared with those of a single cylinder. In the presence of the upstream cylinder, the three parameters characterizing the oscillation response of the smaller cylinder—amplitude of oscillation, vortex shedding frequency and Reynolds stresses—were greatly reduced. While their magnitude increased with gap ratio, these three parameters were still smaller than the corresponding magnitudes for a single oscillating cylinder. The peak values of turbulence statistics such as Reynolds shear stress and normal stress behind the oscillating downstream cylinder were similarly reduced, and increased with gap ratios. (paper)
Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios
Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.
2006-01-03
A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.
48 CFR 52.247-66 - Returnable Cylinders.
2010-10-01
... Cylinders (MAY 1994) (a) Cylinder, referred to in this clause, is a pressure vessel designed for pressures... clause. (c) For each cylinder lost or damaged beyond repair while in the Government's possession, the... associated replacement values.] These cylinders shall become Government property. (d) If any lost cylinder is...
Robust cylinder pressure estimation in heavy-duty diesel engines
Kulah, S.; Forrai, A.; Rentmeester, F.; Donkers, T.; Willems, F.P.T.
2017-01-01
The robustness of a new single-cylinder pressure sensor concept is experimentally demonstrated on a six-cylinder heavy-duty diesel engine. Using a single-cylinder pressure sensor and a crank angle sensor, this single-cylinder pressure sensor concept estimates the in-cylinder pressure traces in the
A comparative analysis on the shed vortices from the wake of finned, foam-wrapped cylinders
Energy Technology Data Exchange (ETDEWEB)
Khashehchi, Morteza [Department of Agro-Technology, College of Aburaihan, University of Tehran, Tehran (Iran, Islamic Republic of); Ashtiani Abdi, Iman; Hooman, Kamel, E-mail: m.khashehchi@ut.ac.ir [School of Mechanical and mining Engineering, University of Queensland, Brisbane (Australia)
2017-08-15
The wake characteristics behind a finned and a foam-wrapped circular cylinder has been compared in a study (Khashehchi et al 2014 Exp. Therm. Fluid Sci. 52 328–38) done by the Authors. In this paper, the shed vortices from the wake of the same cylinders have been studied. Shedding in a bluff body has an important effect on increasing the pressure drop downstream of the object. Here, we have used particle image velocimetry to investigate the detached vortices from the wake behind a foam-wrapped and a finned cylinder. The standard case of cross-flow over a bare cylinder, i.e. no surface extension, has also been tested as a benchmark. The experiments have been performed for Reynolds numbers 2000 based on the mean air velocity and the cylinder’s outer diameter. To identify the features of each aforementioned case, linear stochastic estimation has been applied to the velocity fields. Results show that unlike the fin, adding foam to the cylinder surface increases the size of detached vortices and amplifies the core strength. Moreover, foam-wrapped cylinder in contrast to the finned one produces strong three-dimensionality. Interestingly, finned cylinder’s results show less three-dimensionality compared to the bare cylinder. (paper)
A Convenient Storage Rack for Graduated Cylinders
Love, Brian
2004-01-01
An attempt is made to find a solution to the occasional problem of a need for storing large numbers of graduated cylinders in many teaching and research laboratories. A design, which involves the creation of a series of parallel channels that are used to suspend inverted graduated cylinders by their bases, is proposed.
International Nuclear Information System (INIS)
Nobile, A.; Balkey, M.M.; Bartos, J.J.; Batha, S.H.; Day, R.D.; Elliott, J.E.; Elliott, N.E.; Gomez, V.M.; Hatch, D.J.; Lanier, N.E.; Fincke, J.R.; Manzanares, R.; Pierce, T.H.; Sandoval, D.L.; Schmidt, D.W.; Steckle, W.P.
2004-01-01
Experimental campaigns are being conducted at the 60 beam OMEGA laser at the University of Rochester's Laboratory for Laser Energetics to acquire data to validate hydrodynamic models in the high energy-density regime. This paper describes targets that have been developed and constructed for these experimental campaigns. Targets are 860 μm inner diameter by 2.2 mm length cylinders with 70 μm thick polymer ablator. On the ablator inner surface and located halfway along the axis of the cylinder is a 500 μm wide Al marker band. Band thicknesses in the range 8-16 microns are used. CH foam with densities in the range 30-90 mg/cc fills the inside of the cylinder. While these targets have been fabricated for years, several new improvements and features have recently been developed. Improvements include the use of epoxy instead of polystyrene for the ablator, and the use of electrodeposited Al for the marker band. A critical feature of the target is the surface feature that is placed on the marker band. Experiments are aimed at understanding the hydrodynamic behavior of imploding cylinders as a function of this surface feature. Recent development work has focused on production of engineered surface features on the target marker band. Using a fast tool servo on a diamond turning lathe, a wide range of specified surface features have been produced. This paper will address improvements to the cylinder targets as well as current development efforts
Saisanthosh, Iyer; Arunkumar, K.; Ajithkumar, R.; Srikrishnan, A. R.
2017-09-01
This paper is focussed on numerical investigation of flow around a stationary circular cylinder (diameter, D) with selectively applied surface roughness (roughness strips with thickness ‘k’) in the presence of a wake splitter plate (length, L). The plate leading edge is at a distance of ‘G’ from the cylinder base. For this study, the commercial software ANSYS Fluent is used. Fluid considered is water. Study was conducted the following cases (a) plain cylinder (b) cylinder with surface roughness (without splitter plate) (c) Cylinder with splitter plate (without surface roughness) and (d) cylinder with both roughness and splitter plate employed. The study Reynolds number (based on D) is 17,000 and k/δ = 1.25 (in all cases). Results indicate that, for cylinder with splitter plate (no roughness), lift coefficient gradually drops till G/D=1.5 further to which it sharply increases. Whereas, drag coefficient and Strouhal number undergoes slight reduction till G/D=1.0 and thereafter, gradually increase. Circumferential location of strip (α) does not influence the aerodynamic parameters significantly. With roughness alone, drag is magnified by about 1.5 times and lift, by about 2.7 times that of the respective values of the smooth cylinder. With splitter plate, for roughness applied at all ‘α’ values, drag and lift undergoes substantial reduction with the lowest value attained at G/D=1.0.
Hydraulic jumps in a partially filled rotating cylinder
International Nuclear Information System (INIS)
Lundgren, T.S.; Berman, A.S.
1979-06-01
A nonlinear analysis is made of the fluid dynamics of a thin film of liquid completely spun up along the cylindrical wall of a rotating cylinder. The analysis allows for the possibility of hydraulic jumps in the liquid film. Conditions are simulated under which jumps can occur. Under the assumption that synchronous runouts are small relative to the film thickness, a sample calculation of jump position and extent for various operating frequencies is presented. Comparison with experimental observations indicate good qualitative agreement between the analysis and the experiment. Under the additional restriction of constant film thickness and a simple lumped-parameter dynamic model for the rotor and its supports, an analysis is also provided which predicts the amplitude and frequency of the asynchronous runout as a function of operating frequency. A numerical example of the results of such a calculation is provided. 6 figures
Experimental investigation of a flow-induced oscillating cylinder with two degrees-of-freedom
International Nuclear Information System (INIS)
Someya, Satoshi; Kuwabara, Joji; Li, YanRong; Okamoto, Koji
2010-01-01
The phenomenon of flow-induced vibration of bluff bodies has been studied extensively. The vast majority of these studies have concentrated solely on one degree-of-freedom oscillation in the inline or cross-flow directions. Herein, experiments were carried out with a cylinder in a water channel with two degrees-of-freedom. The cylinder was cantilever mounted with a low natural frequency (typically 65 Hz) in the inline and cross-flow directions. The Reynolds number fell in the range 1.17 x 10 3 4 . The oscillating frequency of the cylinder and the surrounding flow were measured simultaneously using high temporal resolution particle image velocimetry (PIV), which is non-intrusive with respect to the flow and has high spatial and temporal resolutions. The vibration of the cylinder was found to be anisotropic. There was a discrepancy between the vibration frequencies in the inline and cross-flow directions, the difference being a function of reduced velocity.
Photoelastic investigation of the stresses in a stepped cylinder under internal pressure
International Nuclear Information System (INIS)
Sawa, Yoshiaki; Nishida, Masataka
1985-01-01
The states of stress distribution of the stepped cylinder under inner-pressure are studied by means of stress freezing photoelastic method. The experimental results reveal that fiber stress concentration occurs on the circular arc and hoop stress concentration occurs at the jointing point of the straight line and the arc and that each maximum value of fiver stress and hoop stress depends very greatly on the diameter of a small cylinder and the radius of curvature. And the relationship between the stress concentration factors and these shape factors are given. Effects of wall thickness on the stress concentration factors are also determined. (author)
Calculated leaching of certain fission products from a cylinder of French glass
International Nuclear Information System (INIS)
Blomqvist, G.
1977-07-01
The probable total leaching of the most important fission products and actinides have been tabulated for a cylinder of French HLW glass with approximately 9 percent fission products. The calculations cover the period between 30 and 10000 years after removal from the reactor. The cylinder is of the type planned for the introduction of the HLW into Swedish crystalline rocks. All the components are supposed to have the same leach rate. The calculations also include the probable thickness of eroded glass layer/year. (author)
Kumawat, Tara Chand; Tiwari, Naveen
2018-03-01
Steady two-dimensional solutions and their stability analysis are presented for thin film of a thermoviscous liquid flowing inside a cylinder rotating about its horizontal axis. The inner surface of the cylinder is either uniformly hotter or colder than the enveloping air. The mass, momentum, and energy equations are simplified using thin-film approximation. The analytically obtained film thickness evolution equation consists of various dimensionless parameters such as gravitational number, Bond number, Biot number, thermoviscosity number, and Marangoni number. The viscosity of the liquid is considered as an exponential function of temperature. The viscosity increases (decreases) within the film thickness away from the inner surface of the cylinder when the surface is uniformly hotter (colder) than the atmosphere. For hotter (colder) surface, the film thickness on the rising side decreases (increases) when convective heat transfer at the free surface is increased. The surface tension gradient at the free surface generates Marangoni stress that has a destabilizing (stabilizing) effect on the thin film flow in the case of a hotter (colder) cylinder. The thermoviscosity number stabilizes (destabilizes) the flow on a heating (cooling) surface and this effect increases with an increase in the heat transfer at the free surface. For a hotter surface and in the presence of Marangoni stress, the convective heat transfer at the interface has the destabilizing effect for small values of the Biot number and assumes a stabilizing role for larger values. Non-linear simulations show consistency with the linear stability analysis.
Stabilization of flow past a rounded cylinder
Samtaney, Ravi; Zhang, Wei
2016-11-01
We perform global linear stability analysis on low-Re flow past a rounded cylinder. The cylinder corners are rounded with a radius R, normalized as R+ = R / D where D is the cylinder diameter, and its effect on the flow stability characteristics is investigated. We compute the critical Reynolds number (Recr) for the onset of first instability, and quantify the perturbation growth rate for the super-critical flows. It is found that the flow can be stabilized by partially rounding the cylinder. Compared with the square and circular cylinders, the partially rounded cylinder has a higher Recr , attaining a maximum at around R+ = 0 . 30 , and the perturbation growth rate of the super-critical flows is reduced for Re R+ -> 0 . 00), while only the near-wake backflow is crucial for circular-like cylinders (R+ -> 0 . 50). The stability analysis results are also verified with those of the direct simulations and very good agreement is achieved. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The supercomputer Shaheen at KAUST was utilized for the simulations.
Buckling Optimization of Thick Stiffened Cylindrical Shell
Directory of Open Access Journals (Sweden)
Qasim Hassan Bader
2016-03-01
Full Text Available In this work the critical pressure due to buckling was calculated numerically by using ANSYS15 for both stiffened and un-stiffened cylinder for various locations and installing types , strengthening of the cylinder causes a more significant increase in buckling pressures than non reinforced cylinder . The optimum design of structure was done by using the ASYS15 program; in this step the number of design variables 21 DVs. These variables are Independent variables that directly affect. The design variables represented the thickness of the cylinder and( height and width of 10 stiffeners. State variables (SVs, these variables are dependent variables that change as a result of changing the DVs and are necessary to constrain the design. The objective function is the one variable in the optimization that needs to be minimized. In this case the state variable is critical pressure (CP and the objective function is the total (volume of the structure. The optimum weight of the structure with reasonable required conditions for multi types of structure was found. The result shows the best location of stiffener at internal side with circumferential direction. In this case the critical pressure can be increased about 18.6% and the total weight of the structure decreases to 15.8%.
Dynamical instability of a charged gaseous cylinder
Sharif, M.; Mumtaz, Saadia
2017-10-01
In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.
Flow induced by a skewed vortex cylinder
DEFF Research Database (Denmark)
Branlard, Emmanuel Simon Pierre
2017-01-01
The velocity field induced by a skewed vortex cylinder of longitudinal and tangential vorticity is derived in this chapter by direct integration of the Biotâ€“ Savart law. The derivation steps are provided in details. The results of Castles and Durham for the skewed semi-infinite cylinder....... The content of this chapter is based on the publication of the author entitled "Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors" [1]. Results from this chapter are applied: in Chap. 21 to model a wind turbine (or rotor) in yaw, in Chap. 22 to derive a new yaw...
MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS.
Austin, Daniel; Dinwoodie, Ian H
We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks.
Rolling cylinder phase 1: proof of concept and first optimization
Energy Technology Data Exchange (ETDEWEB)
Margheritini, L.; Taraborrelli, V.
2011-07-15
The Rolling Cylinder is an innovative wave energy device at first stage of development at the time this report is created. The report is aimed at the first stage testing of the Rolling Cylinder wave energy device. This phase includes tests in regular waves and irregular waves, realized in two different set of tests. The optimized short model for the rolling cylinder resulted to have 7 sets of fins with relative distance between two consecutive sets = 0.20 m, 6 fins par set with a thickness of 0.75 mm and a draft d = 0.36 m that features half blade emerging from mean water level. In this case the maximum efficiencies were: 1) 8.7% for RW3. 2) 7.3% for RW4. 3) 6.3% for RW5. These results under typical regular waves (RW3-5) were very close to the results with 4 sets of fins with relative distance between two consecutive sets = 0.40 m, 6 fins par set, 0.75 mm thickness and draft = 0.36 m: 1) 7.2% for RW3. 2) 6.9% for RW4. 3) 6.2% for RW5. It must be noticed that the short model does not have the necessary length to perform optimally under the target wave conditions. The optimal device length has been calculated to be comparable to the wave length of the most energetic/probable wave conditions, i.e. RW3 and RW4. Under this consideration, the short model is only 1/3 of the total length of a complete device that should then be = 4.2 m (105 m in full scale). A first rough estimation of the power production for the rolling cylinder has been conducted using the results from regular wave tests. It has been concluded that for a fixed device (not floating), 105 m long with 23 sets of fins, 6 fins par set, draft of 9 m, similar geometry and fin's elasticity than the model tested in the present report, as well as possibility of adjusting the load to the incoming wave condition (gearing), the yearly energy production of 241 MWh/y (minus the losses in the power take off system), corresponding to a mechanic efficiency of 19%. Result must be validated with irregular wave tests
Flexural vibrations of finite composite poroelastic cylinders
Indian Academy of Sciences (India)
We know from daily experience that many man-made structures consist of ..... The physical parameters of these composite cylinders following Eq. (38) are given in ... Titanium implants remain virtually unchanged in appearance, which offers ...
Shaped superconductor cylinder retains intense magnetic field
Hildebrandt, A. F.; Wahlquist, H.
1964-01-01
The curve of the inner walls of a superconducting cylinder is plotted from the flux lines of the magnetic field to be contained. This shaping reduces maximum flux densities and permits a stronger and more uniform magnetic field.
A Study of Gas Economizing Pneumatic Cylinder
International Nuclear Information System (INIS)
Li, T C; Wu, H W; Kuo, M J
2006-01-01
The pneumatic cylinder is the most typical actuator in the pneumatic equipment, and its mechanism is so simple that it is often used to operate point to point driving without the feedback loop in various automatic machines. But, the energy efficiency of pneumatic system is very poor compared with electrical systems and hydraulic systems. So, it is very important to discuss the energy saving for the pneumatic cylinder systems. In this thesis, we proposed three methods to apply the reduction in the air consumed for pneumatic cylinder systems. An air charge accumulator is used to absorb the exhausted compress air and a boost valve boosted the air to the higher pressure for used again. From the experiments, the direct used cylinder exhaust air may save about 40% of compress air
Theory of interacting dislocations on cylinders.
Amir, Ariel; Paulose, Jayson; Nelson, David R
2013-04-01
We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.
Directory of Open Access Journals (Sweden)
Iman Eshraghi
Full Text Available Abstract In this paper, transient thermomechanical stress intensity factors for functionally graded cylinders with complete internal circumferential cracks are obtained using the weight function method. The finite difference method is used to calculate the time dependent temperature distribution and thermal stresses along the cylinder thickness. Furthermore, finite element analysis is performed to determine the weight function coefficients and to investigate the accuracy of the predicted stress intensity factors from the weight functions. Variation of the stress intensity factors with time and effects of the material gradation on the results are investigated, as well. It is shown that the proposed technique can be used to accurately predict transient thermomechanical stress intensity factors for functionally graded cylinders with arbitrary material gradation.
Schlieren measurements in the round cylinder of an optically accessible internal combustion engine.
Kaiser, Sebastian Arnold; Salazar, Victor Manuel; Hoops, Alexandra A
2013-05-10
This paper describes the design and experimental application of an optical system to perform schlieren measurements in the curved geometry of the cylinder of an optically accessible internal combustion engine. Key features of the system are a pair of cylindrical positive meniscus lenses, which keep the beam collimated while passing through the unmodified, thick-walled optical cylinder, and a pulsed, high-power light-emitting diode with narrow spectral width. In combination with a high-speed CMOS camera, the system is used to visualize the fuel jet after injection of hydrogen fuel directly into the cylinder from a high-pressure injector. Residual aberrations, which limit the system's sensitivity, are characterized experimentally and are compared to the predictions of ray-tracing software.
Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.
2017-12-01
Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.
Application of Potential Theory to Steady Flow Past Two Cylinders in Tandem Arrangement
Directory of Open Access Journals (Sweden)
Yangyang Gao
2014-01-01
Full Text Available The wake flow patterns associated with flow past a cylinder and a cylinder-pair in tandem configuration are revisited, compared, and evaluated with respect to the streamline patterns generated based on potential flow theory and superposition of various potential flow elements. The wakes, which are vortex shedding in the lee of the cylinder(s, are reproduced by placing pairs of equal but opposite circulation elements in the potential flow field. The strength of the circulation elements determines the size of the vortices produced. The streamline patterns of flow past a pair of unequal cylinders in tandem configuration provide an indirect means to establish the threshold condition for the wake transition from that of a single bluff body to alternating reattachment behavior. This threshold condition is found to be a function of the diameter ratio, d/D (diameters d and D, d≤D , spacing ratio, L/D (centre-to-centre distance, L, to cylinder diameter, D, and equivalent incident flow speed, U. A unique functional relationship f (L/D, d/D, U of this threshold condition is established.
Multiple Cylinder Free-Piston Stirling Machinery
Berchowitz, David M.; Kwon, Yong-Rak
In order to improve the specific power of piston-cylinder type machinery, there is a point in capacity or power where an advantage accrues with increasing number of piston-cylinder assemblies. In the case of Stirling machinery where primary energy is transferred across the casing wall of the machine, this consideration is even more important. This is due primarily to the difference in scaling of basic power and the required heat transfer. Heat transfer is found to be progressively limited as the size of the machine increases. Multiple cylinder machines tend to preserve the surface area to volume ratio at more favorable levels. In addition, the spring effect of the working gas in the so-called alpha configuration is often sufficient to provide a high frequency resonance point that improves the specific power. There are a number of possible multiple cylinder configurations. The simplest is an opposed pair of piston-displacer machines (beta configuration). A three-cylinder machine requires stepped pistons to obtain proper volume phase relationships. Four to six cylinder configurations are also possible. A small demonstrator inline four cylinder alpha machine has been built to demonstrate both cooling operation and power generation. Data from this machine verifies theoretical expectations and is used to extrapolate the performance of future machines. Vibration levels are discussed and it is argued that some multiple cylinder machines have no linear component to the casing vibration but may have a nutating couple. Example applications are discussed ranging from general purpose coolers, computer cooling, exhaust heat power extraction and some high power engines.
Dynamic Fracture Simulations of Explosively Loaded Cylinders
Energy Technology Data Exchange (ETDEWEB)
Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-11-30
This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.
Collision Probabilities for Finite Cylinders and Cuboids
Energy Technology Data Exchange (ETDEWEB)
Carlvik, I
1967-05-15
Analytical formulae have been derived for the collision probabilities of homogeneous finite cylinders and cuboids. The formula for the finite cylinder contains double integrals, and the formula for the cuboid only single integrals. Collision probabilities have been calculated by means of the formulae and compared with values obtained by other authors. It was found that the calculations using the analytical formulae are much quicker and give higher accuracy than Monte Carlo calculations.
Bristol cylinder. Vol. 3A - technical appraisal
Energy Technology Data Exchange (ETDEWEB)
1983-06-01
A consultants' report is presented on a UK funded wave energy device known as the Bristol Cylinder. A detailed engineering appraisal is given for each component and aspects of the device including installation, power generation and maintenance. Finally the discounted cost of energy from the device is assessed. For all topics the views of the consultants are compared with those of the team developing the Bristol Cylinder and where discrepancies occur, these are explained and discussed.
Directory of Open Access Journals (Sweden)
Si Putu Gede Gunawan Tista
2012-11-01
Full Text Available One of the ways to reduce energy consumption on the air plane and the other bluff bodies are by decreasing the drag. Drag isclosely related to the flow separation. The earlier separation, then the drag will increase more. Based of the fact the effort todecrease drag is conducted by manipulating the field of fluid flow. Stream manipulation was be done by installing Triangleobstacle in front of cylinder. The purpose of this research is to analyze the effect of various distance triangle obstacle in front ofcylinder on drag. The present experiment was done by placing triangle rod in front of the cylinder. In the present research, theexperiment was conducted in the wind tunnel, which consisted of blower, pitot pipe, manometer, cylinder pipe, and triangle rod.The triangle was positioned at L/D = 1.19, L/D = 1.43, L/D = 1.67, L/D = 1.9, L/D = 2.14, L/D = 2.38, L/D = 2.62, and L/D =2.86 by upstream from the cylinder. The triangle was 8 mm uniform side. The Reynolds number based on the cylinder diameter (D= 42 mm was Re = 1.81 x 104. The research results showed that the triangle rod could decrease the drag of cylinder. Coefficientdrag for cylinder without triangle rod was 0.1276 while the biggest decrease of coefficient of drag with triangle rod washappened at L/D = 1.43 which was 0.0188. It means that the drag of cylinder with triangle rod was 85.25% lower than thecylinder alone.
Sub-wavelength resonances in polygonal metamaterial cylinders
DEFF Research Database (Denmark)
Arslanagic, Samel; Breinbjerg, Olav
2008-01-01
It has been shown that the sub-wavelength resonances of circular MTM cylinders also occur for polygonal MTM cylinders. This is the case for lossless and non-dispersive cylinders as well as lossy and dispersive cylinders. The sub-wavelength resonances are thus not limited to structures of canonical...
Anglim, Breffini; Farah, Nadine; O'Connor, Clare; Daly, Niamh; Kennelly, Mairead M; Turner, Michael J
2017-07-01
Maternal obesity is an emerging challenge in contemporary obstetrics. To date there has been no study analysing the relationship between specific maternal body composition measurements and foetal soft-tissue measurements. The aim of this study was to determine whether measurement of maternal body composition at booking predicts foetal soft-tissue trajectories in the third trimester. We analysed the relationship between foetal thigh in the third trimester and both maternal BMI and body composition using the Tanita digital scales in the first trimester. Foetal subcutaneous thigh tissue measurements were obtained at intervals of 28, 32 and 36 weeks of gestation. A total of 160 women were identified. There was a direct correlation between MTST at 36 weeks and BMI (p = .002). There was a positive correlation between MTST at 36 weeks and leg fat mass (p = .13) and leg fat free mass (p = .013). There was a positive correlation between arm fat free mass and MTST at 36 weeks. We showed there is an association between maternal fat distribution and foetal subcutaneous thigh tissue measurements. MTST may be more useful in determining if a child is at risk of macrosomia. Impact statement Previous studies have suggested that maternal obesity programmes intrauterine foetal adiposity and growth. The aim of this study was to examine the relationship in a high-risk obstetric population between measurements of maternal body composition in early pregnancy and the assessment of foetal adiposity in the third trimester using serial ultrasound measurements of mid-thigh soft-tissue thickness. BMI is only a surrogate measurement of fat and does not measure fat distribution. Our study shows the distribution of both maternal fat and fat-free mass in early pregnancy may be positively associated with foetal soft-tissue measurements in the third trimester. Maternal arthropometric measurements other than BMI may help predict babies at risk of macrosomia and neonatal adiposity.
Jegley, Dawn C.
1988-01-01
Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.
Jegley, Dawn C.
1989-01-01
Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.
Process simulations for manufacturing of thick composites
Kempner, Evan A.
The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure
Analysis of an indirect neutron signature for enhanced UF_6 cylinder verification
International Nuclear Information System (INIS)
Kulisek, J.A.; McDonald, B.S.; Smith, L.E.; Zalavadia, M.A.; Webster, J.B.
2017-01-01
The International Atomic Energy Agency (IAEA) currently uses handheld gamma-ray spectrometers combined with ultrasonic wall-thickness gauges to verify the declared enrichment of uranium hexafluoride (UF_6) cylinders. The current method provides relatively low accuracy for the assay of "2"3"5U enrichment, especially for natural and depleted UF_6. Furthermore, the current method provides no capability to assay the absolute mass of "2"3"5U in the cylinder due to the localized instrument geometry and limited penetration of the 186-keV gamma-ray signature from "2"3"5U. Also, the current verification process is a time-consuming component of on-site inspections at uranium enrichment plants. Toward the goal of a more-capable cylinder assay method, the Pacific Northwest National Laboratory has developed the hybrid enrichment verification array (HEVA). HEVA measures both the traditional 186-keV direct signature and a non-traditional, high-energy neutron-induced signature (HEVA_N_T). HEVA_N_T enables full-volume assay of UF_6 cylinders by exploiting the relatively larger mean free paths of the neutrons emitted from the UF_6. In this work, Monte Carlo modeling is used as the basis for characterizing HEVA_N_T in terms of the individual contributions to HEVA_N_T from nuclides and hardware components. Monte Carlo modeling is also used to quantify the intrinsic efficiency of HEVA for neutron detection in a cylinder-assay geometry. Modeling predictions are validated against neutron-induced gamma-ray spectra from laboratory measurements and a relatively large population of Type 30B cylinders spanning a range of enrichments. Implications of the analysis and findings on the viability of HEVA for cylinder verification are discussed, such as the resistance of the HEVA_N_T signature to manipulation by the nearby placement of neutron-conversion materials.
Analysis of an indirect neutron signature for enhanced UF{sub 6} cylinder verification
Energy Technology Data Exchange (ETDEWEB)
Kulisek, J.A., E-mail: Jonathan.Kulisek@pnnl.gov; McDonald, B.S.; Smith, L.E.; Zalavadia, M.A.; Webster, J.B.
2017-02-21
The International Atomic Energy Agency (IAEA) currently uses handheld gamma-ray spectrometers combined with ultrasonic wall-thickness gauges to verify the declared enrichment of uranium hexafluoride (UF{sub 6}) cylinders. The current method provides relatively low accuracy for the assay of {sup 235}U enrichment, especially for natural and depleted UF{sub 6}. Furthermore, the current method provides no capability to assay the absolute mass of {sup 235}U in the cylinder due to the localized instrument geometry and limited penetration of the 186-keV gamma-ray signature from {sup 235}U. Also, the current verification process is a time-consuming component of on-site inspections at uranium enrichment plants. Toward the goal of a more-capable cylinder assay method, the Pacific Northwest National Laboratory has developed the hybrid enrichment verification array (HEVA). HEVA measures both the traditional 186-keV direct signature and a non-traditional, high-energy neutron-induced signature (HEVA{sub NT}). HEVA{sub NT} enables full-volume assay of UF{sub 6} cylinders by exploiting the relatively larger mean free paths of the neutrons emitted from the UF{sub 6}. In this work, Monte Carlo modeling is used as the basis for characterizing HEVA{sub NT} in terms of the individual contributions to HEVA{sub NT} from nuclides and hardware components. Monte Carlo modeling is also used to quantify the intrinsic efficiency of HEVA for neutron detection in a cylinder-assay geometry. Modeling predictions are validated against neutron-induced gamma-ray spectra from laboratory measurements and a relatively large population of Type 30B cylinders spanning a range of enrichments. Implications of the analysis and findings on the viability of HEVA for cylinder verification are discussed, such as the resistance of the HEVA{sub NT} signature to manipulation by the nearby placement of neutron-conversion materials.
Directory of Open Access Journals (Sweden)
Cheng Liu
Full Text Available The effects of surface texture on the lubrication performance of a compression ring-cylinder liner system are studied in this paper. By considering the surface roughness of the compression ring and cylinder liner, a mixed lubrication model is presented to investigate the tribological behaviors of a barrel-shaped compression ring-cylinder liner system with spherical dimples on the liner. In order to determine the rupture and reformulation positions of fluid film accurately, the Jacoboson-Floberg-Olsson (JFO cavitation boundary condition is applied to the mixed lubrication model for ensuring the mass-conservative law. On this basis, the minimum oil film thickness and average friction forces in the compression ring-cylinder liner system are investigated under the engine-like conditions by changing the dimple area density, radius, and depth. The wear load, average friction forces, and power loss of the compression ring-cylinder liner system with and without dimples are also compared for different compression ring face profiles. The results show that the spherical dimples can produce a larger reduction of friction in mixed lubrication region, and reduce power loss significantly in the middle of the strokes. In addition, higher reduction percentages of average friction forces and wear are obtained for smaller crown height or larger axial width.
Directory of Open Access Journals (Sweden)
Guoxing Li
2017-12-01
Full Text Available The friction pair of piston rings and cylinder liner is one of the most important friction couplings in an internal combustion engine. It influences engine efficiency and service life. Under the excitation of piston slaps, the dynamic deformation of cylinder liner is close to the surface roughness magnitudes, which can affect the friction and lubrication performance between the piston rings and cylinder assemblies. To investigate the potential influences of structural deformations to tribological behaviours of cylinder assemblies, the dynamic deformation of the inner surface due to pistons slaps is obtained by dynamic simulations, and then coupled into an improved lubrication model. Different from the traditional lubrication model which takes the pressure stress factor and shear stress factor to be constant, the model proposed in this paper calculated these factors in real time using numerical integration to achieve a more realistic simulation. Based on the improved piston rings and cylinder liner lubrication model, the minimum oil film thickness and friction force curves are obtained for an entire work cycle. It shows that the friction force obtained from the improved model manifests clear oscillations in each stoke, which is different from the smoothed profiles predicted traditionally. Moreover, the average amplitude of the friction forces also shows clear reduction.
Behavior of concrete cylinders confined by a ferro-geopolymer jacket in axial compression
Directory of Open Access Journals (Sweden)
Kothay Heng
2017-06-01
Full Text Available It is beneficial to utilize geopolymers for their potential properties to rehabilitate concrete structures. These properties include high adhesion to Ordinary Portland Cement (OPC concrete even at low degrees of interfacial roughness, high durability and good fire resistance. This paper introduces use of a ferro-geopolymer jacket to strengthen concrete columns. It is a kind of jacket constructed with a geopolymer mortar reinforced with a wire mesh. This study was conducted to investigate the behavior of concrete cylinders confined with a ferro-geopolymer jacket in axial compression. OPC concrete cylinders with 100 mm diameter and 200 mm height were fabricated. High calcium fly ash-based geopolymer mortar, activated with sodium hydroxide (NaOH and sodium silicate (Na2SiO3, cured at a temperature of 25 ºC was used. Ferro-geopolymer jackets with a25 mm thickness, were reinforced with 1, 2 and 3 layers of expanded metal mesh and cast around concrete cylinders. The study results revealed that the compressive load carrying capacity and axial stiffness of concrete cylinders were improved. A monolithic failure mode was obtained as a result of a strong adhesion between the geopolymer and the concrete core. Enhancement of compressive load carrying capacity of the jacketed concrete cylinders was caused by a combination of a confinement effect and the compressive load resistance of the jacket transferred from concrete core through bonding.
Assessment of Reusing 14-Ton, Thin-Wall, Depleted UF6 Cylinders as LLW Disposal Containers
International Nuclear Information System (INIS)
O'Connor, D.G.; Poole, A.B.; Shelton, J.H.
2000-01-01
Approximately 700,000 MT of DUF 6 is stored, or will be produced under a current agreement with the USEC, at the Paducah site in Kentucky, Portsmouth site in Ohio, and ETTP site in Tennessee. On July 21, 1998, the 105th Congress approved Public Law 105-204, which directed that facilities be built at the Kentucky and Ohio sites to convert DUF 6 to a stable form for disposition. On July 6, 1999, the Department of Energy (DOE) issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as Required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap''. On September 1,2000, DOE issued the ''Draft Depleted Uranium Hexafluoride Materials Use Roadmap'' (Roadmap), which provides alternate paths for the long-term storage, beneficial use, and eventual disposition of each product form and material that will result from the DUF 6 conversion activity. One of the paths being considered for DUF 6 cylinders is to reuse the empty cylinders as containers to transport and dispose of LLW, including the converted DU. The Roadmap provides results of the many alternate uses and disposal paths for conversion products and the empty DUF 6 storage cylinders. As a part of the Roadmap, evaluations were conducted of cost savings, technical maturity, barriers to implementation, and other impacts. Results of these evaluations indicate that using the DUF 6 j storage cylinders as LLW disposal containers could provide moderate cost savings due to the avoided cost of purchasing LLW packages and the avoided cost of disposing of the cylinders. No significant technical or institutional .issues were identified that.would make using cylinders as LLW packages less effective than other disposition paths. Over 58,000 cylinders have been used, or will be used, to store DUF 6 . Over 5 1,000 of those cylinders are 14TTW cylinders with a nominal wall thickness of 5/16-m (0.79 cm). These- 14TTW cylinders, which have a nominal diameter
Directory of Open Access Journals (Sweden)
Qi Wang
2017-01-01
Full Text Available This paper investigates the attenuation by a human body and trees as well as material penetration loss at 26 and 39 GHz by measurements and theoretical modeling work. The measurements were carried out at a large restaurant and a university campus by using a time domain channel sounder. Meanwhile, the knife-edge (KE model and one-cylinder and two-cylinder models based on uniform theory of diffraction (UTD are applied to model the shape of a human body and predict its attenuation in theory. The ITU (International Telecommunication Union and its modified models are used to predict the attenuation by trees. The results show that the upper bound of the KE model is better to predict the attenuation by a human body compared with UTD one-cylinder and two-cylinder models at both 26 and 39 GHz. ITU model overestimates the attenuation by willow trees, and a modified attenuation model by trees is proposed based on our measurements at 26 GHz. Penetration loss for materials such as wood and glass with different types and thicknesses is measured as well. The measurement and modeling results in this paper are significant and necessary for simulation and planning of fifth-generation (5G mm-wave radio systems in ITU recommended frequency bands at 26 and 39 GHz.
Development of all-beryllium riveted structures. [Frustrum; cylinders; cones
Energy Technology Data Exchange (ETDEWEB)
Floyd, D. R.; Leslie, W. W.; Miley, D. V.; Nokes, R. W.
1976-04-20
Results are presented of a development program aimed at making a full-scale, all-beryllium frustrum by riveted assembly methods. Included are descriptions of the sheet-metal fabrication practices and assembly plans. Results of extensive mechanical testing of both ingot- and powder-source beryllium products that are presented include tensile, notch-tensile, bearing, and shear tests. Although the full-size structure has not been built, examples are given of several conical and cylindrical structures that were made. The largest of these is a 20-in. diameter, 15-in. long cylinder that was roll-formed from one 0.050-in. thick ingot sheet and assembled with 60 countersunk rivets. Tensile testing of riveted flat coupons is also reported as is bulge testing of riveted cylindrical shells. A cost comparison of riveted deep-drawn and powder-source cylinders is made. Results show that when strength and dimensional tolerance requirements are not severe, a riveted assembly approach is warranted. 33 figures, 8 tables. (auth)
Mathematical Modeling of Partial-Porous Circular Cylinders with Water Waves
Directory of Open Access Journals (Sweden)
Min-Su Park
2015-01-01
Full Text Available The interaction of water waves with partially porous-surfaced circular cylinders was investigated. A three-dimensional numerical modeling was developed based on the complete mathematical formulation of the eigenfunction expansion method in the potential flow. Darcy’s law was applied to describe the porous boundary. The partial-porous cylinder is composed of a porous-surfaced body near the free surface, and an impermeable-surfaced body with an end-capped rigid bottom below the porous region. The optimal ratio of the porous portion to the impermeable portion can be adopted to design an effective ocean structure with minimal hydrodynamic impact. To scrutinize the hydrodynamic interactions in N partial-porous circular cylinders, the computational fluid domain is divided into three regions: an exterior region, N inner porous body regions, and N regions beneath the body. Wave excitation forces and wave run-up on multibodied partial-porous cylinders are calculated and compared for various porous-portion ratios and wave conditions, all of which significantly influence the hydrodynamic property.
Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.
Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian
2015-11-01
A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.
Jegley, Dawn C.
1987-01-01
Buckling loads of thick-walled orthotropic and anisotropic simply supported circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of buckling loads predicted by the conventional first-order transverse-shear deformation theory and the higher-order theory show that the additional allowance for transverse shear deformation has a negligible effect on the predicted buckling loads of medium-thick metallic isotropic cylinders. However, the higher-order theory predicts buckling loads which are significantly lower than those predicted by the first-order transverse-shear deformation theory for certain short, thick-walled cylinders which have low through-the-thickness shear moduli. A parametric study of the effects of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 45 degree plies are most sensitive to transverse-shear deformation effects. Interaction curves for buckling loads of cylinders subjected to axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are as sensitive to transverse-shear deformation effects as buckling loads due to axial compressive loadings. The effects of anisotropy are important over a much wider range of cylinder geometries than the effects of transverse shear deformation.
Sheth, Hetu; Patel, Vanit; Samant, Hrishikesh
2017-08-01
Upper crustal prismatic joints and vesicle cylinders, common in pāhoehoe lava flows, form early and late, respectively, and are therefore independent features. However, small-scale compound pāhoehoe lava lobes on Elephanta Island (western Deccan Traps, India), which resemble S-type (spongy) pāhoehoe in some aspects, contain vesicle cylinders which apparently controlled the locations of upper crustal prismatic joints. The lobes are decimeters thick, did not experience inflation after emplacement, and solidified rapidly. They have meter-scale areas that are exceptionally rich in vesicle cylinders (up to 68 cylinders in 1 m2, with a mean spacing of 12.1 cm), separated by cylinder-free areas, and pervasive upper crustal prismatic jointing with T, curved T, and quadruple joint intersections. A majority (≥76.5%) of the cylinders are located exactly on joints or at joint intersections, and were not simply captured by downward growing joints, as the cylinders show no deflection in vertical section. We suggest that large numbers of cylinders originated in a layer of bubble-rich residual liquid at the top of a basal diktytaxitic crystal mush zone which was formed very early (probably within the first few minutes of the emplacement history). The locations where the rising cylinders breached the crust provided weak points or mechanical flaws towards which any existing joints (formed by thermal contraction) propagated. New joints may also have propagated outwards from the cylinders and linked up laterally. Some cylinders breached the crust between the joints, and thus formed a little later than most others. The Elephanta Island example reveals that, whereas thermal contraction is undoubtedly valid as a standard mechanism for forming upper crustal prismatic joints, abundant mechanical flaws (such as large concentrations of early-formed, crust-breaching vesicle cylinders) can also control the joint formation process.
Plasma actuators for bluff body flow control
Kozlov, Alexey V.
noise. A tandem cylinder configuration with the plasma actuation on the upstream cylinder is investigated using surface dynamic pressure sensors. As a result of the plasma actuation, the surface pressure fluctuations on the downstream cylinder are reduced by about two times at the free-stream velocity of 40 m/s (ReD = 164,000). In addition, this study presents the results of a parametric experimental investigation aimed at optimizing the body force produced by single dielectric barrier discharge (SDBD) plasma actuators used for aerodynamic flow control. A primary goal of the study is the improvement of actuator authority for flow control applications at higher Reynolds number than previously possible. The study examines the effects of dielectric material and thickness, applied voltage amplitude and frequency, voltage waveform, exposed electrode geometry, covered electrode width and multiple actuator arrays. The metric used to evaluate the performance of the actuator in each case is the measured actuator-induced thrust which is proportional to the total body force. It is demonstrated that actuators constructed with thick dielectric material of low dielectric constant and operated at low frequency AC voltage produce a body force that is an order of magnitude larger than that obtained by the Kapton-based actuators used in many previous plasma flow control studies. These actuators allow operation at much higher applied voltages without the formation of discrete streamers which lead to body force saturation.
Oscillatory Stokes Flow Past a Slip Cylinder
Palaniappan, D.
2013-11-01
Two-dimensional transient slow viscous flow past a circular cylinder with Navier slip boundary conditions is considered in the limit of low-Reynolds number. The oscillatory Stokes flow problem around a cylinder is solved using the stream function method leading to an analytic solution in terms of modified Bessel functions of the second kind. The corresponding steady-state behavior yields the familiar paradoxical result first detected by Stokes. It is noted that the two key parameters, viz., the frequency λ, and the slip coefficient ξ have a significant impact on the flow field in the vicinity of the cylinder contour. In the limit of very low frequency, the flow is dominated by a term containing a well-known biharmonic function found by Stokes that has a singular behavior at infinity. Local streamlines for small times show interesting flow patterns. Attached eddies due to flow separation - observed in the no-slip case - either get detached or pushed away from the cylinder surface as ξ is varied. Computed asymptotic results predict that the flow exhibits inviscid behavior far away from the cylinder in the frequency range 0 < λ << 1 . Although the frequency of oscillations is finite, our exact solutions reveal fairly rapid transitions in the flow domain. Research Enhancement grant, TAMUCC.
Guided Circumferential Waves in Layered Poroelastic Cylinders
Directory of Open Access Journals (Sweden)
Shah S.A.
2016-12-01
Full Text Available The present paper investigates the propagation of time harmonic circumferential waves in a two-dimensional hollow poroelastic cylinder with an inner shaft (shaft-bearing assembly. The hollow poroelastic cylinder and inner shaft are assumed to be infinite in axial direction. The outer surface of the cylinder is stress free and at the interface, between the inner shaft and the outer cylinder, it is assumed to be free sliding and the interfacial shear stresses are zero, also the normal stress and radial displacements are continuous. The frequency equation of guided circumferential waves for a permeable and an impermeable surface is obtained. When the angular wave number vanish the frequency equation of guided circumferential waves for a permeable and an impermeable surface degenerates and the dilatational and shear waves are uncoupled. Shear waves are independent of the nature of surface. The frequency equation of a permeable and an impermeable surface for bore-piston assembly is obtained as a particular case of the model under consideration when the outer radius of the hollow poroelastic cylinder tends to infinity. Results of previous studies are obtained as a particular case of the present study. Nondimensional frequency as a function of wave number is presented graphically for two types of models and discussed. Numerical results show that, in general, the first modes are linear for permeable and impermeable surfaces and the frequency of a permeable surface is more than that of an impermeable surface.
Energy Technology Data Exchange (ETDEWEB)
Park, S.H. [Oak Ridge K-25 Site, Oak Ridge, TN (United States)
1991-12-31
With the increasing number of nuclear reactors for power generation, there is a comparable increase in the amount of UF{sub 6} being transported. Likewise, the probability of having an accident involving UF{sub 6}-filled cylinders also increases. Accident scenarios which have been difficult to assess are those involving a filled UF{sub 6} cylinder subjected to fire. A study is underway at the Oak Ridge K-25 Site, as part of the US DOE Enrichment Program, to provide empirical data and a computer model that can be used to evaluate various cylinder-in-fire scenarios. It is expected that the results will provide information leading to better handling of possible fire accidents as well as show whether changes should be made to provide different physical protection during shipment. The computer model being developed will be capable of predicting the rupture of various cylinder sizes and designs as well as the amount of UF{sub 6}, its distribution in the cylinder, and the conditions of the fire.
International Nuclear Information System (INIS)
Patil, Pratish P; Tiwari, Shaligram
2009-01-01
The characteristics of unsteady wakes behind a stationary square cylinder and another upstream vibrating square cylinder have been investigated numerically with the help of a developed computational code. The effect of longitudinal as well as transverse vibrations of the upstream cylinder is studied on the coupled wake between the two cylinders, which is found to control the vortex shedding behavior behind the downstream stationary cylinder. Computations are carried out for a fixed value of Reynolds number (Re = 200) and three different values of excitation frequencies of the upstream cylinder, namely less than, equal to and greater than the natural frequency of vortex shedding corresponding to flow past a stationary square cylinder. The vortex shedding characteristics of the unsteady wakes behind the vibrating and stationary cylinders are found to differ significantly for longitudinal and transverse modes of vibration of the upstream cylinder. The wake of the downstream stationary cylinder is found to depict a synchronization behavior with the upstream cylinder vibration. The spacing between the two cylinders has been identified to be the key parameter influencing the synchronization phenomenon. The effect of cylinder spacing on the wake synchronization and the hydrodynamic forces has been examined. In addition, a comparison of the drag forces for flow past transversely vibrating square and circular cylinders for similar amplitudes and frequencies of cylinder vibration has been presented while employing the tested computational code.
Thin circular cylinder under axisymmetrical thermal and mechanical loading
International Nuclear Information System (INIS)
Arnaudeau, F.; Zarka, J.; Gerij, J.
1977-01-01
To assess structural integrity of components subjected to cyclic thermal loadings one must look at thermal ratchetting as a possible failure mode. Considering a thin circular cylinder subjected to constant internal pressure and cyclically varying thermal gradient through the thickness Bree, J. Strain Analysis 2 (1967) No.3, obtained a diagram that serves as a foundation for many design rules (e.g.: ASME code). The upper part of the french LMFBR main vessel is subjected to an axisymmetrical axial thermal loading and an axial load (own weight). Operation of the reactor leads to cyclic variations of the axial thermal loading. The question that arises is whether or not the Bree diagram is realistic for such loading conditions. A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where no ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram
Process for manufacturing hollow fused-silica insulator cylinder
Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.
2001-01-01
A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.
Prestressed concrete reactor vessel thermal cylinder model study
International Nuclear Information System (INIS)
Callahan, J.P.; Canonico, D.A.; Richardson, M.; Corum, J.M.; Dodge, W.G.; Robinson, G.C.; Whitman, G.D.
1977-01-01
The thermal cylinder experiment was designed both to provide information for evaluating the capability of analytical methods to predict the time-dependent stress-strain behavior of a 1 / 6 -scale model of the barrel section of a single-cavity prestressed concrete reactor vessel and to demonstrate the structural behavior under design and off-design thermal conditions. The model was a thick-walled cylinder having a height of 1.22 m, a thickness of 0.46 m, and an outer diameter of 2.06 m. It was prestressed both axially and circumferentially and subjected to 4.83 MPa internal pressure together with a thermal crossfall imposed by heating the inner surface to 338.8 K and cooling the outer surface to 297.1 K. The initial 460 days of testing were divided into time periods that simulated prestressing, heatup, reactor operation, and shutdown. At the conclusion of the simulated operating period, the model was repressurized and subjected to localized heating at 505.4 K for 84 days to produce an off-design hot-spot condition. Comparisons of experimental data with calculated values obtained using the SAFE-CRACK finite-element computer program showed that the program was capable of predicting time-dependent behavior in a vessel subjected to normal operating conditions, but that it was unable to accurately predict the behavior during off-design hot-spot heating. Readings made using a neutron and gamma-ray backscattering moisture probe showed little, if any, migration of moisture in the concrete cross section. Destructive examination indicated that the model maintained its basic structural integrity during localized hot-spot heating
Powder alignment system for anisotropic bonded NdFeB Halbach cylinders \\ud
Zhu, Z.Q.; Xia, Z.P.; Atallah, K.; Jewell, G.W.; Howe, D.
2000-01-01
A Halbach cylinder, fabricated from pre-magnetized sintered NdFeB magnet segments, is proposed for the powder aligning system during the compression or injection moulding of anisotropic bonded Halbach oriented NdFeB ring magnets. The influence of leading design parameters of the powder aligning system, viz. the number of magnet segments per pole, their axial length and radial thickness, and their clearance from the mould, is investigated by finite element analysis, and validated experimentally
Ranking of Cylinder Liner Materials in Two Stroke Marine Diesel Engines
DEFF Research Database (Denmark)
Pedersen, Michael Torben; Imran, Tajammal; Klit, Peder
2009-01-01
is made into a ring and the piston ring into a block. A short introduction of the test apparatus and its abilities is presented and discussed. Results from comparison and characterisation of five different cylinder liner materials run with a fixed piston ring material are presented. A preliminary ranking...... of the materials is given based on the materials tribological performance. The materials are evaluated on basis of friction force, oil film thickness variation, temperature variation and rotational speed....
Rotation induced flow suppression around two tandem circular cylinders at low Reynolds number
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Dipankar [Advanced Design and Analysis Group, CSIR—Central Mechanical Engineering Research Institute, Durgapur-713209 (India); Gupta, Krishan [Department of Mechanical Engineering, Sardar Vallabhai National Institute of Technology Surat, Surat-395007 (India); Kumar, Virendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna-800013 (India); Varghese, Sachin Abraham, E-mail: d_chatterjee@cmeri.res.in [Department of Mechanical Engineering, National Institute of Technology Durgapur, Durgapur-713209 (India)
2017-08-15
The rotation to a bluff object is known to have a stabilizing effect on the fluid dynamic transport around the body. An unsteady periodic flow can be degenerated into a steady flow pattern depending on the rate of rotation imparted to the body. On the other hand, multiple bodies placed in tandem arrangement with respect to an incoming flow can cause destabilization to the flow as a result of the complicated wake interaction between the bodies. Accordingly, the spacing between the bodies and the rate of rotation have significant impact on the overall fluid dynamic transport around them. The present work aims to understand how these two competing factors are actually influencing the fluidic transport across a pair of identical rotating circular cylinders kept in tandem arrangement in an unconfined medium. The cylinders are subjected to a uniform free stream flow and the gaps between the cylinders are varied as 0.2, 0.7, 1.5 and 3.0. Both the cylinders are made to rotate in the clockwise sense. The Reynolds number based on the free stream flow is taken as 100. A two-dimensional finite volume based transient computation is performed for a range of dimensionless rotational speeds of the cylinders (0 ≤ Ω ≤ 2.75). The results show that the shedding phenomena can be observed up to a critical rate of rotation (Ω{sub cr}) depending on the gap spacing. Beyond Ω{sub cr}, the flow becomes stabilized and finally completely steady as Ω increases further. Increasing the gap initially causes a slight decrease in the critical rotational speed, however, it increases at a rapid rate for larger gap spacing. (paper)
Corrosion of breached UF6 storage cylinders
International Nuclear Information System (INIS)
Barber, E.J.; Taylor, M.S.; DeVan, J.H.
1993-01-01
This paper describes the corrosion processes that occurred following the mechanical failure of two steel 14-ton storage cylinders containing depleted UF 6 . The failures both were traced to small mechanical tears that occurred during stacking of the cylinders. Although subsequent corrosion processes greatly extended the openings in the wall. the reaction products formed were quite protective and prevented any significant environmental insult or loss of uranium. The relative sizes of the two holes correlated with the relative exposure times that had elapsed from the time of stacking. From the sizes and geometries of the two holes, together with analyses of the reaction products, it was possible to determine the chemical reactions that controlled the corrosion process and to develop a scenario for predicting the rate of hydrolysis of UF 6 , the loss rate of HF, and chemical attack of a breached UF 6 storage cylinder
A pneumatic cylinder driving polyhedron mobile mechanism
Ding, Wan; Kim, Sung-Chan; Yao, Yan-An
2012-03-01
A novel pneumatic cylinder driving polyhedron mobile mechanism is proposed in this paper. The mechanism is comprised of 5 tetrahedrons which includes a pneumatic cylinder in each edge. It locomotes by rolling and the rolling principle refers to the center of mass (CM) of the mechanism moved out of the supporting area and let it tip over through the controlling of the motion sequence of these cylinders. Firstly, the mathematical model is built to analysis the relation between the configuration and the CM of the mechanism. Then, a binary control strategy is developed to simplify and improve the control of this mobile mechanism. After that, dynamic simulation is performed to testify the analytical validity and feasibility of the rolling gaits. At last, a prototype is fabricated to achieve the rolling successfully to demonstrate the proposed concept.
Electrically Cooled Germanium System for Measurements of Uranium Enrichments in UF6 Cylinders
International Nuclear Information System (INIS)
Dvornyak, P.; Koestlbauer, M.; Lebrun, A.; Murray, M.; Nizhnik, V.; Saidler, C.; Twomey, T.
2010-01-01
Measurements of Uranium enrichment in UF6 cylinders is a significant part of the IAEA Safeguards verification activities at enrichment and conversion plants. Nowadays, one of the main tools for verification of Uranium enrichment in UF6 cylinders used by Safeguards inspectors is the gamma spectroscopy system with HPGe detector cooled with liquid nitrogen. Electrically Cooled Germanium System (ECGS) is a new compact and portable high resolution gamma spectrometric system free from liquid nitrogen cooling, which can be used for the same safeguards applications. It consists of the ORTEC Micro-trans-SPEC HPGe Portable Spectrometer, a special tungsten collimator and UF6 enrichment measurement software. The enrichment of uranium is determined by of quantifying the area of the 185.7 keV peak provided that the measurement is performed with a detector viewing an infinite thickness of material. Prior starting the verification of uranium enrichment at the facility, the ECGS has to be calibrated with a sample of known uranium enrichment, material matrix, container wall thickness and container material. Evaluation of the ECGS capabilities was performed by carrying out a field test on actual enrichment verification of uranium in UF6 cylinder or other forms of uranium under infinite thickness conditions. The results of these evaluations allow to say that the use of ECGS will enhance practicality of the enrichment measurements and support unannounced inspection activities at enrichment and conversion plants. (author)
Electromagnetic Invisibility of Elliptic Cylinder Cloaks
International Nuclear Information System (INIS)
Kan, Yao; Chao, Li; Fang, Li
2008-01-01
Structures with unique electromagnetic properties are designed based on the approach of spatial coordinate transformations of Maxwell's equations. This approach is applied to scheme out invisible elliptic cylinder cloaks, which provide more feasibility for cloaking arbitrarily shaped objects. The transformation expressions for the anisotropic material parameters and the field distribution are derived. The cloaking performances of ideal and lossy elliptic cylinder cloaks are investigated by finite element simulations. It is found that the cloaking performance will degrade in the forward direction with increasing loss. (fundamental areas of phenomenology (including applications))
Three-dimensional study of flow past a square cylinder at low Reynolds numbers
International Nuclear Information System (INIS)
Saha, A.K.; Biswas, G.; Muralidhar, K.
2003-01-01
The spatial evolution of vortices and transition to three-dimensionality in the wake of a square cylinder have been numerically studied. A Reynolds number range between 150 and 500 has been considered. Starting from the two-dimensional Karman vortex street, the transition to three-dimensionality is found to take place at a Reynolds number between 150 and 175. The three-dimensional wake of the square cylinder has been characterized using indicators appropriate for the wake of a bluff body as described by the earlier workers. In these terms, the secondary vortices of Mode-A are seen to persist over the Reynolds number range of 175-240. At about a Reynolds number of 250, Mode-B secondary vortices are present, these having predominantly small-scale structures. The transitional flow around a square cylinder exhibits an intermittent low frequency modulation due to the formation of a large-scale irregularity in the near-wake, called vortex dislocation. The superposition of vortex dislocation and the Mode-A vortices leads to a new pattern, labelled as Mode-A with dislocations. The results for the square cylinder are in good accordance with the three-dimensional modes of transition that are well-known in the circular cylinder wake. In the case of a circular cylinder, the transition from periodic vortex shedding to Mode-A is characterized by a discontinuity in the Strouhal number-Reynolds number relationship at about a Reynolds of 190. The transition from Mode-A to Mode-B is characterized by a second discontinuity in the frequency law at a Reynolds number of ∼250. The numerical computations of the present study with a square cylinder show that the values of the Strouhal number and the time-averaged drag-coefficient are closely associated with each other over the range of Reynolds numbers of interest and reflect the spatial structure of the wake
On the motion of a compressible fluid in a rotating cylinder
International Nuclear Information System (INIS)
Brouwers, J.J.H.
1976-06-01
The secondary flow of an incompressible fluid or a perfect gas in a rotating cylinder is taken as a small perturbation on the isothermal state of rigid body rotation. Three types of flow are identified by increasing length-to-radius ratio L. These correspond to Esup(1/2) -1 and E -1 approximately L, where E is the Ekman number based on the radius and taken to be small. In the first range a geostrophic flow in the interior extended by Ekman layers near the end caps and Stewartson layers near the cylinder wall is found. For L approximately Esup(-1/2) and L approximately E -1 both Stewartson layers successively expand to the interior. For L approximately> E -1 radial diffusion of momentum is an important parameter describing the flow in the main section of the cylinder. For the perfect gas, special attention is focussed on strong radial density gradients. The modified Ekman number Esub(m) based on the density at the cylinder wall and on the density scale height is taken to be small. Increasing the ratio of the length to the radial density scale height Lsub(m) again three types of flow are distinguished. These correspond to Esub(m)sup(1/2) -1 and Esub(m)sup(-1) approximately Lsub(m). Compared to the incompressible fluid, two essential differences are found. (i) An inviscid flow characteristic for the first range is only observed in a limited region near the cylinder wall. Diffusive processes are important in the core of the cylinder. (ii) A change of the flow type appears when both Stewartson layers successively expand over the small radial density scale height. Diffusive regions come up from the centre of the cylinder and join. A change of the flow type appears at relatively small values of L. The theory discusses the efficiency of gas ultracentrifuges for isotope separation
Flow over an inline oscillating circular cylinder in the wake of a stationary circular cylinder
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yang; Zhu, Keqiang, E-mail: zhukeqiang@nbu.edu.cn [Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211 (China)
2017-02-15
Flow interference between an upstream stationary cylinder and an inline oscillating cylinder is studied with the lattice Boltzmann method. With a fixed Reynolds number Re = 100 and pitch ratio L / D = 4, the effects of oscillation amplitude A / D = [0.25, 1] and frequency f {sub e}/ f {sub s} = [0.5, 2] are investigated. The wake response state is categorized into lock-in and non-lock-in. The lock-in zone in the bifurcation diagram of amplitude versus frequency is discontinuous. Response states of upstream and downstream wakes are similar under the conditions of small amplitude or low frequency. However, with large oscillating parameters, the two wakes are prone to be in different states as the flow field becomes irregular. Two distinct flow regimes have been identified, i.e., single-cylinder and two-cylinder shedding regimes. The presence of single-cylinder shedding regime is attributed to the low shedding frequency of the downstream cylinder at large amplitude. Hydrodynamic forces of the oscillating tandem system are discussed. The results reveal that forces on the two cylinders behave differently and that the absence of vortices in the gap flow significantly reduces the forces exerting on the tandem system. (paper)
UF{sub 6} cylinder inspections at PGDP
Energy Technology Data Exchange (ETDEWEB)
Lamb, G.W.; Whinnery, W.N. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)
1991-12-31
Routine inspections of all UF{sub 6} cylinders at the Paducah Gaseous Diffusion Plant have been mandated by the Department of Energy. A specific UF{sub 6} cylinder inspection procedure for what items to inspect and training for the operators prior to inspection duty are described. The layout of the cylinder yards and the forms used in the inspections are shown. The large number of cylinders (>30,000) to inspect and the schedule for completion on the mandated time table are discussed. Results of the inspections and the actions to correct the deficiencies are explained. Future inspections and movement of cylinders for relocation of certain cylinder yards are defined.
Distal corporoplasty for distal cylinders extrusion after penile prosthesis implantation.
Carrino, Maurizio; Chiancone, Francesco; Battaglia, Gaetano; Pucci, Luigi; Fedelini, Paolo
2017-02-03
Distal extrusion of cylinders is a potential complication of the penile prosthesis implantation. Several methods have been proposed for repairing a distal penile erosion. We present our preliminary experience in "Distal corporoplasty" technique. We enrolled 18 consecutive patients whose underwent a distal corporoplasty with simultaneous reimplantation of an "AMS 700 inflatable penile prosthesis (LGX)" from January 2013 to November 2015 at our hospital. All procedures were performed by a single surgical team. Intraoperative and postoperative complications have been classified and reported according to Satava6 and Clavien-Dindo (CD) system.7 Mean values with standard deviations (±SD) were computed and reported for all items. Mean age of the patients was 53.61 (±11.90) years. Mean body max index (BMI) was 24.22 (±2.51). Mean operative time was 85.2 (±13.1) minutes. Blood losses were minimal. No intraoperative complications are reported according to Satava classification. Four out of 18 patients (22.22%) experienced postoperative complications according to CD system. All patients had sexual intercourse for the first time postsurgery after a mean of 59.11 ± 2.08 days. Mean follow-up was 22.11 (±9.95). Distal extrusion of cylinders is a potential complication of the penile prosthesis implantation. Distal corporoplasty was first described by Mulcahy. He reported a series of 14 patients with a follow-up of about 2 years with optimal functional outcomes. Moreover, distal corporoplasty resulted in shorter operative time, better function, less pain, and fewer recurrences than Gortex windsock repair.10 In our experience, distal corporoplasty is a simple and safe procedure in the treatment of distal cylinders extrusion when the prosthetic material is not exposed to the exterior.
Transient Vibrations of an Elastic Cylinder Inserted in the Elastic Medium
Directory of Open Access Journals (Sweden)
Sulym Heorgij
2016-06-01
Full Text Available Using method of Laguerre polynomials we have obtained the solution of the dynamic problem of the theory of elasticity for elastic cylinder inserted into massive body modeled as a space. The source of non-stationary processes in composite is high intensity force load of the inner surface of the cylinder. On the surface separation of materials of space and cylinder the conditions of ideal mechanical contact are satisfied. The solution is obtained as series of Laguerre polynomials, which coefficients are found from recurrent relations. The results of numerical analysis of transient stress-strain state in elastic space with cylindrical insertion might be used for the technological process of hydraulic fracturing during shale gas extraction.
Behaviour of Viscoelastic - Viscoplastic Spheres and Cylinders - Partly Plastic Vessel Walls
DEFF Research Database (Denmark)
Ottosen, N. Saabye
1985-01-01
The material model consists of a viscoelastic Burgers element and an additional viscoplastic Bingham element when the effective stress exceeds the yield stress. For partly plastic vessel walls, expressions are derived for the stress and strain state in pressurised or relaxation loaded thick......-walled cylinders in plane strain and spheres. For the spherical problem, the material compressibility is accounted for. The influence of the different material parameters on the behaviour of the vessels is evaluated. It is shown that the magnitude of the Maxwell viscosity is of major importance for the long......-term behaviour of thick-walled partly plastic vessels....
Behaviour of Viscoelastic - Viscoplastic Spheres and Cylinders - Fully Plastic Vessel Walls
DEFF Research Database (Denmark)
Ottosen, N. Saabye
1985-01-01
The material model consists of a viscoelastic Burgers element and an additional viscoplastic Bingham element when the effective stress exceeds the yield stress. For fully plastic vessel walls, exact closed-form expressions arc derived for the stress and strain state in pressurised or relaxation...... loaded thick-walled cylinders in plane strain and spheres. For the spherical problem, the material compressibility is accounted for. The influence of the different material parameters on the behaviour of the vessels is evaluated. It is shown that the magnitude of the Maxwell viscosity is of major...... importance for the long-term behaviour of thick-walled fully plastic vessels....
Unsteady separation and vortex shedding from a laminar separation bubble over a bluff body
Das, S. P.; Srinivasan, U.; Arakeri, J. H.
2013-07-01
Boundary layers are subject to favorable and adverse pressure gradients because of both the temporal and spatial components of the pressure gradient. The adverse pressure gradient may cause the flow to separate. In a closed loop unsteady tunnel we have studied the initiation of separation in unsteady flow past a constriction (bluff body) in a channel. We have proposed two important scalings for the time when boundary layer separates. One is based on the local pressure gradient and the other is a convective time scale based on boundary layer parameters. The flow visualization using a dye injection technique shows the flow structure past the body. Nondimensional shedding frequency (Strouhal number) is calculated based on boundary layer and momentum thicknesses. Strouhal number based on the momentum thickness shows a close agreement with that for flat plate and circular cylinder.
Rivulet flow round a horizontal cylinder subject to a uniform surface shear stress
Paterson, C.
2014-09-14
© 2014 © The Author, 2014. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oup.com. The steady flow of a slowly varying rivulet with prescribed flux in the azimuthal direction round a large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a solution corresponding to a rivulet flowing down at least part of one side of the cylinder. We consider both a rivulet with constant non-zero contact angle but slowly varying width (that is, de-pinned contact lines) and a rivulet with constant width but slowly varying contact angle (that is, pinned contact lines), and show that they have qualitatively different behaviour. When shear is present, a rivulet with constant non-zero contact angle can never run all the way from the top to the bottom of the cylinder, and so we consider the scenario in which an infinitely wide two-dimensional film of uniform thickness covers part of the upper half of the cylinder and \\'breaks\\' into a single rivulet with constant non-zero contact angle. In contrast, a sufficiently narrow rivulet with constant width can run all the way from the top to the bottom of the cylinder, whereas a wide rivulet can do so only if its contact lines de-pin, and so we consider the scenario in which the contact lines of a wide rivulet de-pin on the lower half of the cylinder.
Energy Technology Data Exchange (ETDEWEB)
Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn
2016-12-15
Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.
Comparison of Flow Structures in the Downstream Region of a Cylinder with Flexible Strip
Directory of Open Access Journals (Sweden)
Tekşin Süleyman
2015-01-01
Full Text Available The present study investigates the details of flow structure to downstream of a circular cylinder mounted on a flat surface, in successive plan-view plane both in the boundary layer and up level region. The behavior of the flow in the wake of the bare cylinder and attached a flexible strip which has a 1400 N/mm2 modulus of elasticity vinyl PVC transperent film. The length of strip 240 mm (L/D=4 is investigated using Particle Image Velocimetry (PIV technique for Reynolds numbers based on the cylinder diameter of 2500. The flow data downstream of the cylinder are presented using time-averaged velocity vector map, Vavg, streamline patterns, ψavg, vorticity contours, ωavg, and Reynolds stress correlations, u’u’ avg, v’v’ avg, u’v’ avg and rms velocity values. The locations of the peak values of Reynolds stress correlations and other data are also presented in both bare cylinder and attached body in order to determine the regions under high fluctuations. Another L/D ratios will be investigated in other experiments.
Effect of gasket of varying thickness on spark ignition engines | Ajayi ...
African Journals Online (AJOL)
In the study of Toyota, In-line, 4 cylinders, spark ignition engine using gaskets of varying thicknesses (1.75mm, 3.5mm, 5.25mm, 7mm and 8.75mm) between the cylinder head and the engine block, the performance characteristics of the engine was investigated via the effect of engine speed on brake power, brake thermal ...
Spin-Up in a Rectangular Cylinder
1993-12-01
BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WRITE ...cylinder by scaling as follows: I I IElt , and p = E’,X, 3.22 where we have scaled the radial and vertical flow to be higher order in Ekman number than the
Stability analysis of cylinders with circular cutouts
Almroth, B. O.; Brogan, F. A.; Marlowe, M. B.
1973-01-01
The stability of axially compressed cylinders with circular cutouts is analyzed numerically. An extension of the finite-difference method is used which removes the requirement that displacement components be defined in the directions of the grid lines. The results of this nonlinear analysis are found to be in good agreement with earlier experimental results.
Anomalous skin-effect in tin cylinders
van de Klundert, L.J.M.; Gijsbertse, E.A.; van der Marel, L.C.
1972-01-01
The susceptibilities of three Sn-cylinders have been measured at a temperature slightly below Tc and in an external magnetic field just below Hc(T). The results are compared with calculations for a flat plate. From this the d.c. conductivity, the mean free path and the reflectivity-factor, have been
Self-contact for rods on cylinders
Heijden, van der G.H.M.; Peletier, M.A.; Planqué, R.
2006-01-01
We study self-contact phenomena in elastic rods that are constrained to lie on a cylinder. By choosing a particular set of variables to describe the rod centerline the variational setting is made particularly simple: the strain energy is a second-order functional of a single scalar variable, and the
Self-contact for rods on cylinders
G.H.M. van der Heijden; M.A. Peletier (Mark); R. Planqué (Robert)
2004-01-01
textabstractWe study self-contact phenomena in elastic rods that are constrained to lie on a cylinder. By choosing a particular set of variables to describe the rod centerline the variational setting is made particularly simple: the strain energy is a second-order functional of a single scalar
Self-contact for rods on cylinders
Heijden, van der G.H.M.; Peletier, M.A.; Planqué, R.
2004-01-01
We study self-contact phenomena in elastic rods that are constrained to lie on a cylinder. By choosing a particular set of variables to describe the rod centerline the variational setting is made particularly simple: the strain energy is a second-order functional of a single scalar variable, and the
Magnetohydrodynamic flow past a circular cylinder
International Nuclear Information System (INIS)
Swarup, S.; Sinha, P.C.
1977-01-01
This paper deals with the slow-flow problem of an incompressible, viscous, electrically conducting fluid past a circular cylinder in an alignment magnetic field. The solutions for the velocity and magnetic fields as sought by the method of matched asymptotic expansions under the assumptions R,Rsub(m) 2 ) and O(R/log M), respectively. (Auth.)
The Experience Cylinder, an immersive interactive platform
DEFF Research Database (Denmark)
Andreasen, Troels; Gallagher, John Patrick; Møbius, Nikolaj
2011-01-01
This paper describes the development of an experimental interactive installation, a so-called "experience cylinder", intended as a travelogue and developed specifically to provide a narrative about the Viking ship Sea Stallion’s (Havhingst) voyage from Roskilde to Dublin and back. The installation...
The capillary interaction between two vertical cylinders
Cooray, Himantha; Cicuta, Pietro; Vella, Dominic
2012-01-01
surface clusters. Here we present a numerical method for determining the three-dimensional meniscus around a pair of vertical circular cylinders. This involves the numerical solution of the fully nonlinear Laplace-Young equation using a mesh-free finite
Interface dilation : the overflowing cylinder technique
Bergink - Martens, D.J.M.
1993-01-01
A pure steady-state dilation of a liquid interface, either liquid-air or water-oil, can be accomplished far from equilibrium by means of the overflowing cylinder technique. The resulting dynamic surface tension data correlate well with characteristic parameters of processes like foaming,
Reshaping the perfect electrical conductor cylinder arbitrarily
International Nuclear Information System (INIS)
Chen Huanyang; Zhang Xiaohe; Luo Xudong; Ma Hongru; Chan Cheting
2008-01-01
A general method is proposed to design a cylindrical cloak, concentrator and superscatterer with an arbitrary cross section. The method is demonstrated by the design of a perfect electrical conductor (PEC) reshaper which is able to reshape a PEC cylinder arbitrarily by combining the concept of cloak, concentrator and superscatterer together. Numerical simulations are performed to demonstrate its properties.
Lectures on controlled topology: Mapping cylinder neighborhoods
Energy Technology Data Exchange (ETDEWEB)
Quinn, F [Department of Mathematics, Virginia Tech, Blacksburg, VA (United States)
2002-08-15
The existence theorem for mapping cylinder neighborhoods is discussed as a prototypical example of controlled topology and its applications. The first of a projected series developed from lectures at the Summer School on High-Dimensional Topology, Trieste, Italy 2001. (author)
Lectures on controlled topology: Mapping cylinder neighborhoods
International Nuclear Information System (INIS)
Quinn, F.
2002-01-01
The existence theorem for mapping cylinder neighborhoods is discussed as a prototypical example of controlled topology and its applications. The first of a projected series developed from lectures at the Summer School on High-Dimensional Topology, Trieste, Italy 2001. (author)
Control of 12-Cylinder Camless Engine with Neural Networks
Directory of Open Access Journals (Sweden)
Ashhab Moh’d Sami
2017-01-01
Full Text Available The 12-cyliner camless engine breathing process is modeled with artificial neural networks (ANN’s. The inputs to the net are the intake valve lift (IVL and intake valve closing timing (IVC whereas the output of the net is the cylinder air charge (CAC. The ANN is trained with data collected from an engine simulation model which is based on thermodynamics principles and calibrated against real engine data. A method for adapting single-output feed-forward neural networks is proposed and applied to the camless engine ANN model. As a consequence the overall 12-cyliner camless engine feedback controller is upgraded and the necessary changes are implemented in order to contain the adaptive neural network with the objective of tracking the cylinder air charge (driver’s torque demand while minimizing the pumping losses (increasing engine efficiency. All the needed measurements are extracted only from the two conventional and inexpensive sensors, namely, the mass air flow through the throttle body (MAF and the intake manifold absolute pressure (MAP sensors. The feedback controller’s capability is demonstrated through computer simulation.
Breached cylinder incident at the Portsmouth gaseous diffusion plant
Energy Technology Data Exchange (ETDEWEB)
Boelens, R.A. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)
1991-12-31
On June 16, 1990, during an inspection of valves on partially depleted product storage cylinders, a 14-ton partially depleted product cylinder was discovered breached. The cylinder had been placed in long-term storage in 1977 on the top row of Portsmouth`s (two rows high) storage area. The breach was observed when an inspector noticed a pile of green material along side of the cylinder. The breach was estimated to be approximately 8- inches wide and 16-inches long, and ran under the first stiffening ring of the cylinder. During the continuing inspection of the storage area, a second 14-ton product cylinder was discovered breached. This cylinder was stacked on the bottom row in the storage area in 1986. This breach was also located adjacent to a stiffening ring. This paper will discuss the contributing factors of the breaching of the cylinders, the immediate response, subsequent actions in support of the investigation, and corrective actions.
Investigation on carbon nanomaterials: Coaxial CNT-cylinders and ...
Indian Academy of Sciences (India)
Wintec
carbon cylinders of CNT stacks have been formed directly inside the quartz tube. Another study is ... producing CNTs have been devised including electric arc evaporation ... process of coaxial carbon cylinder have already been de- scribed by ...
Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density
International Nuclear Information System (INIS)
Espejel-Morales, R; Murguía-Romero, G; Calles, A; Cabrera-Bravo, E; Morán-López, J L
2016-01-01
We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell -like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder. (paper)
Nonlinear bending and collapse analysis of a poked cylinder and other point-loaded cylinders
International Nuclear Information System (INIS)
Sobel, L.H.
1983-06-01
This paper analyzes the geometrically nonlinear bending and collapse behavior of an elastic, simply supported cylindrical shell subjected to an inward-directed point load applied at midlength. The large displacement analysis results for this thin (R/t = 638) poked cylinder were obtained from the STAGSC-1 finite element computer program. STAGSC-1 results are also presented for two other point-loaded shell problems: a pinched cylinder (R/t = 100), and a venetian blind (R/t = 250)
Inner and outer cylinders of the CMS vacuum tank.
Patrice Loïez
2002-01-01
The vacuum tank of the CMS magnet system consists of inner and outer stainless-steel cylinders and houses the superconducting coil. The inner cylinder contains all the barrel sub-detectors, which it supports via a system of horizontal rails. The cylinder is pictured here in the vertical position on a yellow platform mounted on the ferris-wheel support structure. This will allow it to be pivoted and inserted into the already installed outer cylinder, through which this photo was taken.
Surface Morphology Diagram for Cylinder-Forming Block Copolymer Thin Films
International Nuclear Information System (INIS)
Zhang, Xiaohua; Berry, Brian C.; Yager, Kevin G.; Kim, Sangcheol; Jones, Ronald L.; Satija, Sushil; Pickel, Deanna L.; Douglas, Jack F.; Karim, Alamgir
2008-01-01
We investigate the effect of annealing temperature (T), film thickness (hf) on the surface morphology of flow coated films of a cylinder forming block copolymer, poly (styrene-block-methyl methacrylate) (PS-b-PMMA). Surface morphology transitions from a perpendicular to a parallel cylinder orientation with respect to the substrate with increasing hf are observed in these model 'frustrated-interaction' films where the substrate interaction is preferential for one of the blocks (PMMA) and nearly neutral for the other interface (polymer-air). In these films a transition occurs from cylinders oriented parallel to the substrate to a mixed or 'hybrid' state where the two orientations coexist followed by a transition to cylinders oriented perpendicularly to the polymer-air interface for larger hf. The characteristic values of hf defining these surface morphological transitions depend on T and we construct a surface morphology diagram as a function of hf and T. The surface morphology diagram is found to depend on the method of film formation (flow coated versus spun cast films) so non-equilibrium effects evidently have a large effect on the surface pattern morphology. In particular, the residual solvent within the film (quantified by neutron reflectivity measurements) in the context of physics of glass-formation can have a large effect on the surface morphology diagram
Paine, Jeffrey S.; Rogers, Craig A.
1995-05-01
Composite materials are widely used in the design of pressurized gas and fluid vessels for applications ranging from underground gasoline storage tanks to rocket motors for the space shuttle. In the design of a high pressure composite vessel (Pi > 12 Ksi), thick-wall (R/h short term dilation and long term creep are not problematic for applications requiring only the containment of the pressurized fluid. In applications where metallic liners are required, however, substantial dilation and creep causes plastic yielding which leads to reduced fatigue life. To applications such as a hydraulic accumulator, where a piston is employed to fit and seal the fluid in the composite cylinder, the dilation and creep may allow leakage and pressure loss around the piston. A concept called the adaptive composite cylinder is experimentally presented. Shape memory alloy wire in epoxy resin is wrapped around or within polymer matrix composite cylinders to reduce radial dilation of the cylinder. Experimental results are presented that demonstrate the ability of the SMA wire layers to reduce radial dilation. Results from experimental testing of the recovery stress fatigue response of nitinol shape memory alloy wires is also presented.
Measurement and modeling of residual stress in a welded Haynes[reg] 25 cylinder
International Nuclear Information System (INIS)
Larsson, C.; Holden, T.M.; Bourke, M.A.M.; Stout, M.; Teague, J.; Lindgren, L.-E.
2005-01-01
An experimental and simulation study of residual stresses was made in the vicinity of a gas tungsten arc weld, used to join a hemispherical end cap to a cylinder. The capped cylinder is used in a satellite application and was fabricated from a Co-based Haynes[reg] 25 alloy. The cylinder was 34.7 mm in outer diameter and 3.3 mm in thickness. The experimental measurements were made by neutron diffraction and the simulation used the implicit Marc finite element code. The experimental resolution was limited to approximately 3 mm parallel to the axis of the cylinder (the weld was 6 mm in the same direction) and comparison over the same volume of the finite element prediction showed general agreement. Subject to the limited spatial resolution, the largest experimentally measured tensile residual stress was 180 MPa, located at the middle of the weld. However, the predictions suggest that there are regions in the weld where average tensile residual stresses as much as 400 MPa exist. One qualitative disparity between the model and the experiments was that the measurement included a larger degree of asymmetry on either side of the weld than predicted by the model
Measurement and modeling of residual stress in a welded Haynes[reg] 25 cylinder
Energy Technology Data Exchange (ETDEWEB)
Larsson, C. [Div. of Eng. Mat., Department of Mech. Eng., Linkoeping University, 58183 Linkoeping (Sweden)]. E-mail: clarsson@cfl.rr.com; Holden, T.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stout, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Teague, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lindgren, L.-E. [Div. Comp. Aided Design, Lulea University of Technology and Dalarna University, 97187 Lulea (Sweden)
2005-06-15
An experimental and simulation study of residual stresses was made in the vicinity of a gas tungsten arc weld, used to join a hemispherical end cap to a cylinder. The capped cylinder is used in a satellite application and was fabricated from a Co-based Haynes[reg] 25 alloy. The cylinder was 34.7 mm in outer diameter and 3.3 mm in thickness. The experimental measurements were made by neutron diffraction and the simulation used the implicit Marc finite element code. The experimental resolution was limited to approximately 3 mm parallel to the axis of the cylinder (the weld was 6 mm in the same direction) and comparison over the same volume of the finite element prediction showed general agreement. Subject to the limited spatial resolution, the largest experimentally measured tensile residual stress was 180 MPa, located at the middle of the weld. However, the predictions suggest that there are regions in the weld where average tensile residual stresses as much as 400 MPa exist. One qualitative disparity between the model and the experiments was that the measurement included a larger degree of asymmetry on either side of the weld than predicted by the model.
Image analysis of moving seeds in an indented cylinder
DEFF Research Database (Denmark)
Buus, Ole; Jørgensen, Johannes Ravn
2010-01-01
inspection in seed cleaning equipment. A prototype of an indented cylinder will be constructed. To make it more dynamic, the cylinder itself will be manufactured using 3D printing technology. The input will come either from 3D scans of existing cylinders or by defining their topology using parametric B...
Investigation of breached depleted UF{sub 6} cylinders
Energy Technology Data Exchange (ETDEWEB)
DeVan, J.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)
1991-12-31
In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.
46 CFR 58.30-30 - Fluid power cylinders.
2010-10-01
... all pneumatic power transmission systems. (b) Fluid power cylinders consisting of a container and a... 46 Shipping 2 2010-10-01 2010-10-01 false Fluid power cylinders. 58.30-30 Section 58.30-30... MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-30 Fluid power cylinders. (a) The...
Imperfection effects on the buckling of hydrostatically loaded cylinders
DEFF Research Database (Denmark)
Pinna, Rodney; Madsen, Søren
2015-01-01
imperfection sensitivity. Work on cylinders with other loading conditions, such as hydrostatic loading, is more limited. Similarly, there is limited work on cylinders with boundary conditions other than simply-supported ends. This paper looks at the case of cylinders under hydrostatic load, which is often...
Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders
De Kanter, J.L.C.G.
2006-01-01
Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based
Sub-wavelength metamaterial cylinders with multiple dipole resonances
DEFF Research Database (Denmark)
Arslanagic, Samel; Breinbjerg, Olav
2009-01-01
It has been shown that the sub-wavelength resonances of the individual MTM cylinders also occur for electrically small configurations combining 2 or 4 cylinders. For the 2-and 4-cylinder configurations the overall size is 1/20 and 1/12.5 of the smallest wavelength, respectively. These MTM...... configuration thus offer the possibility for multi-resonant electrically small configurations....
76 FR 38697 - High Pressure Steel Cylinders From China
2011-07-01
... imports from China of high pressure steel cylinders, provided for in subheading 7311.00.00 of the... threatened with material injury by reason of LTFV and subsidized imports of high pressure steel cylinders... contained in USITC Publication 4241 (July 2011), entitled High Pressure Steel Cylinders from China...
Interfering with the wake of cylinder by flexible filaments
Pinelli, Alfredo; Omidyeganeh, Mohammad
2015-11-01
This work is the very first attempt to understand and optimize the configuration of flexible filaments placed on the lee side of a bluff body to manipulate flow transitions and bifurcations. It is found that the presence of a sparse set of flexible filaments on the lee side of a cylinder can interfere with the 2D-3D transition process resulting in elongation of recirculation bubble, inhibition of higher order unstable modes, and narrowing the global energy content about a particular shedding frequency. Filaments become effective when spacing between them is smaller than the dominant unstable mode at each particular Reynolds number, i.e. A and B modes. In another study, by a particular arrangement the reconfigured filaments can reduce pressure fluctuations in the wake and drop lift flluctuations significantly (~= 80 %).
Experimental seismic test of fluid coupled co-axial cylinders
International Nuclear Information System (INIS)
Chu, M.L.; Brown, S.J.; Lestingi, J.F.
1979-01-01
The dynamic response of fluid coupled coaxial cylindrical shells is of interest to the nuclear industry with respect to the seismic design of the reactor vessel and thermal liner. The experiments described present a series of tests which investigate the effect of the annular clearance between the cylinders (gap) on natural frequency, damping, and seismic response of both the inner and outer cylinders. The seismic input is a time history base load to the flexible fluid filled coaxial cylinders. The outer cylinder is elastically supported at both ends while the inner cylinder is supported only at the base (lower) end
Fluid structural response of axially cracked cylinders
International Nuclear Information System (INIS)
Garnich, M.R.; Simonen, F.A.
1985-03-01
The fluid structural (FS) response of a cylindrical pressure vessel to a suddenly occurring longitudinal through-wall crack is predicted. The effects of vessel internals and depressurization of the compressed water on dynamic crack opening displacements are investigated. A three dimensional (3D) structural finite element model is used as a basis for the development of a two dimensional (2D) FS model. A slice of the vessel taken at the crack midspan and normal to the cylinder axis is modeled. Crack opening displacements are compared between the 2D and 3D models, between the different assumptions about fluid depressurization, and between the static and dynamic solutions. The results show that effects of dynamic amplification associated with the sudden opening of the crack in the cylinder are largely offset by the local depressurization of the fluid adjacent to the crack
Upgraded Analytical Model of the Cylinder Test
Energy Technology Data Exchange (ETDEWEB)
Souers, P. Clark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Lauderbach, Lisa [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Garza, Raul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Ferranti, Louis [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Vitello, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center
2013-03-15
A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of about 15 and the JWL parameter ω was obtained directly. Finally, the total detonation energy density was locked to the v = 7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.
Upgraded Analytical Model of the Cylinder Test
Energy Technology Data Exchange (ETDEWEB)
Souers, P. Clark; Lauderbach, Lisa; Garza, Raul; Ferranti, Louis; Vitello, Peter
2013-03-15
A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of about 15 and the JWL parameter ω was obtained directly. The total detonation energy density was locked to the v=7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.
Bourguet, Remi; Triantafyllou, Michael
2016-11-01
Slender flexible cylinders immersed in flow are common in nature (e.g. plants and trees in wind) and in engineering applications, for example in the domain of offshore engineering, where risers and mooring lines are exposed to ocean currents. Vortex-induced vibrations (VIV) naturally develop when the cylinder is placed at normal incidence but they also appear when the body is inclined in the current, including at large angles. In a previous work concerning a flexible cylinder inclined at 80 degrees, we found that the occurrence of VIV is associated with a profound alteration of the flow dynamics: the wake exhibits a slanted vortex shedding pattern in the absence of vibration, while the vortices are shed parallel to the body once the large-amplitude VIV regime is reached. The present study aims at bridging the gap between these two extreme configurations. On the basis of direct numerical simulations, we explore the intermediate states of the flow-structure system. We identify two dominant components of the flow: a high-frequency component that relates to the stationary body wake and a low-frequency component synchronized with body motion. We show that the scenario of flow reconfiguration is driven by the opposite trends of these two component contributions.
Mechanical Cushion Design Influence on Cylinder Dynamics
DEFF Research Database (Denmark)
Borghi, Massimo; Milani, Massimo; Conrad, Finn
2005-01-01
The paper deals with the simulation and the experimental verification of the dynamic behaviour of a linear actuator equipped with different configurations of mechanical cushion. A numerical model, developed and tailored to describe the influence of different modulation of the discharged flow....... experimental comparison, involving the piston velocity and the cylinder chambers pressure. After, with the aim of highlighting the effect of mechanical cushions design on a two effect linear actuator dynamic performances, the characteristics modulation of four alternative cushioning systems are determined...
Cylinder with differential piston for mass measurements
Energy Technology Data Exchange (ETDEWEB)
Bordeaşu, I.; Bălăşoiu, V. [Universitatea Politehnica din Timişoara, Timosoara (Romania); Hadă, A. [UniversitateaPolitehnicaBucureşti, Bucureşti (Romania); Popoviciu, M. [Academy of Romanian ScientistsTimişoara Branch (Romania)
2007-07-01
The paper presents a cylinder with differential piston, adapted for measuring the weight of fixed objects such as: fuel tanks (regardless of their capacity), bunkers and silos for all kind of materials, or mobile objects such as: automobiles, trucks, locomotives and railway cars. Although, the cylinder with differential piston is used on a large scale in hydraulic drive or hydraulic control circuits, till now it was not used as constituent part for weight measurements devices. The novelty of the present paper is precisely the use of the device for such purposes. Based on a computation algorithm, the paper presents the general design (assembly), of the device used for weighing important masses (1…. 100 tones). The fundamental idea consist in the fact that, a mass over 10 tones may be weighted with a helicoidally spring subjected to an axial force between 0 and 3000 N, with a deflection of about 30 mm. Simultaneously with the mechanical part, the electronic recording system is also described. The great advantage of the presented device consist in the fact that it can be used in heavy polluted atmosphere or difficult topographic conditions as a result of both the small dimensions and the protection systems adopted. Keywords: cylinder hydraulic with differential piston, hydrostatic pressure, measuring devices.
Modeling for Friction of Four Stroke Four Cylinder In-Line Petrol Engine
Directory of Open Access Journals (Sweden)
P.C. Mishra
2013-09-01
Full Text Available A four stroke four cylinder in-line petrol engine is modeled to estimate various performance parameters. The solution is based on tribology and dynamics principle. The detailed parameters relating to engine friction and lubrication are computed numerically for the engine firing order 1-3-4-2. The numerical method is based on finite difference method that solves coupled Reynolds Equation and Energy Equation. Output includes the movie thickness, friction force, friction power loss and temperature rise in the ring liner conjunction in all four cylinders. Transient regime of ring liner lubrication isaddressed while the same changes from hydrodynamic to mixed in an engine cycle. Momentary cessation near the top and bottom dead center that causes boundary interaction is analyzed through asperity contact. The non - Newtonian behavior of lubricant film due to pressure and temperature is addresses using viscosity -pressure- temperature inter relationship.
Analytical and experimental study of two concentric cylinders coupled by a fluid gap
International Nuclear Information System (INIS)
Mulcahy, T.M.; Turula, P.; Chung, H.; Jendrzejczyk, J.A.
1975-04-01
A breeder reactor vessel is a substantial steel cylinder which is partially protected from the nuclear reaction temperature by a relatively thin concentric shell separated from the vessel by a narrow fluid-filled gap. An experimental and analytical study of the vibration of a model of such a shell used in the Fast Test Reactor is described. The analytical work consists first using a free vibration solution of the shell in vacuum as a basis for extrapolating vibration behavior for the same shell with a fluid gap. Then a direct finite element solution is found for the actual problem--the shell and the fluid coupling it to the rigid outer container. All the finite element computations were carried out using the NASTRAN program. The experimental setup consisted of a steel sheet rolled and welded into a cylinder, free at the top edge and at the bottom soldered to a disc which in turn was bolted to a heavy base plate. The fluid gap was provided by using a thick concrete shell as the outer cylinder. A series of these cylinders was used to provide several sizes of annular gap. The case of the steel shell alone, without fluid, was also considered. The steel cylinder was vibrated by an electromagnetic exciter using both harmonic loading and random loading functions. In general, correspondence of experimental and analytical results is within acceptable limits; however, several vibration modes corresponding to solutions with low circumferential wave numbers were not detected experimentally. Response analysis performed to compare the response amplitude at various modes indicates that the intensity at the modes in question is very low. (U.S.)
Wang, Xiaohua
The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).
Fibers and cylinders of cryptomelane-hollandite in Permian bedded salt, Palo Duro Basin, Texas
International Nuclear Information System (INIS)
Belkin, H.E.; Libelo, E.L.
1987-01-01
Fibers and thin-walled, hollow cylinders of cryptomelane-hollandite have been found in both the chevron and the clear salt from various drill cores in Permian bedded salt from the Palo Duro Basin, Texas. The authors have found fibers or cylinders from only the lower San Andres Formation units 4 and 5, the upper San Andres Formation, and the Salado-Transill salt. The fibers are inorganic, light to dark reddish brown, pleochroic, highly birefringent, filamentary single crystals, < 1 to ∼ 5 μm in diameter, with length-to-diameter ratios of at least 20:1. The fibers can be straight and/or curved, can bifurcate, can form loops, waves or spirals, and can be isolated or in parallel groups. Detailed petrographic analyses show no evidence for recrystallization or deformation of the enclosing salt after fiber formation. Although the authors observations do not provide a definitive explanation for fiber origin, they suggest that the fibers grew in situ by a solid-state diffusional process at low temperatures. The cylinders are pleochroic, highly birefringent, light to dark reddish brown, hollow, thin-walled, open-ended right cylinders, having a 1- to 2-μm wall thickness and variable lengths and diameters. There also appear to be single crystals of cryptomelane-hollandite, but these are found almost entirely in fluid inclusions in the chevron and clear salt. Their presence in the primary halite suggests that they were formed contemporaneously with the chevron structure and were accidentally trapped in the fluid inclusions. The observation of cylinders partially or completely enclosed by salt stratigraphically above large fluid inclusions suggests that natural downward fluid-inclusion migration has occurred, in response to the geothermal gradient
Flow over a cylinder with a hinged-splitter plate
Shukla, S.; Govardhan, R. N.; Arakeri, J. H.
2009-05-01
Previous work on rigid splitter plates in the wake of a bluff body has shown that the primary vortex shedding can be suppressed for sufficiently long splitter plates. In the present work, we study the problem of a hinged-splitter plate in the wake of a circular cylinder. The splitter plate can rotate about the hinge at the base of the cylinder due to the unsteady fluid forces acting on it, and hence the communication between the two sides of the wake is not totally disrupted as in the rigid splitter plate case. In our study, we investigate this problem in the limit where the stiffness and internal damping associated with the hinge are negligible, and the mass ratio of the splitter plate is small. The experiments show that the splitter plate oscillations increase with Reynolds numbers at low values of Re, and are found to reach a saturation amplitude level at higher Re, Re>4000. This type of saturation amplitude level that appears to continue indefinitely with Re, appears to be related to the fact that there is no structural restoring force, and has been observed previously for transversely oscillating cylinders with no restoring force. In the present case, the saturation tip amplitude level can be up to 0.45D, where D is the cylinder diameter. For this hinged-rigid splitter plate case, it is found that the splitter plate length to cylinder diameter ratio (L/D) is crucial in determining the character and magnitude of the oscillations. For small splitter plate lengths (L/D⩽3.0), the oscillations appear to be nearly periodic with tip amplitudes of about 0.45D nearly independent of L/D. The nondimensional oscillation frequencies (fD/U) on the other hand are found to continuously vary with L/D from fD/U≈0.2 at L/D=1 to fD/U≈0.1 at L/D=3. As the splitter plate length is further increased beyond L/D⩾4.0, the character of the splitter plate oscillations suddenly changes. The oscillations become aperiodic with much smaller amplitudes. In this long splitter plate
Kim, HyoJu; Yoon, Hyun Sik
2017-10-01
The present study considered the geometric disturbance inspired by a harbor seal vibrissa of which undulated surface structures (HSV) are known as a detecting device to capture the water movement induced by prey fish. As an original research can extend to the flow control based on the biomimetic, this study aims at finding the effect of the angle of attack (AOA) on flow characteristics around the harbor seal vibrissa shaped cylinder, to cover the change of flow direction during the harbor seal's movements and surrounding conditions. Therefore, we considered a wide range of AOA varying from 0 to 90 degree. We carried out large eddy simulation (LES) to investigate the flow around inclined vibrissa shaped cylinder for the Reynolds number (Re) of 500. The elliptic cylinder is considered for the purpose of the comparison. The difference of force coefficients between the HSV and the elliptic cylinder can be classified into three regimes of one large variation region, two invariant regimes according to AOA. In contrast to the elliptic cylinder showing the monotonically decrease of the vortex shedding frequency in AOA, the HSV reveals the increasing and then decreasing behavior of the vortex shedding frequency along the AOA. The same decreasing profile of the vortex shedding frequency means that the HSV lost the unique function on the vortex shedding frequency. The shear layers for the HSV is much longer than that of shear layers for the elliptic cylinder at low angles of the attack. With increasing AOA, the difference of the vortical structures in the wake between the HSV and the elliptic cylinder becomes minor. Thus, it can be concluded that as AOA increases, the bluff body flow overcomes the flow induced by the HSV shape, resulting in the appearance of almost the same flow with the elliptic cylinder.
Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder
Leslie, G. A.
2013-01-29
The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder is investigated. Specifically, we study \\'full-ring\\' solutions, corresponding to a ring of continuous, finite and non-zero thickness that extends all of the way around the cylinder. In particular, it is found that there is a critical solution corresponding to either a critical load above which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation speed below which no full-ring solution exists (if the load is prescribed). We describe the behaviour of the critical solution and, in particular, show that the critical flux, the critical load, the critical semi-width and the critical ring profile are all increasing functions of the rotation speed. In the limit of small rotation speed, the critical flux is small and the critical ring is narrow and thin, leading to a small critical load. In the limit of large rotation speed, the critical flux is large and the critical ring is wide on the upper half of the cylinder and thick on the lower half of the cylinder, leading to a large critical load. We also describe the behaviour of the non-critical full-ring solution and, in particular, show that the semi-width and the ring profile are increasing functions of the load but, in general, non-monotonic functions of the rotation speed. In the limit of large rotation speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that, while for most values of the rotation speed and the load the azimuthal velocity is in the same direction as the rotation of the cylinder, there is a region of parameter space close to the critical solution for sufficiently small rotation speed in which backflow occurs in a small region on the upward-moving side of the cylinder. © 2013
Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder
Leslie, G. A.; Wilson, S. K.; Duffy, B. R.
2013-01-01
The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder is investigated. Specifically, we study 'full-ring' solutions, corresponding to a ring of continuous, finite and non-zero thickness that extends all of the way around the cylinder. In particular, it is found that there is a critical solution corresponding to either a critical load above which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation speed below which no full-ring solution exists (if the load is prescribed). We describe the behaviour of the critical solution and, in particular, show that the critical flux, the critical load, the critical semi-width and the critical ring profile are all increasing functions of the rotation speed. In the limit of small rotation speed, the critical flux is small and the critical ring is narrow and thin, leading to a small critical load. In the limit of large rotation speed, the critical flux is large and the critical ring is wide on the upper half of the cylinder and thick on the lower half of the cylinder, leading to a large critical load. We also describe the behaviour of the non-critical full-ring solution and, in particular, show that the semi-width and the ring profile are increasing functions of the load but, in general, non-monotonic functions of the rotation speed. In the limit of large rotation speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that, while for most values of the rotation speed and the load the azimuthal velocity is in the same direction as the rotation of the cylinder, there is a region of parameter space close to the critical solution for sufficiently small rotation speed in which backflow occurs in a small region on the upward-moving side of the cylinder. © 2013 Cambridge
Harmonic oscillations of a circular cylinder moving with constant velocity in a quiescent fluid
Jan Novaes Recica; Luiz Antonio Alcântara Pereira; Miguel Hiroo Hirata
2008-01-01
The flow around an oscillating circular cylinder which moves with constant velocity in a quiescent Newtonian fluid with constant properties is analyzed. The influences of the frequency and amplitude oscillation on the aerodynamic loads and on the Strouhal number are presented. For the numerical simulation, a cloud of discrete Lamb vortices are utilized. For each time step of the simulation, a number of discrete vortices are placed close to the body surface; the intensity of theirs is determin...
Boundary Layer Studies on a Spinning Tangent-Ogive-Cylinder Model
1975-07-01
ca) An experimental investigation of the Magnus effect on a seven caliber tangent-I ;’ ogive- cylinder model in supersonic flow is reported. The...necessary and Identify by block number) Three-Dimiensional Boundary Layer Compressible Flow Body of Revolution Magnus Effects Boundary Layer...factors have resulted in renewed interest in the study of the Magnus effect . This report describes an experimental study of the effects of spin on
Chang, Tzu-Hsuan; Xiong, Shisheng; Liu, Chi-Chun; Liu, Dong; Nealey, Paul F; Ma, Zhenqiang
2017-09-01
The direct self-assembly of cylinder-forming poly(styrene-block-methyl-methacrylate) (PS-b-PMMA) block copolymer is successfully assembled into two orientations, according to the underlying guiding pattern in different areas. Lying-down and perpendicular cylinders are formed, respectively, depending on the design of chemical pattern: sparse line/space pattern or hexagonal dot array. The first chemical pattern composed of prepatterned cross-linked polystyrene (XPS) line/space structure has a period (L S ) equal to twice the intercylinder period of the block copolymer (L 0 ). The PS-b-PMMA thin film on the prepared chemical template after thermal annealing forms a lying-down cylinder morphology when the width of the PS strips is less than the width of PS block in the PS-b-PMMA block copolymer. The morphology is only applicable at the discrete thickness of the PS-b-PMMA film. In addition to forming the lying-down cylinders directly on the XPS guiding pattern, the cylinder-forming block copolymer can also be assembled in a perpendicular way on the second guiding pattern (the hexagonal dot array). The block copolymer films are registered into two orientations in a single directed self-assembly process. The features of the assembled patterns are successfully transferred down to the silicon oxide substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aerodynamic loading on a cylinder behind an airfoil
Energy Technology Data Exchange (ETDEWEB)
Zhang, H.J.; Huang, L.; Zhou, Y. [Hong Kong Polytechnic University, Department of Mechanical Engineering, Kowloon (Hong Kong)
2005-05-01
The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Re{sub d}=2,100-20,000, and the airfoil chord-length-based Reynolds numbers of Re{sub c}=14,700-140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as Tincreases. For Re{sub c}<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Re{sub c}>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding. (orig.)
Directory of Open Access Journals (Sweden)
Ahmed W. Mustava
2013-04-01
Full Text Available The effect of a semi-circular cylinders in a two dimensional channel on heat transfer by forced convection from two heat sources with a constant temperature has been studied numerically. Each channel contains two heat sources; one on the upper surface of the channel and the other on the lower surface of the channel. There is semi-circular cylinder under the source in upper surface and there is semi-circular cylinder above the source in lower surface. The location of the second heat source with its semi-cylinder has been changed and keeps the first source with its semi- cylinder at the same location. The flow and temperature field are studied numerically with different values of Reynolds numbers and for different spacing between the centers of the semi-cylinders. The laminar flow field is analyzed numerically by solving the steady forms of the two-dimensional incompressible Navier- Stokes and energy equations. The Cartesian velocity components and pressure on a collocated (non-staggered grid are used as dependent variables in the momentum equations, which discretized by finite volume method, body fitted coordinates are used to represent the complex channel geometry accurately, and grid generation technique based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation of mass. The range of Reynolds number is (Re= 100 – 800 and the range of the spacing between the semi-cylinders is(1-4 and the Prandtl number is 0.7.The results showed that increasing the spacing between the semi-cylinders increases the average of Nusselt number of the first heat source for all Reynolds numbers. As well as the results show that the best case among the cases studied to enhance the heat transfer is when the second heat source and its semi-cylinder located on at the distance (S=1.5 from the first half of the cylinder and the Reynolds number is greater than (Re ≥ 400 because of the
Rayleigh scattering of a cylindrical sound wave by an infinite cylinder.
Baynes, Alexander B; Godin, Oleg A
2017-12-01
Rayleigh scattering, in which the wavelength is large compared to the scattering object, is usually studied assuming plane incident waves. However, full Green's functions are required in a number of problems, e.g., when a scatterer is located close to the ocean surface or the seafloor. This paper considers the Green's function of the two-dimensional problem that corresponds to scattering of a cylindrical wave by an infinite cylinder embedded in a homogeneous fluid. Soft, hard, and impedance cylinders are considered. Exact solutions of the problem involve infinite series of products of Bessel functions. Here, simple, closed-form asymptotic solutions are derived, which are valid for arbitrary source and receiver locations outside the cylinder as long as its diameter is small relative to the wavelength. The scattered wave is given by the sum of fields of three linear image sources. The viability of the image source method was anticipated from known solutions of classical electrostatic problems involving a conducting cylinder. The asymptotic acoustic Green's functions are employed to investigate reception of low-frequency sound by sensors mounted on cylindrical bodies.
International Nuclear Information System (INIS)
Lee, Hyun; Lee, Sang Jin; Lee, Sang Ho
2006-01-01
Lumbar degenerative kyphosis (LDK) is a subgroup of the flatback syndrome, which is a condition caused by spinal degeneration. LDK is reported to be the most frequent cause of lumbar spine deformity in the farming districts of the 'oriental' countries. We investigated the relationship between the cross-sectional area (CSA) and the moment arm length (MAL) of the erector spinae muscle and the thickness of the psoas major muscle (PT) and the body mass index (BMI) by performing statistical analysis, and we tried to show the crucial role of these variables for diagnosing LDK. From July 2004 to April 2005, we retrospectively reviewed 17 LDK patients who had undergone anterior lumbar interbody fusion (ALIF) with posterior stabilization. We measured both the CSA and MAL on the transverse cross-sectional MR image of the trunk at the fourth to fifth vertebrae (L4/5). The MAL was defined as the anterior-posterior distance between the center of the erector spinae muscle and that of the vertebral body. A comparative study was undertaken between the LDK group and the matched (according to age and gender) control group with regard to the CSA, MAL, PT and BMI. The 17 LDK patients were all females [age: 62.5 ± 4.93 years, height: 157 ± 6.19 cm, weight: 55.59 ± 4.7 kg, and BMI: 22.58 ± 2.08 kg/m 2 ]. The control group patients were all female [age: 63.6 ± 2.27 years, height: 156 ± 5.05 cm, weight: 59.65 ± 7.39 kg and BMI: 24.38 ± 2.94 kg/m 2 ]. Spearman's rho indicated a positive association between the CSA and BMI (rho = 0.49, ρ = 0.046), between the MAL and BMI (rho = 0.808, ρ = 0.000) and between the CSA and PT (rho = 0.566, ρ = 0.018) in the LDK patients. In terms of the CSA versus MAL, there was a positive association in both groups (rho = 0.67, ρ = 0.000, MAL = 0.023CSA + 5.454 in the LDK group; rho = 0.564, ρ 0.018, MAL = 0.02CSA + 5.832 in the control group with using linear regression analysis). Independent t-tests revealed that both groups had statistically
Some results of heating of a thick-walled cylinder fragment
International Nuclear Information System (INIS)
Zholdak, G.I.; Solov'ev, A.P.
1977-01-01
The effect of heat cycles on a reinforced concrete structure has been experimentally investigated. A reinforced concrete ring structure, reinforced on two sides, has been subjected to heat treatment by a complex heating cycle within a temperature range of from 20 to 300 deg C. The heating rate being 20 deg/hour and the total number of the cooling-heating cycles - 300. The cracking behaviour has been studied by ultrasonic inspection. In theoretical treatment, the principal relationships of the theory of elasticity have been used with account for the variations in the physico-mechanical properties of concrete and the development of nonelastic strains. The results have demonstrated both the applicability of the underlying theoretical calculations and the very feasibility of using reinforced concrete under cyclic heating conditions. The effect of cracks in the structure can be easily taken into account as it is remembered that the crack depth is 500 to 700 times greater than their mean exposure on the tensile surface of concrete
Active aerodynamic drag reduction on morphable cylinders
Guttag, M.; Reis, P. M.
2017-12-01
We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.
Cylinder management: how to reduce investments
Energy Technology Data Exchange (ETDEWEB)
Anon.
2003-10-15
De-regulated and not mature markets are often pledged with illegal cross-filling, unlawful use and misuse of cylinders despite branding and property rights. These points were among the topics discussed at the round table on 'good business practices' organised during the 16. World LP Gas Forum, last October in Santiago. Didier Gilles, head of Totalgaz International Department, explained how the marketer is dealing with this kind of problems to protect its assets. Didier Gilles gave an example of this policy in Morocco. We publish large excerpts of this paper. (author)
Flow around an oscillating cylinder: computational issues
Energy Technology Data Exchange (ETDEWEB)
Jiang, Fengjian; Gallardo, José P; Pettersen, Bjørnar [Department of Marine Technology, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Andersson, Helge I, E-mail: fengjian.jiang@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)
2017-10-15
We consider different computational issues related to the three-dimensionalities of the flow around an oscillating circular cylinder. The full time-dependent Navier–Stokes equations are directly solved in a moving reference frame by introducing a forcing term. The choice of quantitative validation criteria is discussed and discrepancies of previously published results are addressed. The development of Honji vortices shows that short simulation times may lead to incorrect quasi-stable vortex patterns. The viscous decay of already established Honji vortices is also examined. (paper)
Cylindrical vortex wake model: right cylinder
DEFF Research Database (Denmark)
Branlard, Emmanuel; Gaunaa, Mac
2015-01-01
The vortex system consisting of a bound vortex disk, a root vortex and a vortex cylinder as introduced by Joukowski in 1912 is further studied in this paper. This system can be used for simple modeling of rotors (e.g. wind turbines) with infinite number of blades and finite tip-speed ratios....... For each vortex element, the velocity components in all directions and in the entire domain are computed analytically in a novel approach. In particular, the velocity field from the vortex actuator disk is derived for the first time. The induction from the entire vortex system is studied and is seen...
International Nuclear Information System (INIS)
Rucinski, R.
1998-01-01
The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in 3 , an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.
Numerical Study of Shock-Cylinder Banks Interactions
International Nuclear Information System (INIS)
Wang, S.P.; Anderson, M.H.; Oakley, J.G.; Bonazza, R.
2003-01-01
A numerical parametric study of shock-cylinder banks interactions is presented using a high resolution Euler solver. Staggered cylinder banks of five rows are chosen with the purpose of modeling IFE reactor cooling tube banks. The effect of the aspect ratio of the intercylinder pitch to the distance between successive cylinder rows on the vertical pressure forces acting on the cylinders with different geometries is investigated. Preliminary results show that the largest vertical force develops on the cylinders of the second or third row. This peak pressure force increases with decreasing values of the aspect ratio. It is shown that an increasing second force peak also appears on the successive rows, starting with the second one, with decreasing aspect ratio. It is also observed that the force on the last-row cylinders basically decreases to the level of that on the first row. The results are useful for the optimal design of the cooling tubes system of IFE reactors
Vortex structure behind highly heated two cylinders in parallel arrangements
International Nuclear Information System (INIS)
Kurita, Eiichirou; Yahagi, Yuji
2008-01-01
Vortex structures behind twin, highly heated cylinders in parallel arrangements have been investigated experimentally. The experiments were conducted under the following conditions: cylinder diameter, D=4 mm; mean flow velocity, U ∞ =1.0 m/s; Reynolds number, Re=250; cylinder clearance, S/D=0.5 - 1.4; and cylinder heat flux, q=0 - 72.6 kW/m 2 . For S/D > 1.2, the Karman vortex street is formed alternately behind each cylinder divided on the slit flow. The slit flow velocity increases with a decrease in S/D and decreases with increasing heat flux. For S/D 2 ). As a result, the increased local kinematic viscosity and S/D play a key role for the vortex structure and formation behind arrangements of two parallel cylinders. (author)
Controlling chaos in a fluid flow past a movable cylinder
International Nuclear Information System (INIS)
Vallejo, Juan C.; Marino, Ines P.; Sanjuan, Miguel A.F.; Kurths, Juergen
2003-01-01
The model of a two-dimensional fluid flow past a cylinder is a relatively simple problem with a strong impact in many applied fields, such as aerodynamics or chemical sciences, although most of the involved physical mechanisms are not yet well known. This paper analyzes the fluid flow past a cylinder in a laminar regime with Reynolds number, Re, around 200, where two vortices appear behind the cylinder, by using an appropriate time-dependent stream function and applying non-linear dynamics techniques. The goal of the paper is to analyze under which circumstances the chaoticity in the wake of the cylinder might be modified, or even suppressed. And this has been achieved with the help of some indicators of the complexity of the trajectories for the cases of a rotating cylinder and an oscillating cylinder
Effect of Surface Coatings on Cylinders Exposed to Underwater Shock
Directory of Open Access Journals (Sweden)
Y.W. Kwon
1994-01-01
Full Text Available The response of a coated cylinder (metallic cylinder coated with a rubber material subjected to an underwater explosion is analyzed numerically. The dynamic response of the coated cylinder appears to be adversely affected when impacted by an underwater shock wave under certain conditions of geometry and material properties of the coating. When adversely affected, significant deviations in values of axial stress, hoop stress, and strain are observed. The coated cylinder exhibits a larger deformation and higher internal energy in the metallic material. Rubber coatings appeared to inhibit energy dissipation from the metallic material to the surrounding water medium. A parametric study of various coatings was performed on both aluminum and steel cylinders. The adverse effect of the coating decreased when the stiffness of the rubber layer increased, indicating the existence of a threshold value. The results of this study indicate that the stiffness of the coating is a critical factor to the shock hardening of the coated cylinder.
Thin circular cylinder under axisymmetrical thermal and mechanical loading
International Nuclear Information System (INIS)
Arnaudeau, F.; Zarka, J.; Gerij, J.
1977-01-01
A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram. To investigate the effect of material hardening the authors verify Halphen's Theorem which states that a structure made of material with kinematic hardening behavior and constant properties with temperature will always shake down to a periodic behavior. (Auth.)
Electromagnetic forces on type-II superconducting rotating cylinders
International Nuclear Information System (INIS)
Saif, A.G.; Refai, T.F.; El-Sabagh, M.A.
1995-01-01
Analytical solutions of the electromagnetic fields are presented for a system composed of an infinitely long superconducting cylinder rotating about its axis and placed parallel to two infinitely long normal conducting wires. Both wires carry the same alternating current. From the obtained electromagnetic fields the electromagnetic power loss on the cylinder surface, electromagnetic forces due to induced currents, electromagnetic torque, and the work opposing the rotation of the cylinder are calculated. (orig.)
PIV Measurements of He II Counterflow Around a Cylinder
International Nuclear Information System (INIS)
Fuzier, S.; Van Stiver, S. W.; Zhang, T.
2006-01-01
The induced flow field of counterflow He II across a circular cylinder has been quantitatively studied using the particle image velocimetry (PIV) technique. Two different size cylinders (6.35 mm and 2 mm in diameter) were used and placed in a 20 mm wide rectangular channel. In these experiments, large-scale eddy motion generated by the He II counterflow was observed both in front of and behind the cylinder, an effect which has no analogue in classical fluids
Enrichment Assay Methods Development for the Integrated Cylinder Verification System
International Nuclear Information System (INIS)
Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.
2009-01-01
International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.
Enrichment Assay Methods Development for the Integrated Cylinder Verification System
Energy Technology Data Exchange (ETDEWEB)
Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.
2009-10-22
International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.
Inflation of polymer melts into elliptic and circular cylinders
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Christensen, Jens Horslund; Gøttsche, Søren
2000-01-01
A thin sheet (membrane) of the polymeric material is clamped between a Teflon-coated thermostated plate and a thermostated aluminium cylinder. By applying thermostated air through the plate, the polymer membrane deforms into an elliptic or a circular cylinder. The position of the top of the infla......A thin sheet (membrane) of the polymeric material is clamped between a Teflon-coated thermostated plate and a thermostated aluminium cylinder. By applying thermostated air through the plate, the polymer membrane deforms into an elliptic or a circular cylinder. The position of the top...
Self-accelerating parabolic cylinder waves in 1-D
Energy Technology Data Exchange (ETDEWEB)
Yuce, C., E-mail: cyuce@anadolu.edu.tr
2016-11-25
Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.
An update on corrosion monitoring in cylinder storage yards
Energy Technology Data Exchange (ETDEWEB)
Henson, H.M.; Newman, V.S.; Frazier, J.L. [Oak Ridge K-25 Site, TN (United States)
1991-12-31
Depleted uranium, from US uranium isotope enrichment activities, is stored in the form of solid uranium hexafluoride (UF{sub 6}) in A285 and A516 steel cylinders designed and manufactured to ASME Boiler and Pressure Vessel Code criteria. In general, storage facilities are open areas adjacent to the enrichment plants where the cylinders are exposed to weather. This paper describes the Oak Ridge program to determine the general corrosion behavior of UF{sub 6} cylinders, to determine cylinder yard conditions which are likely to affect long term storage of this material, and to assess cylinder storage yards against these criteria. This program is targeted at conditions specific to the Oak Ridge cylinder yards. Based on (a) determination of the current cylinder yard conditions, (b) determination of rusting behavior in regions of the cylinders showing accelerated attack, (c) monitoring of corrosion rates through periodic measurement of test coupons placed within the cylinder yards, and (d) establishment of a computer base to incorporate and retain these data, the technical division is working with the enrichment sites to implement an upgraded system for storage of this material until such time as it is used or converted.
An experiments and characteristics analysis of the sealless cylinder
International Nuclear Information System (INIS)
Kim, Young Cheol; Kim, Dong Soo; Bae, Sang Kyu; Kim, Sung Jong
2004-01-01
This paper shows a performance analysis for conical type sealless cylinders and rod bearings. The pistons without seal have partly cylindrical and conical shapes. 2 dimensional Reynolds equation and FD(Finite Differential) numerical techniques are utilized for the performance analysis. The relationship among self-centering forces and leakage flows are investigated. Also, optimal design values for a sealless cylinder are presented. A prototype of sealless cylinder which had rod bearing with four pockets, five pockets, and six pockets was manufactured respectively. Leakage flow test is conducted to evaluate performance of piston and rod bearing in sealless cylinder
Flow past two tandem square cylinders vibrating transversely in phase
International Nuclear Information System (INIS)
Mithun, M G; Tiwari, Shaligram
2014-01-01
Numerical investigations have been carried out to study the wake characteristics of flow past two tandem square cylinders vibrating in phase. Both the cylinders vibrate in a transverse direction, i.e., perpendicular to the incoming flow with the same frequency and amplitude. The frequency of vibration of the cylinders and the inter-cylinder spacing are varied for fixed values of the Reynolds number (Re = 100) and the amplitude ratio (A/D = 0.4). The synchronous or lock-in regime for the oscillatory wake of the vibrating cylinders has been identified by varying the frequency of the vibration from f e = 0.4 f 0 to 1.6 f 0 (f 0 being the frequency of vortex shedding behind a stationary square cylinder). The characteristics of lift and drag and the mechanism of vortex shedding are studied by varying the excitation frequency within the lock-in range for each value of inter-cylinder spacing. The complex interaction of flow between the cylinders gives rise to a variety of characteristically different shedding patterns in their wake. For values of inter-cylinder spacing equal to 2D and 3D, periodic, as well as quasi-periodic, lock-in behaviors are observed in the synchronous range. (paper)
Roux, L; Mareschal, P; Vukadinovic, N; Thibaud, J B; Greffet, J J
2001-02-01
This study is devoted to the examination of scattering of waves by a slab containing randomly located cylinders. For the first time to our knowledge, the complete transmission problem has been solved numerically. We have compared the radiative transfer theory with a numerical solution of the wave equation. We discuss the coherent effects, such as forward-scattering dip and backscattering enhancement. It is seen that the radiative transfer equation can be used with great accuracy even for optically thin systems whose geometric thickness is comparable with the wavelength. We have also shown the presence of dependent scattering.
A cylinder pressure based engine management system
Energy Technology Data Exchange (ETDEWEB)
Truscott, A.; Noble, A. [Ricardo Consulting Engineers Ltd. (United Kingdom); Mueller, R.; Hart, M.; Kroetz, G.; Eickhoff, M. [DaimlerChrysler AG (Germany); Cavalloni, C.; Gnielka, M. [Kistler Instrumente AG (Switzerland)
2000-07-01
Worldwide demands on fuel economy and lower emissions from automotive vehicles have led to stringent requirements in the development of Engine Management Systems (EMS). Cylinder Pressure based Engine Management Systems (CPEMS) provide a way forward in EMS technology by combining intelligent control algorithms with innovative sensing techniques. The full utilisation of model-based control and diagnostics to provide improvements in cost, efficiency, emissions and comfort requires the close monitoring of engine conditions. This is made possible with the advent of new inexpensive sensor materials that can withstand the harsh environment of the combustion chamber. AENEAS is a collaborative project undertaken by Ricardo, DaimlerChrysler and Kistler, with financial support from the European Commission and the Swiss Government, aimed at demonstrating the major benefits of CPEMS technology. This paper describes the application of CPEMS technology to a spark ignition (SI) engine. It describes how the combination of model based algorithms, incorporating physical principles, and cylinder pressure sensing can provide an effective means of engine control and diagnostics. Results are presented to demonstrate the benefits of this new technology. (author)
The capillary interaction between two vertical cylinders
Cooray, Himantha
2012-06-27
Particles floating at the surface of a liquid generally deform the liquid surface. Minimizing the energetic cost of these deformations results in an inter-particle force which is usually attractive and causes floating particles to aggregate and form surface clusters. Here we present a numerical method for determining the three-dimensional meniscus around a pair of vertical circular cylinders. This involves the numerical solution of the fully nonlinear Laplace-Young equation using a mesh-free finite difference method. Inter-particle force-separation curves for pairs of vertical cylinders are then calculated for different radii and contact angles. These results are compared with previously published asymptotic and experimental results. For large inter-particle separations and conditions such that the meniscus slope remains small everywhere, good agreement is found between all three approaches (numerical, asymptotic and experimental). This is as expected since the asymptotic results were derived using the linearized Laplace-Young equation. For steeper menisci and smaller inter-particle separations, however, the numerical simulation resolves discrepancies between existing asymptotic and experimental results, demonstrating that this discrepancy was due to the nonlinearity of the Laplace-Young equation. © 2012 IOP Publishing Ltd.
Terminal project heat convection in thin cylinders
International Nuclear Information System (INIS)
Morales Corona, J.
1992-01-01
Heat convection in thin cylinders and analysis about natural convection for straight vertical plates, and straight vertical cylinders submersed in a fluid are presented some works carry out by different authors in the field of heat transfer. In the part of conduction, deduction of the equation of heat conduction in cylindrical coordinates by means of energy balance in a control volume is presented. Enthalpy and internal energy are used for the outlining of the equation and finally the equation in its vectorial form is obtained. In the convection part development to calculate the Nusselt number for a straight vertical plate by a forces analysis, an energy balance and mass conservation over a control volume is outlined. Several empiric correlations to calculate the Nusselt number and its relations with other dimensionless numbers are presented. In the experimental part the way in which a prototype rode is assembled is presented measurements of temperatures attained in steady state and in free convection for working fluids as air and water are showed in tables. Also graphs of Nusselt numbers obtained in the experimental way through some empiric correlations are showed (Author)
International Nuclear Information System (INIS)
Stitt, D.H.
1977-01-01
This supplement details design changes made to the ''Paducah Tiger'' since the issue date of the SAR, June 16, 1976. A 3 / 8 -inch thick, 304L stainless steel plate has been added on the valve end of existing and future overpacks to provide increased puncture resistance and the overpack cavity has been modified to preclude incorrect loading of the type 48X cylinder. Temperature profiles of the ''Paducah Tiger'' during the 30-minute fire test are included
Education and "Thick" Epistemology
Kotzee, Ben
2011-01-01
In this essay Ben Kotzee addresses the implications of Bernard Williams's distinction between "thick" and "thin" concepts in ethics for epistemology and for education. Kotzee holds that, as in the case of ethics, one may distinguish between "thick" and "thin" concepts of epistemology and, further, that this distinction points to the importance of…
Hoffheins, Barbara S.; Lauf, Robert J.
1995-01-01
A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.
Directory of Open Access Journals (Sweden)
M.R. Mofakhami
2008-01-01
Full Text Available In this paper sound transmission through the multilayered viscoelastic air filled cylinders subjected to the incident acoustic wave is studied using the technique of separation of variables on the basis of linear three dimensional theory of elasticity. The effect of interior acoustic medium on the mode maps (frequency vs geometry and noise reduction is investigated. The effects of internal absorption and external moving medium on noise reduction are also evaluated. The dynamic viscoelastic properties of the structure are rigorously taken into account with a power law technique that models the viscoelastic damping of the cylinder. A parametric study is also performed for the two layered infinite cylinders to obtain the effect of viscoelastic layer characteristics such as thickness, material type and frequency dependency of viscoelastic properties on the noise reduction. It is shown that using constant and frequency dependent viscoelastic material with high loss factor leads to the uniform noise reduction in the frequency domain. It is also shown that the noise reduction obtained for constant viscoelastic material property is subjected to some errors in the low frequency range with respect to those obtained for the frequency dependent viscoelastic material.
Rapid expansion and fracture of metallic cylinders driven by explosive loads
International Nuclear Information System (INIS)
Hiroe, T.; Fujiwara, K.; Abe, T.; Yoshida, M.
2004-01-01
Smooth walled tubular specimens of stainless steel and low-carbon steels were explosively expanded to fragmentation. The driver was a column of the high explosive PETN inserted into the central bore and initiated by exploding a fine copper wire using a discharge current from a high-voltage capacitor bank. The variation of wall thickness and the effect of different explosive driver diameters are reported. A fully charged casing model was also exploded with initiation at the end surface for comparison. Streak and framing photos show both radially and axially symmetric expansion of cylinders at average strain rates of above 104 s-1 and a wall velocity of 417-1550 m/s. Some framing photos indicate the initiation and spacing of fractures during the bursting of the cylinders. Hydro codes have been applied to simulate the experimental behavior of the cylinders, examining numerical stresses, deformation and fracture criteria. Most of the fragments were successfully recovered inside a cushion-filled chamber, and the circumferential fracture spacing of measured fragments is investigated using a fragmentation model
Fast-response underwater TSP investigation of subcritical instabilities of a cylinder in crossflow
Capone, Alessandro; Klein, Christian; Di Felice, Fabio; Beifuss, Uwe; Miozzi, Massimo
2015-10-01
We investigate the classic cylinder in crossflow case to test the effectiveness of a fast-response underwater temperature-sensitive paint coating (TSP) in providing highly resolved spatial and time observations of the action of a flow over a bluff body surface. The flow is investigated at Reynolds number crisis state. The obtained TSP image sequences convey an accurate description of the evolution of the main features in the fluid-cylinder interaction, like the separation line position, the pattern of the large coherent structures acting on the cylinder's surface and the small-scale intermittent streamwise arrays of vortices. Ad hoc data management and features extraction techniques are proposed which allow extraction of quantitative data, such as separation line position and vortex-shedding frequency, and results are compared to the literature. Use of TSP for water applications introduces an interesting point of view about the fluid-body interactions by focusing directly on the effect of the flow on the model surface.
Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders
International Nuclear Information System (INIS)
Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M.
2009-01-01
Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome
International Nuclear Information System (INIS)
Pinto, L C; Silvestrini, J H; Schettini, E B C
2011-01-01
In present paper, Navier-Stokes and Continuity equations for incompressible flow around an oscillating cylinder were numerically solved. Sixth order compact difference schemes were used to solve the spatial derivatives, while the time advance was carried out through second order Adams Bashforth accurate scheme. In order to represent the obstacle in the flow, the Immersed Boundary Method was adopted. In this method a force term is added to the Navier-Stokes equations representing the body. The simulations present results regarding the hydrodynamic coefficients and vortex wakes in agreement to experimental and numerical previous works and the physical lock-in phenomenon was identified. Comparing different methods to impose the IBM, it can be concluded that no alterations regarding the vortex shedding mode were observed. The Immersed Boundary Method techniques used here can represent the surface of an oscillating cylinder in the flow.
Wake states and forces associated with a cylinder rolling down an incline under gravity
Houdroge, Farah Yasmina; Thompson, Mark; Hourigan, Kerry; Leweke, Thomas
2014-11-01
The flow around a cylinder rolling along a wall at a constant velocity was recently investigated by Stewart et al. (JFM, 643, 648, 2010). They showed that the wake structure varies greatly as the Reynolds number was increased, and that the presence of the wall as well as the imposed motion of the body have a strong influence on the dominant wake structure and the wake transitions when the body is placed in free stream. In this work, attention is given to the flow dynamics and the fluid forces associated with a cylinder rolling down an incline under the influence of gravity. Increasing the inclination angle or the Reynolds number is shown to destabilize the wake flow. For a body close to neutrally buoyancy, the formation and shedding of vortices in its wake result in fluctuating forces and a final kinematic state in which the body's velocity is not constant. The non-dimensionalization of the main equations allows us to determine the essential parameters that govern the problem's dynamics. Furthermore, through numerical simulations we analyse in more detail the time-dependant fluid forces and the different structures of the wake in order to gain a better understanding of the physical mechanisms behind the motions of the fluid and the body. This research was supported by an Australian Research Council Discovery Project Grant DP130100822. We also acknowledge computing time support through National Computing Infrastructure projects D71 and N67.
Characterization of a PET-NEMA/IEC body phantom for quality control tests of PET/CT equipment
International Nuclear Information System (INIS)
Oliveira, Cassio M.; Vieira, Igor F.; Lima, Fernando R.A.; Sa, Lidia V. de
2011-01-01
The Brazilian Sanitary Agency from Ministry of Health requires that all PET/CT equipment must undergo minimal quality control tests using manufacturer simulators. The PET-NEMA/IEC body phantom is recommended by the IEC and NEMA to perform acceptance testing and quality control in PET/CT equipment according to specific protocols. It is essential that all simulator components (spheres and body) are properly characterized in relation to their size and internal structure volumes, since they are used to calculate the overall activity concentration and the total weight. The objective of this work was characterize a PET-NEMA/IEC body phantom for the true reconstruction in computational modeling and correct analysis of experimental results. The simulator is basically composed of three structures: the body (simulating a portion of the chest), an inner cylinder (simulating the lung tissue) and a top cover in which are coupled spheres of different sizes simulating 'hot' (tumors) and cold lesions. The spheres were evaluated in terms of volume. The same evaluations were performed with the body of the simulator and the inner cylinder, beyond of analysis of their weights (filled with water) and wall thickness. The data showed that the total weight of the simulator with all its internal structures is 12.5 kg and the volume of the 'hot' and 'cold' spheres are approximately equal to those presented by the manufacturer. The inner cylinder volume showed a significant difference between the measured and the presented in the manual. The results were used for reconstruction of the simulator in computational modeling using the code GATE. (author)
Dynamics of a thermally driven film climbing the outside of a vertical cylinder.
Smolka, Linda B
2017-10-01
The dynamics of a film climbing the outside of a vertical cylinder under the competing effects of a thermally driven surface tension gradient and gravity is examined through numerical simulations of a thin-film model for the film height. The model, including boundary conditions, depends on three parameters, the scaled cylinder radius R[over ̂], the upstream film height h_{∞}, and the downstream precursor film thickness b, and reduces to the model for Marangoni driven film climbing a vertical plate in the limit R[over ̂]→∞. The axisymmetric advancing front displays dynamics similar to that found along a vertical plate where, depending on h_{∞}, the film forms a single Lax shock, an undercompressive double shock, or a rarefaction-undercompressive shock. A linear stability analysis of the Lax shock reveals the number of fingers that form along the contact line increases linearly with cylinder circumference while no fingers form for sufficiently small cylinders (below R[over ̂]≈1.15 when b=0.1). The substrate curvature controls the height of the Lax shock, bounds on h_{∞} that define the three distinct solutions, and the maximum growth rate of contact line perturbations to the Lax shock when R[over ̂]=O(1), whereas the three solutions and the stability of the Lax shock converge to the behavior one observes on a vertical plate when R[over ̂]≥O(10). An energy analysis reveals that the azimuthal curvatures of the base state and perturbation, which arise from the annular geometry of the film, promote instability of the advancing contact line.
Large-scale thermal-shock experiments with clad and unclad steel cylinders
International Nuclear Information System (INIS)
Cheverton, R.D.
1992-01-01
Flaw behavior trends associated with pressurized-thermal-shock (PTS) loading of pressurized-water-reactor pressure vessels have been under investigation at the Oak Ridge National Laboratory for nearly 20 years. During that time, twelve thermal-shock experiments with thick-walled (152 mm) steel cylinders were conducted as a part of the investigations. The first eight experiments were conducted with unclad cylinders initially containing shallow (8--19 mm) two-dimensional and semicircular inner-surface flaws. These experiments demonstrated, in good agreement with linear elastic fracture mechanics, crack initiation and arrest, a series of initiation/arrest events with deep penetration of the wall, long crack jumps, arrest with the stress intensity factor (K I ) increasing with crack depth, extensive surface extension of an initially short and shallow (semicircular) flaw, and warm prestressing with K I ≤ 0. The remaining four experiments were conducted with clad cylinders containing initially shallow (19--24 mm) semielliptical subclad and surface flaws at the inner surface. In the first of these experiments one of six equally spaced (60 degrees) open-quotes identicalclose quotes subclad flaws extended nearly the length of the cylinder (1,220 mm) beneath the cladding (no crack extension into the cladding) and nearly 50% of the wall, radially. For the final experiment, four of the semielliptical subclad flaws that had not propagated previously were converted to surface flaws, and they experienced extensive extension beneath the cladding with no cracking of the cladding. Information from this series of thermal-shock experiments is being used in the evaluation of the PTS issue
The effect of thickness in the through-diffusion experiment
International Nuclear Information System (INIS)
Lehikoinen, J.; Uusheimo, K.; Valkiainen, M.
1994-01-01
The publication contains an experimental study of diffusion in the water filled pores of rock samples. The samples studied are rapakivi granite from Loviisa, southern Finland. The drill-core sample was sectioned perpendicularly with diamond saw and three cylinder formed samples were obtained. The nominal thicknesses (heights of the cylinders) are 2, 4 and 6 cm. For the diffusion measurement the sample holders were pressed between two chambers. One of the chambers was filled with 0.0044 molar sodium chloride solution spiked with tracers. Another chamber was filled with inactive solution. Tritium (HTO) considered to be water equivalent tracer and anionic 36 Cl were used as tracers. (9 refs., 19 figs., 2 tabs.)
Torsional vibrations of infinite composite poroelastic cylinders | Shah ...
African Journals Online (AJOL)
... radius of composite poroelastic solid cylinder to the radius of the inner solid cylinder. Results of previous works are shown as special case of the present analysis. By ignoring liquid effects, the results of purely elastic solid are obtained. International Journal of Engineering, Science and Technology, Vol. 2, No. 6, 2010, pp.
Mobile Robot Localization by Remote Viewing of a Colored Cylinder
Volpe, R.; Litwin, T.; Matthies, L.
1995-01-01
A system was developed for the Mars Pathfinder rover in which the rover checks its position by viewing the angle back to a colored cylinder with different colors for different angles. The rover determines distance by the apparent size of the cylinder.
Optimization of In-Cylinder Pressure Filter for Engine Research
2017-06-01
ARL-TR-8034 ● JUN 2017 US Army Research Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth...Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth S Kim, Michael T Szedlmayer, Kurt M Kruger, and Chol-Bum M...
Method and apparatus for filling cryogenic liquid cylinders
International Nuclear Information System (INIS)
Remes, S.
1984-01-01
A method and apparatus are disclosed for filling a portable cryogenic liquid cylinder from a large stand tank. The invention employs a regulator valve to perform an automatic throttling function whereby the pressure in the liquid cylinder is maintained at a value slightly lower than the upstream pressure in the stand tank. This significantly reduces filling losses due to flashing
NGSI: Function Requirements for a Cylinder Tracking System
International Nuclear Information System (INIS)
Branney, S.
2012-01-01
While nuclear suppliers currently track uranium hexafluoride (UF 6 ) cylinders in various ways, for their own purposes, industry practices vary significantly. The NNSA Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a 5-year program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF 6 cylinders. As part of this effort, NGSI's multi-laboratory team has documented the 'life of a UF 6 cylinder' and reviewed IAEA practices related to UF 6 cylinders. Based on this foundation, this paper examines the functional requirements of a system that would uniquely identify and track UF 6 cylinders. There are many considerations for establishing a potential tracking system. Some of these factors include the environmental conditions a cylinder may be expected to be exposed to, where cylinders may be particularly vulnerable to diversion, how such a system may be integrated into the existing flow of commerce, how proprietary data generated in the process may be protected, what a system may require in terms of the existing standard for UF 6 cylinder manufacture or modifications to it and what the limiting technology factors may be. It is desirable that a tracking system should provide benefit to industry while imposing as few additional constraints as possible and still meeting IAEA safeguards objectives. This paper includes recommendations for this system and the analysis that generated them.
77 FR 37712 - High Pressure Steel Cylinders From China
2012-06-22
...), that an industry in the United States is materially injured by reason of imports of high pressure steel... preliminary determinations by Commerce that imports of high pressure steel cylinders from China were... Publication 4328 (June 2012), entitled High Pressure Steel Cylinders from China: Investigation Nos. 701-TA-480...
Wave propagation in coated cylinders with reference to fretting fatigue
Indian Academy of Sciences (India)
is to study stress wave propagation in cylinders with reference to high frequency fretting. ... The motivation for studying of fretting fatigue at higher frequency is to investigate the ... Hence focus in this work is given to thin rods and cylinders. The.
Fluxmetric and magnetometric demagnetizing factors for cylinders
International Nuclear Information System (INIS)
Chen, D.-X.; Pardo, E.; Sanchez, A.
2006-01-01
Fluxmetric and magnetometric demagnetizing factors, N f and N m , for cylinders along the axial direction are numerically calculated as functions of material susceptibility χ and the ratio γ of length to diameter. The results have an accuracy better than 0.1% with respect to min(N f,m ,1-N f,m ) and are tabulated in the range of 0.01= m along the radial direction is evaluated with a lower accuracy from N m along the axis and tabulated in the range of 0.01=<γ=<1 and -1=<χ<∼. Some previous results are discussed and several applications are explained based on the new results
Switchable and Tunable Aerodynamic Drag on Cylinders
Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro
We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.
Kinetic stability analyses in a bumpy cylinder
International Nuclear Information System (INIS)
Dominguez, R.R.; Berk, H.L.
1981-01-01
Recent interest in the ELMO Bumpy Torus (EBT) has prompted a number of stability analyses of both the hot electron rings and the toroidal plasma. Typically these works employ the local approximation, neglecting radial eigenmode structure and ballooning effects to perform the stability analysis. In the present work we develop a fully kinetic formalism for performing nonlocal stability analyses in a bumpy cylinder. We show that the Vlasov-Maxwell integral equations (with one ignorable coordinate) are self-adjoint and hence amenable to analysis using numerical techniques developed for self-adjoint systems of equations. The representation we obtain for the kernel of the Vlasov-Maxwell equations is a differential operator of arbitrarily high order. This form leads to a manifestly self-adjoint system of differential equations for long wavelength modes
Electrogravitational stability of oscillating streaming fluid cylinder
International Nuclear Information System (INIS)
Hasan, Alfaisal A.
2011-01-01
The electrogravitational instability of on oscillating streaming fluid cylinder under the action of the selfgravitating, capillary and electrodynamic forces has been discussed. The model is governed by the Mathieu second order integro-differential equation. Some limiting cases are recovering from the present general one. The capillary force is destabilizing in a small axisymmetric domain 0< x<1 and stabilizing otherwise. In the absence of electric fields, we found that the model is unstable in a small domain while it is selfgravitating stable in all other domains. The presence of the electric field led to the presence of a great number of stable waves. The electric field has a strong stabilizing influence on the selfgravitating instability of the model. The capillary force has a strong destabilizing influence on the selfgravitating instability of the model. Generally, the uniform stream supports the unstable waves, while the oscillating streaming has stability tendency.
Inductance position sensor for pneumatic cylinder
Directory of Open Access Journals (Sweden)
Pavel Ripka
2018-04-01
Full Text Available The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.
Inductance position sensor for pneumatic cylinder
Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan
2018-04-01
The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.
Mechanical Cushion Design Influence on Cylinder Dynamics
DEFF Research Database (Denmark)
Borghi, Massimo; Milani, Massimo; Conrad, Finn
2005-01-01
. experimental comparison, involving the piston velocity and the cylinder chambers pressure. After, with the aim of highlighting the effect of mechanical cushions design on a two effect linear actuator dynamic performances, the characteristics modulation of four alternative cushioning systems are determined......The paper deals with the simulation and the experimental verification of the dynamic behaviour of a linear actuator equipped with different configurations of mechanical cushion. A numerical model, developed and tailored to describe the influence of different modulation of the discharged flow......-rate (and of the correspondent discharging orifice design) on the cushioning characteristics variation is firstly introduced. Then, with respect to the case of the cylindrical cushioning engagement, both the reliability and the limits of the numerical approach are highlighted through a numerical vs...
Topograph for inspection of engine cylinder walls.
Franz, S; Leonhardt, K; Windecker, R; Tiziani, H J
1999-12-20
The microstructural inspection of engine cylinder walls is an important task for quality management in the automotive industry. Until recently, mainly tactile methods were used for this purpose. We present an optical instrument based on microscopic fringe projection that permits fast, reliable, and nondestructive measurements of microstructure. The field of view is 0.8 mm x 1.2 mm, with a spatial sampling of 1100 x 700 pixels. In contrast to conventional tactile sensors, the optical method provides fast in situ three-dimensional surface characterizations that provide more information about the surface than do line profiles. Measurements are presented, and advantages of this instrument for characterization of a surface are discussed.
Modeling a High Explosive Cylinder Experiment
Zocher, Marvin A.
2017-06-01
Cylindrical assemblies constructed from high explosives encased in an inert confining material are often used in experiments aimed at calibrating and validating continuum level models for the so-called equation of state (constitutive model for the spherical part of the Cauchy tensor). Such is the case in the work to be discussed here. In particular, work will be described involving the modeling of a series of experiments involving PBX-9501 encased in a copper cylinder. The objective of the work is to test and perhaps refine a set of phenomenological parameters for the Wescott-Stewart-Davis reactive burn model. The focus of this talk will be on modeling the experiments, which turned out to be non-trivial. The modeling is conducted using ALE methodology.
International Nuclear Information System (INIS)
Morland, E.; Sherry, A.H.
1993-01-01
A series of six large-scale experiments have been carried out at AEA Technology using the Spinning Cylinder test facility. Results from two of those experiments (SC-I and SC-II) have been provided to Project FALSIRE and are reviewed in this paper. The Spinning Cylinder tests were carried out using hollow cylinders of 1.4m outer diameter, 0.2m wall thickness and 1.3m length, containing full-length axial defects and fabricated from a modified A508 Class 3 steel. The first Spinning Cylinder test (SC-I) was an investigation of stable ductile growth induced via mechanical (primary) loading and under conditions of contained yielding. Mechanical loading was provided in the hoop direction by rotating the cylinder about its major axis within an enclosed oven. The second test (SC-II) investigated stable ductile growth under severe thermal shock (secondary) loading again under conditions of contained yielding. In this case thermal shock was produced by spraying cold water on the inside surface of the heated cylinder whilst it was rotating. For each experiment, results are presented in terms of a number of variables, eg. crack growth, temperature, stress, strain and applied K and J. In addition, an overview of the analyses of the FALSIRE Phase-1 report is also presented with respect to test SC-I and SC-II. 4 refs., 14 figs., 13 tabs
Mechanical Integrity of Copper Canister Lid and Cylinder. Sensitivity study
International Nuclear Information System (INIS)
Karlsson, Marianne
2002-08-01
This report is part of a study of the mechanical integrity of canisters used for disposal of nuclear fuel waste. The overall objective is to determine and ensure the static and long-term strength of the copper canister lid and cylinder casing. The canisters used for disposal nuclear fuel waste of type BWR consists of an inner part (insert) of ductile cast iron and an outer part of copper. The copper canister is to provide a sealed barrier between the contents of the canister and the surroundings. The study in this report complements the finite element analyses performed in an earlier study. The analyses aim to evaluate the sensitivity of the canister to tolerances regarding the gap between the copper cylinder and the cast iron insert. Since great uncertainties regarding the material's long term creep properties prevail, analyses are also performed to evaluate the effect of different creep data on the resulting strain and stress state. The report analyses the mechanical response of the lid and flange of the copper canister when subjected to loads caused by pressure from swelling bentonite and from groundwater at a depth of 500 meter. The loads acting on the canister are somewhat uncertain and the cases investigated in this report are possible cases. Load cases analysed are: Pressure 15 MPa uniformly distributed on lid and 5 MPa uniformly distributed on cylinder; Pressure 5 MPa uniformly distributed on lid and 15 MPa uniformly distributed on cylinder; Pressure 20 MPa uniformly distributed on lid and cylinder; and Side pressures 10 MPa and 20 MPa uniformly distributed on part of the cylinder. Creep analyses are performed for two of the load cases. For all considered designs high principal stresses appear on the outside of the copper cylinder in the region from the weld down to the level of the lid lower edge. Altering the gap between lid and cylinder and/or between cylinder and insert only marginally affects the resulting stress state. Fitting the lid in the cylinder
Network design for cylinder gas distribution
Directory of Open Access Journals (Sweden)
Tejinder Pal Singh
2015-01-01
Full Text Available Purpose: Network design of the supply chain is an important and strategic aspect of logistics management. In this paper, we address the network design problem specific to packaged gases (cylinder supply chain. We propose an integrated framework that allows for the determination of the optimal facility locations, the filling plant production capacities, the inventory at plants and hubs, and the number of packages to be routed in primary and secondary transportation. Design/methodology/approach: We formulate the problem as a mixed integer program and then develop a decomposition approach to solve it. We illustrate the proposed framework with numerical examples from real-life packaged gases supply chain. The results show that the decomposition approach is effective in solving a broad range of problem sizes. Findings: The main finding of this paper is that decomposing the network design problem into two sub-problems is very effective to tackle the real-life large scale network design problems occurring in cylinder gas distribution by optimizing strategic and tactical decisions and approximating the operational decisions. We also benchmark the results from the decomposition approach by solving the complete packaged gases network design model for smaller test cases. Originality/value: The main contribution of our work is that it integrates supply chain network design decisions without fixing the fillings plant locations with inventory and resource allocation decisions required at the plants. We also consider the transportation costs for the entire supply chain including the transhipment costs among different facilities by deciding the replenishment frequency.
Gravitational collapse of conventional polytropic cylinder
Lou, Yu-Qing; Hu, Xu-Yao
2017-07-01
In reference to general polytropic and conventional polytropic hydrodynamic cylinders of infinite length with axial uniformity and axisymmetry under self-gravity, the dynamic evolution of central collapsing mass string in free-fall dynamic accretion phase is re-examined in details. We compare the central mass accretion rate and the envelope mass infall rate at small radii. Among others, we correct mistakes and typos of Kawachi & Hanawa (KH hereafter) and in particular prove that their key asymptotic free-fall solution involving polytropic index γ in the two power exponents is erroneous by analytical analyses and numerical tests. The correct free-fall asymptotic solutions at sufficiently small \\hat{r} (the dimensionless independent self-similar variable) scale as {˜ } -|ln \\hat{r}|^{1/2} in contrast to KH's ˜ -|ln \\hat{r}|^{(2-γ )/2} for the reduced bulk radial flow velocity and as {˜ } \\hat{r}^{-1}|ln \\hat{r}|^{-1/2} in contrast to KH's {˜ } \\hat{r}^{-1} |ln \\hat{r}|^{-(2-γ )/2} for the reduced mass density. We offer consistent scenarios for numerical simulation code testing and theoretical study on dynamic filamentary structure formation and evolution as well as pertinent stability properties. Due to unavoidable Jeans instabilities along the cylinder, such collapsing massive filaments or strings can further break up into clumps and segments of various lengths as well as clumps embedded within segments and evolve into chains of gravitationally collapsed objects (such as gaseous planets, brown dwarfs, protostars, white dwarfs, neutron stars, black holes in a wide mass range, globular clusters, dwarf spheroidals, galaxies, galaxy clusters and even larger mass reservoirs etc.) in various astrophysical and cosmological contexts as articulated by Lou & Hu recently. As an example, we present a model scheme for comparing with observations of molecular filaments for forming protostars, brown dwarfs and gaseous planets and so forth.
Ocean Sediment Thickness Contours
National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...
Transient thermal stress problem for a circumferentially cracked hollow cylinder
Nied, H. F.; Erdogan, F.
1982-01-01
The transient thermal stress problem for a hollow elasticity cylinder containing an internal circumferential edge crack is considered. It is assumed that the problem is axisymmetric with regard to the crack geometry and the loading, and that the inertia effects are negligible. The problem is solved for a cylinder which is suddenly cooled from inside. First the transient temperature and stress distributions in an uncracked cylinder are calculated. By using the equal and opposite of this thermal stress as the crack surface traction in the isothermal cylinder the crack problem is then solved and the stress intensity factor is calculated. The numerical results are obtained as a function of the Fourier number tD/b(2) representing the time for various inner-to-outer radius ratios and relative crack depths, where D and b are respectively the coefficient of diffusivity and the outer radius of the cylinder.
Magnetic susceptibility in the edged topological disordered nanoscopic cylinder
International Nuclear Information System (INIS)
Faizabadi, Edris; Omidi, Mahboubeh
2011-01-01
The effects of edged topological disorder on magnetic susceptibility are investigated in a nanoscopic cylinder threaded by a magnetic flux. Persistent current versus even or odd number of electrons shows different signs in ordered and disordered cylinders and also in short or long ones. In addition, temperature-averaged susceptibility has only diamagnetic signs in strong regimes and it is associated with paramagnetic signs in ordered and weak disordered ones. Besides, in an edged topological disordered cylinder, the temperature-averaged susceptibility decreases by raising the temperature somewhat and then increasing initiates and finally at high temperature tends to zero as the ordered one. - Research highlights: → Magnetic susceptibility in one-dimensional topological disordered quantum ring. → Edged topological disorder effect on magnetic susceptibility in nanoscopic cylinder. → Edged topological disorder effect on temperature-averaged susceptibility in cylinder.
Directory of Open Access Journals (Sweden)
Carlos Augusto Rigon Rossi
2008-02-01
Full Text Available Um estudo de metanálise avaliou a relação entre a espessura de toicinho e as variáveis de condição corporal de porcas gestantes e lactantes. A base de dados contemplou 14 artigos publicados de 2000 a 2006 em revistas indexadas. A metanálise foi realizada através de análises gráfica, de correlação e de variância. A correlação da espessura de toicinho (ET com o peso vivo foi de 0,16 (PA meta-analysis was carried out to evaluate the association between backfat thickness and sow body condition in gestation and lactation. The database assembled 14 publications from 2000 to 2006. The meta-analysis was accomplished by graphical analysis, correlation, and analysis of variance. The correlation between backfat thickness (BT and body weight was 0.16 (P<0.01, with protein mass was 0.48 (P<0.01 and leptin concentration was 0.88 (P<0.01. The correlation between the backfat variation during and in lactation (VBTl and body weight was -0.21 (P<0.01, with body weight variation in lactation was 0.34 (P<0.01 and with fat mass variation in lactation was 0.70 (P<0.01. The correlation between BT and born alive litter size was 0.46 (P<0.01, between VBTl and piglets body weight at seven days of age was 0.95 (P<0.01. In the gestation, the BD was influenced by the body weight and protein mass. However, in lactation the VBTl was influenced by the body weight variation and fat mass. The leptin concentration at farrowing was positively correlated with backfat depth. The BT was influenced by born alive litter size and piglets birth weight. The VBTl was influenced by piglets weight at seven days old and litter weight gain. In conclusion, there is a significant relation between backfat thickness and body variables of the sows in gestation and lactation.
49 CFR 180.205 - General requirements for requalification of specification cylinders.
2010-10-01
... each cylinder tested, except that for an analog device, interpolation to 1/2 of the marked gauge... for training persons who requalify cylinders using the volumetric expansion test method. (h) Cylinder...
2011-06-08
... DEPARTMENT OF COMMERCE International Trade Administration [C-570-978] High Pressure Steel... countervailing duty (``CVD'') petition concerning imports of high pressure steel cylinders (``steel cylinders... of Antidumping Duties and Countervailing Duties on High Pressure Steel Cylinders from the People's...
Photoelastic investigation of the stresses in mitered bent-cylinders under bending, 2
International Nuclear Information System (INIS)
Sawa, Yoshiaki
1983-01-01
The results of the stress analysis near the joints by freezing photoelastic method are described when two mitered cylinders of same diameter were directly joined, and the joint was subjected to inplane bending. The intersecting angle was changed from 45 deg through 60 and 90 deg to 120 deg, and the change of the stress distribution was examined, and the relation of the axial and circumferential peak stress values to the intersecting angle, wall thickness and corner radius was determined. In the experiment changing the intersecting angle, mostly the wall thickness and corner radius were taken as 1/10 of cylinder outside diameter. The models were made of Araldite B type and by machining and filing. In order to apply pure bending moment, four-point loading method was adopted. The photoelastic pictures, the state of stress distribution and the change of stress concentration factor due to the change of the intersecting angle are reported. The stress concentration factor was relatively high, and in particular, that of axial stress at the corner was remarkably affected by the corner radius. Other points of high peak stress were found. (Kako, I.)
International Nuclear Information System (INIS)
Abd-alla, Abo-el-nour N.; Al-sheikh, Fatimah; Al-Hossain, Abdullah Y.
2009-01-01
Effect of initial stresses on dispersion relation for transverse surface waves circulating around a piezoelectric cylinder covered with perfectly conducting layers is investigated. Two overlay materials are considered: Gold and Aluminum. The piezoelectric substrate is considered to have the symmetry of a hexagonal crystal, and the layer is perfectly conducting. The dispersion equation has been given in the form of determinant involving Bessel functions. The roots of the dispersion equation give the values of the characteristic circular frequency parameters of the first three modes for various geometries. These roots are numerically calculated by 'Bisection method iterations technique' and presented graphically for various thickness of the overlayer and for different values of the initial stress. The effects of the initial stress on the natural frequencies are illustrated on the figures. It is found that both the thickness of the overlayer and the initial stress have a substantial effect on the dispersion behavior. The results obtained in this paper may not only help us get insight into the electro-mechanical coupling behavior of the piezoelectric composites cylinders, but can also offer theoretical basis and meaningful suggestions for the design of piezoelectric probes and electro-acoustic devices in the nondestructive evaluation technology. Finally, the results are compared graphically when the overlay is Gold or Aluminum with some special cases which do not have initial stresses and electric field.
Safety analysis report on the ''Paducah Tiger'' overpack for 10-ton cylinder of uranium hexafluoride
International Nuclear Information System (INIS)
Stitt, D.H.
1978-01-01
A summary of analysis performed to assess the puncture resistance of the Paducah Tiger under a particularly severe (worst case) orientation of the external puncture pin is presented. The six-inch diameter cylindrical puncture pin has been oriented to place its impact location immediately opposite the valve body mounted to the dished head of the uranium hexafluoride cylinder. The valve body is assumed to have a one-inch clearance relative to the inner wall of the overpack. Analysis indicates that significant residual kinetic energy remains in the system at the instant of overpack inner wall contact with the valve body. Thus, there is strong evidence suggesting that the valve body can be damaged, or sheared from the dished head of the UF 6 , under the assumed worst case impact orientation
Yuan, Chongxin; Roozen, Bert; Bergsma, Otto; Beukers, Adriaan
2012-01-01
The fuselages of aircraft are modeled as a cylinder in this paper, and the sound insulations of a sandwich cylinder and a laminated cylinder are studied both experimentally and numerically. The cylinders are excited by an acoustic pressure and a mechanical force respectively. Results show that under acoustic excitation, the sandwich cylinder and the laminated one have a similar sound insulation below 3000 Hz, but the sandwich cylinder has a much larger sound insulation at higher frequencies. ...
Biologic Collagen Cylinder with Skate Flap Technique for Nipple Reconstruction
Directory of Open Access Journals (Sweden)
Brian P. Tierney
2014-01-01
Full Text Available A surgical technique using local tissue skate flaps combined with cylinders made from a naturally derived biomaterial has been used effectively for nipple reconstruction. A retrospective review of patients who underwent nipple reconstruction using this technique was performed. Comorbidities and type of breast reconstruction were collected. Outcome evaluation included complications, surgical revisions, and nipple projection. There were 115 skate flap reconstructions performed in 83 patients between July 2009 and January 2013. Patients ranged from 32 to 73 years old. Average body mass index was 28.0. The most common comorbidities were hypertension (39.8% and smoking (16.9%. After breast reconstruction, 68.7% of the patients underwent chemotherapy and 20.5% underwent radiation. Seventy-one patients had immediate breast reconstruction with expanders and 12 had delayed reconstruction. The only reported complications were extrusions (3.5%. Six nipples (5.2% in 5 patients required surgical revision due to loss of projection; two patients had minor loss of projection but did not require surgical revision. Nipple projection at time of surgery ranged from 6 to 7 mm and average projection at 6 months was 3–5 mm. A surgical technique for nipple reconstruction using a skate flap with a graft material is described. Complications are infrequent and short-term projection measurements are encouraging.
Biologic collagen cylinder with skate flap technique for nipple reconstruction.
Tierney, Brian P; Hodde, Jason P; Changkuon, Daniela I
2014-01-01
A surgical technique using local tissue skate flaps combined with cylinders made from a naturally derived biomaterial has been used effectively for nipple reconstruction. A retrospective review of patients who underwent nipple reconstruction using this technique was performed. Comorbidities and type of breast reconstruction were collected. Outcome evaluation included complications, surgical revisions, and nipple projection. There were 115 skate flap reconstructions performed in 83 patients between July 2009 and January 2013. Patients ranged from 32 to 73 years old. Average body mass index was 28.0. The most common comorbidities were hypertension (39.8%) and smoking (16.9%). After breast reconstruction, 68.7% of the patients underwent chemotherapy and 20.5% underwent radiation. Seventy-one patients had immediate breast reconstruction with expanders and 12 had delayed reconstruction. The only reported complications were extrusions (3.5%). Six nipples (5.2%) in 5 patients required surgical revision due to loss of projection; two patients had minor loss of projection but did not require surgical revision. Nipple projection at time of surgery ranged from 6 to 7 mm and average projection at 6 months was 3-5 mm. A surgical technique for nipple reconstruction using a skate flap with a graft material is described. Complications are infrequent and short-term projection measurements are encouraging.
Wang, R T; van de Hulst, H C
1995-05-20
A new algorithm for cylindrical Bessel functions that is similar to the one for spherical Bessel functions allows us to compute scattering functions for infinitely long cylinders covering sizes ka = 2πa/λ up to 8000 through the use of only an eight-digit single-precision machine computation. The scattering function and complex extinction coefficient of a finite cylinder that is seen near perpendicular incidence are derived from those of an infinitely long cylinder by the use of Huygens's principle. The result, which contains no arbitrary normalization factor, agrees quite well with analog microwave measurements of both extinction and scattering for such cylinders, even for an aspect ratio p = l/(2a) as low as 2. Rainbows produced by cylinders are similar to those for spherical drops but are brighter and have a lower contrast.
Luján, José M.; Galindo, José; Serrano, José R.; Pla, Benjamín
2008-06-01
Exhaust gas recirculation (EGR) is currently the most important NOx emission control system. During the last few years the EGR rate has increased progressively as pollutant emission regulations have become more restrictive. High EGR rate levels have given the effect of the unsuitable EGR and air distribution between cylinders away, which causes undesirable engine behavior. In this sense, the study of the EGR distribution between cylinders achieves high importance. However, despite the fact that the EGR is continuously under study, not many studies have been undertaken to approach its distribution between cylinders. In concordance with the aspects outlined before, the aim of this paper is to propose a methodology that permits us to identify the EGR cylinder-to-cylinder dispersion in a commercial engine. In order to achieve this objective, experimental tests have been combined with both one-dimensional and three-dimensional fluid dynamic models.
Energy Technology Data Exchange (ETDEWEB)
Ishii, K.; Urata, Y.; Yoshida, K.; Ono, T. [Honda Motor Co. Ltd., Tokyo (Japan)
1996-01-25
Analysis of the cycle-by-cycle variation of combustion in an internal combustion engine can be aided by the cycle-resolved measurement of the in-cylinder gas velocity. This paper describes the principle and operation of, and results obtained from, a particle coded-pulse velocimeter (PCPV) which measured the three components of velocity within normal planes to the axis of cylinder. The PCPV was applied to a 1.5 litre lean-burn engine in order to record the flow pattern. The intake air was seeded with light microcapsules of approximately 50{mu}m diameter which scattered light from a system of up to two sets of three plane laser sheets, distinguished by colour and thickness and pulsed by acousto-optic modulators, illuminating planes in the bore of the engine. The magnitudes of the axial and cross bore components of the velocity vector were found from the measured lengths and the duration of the particle tracks. The results from the PCPV measurements are time-resolved and instantaneously three-dimensional and thus the PCPV is capable of identifying the transition from a disordered flow, such as the intake process, to well-ordered flows such as occur during a compression process. The derived swirl and tumble ratios were relatively in good agreement with those measured by an impulse swirl meter. 6 refs., 8 figs., 1 tabs.
Long-term storage of compressed radioactive krypton in cylinders
International Nuclear Information System (INIS)
Niephaus, D.; Nommensen, O.; Bruecher, H.
1982-01-01
The recommendations of the German Radiation Protection Commission necessitate the separation of the radioactive noble gas krypton-85 (Kr-85) produced in large LWR reprocessing plants from the dissolver off-gas. A possible method of removal is a long-term storage of the compressed noble gas above ground in cylinders. The aim of the present study is to develop such a storage concept and evaluate its feasibility under the aspects of safety and cost. After having been filled, the gas cylinders are placed separately into transport racks serving to protect the cylinders. Following this, the cylinders are transferred out of the filling station in a transport cask, conveyed to the storage building and stored there. The storage building protects the gas cylinders against external impacts. The storage cells constitute a second barrier against the release of Kr-85. The heat produced during decay of the Kr-85 in the gas cylinders is carried off by natural convection of the air circulating in the storage cells. To study possible corrosion attack on special steels due to rubidium, experiments were conducted at 200 0 C during test periods up to 3500h. In order to compare properties at elevated temperatures, corrosion experiments were conducted at 500 0 C, which is far above the maximum licensed storage temperature of 200 0 C. Experiments were conducted concerning the adsorption of krypton on various adsorbents, thus reducing the pressure inside the gas cylinder during storage. A cost estimate based on 1980 prices
700 bar hydrogen cylinder design, testing and certification
International Nuclear Information System (INIS)
Duncan, M.
2004-01-01
'Full text:' Light weight and high pressure cylinders for compressed hydrogen storage are essential components for fuel cell vehicles. Storage volume and mass are two key considerations. Current on-board hydrogen storage systems are based on a maximum pressure of 350 bar. While 350 bar systems are excellent solutions for many applications, some situations required higher storage densities due to space restrictions. As a result significant research and development work has been expended by cylinder manufacturers, systems providers, testing agencies and automotive manufacturers to develop 700 bar systems to reduce storage volume. Dynetek Industries Ltd has proactively developed a range of 700 bar storage cylinders based on a seamless aluminum liner over wrapped with a carbon fiber composite. This paper presents the challenges and processes involved in the design, testing and certification of the Dynetek Industries Ltd 700 bar cylinder. The paper also provides reasoning for further volume and mass optimization of compressed hydrogen cylinders by incorporating realistic cylinder usage parameters into standards. In particular the overly conservative fill life requirement for cylinders will be examined. (author)
A numerical simulation of VIV on a flexible circular cylinder
International Nuclear Information System (INIS)
Xie Fangfang; Deng Jian; Zheng Yao; Xiao Qing
2012-01-01
In this paper, numerical simulations of a flexible circular cylinder subjected to a vortex-induced vibration (VIV) are conducted. The Reynolds number for simulations is fixed at 1000. The finite volume method is applied for modeling fluid flow with the moving meshes feature. The dynamic response of a flexible cylinder fixed at both ends is modeled by the Euler–Bernoulli beam theory. The comparison between two-dimensional (2D) simulations and 3D simulations for the flexible cylinder shows that the maximum response amplitude of the cross-flow oscillation is about 0.57D for 2D rigid cylinders (modeled by a spring–damper–mass model) and 1.03D for flexible cylinders, respectively. The results from 3D simulations are closer to previous experimental results. Furthermore, the results obtained with various frequency ratios show that different wake patterns exist according to the frequency ratio, such as 2S mode, 2P mode and some more complicated modes. The wake pattern is different at various sections along the cylinder length, due to the fact that the two ends of the beam are fixed. The vibration of the flexible cylinder can also greatly alter the three dimensionality in the wake, which is our research in future work, especially in the transition region for Reynolds number ranging from 170 to 300. (paper)
Cylinder Position Servo Control Based on Fuzzy PID
Directory of Open Access Journals (Sweden)
Shibo Cai
2013-01-01
Full Text Available The arbitrary position control of cylinder has always been the hard challenge in pneumatic system. We try to develop a cylinder position servo control method by combining fuzzy PID with the theoretical model of the proportional valve-controlled cylinder system. The pressure differential equation of cylinder, pressure-flow equation of proportional valve, and moment equilibrium equation of cylinder are established. And the mathematical models of the cylinder driving system are linearized. Then fuzzy PID control algorithm is designed for the cylinder position control, including the detail analysis of fuzzy variables and domain, fuzzy logic rules, and defuzzification. The stability of the proposed fuzzy PID controller is theoretically proved according to the small gain theorem. Experiments for targets position of 250 mm, 300 mm, and 350 mm were done and the results showed that the absolute error of the position control is less than 0.25 mm. And comparative experiment between fuzzy PID and classical PID verified the advantage of the proposed algorithm.
Dynamics of a flexible splitter plate in the wake of a circular cylinder
Shukla, S.; Govardhan, R. N.; Arakeri, J. H.
2013-08-01
Rigid splitter plates in the wake of bluff bodies are known to suppress the primary vortex shedding. In the present work, we experimentally study the problem of a flexible splitter plate in the wake of a circular cylinder. In this case, the splitter plate is free to continuously deform along its length due to the fluid forces acting on it; the flexural rigidity (EI) of the plate being an important parameter. Direct visualizations of the splitter plate motions, for very low values of flexural rigidity (EI), indicate periodic traveling wave type deformations of the splitter plate with maximum tip amplitudes of the order of 1 cylinder diameter. As the Reynolds number based on cylinder diameter is varied, two regimes of periodic splitter plate motions are found that are referred to as mode I and mode II, with a regime of aperiodic motions between them. The frequency of plate motions in both periodic modes is found to be close to the plane cylinder Strouhal number of about 0.2, while the average frequencies in the non-periodic regime are substantially lower. The measured normalized phase speed of the traveling wave for both periodic modes is also close to the convection speed of vortices in the plane cylinder wake. As the flexural rigidity of the plate (EI) is increased, the response of the plate was found to shift to the right when plotted with flow speed or Re. To better capture the effect of varying EI, we define and use a non-dimensional bending stiffness, K*, similar to the ones used in the flag flutter problem, K=EI/(0.5ρUL), where U is the free-stream velocity and L is the splitter plate length. Amplitude data for different EI cases when plotted against this parameter appear to collapse on to a single curve for a given splitter plate length. Measurements of the splitter plate motions for varying splitter plate lengths indicate that plates that are substantially larger than the formation length of the plane cylinder wake have similar responses, while shorter
Monitoring production target thickness
International Nuclear Information System (INIS)
Oothoudt, M.A.
1993-01-01
Pion and muon production targets at the Clinton P. Anderson Meson Physics Facility consist of rotating graphite wheels. The previous target thickness monitoring Procedure scanned the target across a reduced intensity beam to determine beam center. The fractional loss in current across the centered target gave a measure of target thickness. This procedure, however, required interruption of beam delivery to experiments and frequently indicated a different fractional loss than at normal beam currents. The new monitoring Procedure compares integrated ups and downs toroid current monitor readings. The current monitors are read once per minute and the integral of readings are logged once per eight-hour shift. Changes in the upstream to downstream fractional difference provide a nonintrusive continuous measurement of target thickness under nominal operational conditions. Target scans are now done only when new targets are installed or when unexplained changes in the current monitor data are observed
Vibrational Suspension of Light Sphere in a Tilted Rotating Cylinder with Liquid
Directory of Open Access Journals (Sweden)
Victor G. Kozlov
2014-01-01
Full Text Available The dynamics of a light sphere in a quickly rotating inclined cylinder filled with liquid under transversal vibrations is experimentally investigated. Due to inertial oscillations of the sphere relative to the cavity, its rotation velocity differs from the cavity one. The intensification of the lagging motion of a sphere and the excitation of the outstripping differential rotation are possible under vibrations. It occurs in the resonant areas where the frequency of vibrations coincides with the fundamental frequency of the system. The position of the sphere in the center of the cylinder could be unstable. Different velocities of the sphere are matched with its various quasistationary positions on the axis of rotating cavity. In tilted rotating cylinder, the axial component of the gravity force appears; however, the light sphere does not float to the upper end wall but gets the stable position at a definite distance from it. It makes possible to provide a vibrational suspension of the light sphere in filled with liquid cavity rotating around the vertical axis. It is found that in the wide range of the cavity inclination angles the sphere position is determined by the dimensionless velocity of body differential rotation.
Highly Enriched Uranium Metal Cylinders Surrounded by Various Reflector Materials
International Nuclear Information System (INIS)
Bernard Jones; J. Blair Briggs; Leland Monteirth
2007-01-01
A series of experiments was performed at Los Alamos Scientific Laboratory in 1958 to determine critical masses of cylinders of Oralloy (Oy) reflected by a number of materials. The experiments were all performed on the Comet Universal Critical Assembly Machine, and consisted of discs of highly enriched uranium (93.3 wt.% 235U) reflected by half-inch and one-inch-thick cylindrical shells of various reflector materials. The experiments were performed by members of Group N-2, particularly K. W. Gallup, G. E. Hansen, H. C. Paxton, and R. H. White. This experiment was intended to ascertain critical masses for criticality safety purposes, as well as to compare neutron transport cross sections to those obtained from danger coefficient measurements with the Topsy Oralloy-Tuballoy reflected and Godiva unreflected critical assemblies. The reflector materials examined in this series of experiments are as follows: magnesium, titanium, aluminum, graphite, mild steel, nickel, copper, cobalt, molybdenum, natural uranium, tungsten, beryllium, aluminum oxide, molybdenum carbide, and polythene (polyethylene). Also included are two special configurations of composite beryllium and iron reflectors. Analyses were performed in which uncertainty associated with six different parameters was evaluated; namely, extrapolation to the uranium critical mass, uranium density, 235U enrichment, reflector density, reflector thickness, and reflector impurities. In addition to the idealizations made by the experimenters (removal of the platen and diaphragm), two simplifications were also made to the benchmark models that resulted in a small bias and additional uncertainty. First of all, since impurities in core and reflector materials are only estimated, they are not included in the benchmark models. Secondly, the room, support structure, and other possible surrounding equipment were not included in the model. Bias values that result from these two simplifications were determined and associated
Response of Buried Vertically Oriented Cylinders to Dynamic Loading,
1980-06-01
BALSARA • , . / ,, _,-, -. 1i S ,LESPONSE OF BURIED VERTICALLY 9RIENTED CYLINDERS .-TO DINAMIC LOADING_ 9AYLE E. LRTOrwW&-N JIIMY P./BALSARA Nk...1.7, 2,8, and 4.0 inches). The end caps for the cylinders consisted of a steel shell filled with high- strength concrete; however, the end caps were...not designed to be test articles. The average concrete compressive strength of the cylinders on test day was 44.0 MPa (6,380 psi). The three DEOT
Finite-size resonance dielectric cylinder in a rectangular waveguide
International Nuclear Information System (INIS)
Chuprina, V.N.; Khizhnyak, N.A.
1988-01-01
The problem on resonance spread of an electromagnetic wave by a dielectric circular cylinder of finite size in a rectangular waveguide is solved by a numerical-analytical method. The cylinder axes are parallel. The cylinder can be used as a resonance tuning element in accelerating SHF-sections. Problems on cutting off linear algebraic equation systems, to which relations of macroscopic electrodynamics in the integral differential form written for the concrete problem considered here are reduced by analytical transformations, are investigated in the stage of numerical analysis. Theoretical dependences of the insertion of the voltage standing wave coefficient on the generator wave length calculated for different values of problem parameters are constracted
Flow around a confined cylinder: LES and PIV study
Directory of Open Access Journals (Sweden)
Palkin Egor
2017-01-01
Full Text Available We study the flow over a cylinder placed between two parallel rigid walls using Large-eddy simulations and Particle Image Velocimetry. The Reynolds number based on the inflow velocity and diameter of the cylinder is 3750 corresponding to the subcritical regime with laminar separation. Three-dimensional visualization shows the presence of the horseshoe vortex system prior to the cylinder. The comparison of time-averaged velocity fields and fluctuations shows good agreement between simulations and experiments. Spectral analysis suggests the presence of low-frequency modulations of the recirculating bubble.
Cylinder gauge measurement using a position sensitive detector
International Nuclear Information System (INIS)
St John, W. Doyle
2007-01-01
A position sensitive detector (PSD) has been used to determine the diameter of cylindrical pins based on the shift in a laser beam's centroid. The centroid of the light beam is defined here as the weighted average of position by the local intensity. A shift can be observed in the centroid of an otherwise axially symmetric light beam, which is partially obstructed. Additionally, the maximum shift in the centroid is a unique function of the obstructing cylinder diameter. Thus to determine the cylinder diameter, one only needs to detect this maximum shift as the cylinder is swept across the beam
Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine
Roth, Gregory T.; Sellnau, Mark C.
2016-08-09
A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder of the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.
Modal Structures in flow past a cylinder
Murshed, Mohammad
2017-11-01
With the advent of data, there have been opportunities to apply formalism to detect patterns or simple relations. For instance, a phenomenon can be defined through a partial differential equation which may not be very useful right away, whereas a formula for the evolution of a primary variable may be interpreted quite easily. Having access to data is not enough to move on since doing advanced linear algebra can put strain on the way computations are being done. A canonical problem in the field of aerodynamics is the transient flow past a cylinder where the viscosity can be adjusted to set the Reynolds number (Re). We observe the effect of the critical Re on the certain modes of behavior in time scale. A 2D-velocity field works as an input to analyze the modal structure of the flow using the Proper Orthogonal Decomposition and Koopman Mode/Dynamic Mode Decomposition. This will enable prediction of the solution further in time (taking into account the dependence on Re) and help us evaluate and discuss the associated error in the mechanism.
Cylinder supplied ammonia scrubber testing in IDMS
International Nuclear Information System (INIS)
Lambert, D.P.
1994-01-01
This report summarizes the results of the off-line testing the Integrated DWPF Melter System (IDMS) ammonia scrubbers using ammonia supplied from cylinders. Three additional tests with ammonia are planned to verify the data collected during off-line testing. Operation of the ammonia scrubber during IDMS SRAT and SME processing will be completed during the next IDMS run. The Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) scrubbers were successful in removing ammonia from the vapor stream to achieve ammonia vapor concentrations far below the 10 ppM vapor exit design basis. In most of the tests, the ammonia concentration in the vapor exit was lower than the detection limit of the analyzers so results are generally reported as <0.05 parts per million (ppM). During SRAT scrubber testing, the ammonia concentration was no higher than 2 ppM and during SME testing the ammonia concentration was no higher than 0.05 m
International Nuclear Information System (INIS)
1976-12-01
The standard specifies measurements of the coating thickness, which make use of beta backscattering and/or x-ray fluorescence. For commonly used combinations of coating material and base material the appropriate measuring ranges and radionuclides to be used are given for continuous as well as for discontinuous measurements
Harmonic oscillations of a circular cylinder moving with constant velocity in a quiescent fluid
Directory of Open Access Journals (Sweden)
Jan Novaes Recica
2008-01-01
Full Text Available The flow around an oscillating circular cylinder which moves with constant velocity in a quiescent Newtonian fluid with constant properties is analyzed. The influences of the frequency and amplitude oscillation on the aerodynamic loads and on the Strouhal number are presented. For the numerical simulation, a cloud of discrete Lamb vortices are utilized. For each time step of the simulation, a number of discrete vortices are placed close to the body surface; the intensity of theirs is determined such as to satisfy the no-slip boundary condition.
Development of Pipe Holding Mechanism for Pipe Inspection Robot Using Flexible Pneumatic Cylinder
Directory of Open Access Journals (Sweden)
Choi Kyujun
2016-01-01
Full Text Available A pipe inspection robot is useful to reduce the inspection cost. In the previous study, a novel pipe inspection robot using a flexible pneumatic cylinder that can move forward along to the pipe by changing the robot’s body naturally was proposed and tested. In this paper, to improve its mobility for a corner of a pipe, the thin pipe holding mechanism using pneumatic bellows was proposed and tested. As a result of its driving test, the holding performance of the mechanism was confirmed.
Convectively driven flow past an infinite moving vertical cylinder with ...
Indian Academy of Sciences (India)
2013-10-01
Oct 1, 2013 ... tical cylinder with combined effects of heat and mass transfer is an ... presented a numerical study of free convective flow of a viscous ... models. The simultaneous effects of thermal and mass stratifications have application.
Suppression of vortex shedding around a square cylinder using ...
Indian Academy of Sciences (India)
control of vortex shedding of square cylinders using blowing or suction. ... also showed complete suppression of vortex shedding if suction velocity falls between 0.40 .... equations such that mass balance (continuity) is satisfied simultaneously.
Steady particulate flows in a horizontal rotating cylinder
Yamane, K.; Nakagawa, M.; Altobelli, S. A.; Tanaka, T.; Tsuji, Y.
1998-06-01
Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio ˜7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit.
DEFF Research Database (Denmark)
Johansen, Per; Roemer, Daniel Beck; Andersen, Torben O.
2015-01-01
-stroke displacement simulations are used as basis for the parametric analysis. From the parametric analysis a change, in the minimum film thickness as function of piston and cylinder density, is shown for certain operating modes of the digital fluid power displacement motor. This indicate a need for careful....... In this paper the influence of the inertia term on the lubrication gaps of a radial piston motor are studied by a parametric analysis of the piston and cylinder density in a multibody tribodynamic simulation model. The motor is modeled as a digital fluid power displacement machine and a series of full...... assessment of the applicability, of the force balance condition, if it is used in multibody tribodynamic simulations of radial piston digital fluid power displacement motors....
DEFF Research Database (Denmark)
Warming, Lise; Ravn, Pernille; Christiansen, Claus
2003-01-01
as double-layer thickness. Body composition was measured by dual energy x-ray absorptiometry, which divides the body into fat mass, lean mass, and bone mass, both for the total body and regional body compartments. An abdominal region was inserted manually. Statistics were Pearson correlations and analysis...... of variance. RESULTS: Endometrial thickness and total body bone mass were correlated, respectively, to body mass index (r = 0.14, P ... correlate with increased endometrial thickness and bone mass....
Longitudinal Weld Land Buckling in Compression-Loaded Orthogrid Cylinders
Thornburgh, Robert P.; Hilburger, Mark W.
2010-01-01
Large stiffened cylinders used in launch vehicles (LV), such as the Space Shuttle External Tank, are manufactured by welding multiple curved panel sections into complete cylinders. The effects of the axial weld lands between the panel sections on the buckling load were studied, along with the interaction between the acreage stiffener arrangement and the weld land geometry. This document contains the results of the studies.
The Friction of Vehicle Brake Tandem Master Cylinder
International Nuclear Information System (INIS)
Kao, M J; Chang, H; Tsung, T T; Lin, H M
2006-01-01
The behaviour of an elastomeric seal for vehicle brake Tandem master cylinder is measured and analyzed in temperature and brake fluids changed. Working conditions are simulated for different piston rod velocity and cylinder supply pressure, in temperature rising, brakefluid boundary and Nanoaluminum oxide brakefluid oxide brakefluid lubrication. The result shows that Nanoaluminum oxide brakefluid with its ball shape can highly reduce friction coefficient to avoid seal excessive wear and reduce slick slip in brake applications
MATHEMATICAL METHODS TO DETERMINE THE INTERSECTION CURVES OF THE CYLINDERS
Directory of Open Access Journals (Sweden)
POPA Carmen
2010-07-01
Full Text Available The aim of this paper is to establish the intersection curves between cylinders, by using the Mathematica program. This thing can be obtained by introducing the curves equations, which are inferred, in Mathematica program. This paper take into discussion three right cylinders and another inclined to 45 degrees. The intersection curves can also be obtained by using the classical methods of the descriptive geometry.
Scattering cross-section of an inhomogeneous plasma cylinder
International Nuclear Information System (INIS)
Jiaming Shi; Lijian Qiu; Ling, Y.
1995-01-01
Scattering of em waves by the plasma cylinder is of significance in radar target detection, plasma diagnosis, etc. This paper discusses the general method to calculate the scattering cross-section of em waves from a plasma cylinder which is radially inhomogeneous and infinitely long. Numerical results are also provided for several plasma density profiles. The effect of the electron density distribution on the scattering cross-section is investigated
Criticality concerns in cleaning large uranium hexafluoride cylinders
International Nuclear Information System (INIS)
Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.
1995-06-01
Cleaning large cylinders used to transport low-enriched uranium hexafluoride (UF 6 ) presents several challenges to nuclear criticality safety. This paper presents a brief overview of the cleaning process, the criticality controls typically employed and their bases. Potential shortfalls in implementing these controls are highlighted, and a simple example to illustrate the difficulties in complying with the Double Contingency Principle is discussed. Finally, a summary of recommended criticality controls for large cylinder cleaning operations is presented
Mathematic modelling of circular cylinder deformation under inner grouwth
Directory of Open Access Journals (Sweden)
A. V. Siasiev
2009-09-01
Full Text Available A task on the intensive deformed state (IDS of a viscoelastic declivous cylinder, which is grown under the action of inner pressure, is considered. The process of continuous increase takes a place on an internal radius so, that a radius and pressure change on set to the given law. The special case of linear law of creeping is considered, and also numeral results are presented as the graphs of temporal dependence of tensions and moving for different points of cylinder.
ROBUST CYLINDER FITTING IN THREE-DIMENSIONAL POINT CLOUD DATA
Directory of Open Access Journals (Sweden)
A. Nurunnabi
2017-05-01
Full Text Available This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD. Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete data, as street poles for example are only scanned from the road. Moreover, existence of outliers is common. Outliers may occur as random or systematic errors, and may be scattered and/or clustered. In this paper, we present a statistically robust cylinder fitting algorithm for PCD that combines Robust Principal Component Analysis (RPCA with robust regression. Robust principal components as obtained by RPCA allow estimating cylinder directions more accurately, and an existing efficient circle fitting algorithm following robust regression principles, properly fit cylinder. We demonstrate the performance of the proposed method on artificial and real PCD. Results show that the proposed method provides more accurate and robust results: (i in the presence of noise and high percentage of outliers, (ii for incomplete as well as complete data, (iii for small and large number of points, and (iv for different sizes of radius. On 1000 simulated quarter cylinders of 1m radius with 10% outliers a PCA based method fit cylinders with a radius of on average 3.63 meter (m; the proposed method on the other hand fit cylinders of on average 1.02 m radius. The algorithm has potential in applications such as fitting cylindrical (e.g., light and traffic poles, diameter at breast height estimation for trees, and building and bridge information modelling.
Radiation dose rates from UF{sub 6} cylinders
Energy Technology Data Exchange (ETDEWEB)
Friend, P.J. [Urenco, Capenhurst (United Kingdom)
1991-12-31
This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.
Control of flow past a circular cylinder via a spanwise surface wire: effect of the wire scale
Energy Technology Data Exchange (ETDEWEB)
Ekmekci, Alis [University of Toronto Institute for Aerospace Studies, Toronto, ON (Canada); Rockwell, Donald [Lehigh University, Department of Mechanical Engineering, Bethlehem, PA (United States)
2011-09-15
Flow phenomena induced by a single spanwise wire on the surface of a circular cylinder are investigated via a cinema technique of particle image velocimetry (PIV). The primary aim of this investigation is to assess the effect of the wire scale. To this end, consideration is given to wires with different diameters that are 0.5, 1.2, and 2.9% of the cylinder diameter. The Reynolds number has a subcritical value of 10,000. Compared to the thickness of the unperturbed boundary layer developing around the cylinder between 5 and 75 from the forward stagnation point, the former two wires have smaller scales and the latter has a larger scale. Two angular locations of the wire, defined with respect to the forward stagnation point of the cylinder, are found to be critical. When the wire is located at these critical angles, either the most significant extension or the contraction of the time-mean separation bubble occurs in the near wake. These critical angles depend on the wire scale: the smaller the wire, the larger the critical angle. The small-scale and large-scale wires that have diameters of 1.2 and 2.9% of the cylinder diameter induce bistable shear-layer oscillations between different separation modes when placed at their respective critical angles corresponding to maximum extension of the near-wake bubble. These oscillations have irregular time intervals that are much longer than the time scale associated with the classical Karman instability. Moreover, the large-scale wire can either significantly attenuate or intensify the Karman mode of vortex shedding at the critical states; in contrast, the small-scale wires do not notably alter the strength of the Karman instability. (orig.)
Thermal analysis of the effect of thick thermal barrier coatings on diesel engine performance
International Nuclear Information System (INIS)
Hoag, K.L.; Frisch, S.R.; Yonushonis, T.M.
1986-01-01
The reduction of heat rejection from the diesel engine combustion chamber has been the subject of a great deal of focus in recent years. In the pursuit of this goal, Cummins Engine Company has received a contract from the Department of Energy for the development of thick thermal barrier coatings for combustion chamber surfaces. This contract involves the analysis of the impact of coatings on diesel engine performance, bench test evaluation of various coating designs, and single cylinder engine tests. The efforts reported in this paper center on the analysis of the effects of coatings on engine performance and heat rejection. For this analysis the conventional water cooled engine was compared with an engine having limited oil cooling, and utilizing zirocnia coated cylinder had firedecks and piston crowns. The analysis showed little or no benefits of similarly coating the valves or cylinder liner
A characteristic analysis of the fluidic muscle cylinder
Kim, Dong-Soo; Bae, Sang-Kyu; Hong, Sung-In
2005-12-01
The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.
International Nuclear Information System (INIS)
Jus, Y.
2011-01-01
This research thesis fits into the frame of researches achieved in the nuclear field in order to optimize the predictive abilities of sizing models of nuclear plant components. It more precisely addresses the modelling of the action exerted by the flowing fluid and the induced feedback by the structure dynamics. The objective is herein to investigate the interaction between the turbulence at the wall vicinity and the effects of non-conservative and potentially destabilizing unsteady coupling. The peculiar case of a single cylinder in infinite environment, and submitted to a transverse flow, is studied statically and then dynamically. The influence of flow regimes on dynamic response is characterized, and the quantification of fluid-structure interaction energy is assessed. The author then addresses the case of an array of cylinders, and highlights the contribution of three-dimensional macro-simulations for the analysis of flow-induced structure vibrations in subcritical regime within a High Performance Calculation (HPC) framework, and the interest of a CFD/CSM (computational fluid dynamics/computational structure mechanics) coupling in the case of turbulent flows in an industrial environment
Oxygen fugacity and piston cylinder capsule assemblies
Jakobsson, S.
2011-12-01
A double capsule assembly designed to control oxygen fugacity in piston cylinder experiments has been tested at 1200 °C and 10 kbar. The assembly consists of an outer Pt-capsule containing a solid buffer (Ni-NiO or Co-CoO plus H2O) and an inner AuPd-capsule containing the sample, H2O and a Pt-wire. To prevent direct contact with the buffer phases the AuPd-capsule is embedded in finely ground Al2O3 along with some coarser, fractured Al2O3 facilitating fluid inclusion formation. No water loss is observed in the sample even after 48 hrs but a slight increase in water content is observed in longer duration runs due to oxygen and hydrogen diffusion into the AuPd-capsule. Carbon from the furnace also diffuses through the outer Pt-capsule but reacts with H2O in the outer capsule to form CO2 and never reaches the inner capsule. Oxygen fugacity of runs in equilibrium with the Ni-NiO and Co-CoO buffers was measured by analyzing the Fe content of the Pt-wire in the sample1 and by analyzing Fe dissolved in the AuPd capsule2. The second method gives values that are in good agreement with established buffer whereas results from the first method are one half to one log units higher than the established values. References 1. E. Medard, C. A. McCammon, J. A. Barr, T. L. Grove, Am. Mineral. 93, 1838 (2008). 2. J. Barr, T. Grove, Contrib. Mineral. Petrol. 160, 631 (2010)
76 FR 55736 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders
2011-09-08
... certain of high- and low-pressure compressed gas cylinders, primarily fire extinguishers, by Atlas Fire...- pressure cylinders serviced by Atlas Fire Protection were marked and represented as requalified (visually... damage, serious personal injury, or death could result from the rupture of a cylinder. Cylinders not...
Low-Re flow past an isolated cylinder with rounded corners
Zhang, Wei; Samtaney, Ravi
2016-01-01
rounded cylinders, and between the latter and the circular cylinder. The free shear layer separated from the R+=0.125 cylinder is the most stable in which the first roll up of the wake vortex occurs furthest from the cylinder and results in the largest
International Nuclear Information System (INIS)
Chen, S.B.; Sanitjai, S.; Ghosh, K.; Goldstein, R.J.
2012-01-01
Flow characteristics, around a short uniform-diameter circular cylinder in crossflow, are investigated experimentally. Extensive flow visualization using oil-lampblack and smoke-wire methods have been performed. Near-wake velocity measurements have been performed using a hotwire anemometer. Complex secondary flows are observed on and around the cylinder in crossflow. Multiple vortices are observed in the horseshoe vortex system near the cylinder–endwall junction. Based on this flow visualization and local mass transfer measurement results, a six-vortex secondary flow model has been proposed. - Highlights: ► Flow visualizations and velocity measurements for a short circular cylinder. ► Six vortices in the horseshoe vortex system upstream of the base of the cylinder. ► Cross-stream turbulence intensity profiles show a similarity in their shape.
Coating thickness measuring device
International Nuclear Information System (INIS)
Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.
1984-01-01
A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts
Chiarugi, Alessandra; Nardini, Paolo; Borgognoni, Lorenzo; Brandani, Paola; Gerlini, Gianni; Rubegni, Pietro; Lamberti, Arianna; Salvini, Camilla; Lo Scocco, Giovanni; Cecchi, Roberto; Sirna, Riccardo; Lorenzi, Stefano; Gattai, Riccardo; Battistini, Silvio; Crocetti, Emanuele
2017-03-14
The epidemiologic trends of cutaneous melanoma are similar in several countries with a Western-type life style, where there is a progressive increasing incidence and a low but not decreasing mor- tality, or somewhere an increase too, especially in the older age groups. Also in Tuscany there is a steady rise in incidence with prevalence of in situ and invasive thin melanomas, with also an increase of thick melanomas. It is necessary to reduce the frequency of thick melanomas to reduce specific mortality. The objective of the current survey has been to compare, in the Tuscany population, by a case- case study, thin and thick melanoma cases, trying to find out those personal and tumour characteristics which may help to customize preventive interventions. RESULTS The results confirmed the age and the lower edu- cation level are associated with a later detection. The habit to perform skin self-examination is resulted protec- tive forward thick melanoma and also the diagnosis by a doctor. The elements emerging from the survey allow to hypothesize a group of subjects resulting at higher risk for a late diagnosis, aged over 50 and carrier of a fewer constitutional and environmental risk factors: few total and few atypical nevi, and lower sun exposure and burning. It is assumable that a part of people did not be reached from messages of prevention because does not recognize oneself in the categories of people at risk for skin cancers described in educational cam- paigns. If we want to obtain better results on diagnosis of skin melanoma we have to think a new strategy. At least to think over the educational messages discriminating people more at risk of incidence of melanoma from people more at risk to die from melanoma, and to renewed active involvement of the Gen- eral Practitioners .
International Nuclear Information System (INIS)
Dzhunushaliev, Vladimir; Minamitsuji, Masato; Folomeev, Vladimir
2010-01-01
This paper gives a comprehensive review on thick brane solutions and related topics. Such models have attracted much attention from many aspects since the birth of the brane world scenario. In many works, it has been usually assumed that a brane is an infinitely thin object; however, in more general situations, one can no longer assume this. It is also widely considered that more fundamental theories such as string theory would have a minimal length scale. Many multidimensional field theories coupled to gravitation have exact solutions of gravitating topological defects, which can represent our brane world. The inclusion of brane thickness can realize a variety of possible brane world models. Given our understanding, the known solutions can be classified into topologically non-trivial solutions and trivial ones. The former class contains solutions of a single scalar (domain walls), multi-scalar, gauge-Higgs (vortices), Weyl gravity and so on. As an example of the latter class, we consider solutions of two interacting scalar fields. Approaches to obtain cosmological equations in the thick brane world are reviewed. Solutions with spatially extended branes (S-branes) and those with an extra time-like direction are also discussed.
Adaptive individual-cylinder thermal state control using piston cooling for a GDCI engine
Roth, Gregory T; Husted, Harry L; Sellnau, Mark C
2015-04-07
A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.
Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin
2011-12-01
This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces
International Nuclear Information System (INIS)
Liu Li; Mishchenko, Michael I.; Cairns, Brian; Carlson, Barbara E.; Travis, Larry D.
2006-01-01
In this study, we model single-scattering properties of small cirrus crystals using mixtures of polydisperse, randomly oriented spheroids and cylinders with varying aspect ratios and with a refractive index representative of water ice at a wavelength of 1.88 μm. The Stokes scattering matrix elements averaged over wide shape distributions of spheroids and cylinders are compared with those computed for polydisperse surface-equivalent spheres. The shape-averaged phase function for a mixture of oblate and prolate spheroids is smooth, featureless, and nearly flat at side-scattering angles and closely resembles those typically measured for cirrus. Compared with the ensemble-averaged phase function for spheroids, that for a shape distribution of cylinders shows a relatively deeper minimum at side-scattering angles. This may indicate that light scattering from realistic cirrus crystals can be better represented by a shape mixture of ice spheroids. Interestingly, the single-scattering properties of shape-averaged oblate and prolate cylinders are very similar to those of compact cylinders with a diameter-to-length ratio of unity. The differences in the optical cross sections, single-scattering albedo, and asymmetry parameter between the spherical and the nonspherical particles studied appear to be relatively small. This may suggest that for a given optical thickness, the influence of particle shape on the radiative forcing caused by a cloud composed of small ice crystals can be negligible
Application of porous material to reduce aerodynamic sound from bluff bodies
International Nuclear Information System (INIS)
Sueki, Takeshi; Takaishi, Takehisa; Ikeda, Mitsuru; Arai, Norio
2010-01-01
Aerodynamic sound derived from bluff bodies can be considerably reduced by flow control. In this paper, the authors propose a new method in which porous material covers a body surface as one of the flow control methods. From wind tunnel tests on flows around a bare cylinder and a cylinder with porous material, it has been clarified that the application of porous materials is effective in reducing aerodynamic sound. Correlation between aerodynamic sound and aerodynamic force fluctuation, and a surface pressure distribution of cylinders are measured to investigate a mechanism of aerodynamic sound reduction. As a result, the correlation between aerodynamic sound and aerodynamic force fluctuation exists in the flow around the bare cylinder and disappears in the flow around the cylinder with porous material. Moreover, the aerodynamic force fluctuation of the cylinder with porous material is less than that of the bare cylinder. The surface pressure distribution of the cylinder with porous material is quite different from that of the bare cylinder. These facts indicate that aerodynamic sound is reduced by suppressing the motion of vortices because aerodynamic sound is induced by the unstable motion of vortices. In addition, an instantaneous flow field in the wake of the cylinder is measured by application of the PIV technique. Vortices that are shed alternately from the bare cylinder disappear by application of porous material, and the region of zero velocity spreads widely behind the cylinder with porous material. Shear layers between the stationary region and the uniform flow become thin and stable. These results suggest that porous material mainly affects the flow field adjacent to bluff bodies and reduces aerodynamic sound by depriving momentum of the wake and suppressing the unsteady motion of vortices. (invited paper)
Huang, R. F.; Lin, K. H.; Yeh, C.-N.; Lan, J.
2009-01-01
The temporal and spatial evolution processes of the flows in the cylinder of a four-valve, four-stroke, single cylinder, reciprocating motorcycle engine installed with the elliptic and circular intake ports were experimentally studied by using the particle image velocimetry (PIV). The engine was modified to fit the requirements of PIV measurement. The velocity fields measured by the PIV were analyzed and quantitatively presented as the tumble ratio and turbulence intensity. In the symmetry plane, both the circular and elliptic intake ports could initiate a vortex around the central region during the intake stroke. During the compression stroke, the central vortex created in the cylinder of the engine with the circular intake port disappeared, while that in the engine cylinder with the elliptic intake port further developed into the tumble motion. In the offset plane, weak vortical structures were initiated by the bluff-body effect of the intake valves during the intake stroke. The vortical structures induced by the elliptic intake port were more coherent than those generated by the circular intake port; besides, this feature extends to the compression stroke. The cycle-averaged tumble ratio and the turbulence intensity of the engine with the elliptic intake port were dramatically larger than those of the engine with the circular intake port. The measured engine performance was improved a lot by installing the elliptic intake port. The correlation between the flow features and the enhancement of the engine performance were argued and discussed.
Mechanism of drag reduction for circular cylinders with patterned surface
International Nuclear Information System (INIS)
Butt, U.; Jehring, L.; Egbers, C.
2014-01-01
Highlights: • Reduced drag of patterned cylinders over a wide range of Re numbers. • Hexagonal patterns cannot be characterized as roughness structures. • Hexagonal bumps affect the flow like spherical dimples of smaller k/d ratio do. • Main separation is delayed caused by a partial separation. • Angle of a separation line is not constant over the length of cylinder. -- Abstract: In this paper, the flow over cylinders with a patterned surface (k/d = 1.98 × 10 −2 ) is investigated in a subsonic wind tunnel over Reynolds numbers ranging from 3.14 × 10 4 to 2.77 × 10 5 by measuring drag, flow visualization and measuring velocity profiles above the surface of the cylinders, to observe the effect of hexagonal patterns on the flow of air. These patterns can also be referred as hexagonal dimples or bumps depending on their configuration. The investigations revealed that a patterned cylinder with patterns pressed outwards has a drag coefficient of about 0.65 times of a smooth one. Flow visualization techniques including surface oil-film technique and velocity profile measurement were employed to elucidate this effect, and hence present the mechanism of drag reduction. The measurement of velocity profiles using hot-wire anemometry above the surface reveal that a hexagonal bump cause local separation generating large turbulence intensity along the separating shear layer. Due to this increased turbulence, the flow reattaches to the surface with higher momentum and become able to withstand the pressure gradient delaying the main separation significantly. Besides that, the separation does not appear to occur in a straight line along the length of the cylinder as in case of most passive drag control methods, but follow exactly the hexagonal patterns forming a wave with its crest at 115° and trough at 110°, in contrast to the laminar separation line at 85° for a smooth cylinder
Small-scale deflagration cylinder test with velocimetry wall-motion diagnostics
Energy Technology Data Exchange (ETDEWEB)
Hooks, Daniel E [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Pierce, Timothy H [Los Alamos National Laboratory
2010-01-01
Predicting the likelihood and effects of outcomes resultant from thermal initiation of explosives remains a significant challenge. For certain explosive formulations, the general outcome can be broadly predicted given knowledge of certain conditions. However, there remain unexplained violent events, and increased statistical understanding of outcomes as a function of many variables, or 'violence categorization,' is needed. Additionally, the development of an equation of state equivalent for deflagration would be very useful in predicting possible detailed event consequences using traditional hydrodynamic detonation moders. For violence categorization, it is desirable that testing be efficient, such that it is possible to statistically define outcomes reliant on the processes of initiation of deflagration, steady state deflagration, and deflagration to detonation transitions. If the test simultaneously acquires information to inform models of violent deflagration events, overall predictive capabilities for event likelihood and consequence might improve remarkably. In this paper we describe an economical scaled deflagration cylinder test. The cyclotetramethylene tetranitramine (HMX) based explosive formu1lation PBX 9501 was tested using different temperature profiles in a thick-walled copper cylindrical confiner. This test is a scaled version of a recently demonstrated deflagration cylinder test, and is similar to several other thermal explosion tests. The primary difference is the passive velocimetry diagnostic, which enables measurement of confinement vessel wall velocities at failure, regardless of the timing and location of ignition.
Study of elastoplastic deformations self-fretting of flat cylinders by mandrelling
International Nuclear Information System (INIS)
Caron, Roger
1974-04-01
An application of the theory of thick tubes to the special case of flat cylinders which have been self-fretted by mandrelling, is presented. The following materials were used: 1 - a soft steel, XC 18 F, considered to be perfectly elastoplastic; 2 - an alloyed steel, 35 NCD 16, designated consolidable. In the first case, the slip trajectories observed on the polished cylinder surface enabled the plastic deformation region to be defined. It was found, in particular, that the average value of the mean boundary radius at the maximum pressure differs very little from that determined using basic formulas. In the second case, the plastic deformations uniformly affect the internal layers, and privileged trajectories do not exist in this region. On the other hand, the ε θ and ε r expansion curves (from deformation measurements), are continuous from the inner radius to the outer radius; the boundary radius was thus localized from considerations of its correspondence with the ε θ -ε r (shearing deformation) at the elastic limit of the material. This characteristic was determined from measurements made using a test piece provided for this purpose. The radii obtained with this method agree with the theoretical radii over only 4/5 of the total deformation, the uncertainty region being taken into consideration. The maximum value of this parameter was determined in such a way as to obtain a return to a completely elastic rest position. (author) [fr
Vortex-Induced Vibrations of a Square Cylinder with Damped Free-End Conditions
Directory of Open Access Journals (Sweden)
S. Manzoor
2013-01-01
Full Text Available The authors report the results of vortex-induced vibrations of a square cylinder in a wind tunnel. This constitutes a high mass ratio environment. The square cylinder is mounted in the wind tunnel in such a fashion that it only performs rigid body oscillations perpendicular to the flow direction with damped free-end conditions. This physical situation allows a direct evaluation for analytical models relying on simplified 2D assumptions. The results are also compared with two-dimensional fluid-structure (CFD-CSD numerical simulations. The comparison shows that despite having one-dimensional motion, the analytical model does not predict the VIV region with correctness. Results show that the numerical simulations and experimental results differ from the analytical model for the prediction of reduced velocity corresponding to peak amplitude. Also the analytical reduced velocity envelope is underpredicted compared to both numerical simulations and experimental data despite the structure being lightly damped. The findings are significant as the experimental results for freely oscillating high mass ratio body show differences from the low mass ratio especially in the transition between VIV and galloping regions. However the numerical simulations show comparatively close agreement.
Conversion of low BMEP 4-cylinder to high BMEP 2-cylinder large bore natural gas engine
Ladd, John
There are more than 6,000 integral compressor engines in use on US natural gas pipelines, operating 24 hours a day, 365 days a year. Many of these engines have operated continuously for more than 50 years, with little to no modifications. Due to recent emission regulations at the local, state and federal levels much of the aging infrastructure requires retrofit technology to remain within compliance. The Engines and Energy Conversion Laboratory was founded to test these retrofit technologies on its large bore engine testbed (LBET). The LBET is a low brake mean effective pressure (BMEP) Cooper Bessemer GMVTF-4. Newer GMV models, constructed in 1980's, utilize turbocharging to increase the output power, achieving BMEP's nearly double that of the LBET. To expand the lab's testing capability and to reduce the LBET's running cost: material testing, in-depth modeling, and on engine testing was completed to evaluate the feasibility of uprating the LBET to a high BMEP two cylinder engine. Due to the LBET's age, the crankcase material properties were not known. Material samples were removed from engine to conduct an in-depth material analysis. It was found that the crankcase was cast out of a specific grade of gray iron, class 25 meehanite. A complete three dimensional model of the LBET's crankcase and power cylinders was created. Using historical engine data, the force inputs were created for a finite element analysis model of the LBET, to determine the regions of high stress. The areas of high stress were instrumented with strain gauges to iterate and validate the model's findings. Several test cases were run at the high and intermediate BMEP engine conditions. The model found, at high BMEP conditions the LBET would operate at the fatigue limit of the class 25 meehanite, operating with no factor of safety but the intermediate case were deemed acceptable.
Full reflector thickness and isolation thickness on neutron transport
International Nuclear Information System (INIS)
Sakai, Tomohiro; Naito, Yoshitaka; Komuro, Yuichi.
1988-08-01
A method to determine ''full reflector thickness'' and ''isolation thickness'', which is utilized for criticality safety evaluation on nuclear fuel facilities, was proposed in this paper. Firstly, a calculation was tryed to obtain the two kinds of thicknesses from the result of criticality calculations for a specific case. Then, two simple equations which calculates the two kinds of thicknesses were made from the relation between reflector (or isolator) thickness and k eff , and one-group diffusion theory. Finally, we proposed a new method to determine the thicknesses. From the method we proposed, ''full reflector thickness'' and ''isolation thickness'' can be obtain using the equations and migration length of the reflector (or isolator) and infinite and effective multiplication factor of the fuel. (author)
Biocompatible wear-resistant thick ceramic coating
Directory of Open Access Journals (Sweden)
Vogt Nicola
2016-09-01
Full Text Available Sensitisation to immunologically active elements like chromium, cobalt or nickel and debris particle due to wear are serious problems for patients with metallic implants. We tested the approach of using a hard and thick ceramic coating as a wear-resistant protection of titanium implants, avoiding those sensitisation and foreign body problems. We showed that the process parameters strongly influence the coating porosity and, as a consequence, also its hardness.
Doubly stratified MHD tangent hyperbolic nanofluid flow due to permeable stretched cylinder
Nagendramma, V.; Leelarathnam, A.; Raju, C. S. K.; Shehzad, S. A.; Hussain, T.
2018-06-01
An investigation is exhibited to analyze the presence of heat source and sink in doubly stratified MHD incompressible tangent hyperbolic fluid due to stretching of cylinder embedded in porous space under nanoparticles. To develop the mathematical model of tangent hyperbolic nanofluid, movement of Brownian and thermophoretic are accounted. The established equations of continuity, momentum, thermal and solutal boundary layers are reassembled into sets of non-linear expressions. These assembled expressions are executed with the help of Runge-Kutta scheme with MATLAB. The impacts of sundry parameters are illustrated graphically and the engineering interest physical quantities like skin friction, Nusselt and Sherwood number are examined by computing numerical values. It is clear that the power-law index parameter and curvature parameter shows favorable effect on momentum boundary layer thickness whereas Weissennberg number reveals inimical influence.
NESC 1 Project - Status Report after the spinning of the NESC cylinder
Energy Technology Data Exchange (ETDEWEB)
Wintle, J.B. [Welding Inst., Abington (United Kingdom); Hurst, R. [Commission of the European Communities, Petten (Netherlands). Inst. for Advanced Materials; Hemsworth, B. [Nuclear Installations Inspectorate, Liverpool (United Kingdom)
1998-11-01
The International Network for Evaluating Steel Components (NESC) addresses issues relating to the validation of the entire process of structural integrity assessment. The first NESC Project is providing a unique insight into the relative roles which NDT, material properties, instrumentation measurements, and stress and fracture analyses can make in providing a robust safety case for pressurised thermal shock of a thick reactor pressure vessel of aged material containing defects. NESC I is unique insofar as the NDT and the analyses of stress and fracture have been carried out without exact knowledge of the defects as is the case in the real world. The project reached a major milestone on 20 March 1997 with the completion of the thermal shock test using the AEA Technology Spinning Cylinder facility at Risley. Early indications suggest that crack propagation has occurred in both the sub clad and through clad defects. (orig.)
NESC I project - Status report after the spinning of the NESC cylinder
International Nuclear Information System (INIS)
Wintle, J.B.; Hurst, R.; Hemsworth, B.
1998-01-01
The International Network for Evaluating Steel Components (NESC) addresses issues relating to the validation of the entire process of structural integrity assessment. The first NESC Project is providing a unique insight into the relative roles which NDT, material properties, instrumentation measurements, and stress and fracture analyses can make in providing a robust safety case for pressurised thermal shock of a thick reactor pressure vessel of aged material containing defects. NESC I is unique insofar as the NDT and the analyses of stress and fracture have been carried out without exact knowledge of the defects as in the case of the real world. The project reached a major milestone on 20 March 1997 with the completion of the thermal shock test using the AEA Technology Spinning Cylinder facility at Risley. Early indications suggest that crack propagation has occurred in both the sub clad and through clad defects. (author)
NESC 1 Project - Status Report after the spinning of the NESC cylinder
International Nuclear Information System (INIS)
Wintle, J.B.; Hurst, R.
1998-01-01
The International Network for Evaluating Steel Components (NESC) addresses issues relating to the validation of the entire process of structural integrity assessment. The first NESC Project is providing a unique insight into the relative roles which NDT, material properties, instrumentation measurements, and stress and fracture analyses can make in providing a robust safety case for pressurised thermal shock of a thick reactor pressure vessel of aged material containing defects. NESC I is unique insofar as the NDT and the analyses of stress and fracture have been carried out without exact knowledge of the defects as is the case in the real world. The project reached a major milestone on 20 March 1997 with the completion of the thermal shock test using the AEA Technology Spinning Cylinder facility at Risley. Early indications suggest that crack propagation has occurred in both the sub clad and through clad defects. (orig.)
Performance of a Horizontal Triple Cylinder Type Pulping Machine
Directory of Open Access Journals (Sweden)
Sukrisno Widyotomo
2011-05-01
Full Text Available Pulping is one important step in wet coffee processing method. Pulping process usually uses a machine which constructed by wood or metal materials. A horizontal single cylinder type of fresh coffee cherries pulping machine is the most popular machine in coffee processing. One of the weaknesses of a horizontal single cylinder type of fresh coffee cherries pulping machine is higher in broken beans. Broken bean is one of mayor aspects in defect system that contribute to low quality. Indonesian Coffee and Cocoa Research Institute has designed and tested a horizontal double cylinder type of fresh coffee cherries pulping machine which resulted in 12.6—21.4% of broken beans. To reduce percentage of broken beans, Indonesian Coffee and Cocoa Research Institute has developed and tested a horizontal triple cylinder type of fresh coffee cherries pulping machine. Material tested was fresh mature Robusta coffee cherries, 60—65% (wet basis moisture content; has classified on 3 levels i.e. unsorted, small and medium, and clean from metal and foreign materials. The result showed that the machine produced 6,340 kg/h in optimal capacity for operational conditions, 1400 rpm rotor rotation speed for unsorted coffee cherries with composition 55.5% whole parchment coffee, 3.66% broken beans, and 1% beans in wet skin.Key words : coffee, pulp, pulper, cylinder, quality.
Bursting pressure of autofrettaged cylinders with inclined external cracks
International Nuclear Information System (INIS)
Seifi, Rahman; Babalhavaeji, Majid
2012-01-01
Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn’t any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: ► Modified J-Integral can be used for study of autofrettaged cracked cylinders. ► External axial cracks reduce considerably the pressure capacity of cylinders. ► External circumferential cracks have not considerable effects on bursting pressure. ► Autofrettage has contrary effects on external crack in compared with internal crack.
The provision of clearances accuracy in piston - cylinder mating
Glukhov, V. I.; Shalay, V. V.
2017-08-01
The paper is aimed at increasing the quality of the pumping equipment in oil and gas industry. The main purpose of the study is to stabilize maximum values of productivity and durability of the pumping equipment based on the selective assembly of the cylinder-piston kinematic mating by optimization criterion. It is shown that the minimum clearance in the piston-cylinder mating is formed by maximum material dimensions. It is proved that maximum material dimensions are characterized by their own laws of distribution within the tolerance limits for the diameters of the cylinder internal mirror and the outer cylindrical surface of the piston. At that, their dispersion zones should be divided into size groups with a group tolerance equal to half the tolerance for the minimum clearance. The techniques for measuring the material dimensions - the smallest cylinder diameter and the largest piston diameter according to the envelope condition - are developed for sorting them into size groups. Reliable control of the dimensions precision ensures optimal minimum clearances of the piston-cylinder mating in all the size groups of the pumping equipment, necessary for increasing the equipment productivity and durability during the production, operation and repair processes.
UF6 Cylinder Imaging by Fast Neutron Transmission Tomography
International Nuclear Information System (INIS)
McElroy, R.; Hausladen, P.; Blackston, M.; Croft, S.
2015-01-01
The common use Non-Destructive Assay techniques for the determination of 235 U enrichment and mass of UF6 cylinders used in the production of nuclear reactor fuel require prior knowledge of the physical distribution of the UF6 within the cylinder. The measurement performance for these techniques is typically evaluated based on assumed bounding case distributions of the material. However, little direct data such as radiographic or tomographic images, regarding the distribution of the UF6 within the cylinder is available against which to judge these assumptions. We have developed and tested a prototype active neutron tomographic imaging system employing an Associated Particle Imaging (API) neutron generator and an array of pixelated neutron scintillation counters. This system has been successfully used to obtain the 3-dimensional map of the distribution of UF6 within a type 12B storage cylinder. Results from these measurements are presented and the potential performance and utility of this technique with larger 30B and 48Y cylinders is discussed. (author)
AFM tip-sample convolution effects for cylinder protrusions
Shen, Jian; Zhang, Dan; Zhang, Fei-Hu; Gan, Yang
2017-11-01
A thorough understanding about the AFM tip geometry dependent artifacts and tip-sample convolution effect is essential for reliable AFM topographic characterization and dimensional metrology. Using rigid sapphire cylinder protrusions (diameter: 2.25 μm, height: 575 nm) as the model system, a systematic and quantitative study about the imaging artifacts of four types of tips-two different pyramidal tips, one tetrahedral tip and one super sharp whisker tip-is carried out through comparing tip geometry dependent variations in AFM topography of cylinders and constructing the rigid tip-cylinder convolution models. We found that the imaging artifacts and the tip-sample convolution effect are critically related to the actual inclination of the working cantilever, the tip geometry, and the obstructive contacts between the working tip's planes/edges and the cylinder. Artifact-free images can only be obtained provided that all planes and edges of the working tip are steeper than the cylinder sidewalls. The findings reported here will contribute to reliable AFM characterization of surface features of micron or hundreds of nanometers in height that are frequently met in semiconductor, biology and materials fields.
Bursting pressure of autofrettaged cylinders with inclined external cracks
Energy Technology Data Exchange (ETDEWEB)
Seifi, Rahman, E-mail: rseifi@basu.ac.ir [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Babalhavaeji, Majid [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)
2012-01-15
Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn't any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: Black-Right-Pointing-Pointer Modified J-Integral can be used for study of autofrettaged cracked cylinders. Black-Right-Pointing-Pointer External axial cracks reduce considerably the pressure capacity of cylinders. Black-Right-Pointing-Pointer External circumferential cracks have not considerable effects on bursting pressure. Black-Right-Pointing-Pointer Autofrettage has contrary effects on external crack in compared with internal crack.
Wave forces on cylinder submerged horizontally in shallow water
Energy Technology Data Exchange (ETDEWEB)
Mitani, H; Sasaki, K; Kobayashi, T; Nomura, N; Kawabe, H; Sugimoto, H
1976-12-01
To estimate the wave forces on offshore and/or coastal structures, the ideal method is undoubtedly to obtain the more accurate solution of hydrodynamic equations under suitable boundary conditions. However, in practice, it is difficult to introduce precise solutions under present technical levels because some important problems still remain. Among them is the unsteady boundary layers with separation around the objects. Consequently, every effort is being made in this field to approximate these conditions. Among these approximations, the Diffraction Wave Theory and the Morrison's Method are the most famous means in practice, although both still have some problems. Some problems with the traditional Finite Amplitude Wave Theories such as Stokes and Cnoidal Wave Theories are examined, and by applying additional computed results to the Morrison's formula, the estimated formula for wave forces on a cylinder submerged horizontally in shallow water is introduced. Subsequently, the applicability of the formula and also the specific characteristics of wave forces on a horizontally settled cylinder are investigated in detail, attaching first importance to the distinctions from the vertically settled cylinder, based on the comparison of computed results with experimental results. The experiments were carried out on two different diameters of cylinder, 70 mm and 140 mm, and bottom slopes of the experimental tanks, /sup 1///sub 100/ and /sup 1///sub 30/, under various conditions varying water depth, wave period, wave height and also setting position of cylinder.
Modeling flow for modified concentric cylinder rheometer geometry
Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz
2016-11-01
Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.
Experimental study on flow past a rotationally oscillating cylinder
Gao, Yang-yang; Yin, Chang-shan; Yang, Kang; Zhao, Xi-zeng; Tan, Soon Keat
2017-08-01
A series of experiments was carried out to study the flow behaviour behind a rotationally oscillating cylinder at a low Reynolds number (Re=300) placed in a recirculation water channel. A stepper motor was used to rotate the cylinder clockwise- and- counterclockwise about its longitudinal axis at selected frequencies. The particle image velocimetry (PIV) technique was used to capture the flow field behind a rotationally oscillating cylinder. Instantaneous and timeaveraged flow fields such as the vorticity contours, streamline topologies and velocity distributions were analyzed. The effects of four rotation angle and frequency ratios F r ( F r= f n/ f v, the ratio of the forcing frequency f n to the natural vortex shedding frequency f v) on the wake in the lee of a rotationally oscillating cylinder were also examined. The significant wake modification was observed when the cylinder undergoes clockwise-and-counterclockwise motion with amplitude of π, especially in the range of 0.6≤ F r≤1.0.
Analysis of oil consumption in cylinder of diesel engine for optimization of piston rings
Zhang, Junhong; Zhang, Guichang; He, Zhenpeng; Lin, Jiewei; Liu, Hai
2013-01-01
The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method, however they are very costly. Therefore, it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method. Firstly, four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine. Then, the factors that affect the lubricating oil consumption such as working conditions, the second ring closed gap, the elastic force of the piston rings are also investigated for the four modes. The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface. Besides, there are three other findings: (1) The oil evaporation from the liner is determined by the working condition of an engine; (2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by; (3) With the increase of the elastic force of the ring, both the left oil film thickness and the oil throw-off at the top ring decrease. The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases. A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory, and then the model is trained and validated. The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%, which is acceptable for normal engineering applications. The oil consumption is also measured experimentally. The relative errors of the calculated and experimental values are less than 10%, verifying the
Biometric estimation of chest wall thickness of females
International Nuclear Information System (INIS)
Berger, C.D.; Lane, B.H.
1985-01-01
Optimal use of whole-body counting data to estimate pulmonary deposition of many of the actinides is dependent upon accurate measurement of the thickness of the chest wall because of severe attenuation of low-energy x rays and photons associated with the decay of these radionuclides. An algorithm for estimation of female chest wall thicknesses, verified by real-time ultrasonic measurements, has been derived based on the correlation of measured chest wall thickness and other common biometric quantities. Use of this algorithm will reduce the error generally associated with estimation of internal actinide deposition previously resulting from assuming an average chest wall thickness for all female subjects
Flow of power-law fluids in fixed beds of cylinders or spheres
Singh, John P.
2012-10-29
An ensemble average of the equations of motion for a Newtonian fluid over particle configurations in a dilute fixed bed of spheres or cylinders yields Brinkman\\'s equations of motion, where the disturbance velocity produced by a test particle is influenced by the Newtonian fluid stress and a body force representing the linear drag on the surrounding particles. We consider a similar analysis for a power-law fluid where the stress τ is related to the rate of strain e by τ = 2m en-1e, where m and n are constants. In this case, the ensemble-averaged momentum equation includes a body force resulting from the nonlinear drag exerted on the surrounding particles, a power-law stress associated with the disturbance velocity of the test particle, and a stress term that is linear with respect to the test particle\\'s disturbance velocity. The latter term results from the interaction of the test particle\\'s velocity disturbance with the random straining motions produced by the neighbouring particles and is important only in shear-thickening fluids where the velocity disturbances of the particles are long-ranged. The solutions to these equations using scaling analyses for dilute beds and numerical simulations using the finite element method are presented. We show that the drag force acting on a particle in a fixed bed can be written as a function of a particle-concentration-dependent length scale at which the fluid velocity disturbance produced by a particle is modified by hydrodynamic interactions with its neighbours. This is also true of the drag on a particle in a periodic array where the length scale is the lattice spacing. The effects of particle interactions on the drag in dilute arrays (periodic or random) of cylinders and spheres in shear-thickening fluids is dramatic, where it arrests the algebraic growth of the disturbance velocity with radial position when n≥ 1 for cylinders and n≥ 2 for spheres. For concentrated random arrays of particles, we adopt an
Runckel, Jack F.; Hieser, Gerald
1961-01-01
An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.
Flow past an axially aligned spinning cylinder: Experimental Study
Carlucci, Pasquale; Buckley, Liam; Mehmedagic, Igbal; Carlucci, Donald; Thangam, Siva
2017-11-01
Experimental investigation of flow past a spinning cylinder is presented in the context of its application and relevance to flow past projectiles. A subsonic wind tunnel is used to perform experiments on the flow past a spinning cylinder that is mounted on a forward sting and oriented such that its axis of rotation is aligned with the mean flow. The experiments cover a Reynolds number of range of up to 45000 and rotation numbers of up to 2 (based on cylinder diameter). Time-averaged mean flow and turbulence profiles in the wake flow are presented with and without spin along with comparison to published experimental data. Funded in part by the U. S. Army ARDEC, Picatinny Arsenal, NJ.
Large eight.cylinder Stirling engine for biofuels
DEFF Research Database (Denmark)
Carlsen, Henrik; Biedermann, F.; Bovin, Jonas Kabell
2003-01-01
A large Stirling engine with an electric power output of 70 kW has been developed for small-scale CHP using wood chips and other sorts of biomass as fuel. The development of the engine is based on the results from the development of a four-cylinder Stirling engine with a power output of 35 k...... in the hot end connecting the expansion space with the hot end of the regenerator through the heater panel. However, this has resulted in comparably large dead volumes and flow losses in the connections between the heater and the regenerator/expansion volume. For the new eight-cylinder engine the design...... of the connections between the heater and the regenerator/expansion volume have been improved considerably, reducing the flow losses and internal dead volume. Results from simulations indicate an improvement of power output and efficiency of about 10%. A four cylinder double acting Stirling engine is basically...
International Nuclear Information System (INIS)
Chai Guozhong; Fang Zhimin; Jiang Xianfeng; Li Gan
2004-01-01
This paper presents a comprehensive range of analyses on the interaction of two identical semi-elliptical surface cracks at the internal and external surfaces of a pressurized cylinder. The considered ratios of the crack depth to crack length are b/a=0.25, 0.5, 0.75 and 1.0; the ratios of the crack depth to wall thickness of the cylinder are 2b/t=0.2, 0.4, 0.6, 0.7 and 0.8. Forty crack configurations are analyzed and the stress intensity factors along the crack front are presented. The numerical results show that for 2b/t<0.7, the interaction leads to a decrease in the stress intensity factors for both internal and external surface cracks, compared with a single internal or external surface crack. Thus for fracture analysis of a practical pressurized cylinder with two identical semi-elliptical surface cracks at its internal and external surfaces, a conservative result is obtained by ignoring the interaction
Radioactive thickness gauge (1962)
International Nuclear Information System (INIS)
Guizerix, J.
1962-01-01
The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I 1 /I 2 ) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author) [fr
DEFF Research Database (Denmark)
Lai, Signe Sophus
The paper discusses the rewards and challenges of employing commercial audience measurements data – gathered by media industries for profitmaking purposes – in ethnographic research on the Internet in everyday life. It questions claims to the objectivity of big data (Anderson 2008), the assumption...... communication systems, language and behavior appear as texts, outputs, and discourses (data to be ‘found’) – big data then documents things that in earlier research required interviews and observations (data to be ‘made’) (Jensen 2014). However, web-measurement enterprises build audiences according...... to a commercial logic (boyd & Crawford 2011) and is as such directed by motives that call for specific types of sellable user data and specific segmentation strategies. In combining big data and ‘thick descriptions’ (Geertz 1973) scholars need to question how ethnographic fieldwork might map the ‘data not seen...
Pulsatility role in cylinder flow dynamics at low Reynolds number
Qamar, Adnan
2012-01-01
We present dynamics of pulsatile flow past a stationary cylinder characterized by three non-dimensional parameters: the Reynolds number (Re), non-dimensional amplitude (A) of the pulsatile flow velocity, and Keulegan-Carpenter number (KC = Uo/Dωc). This work is motivated by the development of total artificial lungs (TAL) device, which is envisioned to provide ambulatory support to patients. Results are presented for 0.2 ≤ A ≤ 0.6 and 0.57 ≤ KC ≤ 2 at Re = 5 and 10, which correspond to the operating range of TAL. Two distinct fluid regimes are identified. In both regimes, the size of the separated zone is much greater than the uniform flow case, the onset of separation is function of KC, and the separation vortex collapses rapidly during the last fraction of the pulsatile cycle. The vortex size is independent of KC, but with an exponential dependency on A. In regime I, the separation point remains attached to the cylinder surface. In regime II, the separation point migrates upstream of the cylinder. Two distinct vortex collapse mechanisms are observed. For A < 0.4 and all KC and Re values, collapse occurs on the cylinder surface, whereas for A > 0.4 the separation vortex detaches from the cylinder surface and collapses at a certain distance downstream of the cylinder. The average drag coefficient is found to be independent of A and KC, and depends only on Re. However, for A > 0.4, for a fraction of the pulsatile cycle, the instantaneous drag coefficient is negative indicating a thrust production. © 2012 American Institute of Physics.
Surface flaw in a thermally shocked hollow cylinder
International Nuclear Information System (INIS)
Kobayashi, A.S.; Emery, A.F.; Polvanich, N.; Love, W.J.
1975-01-01
The objective of this paper is to illustrate a procedure for estimating the stress intensity factors of a semi-elliptical crack located in the inner or outer surface of a thermally shocked hollow cylinder. The first step in this procedure is to estimate the transient thermal elastic stresses induced by sudden cooling of an uncracked cylinder by numerically evaluating standard heat transfer and thermal stress formulae. The stresses at the location of the crack surface in the uncracked cylinder are eliminated by the method of superposition in order to obtain a stress free crack surface. The stress intensity factors are then determined by a judicious use of two sets of solutions, one set involving stress intensity factors for a semi-elliptical crack in a flat plate and subjected to a polynomial distribution of pressure loading, and another set involving single-edge notched plates with prescribed edge-displacements and single-edge internally or externally notched cylinders with thermal shock loading. The former solutions are determined by the alternating technique in three-dimensional fracture mechanics with a fourth order polynomial pressure distribution on the crack surface where both the front and back surface effects are accounted for. The latter solutions involve two-dimensional finite element solutions of single-edge notched plates with prescribed edge-displacements and single-edge notched cylinders with thermal shock loading. By comparing these two two-dimensional solutions, an estimate of the effect of the cylindrical curvature on an edge-cracked plate is obtained. The combination of these two sets of solutions thus yields an estimate of the stress intensity factor in an internal and external semi-elliptical crack in a thermally shocked cylinder
Disentangling The Thick Concept Argument
DEFF Research Database (Denmark)
Blomberg, Olle
2007-01-01
Critics argue that non-cognitivism cannot adequately account for the existence and nature of some thick moral concepts. They use the existence of thick concepts as a lever in an argument against non-cognitivism, here called the Thick Concept Argument (TCA). While TCA is frequently invoked...
Transverse magnetic scattering by parallel conducting elliptic cylinders
Sebak, A.
1991-10-01
A boundary value solution to the problem of transverse magnetic multiple scattering by M parallel perfectly conducting elliptic cylinders is presented. The solution is an exact one and based on the separation-of-variables technique and the addition theorem for Mathieu functions. It is expressed in terms of a system of simultaneous linear equations of infinite order, which is then truncated for numerical computations. Representative numerical results for the scattered field by two cylinders are then generated, for some selected sizes and orientations parameters, and presented.
Plasmonic modes and extinction properties of a random nanocomposite cylinder
Energy Technology Data Exchange (ETDEWEB)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)
2014-04-15
We study the properties of surface plasmon-polariton waves of a random metal-dielectric nanocomposite cylinder, consisting of bulk metal embedded with dielectric nanoparticles. We use the Maxwell-Garnett formulation to model the effective dielectric function of the composite medium and show that there exist two surface mode bands. We investigate the extinction properties of the system, and obtain the dependence of the extinction spectrum on the nanoparticles’ shape and concentration as well as the cylinder radius and the incidence angle for both TE and TM polarization.
An experiment in heat conduction using hollow cylinders
Energy Technology Data Exchange (ETDEWEB)
Ortuno, M; Marquez, A; Gallego, S; Neipp, C; Belendez, A, E-mail: a.belendez@ua.es [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)
2011-07-15
An experimental apparatus was designed and built to allow students to carry out heat conduction experiments in hollow cylinders made of different materials, as well as to determine the thermal conductivity of these materials. The evolution of the temperature difference between the inner and outer walls of the cylinder as a function of time is analysed, and when the process reaches the steady state regime the thermal conductivity can be easily calculated. Several materials such as wood, plastic and metals are considered and the values of their thermal conductivities, obtained experimentally, are compared with those given in the reference list.
Structural Stress Analysis of an Engine Cylinder Head
Directory of Open Access Journals (Sweden)
R. Tichánek
2005-01-01
Full Text Available This paper deals with a structural stress analysis of the cylinder head assembly of the C/28 series engine. A detailed FE model was created for this purpose. The FE model consists of the main parts of the cylinder head assembly, and it includes a description of the thermal and mechanical loads and the contact interaction between their parts. The model considers the temperature dependency of the heat transfer coefficient on wall temperature in cooling passages. The paper presents a comparison of computed and measured temperature. The analysis was carried out using the FE program ABAQUS.
Four-Cylinder Stirling-Engine Computer Program
Daniele, C. J.; Lorenzo, C. F.
1986-01-01
Computer program developed for simulating steady-state and transient performance of four-cylinder Stirling engine. In model, four cylinders interconnected by four working spaces. Each working space contains seven volumes: one for expansion space, heater, cooler, and compression space and three for regenerator. Thermal time constant for regenerator mass associated with each regenator gas volume. Former code generates results very quickly, since it has only 14 state variables with no energy equation. Current code then used to study various aspects of Stirling engine in much more detail. Program written in FORTRAN IV for use on IBM 370 computer.
Motion control of servo cylinder using neural network
International Nuclear Information System (INIS)
Hwang, Un Kyoo; Cho, Seung Ho
2004-01-01
In this paper, a neural network controller that can be implemented in parallel with a PD controller is suggested for motion control of a hydraulic servo cylinder. By applying a self-excited oscillation method, the system design parameters of open loop transfer function of servo cylinder system are identified. Based on system design parameters, the PD gains are determined for the desired closed loop characteristics. The neural network is incorporated with PD control in order to compensate the inherent nonlinearities of hydraulic servo system. As an application example, a motion control using PD-NN has been performed and proved its superior performance by comparing with that of a PD control
Cylinder head fastening structure for internal combustion engines
Energy Technology Data Exchange (ETDEWEB)
Futakuchi, Y.; Oshiro, N.
1988-01-26
In a construction for an overhead cam internal combustion engine comprising a cylinder head adapted to be affixed to another component of the engine by at least one fastener having a tool receiving portion for tightening thereof and having a bearing cap affixed to the cylinder head and rotatably journaling the overhead camshaft, the improvement is described comprising the bearing cap having a portion overlying the fastener tool receiving portion, and means defining an access opening passing through the bearing cap and adapted to pass a tool for tightening of the fastener without removal of the bearing cap.
International Nuclear Information System (INIS)
Thiffeault, Jean-Luc; Childress, Stephen
2010-01-01
We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. For typical sizes, densities and swimming velocities of schools of krill, the effective diffusivity in this model is five times the thermal diffusivity. However, we estimate that viscosity increases this value by two orders of magnitude.
Lutman, D; Petros, A J
2006-09-01
When undertaking patient retrieval, it is important to take adequate supplies of oxygen to ensure patient safety. Oxygen can be delivered via a flowmeter into a facemask or used to drive pneumatic ventilators. Given the lack of space in the back of an ambulance or helicopter, the numbers of cylinders that can be taken is limited, hence the number needed to complete the journey must be carefully calculated prior to embarking. We have produced nomograms to predict how many oxygen cylinders will be consumed during a given journey when using either a flowmeter or a commonly used transport ventilator.
Extended Analytic Linear Model of Hydraulic Cylinder With Respect Different Piston Areas and Volumes
Directory of Open Access Journals (Sweden)
Petr KOŇAŘÍK
2009-06-01
Full Text Available Standard analytic linear model of hydraulic cylinder usually comes from assumptions of identical action piston areas on both sides of hydraulic cylinder (double piston rod and suitable operation point, which is usually chosen in the middle of piston. By reason of that volumes inside of cylinder are than same. Moreover for control of that arrangement of hydraulic cylinder, usually controlled by 4/3 servovalve, the same mount of flows comes in and comes out to each of chambers of hydraulic cylinder. Presented paper deal with development of extended form of analytic linear model of single piston rod hydraulic cylinder which respects different action piston areas and volumes inside of chambers of hydraulic cylinder and also two different input flows of hydraulic cylinder. In extended model are also considered possibilities of different dead volumes in hoses and intake parts of hydraulic cylinder. Dead volume has impact on damping of hydraulic cylinder. Because the system of hydraulic cylinder is generally presented as a integrative system with inertia of second order: eq , we can than obtain time constants and damping of hydraulic cylinder for each of analytic form model. The model has arisen for needs of model fractionation on two parts. Part of behaviour of chamber A and part of behaviour of chamber B of cylinder. It was created for the reason of analysis and synthesis of control parameters of regulation circuit of multivalve control concept of hydraulic drive with separately controlled chamber A and B which could be then used for.
Effect of High Porosity Screen on the Near Wake of a Circular Cylinder
Directory of Open Access Journals (Sweden)
Sahin B.
2013-04-01
Full Text Available The change in flow characteristics downstream of a circular cylinder (inner cylinder surrounded by a permeable cylinder (outer cylinder made of a high porosity screen was investigated in shallow water using Particle Image Velocimetry (PIV technique. The diameter of the inner cylinder, outer cylinder and the water height were kept constant during the experiments as d = 50 mm, D = 100 mm and hw = 50 mm, respectively. The depth-averaged free stream velocity was also kept constant as U = 180 mm/s which corresponded to a Reynolds number of Red = 9000 based on the inner cylinder diameter. It was shown that the outer permeable cylinder had a substantialeffect on the vortex formation and consequent vortex shedding downstream of the circular cylinder, especially in the near wake. The time averaged vorticity layers, streamlines and velocity vector field depict that the location of the interaction of vortices considerably changed by the presence of the outer cylinder. Turbulent statistics clearly demonstrated that in comparison to the natural cylinder, turbulent kinetic energy and Reynolds stresses decreased remarkably downstream of the inner cylinder. Moreover, spectra of streamwise velocity fluctuations showed that the vortex shedding frequency significantly reduced compared to the natural cylinder case.
Perceiving Direction of a Walker: Effect of Body Appearance
Directory of Open Access Journals (Sweden)
Kazuya Ono
2011-05-01
Full Text Available Human can perceive others' walking direction accurately even with 117ms observation (Sato, et al., ECVP2008. We aimed to see whether appearance of walker's body affects the accuracy of perceiving direction of the walker. Thus, we employed three different appearances: realistic human computer-graphics body (CG-human, nonrealistic cylinder-assembled body (Cylinders, and point-light walker (Points. We made a three-dimensional model of an adult-size walker who walked at a place. CG-human stimuli were generated by rendering the model with smooth shading. We made Cylinders stimuli by replacing body parts such as arms, legs, head, and hands with cylinders. Points stimuli were made by tracking 18 positions (mostly joints of the body like biological motion. One of walkers was presented for 117, 250, 500 or 1000ms while its direction was randomly varied by 3deg steps to 21deg left or right. Observers judged whether the walker was walking toward them (hit or not (miss, and self-range was measured in terms of the standard deviation for hit distributions. The perceived self-range was narrowed with long duration, and with CG-human stimulus. It is suggested that the accuracy of perceiving walker's direction depends on body appearance, and it is higher for human-like body than nonhuman body.
Overweight is not associated with cortical thickness alterations in children
Directory of Open Access Journals (Sweden)
Rachel Jane Sharkey
2015-02-01
Full Text Available IntroductionSeveral studies report an association between body mass index (BMI and cortical thickness in adults. Some studies demonstrate diffuse cortical thinning in obesity, while others report effects in areas that are associated with self-regulation, such as lateral prefrontal cortex. MethodsThis study used multilevel modelling of data from the NIH Pediatric MRI Data Repository, a mixed longitudinal and cross-sectional database, to examine the relationship between cortical thickness and body weight in children. Cortical thickness was computed at 81,942 vertices of 716 MRI scans from 378 children aged between 4 and 18 years. Body mass index Z score for age was computed for each participant. We preformed vertex-wise statistical analysis of the relationship between cortical thickness and BMI, accounting for age and gender. In addition, cortical thickness was extracted from regions of interest in prefrontal cortex and insula.ResultsNo significant association between cortical thickness and BMI was found, either by statistical parametric mapping or by region of interest analysis. Results remained negative when the analysis was restricted to children aged 12-18.ConclusionsThe correlation between BMI and cortical thickness was not found in this large pediatric sample. The association between BMI and cortical thinning develops after adolescence. This has implications for the nature of the relationship between brain anatomy and weight gain.
Foucault Dissipation in a Rolling Cylinder: A Webcam Quantitative Study
Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.
2011-01-01
In this paper we present an experimental strategy to measure the micro power dissipation due to Foucault "eddy" currents in a copper cylinder rolling on two parallel conductive rails in the presence of a magnetic field. Foucault power dissipation is obtained from kinematical measurements carried out by using a common PC webcam and video analysis…
Optimized dose distribution of a high dose rate vaginal cylinder
International Nuclear Information System (INIS)
Li Zuofeng; Liu, Chihray; Palta, Jatinder R.
1998-01-01
Purpose: To present a comparison of optimized dose distributions for a set of high-dose-rate (HDR) vaginal cylinders calculated by a commercial treatment-planning system with benchmark calculations using Monte-Carlo-calculated dosimetry data. Methods and Materials: Optimized dose distributions using both an isotropic and an anisotropic dose calculation model were obtained for a set of HDR vaginal cylinders. Mathematical optimization techniques available in the computer treatment-planning system were used to calculate dwell times and positions. These dose distributions were compared with benchmark calculations with TG43 formalism and using Monte-Carlo-calculated data. The same dwell times and positions were used for a quantitative comparison of dose calculated with three dose models. Results: The isotropic dose calculation model can result in discrepancies as high as 50%. The anisotropic dose calculation model compared better with benchmark calculations. The differences were more significant at the apex of the vaginal cylinder, which is typically used as the prescription point. Conclusion: Dose calculation models available in a computer treatment-planning system must be evaluated carefully to ensure their correct application. It should also be noted that when optimized dose distribution at a distance from the cylinder surface is calculated using an accurate dose calculation model, the vaginal mucosa dose becomes significantly higher, and therefore should be carefully monitored
Heat convection in a set of three vertical cylinders
International Nuclear Information System (INIS)
Serrano Ramirez, M.L. de.
1993-01-01
Experimental results on temperature and heat flow in a set of three vertical cylinders with internal generation of heat, water submerged and in free convection are presented in this work . Temperature distribution, Nusselt number and convective coefficient (h) for each rod, developed for the distance between the axis of cylinders in vertical position, as a consequence of the application of power in its outside, are analyzed. Experimental information about heat transfer by free convection in vertical cylinders and surfaces is analyzed. Information of the several author who have carried out studies about the heat transfer on vertical cylinders was compiled, and the proposed equations with the experimental data obtained in the thermo fluids laboratory of National Institute of Nuclear Research (ININ) were tested. The way in which separation distance, s, distribution temperature array, Nusselt number, and convective coefficient calculated for the proposed channel with the Keyhani, Dutton and experimental equations are tabulated and they are plotted for each power value and for each separation between rods. The scheme of the used equipment and the experimentation description as well as the observations of tests and graphical results are included. (Author)
Infinitely long cylinder in a sinusoidal field (Problem 2)
International Nuclear Information System (INIS)
Ida, N.
1986-01-01
The results presented here were obtained with a 2-D (and axisymmetric) eddy current program called EDDYNDT. The program uses the magnetic vector potential formulation and was specifically designed for the calculation of coil impedances in NDT applications. For normal applications, flux densities, forces, eddy current densities and stored and dissipated energies are not calculated. The program required minor modifications to calculated these quantities form the magnetic vector potential. In its present form, program EDDYNDT cannot handle flux normal boundary conditions. To avoid this, half the cylinder was modeled as opposed to the quarter cylinder in the mesh recommended in the problem outline. This increased the number of elements and nodes but did not change their density or location. Both a solution without the cylinder and a solution with the cylinder are presented. The fields presented are calculated at the center of each element. For this reason, the values presented are interpolated between neighboring elements. This creates a problem, particularly at discontinuities where the errors are largest
Dual-fuel engine with cylinder pressure based control
Energy Technology Data Exchange (ETDEWEB)
Ritscher, Bert [Caterpillar Motoren GmbH und Co. KG, Kiel (Germany). Large Power Systems Div.
2013-10-15
Cylinder pressure sensors were initially used to detect knocking and misfiring on spark ignited gas engines. On its latest MaK brand dual-fuel engine, Caterpillar Motoren is harnessing the deep insights into combustion and engine condition that can be derived direct from the origin of engine power in sophisticated control, monitoring and diagnostic systems. (orig.)
Facial and eye injury following a fridge cylinder gas explosion ...
African Journals Online (AJOL)
Facial and eye injury following a fridge cylinder gas explosion. Monsudi Kehinde Fasasi, Ehumadu Chioma Nwabugwu, Gero Na'allah Rumu. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO ...
49 CFR 173.316 - Cryogenic liquids in cylinders.
2010-10-01
... filling density for hydrogen, cryogenic liquid is defined as the percent ratio of the weight of lading in... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in...
Directed Assembly of Janus Cylinders by Controlling the Solvent Polarity.
Kim, Jongmin; Choi, Chang-Hyung; Yeom, Su-Jin; Eom, Naye; Kang, Kyoung-Ku; Lee, Chang-Soo
2017-08-01
This study demonstrates the possibility of controlling the directed self-assembly of microsized Janus cylinders by changing the solvent polarity of the assembly media. Experimental results are analyzed and theoretical calculations of the free energy of adhesion (ΔG ad ) are performed to elucidate the underlying basic principles and investigate the effects of the solvent on the self-assembled structures. This approach will pave a predictive route for controlling the structures of assembly depending on the solvent polarity. In particular, we find that a binary solvent system with precisely controlled polarity induces directional assembly of the microsized Janus cylinders. Thus, the formation of two-dimensional (2D) and three-dimensional (3D) assembled clusters can be reliably tuned by controlling the numbers of constituent Janus cylinders in a binary solvent system. Finally, this approach is expanded to stepwise assembly, which forms unique microstructures via secondary growth of primary seed clusters formed by the Janus cylinders. We envision that this investigation is highly promising for the construction of desired superstructures using a wide variety of polymeric Janus microparticles with chemical and physical multicompartments.
Temporary patching of damaged UF{sub 6} cylinders
Energy Technology Data Exchange (ETDEWEB)
Cardenas, A.L. [Martin Marietta Energy Systems, Inc., OH (United States)
1991-12-31
Patching techniques based on application of epoxy resins have been developed for temporarily repairing UF{sub 6} cylinders which have sustained relatively minor damage and must be safely emptied. The method is considerably faster and simpler than metallurgical weld repairs. Laboratory tests, detailed operational procedures, and case histories of experience at the Portsmouth Gaseous Diffusion Plant are described.
UF{sub 6} cylinder lifting equipment enhancements
Energy Technology Data Exchange (ETDEWEB)
Hortel, J.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)
1991-12-31
This paper presents numerous enhancements that have been made to the Portsmouth lifting equipment to ensure the safe handling of cylinders containing liquid uranium hexafluoride (UF{sub 6}). The basic approach has been to provide redundancy to all components of the lift path so that any one component failure would not cause the load to drop or cause any undesirable movement.
Inertial rise of a meniscus on a vertical cylinder
O’ Kiely, Doireann; Whiteley, Jonathan P.; Oliver, James M.; Vella, Dominic
2015-01-01
© © 2015 Cambridge University PressA. We consider the inertia-dominated rise of a meniscus around a vertical circular cylinder. Previous experiments and scaling analysis suggest that the height of the meniscus, h-{m}, grows with the time following
Boundary layer flow past a circular cylinder in axial flow
International Nuclear Information System (INIS)
Sawchuk, S.P.; Zamir, M.; Camiletti, S.E.
1985-01-01
This paper discusses a study of the laminar boundary layer on a semi-infinite circular cylinder in axial incompressible flow. Unlike previous studies, the present study investigates a full range of this boundary layer problem to determine skin friction, heat transfer and other integral properties of the boundary layer
Design of nested Halbach cylinder arrays for magnetic refrigeration applications
Energy Technology Data Exchange (ETDEWEB)
Trevizoli, Paulo V., E-mail: trevizoli@polo.ufsc.br; Lozano, Jaime A.; Peixer, Guilherme F.; Barbosa Jr, Jader R.
2015-12-01
We present an experimentally validated analytical procedure to design nested Halbach cylinder arrays for magnetic cooling applications. The procedure aims at maximizing the magnetic flux density variation in the core of the array for a given set of design parameters, namely the inner diameter of the internal magnet, the air gap between the magnet cylinders, the number of segments of each magnet and the remanent flux density of the Nd{sub 2}Fe{sub 14}B magnet grade. The design procedure was assisted and verified by 3-D numerical modeling using a commercial software package. An important aspect of the optimal design is to maintain an uniform axial distribution of the magnetic flux density in the region of the inner gap occupied by the active magnetocaloric regenerator. An optimal nested Halbach cylinder array was manufactured and experimentally evaluated for the magnetic flux density in the inner gap. The analytically calculated magnetic flux density variation agreed to within 5.6% with the experimental value for the center point of the magnet gap. - Highlights: • An analytical procedure to design nested Halbach cylinder arrays is proposed. • An optimal magnet configuration was built based on the analytical procedure. • The procedure was validated with 3D COMSOL simulations and experimental data.
Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders
DEFF Research Database (Denmark)
Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav
2011-01-01
An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...
49 CFR 178.35 - General requirements for specification cylinders.
2010-10-01
... of part 107 of this chapter; or (2) For DOT Specifications 3B, 3BN, 3E, 4B, 4BA, 4D (water capacity...) The word “spun” or “plug” must be placed near the DOT specification marking when an end closure in the... certifies that the processes of manufacture and heat treatment of cylinders were observed and found...
Controlling a negative loaded hydraulic cylinder using pressure feedback
DEFF Research Database (Denmark)
Hansen, M.R.; Andersen, T.O.
2010-01-01
This paper is concerned with the inherent oscillatory nature of pressure compensated velocity control of a hydraulic cylinder subjected to a negative load and suspended by means of an over-center valve. Initially, a linearized stability analysis of such a hydraulic circuit is carried out clearly ...... in a nonlinear time domain simulation model validating the linear stability analysis....
An Examination of Parameters Affecting Large Eddy Simulations of Flow Past a Square Cylinder
Mankbadi, M. R.; Georgiadis, N. J.
2014-01-01
Separated flow over a bluff body is analyzed via large eddy simulations. The turbulent flow around a square cylinder features a variety of complex flow phenomena such as highly unsteady vortical structures, reverse flow in the near wall region, and wake turbulence. The formation of spanwise vortices is often times artificially suppressed in computations by either insufficient depth or a coarse spanwise resolution. As the resolution is refined and the domain extended, the artificial turbulent energy exchange between spanwise and streamwise turbulence is eliminated within the wake region. A parametric study is performed highlighting the effects of spanwise vortices where the spanwise computational domain's resolution and depth are varied. For Re=22,000, the mean and turbulent statistics computed from the numerical large eddy simulations (NLES) are in good agreement with experimental data. Von-Karman shedding is observed in the wake of the cylinder. Mesh independence is illustrated by comparing a mesh resolution of 2 million to 16 million. Sensitivities to time stepping were minimized and sampling frequency sensitivities were nonpresent. While increasing the spanwise depth and resolution can be costly, this practice was found to be necessary to eliminating the artificial turbulent energy exchange.
Flow control by combining radial pulsation and rotation of a cylinder in uniform flow
Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.
2008-11-01
Flow visualizations and hot-wire measurements are carried out to study a circular cylinder undergoing simultaneous radial pulsation and rotation and placed in a uniform flow. The Reynolds number is in the range of 1,000--22,000, for which transition in the shear layers and near wake is expected. Our previous experimental and numerical investigations in this subcritical flow regime have established the existence of an important energy transfer mechanism from the mean flow to the fluctuations. Radial pulsations cause and enhance that energy transfer. Certain values of the amplitude and frequency of the pulsations lead to negative drag (i.e. thrust). The nonlinear interaction between the Magnus effect induced by the steady rotation of the cylinder and the near-wake modulated by the bluff body's pulsation leads to alteration of the omnipresent Kármán vortices and the possibility of optimizing the lift-to-drag ratio as well as the rates of heat and mass transfer. Other useful applications include the ability to enhance or suppress the turbulence intensity, and to avoid the potentially destructive lock-in phenomenon in the wake of bridges, electric cables and other structures.
Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder
Subbotin, Stanislav; Dyakova, Veronika
2018-05-01
The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.
International Nuclear Information System (INIS)
Lima E Silva, A.L.F.; Silveira-Neto, A.; Damasceno, J.J.R.
2003-01-01
In this work, a virtual boundary method is applied to the numerical simulation of a uniform flow over a cylinder. The force source term, added to the two-dimensional Navier-Stokes equations, guarantees the imposition of the no-slip boundary condition over the body-fluid interface. These equations are discretized, using the finite differences method. The immersed boundary is represented with a finite number of Lagrangian points, distributed over the solid-fluid interface. A Cartesian grid is used to solve the fluid flow equations. The key idea is to propose a method to calculate the interfacial force without ad hoc constants that should usually be adjusted for the type of flow and the type of the numerical method, when this kind of model is used. In the present work, this force is calculated using the Navier-Stokes equations applied to the Lagrangian points and then distributed over the Eulerian grid. The main advantage of this approach is that it enables calculation of this force field, even if the interface is moving or deforming. It is unnecessary to locate the Eulerian grid points near this immersed boundary. The lift and drag coefficients and the Strouhal number, calculated for an immersed cylinder, are compared with previous experimental and numerical results, for different Reynolds numbers
Numerical Characterisation of Active Drag and Lift Control for a Circular Cylinder in Cross-Flow
Directory of Open Access Journals (Sweden)
Philip McDonald
2017-11-01
Full Text Available Synthetic jet actuators have shown promise to control drag and lift for a bluff body in cross-flow. Using unsteady RANS CFD modelling, a significant modification of the drag coefficient for a circular cylinder in cross-flow at R e = 3900 is achieved by varying the actuation frequency. The variation in actuation frequency corresponds to a range in Stokes number of 2.4 < S t o < 6.4. The trends in drag coefficient modification largely agree with the findings of past publications, achieving a maximum drag reduction at S t o = 4.9 for a fixed jet Reynolds number of the synthetic jet of R e U ¯ o = 12. A decrease in the adverse pressure gradient near the jet orifice correlated with a momentum increase in the viscous sublayer and stronger vortical structures at the rear of the cylinder. In these same conditions, a decrease in turbulence intensity was observed in the far field wake, which is a relevant finding in the context of wind and tidal turbine arrays.
Energy Technology Data Exchange (ETDEWEB)
Kubis, H.; Winter, J.
1991-01-17
The invention concerns a cylinder head seal for reciprocating piston engines especially internal combustion engines and preferentially those with cylinder sleeves. With performances of internal combustion engines encreasing all the time it is becoming more and more difficult to seal the cylinder heat. The invention proposes a ring seal whose sides are plastically deformed when the cylinder headed screws are tightened. The inner deformations of the cylinder head resulting from the pressure forces inside the cylinder are compensated by means of elastic spring action of the combustion chamber sealing ring. The dimension of land, groove and sides are matched in such a way as to prevent any seal squeezing during plastification which would result in a deformation of the cylinder sleeve. The ring can therefore be set directly into the centering of the cylinder sleeve. Separate centering devices are not required.
Huang, Zhu; Zhang, Wei; Xi, Guang
2015-01-01
The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher
Computer modeling of the stalled flow of a rotating cylinder and the reverse magnus effect
Belotserkovskii, S. M.; Kotovskii, V. N.; Nisht, M. I.; Fedorov, R. M.
1985-02-01
Unsteady stalled flow around a rotating cylinder is investigated in a numerical experiment. Attention is mostly given to the reverse Magnus effect which was discovered in tube experiments at some critical rotational speed of the cylinder.
Gas cylinder disposal pit remediation waste minimization and management
International Nuclear Information System (INIS)
Alas, C.A.; Solow, A.; Criswell, C.W.; Spengler, D.; Brannon, R.; Schwender, J.M.; Eckman, C.K.; Rusthoven, T.
1995-01-01
A remediation of a gas cylinder disposal pit at Sandia National Laboratories, New Mexico has recently been completed. The cleanup prevented possible spontaneous releases of hazardous gases from corroded cylinders that may have affected nearby active test areas at Sandia's Technical Area III. Special waste management, safety, and quality plans were developed and strictly implemented for this project. The project was conceived from a waste management perspective, and waste minimization and management were built into the planning and implementation phases. The site layout was planned to accommodate light and heavy equipment, storage of large quantities of suspect soil, and special areas to stage and treat gases and reactive chemicals removed from the pit, as well as radiation protection areas. Excavation was a tightly controlled activity using experienced gas cylinder and reactive chemical specialists. Hazardous operations were conducted at night under lights, to allow nearby daytime operations to function unhindered. The quality assurance plan provided specific control of, and documentation for, critical decisions, as well as the record of daily operations. Both hand and heavy equipment excavation techniques were utilized. Hand excavation techniques were utilized. Hand excavation techniques allows sealed glass containers to be exhumed unharmed. In the end, several dozen thermal batteries; 5 pounds (2.3 kg) of lithium metal; 6.6 pounds (3.0 kg) of rubidium metal; several kilograms of unknown chemicals; 140 cubic yards (107 cubic meters) of thorium-contaminated soil; 270 cubic yards (205 cubic meters) of chromium-contaminated soil; and 450 gas cylinders, including 97 intact cylinders containing inert, flammable, toxic, corrosive, or oxidizing gases were removed and effectively managed to minimize waste
Extended Analytic Linear Model of Hydraulic Cylinder With Respect Different Piston Areas and Volumes
Petr KOŇAŘÍK
2009-01-01
Standard analytic linear model of hydraulic cylinder usually comes from assumptions of identical action piston areas on both sides of hydraulic cylinder (double piston rod) and suitable operation point, which is usually chosen in the middle of piston. By reason of that volumes inside of cylinder are than same. Moreover for control of that arrangement of hydraulic cylinder, usually controlled by 4/3 servovalve, the same mount of flows comes in and comes out to each of chambers of hydraulic cyl...
Ma Xiaobing; Zhang Yongbo
2015-01-01
An accelerated life testing investigation was conducted on a composite cylinder that consists of aluminum alloy and T700 carbon fiber. The ultimate failure stress predictions of cylinders were obtained by the mixing rule and verified by the blasting static pressure method. Based on the stress prediction of cylinder under working conditions, the constant stress accelerated life test of the cylinder was designed. However, the failure data cannot be sufficiently obtained by the accelerated life ...
International Nuclear Information System (INIS)
Donnelly, R.J.; LaMar, M.M.
1987-01-01
We discuss the use of rotating-cylinder viscometers to determine absolute shear viscosities of classical fluids and of helium II in the context of past and current knowledge of the stability and flow of these fluids between concentric cylinders. We identify a problem in measuring the absolute viscosity when the inner cylinder is rotating and the outer cylinder is at rest. We conclude by discussing the design of viscometers for absolute viscosity measurements in helium I and helium II
Directory of Open Access Journals (Sweden)
Orłowicz A.W.
2015-06-01
Full Text Available The paper presents an analysis of factors affecting the wear of cylinder liners. The effect of the graphite precipitation morphology on the cylinder liner wear mechanism is presented. Materials used to cast cylinder liners mounted in a number of engines have been examined for their conformity with requirements set out in applicable Polish industrial standard. A casting for a prototype cylinder liner has been made with a microstructure guaranteeing good service properties of the part.
Brady, Erika; And Others
Volume one of a multivolume catalog inventories 247 federal agency collections of wax cylinder recordings made by early ethnographers during 5 decades (1890-1941) of field work with Native American, traditional American, and world cultures. Native American music, chants, and linguistic samples comprise the majority of the collection. In addition…
International Nuclear Information System (INIS)
Chen, S.B.; Sanitjai, S.; Ghosh, K.; Goldstein, R.J.
2012-01-01
The effect of geometry on the flow around a cylinder in crossflow is investigated in this study. Three different stepped-diameter circular cylinders (SDCC s) with varying step heights are used. Extensive flow visualization using the oil-lampblack and smoke-wire techniques and near wake velocity measurements using a hotwire anemometer reveal complex secondary flows on and around the SDCC. Six vortices are observed in the horseshoe vortex system near the cylinder–endwall junction and six additional vortices are found in the step-induced vortex system on the step surface. Based on these experimental results, new secondary flow models are proposed. The step-induced vortices separate from the step surface at both sides and move toward the endwall, washing down the sides of the top/bottom larger diameter cylinders and interact with the separated shear layer and horseshoe vortices. In this process, they modify the near wake flow significantly: they produce an increase in velocity near the endwall region (below the step) and a decrease in velocity near the mid-span region, even altering the oscillatory behavior of the wake. - Highlights: ► Extensive flow visualization for stepped-diameter circular cylinders in crossflow. ► Six vortices in the horseshoe vortex system near the base. ► Six additional step-induced vortices on the upstream symmetry plane of step surface. ► Power spectral analysis for u′ shows oscillatory nature of the wake.
International Nuclear Information System (INIS)
Brown, S.J.; Fox, M.E.
1977-08-01
A structural problem that has received continued interest and development over the last several decades is the determination of stresses in two normally intersecting cylindrical shells subjected to internal pressure and external loading. In nuclear pressure vessels the external loading of the vessel through the attachment is encountered in thermal interaction, seismic loading and various postulated rupture or failure mechanisms. A simple technique, the Finite Plate Method, (FPM) is presented to analyze stresses in cylinder-to-cylinder junctures. The approach uses shallow shell formulations and a three term series expansion plate formulation, which limits the range of applicability. It is felt that the value of the method is its accuracy, economy, and ease in modeling a structure which falls within the range of applicability. Another appealing feature of the method is that its simplistic approach of superposition of results permits an easy extension to include additional loads not treated. For those mechanical loadings not developed, it is felt that their effect can either be accounted for by the mechanisms discussed or by simple calculations. Generally, the stresses resulting from torsional or transverse shear are small compared to the loads discussed, however, these shear effects may be included. Finally, in the instance of thermal stress within the cylinder-to-cylinder structure, it has been shown in an unpublished study by Brown that the FPM yields very good results for the range of curvatures discussed
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong Hyun; Kim, Hak Sung [Hanyang University, Seoul (Korea, Republic of); Kim, Hyo Chan; Yang, Yong Sik; In, Wang kee [KAERI, Daejeon (Korea, Republic of)
2016-05-15
In this paper, an analytical method based on thick walled theory has been studied to calculate stress and strain of ATF cladding. In order to prescribe boundary conditions of the analytical method, two algorithms were employed which are called subroutine 'Cladf' and 'Couple' of FRACAS, respectively. To evaluate the developed method, equivalent model using finite element method was established and stress components of the method were compared with those of equivalent FE model. One of promising ATF concepts is the coated cladding, which take advantages such as high melting point, a high neutron economy, and low tritium permeation rate. To evaluate the mechanical behavior and performance of the coated cladding, we need to develop the specified model to simulate the ATF behaviors in the reactor. In particular, the model for simulation of stress and strain for the coated cladding should be developed because the previous model, which is 'FRACAS', is for one body model. The FRACAS module employs the analytical method based on thin walled theory. According to thin-walled theory, radial stress is defined as zero but this assumption is not suitable for ATF cladding because value of the radial stress is not negligible in the case of ATF cladding. Recently, a structural model for multi-layered ceramic cylinders based on thick-walled theory was developed. Also, FE-based numerical simulation such as BISON has been developed to evaluate fuel performance. An analytical method that calculates stress components of ATF cladding was developed in this study. Thick-walled theory was used to derive equations for calculating stress and strain. To solve for these equations, boundary and loading conditions were obtained by subroutine 'Cladf' and 'Couple' and applied to the analytical method. To evaluate the developed method, equivalent FE model was established and its results were compared to those of analytical model. Based on the
Processing of mixed-waste compressed-gas cylinders on the Oak Ridge Reservation
International Nuclear Information System (INIS)
Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.
1998-03-01
To comply with restrictions on the storage of old compressed gas cylinders, the environmental management organization of Lockheed Martin Energy Systems must dispose of several thousand kilograms of compressed gases stored on the Oak Ridge Reservation (ORR) because the cylinders cannot be taken off-site for disposal in their current configuration. In the ORR Site Treatment Plan, a milestone is cited that requires repackaging and shipment off-site of 21 cylinders by September 30, 1997. A project was undertaken to first evaluate and then either recontainerize or neutralize these cylinders using a transportable compressed gas recontainerization skid (TCGRS), which was developed by Integrated Environmental Services of Atlanta. The transportable system can: (1) sample, analyze, and identify at the site the chemical and radiological content of each cylinder, even those with inoperable valves; (2) breach cylinders, when necessary, to release their contents into a containment chamber; and (3) either neutralize the gas or liquid contents within the containment chamber or transfer the gas or liquids to a new cylinder. The old cylinders and cylinder fragments were disposed of and the gases neutralized or transferred to new cylinders for transportation off-site for disposal. The entire operation to process the 21 cylinders took place in only 5 days once the system was approved for operation. The system performed as expected and can now be used to process the potentially thousands of more cylinders located across the US Department of Energy (DOE) complex that have not yet been declared surplus
Energy Technology Data Exchange (ETDEWEB)
Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)
2017-03-26
We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.
Stokes flow past a swarm of porous circular cylinders with Happel ...
Indian Academy of Sciences (India)
The problem of creeping ﬂow past a swarm of porous circular cylinders with Happel and Kuwabara boundary conditions is investigated. The Brinkman equation for the ﬂow inside the porous cylinder and the Stokes equation outside the porous cylinder in their stream function formulations are used. The force experienced by ...
Speed-variable Switched Differential Pump System for Direct Operation of Hydraulic Cylinders
DEFF Research Database (Denmark)
Schmidt, Lasse; Roemer, Daniel Beck; Pedersen, Henrik Clemmensen
2015-01-01
differential cylinders. The main idea was here to utilize an electric rotary drive, with the shaft interconnected to two antiparallel fixed displacement gear pumps, to actuate a differential cylinder. With the design carried out such that the area ratio of the cylinder matches the displacement ratio of the two...
2011-12-15
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-977] High Pressure Steel... determines that high pressure steel cylinders (``steel cylinders'') from the People's Republic of China... Imposition of Antidumping and Countervailing Duties: High Pressure Steel Cylinders From the People's Republic...
2013-09-09
... DEPARTMENT OF COMMERCE International Trade Administration [C-570-978] High Pressure Steel... duty order on high pressure steel cylinders (cylinders) from the People's Republic of China (PRC) for... High Pressure Steel Cylinders from the People's Republic of China.'' \\3\\ See BTIC's August 23, 2013...
2012-06-21
... DEPARTMENT OF COMMERCE International Trade Administration [C-570-978] High Pressure Steel...''), the Department is issuing a countervailing duty order on high pressure steel cylinders (``steel... investigation of steel cylinders from the PRC. See High Pressure Steel Cylinders From the People's Republic of...
Static and dynamic through thickness lamina properties of thick laminates
Lahuerta, F.; Nijssen, R.P.L.; Van der Meer, F.P.; Sluys, L.J.
2015-01-01
Thick laminates are increasingly present in large composites structures such as wind turbine blades. Different factors are suspected to be involved in the decreased static and dynamic performance of thick laminates. These include the effect of self-heating, the scaling effect, and the manufacturing
International Nuclear Information System (INIS)
Nakamura, Akira; Okajima, Atsushi; Kosugi, Takashi
2001-01-01
The flow-induced in-line oscillation of a cantilevered circular cylinder was experimentally studied through free-oscillation tests in a water tunnel. The response displacement amplitude at a circular cylinder tip was measured at reduced velocity from 1.0 to 4.0. A cantilevered cylinder was supported by a plate spring mounted on the water tunnel wall. The cylinder aspect ratio was varied from 5 to 21 to investigate the effect of aspect ratio on the response displacement. It is found that cylinders with aspect ratios of 5 and 10 have one excitation region, while cylinders with aspect ratios of 14 and 21 have two excitation regions. The aspect ratio, therefore, affects the amplitude of the excitation regions. The influence of end-effect was also investigated using cylinders with an end plate attached to the free end. Since the cylinders with an end plate show two excitation regions, even at an aspect ratio of 5, the flow around the free end of a cantilevered cylinder causes the end-effect. The mechanism of vibration was investigated using a cylinder with a splitter plate in wake to prevent alternate vortices. The amplitude is greater than those of a normal cylinder without a splitter plate, especially at V r =2.3 to 3.0, where a cylinder with an end plate shows the second excitation region. In order words, the alternate vortices suppress the amplitude in this range. The maximum amplitude of each excitation region decreases in proportion to C n and the amplitude of the first excitation is more sensitive to C n . (author)
Thermal convection of liquid sodium in inclined cylinders
Khalilov, Ruslan; Kolesnichenko, Ilya; Pavlinov, Alexander; Mamykin, Andrey; Shestakov, Alexander; Frick, Peter
2018-04-01
The effect of inclination on the low Prandtl number turbulent convection in a cylinder of unit aspect ratio was studied experimentally. The working fluid was sodium (Prandtl number Pr =0.0094 ), the measurements were performed for a fixed Rayleigh number Ra =(1.47 ±0.03 ) ×107 , and the inclination angle varied from β =0∘ (the Rayleigh-Bénard convection, the temperature gradient is vertical) up to β =90∘ (the applied temperature gradient is horizontal) with a step Δ β =10∘ . The effective axial heat flux characterized by the Nusselt number is minimal at β =0∘ and demonstrates a smooth growth with the increase of the cylinder inclination, reaching a maximum at angle β ≈70∘ and decreasing with a further increase of β . The maximal value of the normalized Nusselt number Nu (β )/Nu (0 ) was 1.21. In general, the dependence of Nu (β ) in a cylinder with unit aspect ratio is similar to what was observed in sodium convection in inclined long cylinders but is much weaker. The structure of the flow undergoes a significant transformation with inclination. Under moderate inclination (β ≲30∘ ), the fluctuations are strong and are provided by regular oscillations of large-scale circulation (LSC) and by turbulence. Under large inclination (β >60∘ ), the LSC is regular and the turbulence is weak, while in transient regimes (30∘border of transient and large inclinations. We find the first evidence of strong LSC fluctuations in low Prandtl number convective flow under moderate inclination. The rms azimuthal fluctuations of LSC, about 27∘ at β =0∘ , decrease almost linearly up to β =30∘ , where they are about 9∘. The angular fluctuations in the vicinity of the end faces are much stronger (about 37∘ at β =0∘ ) and weakly decrease up to β =20∘ . The strong anticorrelation of the fluctuations in two halves of the cylinder indicates the torsional character of LSC fluctuations. At β =30∘ , the intensity of the oscillations at the
Decuyper, J.; De Troyer, T.; Runacres, M. C.; Tiels, K.; Schoukens, J.
2018-01-01
The flow-induced vibration of bluff bodies is an important problem of many marine, civil, or mechanical engineers. In the design phase of such structures, it is vital to obtain good predictions of the fluid forces acting on the structure. Current methods rely on computational fluid dynamic simulations (CFD), with a too high computational cost to be effectively used in the design phase or for control applications. Alternative methods use heuristic mathematical models of the fluid forces, but these lack the accuracy (they often assume the system to be linear) or flexibility to be useful over a wide operating range. In this work we show that it is possible to build an accurate, flexible and low-computational-cost mathematical model using nonlinear system identification techniques. This model is data driven: it is trained over a user-defined region of interest using data obtained from experiments or simulations, or both. Here we use a Van der Pol oscillator as well as CFD simulations of an oscillating circular cylinder to generate the training data. Then a discrete-time polynomial nonlinear state-space model is fit to the data. This model relates the oscillation of the cylinder to the force that the fluid exerts on the cylinder. The model is finally validated over a wide range of oscillation frequencies and amplitudes, both inside and outside the so-called lock-in region. We show that forces simulated by the model are in good agreement with the data obtained from CFD.
Influence of rotation on the near-wake development behind an impulsively started circular cylinder
Coutanceau, M.; Menard, C.
1985-09-01
A rotating body, travelling through a fluid in such a way that the rotation axis is at right angles to the translational path, experiences a transverse force, called the Magnus force. The present study is concerned with a rotating cylinder which is in a state of translational motion. In the considered case, the existence of a lift force may be explained easily on the basis of the theory of inviscid fluids. An experimental investigation provides new information regarding the mechanism of the near-wake development of the classical unsteady flow and the influence of the rotational effects. Attention is given to the experimental technique, aspects of flow topology and notation, the time development of the wake flow pattern, the time evolution of certain flow properties, the flow structure in the neighborhood of the front stagnation point, and the influence of the Reynolds number on flow establishment.
Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis
Roth, Don J.
2013-01-01
A software method has been developed that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography (CT). This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2D sheets (or flattened onion skins ) in addition to a series of top view slices and 3D volume rendering. The advantages of viewing the data in this fashion are as follows: (1) the use of standard and specialized image processing and analysis methods is facilitated having 2D array data versus a volume rendering; (2) accurate lateral dimensional analysis of flaws is possible in the unwrapped sheets versus volume rendering; (3) flaws in the part jump out at the inspector with the proper contrast expansion settings in the unwrapped sheets; and (4) it is much easier for the inspector to locate flaws in the unwrapped sheets versus top view slices for very thin cylinders. The method is fully automated and requires no input from the user except proper voxel dimension from the CT experiment and wall thickness of the part. The software is available in 32-bit and 64-bit versions, and can be used with binary data (8- and 16-bit) and BMP type CT image sets. The software has memory (RAM) and hard-drive based modes. The advantage of the (64-bit) RAM-based mode is speed (and is very practical for users of 64-bit Windows operating systems and computers having 16 GB or more RAM). The advantage of the hard-drive based analysis is one can work with essentially unlimited-sized data sets. Separate windows are spawned for the unwrapped/re-sliced data view and any image processing interactive capability. Individual unwrapped images and un -wrapped image series can be saved in common image formats. More information is available at http://www.grc.nasa.gov/WWW/OptInstr/ NDE_CT_CylinderUnwrapper.html.
Directory of Open Access Journals (Sweden)
Ahmed T. Ahmed
2013-05-01
Full Text Available An experimental study on natural convection heat transfer from two parallel horizontal cylinders in horizontal cylindrical enclosure was carried out under condition of constant surfaces temperature for two cylinders and cylindrical enclosure. The study included the effect of Rayleigh number, rotation angle that represent the confined angle between the passing horizontal plane in cylindrical enclosure center and passing line in two cylinders centers, and the spaces between two cylinders on their heat loss ability.39An experimental set-up was used for this purpose which consist watercontainer, test section which is formed of plastic cylinder that represent the cylindrical enclosure, and two heating elements which are formed of two copper cylinders with (19 mm in diameters heated internally by electrical sources that represents transfer and heat loss elements through this set-up. The experiments were done at the range of Rayleigh number between ( , cylinders rotation angle at ( , and spacing ratio at ( . The study showed that the ability of heat loss from two cylinders is a function of Rayleigh number, cylinders rotation angle, and the spaces between them. This ability is increased by increasing of Rayleigh number and it was showed that this ability reaches maximum value at the first cylinder ( and minimum value at the second cylinder ( at spacing ratio (S/D=3 and rotation angle ( for the first and ( for the second cylinder respectively. The effective variables on natural convection heat transfer from the above two cylinders are related by two correlating equations, each one explains dimensionless relation of heat transfer from each cylinder that represented by Nusselt number against Rayleigh number, rotation angle, and the spacing ratio between two cylinders.
Rockwood, Matthew P.
The flow around a circular cylinder, a canonical bluff body, has been extensively studied in the literature to determine the mechanisms that cause the formation of vortices in the cylinder wake. Understanding of these mechanisms has led to myriad attempts to control the vortices either to mitigate the oscillating forces they cause, or to augment them in order to enhance mixing in the near-wake. While these flow control techniques have been effective at low Reynolds numbers, they generally lose effectiveness or require excessive power at Reynolds numbers commonly experienced in practical applications. For this reason, new methods for identifying the locations of vortices and their shedding time could increase the effectiveness of the control techniques. In the current work, two-dimensional, two-component velocity data was collected in the wake of a circular cylinder using a planar digital particle image velocimetry (DPIV) measurement system at Reynolds numbers of 9,000 and 19,000. This experimental data, as well as two-dimensional simulation data at a Reynolds number of 150, and three-dimensional simulation data at a Reynolds number of 400, is used to calculate the finite-time Lyapunov exponent (FTLE) field. The locations of Lagrangian saddles, identified as non-parallel intersections of positive and negative time FTLE ridges, are shown to indicate the timing of von Karman vortex shedding in the wake of a circular cylinder. The Lagrangian saddle found upstream of a forming and subsequently shedding vortex is shown to clearly accelerate away from the cylinder surface as the vortex begins to shed. This provides a novel, objective method to determine the timing of vortex shedding. The saddles are impossible to track in real-time, however, since future flow field data is needed for the computation of the FTLE fields. In order to detect the Lagrangian saddle acceleration without direct access to the FTLE, the saddle dynamics are connected to measurable surface quantities
Optimum target thickness for polarimeters
International Nuclear Information System (INIS)
Sitnik, I.M.
2003-01-01
Polarimeters with thick targets are a tool to measure the proton polarization. But the question about the optimum target thickness is still the subject of discussion. An attempt to calculate the most common parameters concerning this problem, in a few GeV region, is made
Orientation acoustic radiation of electrons in silicon thick crystal
International Nuclear Information System (INIS)
Alejnik, A.N.; Afanas'ev, S.G.; Vorob'ev, S.A.; Zabaev, V.N.; Il'in, S.I.; Kalinin, B.N.; Potylitsyn, A.P.
1989-01-01
Results of measuring orientation acoustic radiation of 900 and 500 MeV electrons during their movement along crystallographic axis in thick silicon crystal (h=20 mm thickness) are presented for the first time. Analysis of obtained results shows that dynamic mechanism describes rather completely the main regularities of orientation dependence of the amplitude of acoustic signal occuring under electron motion near crystallographic axis of the crystal. Phenomena of orientation acoustic radiation can be also used for investigation of solid bodies. Orientation both of thin and rather thick monocrystals can be conducted on the basis of dynamic mechanism of elastic wave excitation in crystals
International Nuclear Information System (INIS)
Kobayashi, Takanori; Sakon, Miyoji; Takada, Osamu; Hatori, Masakazu; Sakamoto, Tsutomu; Sato, Toshiyuki; Kazama, Akihito; Ishizawa, Yoshihiro; Igawa, Katsuhisa; Nakae, Hideo
2012-02-01
I confirmed a leak of the effluent gas from cylinder part during a load examination after the check of the emergency generator C unit on December 28, 2010 of the facilities check average and confirmed crack in No.8 cylinder liner part. As a result, because it was not performed oil pressure management properly without attaching an oil pressure gauge when I removed cylinder liner about the cause, crack occurred by having been able to write excessive stress for the cylinder liner and reached damage. By a process of this investigation, a fall of the materials strength of some cylinder liner was confirmed, but because a lead ingredient got mixed with materials by a casting process at the time of the production of the cylinder liner, as for this, Widmannstaetten graphite occurred, and it became clear that materials strength fell. In addition, I performed inspection by the supersonic wave velocity measurement as technique to distinguish this Widmannstaetten graphite easily and confirmed that I was effective. Because this report was the knowledge that there were little inspection contents which modified soundness confirmation technique of the cylinder liner with the possibility of materials strength fall of the cylinder liner by the Widmannstaetten graphite outbreak and the mixture of lead for a report example in the field of cast iron, I gathered it in this report. (author)
International Nuclear Information System (INIS)
Yasui, K; Tarui, Y; Itoh, M
2006-01-01
The idealized magnetic shielded vessel can be realized by making use of a high-critical temperature superconductor (HTS). It is difficult for practical applications, however, to fabricate a shielding vessel that has a high value of the maximum shielded magnetic flux density B s0 . The present authors have improved the value of B s0 for the Bi-Pb-Sr-Ca-Cu-O (BPSCCO) cylinder used as the shielding vessel, by the superposition of a four-layered softiron cylinder over the BPSCCO cylinder, termed the four-layered superimposed cylinder. The B s4 value of 610 x 10 -4 T for the four-layered superimposed cylinder, is found to be about 4 times larger than that of a single-BPSCCO cylinder, and is theoretically analyzed by use of a new analysis method. The experimental values of the maximum shielded magnetic flux density B sn of n-layered superimposed cylinders are found to agree well with those of the theoretical analysis. Experimental results revealed several characteristics of the magnetic shielding within the n-layered superimposed cylinders. Also discussed is the new analysis method for the relationship between the n and B sn
Integrated two-cylinder liquid piston Stirling engine
Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd
2014-10-01
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.
Integrated two-cylinder liquid piston Stirling engine
Energy Technology Data Exchange (ETDEWEB)
Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd, E-mail: todd.sulchek@me.gatech.edu [George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)
2014-10-06
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.
Relationship of pressure to temperature rise in overfilled cylinders
International Nuclear Information System (INIS)
Barber, E.J.
1979-01-01
Mild steel pressure vessels containing uranium hexafluoride are heated in 96-inch diameter autoclaves to allow the feed material to enter the gaseous diffusion process equipment for enrichment in the uranium 235 isotope. For purposes of safety analysis it is necessary to establish the ability of the instrumentation to shut off the steam supply to the autoclave prior to cylinder rupture if the cylinder has been overfilled. To make this determination requires estimates of the rate of change of pressure with respect to change of temperature at constant volume as a function of the temperature at which the ullage disappears. The paper presents the calculations for the estimation of this rate of change for liquid uranium hexafluoride using the ratio of the coefficients of expansion and compressibility using empirical liquid density data and the Eyring equation of state for liquids. 5 figs. (MB)
Measurement by a cylinder test stand and tyre rolling resistance
Directory of Open Access Journals (Sweden)
A. Dávid
2006-03-01
Full Text Available Sometimes it is necessary to test how repair affects the properties of the car. These tests are carried out using a cylinder test stand. During the test the tyre is rolling between two cylinders of a small diameter. The question arises whether the rolling resistance of the tyre is the same as the rolling resistance when the wheel is rolling on the plane. If it is not the same what is the reliation between tyre resistances in these two cases? It is an important answer because the change of rolling resistance can affect consumption, the highest speed, engine power and other results of measurement. The paper gives the answer to these questions and describes the method of getting this information.
OPAL Forward Calorimeter (half cylinder with lead scintillator)
1 half cylinder piece is available for loan. The OPAL forward Detector Calorimeter was made in 4 half cylindrical pieces. Two full cylinders were placed round the LEP beam pipe about 3m downstream of the interaction point. The detector was used primarily to measure the luminosity of LEP (rate of interactions) and also to trigger on 2-photon events. In addition it formed an essential part of the detector coverage which OPAL needed to carry out searches for new particles such as the Higgs boson. The detector is made of scintillators sandwiched between lead sheets. The light from the scintillators passes via bars of wavelength shifter and light guides on its way to be measured by photomultipliers. There is a layer of gas filled tube chambers within the calorimeter. These provide a measure of the position of the particles interacting in the calorimeter.
Broadband computation of the scattering coefficients of infinite arbitrary cylinders.
Blanchard, Cédric; Guizal, Brahim; Felbacq, Didier
2012-07-01
We employ a time-domain method to compute the near field on a contour enclosing infinitely long cylinders of arbitrary cross section and constitution. We therefore recover the cylindrical Hankel coefficients of the expansion of the field outside the circumscribed circle of the structure. The recovered coefficients enable the wideband analysis of complex systems, e.g., the determination of the radar cross section becomes straightforward. The prescription for constructing such a numerical tool is provided in great detail. The method is validated by computing the scattering coefficients for a homogeneous circular cylinder illuminated by a plane wave, a problem for which an analytical solution exists. Finally, some radiation properties of an optical antenna are examined by employing the proposed technique.
Integrated two-cylinder liquid piston Stirling engine
International Nuclear Information System (INIS)
Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd
2014-01-01
Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.
Nonideal ultrathin mantle cloak for electrically large conducting cylinders.
Liu, Shuo; Zhang, Hao Chi; Xu, He-Xiu; Cui, Tie Jun
2014-09-01
Based on the concept of the scattering cancellation technique, we propose a nonideal ultrathin mantle cloak that can efficiently suppress the total scattering cross sections of an electrically large conducting cylinder (over one free-space wavelength). The cloaking mechanism is investigated in depth based on the Mie scattering theory and is simultaneously interpreted from the perspective of far-field bistatic scattering and near-field distributions. We remark that, unlike the perfect transformation-optics-based cloak, this nonideal cloaking technique is mainly designed to minimize simultaneously several scattering multipoles of a relatively large geometry around considerably broad bandwidth. Numerical simulations and experimental results show that the antiscattering ability of the metasurface gives rise to excellent total scattering reduction of the electrically large cylinder and remarkable electric-field restoration around the cloak. The outstanding cloaking performance together with the good features of and ultralow profile, flexibility, and easy fabrication predict promising applications in the microwave frequencies.
Final report on PCRV thermal cylinder axial tendon failures
International Nuclear Information System (INIS)
Canonico, D.A.; Griess, J.C.; Robinson, G.C.
1976-01-01
The post-test examination of the failed tendons from the PCRV thermal cylinder experiment has been concluded. Failures in the wires are attributed to stress-corrosion cracking. The cause of tendon failures has not been unequivocably established, but they may have been due to nitrates in the duct. The wires employed in the manufacture of the tendons will crack in less than 72 hr in a 0.2 M solution of ammonium nitrate at 70 0 C. The quality of the wires is poor, and surface cracks were detected. These could have acted as concentrating sites for both stress and the deleterious contaminants. It is believed that the factors that led to the failures in the thermal cylinder experiment were unique. An improper formulation of the epoxy resin did not provide the tendon anchor plate seal that was desired; indeed, the improper formulation is responsible for the high level of nitrogen in the ducts of the failed tendons