WorldWideScience

Sample records for bodies of specific vehicles

  1. Analysis of Flexible Car Body of Straddle Monorail Vehicle

    Science.gov (United States)

    Zhong, Yuanmu

    2018-03-01

    Based on the finite element model of straddle monorail vehicle, a rigid-flexible coupling dynamic model considering vehicle body’s flexibility is established. The influence of vertical stiffness and vertical damping of the running wheel on the modal parameters of the car body is analyzed. The effect of flexible car body on modal parameters and vehicle ride quality is also studied. The results show that when the vertical stiffness of running wheel is less than 1 MN / m, the car body bounce and pitch frequency increase with the increasing of the vertical stiffness of the running wheel, when the running wheel vertical stiffness is 1MN / m or more, car body bounce and pitch frequency remained unchanged; When the vertical stiffness of the running wheel is below 1.8 MN / m, the vehicle body bounce and pitch damping ratio increase with the increasing of the vertical stiffness of the running wheel; When the running wheel vertical stiffness is 1.8MN / m or more, the car body bounce and pitch damping ratio remained unchanged; The running wheel vertical damping on the car body bounce and pitch frequency has no effect; Car body bounce and pitch damping ratio increase with the increasing of the vertical damping of the running wheel. The flexibility of the car body has no effect on the modal parameters of the car, which will improve the vehicle ride quality index.

  2. Kineto-dynamic design optimisation for vehicle-specific seat-suspension systems

    Science.gov (United States)

    Shangguan, Wen-Bin; Shui, Yijie; Rakheja, Subhash

    2017-11-01

    Designs and analyses of seat-suspension systems are invariably performed considering effective vertical spring rate and damping properties, while neglecting important contributions due to kinematics of the widely used cross-linkage mechanism. In this study, a kineto-dynamic model of a seat-suspension is formulated to obtain relations for effective vertical suspension stiffness and damping characteristics as functions of those of the air spring and the hydraulic damper, respectively. The proposed relations are verified through simulations of the multi-body dynamic model of the cross-linkage seat-suspension in the ADAMS platform. The validity of the kineto-dynamic model is also demonstrated through comparisons of its vibration transmission response with the experimental data. The model is used to identify optimal air spring coordinates to attain nearly constant natural frequency of the suspension, irrespective of the seated body mass and seated height. A methodology is further proposed to identify optimal damping requirements for vehicle-specific suspension designs to achieve minimal seat effective amplitude transmissibility (SEAT) and vibration dose value (VDV) considering vibration spectra of different classes of earthmoving vehicles. The shock and vibration isolation performance potentials of the optimal designs are evaluated under selected vehicle vibration superimposed with shock motions. Results show that the vehicle-specific optimal designs could provide substantial reductions in the SEAT and VDV values for the vehicle classes considered.

  3. Aerothermodynamics of blunt body entry vehicles

    Science.gov (United States)

    Hollis, Brian R.; Borrelli, Salvatore

    2012-01-01

    In this chapter, the aerothermodynamic phenomena of blunt body entry vehicles are discussed. Four topics will be considered that present challenges to current computational modeling techniques for blunt body environments: turbulent flow, non-equilibrium flow, rarefied flow, and radiation transport. Examples of comparisons between computational tools to ground and flight-test data will be presented in order to illustrate the challenges existing in the numerical modeling of each of these phenomena and to provide test cases for evaluation of computational fluid dynamics (CFD) code predictions.

  4. Establishing bonds between vehicle certification data and real-world vehicle fuel consumption – A Vehicle Specific Power approach

    International Nuclear Information System (INIS)

    Duarte, G.O.; Gonçalves, G.A.; Baptista, P.C.; Farias, T.L.

    2015-01-01

    Highlights: • Innovative methodology to estimate VSP fuel consumption based on public available data. • Model validation with accurate fuel consumption results (absolute deviation from 4.7% to 9.2%). • Best-selling vehicles in Portugal case study was developed for different driving cycles. - Abstract: A method to perform the energy characterization of a vehicle according to the specific power required while driving was developed using public vehicle certification data. Using a portable emission measurement system, fuel consumption was quantified in a second-by-second basis under on-road conditions for 19 vehicles (spark-ignition, compression-ignition and hybrids). This data allowed building generic curves of fuel consumption as a function of the specific power, according to Vehicle Specific Power methodology. Comparing on-road measurements and the model estimates, a R 2 higher than 0.9 for conventional and hybrid vehicles was obtained regarding modal fuel consumption. Comparing the fuel consumption measured on the drive cycles performed by each vehicle and the correspondent estimates, an absolute deviation of 9.2% ± 9.2% was found for conventional vehicles and 4.7% ± 1.8% for hybrids vehicles. This methodology was validated and applied to estimate the energy impacts of the best-selling vehicles in Portugal for different driving cycles. This prompt method, that does not require vehicle monitoring, can estimate curves of fuel consumption in g/s, as a function of specific power, which allows quantifying the absolute fuel use for any driving cycle

  5. Experimental investigation of biodynamic human body models subjected to whole-body vibration during a vehicle ride.

    Science.gov (United States)

    Taskin, Yener; Hacioglu, Yuksel; Ortes, Faruk; Karabulut, Derya; Arslan, Yunus Ziya

    2018-02-06

    In this study, responses of biodynamic human body models to whole-body vibration during a vehicle ride were investigated. Accelerations were acquired from three different body parts, such as the head, upper torso and lower torso, of 10 seated passengers during a car ride while two different road conditions were considered. The same multipurpose vehicle was used during all experiments. Additionally, by two widely used biodynamic models in the literature, a set of simulations were run to obtain theoretical accelerations of the models and were compared with those obtained experimentally. To sustain a quantified comparison between experimental and theoretical approaches, the root mean square acceleration and acceleration spectral density were calculated. Time and frequency responses of the models demonstrated that neither of the models showed the best prediction performance of the human body behaviour in all cases, indicating that further models are required for better prediction of the human body responses.

  6. Research overview : design specifications for hybrid vehicles

    NARCIS (Netherlands)

    Hofman, T.; Druten, van R.M.

    2004-01-01

    In this paper a method is proposed for determination of the design specifications regarding the energy exchange systems for different chargesustaining hybrid vehicles of different vehicle classes. Hybrid drivetrains for vehicles combine multiple power sources in order to increase the driving

  7. Autonomy Level Specification for Intelligent Autonomous Vehicles

    Science.gov (United States)

    2003-09-01

    Autonomy Level Specification for Intelligent Autonomous Vehicles : Interim Progress Report Hui-Min Huang, Elena Messina, James Albus...Level Specification for Intelligent Autonomous Vehicles : Interim Progress Report 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  8. Topology Optimization of Vehicle Body Structure for Improved Ride & Handling

    OpenAIRE

    Lövgren, Sebastian; Norberg, Emil

    2011-01-01

    Ride and handling are important areas for safety and improved vehicle control during driving. To meet the demands on ride and handling a number of measures can be taken. This master thesis work has focused on the early design phase. At the early phases of design, the level of details is low and the design freedom is big. By introducing a tool to support the early vehicle body design, the potential of finding more efficient structures increases. In this study, topology optimization of a vehicl...

  9. Aerothermodynamics of Blunt Body Entry Vehicles. Chapter 3

    Science.gov (United States)

    Hollis, Brian R.; Borrelli, Salvatore

    2011-01-01

    In this chapter, the aerothermodynamic phenomena of blunt body entry vehicles are discussed. Four topics will be considered that present challenges to current computational modeling techniques for blunt body environments: turbulent flow, non-equilibrium flow, rarefied flow, and radiation transport. Examples of comparisons between computational tools to ground and flight-test data will be presented in order to illustrate the challenges existing in the numerical modeling of each of these phenomena and to provide test cases for evaluation of Computational Fluid Dynamics (CFD) code predictions.

  10. Project, Aerodynamic, Thermal and Ballistic Analysis of a Lifting-Body Reentry Vehicle

    Directory of Open Access Journals (Sweden)

    A. N. Eliseev

    2015-01-01

    Full Text Available The objective of this article is to assess the prospects for an increasingly maneuverable reentry vehicle (RV of class "lifting body". In this regard, a project aerodynamic thermal and ballistic analysis has been conducted and the results have been compared with some well-known projects of the RV of the same class, made both in our country and abroad.The project analysis begins with finding a position of the "lifting body" vehicle in the classification system. Said classification distribution allows correct formulation of requirements for the conceptual structure of an aerospace vehicle at the initial stage of design in terms of system positions, since just the initial phase of the design often determines the success of the whole program.Then the paper compares design characteristics of the RV of class "lifting body" with vehicles such as X-15 rocket plane, the orbiter "Space Shuttle», M2-F2, HL-10, SV-5, and NASP "Hermes". It also gives a comparative estimate of the "lifting body" RV mass in a wide range of dimensions. The paper shows the sustainability of various landing complexes with reference to the Russian experience in developing the RV " Soyuz", and the conditions for using the vehicles of class "lifting body" in space programs.The aerodynamic analysis uses method for the approximate Newtonian theory to calculate aerodynamic characteristics of the perspective RV of class "lifting body" in the hypersonic descent phase. To obtain the desired aerodynamic performance and reduce balancing weight is contemplated a possibility to provide balance by introducing additional boards. The ballistic analysis considers four modes of descent:1. zero roll descent;2. maximum cross-range descent without restriction;3. maximum cross-range descent with restriction of maximum overload and maximum temperature;4. ballistic descent.To calculate the RV ballistic characteristics a system of equations of the vehicle motion in the atmosphere is used. The vehicle

  11. Lightweight Vehicle and Driver’s Whole-Body Models for Vibration Analysis

    Science.gov (United States)

    MdSah, Jamali; Taha, Zahari; Azwan Ismail, Khairul

    2018-03-01

    Vehicle vibration is a main factor for driving fatigue, discomfort and health problems. The ability to simulate the vibration characteristics in the vehicle and its effects on driver’s whole-body vibration will give significant advantages to designers especially on the vehicle development time and cost. However, it is difficult to achieve optimal condition of ride comfort and handling when using passive suspension system. This paper presents mathematical equations that can be used to describe the vibration characteristics of a lightweight electric vehicle that had been developed. The vehicle’s model was combined with the lumped-parameter model of driver to determine the whole-body vibration level when the vehicle is passing over a road hump using Matlab Simulink. The models were simulated at a constant speed and the results were compared with the experimental data. The simulated vibration level at the vehicle floor and seat were almost similar to the experimental vibration results. The suspension systems that are being used for the solar vehicle are able to reduce the vibration level due to the road hump. The models can be used to simulate and choose the optimal parameters for the suspensions.

  12. 49 CFR 178.348 - Specification DOT 412; cargo tank motor vehicle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 412; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.348 Specification DOT 412; cargo tank motor vehicle. ...

  13. 49 CFR 178.347 - Specification DOT 407; cargo tank motor vehicle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 407; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.347 Specification DOT 407; cargo tank motor vehicle. ...

  14. 49 CFR 178.346 - Specification DOT 406; cargo tank motor vehicle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 406; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.346 Specification DOT 406; cargo tank motor vehicle. ...

  15. Intelligent design of mechanical parameters of the joint in vehicle body concept design model

    Science.gov (United States)

    Hou, Wen-bin; Zhang, Hong-zhe; Hou, Da-jun; Hu, Ping

    2013-05-01

    In order to estimate the mechanical properties of the overall structure of the body accurately and quickly in conceptual design phase of the body, the beam and shell mixing elements was used to build simplified finite element model of the body. Through the BP neural network algorithm, the parameters of the mechanical property of joints element which had more affection on calculation accuracy were calculated and the joint finite element model based on the parameters was also constructed. The case shown that the method can improve the accuracy of the vehicle simulation results, while not too many design details were needed, which was fit to the demand in the vehicle body conceptual design phase.

  16. Analysis of modal frequency optimization of railway vehicle car body

    Directory of Open Access Journals (Sweden)

    Wenjing Sun

    2016-04-01

    Full Text Available High structural modal frequencies of car body are beneficial as they ensure better vibration control and enhance ride quality of railway vehicles. Modal sensitivity optimization and elastic suspension parameters used in the design of equipment beneath the chassis of the car body are proposed in order to improve the modal frequencies of car bodies under service conditions. Modal sensitivity optimization is based on sensitivity analysis theory which considers the thickness of the body frame at various positions as variables in order to achieve optimization. Equipment suspension design analyzes the influence of suspension parameters on the modal frequencies of the car body through the use of an equipment-car body coupled model. Results indicate that both methods can effectively improve the modal parameters of the car body. Modal sensitivity optimization increases vertical bending frequency from 9.70 to 10.60 Hz, while optimization of elastic suspension parameters increases the vertical bending frequency to 10.51 Hz. The suspension design can be used without alteration to the structure of the car body while ensuring better ride quality.

  17. Synthesis of the adaptive continuous system for the multi-axle wheeled vehicle body oscillation damping

    Science.gov (United States)

    Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.

    2018-02-01

    In order to meet the growing mobility requirements for the wheeled vehicles on all types of terrain the engineers have to develop a large number of specialized control algorithms for the multi-axle wheeled vehicle (MWV) suspension improving such qualities as ride comfort, handling and stability. The authors have developed an adaptive algorithm of the dynamic damping of the MVW body oscillations. The algorithm provides high ride comfort and high mobility of the vehicle. The article discloses a method for synthesis of an adaptive dynamic continuous algorithm of the MVW body oscillation damping and provides simulation results proving high efficiency of the developed control algorithm.

  18. Vehicle response-based track geometry assessment using multi-body simulation

    Science.gov (United States)

    Kraft, Sönke; Causse, Julien; Coudert, Frédéric

    2018-02-01

    The assessment of the geometry of railway tracks is an indispensable requirement for safe rail traffic. Defects which represent a risk for the safety of the train have to be identified and the necessary measures taken. According to current standards, amplitude thresholds are applied to the track geometry parameters measured by recording cars. This geometry-based assessment has proved its value but suffers from the low correlation between the geometry parameters and the vehicle reactions. Experience shows that some defects leading to critical vehicle reactions are underestimated by this approach. The use of vehicle responses in the track geometry assessment process allows identifying critical defects and improving the maintenance operations. This work presents a vehicle response-based assessment method using multi-body simulation. The choice of the relevant operation conditions and the estimation of the simulation uncertainty are outlined. The defects are identified from exceedances of track geometry and vehicle response parameters. They are then classified using clustering methods and the correlation with vehicle response is analysed. The use of vehicle responses allows the detection of critical defects which are not identified from geometry parameters.

  19. Negligible heat strain in armored vehicle officers wearing personal body armor

    Directory of Open Access Journals (Sweden)

    Hunt Andrew P

    2011-07-01

    Full Text Available Abstract Objectives This study evaluated the heat strain experienced by armored vehicle officers (AVOs wearing personal body armor (PBA in a sub-tropical climate. Methods Twelve male AVOs, aged 35-58 years, undertook an eight hour shift while wearing PBA. Heart rate and core temperature were monitored continuously. Urine specific gravity (USG was measured before and after, and with any urination during the shift. Results Heart rate indicated an intermittent and low-intensity nature of the work. USG revealed six AVOs were dehydrated from pre through post shift, and two others became dehydrated. Core temperature averaged 37.4 ± 0.3°C, with maximum's of 37.7 ± 0.2°C. Conclusions Despite increased age, body mass, and poor hydration practices, and Wet-Bulb Globe Temperatures in excess of 30°C; the intermittent nature and low intensity of the work prevented excessive heat strain from developing.

  20. Health Effects of Long-term Occupational Exposure to Whole Body Vibration: A Study on Drivers of Heavy Motor Vehicles in Iran

    Directory of Open Access Journals (Sweden)

    Masuod Neghab

    2016-04-01

    Full Text Available Background: Drivers of heavy motor vehicles are occupationally exposed to intense whole body vibration (WBV for several hours per day over their working lifetime. Therefore, they are at risk of WBV-induced occupational disorders. This study aimed to investigate health effects of long-term exposure to whole body vibration among a group of heavy vehicle drivers in Fars province, southwestern Iran. Methods: Data on vibration-induced health effects were gathered through a checklist specifically devised for this purpose, interview and medical records of 155 male heavy vehicle drivers as well as 70 referent subjects. Signs and symptoms were classified into 6 categories of neuropsychological, gastrointestinal, ocular, auditory and metabolic and cardiovascular disorders. Results: Symptoms such as neuropsychological, musculoskeletal, metabolic, visual and hearing disorders were significantly more prevalent among drivers than in referent individuals. Additionally, logistic regression analysis revealed that there were statistically significant associations between exposure to WBV and several outcomes. Conclusion: Findings of the study indicate that longterm occupational exposure to WBV is a risk factor for neuropsychological, musculoskeletal, metabolic, visual and hearing disorders.

  1. Vehicle-class Specific Route-guidance of Freeway Traffic by Model-predictive Control

    NARCIS (Netherlands)

    Schreiter, T.; Landman, R.L.; Van Lint, J.W.C.; Hegyi, A.; Hoogendoorn, S.P.

    2012-01-01

    Few Active Traffic Management measures proposed in the past consider the distinction of different vehicle classes. Examples of vehicle-class specific measures are truck lanes and high-occupancy/toll (HOT) lanes. We propose that the distinction of different vehicle classes, with different flow

  2. Vibration Damping Via Acoustic Treatment Attached To Vehicle Body Panels

    Science.gov (United States)

    Gambino, Carlo

    Currently, in the automotive industry, the control of noise and vibration is the subject of much research, oriented towards the creation of innovative solutions to improve the comfort of the vehicle and to reduce its cost and weight. This thesis fits into this particular framework, as it aims to investigate the possibility of integrating the functions of sound absorptioninsulation and vibration damping in a unique component. At present the bituminous viscoelastic treatments, which are bonded to the car body panels, take charge of the vibration damping, while the sound absorption and insulation is obtained by means of the poroacoustic treatments. The solution proposed here consists of employing porous materials to perform both these functions, thus allowing the partial or complete removal of the viscoelastic damping treatments from the car body. This should decrease the weight of the vehicle, reducing fuel consumption and emissions, and it might also benefit production costs.

  3. The relationship between body weight and risk of death and serious injury in motor vehicle crashes.

    Science.gov (United States)

    Mock, Charles N; Grossman, David C; Kaufman, Robert P; Mack, Christopher D; Rivara, Frederick P

    2002-03-01

    We sought to investigate the effect of increased body weight on the risk of death and serious injury to occupants in motor vehicle crashes. We employed a retrospective cohort study design utilizing data from the National Automotive Sampling System, Crashworthiness Data System (CDS), 1993-1996. Subjects in the study included occupants involved in tow-away crashes of passenger cars, light trucks, vans and sport utility vehicles. Two outcomes were analyzed: death within 30 days of the crash and injury severity score (ISS). Two exposures were considered: occupant body weight and body mass index (BMI; kg/m2). Occupant weight was available on 27263 subjects (76%) in the CDS database. Mortality was 0.67%. Increased body weight was associated with increased risk of mortality and increased risk of severe injury. The odds ratio for death was 1.013 (95% CI: 1.007, 1.018) for each kilogram increase in body weight. The odds ratio for sustaining an injury with ISS > or = 9 was 1.008 (95% CI: 1.004, 1.011) for each kilogram increase in body weight. After adjustment for potentially confounding variables (age, gender, seatbelt use, seat position and vehicle curbweight), the significant relationship between occupant weight and mortality persisted. After adjustment, the relationship between occupant weight and ISS was present, although less marked. Similar trends were found when BMI was analyzed as the exposure. In conclusion, increased occupant body weight is associated with increased mortality in automobile crashes. This is probably due in part to increased co-morbid factors in the more overweight occupants. However, it is possibly also due to an increased severity of injury in these occupants. These findings may have implications for vehicle safety design, as well as for transport safety policy.

  4. Modeling Main Body of Overcrossing Bridge Based on Vehicle-Borne Laser Scanning Data

    Science.gov (United States)

    Chen, X.; Chen, M.; Wei, Z.; Zhong, R.

    2017-09-01

    Vehicle-borne laser scanning (VBLS) is widely used to collect urban data for various mapping and modelling systems. This paper proposes a strategy of feature extraction and 3d model reconstruction for main body of overcrossing bridges based on VBLS point clouds. As the bridges usually have a large span, and the clouds data is often affected by obstacles, we have to use round-trip cloud data to avoid missing part. To begin with, pick out the cloud of the bridge body by an interactive clip-box, and group points by scan-line, then sort the points by scanning angle on each scan line. Since the position under the vehicle have a fixed scan-angle, a virtual path can be obtained. Secondly, extract horizontal line segments perpendicular to the virtual path along adjacent scan-lines, and then cluster line segments into long line-strings, which represent the top and bottom edge. Finally, regularize the line-strings and build 3d surface model of the bridge body. Experimental studies have demonstrated its efficiency and accuracy in case of building bridge model. Modelling the stairs at the both end of the bridge will be the direction of the next step.

  5. A multi-body vehicle for moving inside cluttered nuclear environment

    International Nuclear Information System (INIS)

    Littmann, F.; Chameaud, H.

    1994-01-01

    The paper presents the result of the TALOS (Technologies for Advanced locomotion Systems) programme. The general aim of the TALOS was to prove the feasibility of multi-body articulated vehicles for intervention missions in nuclear plant were high payload volume and mass are required, combined with great geometrical and obstacles constraints. This programme was based on one hand on the TLV (Train Like Vehicle) concept, developed by CEA ( Atomic Energy Commission) and on the other hand on the KfK experience on locomotion. The main difficulties of this programme were to find the mechanical linkage concept and the locomotion concept, and also to build an integrated mockup with linkage and locomotion concepts. (TEC). 4 refs., 5 figs

  6. A multi-body vehicle for moving inside cluttered nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Littmann, F.; Chameaud, H. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes et Systemes Avances; Dorn, J. [Kernforschungszentrum Karlsruhe GmbH (Germany)

    1994-12-31

    The paper presents the result of the TALOS (Technologies for Advanced locomotion Systems) programme. The general aim of the TALOS was to prove the feasibility of multi-body articulated vehicles for intervention missions in nuclear plant were high payload volume and mass are required, combined with great geometrical and obstacles constraints. This programme was based on one hand on the TLV (Train Like Vehicle) concept, developed by CEA ( Atomic Energy Commission) and on the other hand on the KfK experience on locomotion. The main difficulties of this programme were to find the mechanical linkage concept and the locomotion concept, and also to build an integrated mockup with linkage and locomotion concepts. (TEC). 4 refs., 5 figs.

  7. Vehicle underbody fairing

    Science.gov (United States)

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  8. MODELING MAIN BODY OF OVERCROSSING BRIDGE BASED ON VEHICLE-BORNE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    X. Chen

    2017-09-01

    Full Text Available Vehicle-borne laser scanning (VBLS is widely used to collect urban data for various mapping and modelling systems. This paper proposes a strategy of feature extraction and 3d model reconstruction for main body of overcrossing bridges based on VBLS point clouds. As the bridges usually have a large span, and the clouds data is often affected by obstacles, we have to use round-trip cloud data to avoid missing part. To begin with, pick out the cloud of the bridge body by an interactive clip-box, and group points by scan-line, then sort the points by scanning angle on each scan line. Since the position under the vehicle have a fixed scan-angle, a virtual path can be obtained. Secondly, extract horizontal line segments perpendicular to the virtual path along adjacent scan-lines, and then cluster line segments into long line-strings, which represent the top and bottom edge. Finally, regularize the line-strings and build 3d surface model of the bridge body. Experimental studies have demonstrated its efficiency and accuracy in case of building bridge model. Modelling the stairs at the both end of the bridge will be the direction of the next step.

  9. A Multidisciplinary Performance Analysis of a Lifting-Body Single-Stage-to-Orbit Vehicle

    Science.gov (United States)

    Tartabini, Paul V.; Lepsch, Roger A.; Korte, J. J.; Wurster, Kathryn E.

    2000-01-01

    Lockheed Martin Skunk Works (LMSW) is currently developing a single-stage-to-orbit reusable launch vehicle called VentureStar(TM) A team at NASA Langley Research Center participated with LMSW in the screening and evaluation of a number of early VentureStar(TM) configurations. The performance analyses that supported these initial studies were conducted to assess the effect of a lifting body shape, linear aerospike engine and metallic thermal protection system (TPS) on the weight and performance of the vehicle. These performance studies were performed in a multidisciplinary fashion that indirectly linked the trajectory optimization with weight estimation and aerothermal analysis tools. This approach was necessary to develop optimized ascent and entry trajectories that met all vehicle design constraints. Significant improvements in ascent performance were achieved when the vehicle flew a lifting trajectory and varied the engine mixture ratio during flight. Also, a considerable reduction in empty weight was possible by adjusting the total oxidizer-to-fuel and liftoff thrust-to-weight ratios. However, the optimal ascent flight profile had to be altered to ensure that the vehicle could be trimmed in pitch using only the flow diverting capability of the aerospike engine. Likewise, the optimal entry trajectory had to be tailored to meet TPS heating rate and transition constraints while satisfying a crossrange requirement.

  10. Validation of temporal and spatial consistency of facility- and speed-specific vehicle-specific power distributions for emission estimation: A case study in Beijing, China.

    Science.gov (United States)

    Zhai, Zhiqiang; Song, Guohua; Lu, Hongyu; He, Weinan; Yu, Lei

    2017-09-01

    Vehicle-specific power (VSP) has been found to be highly correlated with vehicle emissions. It is used in many studies on emission modeling such as the MOVES (Motor Vehicle Emissions Simulator) model. The existing studies develop specific VSP distributions (or OpMode distribution in MOVES) for different road types and various average speeds to represent the vehicle operating modes on road. However, it is still not clear if the facility- and speed-specific VSP distributions are consistent temporally and spatially. For instance, is it necessary to update periodically the database of the VSP distributions in the emission model? Are the VSP distributions developed in the city central business district (CBD) area applicable to its suburb area? In this context, this study examined the temporal and spatial consistency of the facility- and speed-specific VSP distributions in Beijing. The VSP distributions in different years and in different areas are developed, based on real-world vehicle activity data. The root mean square error (RMSE) is employed to quantify the difference between the VSP distributions. The maximum differences of the VSP distributions between different years and between different areas are approximately 20% of that between different road types. The analysis of the carbon dioxide (CO 2 ) emission factor indicates that the temporal and spatial differences of the VSP distributions have no significant impact on vehicle emission estimation, with relative error of less than 3%. The temporal and spatial differences have no significant impact on the development of the facility- and speed-specific VSP distributions for the vehicle emission estimation. The database of the specific VSP distributions in the VSP-based emission models can maintain in terms of time. Thus, it is unnecessary to update the database regularly, and it is reliable to use the history vehicle activity data to forecast the emissions in the future. In one city, the areas with less data can still

  11. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation

    Science.gov (United States)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.

    2016-01-01

    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  12. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Vehicle-specific 5-cycle fuel economy... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy... fuel economy calculations. This section applies to data used for fuel economy labeling under Subpart D...

  13. Quieter Cars and the Safety of Blind Pedestrians, Phase 2 : Development of Potential Specifications for Vehicle Countermeasure Sounds.

    Science.gov (United States)

    2011-10-01

    This project performed research to support the development of potential specifications for vehicle : sounds, (i.e., audible countermeasures) to be used in vehicles while operating in electric mode in specific low speed : conditions. The purpose of th...

  14. Human Factors Lessons Learned from Flight Testing Wingless Lifting Body Vehicles

    Science.gov (United States)

    Merlin, Peter William

    2014-01-01

    Since the 1960s, NASA, the Air Force, and now private industry have attempted to develop an operational human crewed reusable spacecraft with a wingless, lifting body configuration. This type of vehicle offers increased mission flexibility and greater reentry cross range than capsule type craft, and is particularly attractive due to the capability to land on a runway. That capability, however, adds complexity to the human factors engineering requirements of developing such aircraft.

  15. Constructing the 'gender-specific body': A critical discourse analysis of publications in the field of gender-specific medicine.

    Science.gov (United States)

    Annandale, Ellen; Hammarström, Anne

    2011-11-01

    Gender-specific medicine, a new and increasingly influential ethos within medical research and practice, has received little critical attention to date. The objective of this article is to critically examine the attributes of gender-specific medicine as imparted by its advocates. Through a critical discourse analysis of its two leading academic journals, we identify five interrelated discourses: of male/female difference; of hegemonic biology; of men's disadvantages; of biological and social reductionism; and of the fragmented body. Together these comprise a master discourse of the 'gender-specific body'. The discourse of the 'gender-specific body' is discussed in relation to the current neoliberal political agenda which frames healthcare as a market good and locates health and illness in individual bodies rather than in the wider social arrangements of society. We argue that the 'gender-specific body' threatens not only to turn back the clock to a vision of the biological body as fixed and determinate, but to extend this ever deeper into the social imagination. Lost in the process is any meaningful sense of the human body as a relatively open system which develops in interaction with its social world. We propose that, as it gains momentum, the 'gender-specific body' is likely progressively to circumscribe our thinking about the health of women and men in potentially problematic ways.

  16. Research on minimum sound specifications for hybrid and electric vehicles

    Science.gov (United States)

    2012-06-30

    This report documents research by the National Highway Traffic Safety Administration (NHTSA) to identify ways : to develop sound specifications for electric and hybrid vehicles. The research was conducted to support activities : related to the implem...

  17. Analysis of general specifications for nuclear facilities environmental monitoring vehicles

    International Nuclear Information System (INIS)

    Xu Xiaowei

    2014-01-01

    At present, with the nuclear energy more increasingly extensive application, the continuous stable radiation monitoring has become the focus of the public attention. The main purpose of the environmental monitoring vehicle for the continuous monitoring of the environmental radiation dose rate and the radionuclides concentration in the medium around nuclear facilities is that the environmental radiation level and the radioactive nuclides activity in the environment medium are measured. The radioactive pollution levels, the scope contaminated and the trends of the pollution accumulation are found out. The change trends for the pollution are observed and the monitoring results are explained. The domestic demand of the environmental monitoring for the nuclear facilities is shown in this report. The changes and demands of the routine environmental monitoring and the nuclear emergency monitoring are researched. The revision opinions for EJ/T 981-1995 General specifications for nuclear facilities environmental monitoring vehicles are put forward. The purpose is to regulate domestic environmental monitoring vehicle technical criterion. The criterion makes it better able to adapt and serve the environmental monitoring for nuclear facilities. The technical guarantee is provided for the environmental monitoring of the nuclear facilities. (authors)

  18. CFD analysis for road vehicles - case study

    Directory of Open Access Journals (Sweden)

    Eugen Mihai NEGRUS

    2011-09-01

    Full Text Available This is a case study on the influence of the lower part of road vehicles on the global drag characteristics. Reducing overall drag by redesigning the lower part of the road vehicles has a potential of almost 20% in the overall drag breakdown, mainly due to the viscous effects and the fluidic interaction of the flow under the car with the typical bluff body flow pattern behind the vehicle. A special parameterization is proposed for the global shape of the sedan car, with respect to the lower part of the body, taking into account most of the specificities of the system. For such a complex interaction, CFD analysis is probably the only efficient tool in order to assess specific design parameterization of a generic car shape. Building on the credibility of such instruments is one of the major goals of this paper. Also, with respect to a target sedan car configuration, examples of successful design strategies are presented. Based on the CFD results, possible strategies to be used in order to reduce viscous drag and global drag characteristics are proposed.

  19. Experimental Investigation of Subject-Specific On-Body Radio Propagation Channels for Body-Centric Wireless Communications

    Directory of Open Access Journals (Sweden)

    Mohammad Monirujjaman Khan

    2014-01-01

    Full Text Available In this paper, subject-specific narrowband (2.45 GHz and ultra-wideband (3–10.6 GHz on-body radio propagation studies in wireless body area networks (WBANs were performed by characterizing the path loss for eight different human subjects of different shapes and sizes. The body shapes and sizes of the test subjects used in this study are characterised as thin, medium build, fatty, shorter, average height and taller. Experimental investigation was made in an indoor environment using a pair of printed monopoles (for the narrowband case and a pair of tapered slot antennas (for the ultra-wideband (UWB case. Results demonstrated that, due to the different sizes, heights and shapes of the test subjects, the path loss exponent value varies up to maximum of 0.85 for the narrowband on-body case, whereas a maximum variation of the path loss exponent value of 1.15 is noticed for the UWB case. In addition, the subject-specific behaviour of the on-body radio propagation channels was compared between narrowband and UWB systems, and it was deduced that the on-body radio channels are subject-specific for both narrowband and UWB system cases, when the same antennas (same characteristics are used. The effect of the human body shape and size variations on the eight different on-body radio channels is also studied for both the narrowband and UWB cases.

  20. Analysis of Urine as Indicators of Specific Body Conditions

    Science.gov (United States)

    Dey, Souradeep; Saha, Triya; Narendrakumar, Uttamchand

    2017-11-01

    Urinalysis can be defined as a procedure for examining various factors of urine, which include physical properties, particulate matter, cells, casts, crystals, organisms and solutes. Urinalysis is recommended to be a part of the initial examination of all patients as its cheap, feasible and gives productive results. This paper focuses on the analysis of urine collected at specific body conditions. Here we illustrate the urine profile of different persons having various body conditions, which include, having urinary tract infection, undergoing strenuous exercise, having back pain regularly, having very low urine output and a person who is on 24 hours of diet. Examination of urine collected from different persons having specific body conditions usually helps us in the diagnosis of various diseases, which it indicates.

  1. Evaluation of commercially available seat suspensions to reduce whole body vibration exposures in mining heavy equipment vehicle operators.

    Science.gov (United States)

    Kim, Jeong Ho; Marin, Luz S; Dennerlein, Jack T

    2018-09-01

    As mining vehicle operators are exposed to high level of Whole body vibration (WBV) for prolonged periods of time, approaches to reduce this exposure are needed for the specific types of exposures in mining. Although various engineering controls (i.e. seat suspension systems) have been developed to address WBV, there has been lack of research to systematically evaluate these systems in reducing WBV exposures in mining heavy equipment vehicle settings. Therefore, this laboratory-based study evaluated the efficacy of different combinations of fore-aft (x-axis), lateral (y-axis), and vertical (z-axis) suspensions in reducing WBV exposures. The results showed that the active vertical suspension more effectively reduced the vertical vibration (∼50%; p's suspension (10%; p's suspension systems did not attenuate the corresponding axis vibration (p's > 0.06) and sometimes amplified the floor vibration, especially when the non-vertical vibration was predominant (p's suspensions to address non-vertical WBV exposures, especially because these non-vertical WBV exposures can increase risks for adverse health effects including musculoskeletal loading, discomfort, and impaired visual acuity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Research on optimization of test cycles for comfort to the special vehicles

    Science.gov (United States)

    Mitroi, Marian; Chiru, Anghel

    2017-10-01

    The comfort of vehicles, regardless of their type is represent a requirement to by fulfilled in the context of current technological developments special vehicles generally move under different soil, time, or season conditions, and the land in which the vehicles move is complex and varied in the physical structure. Due to the high level of involvement in the driveability, safety and comfort of automotive, suspension system is a key factor with major implications for vibration and noise, affecting the human body. The objective of the research is related to determining the test cycles of special vehicles that are approaching real situations, to determine the level of comfort. The evaluate of the degree of comfort will be realized on acceleration values recorded, especially the vertical ones that have the highest influence on the human body. Thus, in this way the tests can be established needed to determine the level of comfort required for each particular type of special vehicle. The utility of the test cycles to optimize comfort is given to the accurate identification of the specific test needs, depending on the each vehicle.

  3. Hybrid Wing Body Planform Design with Vehicle Sketch Pad

    Science.gov (United States)

    Wells, Douglas P.; Olson, Erik D.

    2011-01-01

    The objective of this paper was to provide an update on NASA s current tools for design and analysis of hybrid wing body (HWB) aircraft with an emphasis on Vehicle Sketch Pad (VSP). NASA started HWB analysis using the Flight Optimization System (FLOPS). That capability is enhanced using Phoenix Integration's ModelCenter(Registered TradeMark). Model Center enables multifidelity analysis tools to be linked as an integrated structure. Two major components are linked to FLOPS as an example; a planform discretization tool and VSP. The planform discretization tool ensures the planform is smooth and continuous. VSP is used to display the output geometry. This example shows that a smooth & continuous HWB planform can be displayed as a three-dimensional model and rapidly sized and analyzed.

  4. Automated mixed traffic vehicle design AMTV 2

    Science.gov (United States)

    Johnston, A. R.; Marks, R. A.; Cassell, P. L.

    1982-01-01

    The design of an improved and enclosed Automated Mixed Traffic Transit (AMTT) vehicle is described. AMTT is an innovative concept for low-speed tram-type transit in which suitable vehicles are equipped with sensors and controls to permit them to operate in an automated mode on existing road or walkway surfaces. The vehicle chassis and body design are presented in terms of sketches and photographs. The functional design of the sensing and control system is presented, and modifications which could be made to the baseline design for improved performance, in particular to incorporate a 20-mph capability, are also discussed. The vehicle system is described at the block-diagram-level of detail. Specifications and parameter values are given where available.

  5. Seat belt use to save face: impact on drivers' body region and nature of injury in motor vehicle crashes.

    Science.gov (United States)

    Han, Guang-Ming; Newmyer, Ashley; Qu, Ming

    2015-01-01

    Seat belt use is the single most effective way to save lives and reduce injuries in motor vehicle crashes. However, some case reports described seat belt use as a double-edged sword because some injuries are related to seat belt use in motor vehicle crashes. To comprehensively understand the effects of seat belt use, we systemically investigated the association between seat belt use and injuries based on anatomic body region and type of injury in drivers involved in motor vehicle crashes. The injury information was obtained by linking crash reports with hospital discharge data and categorized by using the diagnosis codes based on the Barell injury diagnosis matrix. A total of 10,479 drivers (≥15 years) in passenger vehicles involved in motor vehicle crashes from 2006 to 2011 were included in this study. Seat belt use significantly reduced the proportions of traumatic brain injury (10.4% non-seat belt; 4.1% seat belt) and other head, face, and neck injury (29.3% non-seat belt; 16.6% seat belt) but increased the proportion of spine: thoracic to coccyx injury (17.9% non-seat belt; 35.5% seat belt). Although the proportion of spine: thoracic to coccyx injury was increased in drivers with seat belt use, the severity of injury was decreased, such as fracture (4.2% with seat belt use; 22.0% without seat belt use). Furthermore, the total medical charges decreased due to the change of injury profiles in drivers with seat belt use from a higher percentage of fractures (average cost for per case $26,352) to a higher percentage of sprains and/or strains ($1,897) with spine: thoracic to coccyx injury. This study provide a comprehensive picture for understanding the protective effect of seat belt use on injuries based on anatomic body region and type of injury in drivers involved in motor vehicle crashes.

  6. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle

    International Nuclear Information System (INIS)

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-01

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver’s seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm. (paper)

  7. In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle.

    Science.gov (United States)

    Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa

    2015-01-07

    The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.

  8. Dynamics of a motor vehicle taking into consideration the interaction of wheels and road pavement surface

    Directory of Open Access Journals (Sweden)

    O. Prentkovskis

    2002-12-01

    Full Text Available The authors of this article focus on the simulation of the motor vehicle on a certain road and propose their specific solution of this problem. A mathematical model of the system “motor vehicle – road” is presented. The motor vehicle is simulated by concentrated masses interconnected by elastic and dissipative links. The presented model of the motor vehicle evaluates the movement of the motor vehicle body in space; the movement and turning of front and rear suspensions with respect to the body; the interaction of the wheel with the road pavement surface; the blocking of the wheel; the changing cohesive forces which influence the motor vehicle. The investigated road pavement surface is simulated by triangular finite elements, the certain height of road pavement surface roughness and the cohesion coefficients of road pavement surface and the motor vehicle wheel in the longitudinal and transverse directions of the wheel are selected in each finite element nodal point. The presented results illustrate: the motor vehicle movement trajectories braking at various initial conditions and on a certain pavement surface of the road section under investigation and the motor vehicle driving on the speed reduction bump (“sleeping policeman”.

  9. Large-Scale Battery System Development and User-Specific Driving Behavior Analysis for Emerging Electric-Drive Vehicles

    Directory of Open Access Journals (Sweden)

    Yihe Sun

    2011-04-01

    Full Text Available Emerging green-energy transportation, such as hybrid electric vehicles (HEVs and plug-in HEVs (PHEVs, has a great potential for reduction of fuel consumption and greenhouse emissions. The lithium-ion battery system used in these vehicles, however, is bulky, expensive and unreliable, and has been the primary roadblock for transportation electrification. Meanwhile, few studies have considered user-specific driving behavior and its significant impact on (PHEV fuel efficiency, battery system lifetime, and the environment. This paper presents a detailed investigation of battery system modeling and real-world user-specific driving behavior analysis for emerging electric-drive vehicles. The proposed model is fast to compute and accurate for analyzing battery system run-time and long-term cycle life with a focus on temperature dependent battery system capacity fading and variation. The proposed solution is validated against physical measurement using real-world user driving studies, and has been adopted to facilitate battery system design and optimization. Using the collected real-world hybrid vehicle and run-time driving data, we have also conducted detailed analytical studies of users’ specific driving patterns and their impacts on hybrid vehicle electric energy and fuel efficiency. This work provides a solid foundation for future energy control with emerging electric-drive applications.

  10. Thermal response of an aeroassisted orbital-transfer vehicle with a conical drag brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1984-01-01

    As an aeroassisted orbital-transfer vehicle (AOTV) goes through an aerobraking maneuver, a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70 deg, conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of silica fabric. The heat-shield thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur in the vicinity of the interface between the body and the conical heat shield.

  11. Thermal Response of an Aeroassisted Orbital Transfer Vehicle with a Conical Drag Brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1985-01-01

    As an aeroassisted orbital transfer vehicle (AOTV) goes through an aerobraking maneuver a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70-deg, Conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of ceramic fabric its thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur In the vicinity of the interface between the body and the conical heat shield.

  12. Body-specific representations of action word meanings in right and left handers

    OpenAIRE

    Daniel Casasanto

    2007-01-01

    If understanding action words involves mentally simulating our own actions, then the neurocognitive representation of word meanings must differ for people with different kinds of bodies, who perform actions in systematically different ways. In a test of the _Body-Specificity Hypothesis_, right- and left-handers were compared on two motor-meaning congruity tasks. Double dissociations in both action execution and recognition memory results showed that right and left handers form body-specific r...

  13. Cooperative vehicle control, feature tracking and ocean sampling

    Science.gov (United States)

    Fiorelli, Edward A.

    This dissertation concerns the development of a feedback control framework for coordinating multiple, sensor-equipped, autonomous vehicles into mobile sensing arrays to perform adaptive sampling of observed fields. The use of feedback is central; it maintains the array, i.e. regulates formation position, orientation, and shape, and directs the array to perform its sampling mission in response to measurements taken by each vehicle. Specifically, we address how to perform autonomous gradient tracking and feature detection in an unknown field such as temperature or salinity in the ocean. Artificial potentials and virtual bodies are used to coordinate the autonomous vehicles, modelled as point masses (with unit mass). The virtual bodies consist of linked, moving reference points called virtual leaders. Artificial potentials couple the dynamics of the vehicles and the virtual bodies. The dynamics of the virtual body are then prescribed allowing the virtual body, and thus the vehicle group, to perform maneuvers that include translation, rotation and contraction/expansion, while ensuring that the formation error remains bounded. This methodology is called the Virtual Body and Artificial Potential (VBAP) methodology. We then propose how to utilize these arrays to perform autonomous gradient climbing and front tracking in the presence of both correlated and uncorrelated noise. We implement various techniques for estimation of gradients (first-order and higher), including finite differencing, least squares error minimization, averaging, and Kalman filtering. Furthermore, we illustrate how the estimation error can be used to optimally choose the formation size. To complement our theoretical work, we present an account of sea trials performed with a fleet of autonomous underwater gliders in Monterey Bay during the Autonomous Ocean Sampling Network (AOSN) II project in August 2003. During these trials, Slocum autonomous underwater gliders were coordinated into triangle

  14. Near-term hybrid vehicle program, phase 1. Appendix A: Mission analysis and performance specification studies report

    Science.gov (United States)

    1979-01-01

    Results of a study leading to the preliminary design of a five passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis are presented. The study methodology is described. Vehicle characterizations, the mission description, characterization, and impact on potential sales, and the rationale for the selection of the reference internal combustion engine vehicle are presented. Conclusions and recommendations of the mission analysis and performance specification report are included.

  15. Identification of body fluid-specific DNA methylation markers for use in forensic science.

    Science.gov (United States)

    Park, Jong-Lyul; Kwon, Oh-Hyung; Kim, Jong Hwan; Yoo, Hyang-Sook; Lee, Han-Chul; Woo, Kwang-Man; Kim, Seon-Young; Lee, Seung-Hwan; Kim, Yong Sung

    2014-11-01

    DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Development of specific materials for the high power electronic components in electric vehicles

    Directory of Open Access Journals (Sweden)

    Kaabi Abderrahmen

    2013-11-01

    Full Text Available The powerchain in electric vehicles sets new demands on semi conductors and their packaging. The latter will be specifically addressed. The power density per cm2 in DC/DC or DC/AC converters requires a mastering of thermomecahnical aspects. The temperature cyling, the environment under the hood of the vehicles and the “hybrid” technology impose severe constraints on the assemblies which may be met by architectured substrates, new options for assemblies and efficient cooling systems. An optimised semi conductor substrate associating copper and invar in a will be developed, relying on roll bonding to produce the 3D architecture. Roll bonding may also be used to associate aluminium and iron to produce light laminates with a CEM performance.

  17. Reduction of vibration forces transmitted from a radiator cooling fan to a vehicle body

    Science.gov (United States)

    Lim, Jonghyuk; Sim, Woojeong; Yun, Seen; Lee, Dongkon; Chung, Jintai

    2018-04-01

    This article presents methods for reducing transmitted vibration forces caused by mass unbalance of the radiator cooling fan during vehicle idling. To identify the effects of mass unbalance upon the vibration characteristics, vibration signals of the fan blades were experimentally measured both with and without an added mass. For analyzing the vibration forces transmitted to the vehicle body, a dynamic simulation model was established that reflected the vibration characteristics of the actual system. This process included a method described herein for calculating the equivalent stiffness and the equivalent damping of the shroud stators and rubber mountings. The dynamic simulation model was verified by comparing its results with experimental results of the radiator cooling fan. The dynamic simulation model was used to analyze the transmitted vibration forces at the rubber mountings. Also, a measure was established to evaluate the effects of varying the design parameters upon the transmitted vibration forces. We present design guidelines based on these analyses to reduce the transmitted vibration forces of the radiator cooling fan.

  18. IMPROVEMENT OF BODY SHOP MANAGING AS A PART OF VEHICLE IMPORTERS CENTER

    Directory of Open Access Journals (Sweden)

    Vasil Stamboliski

    2014-12-01

    Full Text Available The dynamic rhythm of living in today’s contemporary surroundings can not be considered without the use of personal and commercial vehicles, for transport of passengers and cargo. This means that every manufacturer in this segment, in their departments for development, find a way to increase their participation in the market. Since the race with time, for promoting new models on the market, not always is in positive relation with the profit which the manufacturer plans to achieve, issues the manufacturer’s focus in the after-sale activities. The body shop with its service, as part of the after-sale activities, brings the client satisfaction to a higher level and of course contributes to realization of higher profit of the company. The setting of the equipment and the staff management, the analysis of the number of entries and realized working hours in the body shop of an importer centre are the central topic/main subject for the author in this paper work. Finding the key factors, as well as the possibility for implementation of the key factors, would reflect increased number of entries, increased number of realized working hours and possibility for improving of the existing system of managing.

  19. BMI and risk of serious upper body injury following motor vehicle crashes: concordance of real-world and computer-simulated observations.

    Directory of Open Access Journals (Sweden)

    Shankuan Zhu

    2010-03-01

    Full Text Available Men tend to have more upper body mass and fat than women, a physical characteristic that may predispose them to severe motor vehicle crash (MVC injuries, particularly in certain body regions. This study examined MVC-related regional body injury and its association with the presence of driver obesity using both real-world data and computer crash simulation.Real-world data were from the 2001 to 2005 National Automotive Sampling System Crashworthiness Data System. A total of 10,941 drivers who were aged 18 years or older involved in frontal collision crashes were eligible for the study. Sex-specific logistic regression models were developed to analyze the associations between MVC injury and the presence of driver obesity. In order to confirm the findings from real-world data, computer models of obese subjects were constructed and crash simulations were performed. According to real-world data, obese men had a substantially higher risk of injury, especially serious injury, to the upper body regions including head, face, thorax, and spine than normal weight men (all p<0.05. A U-shaped relation was found between body mass index (BMI and serious injury in the abdominal region for both men and women (p<0.05 for both BMI and BMI(2. In the high-BMI range, men were more likely to be seriously injured than were women for all body regions except the extremities and abdominal region (all p<0.05 for interaction between BMI and sex. The findings from the computer simulation were generally consistent with the real-world results in the present study.Obese men endured a much higher risk of injury to upper body regions during MVCs. This higher risk may be attributed to differences in body shape, fat distribution, and center of gravity between obese and normal-weight subjects, and between men and women. Please see later in the article for the Editors' Summary.

  20. MICROSPHERE SIZE INFLUENCES THE FOREIGN BODY REACTION

    NARCIS (Netherlands)

    Zandstra, J.; Hiemstra, C.; Petersen, A. H.; Zuidema, J.; van Beuge, M. M.; Rodriguez, S.; Lathuile, A. A. R.; Veldhuis, G. J.; Steendam, R.; Bank, R. A.; Popa, E. R.

    2014-01-01

    Biodegradable poly-(DL-lactide-co-glycolide) (PLGA) microspheres (MSP) are attractive candidate vehicles for site-specific or systemic sustained release of therapeutic compounds. This release may be altered by the host's foreign body reaction (FBR), which is dependent on the characteristics of the

  1. 40 CFR 600.207-08 - Calculation and use of vehicle-specific 5-cycle-based fuel economy values for vehicle...

    Science.gov (United States)

    2010-07-01

    ...-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later Model Year... for each vehicle under § 600.114-08 and as approved in § 600.008-08 (c), are used to determine vehicle... fuel economy value exists for an electric vehicle configuration, all values for that vehicle...

  2. Trajectory planning and tracking for autonomous vehicles navigation

    OpenAIRE

    Chebly , Alia

    2017-01-01

    In this thesis, the trajectory planning and the control of autonomous vehicles are addressed. As a first step, a multi-body modeling technique is used to develop a four wheeled vehicle planar model. This technique considers the vehicle as a robot consisting of articulated bodies. The geometric description of the vehicle system is derived using the modified Denavit Hartenberg parameterization and then the dynamic model of the vehicle is computed by applying a recursive method used in robotics,...

  3. Thermodynamics of the vehicle. 2. ed.; Thermodynamik des Kraftfahrzeugs

    Energy Technology Data Exchange (ETDEWEB)

    Stan, Cornel [California Univ., Berkeley, CA (United States); Paris Univ., 75 (France); Pisa Univ. (Italy); Perugia Univ. (Italy); Kronstadt Univ. (Russian Federation)

    2012-07-01

    The vehicle is characterized by thermodynamic processes at almost all levels: Drive systems (from internal combustion engines and hybrids to electric motors with fuel cells), charging, cooling and heating circuits, air conditioners, aerodynamics of the vehicle body, damper systems, fuel injection systems, exhaust systems, brakes, tires. However, due to an enhanced complexity and phenomenological approach the thermodynamics is a challenge for engineers. This book under considerations combines the theoretical principles and their mathematical presentation with applications in the automotive technology. Numerous specific examples facilitate the understanding and practical application of the basic knowledge. In addition to corrections and updates, the new edition under consideration contains more practical exercises and in-depth questions.

  4. The sex of specific neurons controls female body growth in Drosophila.

    Science.gov (United States)

    Sawala, Annick; Gould, Alex P

    2017-10-01

    Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs.

  5. Radiation Transport Around Axisymmetric Blunt Body Vehicles Using a Modified Differential Approximation

    Science.gov (United States)

    Hartung, Lin C.; Hassan, H. A.

    1992-01-01

    A moment method for computing 3-D radiative transport is applied to axisymmetric flows in thermochemical nonequilibrium. Such flows are representative of proposed aerobrake missions. The method uses the P-1 approximation to reduce the governing system of integro-di erential equations to a coupled set of partial di erential equations. A numerical solution method for these equations given actual variations of the radiation properties in thermochemical nonequilibrium blunt body flows is developed. Initial results from the method are shown and compared to tangent slab calculations. The agreement between the transport methods is found to be about 10 percent in the stagnation region, with the difference increasing along the flank of the vehicle.

  6. Intelligent behaviors through vehicle-to-vehicle and vehicle-to-infrastructure communication

    Science.gov (United States)

    Garcia, Richard D.; Sturgeon, Purser; Brown, Mike

    2012-06-01

    The last decade has seen a significant increase in intelligent safety devices on private automobiles. These devices have both increased and augmented the situational awareness of the driver and in some cases provided automated vehicle responses. To date almost all intelligent safety devices have relied on data directly perceived by the vehicle. This constraint has a direct impact on the types of solutions available to the vehicle. In an effort to improve the safety options available to a vehicle, numerous research laboratories and government agencies are investing time and resources into connecting vehicles to each other and to infrastructure-based devices. This work details several efforts in both the commercial vehicle and the private auto industries to increase vehicle safety and driver situational awareness through vehicle-to-vehicle and vehicle-to-infrastructure communication. It will specifically discuss intelligent behaviors being designed to automatically disable non-compliant vehicles, warn tractor trailer vehicles of unsafe lane maneuvers such as lane changes, passing, and merging, and alert drivers to non-line-of-sight emergencies.

  7. Design, Analysis and Qualification of Elevon for Reusable Launch Vehicle

    Science.gov (United States)

    Tiwari, S. B.; Suresh, R.; Krishnadasan, C. K.

    2017-12-01

    Reusable launch vehicle technology demonstrator is configured as a winged body vehicle, designed to fly in hypersonic, supersonic and subsonic regimes. The vehicle will be boosted to hypersonic speeds after which the winged body separates and descends using aerodynamic control. The aerodynamic control is achieved using the control surfaces mainly the rudder and the elevon. Elevons are deflected for pitch and roll control of the vehicle at various flight conditions. Elevons are subjected to aerodynamic, thermal and inertial loads during the flight. This paper gives details about the configuration, design, qualification and flight validation of elevon for Reusable Launch Vehicle.

  8. Sharing data between mobile devices, connected vehicles, and infrastructure task 3: system requirements specifications (SyRS) final.

    Science.gov (United States)

    2016-07-14

    This report describes the system requirements specifications (SyRS) for the use of mobile devices in a connected vehicle environment. Specifically, it defines the different types of requirements (functional, interface, performance, security, data, an...

  9. 49 CFR 178.320 - General requirements applicable to all DOT specification cargo tank motor vehicles.

    Science.gov (United States)

    2010-10-01

    ... removed from the motor vehicle; and (3) Is not fabricated under a specification for cylinders... determine leak tightness of the cargo tank when testing with pneumatic pressure. Internal self-closing stop...

  10. The control of vehicles used in transport of sensitive nuclear material

    International Nuclear Information System (INIS)

    Loiseau, O.; Larrignon, D.; Autrusson, B.

    2010-01-01

    Most sensitive nuclear materials are usually shipped in specific vehicles with a reinforced protection; such vehicles are generally escorted, tracked and watched over from a distant control centre. Among the various publications made by the IAEA in relation with the CPPNM, the INFCIRC/225 introduces major recommendations for physical protection of nuclear materials in general and particularly during transport. For instance, the text recommends - for the terrestrial shipment of most sensitive material - the use of vehicles specially designed to resist attack and equipped with a vehicle disabling device. Applying such a recommendation at a state level requires the intervention of a competent authority; the competent authority defines the framework of a validation process starting with the design of the vehicle and ending with the vehicle protection approval. The validation process needs articulating responsibilities between the three major actors who are: the operator in charge of the design, a technical support body in charge of technical evaluation, and the competent authority who is responsible for the final approval of the protection. This paper focuses on the approval process of reinforced protection vehicles in France; it aims at showing how such a process may contribute to the security of nuclear material shipments. The paper notably focuses on the responsibilities of the operators, the competent authority and the technical support organization. This approval process of the protection of a vehicle allows the authority to ensure that the protection setup is effective and operational in order to protect the cargo from a malicious threat. In such a process, the authority defines the threat and the objectives of protection; the authority may choose, in certain case, to recommend protection devices or solutions; the need for recommendation versus objective definition mostly depends on the environment of the vehicle and the constraints induced. The authority may

  11. Hot Carcass Specific Gravity: Could Be Used Accurately for In-vivo Body Composition Determination

    International Nuclear Information System (INIS)

    Fekry, A.E.; Shebaita, M.K.

    1998-01-01

    Twelve mature male goats (Bucks) of Egyptian Baladi breed aged 4 years old and body weight of 30.5 kg were used to verify the validation of predicting equations by which carcass specific gravity and body weight can be used to estimate body composition. Live body weight, TOH-space, Blood and plasma volume were determined. Two weeks later, all bucks were slaughtered and each of empty body weight, hot carcass weight, hot carcass specific gravity, offals, along with separating carcass components (muscle, fat, bone) and chemical components (water, protein, fat, ash) of the whole body, empty body and carcass were determined. Step-wise regression analyses of the relationships among hot carcass specific gravity, body and carcass weight (as independent variables) and body composition parameters were performed. The validation of the obtained predicting equations was examined by calculating the intercept and the slope of the regression of the predicted parameter on the observed parameter. The valid equation should have an insignificant intercept from zero and insignificant slope from one. The data revealed that hot carcass specific gravity has not any valid equation to predict body and carcass composition. Live body weight can be used to predict empty body weight and red blood cells volume. Empty body weight has a valid equation to estimate empty body water. However, hot carcass weight can be used to estimate carcass water, muscle and edible portion

  12. Vibroacoustical analysis of rail vehicle

    Directory of Open Access Journals (Sweden)

    Králíček J.

    2007-11-01

    Full Text Available The article deals with the vibroacoustical analysis of rail vehicle and is the extension of the previously presented work “Modelování podvozku kolejového vozidla s poddajným rámem”. The vibroacoustical analysis uses the outcomes of the dynamical analysis of rail vehicle bogie i.e. surface velocities of the bogie frame to compute the acoustic power radiated by the bogie frame and forces acting in the bogie-body interface. The radiated power and the force spectra are then used as the excitation to the rail body model in the environment Auto-SEA to compute the interior acoustic quantities.

  13. New Integrated Testing System for the Validation of Vehicle-Snow Interaction Models

    Science.gov (United States)

    2010-08-06

    are individual wheel speeds, accelerator pedal position, vehicle speed, yaw rate, lateral acceleration, steering wheel angle and brake ...forces and moments at each wheel center, vehicle body slip angle , speed, acceleration, yaw rate, roll, and pitch. The profilometer has a 3-D scanning...Stability Program. The test vehicle provides measurements that include three forces and moments at each wheel center, vehicle body slip angle , speed

  14. Augmented reality warnings in vehicles: Effects of modality and specificity on effectiveness.

    Science.gov (United States)

    Schwarz, Felix; Fastenmeier, Wolfgang

    2017-04-01

    In the future, vehicles will be able to warn drivers of hidden dangers before they are visible. Specific warning information about these hazards could improve drivers' reactions and the warning effectiveness, but could also impair them, for example, by additional cognitive-processing costs. In a driving simulator study with 88 participants, we investigated the effects of modality (auditory vs. visual) and specificity (low vs. high) on warning effectiveness. For the specific warnings, we used augmented reality as an advanced technology to display the additional auditory or visual warning information. Part one of the study concentrates on the effectiveness of necessary warnings and part two on the drivers' compliance despite false alarms. For the first warning scenario, we found several positive main effects of specificity. However, subsequent effects of specificity were moderated by the modality of the warnings. The specific visual warnings were observed to have advantages over the three other warning designs concerning gaze and braking reaction times, passing speeds and collision rates. Besides the true alarms, braking reaction times as well as subjective evaluation after these warnings were still improved despite false alarms. The specific auditory warnings were revealed to have only a few advantages, but also several disadvantages. The results further indicate that the exact coding of additional information, beyond its mere amount and modality, plays an important role. Moreover, the observed advantages of the specific visual warnings highlight the potential benefit of augmented reality coding to improve future collision warnings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  16. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  17. State estimation for integrated vehicle dynamics control

    NARCIS (Netherlands)

    Zuurbier, J.; Bremmer, P.

    2002-01-01

    This paper discusses a vehicle controller and a state estimator that was implemented and tested in a vehicle equipped with a combined braking and chassis control system to improve handling. The vehicle dynamics controller consists of a feed forward body roll compensation and a feedback stability

  18. Real-time identification of vehicle motion-modes using neural networks

    Science.gov (United States)

    Wang, Lifu; Zhang, Nong; Du, Haiping

    2015-01-01

    A four-wheel ground vehicle has three body-dominated motion-modes, that is, bounce, roll, and pitch motion-modes. Real-time identification of these motion-modes can make vehicle suspensions, in particular, active suspensions, target on the dominant motion-mode and apply appropriate control strategies to improve its performance with less power consumption. Recently, a motion-mode energy method (MEM) was developed to identify the vehicle body motion-modes. However, this method requires the measurement of full vehicle states and road inputs, which are not always available in practice. This paper proposes an alternative approach to identify vehicle primary motion-modes with acceptable accuracy by employing neural networks (NNs). The effectiveness of the trained NNs is verified on a 10-DOF full-car model under various types of excitation inputs. The results confirm that the proposed method is effective in determining vehicle primary motion-modes with comparable accuracy to the MEM method. Experimental data is further used to validate the proposed method.

  19. Parametric modeling of components for selection and specification of hybrid vehicle drivetrains

    NARCIS (Netherlands)

    Hofman, T.; Steinbuch, M.; Druten, van R.M.; Serrarens, A.F.A.

    2006-01-01

    Drivetrain hybridization implies adding a Secondary power source to a Primary power source in order to improve a multiple of driving functions: Fuel economy, Emissions, Driveability, Comfort and Safety. Designing a hybrid vehicle drivetrain fulfilling the required vehicle driving functions is

  20. A passive method to stabilize an airborne vehicle

    Directory of Open Access Journals (Sweden)

    Timo Sailaranta

    2014-06-01

    Full Text Available A method of augmenting an airborne vehicle for short-period dynamics and stability by passive means is presented in this study. A trajectory-phase disturbance rejection capability is achieved for an unguided fin-stabilized vehicle by flexible mounting of the fins to the vehicle body. The deflecting fins lag the body oscillation such that the harmonic oscillation can be quickly dampened. The amount of fin deflection may be chosen by a hinge-line location; among other things, the vehicle damping behaviour is largely determined by this choice. Linear theory is applied and 6-DOF simulations are carried out to demonstrate the approach suitability for the task.

  1. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Science.gov (United States)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  2. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    International Nuclear Information System (INIS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz

    2014-01-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity

  3. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Othman, M. N. K., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Hazry, D., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Khairunizam, Wan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Shahriman, A. B., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Yaacob, S., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my [Centre of Excellence for Unmanned Aerial Systems, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  4. 75 FR 76692 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Science.gov (United States)

    2010-12-09

    ..., 510, 511, 512, 520, 523, 525, 526, and 571 [Docket No. NHTSA-2010-0159] Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National Highway Traffic Safety... that specifically relate to passenger cars, multipurpose passenger vehicles, trucks, buses, trailers...

  5. Introducing Dual Suspension System in Road Vehicles

    OpenAIRE

    Imtiaz Hussain; Jawaid Daudpoto; Ali Asghar Memon

    2013-01-01

    The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability...

  6. Analysis and Test Correlation of Proof of Concept Box for Blended Wing Body-Low Speed Vehicle

    Science.gov (United States)

    Spellman, Regina L.

    2003-01-01

    The Low Speed Vehicle (LSV) is a 14.2% scale remotely piloted vehicle of the revolutionary Blended Wing Body concept. The design of the LSV includes an all composite airframe. Due to internal manufacturing capability restrictions, room temperature layups were necessary. An extensive materials testing and manufacturing process development effort was underwent to establish a process that would achieve the high modulus/low weight properties required to meet the design requirements. The analysis process involved a loads development effort that incorporated aero loads to determine internal forces that could be applied to a traditional FEM of the vehicle and to conduct detailed component analyses. A new tool, Hypersizer, was added to the design process to address various composite failure modes and to optimize the skin panel thickness of the upper and lower skins for the vehicle. The analysis required an iterative approach as material properties were continually changing. As a part of the material characterization effort, test articles, including a proof of concept wing box and a full-scale wing, were fabricated. The proof of concept box was fabricated based on very preliminary material studies and tested in bending, torsion, and shear. The box was then tested to failure under shear. The proof of concept box was also analyzed using Nastran and Hypersizer. The results of both analyses were scaled to determine the predicted failure load. The test results were compared to both the Nastran and Hypersizer analytical predictions. The actual failure occurred at 899 lbs. The failure was predicted at 1167 lbs based on the Nastran analysis. The Hypersizer analysis predicted a lower failure load of 960 lbs. The Nastran analysis alone was not sufficient to predict the failure load because it does not identify local composite failure modes. This analysis has traditionally been done using closed form solutions. Although Hypersizer is typically used as an optimizer for the design

  7. Crash simulation of UNS electric vehicle under frontal front impact

    Energy Technology Data Exchange (ETDEWEB)

    Susilo, D. D., E-mail: djoksus-2010@yahoo.com; Lukamana, N. I., E-mail: n.indra.lukmana@gmail.com; Budiana, E. P., E-mail: budiana.e@gmail.com; Tjahjana, D. D. D. P., E-mail: danar1405@gmail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta (Indonesia)

    2016-03-29

    Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. The purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.

  8. Vehicle Emissions Risk Management

    International Nuclear Information System (INIS)

    Ibrahem, L.G.

    2004-01-01

    Vehicle emissions are considered as a main source for air pollution. Emissions regulation is now well developed in most countries to meet cleaner air quality. Reducing emissions by using cleaner fuels, which meet certain specification, is not enough to get cleaner air, yet the vehicle technology is not improved. Here we will outline the following: - development in fuel specification and emissions regulation. main facts linking vehicle emissions, fuel properties and air quality. catalytic converter technology. Emissions sources: In modem cities, vehicle traffic is potentially a major source of emissions. However sometimes other sources of emissions from industry and other stationary sources can be equally important and include emissions that are of greater toxicity than those from vehicles

  9. A solar vehicle based on sustainable design concept

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Z.; Sah, J.M.; Passarella, R.; Ghazilla, R.A.R.; Ahmad, N.; Jen, Y.H.; Khai, T.T.; Kassim, Z.; Hasanuddin, I.; Yunus, M. [Malaya Univ., Kuala Lumpur (Malaysia). Faculty of Engineering, Centre for Product Design and Manufacture

    2009-07-01

    This paper described a newly constructed solar vehicle that was built specifically for the 2009 World Solar Challenge (WSC) using off-the-shelf parts. Researchers at the Centre for Product Design and Manufacture at the University of Malaya designed and built the solar car which uses solar energy to charge its batteries. Although the total investment for this sustainable product concept is small compared to other solar vehicles, the car's performance has met expectations. Most of the electrical and mechanical parts can be recycled and reused after the WSC event. The photovoltaic (PV) and maximum power point trackers (MPPT) can be re-used for home applications. The DC motor and the controller can be attached to a bicycle and the aluminium parts which make-up the main body structure can be recycled. The design will result in nearly zero waste. The study showed that the process of combining mechanical and electrical components is not an easy task, particularly at the design stage because of the specific characteristics and functions of the individual parts. This paper described how readily available, off-the-shelf mechanical and electrical components were integrated for the solar vehicle. The conceptual design and the performance of the prototype were also presented. 11 refs., 5 tabs., 11 figs.

  10. Development of the PRSEUS Multi-Bay Pressure Box for a Hybrid Wing Body Vehicle

    Science.gov (United States)

    Jegley, Dawn C.; Velicki, Alexander

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to explore and document the feasibility, benefits, and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. Although such novel configurations like the Hybrid Wing Body (HWB) offer better aerodynamic performance as compared to traditional tube-and-wing aircraft, their blended wing shapes also pose significant new design challenges. Developing an improved structural concept that is capable of meeting the structural weight fraction allocated for these non-circular pressurized cabins is the primary obstacle in implementing large lifting-body designs. To address this challenge, researchers at NASA and The Boeing Company are working together to advance new structural concepts like the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), which is an integrally stiffened panel design that is stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. The large-scale multi-bay fuselage test article described in this paper is the final specimen in a building-block test program that was conceived to demonstrate the feasibility of meeting the structural weight goals established for the HWB pressure cabin.

  11. Procurement Policy for Armored Vehicles

    National Research Council Canada - National Science Library

    Jolliffe, Richard B; Burton, Bruce A; Carros, Deborah L; Schaefer, Beth K; Truong, Linh; Palmer, Kevin A; Chun, Judy M; Smith, Jessica M; Abraham, Amanda M; Peters, Anthony R

    2007-01-01

    ...., and Armor Holdings, Inc., for armored vehicles. This report addresses armored vehicles, specifically the Buffalo Mine Protected Clearance Vehicle, the Cougar, the Joint Explosive Ordnance Disposal Rapid Response Vehicle (JERRV...

  12. Gender differences in colour naming performance for gender specific body shape images.

    Science.gov (United States)

    Elliman, N A; Green, M W; Wan, W K

    1998-03-01

    Males are increasingly subjected to pressures to conform to aesthetic body stereotypes. There is, however, comparatively little published research on the aetiology of male body shape concerns. Two experiments are presented, which investigate the relationship between gender specific body shape concerns and colour-naming performance. Each study comprised a between subject design, in which each subject was tested on a single occasion. A pictorial version of a modified Stroop task was used in both studies. Subjects colour-named gender specific obese and thin body shape images and semantically homogeneous neutral images (birds) presented in a blocked format. The first experiment investigated female subjects (N = 68) and the second investigated males (N = 56). Subjects also completed a self-report measure of eating behaviour. Currently dieting female subjects exhibited significant colour-naming differences between obese and neutral images. A similar pattern of colour-naming performance was found to be related to external eating in the male subjects.

  13. Calcipotriene plus betamethasone dipropionate topical suspension for the treatment of mild to moderate psoriasis vulgaris on the body: a randomized, double-blind, vehicle-controlled trial.

    Science.gov (United States)

    Menter, Alan; Gold, Linda Stein; Bukhalo, Michael; Grekin, Steven; Kempers, Steven; Boyce, Brent M; Ganslandt, Cecilia; Villumsen, John; Lebwohl, Mark

    2013-01-01

    A combination topical suspension/gel containing calcipotriene plus betamethasone dipropionate has been developed as a safe and effective treatment for patients with psoriasis vulgaris of the scalp. This same preparation has the potential to be a convenient, effective, and cosmetically appealing formulation for psoriasis on the body. This trial evaluated the efficacy and safety of a topical suspension containing calcipotriene plus betamethasone dipropionate compared with its constituent components and topical suspension vehicle in the treatment of mild to moderate psoriasis on the trunk and limbs. This was a randomized, double-blind, vehicle-controlled, 4-arm trial in 1,152 subjects. The co-primary efficacy end points were the proportion of subjects achieving controlled disease based on the Investigators' Global Assessment of disease severity at weeks 4 and 8. Adverse events, vital signs, and clinical laboratory measurements were also assessed. At week 4, a greater proportion of subjects in the calcipotriene plus betamethasone group achieved controlled disease compared with subjects in the calcipotriene-only and vehicle-only treatment groups. At week 8, a statistically significantly (Psuspension containing calcipotriene plus betamethasone dipropionate traditionally used for scalp psoriasis is also a safe and effective once-daily treatment for psoriasis vulgaris on the body.

  14. Configuration and specifications of an Unmanned Aerial Vehicle (UAV for early site specific weed management.

    Directory of Open Access Journals (Sweden)

    Jorge Torres-Sánchez

    Full Text Available A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV. This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM. Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1 mission planning, 2 UAV flight and image acquisition, and 3 image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index, mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches.

  15. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.

    Science.gov (United States)

    Torres-Sánchez, Jorge; López-Granados, Francisca; De Castro, Ana Isabel; Peña-Barragán, José Manuel

    2013-01-01

    A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches).

  16. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    Science.gov (United States)

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM 2.5 ) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM 2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles. Copyright © 2016. Published by Elsevier B.V.

  17. Urban e-Mobility - Challenges and potential solutions using the example of the "E3W" concept vehicle

    Science.gov (United States)

    Perterer, M.; Martin, P.; Lochner, H.

    2014-05-01

    Due to the increasing number of people in urban areas, there is a need for affordable individual transportation. Limited space in cities together with the need for a significant reduction of pollution will lead to new mobility concepts in the near future. The aim of these concepts is not replacing the car itself, but to supply an additional personal transportation solution with local zero emission. Therefore, electrical powered vehicle concepts may be used. Due to the limited energy density and high cost of current Li-ion batteries, a significant weight reduction of the vehicle could lead to acceptable range and cost. In order to develop an affordable urban concept, the requirements for this kind of vehicle also have to be adjusted in comparison to conventional cars. This concept, the so called "E3W", combines the advantages of a two-wheeler with those of a four-wheeler, resulting in a lightweight and compact vehicle. This concept accommodates space for two persons with luggage and guarantees a high level of safety including wind and weather protection. The overall measures of this vehicle are smaller than current compact cars and allow therefore better use in cities. In order to fulfill technical and commercial requirements, a load carrying, short fiber reinforced thermoplastic body structure is chosen, combining good weight specific mechanical properties and low production costs. This highly integrated body structure also provides the body cover all in one. Pultruded glass fiber reinforced plastic (GFRP) beams are used as the backbone for the vehicle by carrying the main loads, the front crash structure and the rear swingarm. Finally, two prototypes are built to investigate the driving behavior, proof the concept and the suitability for daily use.

  18. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  19. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    Science.gov (United States)

    Ingalls, John; Cipolletti, John

    2011-01-01

    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures

  20. Evaluation of Severity Score in Patients with Lower Limb and Pelvic Fractures Injured in Motor Vehicle Front-Impact Collisions.

    Science.gov (United States)

    Gokalp, Mehmet Ata; Hekimoglu, Yavuz; Gozen, Abdurrahim; Guner, Savas; Asirdizer, Mahmut

    2016-12-01

    BACKGROUND Lower limb and pelvic injuries and fractures occur at a very high incidence in motor vehicle accidents. In this study, the characteristics (e.g., body side, bone location, and fracture severity) of lower limb and pelvic fractures that occurred during front-impact collisions were correlated with the injured patients' sex, age, and position in the vehicle. MATERIAL AND METHODS We retrospectively evaluated 191 patients (136 males, 55 females) who were injured in motor vehicle accidents, specifically in frontal collisions. RESULTS This study revealed that most of lower limb and pelvic fractures occurred in males (71.2%; p=.000), 19-36 years old (55.5%; p=.000), small vehicles (86.4%; p=.000), and rear seat passengers (49.2%; p=.000). Fractures most commonly occurred in the left side of the body (46.6%; p=.000) and upper legs (37.7%; p=.000). Severity scores were higher (2.76) in males than females (2.07). No statistically significant was found in severity scores of patients and other personal characteristics and fracture features of patients with lower limb and pelvic fractures who were injured in a vehicle during front-impact collisions (p>0.05). CONCLUSIONS The results of this study will be useful for the automobile industry, forensics and criminal scientists, and for trauma research studies.

  1. Key to good fit: body measurement problems specific to key ...

    African Journals Online (AJOL)

    Key to good fit: body measurement problems specific to key dimensions. ... to explore and describe the problems that the South African Clothing Industry currently ... A postal survey was conducted among South African apparel and footwear ...

  2. Supercavitating Vehicle Control

    Science.gov (United States)

    2008-10-10

    401) 832-1511. DISTRIBUTION STATEMENT Approved for Public Release Distribution is unlimited 20081027289 Attorney Docket No. 96674 SUPERCAVITATING ...methods and more specifically to systems and methods for controlling a trajectory of a supercavitating vehicle. (2) Description of the Prior Art [0004...1 [0005) Some investigations into reducing the drag of high-speed, underwater vehicles have focused attention on supercavitating underwater vehicles

  3. [Design and application of portable rescue vehicle].

    Science.gov (United States)

    Guo, Ying; Qi, Huaying; Wang, Shen

    2017-12-01

    The disease of critically ill patients was with rapid changes, and at any time faced the risk of emergency. The current commonly used rescue vehicles were larger and bulky implementation, which were not conducive to the operation, therefore the design of a portable rescue vehicle was needed. This new type of rescue vehicle is multi-layer folding structure, with small footprint, large storage space, so a variety of first aid things can be classified and put, easy to be cleaned and disinfected. In the rescue process, the portable rescue vehicles can be placed in the required position; box of various emergency items can be found at a glance with easy access; the height of the infusion stand can adjust freely according to the user height; the rescue vehicle handle can be easy to pull and adjust accord with human body mechanics principle. The portable rescue vehicle facilitates the operation of medical staff, and is worthy of clinical application.

  4. Aerodynamic Problems of Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Kyong Chol Chou

    1984-09-01

    Full Text Available The airflow along the surface of a launch vehicle together with vase flow of clustered nozzles cause problems which may affect the stability or efficiency of the entire vehicle. The problem may occur when the vehicle is on the launching pad or even during flight. As for such problems, local steady-state loads, overall steady-state loads, buffet, ground wind loads, base heating and rocket-nozzle hinge moments are examined here specifically.

  5. Innovative Vehicle Concept for the Integration of Alternative Power Trains

    OpenAIRE

    Steinle, Philipp; Kriescher, Michael; Friedrich, Horst E.

    2010-01-01

    Abstract: The Institute of Vehicle Concepts is developing a safe, modularisable vehicle concept in rib and space frame design for tomorrow’s vehicles with alternative power trains. The vehicle can be powered either by a fuel cell system, a free-piston linear generator developed at the DLR, or a traction battery. Taking into account the given boundary conditions, the challenge is to design a body structure that is light and performs well in the event of an accident. The rib and space fra...

  6. Obesity and vehicle type as risk factors for injury caused by motor vehicle collision.

    Science.gov (United States)

    Donnelly, John P; Griffin, Russell Lee; Sathiakumar, Nalini; McGwin, Gerald

    2014-04-01

    This study sought to describe variations in the risk of motor vehicle collision (MVC) injury and death by occupant body mass index (BMI) class and vehicle type. We hypothesized that the relationship between BMI and the risk of MVC injury or mortality would be modified by vehicle type. This is a retrospective cohort study of occupants involved in MVCs using data from the Crash Injury Research and Engineering Network and the National Automotive Sampling System Crashworthiness Data System. Occupants were grouped based on vehicle body style (passenger car, sport utility vehicle, or light truck) and vehicle size (compact or normal, corresponding to below- or above-average curb weight). The relationship between occupant BMI class (underweight, normal weight, overweight, or obese) and risk of injury or mortality was examined for each vehicle type. Odds ratios (ORs) adjusted for various occupant and collision characteristics were estimated. Of an estimated 44 million occupants of MVCs sampled from 2000 to 2009, 37.1% sustained an injury. We limited our analysis to injuries achieving an Abbreviated Injury Scale (AIS) score of 2 or more severe, totaling 17 million injuries. Occupants differed substantially in terms of demographic and collision characteristics. After adjustment for confounding factors, we found that obesity was a risk factor for mortality caused by MVC (OR, 1.6; 95% confidence interval [CI], 1.2-2.0). When stratified by vehicle type, we found that obesity was a risk factor for mortality in larger vehicles, including any-sized light trucks (OR, 2.1; 95% CI, 1.3-3.5), normal-sized passenger cars (OR, 1.6; 95% CI, 1.1-2.3), and normal-sized sports utility vehicles or vans (OR, 2.0; 95% CI, 1.0-3.8). Being overweight was a risk factor in any-sized light trucks (OR, 1.5; 95% CI, 1.1-2.1). We identified a significant interaction between occupant BMI class and vehicle type in terms of MVC-related mortality risk. Both factors should be taken into account when

  7. Introducing Dual Suspension System in Road Vehicles

    Directory of Open Access Journals (Sweden)

    Imtiaz Hussain

    2013-04-01

    Full Text Available The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability. The paper proposes the use of primary and secondary suspension to suppress the vibrations more effectively.

  8. Heading Control System for a Multi-body Vehicle with a Virtual Test Driver

    Directory of Open Access Journals (Sweden)

    POSTALCIOGLU OZGEN, S.

    2010-08-01

    Full Text Available This paper includes a Heading Control (HC system for a multi-body vehicle. HC system helps reducing the required torque from the driver and improves the lane keeping efficiency. HC system is important for safety and driver comfort in traffic. The controller performance is examined on a virtual test drive platform. The optimal control theory is applied to HC system and examined on a curved path and under a side wind disturbance. Different assistance levels are applied to see the characteristics of the controller with different virtual test drivers. The results are analyzed based on three performance indices; lane keeping performance (LKP index, assist torque performance (ATP index and driver torque performance (DTP index. As seen from the results while using HC system the lateral displacement decreases as the lane keeping performance increases and the driver torque performance decreases as the assist torque performance increases.

  9. Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.

  10. Vehicle with inclinable caterpillar propulsion units

    International Nuclear Information System (INIS)

    Clar, G.

    1991-01-01

    This vehicle usable in hostile environment such nuclear industry has four propulsion units with a caterpillar track and two integrated motors: one for advancing the caterpillar track and the other for inclining the propulsion unit when overcoming obstacles. Each propulsion unit is easily replaceable because there are no mechanical parts in the body of the vehicle [fr

  11. 29 CFR 1926.601 - Motor vehicles.

    Science.gov (United States)

    2010-07-01

    ... vehicles. (10) Trucks with dump bodies shall be equipped with positive means of support, permanently attached, and capable of being locked in position to prevent accidental lowering of the body while... material shall be secured to prevent movement when transported in the same compartment with employees. (8...

  12. Development of vehicle model test-bending of a simple structural surfaces model for automotive vehicle sedan

    Science.gov (United States)

    Nor, M. K. Mohd; Noordin, A.; Ruzali, M. F. S.; Hussen, M. H.; Mustapa@Othman, N.

    2017-04-01

    Simple Structural Surfaces (SSS) method is offered as a means of organizing the process for rationalizing the basic vehicle body structure load paths. The application of this simplified approach is highly beneficial in the development of modern passenger car structure design. In Malaysia, the SSS topic has been widely adopted and seems compulsory in various automotive programs related to automotive vehicle structures in many higher education institutions. However, there is no real physical model of SSS available to gain considerable insight and understanding into the function of each major subassembly in the whole vehicle structures. Based on this motivation, a real physical SSS of sedan model and the corresponding model vehicle tests of bending is proposed in this work. The proposed approach is relatively easy to understand as compared to Finite Element Method (FEM). The results prove that the proposed vehicle model test is useful to physically demonstrate the importance of providing continuous load path using the necessary structural components within the vehicle structures. It is clearly observed that the global bending stiffness reduce significantly when more panels are removed from the complete SSS model. The analysis shows the front parcel shelf is an important subassembly to sustain bending load.

  13. Coupling vibration research on Vehicle-bridge system

    Science.gov (United States)

    Zhou, Jiguo; Wang, Guihua

    2018-01-01

    The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.

  14. Vehicle with inclinable caterpillars

    International Nuclear Information System (INIS)

    Carra, O.; Delevallee, A.

    1991-01-01

    Vehicle has a body with propulsion assemblies that drive caterpillar tracks. When a propulsion unit inclines about its articulation axis it is aided by an advance movement of the caterpillar track in the opposite direction of rotation [fr

  15. Diagnostic imaging in polytrauma: comparison of radiation exposure from whole-body MSCT and conventional radiography with organ-specific CT

    International Nuclear Information System (INIS)

    Wedegaertner, U.; Lorenzen, M.; Weber, C.; Adam, G.; Nagel, H.D.

    2004-01-01

    Purpose: To compare the radiation dose of whole-body multislice CT (MSCT) and conventional radiography with organ-specific CT in polytrauma. Materials and Methods: The whole-body MSCT encompassing brain, neck and midface, chest, abdomen and pelvis was performed on a Somatom Volume Zoom (Siemens). Conventional radiography consisted of chest and cervical, thoracic and lumbar spine in two views as well as pelvis. Polymat, Siemens. Three combinations of organ specific CT were chosen: CT examination of (1) head and cervical spine, (2) head, cervical spine and chest, (3) head, cervical spine and abdomen. The effective doses of whole-body MSCT and conventional radiography with organ-specific CT were calculated. Results: Effective doses were 20 mSv for whole-body MSCT, 2 mSv for conventional x-ray, and 5 mSv for combination (1), 8 mSv for combination (2) and (3) 16 mSv for combination (3) of the organ-specific CT. The ratio of radiation dose between whole-body MSCT and radiography was 10: 1. This ratio was reduced to 3: 1, 2: 1 and 1: 1 when a combination of radiography and CT was performed. Conclusions: Whole-body MSCT in polytrauma compared to conventional radiography with organ-specific CT induces a threefold increased dose in unfavorable situations and no increased dose in favorable situations. Nevertheless, routine use of whole-body MSCT should be critically evaluated and should be adapted to the clinical benefit. (orig.) [de

  16. Space robot simulator vehicle

    Science.gov (United States)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  17. Electric and Hybrid Vehicle System Research and Development Project: Hybrid Vehicle Potential Assessment. Volume VI. Cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, K.S.

    1979-09-30

    The purpose of the cost analysis is to determine the economic feasibility of a variety of hybrid vehicles with respect to conventional vehicles specifically designed for the same duty cycle defined by the mission analysis. Several different hybrid configurations including parallel, parallel-flywheel, and series vehicles were evaluated. The ramifications of incorporating examples of advanced batteries, these being the advanced lead-acid, nickel-zinc, and sodium sulfur were also investigated. Vehicles were specifically designed with these batteries and for the driving cycles specified by the mission. Simulated operation on the missions yielded the energy consumption (petroleum and/or electricity) over the driving cycles. It was concluded that: in the event that gasoline prices reach $2.50 to $3.00/gal, hybrid vehicles in many applications will become economically competitive with conventional vehicles without subsidization; in some commercial applications hybrid vehicles could be economically competitive, when the gasoline price ranges from $1.20 to $1.50/gal. The cost per kWh per cycle of the advanced batteries is much more important economically than the specific energy; the series hybrid vehicles were found to be more expensive in comparison to the parallel or parallel-flywheel hybrids when designed as passenger vehicles; and hybrid vehicles designed for private use could become economically competitive and displace up to 50% of the fuel normally used on that mission if subsidies of $500 to $2000 were supplied to the owner/operator. (LCL)

  18. Conceptual shape optimization of entry vehicles applied to capsules and winged fuselage vehicles

    CERN Document Server

    Dirkx, Dominic

    2017-01-01

    This book covers the parameterization of entry capsules, including Apollo capsules and planetary probes, and winged entry vehicles such as the Space Shuttle and lifting bodies. The aerodynamic modelling is based on a variety of panel methods that take shadowing into account, and it has been validated with flight and wind tunnel data of Apollo and the Space Shuttle. The shape optimization is combined with constrained trajectory analysis, and the multi-objective approach provides the engineer with a Pareto front of optimal shapes. The method detailed in Conceptual Shape Optimization of Entry Vehicles is straightforward, and the output gives the engineer insight in the effect of shape variations on trajectory performance. All applied models and algorithms used are explained in detail, allowing for reconstructing the design tool to the researcher’s requirements. Conceptual Shape Optimization of Entry Vehicles will be of interest to both researchers and graduate students in the field of aerospace engineering, an...

  19. Energy Star Concepts for Highway Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2003-06-24

    The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

  20. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    Science.gov (United States)

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  1. Panorama 2017 - Development of electric vehicle: where are we now?

    International Nuclear Information System (INIS)

    Ternel, Cyprien

    2016-09-01

    Electric vehicles - a term which refers to battery electric vehicles (BEV) and plug-in hybrid vehicles (PHEV) - are regarded as one way to lower energy costs and reduce the environmental impact of transport. While mild or full hybrid vehicles are gradually becoming more widespread, the market for electric vehicles is still developing. While the symbolic threshold of one million electric vehicles in circulation worldwide was surpassed in 2015 and sales are increasing from year to year, certain limitations could nevertheless hinder this growth. High purchase prices, the need to establish incentive-based public policies to significantly increase sales, and vehicle range are challenges to overcome before electric vehicles become a sustainable part of the world's automobile fleet. This memorandum takes stock of this specific market and highlights the reasons to believe in its continued progress. It mainly discusses private vehicles (including micro-cars) and utility vehicles, but a specific section is dedicated to mopeds and motorbikes

  2. Vehicle-specific emissions modeling based upon on-road measurements.

    Science.gov (United States)

    Frey, H Christopher; Zhang, Kaishan; Rouphail, Nagui M

    2010-05-01

    Vehicle-specific microscale fuel use and emissions rate models are developed based upon real-world hot-stabilized tailpipe measurements made using a portable emissions measurement system. Consecutive averaging periods of one to three multiples of the response time are used to compare two semiempirical physically based modeling schemes. One scheme is based on internally observable variables (IOVs), such as engine speed and manifold absolute pressure, while the other is based on externally observable variables (EOVs), such as speed, acceleration, and road grade. For NO, HC, and CO emission rates, the average R(2) ranged from 0.41 to 0.66 for the former and from 0.17 to 0.30 for the latter. The EOV models have R(2) for CO(2) of 0.43 to 0.79 versus 0.99 for the IOV models. The models are sensitive to episodic events in driving cycles such as high acceleration. Intervehicle and fleet average modeling approaches are compared; the former account for microscale variations that might be useful for some types of assessments. EOV-based models have practical value for traffic management or simulation applications since IOVs usually are not available or not used for emission estimation.

  3. Formulation of Equations of Motion for a Simply Supported Bridge under a Moving Railway Freight Vehicle

    Directory of Open Access Journals (Sweden)

    Ping Lou

    2007-01-01

    Full Text Available Based on energy approach, the equations of motion in matrix form for the railway freight vehicle-bridge interaction system are derived, in which the dynamic contact forces between vehicle and bridge are considered as internal forces. The freight vehicle is modelled as a multi-rigid-body system, which comprises one car body, two bogie frames and four wheelsets. The bogie frame is linked with the car body through spring-dashpot suspension systems, and the bogie frame is rigidly linked with wheelsets. The bridge deck, together with railway track resting on bridge, is modelled as a simply supported Bernoulli-Euler beam and its deflection is described by superimposing modes. The direct time integration method is applied to obtain the dynamic response of the vehicle-bridge interaction system at each time step. A computer program has been developed for analyzing this system. The correctness of the proposed procedure is confirmed by one numerical example. The effect of different beam mode numbers and various surface irregularities of beam on the dynamic responses of the vehicle-bridge interaction system are investigated.

  4. CHARACTERIZATION OF WILD PIG VEHICLE COLLISIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J; Paul E. Johns, P

    2007-05-23

    Wild pig (Sus scrofa) collisions with vehicles are known to occur in the United States, but only minimal information describing these accidents has been reported. In an effort to better characterize these accidents, data were collected from 179 wild pig-vehicle collisions from a location in west central South Carolina. Data included accident parameters pertaining to the animals involved, time, location, and human impacts. The age structure of the animals involved was significantly older than that found in the population. Most collisions involved single animals; however, up to seven animals were involved in individual accidents. As the number of animals per collision increased, the age and body mass of the individuals involved decreased. The percentage of males was significantly higher in the single-animal accidents. Annual attrition due to vehicle collisions averaged 0.8 percent of the population. Wild pig-vehicle collisions occurred year-round and throughout the 24-hour daily time period. Most accidents were at night. The presence of lateral barriers was significantly more frequent at the collision locations. Human injuries were infrequent but potentially serious. The mean vehicle damage estimate was $1,173.

  5. Differentiation of Induced Pluripotent Stem Cells to Lentoid Bodies Expressing a Lens Cell-Specific Fluorescent Reporter.

    Directory of Open Access Journals (Sweden)

    Taruna Anand

    Full Text Available Curative approaches for eye cataracts and other eye abnormalities, such as myopia and hyperopia currently suffer from a lack of appropriate models. Here, we present a new approach for in vitro growth of lentoid bodies from induced pluripotent stem (iPS cells as a tool for ophthalmological research. We generated a transgenic mouse line with lens-specific expression of a fluorescent reporter driven by the alphaA crystallin promoter. Fetal fibroblasts were isolated from transgenic fetuses, reprogrammed to iPS cells, and differentiated to lentoid bodies exploiting the specific fluorescence of the lens cell-specific reporter. The employment of cell type-specific reporters for establishing and optimizing differentiation in vitro seems to be an efficient and generally applicable approach for developing differentiation protocols for desired cell populations.

  6. The Cost-Optimal Size of Future Reusable Launch Vehicles

    Science.gov (United States)

    Koelle, D. E.

    2000-07-01

    The paper answers the question, what is the optimum vehicle size — in terms of LEO payload capability — for a future reusable launch vehicle ? It is shown that there exists an optimum vehicle size that results in minimum specific transportation cost. The optimum vehicle size depends on the total annual cargo mass (LEO equivalent) enviseaged, which defines at the same time the optimum number of launches per year (LpA). Based on the TRANSCOST-Model algorithms a wide range of vehicle sizes — from 20 to 100 Mg payload in LEO, as well as launch rates — from 2 to 100 per year — have been investigated. It is shown in a design chart how much the vehicle size as well as the launch rate are influencing the specific transportation cost (in MYr/Mg and USS/kg). The comparison with actual ELVs (Expendable Launch Vehicles) and Semi-Reusable Vehicles (a combination of a reusable first stage with an expendable second stage) shows that there exists only one economic solution for an essential reduction of space transportation cost: the Fully Reusable Vehicle Concept, with rocket propulsion and vertical take-off. The Single-stage Configuration (SSTO) has the best economic potential; its feasibility is not only a matter of technology level but also of the vehicle size as such. Increasing the vehicle size (launch mass) reduces the technology requirements because the law of scale provides a better mass fraction and payload fraction — practically at no cost. The optimum vehicle design (after specification of the payload capability) requires a trade-off between lightweight (and more expensive) technology vs. more conventional (and cheaper) technology. It is shown that the the use of more conventional technology and accepting a somewhat larger vehicle is the more cost-effective and less risky approach.

  7. Modeling vehicle emissions in different types of Chinese cities: Importance of vehicle fleet and local features

    International Nuclear Information System (INIS)

    Huo Hong; Zhang Qiang; He Kebin; Yao Zhiliang; Wang Xintong; Zheng Bo; Streets, David G.; Wang Qidong; Ding Yan

    2011-01-01

    We propose a method to simulate vehicle emissions in Chinese cities of different sizes and development stages. Twenty two cities are examined in this study. The target year is 2007. Among the cities, the vehicle emission factors were remarkably different (the highest is 50-90% higher than the lowest) owing to their distinct local features and vehicle technology levels, and the major contributors to total vehicle emissions were also different. A substantial increase in vehicle emissions is foreseeable unless stronger measures are implemented because the benefit of current policies can be quickly offset by the vehicle growth. Major efforts should be focused on all cities, especially developing cities where the requirements are lenient. This work aims a better understanding of vehicle emissions in all types of Chinese cities. The proposed method could benefit national emission inventory studies in improving accuracy and help in designing national and local policies for vehicle emission control. - Highlights: → We examine vehicle emissions in 22 Chinese cities of different types and locations. → Vehicle emission factors of the cities differ by 50-90% due to distinct local features. → Each vehicle type contributes differently to total emissions among the cities. → A substantial increase in vehicle emissions in most Chinese cities is foreseeable. → City-specific fleet and local features are important in research and policy making. - Vehicle emission characteristics of Chinese cities are remarkably different, and local features need to be taken into account in vehicle emission studies and control strategy.

  8. Advanced Vehicle Testing and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Garetson, Thomas [The Clarity Group, Incorporated, Chicago, IL (United States)

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  9. Features of fatal injuries in older cyclists in vehicle-bicycle accidents in Japan.

    Science.gov (United States)

    Matsui, Yasuhiro; Oikawa, Shoko; Hitosugi, Masahito

    2018-01-02

    The purpose of this study was to identify and better understand the features of fatal injuries in cyclists aged 75 years and over involved in collisions with either hood- or van-type vehicles. This study investigated the fatal injuries of cyclists aged 75 years old and over by analyzing accident data. We focused on the body regions to which the fatal injury occurred using vehicle-bicycle accident data from the Institute for Traffic Accident Research and Data Analysis (ITARDA) in Japan. Using data from 2009 to 2013, we examined the frequency of fatally injured body region by gender, age, and actual vehicle travel speed. We investigated any significant differences in distributions of fatal injuries by body region for cyclists aged 75 years and over using chi-square tests to compare with cyclists in other age groups. We also investigated the cause of fatal head injuries, such as impact with a road surface or vehicle. The results indicated that head injuries were the most common cause of fatalities among the study group. At low vehicle travel speeds for both hood- and van-type vehicles, fatalities were most likely to be the result of head impacts against the road surface. The percentage of fatalities following hip injuries was significantly higher for cyclists aged 75 years and over than for those aged 65-74 or 13-59 in impacts with hood-type vehicles. It was also higher for women than men in the over-75 age group in impacts with these vehicles. For cyclists aged 75 years and over, wearing a helmet may be helpful to prevent head injuries in vehicle-to-cyclist accidents. It may also be helpful to introduce some safety measures to prevent hip injuries, given the higher level of fatalities following hip injury among all cyclists aged 75 and over, particularly women.

  10. Numerical Investigation of Aerodynamic Braking for a Ground Vehicle

    Science.gov (United States)

    Devanuri, Jaya Krishna

    2018-06-01

    The purpose of this article is to observe the effect of an air brake on the aerodynamics of a ground vehicle and also to study the influence of change in the parameters like the velocity of the vehicle, the angle of inclination, height, and position of the air brake on the aerodynamics of the vehicle body. The test subject used is an Ahmed body which is a generic 3D car body as it retains all the aerodynamic characteristics of a ground vehicle. Numerical investigation has been carried out by RNG k-ɛ turbulence model. Results are presented in terms of streamlines and drag coefficient to understand the influence of pertinent parameters on flow physics. It is found that with the use of an air brake, though the drag coefficient remains more or less constant with velocity, it increases with the increase in height and angle of inclination of the air brake. But the effect of position of air brake on the coefficient of drag is surprising since for certain heights of the air brake the drag coefficient is maximum at the foremost point and as the air brake moves towards the rear it is first observed to decrease and then increase. It is also observed that with the increase in height of the air brake the drag coefficient monotonically decreases as the position of the air brake is moved towards the rear. Taguchi method has been employed with L16 orthogonal array to obtain the optimal configuration for the air brake. For each of the selected parameters, four different levels have been chosen to obtain the maximum drag coefficient value. The study could provide an invaluable database for the optimal design of an airbrake for a ground vehicle.

  11. Deploying Electric Vehicles and Electric Vehicle Supply Equipment: Tiger Teams Offer Project Assistance for Federal Fleets

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-02

    To assist federal agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory’s EVSE Tiger Teams.

  12. Human-vehicle embodiment when predictability is violated.

    Science.gov (United States)

    Tanida, Koji; Paolini, Marco; Silveira, Sarita

    2017-09-01

    Embodiment in human-vehicle interaction is higher for perceived safety than for perceived risk. When operational anticipations are violated, experiencing a vehicle as body-extension is negatively correlated with operational effort as indicated by neural activation in the motor system. © 2017 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  13. Clean Cities 2014 Vehicle Buyer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-01

    The Clean Cities 2014 Vehicle Buyer's Guide is an annual guide which features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  14. Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades

    International Nuclear Information System (INIS)

    Haloulakos, V.E.

    1991-01-01

    Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment

  15. Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades

    Science.gov (United States)

    Haloulakos, V. E.

    1991-01-01

    Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment.

  16. Accuracy of specific BIVA for the assessment of body composition in the United States population.

    Science.gov (United States)

    Buffa, Roberto; Saragat, Bruno; Cabras, Stefano; Rinaldi, Andrea C; Marini, Elisabetta

    2013-01-01

    Bioelectrical impedance vector analysis (BIVA) is a technique for the assessment of hydration and nutritional status, used in the clinical practice. Specific BIVA is an analytical variant, recently proposed for the Italian elderly population, that adjusts bioelectrical values for body geometry. Evaluating the accuracy of specific BIVA in the adult U.S. population, compared to the 'classic' BIVA procedure, using DXA as the reference technique, in order to obtain an interpretative model of body composition. A cross-sectional sample of 1590 adult individuals (836 men and 754 women, 21-49 years old) derived from the NHANES 2003-2004 was considered. Classic and specific BIVA were applied. The sensitivity and specificity in recognizing individuals below the 5(th) and above the 95(th) percentiles of percent fat (FMDXA%) and extracellular/intracellular water (ECW/ICW) ratio were evaluated by receiver operating characteristic (ROC) curves. Classic and specific BIVA results were compared by a probit multiple-regression. Specific BIVA was significantly more accurate than classic BIVA in evaluating FMDXA% (ROC areas: 0.84-0.92 and 0.49-0.61 respectively; p = 0.002). The evaluation of ECW/ICW was accurate (ROC areas between 0.83 and 0.96) and similarly performed by the two procedures (p = 0.829). The accuracy of specific BIVA was similar in the two sexes (p = 0.144) and in FMDXA% and ECW/ICW (p = 0.869). Specific BIVA showed to be an accurate technique. The tolerance ellipses of specific BIVA can be used for evaluating FM% and ECW/ICW in the U.S. adult population.

  17. H∞ control of railway vehicle suspension with MR damper using scaled roller rig

    International Nuclear Information System (INIS)

    Shin, Yu-Jeong; You, Won-Hee; Hur, Hyun-Moo; Park, Joon-Hyuk

    2014-01-01

    In this paper, a magneto-rheological (MR) damper was applied to the secondary suspension to reduce the vibration of a car body. The control performance of the MR damper was verified by numerical analysis with a 1/5 scale railway vehicle model in accordance with the similarity law. The analysis results were then validated in tests. In particular, the objective of the study was to understand how the control performance affected the dynamic characteristics of a railway vehicle and to systematically analyze the relationship between control performance and dynamic characteristics depending on various running speeds. To achieve this, experimental results for the dynamic characteristics of the scaled MR damper designed for the 1/5 scale railway vehicle model were applied to the railway vehicle model. The H ∞ control method was applied to the controller. The means of designing the railway vehicle body vibration controller and the effectiveness of its results were studied. (paper)

  18. Procurement Policy for Armored Vehicles

    National Research Council Canada - National Science Library

    Jolliffe, Richard B; Burton, Bruce A; Carros, Deborah L; Schaefer, Beth K; Truong, Linh; Palmer, Kevin A; Chun, Judy M; Smith, Jessica M; Abraham, Amanda M; Peters, Anthony R

    2007-01-01

    Congresswoman Louise M. Slaughter requested that the Inspector General (IG), DoD review the DoD procurement history for body armor and armored vehicles and determine whether officials properly followed contracting policies...

  19. Vehicle dynamic effects in the course of passing over turnouts

    Directory of Open Access Journals (Sweden)

    Zelenka J.

    2007-11-01

    Full Text Available For the quantification of vehicle dynamic effects at passing over turnouts at a higher speed there was developed a methodology for evaluating of acceleration measured on vehicle axle boxes in the year 2003. The methodology is based on statistical evaluation of lateral and vertical acceleration measured values at passing over both critical parts of a turnout (tongue, frog. The created methodology was used for investigation of vehicle dynamic effects by running at speed up to 230 km/h in the year 2004 in terms of high speed tests of tilting-body unit class 680 CD. There was found relatively high values of dynamic effects already at a speed 160 km/h. In terms of tilting-body unit class 680 tests at a higher speed in curves of chosen track lines of 1st and 2nd corridor of Czech Railways there was carried out also verification of curved turnouts state according to methodology mentioned above with a view to possibility of speed increasing at curved throats of chosen stations. Lateral vehicle dynamic effects at passing over a curved turnout frog area were evaluated. There were carried out simulation calculations of vehicle passing over a turnout based on measured geometric parameters of wheelset as well as chosen turnouts. Results of the calculations were compared with measurements. The increased vehicle dynamic effects found in pulsed beats character influence negatively the turnouts part (not only wheel contacting parts as well as operating life all unsuspended parts of vehicles.

  20. A Low-Cost Vehicle Anti-Theft System Using Obsolete Smartphone

    OpenAIRE

    Liu, Bang; Liu, Nianbo; Chen, Guihai; Dai, Xili; Liu, Ming

    2018-01-01

    In modern society, vehicle theft has become an increasing problem to the general public. Deploying onboard anti-theft systems could relieve this problem, but it often requires extra investment for vehicle owners. In this paper, we propose the idea of PhoneInside, which does not need a special device but leverages an obsolete smartphone to build a low-cost vehicle anti-theft system. After being fixed in the vehicle body with a car charger, the smartphone can detect vehicle movement and adaptiv...

  1. Squid-inspired vehicle design using coupled fluid-solid analytical modeling

    Science.gov (United States)

    Giorgio-Serchi, Francesco; Weymouth, Gabriel

    2017-11-01

    The need for enhanced automation in the marine and maritime fields is fostering research into robust and highly maneuverable autonomous underwater vehicles. To address these needs we develop design principles for a new generation of soft-bodied aquatic vehicles similar to octopi and squids. In particular, we consider the capability of pulsed-jetting bodies to boost thrust by actively modifying their external body-shape and in this way benefit of the contribution from added-mass variation. We present an analytical formulation of the coupled fluid-structure interaction between the elastic body and the ambient fluid. The model incorporates a number of new salient contributions to the soft-body dynamics. We highlight the role of added-mass variation effects of the external fluid in enhancing thrust and assess how the shape-changing actuation is impeded by a confinement-related unsteady inertial term and by an external shape-dependent fluid stiffness contribution. We show how the analysis of these combined terms has guided us to the design of a new prototype of a squid-inspired vehicle tuning of the natural frequency of the coupled fluid-solid system with the purpose of optimizing its actuation routine.

  2. CHOOSING DRIVING CYCLE OF HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    A. Vorona

    2011-01-01

    Full Text Available The analysis of existing driving cycles was performed. After comparing some of the cycles, one specific driving cycle was selected for the hybrid vehicle as the most reliable in representing the real moving of the vehicle in operating conditions and which may be reproduced at experimental tests at the modeling roller stand.

  3. Thoracic aortic injury in motor vehicle crashes: the effect of impact direction, side of body struck, and seat belt use.

    Science.gov (United States)

    Fitzharris, Michael; Franklyn, Melanie; Frampton, Richard; Yang, King; Morris, Andrew; Fildes, Brian

    2004-09-01

    Using in-depth, real-world motor vehicle crash data from the United States and the United Kingdom, we aimed to assess the incidence and risk factors associated with thoracic aorta injuries. De-identified National Automotive Sampling System Crashworthiness Data System (U.S.) and Co-operative Crash Injury Study (U.K.) data formed the basis of this retrospective analysis. Logistic regression was used to assess the level of risk of thoracic aorta injury associated with impact direction, seat belt use and, given the asymmetry of the thoracic cavity, whether being struck toward the left side of the body was associated with increased risk in side-impact crashes. A total of 13,436 U.S. and 3,756 U.K. drivers and front seat passengers were analyzed. The incidence of thoracic aorta injury in the U.S. and U.K. samples was 1.5% (n = 197) and 1.9% (n = 70), respectively. The risk was higher for occupants seated on the side closest to the impact than for occupants involved in frontal impact crashes. This was the case irrespective of whether the force was applied toward the left (belted: relative risk [RR], 4.6; 95% confidence interval [CI], 2.9-7.1; p direction. Thoracic aorta injuries were found to be associated with high impact severity, and being struck by a sports utility vehicle relative to a passenger vehicle (RR, 1.7; 95% CI, 1.2-2.3; p = 0.001). Aortic injuries have been conventionally associated with frontal impacts. However, emergency clinicians should be aware that occupants of side-impact crashes are at greater risk, particularly if the occupant was unbelted and involved in a crash of high impact severity.

  4. Accuracy of specific BIVA for the assessment of body composition in the United States population.

    Directory of Open Access Journals (Sweden)

    Roberto Buffa

    Full Text Available BACKGROUND: Bioelectrical impedance vector analysis (BIVA is a technique for the assessment of hydration and nutritional status, used in the clinical practice. Specific BIVA is an analytical variant, recently proposed for the Italian elderly population, that adjusts bioelectrical values for body geometry. OBJECTIVE: Evaluating the accuracy of specific BIVA in the adult U.S. population, compared to the 'classic' BIVA procedure, using DXA as the reference technique, in order to obtain an interpretative model of body composition. DESIGN: A cross-sectional sample of 1590 adult individuals (836 men and 754 women, 21-49 years old derived from the NHANES 2003-2004 was considered. Classic and specific BIVA were applied. The sensitivity and specificity in recognizing individuals below the 5(th and above the 95(th percentiles of percent fat (FMDXA% and extracellular/intracellular water (ECW/ICW ratio were evaluated by receiver operating characteristic (ROC curves. Classic and specific BIVA results were compared by a probit multiple-regression. RESULTS: Specific BIVA was significantly more accurate than classic BIVA in evaluating FMDXA% (ROC areas: 0.84-0.92 and 0.49-0.61 respectively; p = 0.002. The evaluation of ECW/ICW was accurate (ROC areas between 0.83 and 0.96 and similarly performed by the two procedures (p = 0.829. The accuracy of specific BIVA was similar in the two sexes (p = 0.144 and in FMDXA% and ECW/ICW (p = 0.869. CONCLUSIONS: Specific BIVA showed to be an accurate technique. The tolerance ellipses of specific BIVA can be used for evaluating FM% and ECW/ICW in the U.S. adult population.

  5. Effect of endorsed body weight on specific absorption rate during magnetic resonance imaging

    International Nuclear Information System (INIS)

    Singh, Harish K.; Gupta, R.K.; Gujral, R.B.; Shukla, A.K.

    2001-01-01

    As a routine safety of the patients undergoing magnetic resonance imaging (MRI), the limits of radiofrequency (RF) specific absorption rate (SAR) are set by the manufacturers of all MRI systems because RF causes thermo genesis of the RF exposed tissue. It has been mandatory practice to endorse body weight and age of the patients required by the MRI systems for the SAR check. The problems arise on those patients who are critically ill, and consequently body weight could not be measured. In such cases, approximate body weight has to be endorsed. In case of underweight and overweight patients, sometimes SAR check does not permit to run the MRI pulse sequences. Also, in such cases, body weight remains the parameter which is being changed to get the MRI done. The purpose of this study is to assess the change of SAR with endorsed body weight. The change of SAR was recorded with the endorsed weight using phantoms and most commonly used T1 and T2 weighted pulse sequence on clinical MRI system. At true endorsed weight, using respective coils and the head and spine coil phantoms, the body averaged and localised SAR were found to be within limits while this was not the case with body coil phantom. Unrealistic endorsed weights are permissible for the adult age cases in all coils while using the routine T1 and T2 weighted pulse sequences. This finding is absolutely new in the field and certainly, will be of great applicability to develop a uniform and standard system of SAR checks in the patient interest. (author)

  6. Objectively-determined intensity- and domain-specific physical activity and sedentary behavior in relation to percent body fat.

    Science.gov (United States)

    Scheers, Tineke; Philippaerts, Renaat; Lefevre, Johan

    2013-12-01

    This study examined the independent and joint associations of overall, intensity-specific and domain-specific physical activity and sedentary behavior with bioelectrical impedance-determined percent body fat. Physical activity was measured in 442 Flemish adults (41.4 ± 9.8 years) using the SenseWear Armband and an electronic diary. Two-way analyses of covariance investigated the interaction of physical activity and sedentary behavior with percent body fat. Multiple linear regression analyses, adjusted for potential confounders, examined the associations of intensity-specific and domain-specific physical activity and sedentary behavior with percent body fat. Results showed a significant main effect for physical activity in both genders and for sedentary behavior in women, but no interaction effects. Light activity was positively (β = 0.41 for men and 0.43 for women) and moderate (β = -0.64 and -0.41), vigorous (β = -0.21 and -0.24) and moderate-to-vigorous physical activity (MVPA) inversely associated with percent body fat, independent of sedentary time. Regarding domain-specific physical activity, significant associations were present for occupation, leisure time and household chores, irrespective of sedentary time. The positive associations between body fat and total and domain-specific sedentary behavior diminished after MVPA was controlled for. MVPA during leisure time, occupation and household chores may be essential to prevent fat gain. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  7. A Study on BC Emission from Vehicles using Different Types of Fuel

    Science.gov (United States)

    Kim, K.; Son, J.; Kim, J.; Kim, S.; Park, G.; Sung, K.; Kim, I.; Chung, T.; Park, T.; Kang, S.; Ban, J.; Kim, J.; Hong, Y. D.; Woo, J. H.; Lee, T.

    2017-12-01

    Black carbon (BC) is an anthropogenic aerosol from fossil fuels, and biomass burning. It absorbs solar radiation, and heats the atmosphere leading 0.4W m-2 radiative forcing. BC is a particle that can cause serious effects on human body as well. Toxicological studies of black carbon suggests that BC may be an important carrier of toxic chemicals to human body. The recent researches show that one of the main precursor of BC is vehicle emission, but the inventory of BC emission rate from vehicle is inadequate in South Korea. This study tries to find differences of BC emission from different sizes of vehicles using different types of fuels. Fuels used in vehicles are gasoline, liquefied petroleum gas (LPG), and diesel. BC was directly measured from the tail pipe of vehicles using Aethalometer (AE33, Magee Scientific Corporation). This study was conducted in Transport Pollutant Research Center, National Institute of Environmental Research, South Korea. Measurement was progressed with the five different test modes of speeds. Speed modes includes 4.7, 17.3, 34.1, 65.4, and 97.3 km h-1. Emission rate of BC was high in the slowest speed mode, and showed decrease with increase of the speed of vehicles. Gasoline vehicles had the relatively higher emission rate of BC than the LPG vehicle, while the emission rate of BC for Diesel with DPF (Diesel Particle Filter) was observed to be the lowest.

  8. OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2016-01-01

    Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.

  9. Real-time model for simulating a tracked vehicle on deformable soils

    Directory of Open Access Journals (Sweden)

    Martin Meywerk

    2016-05-01

    Full Text Available Simulation is one possibility to gain insight into the behaviour of tracked vehicles on deformable soils. A lot of publications are known on this topic, but most of the simulations described there cannot be run in real-time. The ability to run a simulation in real-time is necessary for driving simulators. This article describes an approach for real-time simulation of a tracked vehicle on deformable soils. The components of the real-time model are as follows: a conventional wheeled vehicle simulated in the Multi Body System software TRUCKSim, a geometric description of landscape, a track model and an interaction model between track and deformable soils based on Bekker theory and Janosi–Hanamoto, on one hand, and between track and vehicle wheels, on the other hand. Landscape, track model, soil model and the interaction are implemented in MATLAB/Simulink. The details of the real-time model are described in this article, and a detailed description of the Multi Body System part is omitted. Simulations with the real-time model are compared to measurements and to a detailed Multi Body System–finite element method model of a tracked vehicle. An application of the real-time model in a driving simulator is presented, in which 13 drivers assess the comfort of a passive and an active suspension of a tracked vehicle.

  10. Near-optimal operation of dual-fuel launch vehicles

    International Nuclear Information System (INIS)

    Ardema, M.D.; Chou, H.C.; Bowles, J.V.

    1994-01-01

    Current studies of single-stage-to-orbit (SSTO) launch vehicles are focused on all-rocket propulsion systems. One option for such vehicles is the use of dual-fuel (liquid hydrocarbon and liquid hydrogen (LH 2 )), for a portion of the mission. As compared with LH 2 , hydrocarbon fuel has higher density and produces higher thrust-to-weight, but has lower specific impulse. The advantages of hydrocarbon fuel are important early in the ascent trajectory, and its use may be expected to lead to reduced vehicle size and weight. Because LH 2 is also needed for cooling purposes, in the early portion of the trajectory both fuels must be burned simultaneously. Later in the ascent, when vehicle weight is lower, specific impulse is the key parameter, indicating single-fuel LH 2 use

  11. Influence of Wheel Eccentricity on Vertical Vibration of Suspended Monorail Vehicle: Experiment and Simulation

    Directory of Open Access Journals (Sweden)

    Kaikai Lv

    2017-01-01

    Full Text Available This paper investigates the influence of wheel eccentricity on vertical vibration of suspended monorail vehicle based on experiment and simulation. Two sets of tests are conducted in the first Chinese suspended monorail, and the tested acceleration is analyzed and exhibited. A multibody dynamic model of the suspended monorail vehicle is established to simulate the vertical vibration of car body excited by wheel eccentricity. The results show that there are three factors which may cause an abnormal vibration considering the track and the vehicle system. The influence of wheel eccentricity on the car body vibration was firstly analyzed. Simulated acceleration of car body has a great accordance with test. The wheel eccentricity could excite the resonance of car body at the speed of 21 km/h, and the vertical acceleration would increase considerably. Decreasing the secondary stiffness can effectively reduce the vertical vibration caused by wheel eccentricity, especially at the resonant speed. In the secondary test, the peak of car body acceleration at speed of 20 km/h is not appearing when only renewing the wheels, and the acceleration is decreasing obviously at the domain frequency. It is further determined that the abnormal vibration is mainly caused by the wheel eccentricity.

  12. Detection of vehicle parts based on Faster R-CNN and relative position information

    Science.gov (United States)

    Zhang, Mingwen; Sang, Nong; Chen, Youbin; Gao, Changxin; Wang, Yongzhong

    2018-03-01

    Detection and recognition of vehicles are two essential tasks in intelligent transportation system (ITS). Currently, a prevalent method is to detect vehicle body, logo or license plate at first, and then recognize them. So the detection task is the most basic, but also the most important work. Besides the logo and license plate, some other parts, such as vehicle face, lamp, windshield and rearview mirror, are also key parts which can reflect the characteristics of vehicle and be used to improve the accuracy of recognition task. In this paper, the detection of vehicle parts is studied, and the work is novel. We choose Faster R-CNN as the basic algorithm, and take the local area of an image where vehicle body locates as input, then can get multiple bounding boxes with their own scores. If the box with maximum score is chosen as final result directly, it is often not the best one, especially for small objects. This paper presents a method which corrects original score with relative position information between two parts. Then we choose the box with maximum comprehensive score as the final result. Compared with original output strategy, the proposed method performs better.

  13. Positive impact of electric vehicle and ngv on environment

    International Nuclear Information System (INIS)

    Shahidul I Khan; Kannan, K.S.; Md Shah Majid

    1999-01-01

    Electric Vehicle uses electricity from batteries as fuel and is environment friendly with zero emission. The occurrence of haze in 1997 in Malaysia and neighbouring countries has called for new studies about motor vehicle emission as it aggravates the problem. In big cities like Kuala Lumpur, Penang and Johor Bahru where it is estimated that over 300,000 vehicles enter the city everyday, smoke pollution from vehicles is identified as the major contributor to air quality. One of the solutions to air pollution problem could be the use of Electric Vehicles (EV) and Natural Gas for Vehicle (NGV). The NGV uses compressed natural gas mainly methane, is lead free and clean burning with low emission. The electric vehicles use batteries as power source. These batteries are charged off-peak hour, specifically after mid-night when the electric load curve has its least demand period. The number of electric vehicles and NGV in future years is calculated considering the penetration level. The reduction in pollution is estimated considering the number of automobiles replaced by electric vehicles and NGV. Finally, it is concluded that EV and NGV could be the ultimate solution for pollution control and could improve the environment specifically that of congested cities of Malaysia. (Author)

  14. How important is vehicle safety in the new vehicle purchase process?

    Science.gov (United States)

    Koppel, Sjaanie; Charlton, Judith; Fildes, Brian; Fitzharris, Michael

    2008-05-01

    Whilst there has been a significant increase in the amount of consumer interest in the safety performance of privately owned vehicles, the role that it plays in consumers' purchase decisions is poorly understood. The aims of the current study were to determine: how important vehicle safety is in the new vehicle purchase process; what importance consumers place on safety options/features relative to other convenience and comfort features, and how consumers conceptualise vehicle safety. In addition, the study aimed to investigate the key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase. Participants recruited in Sweden and Spain completed a questionnaire about their new vehicle purchase. The findings from the questionnaire indicated that participants ranked safety-related factors (e.g., EuroNCAP (or other) safety ratings) as more important in the new vehicle purchase process than other vehicle factors (e.g., price, reliability etc.). Similarly, participants ranked safety-related features (e.g., advanced braking systems, front passenger airbags etc.) as more important than non-safety-related features (e.g., route navigation systems, air-conditioning etc.). Consistent with previous research, most participants equated vehicle safety with the presence of specific vehicle safety features or technologies rather than vehicle crash safety/test results or crashworthiness. The key parameters associated with ranking 'vehicle safety' as the most important consideration in the new vehicle purchase were: use of EuroNCAP, gender and education level, age, drivers' concern about crash involvement, first vehicle purchase, annual driving distance, person for whom the vehicle was purchased, and traffic infringement history. The findings from this study are important for policy makers, manufacturers and other stakeholders to assist in setting priorities with regard to the promotion and publicity of vehicle safety features

  15. Cooperative Networked Control of Dynamical Peer-to-Peer Vehicle Systems

    National Research Council Canada - National Science Library

    Dullerud, Geir E; Bullo, Francesco; Feron, Eric; Frazzoli, Emilio; Kumar, P. R; Lall, Sanjay; Liberzon, Daniel; Lynch, Nancy A; Mitchell, John C; Mitter, Sanjoy K

    2007-01-01

    ... and semi-autonomous air vehicles. The research is specifically aimed at the critical reliability and performance issues facing autonomous vehicle systems which operate in highly uncertain environments, and enables the vehicles...

  16. Crewed Space Vehicle Battery Safety Requirements

    Science.gov (United States)

    Jeevarajan, Judith A.; Darcy, Eric C.

    2014-01-01

    This requirements document is applicable to all batteries on crewed spacecraft, including vehicle, payload, and crew equipment batteries. It defines the specific provisions required to design a battery that is safe for ground personnel and crew members to handle and/or operate during all applicable phases of crewed missions, safe for use in the enclosed environment of a crewed space vehicle, and safe for use in launch vehicles, as well as in unpressurized spaces adjacent to the habitable portion of a space vehicle. The required provisions encompass hazard controls, design evaluation, and verification. The extent of the hazard controls and verification required depends on the applicability and credibility of the hazard to the specific battery design and applicable missions under review. Evaluation of the design and verification program results shall be completed prior to certification for flight and ground operations. This requirements document is geared toward the designers of battery systems to be used in crewed vehicles, crew equipment, crew suits, or batteries to be used in crewed vehicle systems and payloads (or experiments). This requirements document also applies to ground handling and testing of flight batteries. Specific design and verification requirements for a battery are dependent upon the battery chemistry, capacity, complexity, charging, environment, and application. The variety of battery chemistries available, combined with the variety of battery-powered applications, results in each battery application having specific, unique requirements pertinent to the specific battery application. However, there are basic requirements for all battery designs and applications, which are listed in section 4. Section 5 includes a description of hazards and controls and also includes requirements.

  17. MARKETING AND SALES OF THE BODY SHOPS CONNECTED TO GENERAL MOTOR’S COLLISION

    Directory of Open Access Journals (Sweden)

    Hahn Rada Florina

    2010-07-01

    Full Text Available The producst and the services offered by Body Shops consist of work, parts and materials damandes for repair the damaged or cosmetic degraded vehicles. The client of the Body Shops is somewhat unusual in that two parties are likely to be involved. The first party is the vehicles owner. The second party is the insurance company responsible for pay. Both parties may be involved in selecting a repair shop, but ultimately the vehicle owner has the final authority in almost the cases.

  18. Imitation of Body Postures and Hand Movements in Children with Specific Language Impairment

    Science.gov (United States)

    Marton, Klara

    2009-01-01

    Within the domain-general theory of language impairment, this study examined body posture and hand movement imitation in children with specific language impairment (SLI) and in their age-matched peers. Participants included 40 children with SLI (5 years 3 months to 6 years 10 months of age) and 40 children with typical language development (5…

  19. Patterns of patient specific dosimetry in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); McMullen, Kevin P.; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States)

    2013-04-15

    Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at our institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10

  20. Physiological demands of off-road vehicle riding.

    Science.gov (United States)

    Burr, Jamie F; Jamnik, Veronica K; Shaw, Jim A; Gledhill, Norman

    2010-07-01

    The purpose of this study was to characterize the physiological demands of recreational off-road vehicle riding under typical riding conditions using habitual recreational off-road vehicle riders (n = 128). Comparisons of the physical demands of off-road vehicle riding were made between vehicle types (all-terrain vehicle (ATV) and off-road motorcycle (ORM)) to the demands of common recreational activities. Habitual riders (ATV = 56, ORM = 72) performed strength assessments before and after a representative trail ride (48 +/- 24.2 min), and ambulatory oxygen consumption was measured during one lap (24.2 +/- 11.8 min) of the ride. The mean VO2 requirement (mL x kg(-1) x min(-1)) while riding an off-road vehicle was 12.1 +/- 4.9 for ATV and 21.3 +/- 7.1 for ORM (P = 0.002), which is comparable to the VO2 required of many common recreational activities. Temporal analysis of activity intensity revealed approximately 14% of an ATV ride and 38% of an ORM ride are within the intensity range (940% VO2 reserve) required to achieve changes in aerobic fitness. Riding on a representative course also led to muscular fatigue, particularly in the upper body. On the basis of the measured metabolic demands, evidence of muscular strength requirements, and the associated caloric expenditures with off-road vehicle riding, this alternative form of activity conforms to the recommended physical activity guidelines and can be effective for achieving beneficial changes in health and fitness.

  1. Modeling and Analysis of an Air-Breathing Flexible Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Xi-bin Zhang

    2014-01-01

    Full Text Available By using light-weighted material in hypersonic vehicle, the vehicle body can be easily deformed. The mutual couplings in aerodynamics, flexible structure, and propulsion system will bring great challenges for vehicle modeling. In this work, engineering estimated method is used to calculate the aerodynamic forces, moments, and flexible modes to get the physics-based model of an air-breathing flexible hypersonic vehicle. The model, which contains flexible effects and viscous effects, can capture the physical characteristics of high-speed flight. To overcome the analytical intractability of the model, a simplified control-oriented model of the hypersonic vehicle is presented with curve fitting approximations. The control-oriented model can not only reduce the complexity of the model, but also retain aero-flexible structure-propulsion interactions of the physics-based model and can be applied for nonlinear control.

  2. Vehicle - Bridge interaction, comparison of two computing models

    Science.gov (United States)

    Melcer, Jozef; Kuchárová, Daniela

    2017-07-01

    The paper presents the calculation of the bridge response on the effect of moving vehicle moves along the bridge with various velocities. The multi-body plane computing model of vehicle is adopted. The bridge computing models are created in two variants. One computing model represents the bridge as the Bernoulli-Euler beam with continuously distributed mass and the second one represents the bridge as the lumped mass model with 1 degrees of freedom. The mid-span bridge dynamic deflections are calculated for both computing models. The results are mutually compared and quantitative evaluated.

  3. Improvement of Ride Quality of Railway Vehicle by Semiactive Secondary Suspension System on Roller Rig Using Magnetorheological Damper

    Directory of Open Access Journals (Sweden)

    Yu-Jeong Shin

    2014-07-01

    Full Text Available Ride quality became a very important factor in the performance of railway vehicles according to the expansion of high-speed railways and speedup of velocity of railway vehicles. In this study, the results of applying the MR (magnetorheological lateral damper on the secondary suspension to reduce the vibration of the car body, directly relating to the ride quality of railway vehicles, were mentioned. In order to verify the control performance of MR dampers, a 1/5 scaled railway vehicle model was constructed, and numerical simulation and experimental tests were conducted. The MR damper for the experimental tests was produced and was attached between the car body and bogie of a full scaled vehicle, and a vibration controlling test was performed to improve ride quality on a roller rig. The skyhook control algorithm was used as the controlling technique, and regarding the test results, the RMS (root mean square value was found by compensating the frequency of the lateral vibration based on the UIC 513 R Standard about the ride quality of railway vehicles. As a result of the test, it could be confirmed that vibration was reduced by approximately 24% when attaching the MR damper between the bogie and the car body compared to when applying a passive damper.

  4. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum.

    Science.gov (United States)

    Smith, Frank W; Jockusch, Elizabeth L

    2014-11-01

    The establishment of segment identity is a key developmental process that allows for divergence along the anteroposterior body axis in arthropods. In Drosophila, the identity of a segment is determined by the complement of Hox genes it expresses. In many contexts, Hox transcription factors require the protein products of extradenticle (exd) and homothorax (hth) as cofactors to perform their identity specification functions. In holometabolous insects, segment identity may be specified twice, during embryogenesis and metamorphosis. To glean insight into the relationship between embryonic and metamorphic segmental identity specification, we have compared these processes in the flour beetle Tribolium castaneum, which develops ventral appendages during embryogenesis that later metamorphose into adult appendages with distinct morphologies. At metamorphosis, comparisons of RNAi phenotypes indicate that Hox genes function jointly with Tc-hth and Tc-exd to specify several region-specific aspects of the adult body wall. On the other hand, Hox genes specify appendage identities along the anteroposterior axis independently of Tc-hth/Tc-exd and Tc-hth/Tc-exd specify proximal vs. distal identity within appendages independently of Hox genes during this stage. During embryogenesis, Tc-hth and Tc-exd play a broad role in the segmentation process and are required for specification of body wall identities in the thorax; however, contrasting with results from other species, we did not obtain homeotic transformations of embryonic appendages in response to Tc-hth or Tc-exd RNAi. In general, the homeotic effects of interference with the function of Hox genes and Tc-hth/Tc-exd during metamorphosis did not match predictions based on embryonic roles of these genes. Comparing metamorphic patterning in T. castaneum to embryonic and post-embryonic development in hemimetabolous insects suggests that holometabolous metamorphosis combines patterning processes of both late embryogenesis and

  5. Modelling and Simulation of Cooperative Control for Bus Rapid Transit Vehicle Platoon in a Connected Vehicle Environment

    Directory of Open Access Journals (Sweden)

    Jiahui Liu

    2017-02-01

    Full Text Available The aim of this paper is to develop a cooperative control model for improving the operational efficiency of Bus Rapid Transit (BRT vehicles. The model takes advantage of the emerging connected vehicle technology. A connected vehicle centre is established to assign a specific reservation time interval and transmit the corresponding dynamic speed guidance to each BRT vehicle. Furthermore, a set of constraints have been set up to avoid bus queuing and waiting phenomena in downstream BRT stations. Therefore, many BRT vehicles are strategically guided to form a platoon, which can pass through an intersection with no impedance. An actual signalized intersection along the Guangzhou BRT corridor is employed to verify and assess the cooperative control model in various traffic conditions. The simulation-based evaluation results demonstrate that the proposed approach can reduce delays, decrease the number of stops, and improve the sustainability of the BRT vehicles.

  6. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-12-01

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  7. Near term hybrid passenger vehicle development program. Phase I. Appendices C and D. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The derivation of and actual preliminary design of the Near Term Hybrid Vehicle (NTHV) are presented. The NTHV uses a modified GM Citation body, a VW Rabbit turbocharged diesel engine, a 24KW compound dc electric motor, a modified GM automatic transmission, and an on-board computer for transmission control. The following NTHV information is presented: the results of the trade-off studies are summarized; the overall vehicle design; the selection of the design concept and the base vehicle (the Chevrolet Citation), the battery pack configuration, structural modifications, occupant protection, vehicle dynamics, and aerodynamics; the powertrain design, including the transmission, coupling devices, engine, motor, accessory drive, and powertrain integration; the motor controller; the battery type, duty cycle, charger, and thermal requirements; the control system (electronics); the identification of requirements, software algorithm requirements, processor selection and system design, sensor and actuator characteristics, displays, diagnostics, and other topics; environmental system including heating, air conditioning, and compressor drive; the specifications, weight breakdown, and energy consumption measures; advanced technology components, and the data sources and assumptions used. (LCL)

  8. Advanced Tracking of Vehicles

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Li, K.-J.; Pakalnis, Stardas

    2005-01-01

    efficient tracking techniques. More specifically, while almost all commercially available tracking solutions simply offer time-based sampling of positions, this paper's techniques aim to offer a guaranteed tracking accuracy for each vehicle at the lowest possible costs, in terms of network traffic...

  9. Active Vibration Control of a Railway Vehicle Carbody Using Piezoelectric Elements

    Science.gov (United States)

    Molatefi, Habibollah; Ayoubi, Pejman; Mozafari, Hozhabr

    2017-07-01

    In recent years and according to modern transportation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezoelectric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demonstrated through the state space equations and its effect on modal coefficient.

  10. Grouping of body areas affected in traffic accidents. A cohort study.

    Science.gov (United States)

    León, Alba Luz; Ascuntar-Tello, Johana; Valderrama-Molina, Carlos Oliver; Giraldo, Nelson Darío; Constaín, Alfredo; Puerta, Andrés; Restrepo, Camilo; Jaimes, Fabián

    2018-03-01

    Traffic accidents are considered a public health problem and, according to the World Health Organization, currently is the eighth cause of death in the world. Specifically, pedestrians, cyclists and motorcyclists contribute half of the fatalities. Adequate clinical management in accordance with aggregation patterns of the body areas involved, as well as the characteristics of the accident, will help to reduce mortality and disability in this population. Secondary data analysis of a cohort of patients involved in traffic accidents and admitted to the emergency room (ER) of a high complexity hospital in Medellín, Colombia. They were over 15 years of age, had two or more injuries in different areas of the body and had a hospital stay of more than 24 h after admission. A cluster analysis was performed, using Ward's method and the linfinity similarity measure, to obtain clusters of body areas most commonly affected depending on the type of vehicle and the type of victim. Among 2445 patients with traffic accidents, 34% (n = 836) were admitted into the Intensive Care Unit (ICU) and the overall hospital mortality rate was 8% (n = 201). More than 50% of the patients were motorcycle riders but mortality was higher in pedestrian-car accidents (16%, n = 34). The clusters show efficient performance to separate the population depending on the severity of their injuries. Pedestrians had the highest mortality after having accidents with cars and they also had the highest number of body parts clustered, mainly on head and abdomen areas. Exploring the cluster patterns of injuries and body areas affected in traffic accidents allow to establish anatomical groups defined by the type of accident and the type of vehicle. This classification system will accelerate and prioritize ER-care for these population groups, helping to provide better health care services and to rationalize available resources.

  11. CyberTORCS: An Intelligent Vehicles Simulation Platform for Cooperative Driving

    Directory of Open Access Journals (Sweden)

    Ming Yang

    2011-05-01

    Full Text Available Simulation platforms play an important role in helping intelligent vehicle research, especially for the research of cooperative driving due to the high cost and risk of the real experiments. In order to ease and bring more convenience for cooperative driving tests, we introduce an intelligent vehicle simulation platform, called CyberTORCS, for the research in cooperative driving. Details of the simulator modules including vehicle body control, vehicle visualization modeling and track visualization modeling are presented. Two simulation examples are given to validate the feasibility and effectiveness of the proposed simulation platform.

  12. Evaluation of kinematics and injuries to restrained occupants in far-side crashes using full-scale vehicle and human body models.

    Science.gov (United States)

    Arun, Mike W J; Umale, Sagar; Humm, John R; Yoganandan, Narayan; Hadagali, Prasanaah; Pintar, Frank A

    2016-09-01

    The objective of the current study was to perform a parametric study with different impact objects, impact locations, and impact speeds by analyzing occupant kinematics and injury estimations using a whole-vehicle and whole-body finite element-human body model (FE-HBM). To confirm the HBM responses, the biofidelity of the model was validated using data from postmortem human surrogate (PMHS) sled tests. The biofidelity of the model was validated using data from sled experiments and correlational analysis (CORA). Full-scale simulations were performed using a restrained Global Human Body Model Consortium (GHBMC) model seated on a 2001 Ford Taurus model using a far-side lateral impact condition. The driver seat was placed in the center position to represent a nominal initial impact condition. A 3-point seat belt with pretensioner and retractor was used to restrain the GHBMC model. A parametric study was performed using 12 simulations by varying impact locations, impacting object, and impact speed using the full-scale models. In all 12 simulations, the principal direction of force (PDOF) was selected as 90°. The impacting objects were a 10-in.-diameter rigid vertical pole and a movable deformable barrier. The impact location of the pole was at the C-pillar in the first case, at the B-pillar in the second case, and, finally, at the A-pillar in the third case. The vehicle and the GHBMC models were defined an initial velocity of 35 km/h (high speed) and 15 km/h (low speed). Excursion of the head center of gravity (CG), T6, and pelvis were measured from the simulations. In addition, injury risk estimations were performed on head, rib cage, lungs, kidneys, liver, spleen, and pelvis. The average CORA rating was 0.7. The shoulder belt slipped in B- and C-pillar impacts but somewhat engaged in the A-pillar case. In the B-pillar case, the head contacted the intruding struck-side structures, indicating higher risk of injury. Occupant kinematics depended on interaction with

  13. Exploring the mechanisms of vehicle front-end shape on pedestrian head injuries caused by ground impact.

    Science.gov (United States)

    Yin, Sha; Li, Jiani; Xu, Jun

    2017-09-01

    In pedestrian-vehicle accidents, pedestrians typically suffer from secondary impact with the ground after the primary contact with vehicles. However, information about the fundamental mechanism of pedestrian head injury from ground impact remains minimal, thereby hindering further improvement in pedestrian safety. This study addresses this issue by using multi-body modeling and computation to investigate the influence of vehicle front-end shape on pedestrian safety. Accordingly, a simulation matrix is constructed to vary bonnet leading-edge height, bonnet length, bonnet angle, and windshield angle. Subsequently, a set of 315 pedestrian-vehicle crash simulations are conducted using the multi-body simulation software MADYMO. Three vehicle velocities, i.e., 20, 30, and 40km/h, are set as the scenarios. Results show that the top governing factor is bonnet leading-edge height. The posture and head injury at the instant of head ground impact vary dramatically with increasing height because of the significant rise of the body bending point and the movement of the collision point. The bonnet angle is the second dominant factor that affects head-ground injury, followed by bonnet length and windshield angle. The results may elucidate one of the critical barriers to understanding head injury caused by ground impact and provide a solid theoretical guideline for considering pedestrian safety in vehicle design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A linear complementarity method for the solution of vertical vehicle-track interaction

    Science.gov (United States)

    Zhang, Jian; Gao, Qiang; Wu, Feng; Zhong, Wan-Xie

    2018-02-01

    A new method is proposed for the solution of the vertical vehicle-track interaction including a separation between wheel and rail. The vehicle is modelled as a multi-body system using rigid bodies, and the track is treated as a three-layer beam model in which the rail is considered as an Euler-Bernoulli beam and both the sleepers and the ballast are represented by lumped masses. A linear complementarity formulation is directly established using a combination of the wheel-rail normal contact condition and the generalised-α method. This linear complementarity problem is solved using the Lemke algorithm, and the wheel-rail contact force can be obtained. Then the dynamic responses of the vehicle and the track are solved without iteration based on the generalised-α method. The same equations of motion for the vehicle and track are adopted at the different wheel-rail contact situations. This method can remove some restrictions, that is, time-dependent mass, damping and stiffness matrices of the coupled system, multiple equations of motion for the different contact situations and the effect of the contact stiffness. Numerical results demonstrate that the proposed method is effective for simulating the vehicle-track interaction including a separation between wheel and rail.

  15. Homogenization of Vehicle Fleet Frontal Crash Pulses from 2000–2010

    Science.gov (United States)

    Locey, Caitlin M.; Garcia-Espana, J. Felipe; Toh, Akira; Belwadi, Aditya; Arbogast, Kristy B.; Maltese, Matthew R.

    2012-01-01

    Full-scale vehicle crash tests are performed globally to assess vehicle structure and restraint system performance. The crash pulse, captured by accelerometers mounted within the occupant compartment, measures the motion of the vehicle during the impact event. From an occupant’s perspective, the crash pulse is the inertial event to which the vehicle’s restraint systems must respond in order to mitigate the forces and accelerations that act on a passenger, and thus reduce injury risk. The objective of this study was to quantify the characteristics of crash pulses for different vehicle types in the contemporary North American fleet, and delineate current trends in crash pulse evolution. NHTSA and Transport Canada crash test databases were queried for full-frontal rigid barrier crash tests of passenger vehicles model year 2000–2010 with impact angle equaling zero degrees. Acceleration-time histories were analyzed for all accelerometers attached to the vehicle structure within the occupant compartment. Custom software calculated the following crash pulse characteristics (CPCs): peak deceleration, time of peak deceleration, onset rate, pulse duration, and change in velocity. Vehicle body types were classified by adapting the Highway Loss Data Institute (HLDI) methodology, and vehicles were assigned a generation start year in place of model year in order to more accurately represent structural change over time. 1094 vehicle crash tests with 2795 individual occupant compartment-mounted accelerometers were analyzed. We found greater peak decelerations and and shorter pulse durations across multiple vehicle types in newer model years as compared to older. For midsize passenger cars, large passenger cars, and large SUVs in 56 km/h rigid barrier tests, maximum deceleration increased by 0.40, 0.96, and 1.57 g/year respectively, and pulse duration decreased by 0.74, 1.87, and 2.51 ms/year. We also found that the crash pulse characteristics are becoming more homogeneous in

  16. Impact of reformulated gasoline on emissions from current and future vehicles

    International Nuclear Information System (INIS)

    Colucci, J.M.; Benson, J.D.

    1993-01-01

    Gasolines reformulated specifically for reducing vehicle emissions will result in the most significant changes in the U.S. refining industry since the advent of unleaded gasoline. This paper will review the results from the Auto/Oil Air Quality Improvement Research Program showing the beneficial effects on vehicle emissions of individually decreasing gasoline aromatic, olefin and sulfur contents, 90% distillation temperature, and Reid vapor pressure, and of adding oxygenates. The paper discusses the importance of reformulated gasolines for reducing emissions from existing vehicles by complying with requirements in the Clean Air Act and California's Low Emission Vehicle/Clean Fuels Program. It will show the importance of controlling Vehicle/Clean Fuels Program. It will show the importance of controlling specific aromatic and olefin compounds in gasoline, and it will discuss how automotive manufacturers will utilize reformulated gasolines to meet future stringent vehicle emission standards

  17. Influence of short rear end tapers on the wake of a simplified square-back vehicle: wake topology and rear drag

    Science.gov (United States)

    Perry, Anna-Kristina; Pavia, Giancarlo; Passmore, Martin

    2016-11-01

    As vehicle manufacturers work to reduce energy consumption of all types of vehicles, external vehicle aerodynamics has become increasingly important. Whilst production vehicle shape optimisation methods are well developed, the need to make further advances requires deeper understanding of the highly three-dimensional flow around bluff bodies. In this paper, the wake flow of a generic bluff body, the Windsor body, based on a square-back car geometry, was investigated by means of balance measurements, surface pressure measurements and 2D particle image velocimetry planes. Changes in the wake topology are triggered by the application of short tapers (4 % of the model length) to the top and bottom edges of the base, representing a shape optimisation that is realistic for many modern production vehicles. The base drag is calculated and correlated with the aerodynamic drag data. The results not only show the effectiveness of such small devices in modifying the time average topology of the wake but also shed some light on the effects produced by different levels of upwash and downwash on the bi-stable nature of the wake itself.

  18. Estimating Texas motor vehicle operating costs.

    Science.gov (United States)

    2009-10-01

    A specific Vcost model was developed for Texas conditions based on a sophisticated fuel model for light : duty vehicles, several excellent sources of secondary vehicle cost data, and the ability to measure heavy truck fuel : consumption through both ...

  19. Parametric modeling of components for selection and specification of hybrid vehicle drivetrains

    NARCIS (Netherlands)

    Hofman, T.; Steinbuch, M.; Druten, van R.M.; Serrarens, A.F.A.

    2007-01-01

    Drivetrain hybridization implies adding a secondary power source (electric machine/battery) to a primary power source (engine/filled fuel tank) in order to improve: fuel economy, emissions, drivability (performance), comfort and safety. Designing a hybrid vehicle drivetrain fulfilling the required

  20. EVALUATION OF A CONCEPTUAL VEHICLE STEERING SYSTEM FOR INDEPENDENT WHEEL CONTROL

    Directory of Open Access Journals (Sweden)

    Ryszard BUCHALIK

    2017-03-01

    Full Text Available This paper presents a brief description of an unconventional steering system involving electronic stability control and its influence on vehicle motion. The proposed configuration enables individual changes in steering angle for each single wheel, in contrast to the mechanical linkage solution. An analysis of vehicle behaviour during emergency braking on a heterogeneous surface is conducted, especially with regard to the undesirable rotation of the vehicle body. The benefits of using this active steering system, implemented in the steer-by-wire mode, are characterized, while the problems for further consideration and the potential benefits of such a solution are described.

  1. Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles

    International Nuclear Information System (INIS)

    Lewis, Anne Marie; Kelly, Jarod C.; Keoleian, Gregory A.

    2014-01-01

    Highlights: • We modeled life cycle energy and greenhouse gas (GHG) emissions from diverse powertrain vehicles. • Lightweight versions of the vehicle models were compared against baseline models. • Maximum energy and GHG emissions occur with aluminum vs. advanced high strength steel. • Design harmonization method shows 0.2–0.3 kg of support required per 1 kg powertrain mass increase. - Abstract: This work assesses the potential of electrified vehicles and mass reduction to reduce life cycle energy and greenhouse gas (GHG) emissions. Life cycle assessment (LCA) is used to account for processes upstream and downstream of the vehicle operation, thereby incorporating regional variation of energy and GHG emissions due to electricity production and distinct energy and GHG emissions due to conventional and lightweight materials. Design harmonization methods developed in previous work are applied to create baseline and lightweight vehicle models of an internal combustion vehicle (ICV), hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV). Thus, each vehicle is designed to be functionally equivalent and incorporate the structural support required for heavier powertrains. Lightweight vehicles are designed using body-in-white (BIW) mass reduction scenarios with aluminum and advanced/high strength steel (A/HSS). For the mass reduction scenarios considered in this work, results indicate that the greatest life cycle energy and GHG emissions reductions occur when steel is replaced by aluminum. However, since A/HSS requires less energy to produce as compared to aluminum, the energy and GHG reductions per unit mass removed is greatest for A/HSS. Results of the design harmonization modeling method show that 0.2–0.3 kg of structural support is required per unit increase in powertrain mass, thus extending previous methods

  2. A method of detecting a structure in a field, a method of steering an agricultural vehicle and an agricultural vehicle

    DEFF Research Database (Denmark)

    2011-01-01

    An agricultural vehicle (2) comprises a steering system providing steering signals, said steering system comprising an imaging device (11) for imaging surroundings of the vehicle and an image processing device (13), said steering system operating to provide by means of the imaging device (11......) an image of the field (21), analyse the image to obtain texture information, assign to a plurality of areas of the image probability-values reflecting the likelihood that the respective area relates to a specific structure (12), assume at least one geometric property of said specific structure (12...

  3. Vibration Analysis of 5-DOF Vehicle Model under Stochastic Road Surface Excitation

    Directory of Open Access Journals (Sweden)

    Zhang Yanlong

    2016-01-01

    Full Text Available Considering human body vertical motion, vehicle body vertical motion, pitch movement and vertical jump of front and rear wheels, a five-degree-of-freedom vehicle model is established to study basic driving characteristics of the vehicle. Using Fourier transform method, acceleration power spectral density of the seat and the mean square value curves of seat vertical weighted acceleration are obtained by numerical simulation. Combined with comfort provision standards, the influence of vehicle model parameters and speed on seat acceleration power spectral density and vertical root-mean-square value of seat weighted acceleration are analyzed. Results show that the stiffness and damping of the seat have no significant effect on seat acceleration power spectral density, and seat acceleration PSD increases with increasing front or rear suspension stiffness, but it decreases with increasing front or rear suspension damping. It should also be concluded that the model stiffness and the mean square value of seat vertical weighted acceleration present positive correlation in general, but seat vertical weighted acceleration decrease first and then increase when model damping increase. Such analysis results can provide reference for the parameter optimization design of the automobile.

  4. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Hang, Wen [Argonne National Lab. (ANL), Argonne, IL (United States); Vyas, Anant [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  5. 2007 Canadian vehicle survey : summary report

    Energy Technology Data Exchange (ETDEWEB)

    Garcha, A.; Norup, S.; Kormylo, A.

    2009-09-15

    The Canadian vehicle survey is a quarterly survey of vehicle transportation activities in Canada that began in 1999. This report presented the results of the Canadian vehicle survey for 2007. The purpose of the survey is to encourage Canadians to make energy-efficient choices regarding their driving habits. The study shed light on Canadian fuel consumption behaviour, modes of transportation and consumer trends. This report examined the composition of Canada's vehicle fleet, the main characteristics of this fleet, and the patterns of vehicle use. Some behavioural characteristics of Canadian drivers were also discussed. Specific topics that were presented included Canada's on-road vehicle fleet; geographic analysis; light vehicles; heavy vehicles such as medium and heavy trucks; and trip analysis such as road types used by vehicles, rush hour and fuel consumption, and driver's age and gender. It was concluded that vehicles in Canada consumed 31 billion litres of gasoline and 11 billion litres of diesel. In addition, fuel efficiency for heavy trucks increased 21 percent between 2000 and 2007. 15 tabs., 39 figs., 4 appendices.

  6. Converted vehicle for battery electric drive. Aspects on the design of the software-driven vehicle control unit

    Energy Technology Data Exchange (ETDEWEB)

    Giessler, Martin; Paul, Jens; Gauterin, Frank [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Fahrzeugsystemtechnik (FAST); Fritz, Alexander; Sander, Oliver; Mueller-Glaser, Klaus D. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technik der Informationsverarbeitung (ITIV)

    2012-11-01

    At the Karlsruher Institute of Technology (KIT) a vehicle was converted for full battery electric drive within a cooperation of several faculties under the direction of the chair of vehicle technology. Within this paper the developed software to control the main functions of the vehicle will be presented and potentials to increase the energy efficiency will be discussed. The software based vehicle control unit is the central control unit to realize drivers command with respect to the system parameters, which are important for safety, dynamics, range and comfort of the vehicle. The structure of the software architecture, the interaction with the main electric vehicle specific control units and components and the main implemented functions will be described within this paper. The converted vehicle consists mainly of one electric motor with water cooled power electronics that drives the front axle, 21 battery modules controlled and managed by the battery management system, one on board charging device and an universal control unit. Not only strategies for power recovery while braking, but also strategies for driving and operation can help increase the energy efficiency. Select measures to recover and safe energy are also shown. (orig.)

  7. Magnetically suspended experimental vehicle-strength of structure and dynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagahiro, T; Terada, K; Kasai, Y; Motonaga, M

    1973-06-01

    To cope with rapid increase in demand for railroad transportation, studies in magnetically suspended high speed trains are being pushed forward at the Japanese National Railways. Recently a special experimental vehiclc was completed which will be used by JNR in experiments concerning magnetic propulsion and suspension of magnetically suspended high speed trains. This test vehicle is provided with reaction plates of linear induction motor under the floor at about the center of the vehicle, with superconducting magnets for suspension on both sides. The vehicle body is made mainly of high tensile strengthened aluminium (duralumin) for weight reduction, but its strength was checked by the vibration analysis and load tests carried out in the suspended condition. Remote-operated from the control tower, this unmanned test vehicle will provide a key to the completion of a super-high speed magnetically suspended train.

  8. VDR haploinsufficiency impacts body composition and skeletal acquisition in a gender-specific manner.

    Science.gov (United States)

    de Paula, Francisco J A; Dick-de-Paula, Ingrid; Bornstein, Sheila; Rostama, Bahman; Le, Phuong; Lotinun, Sutada; Baron, Roland; Rosen, Clifford J

    2011-09-01

    The vitamin D receptor (VDR) is crucial for virtually all of vitamin D's actions and is thought to be ubiquitously expressed. We hypothesized that disruption of one allele of the VDR gene would impact bone development and would have metabolic consequences. Body composition and bone mass (BMD) in VDR heterozygous (VDR HET) mice were compared to those obtained in male and female VDR KO and WT mice at 8 weeks of age. Male mice were also evaluated at 16 weeks, and bone marrow mesenchymal stem cell (MSC) differentiation was evaluated in VDR female mice. Additionally, female VDR HET and WT mice received intermittent PTH treatment or vehicle (VH) for 4 weeks. BMD was determined at baseline and after treatment. MRI was done in vivo at the end of treatment; μCT and bone histomorphometry were performed after killing the animals. VDR HET male mice had normal skeletal development until 16 weeks of age but showed significantly less gain in fat mass than WT mice. In contrast, female VDR HET mice showed decreased total-body BMD at age 8 weeks but had a normal skeletal response to PTH. MSC differentiation was also impaired in VDR HET female mice. Thus, female VDR HET mice show early impairment in bone acquisition, while male VDR HET mice exhibit a lean phenotype. Our results indicate that the VDR HET mouse is a useful model for studying the metabolic and skeletal impact of decreased vitamin D sensitivity.

  9. Revisiting the link between body and agency: visual movement congruency enhances intentional binding but is not body-specific.

    Science.gov (United States)

    Zopf, Regine; Polito, Vince; Moore, James

    2018-01-09

    Embodiment and agency are key aspects of how we perceive ourselves that have typically been associated with independent mechanisms. Recent work, however, has suggested that these mechanisms are related. The sense of agency arises from recognising a causal influence on the external world. This influence is typically realised through bodily movements and thus the perception of the bodily self could also be crucial for agency. We investigated whether a key index of agency - intentional binding - was modulated by body-specific information. Participants judged the interval between pressing a button and a subsequent tone. We used virtual reality to manipulate two aspects of movement feedback. First, form: participants viewed a virtual hand or sphere. Second, movement congruency: the viewed object moved congruently or incongruently with the participant's hidden hand. Both factors, form and movement congruency, significantly influenced embodiment. However, only movement congruency influenced intentional binding. Binding was increased for congruent compared to incongruent movement feedback irrespective of form. This shows that the comparison between viewed and performed movements provides an important cue for agency, whereas body-specific visual form does not. We suggest that embodiment and agency mechanisms both depend on comparisons across sensorimotor signals but that they are influenced by distinct factors.

  10. Preview control of vehicle suspension system featuring MR shock absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seong, M S; Choi, S B [Smart Structures and Systems Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Cho, M W [Precision Manufacturing and Inspection Laboratory, Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Lee, H G [Department of Automotive Engineering, Daeduk College, Daejeon, 305-715 (Korea, Republic of)], E-mail: seungbok@inha.ac.kr

    2009-02-01

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  11. Preview control of vehicle suspension system featuring MR shock absorber

    International Nuclear Information System (INIS)

    Seong, M S; Choi, S B; Cho, M W; Lee, H G

    2009-01-01

    This paper presents control performance evaluation of optimal preview control algorithm for vehicle suspension featuring MR shock absorber. The optimal preview control algorithm has several advantages such as high control performance over that which is best for a non-preview system. In order to achieve this goal, a commercial MR shock absorber, Delphi MganerideTM, which is applicable to high class passenger vehicle, is adopted and its field-dependent damping force and dynamic responses are experimentally evaluated. Then the governing equation of motion for the full-vehicle model is established and integrated with the MR shock absorber. Subsequently, optimal controller with preview control algorithm is formulated and implemented for vibration suppression of the car body. Control performance of the preview controller is evaluated for the full-vehicle model under random road condition. In addition, the control performances depending on preview distances are evaluated.

  12. ANTAGONISM OF PROGESTERONE RECEPTOR SUPPRESSES CAROTID BODY RESPONSES TO HYPOXIA AND NICOTINE IN RAT PUPS

    Science.gov (United States)

    JOSEPH, V.; NIANE, L. M.; BAIRAM, A.

    2013-01-01

    We tested the hypothesis that antagonism of progesterone receptor (PR) in newborn rats alters carotid body and respiratory responses to hypoxia and nicotinic receptor agonists. Rats were treated with the PR antagonist mifepristone (daily oral gavage 40 μg/g/d) or vehicle between post-natal days 3 and 15. In 11–14-day-old rats, we used in vitro carotid body/carotid sinus nerve preparation and whole body plethysmography to assess the carotid body and ventilatory responses to hypoxia (65 mmHg in vitro, 10% O2 in vivo) and to nicotinic receptor agonists (as an excitatory modulator of carotid body activity—nicotine 100 μM for in vitro studies, and epibatidine 5 μg/kg, i.p., which mainly acts on peripheral nicotinic receptors, for in vivo studies). The carotid body responses to hypoxia and nicotine were drastically reduced by mifepristone. Compared with vehicle, mifepristone-treated rats had a reduced body weight. The ventilatory response to epibatidine was attenuated; however, the hypoxic ventilatory response was similar between vehicle and mifepristone-treated pups. Immunohistochemical staining revealed that mifepristone treatment did not change carotid body morphology. We conclude that PR activity is a critical factor ensuring proper carotid body function in newborn rats. PMID:22326965

  13. Environmentally Responsible Aviation (ERA) Project - N+2 Advanced Vehicle Concepts Study and Conceptual Design of Subscale Test Vehicle (STV) Final Report

    Science.gov (United States)

    Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping

    2011-01-01

    NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.

  14. Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments

    International Nuclear Information System (INIS)

    Wu, Geng; Inderbitzin, Alessandro; Bening, Catharina

    2015-01-01

    While electric vehicles (EV) can perform better than conventional vehicles from an environmental standpoint, consumers perceive them to be more expensive due to their higher capital cost. Recent studies calculated the total cost of ownership (TCO) to evaluate the complete cost for the consumer, focusing on individual vehicle classes, powertrain technologies, or use cases. To provide a comprehensive overview, we built a probabilistic simulation model broad enough to capture most of a national market. Our findings indicate that the comparative cost efficiency of EV increases with the consumer's driving distance and is higher for small than for large vehicles. However, our sensitivity analysis shows that the exact TCO is subject to the development of vehicle and operating costs and thus uncertain. Although the TCO of electric vehicles may become close to or even lower than that of conventional vehicles by 2025, our findings add evidence to past studies showing that the TCO does not reflect how consumers make their purchase decision today. Based on these findings, we discuss policy measures that educate consumers about the TCO of different vehicle types based on their individual preferences. In addition, measures improving the charging infrastructure and further decreasing battery cost are discussed. - Highlights: • Calculates the total cost of ownership across competing vehicle technologies. • Uses Monte Carlo simulation to analyse distributions and probabilities of outcomes. • Contains a comprehensive assessment across the main vehicle classes and use cases. • Indicates that cost efficiency of technology depends on vehicle class and use case. • Derives specific policy measures to facilitate electric vehicle diffusion

  15. S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

  16. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  17. Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles

    Science.gov (United States)

    Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.

    2011-01-01

    The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS

  18. Effects of vehicle power on passenger vehicle speeds.

    Science.gov (United States)

    McCartt, Anne T; Hu, Wen

    2017-07-04

    During the past 2 decades, there have been large increases in mean horsepower and the mean horsepower-to-vehicle weight ratio for all types of new passenger vehicles in the United States. This study examined the relationship between travel speeds and vehicle power, defined as horsepower per 100 pounds of vehicle weight. Speed cameras measured travel speeds and photographed license plates and drivers of passenger vehicles traveling on roadways in Northern Virginia during daytime off-peak hours in spring 2013. The driver licensing agencies in the District of Columbia, Maryland, and Virginia provided vehicle information numbers (VINs) by matching license plate numbers with vehicle registration records and provided the age, gender, and ZIP code of the registered owner(s). VINs were decoded to obtain the curb weight and horsepower of vehicles. The study focused on 26,659 observed vehicles for which information on horsepower was available and the observed age and gender of drivers matched vehicle registration records. Log-linear regression estimated the effects of vehicle power on mean travel speeds, and logistic regression estimated the effects of vehicle power on the likelihood of a vehicle traveling over the speed limit and more than 10 mph over the limit. After controlling for driver characteristics, speed limit, vehicle type, and traffic volume, a 1-unit increase in vehicle power was associated with a 0.7% increase in mean speed, a 2.7% increase in the likelihood of a vehicle exceeding the speed limit by any amount, and an 11.6% increase in the likelihood of a vehicle exceeding the limit by 10 mph. All of these increases were highly significant. Speeding persists as a major factor in crashes in the United States. There are indications that travel speeds have increased in recent years. The current findings suggest the trend toward substantially more powerful vehicles may be contributing to higher speeds. Given the strong association between travel speed and crash

  19. Accelerated Lane-Changing Trajectory Planning of Automated Vehicles with Vehicle-to-Vehicle Collaboration

    Directory of Open Access Journals (Sweden)

    Haijian Bai

    2017-01-01

    Full Text Available Considering the complexity of lane changing using automated vehicles and the frequency of turning lanes in city settings, this paper aims to generate an accelerated lane-changing trajectory using vehicle-to-vehicle collaboration (V2VC. Based on the characteristics of accelerated lane changing, we used a polynomial method and cooperative strategies for trajectory planning to establish a lane-changing model under different degrees of collaboration with the following vehicle in the target lane by considering vehicle kinematics and comfort requirements. Furthermore, considering the shortcomings of the traditional elliptical vehicle and round vehicle models, we established a rectangular vehicle model with collision boundary conditions by analysing the relationships between the possible collision points and the outline of the vehicle. Then, we established a simulation model for the accelerated lane-changing process in different environments under different degrees of collaboration. The results show that, by using V2VC, we can achieve safe accelerated lane-changing trajectories and simultaneously satisfy the requirements of vehicle kinematics and comfort control.

  20. The neural basis of body form and body action agnosia.

    Science.gov (United States)

    Moro, Valentina; Urgesi, Cosimo; Pernigo, Simone; Lanteri, Paola; Pazzaglia, Mariella; Aglioti, Salvatore Maria

    2008-10-23

    Visual analysis of faces and nonfacial body stimuli brings about neural activity in different cortical areas. Moreover, processing body form and body action relies on distinct neural substrates. Although brain lesion studies show specific face processing deficits, neuropsychological evidence for defective recognition of nonfacial body parts is lacking. By combining psychophysics studies with lesion-mapping techniques, we found that lesions of ventromedial, occipitotemporal areas induce face and body recognition deficits while lesions involving extrastriate body area seem causatively associated with impaired recognition of body but not of face and object stimuli. We also found that body form and body action recognition deficits can be double dissociated and are causatively associated with lesions to extrastriate body area and ventral premotor cortex, respectively. Our study reports two category-specific visual deficits, called body form and body action agnosia, and highlights their neural underpinnings.

  1. Full Vehicle Vibration and Noise Analysis Based on Substructure Power Flow

    Directory of Open Access Journals (Sweden)

    Zhien Liu

    2017-01-01

    Full Text Available Combining substructure and power flow theory, in this paper an external program is written to control MSC. Nastran solution process and the substructure frequency response are also formulated accordingly. Based on a simple vehicle model, characteristics of vibration, noise, and power flow are studied, respectively. After being compared with the result of conventional FEM (finite element method, the new method is confirmed to be feasible. When it comes to a vehicle with the problem of low-frequency noise, finite element models of substructures for vehicle body and chassis are established, respectively. In addition, substructure power flow method is also employed to examine the transfer characteristics of multidimensional vibration energy for the whole vehicle system. By virtue of the adjustment stiffness of drive shaft support and bushes at rear suspension lower arm, the vehicle interior noise is decreased by about 3 dB when the engine speed is near 1050 rpm and 1650 rpm in experiment. At the same time, this method can increase the computation efficiency by 78%, 38%, and 98% when it comes to the optimization of chassis structure, body structure, and vibration isolation components, respectively.

  2. A Comparison of Military and Law Enforcement Body Armour

    Science.gov (United States)

    Pope, Rodney

    2018-01-01

    Law-enforcement officers increasingly wear body armour for protection; wearing body armour is common practice in military populations. Law-enforcement and military occupational demands are vastly different and military-styled body armour may not be suitable for law-enforcement. This study investigated differences between selected military body armour (MBA: 6.4 kg) and law-enforcement body armour (LEBA: 2.1 kg) in impacts on postural sway, vertical jump, agility, a functional movement screen (FMS), task simulations (vehicle exit; victim recovery), and subjective measures. Ten volunteer police officers (six females, four males) were randomly allocated to one of the designs on each of two days. Body armour type did not significantly affect postural sway, vertical jump, vehicle exit and 5 m sprint times, or victim recovery times. Both armour types increased sway velocity and sway-path length in the final five seconds compared to the first 5 s of a balance task. The MBA was associated with significantly slower times to complete the agility task, poorer FMS total scores, and poorer subjective ratings of performance and comfort. The LEBA was perceived as more comfortable and received more positive performance ratings during the agility test and task simulations. The impacts of MBA and LEBA differed significantly and they should not be considered interchangeable. PMID:29443905

  3. A Comparison of Military and Law Enforcement Body Armour.

    Science.gov (United States)

    Orr, Robin; Schram, Ben; Pope, Rodney

    2018-02-14

    Law-enforcement officers increasingly wear body armour for protection; wearing body armour is common practice in military populations. Law-enforcement and military occupational demands are vastly different and military-styled body armour may not be suitable for law-enforcement. This study investigated differences between selected military body armour (MBA: 6.4 kg) and law-enforcement body armour (LEBA: 2.1 kg) in impacts on postural sway, vertical jump, agility, a functional movement screen (FMS), task simulations (vehicle exit; victim recovery), and subjective measures. Ten volunteer police officers (six females, four males) were randomly allocated to one of the designs on each of two days. Body armour type did not significantly affect postural sway, vertical jump, vehicle exit and 5 m sprint times, or victim recovery times. Both armour types increased sway velocity and sway-path length in the final five seconds compared to the first 5 s of a balance task. The MBA was associated with significantly slower times to complete the agility task, poorer FMS total scores, and poorer subjective ratings of performance and comfort. The LEBA was perceived as more comfortable and received more positive performance ratings during the agility test and task simulations. The impacts of MBA and LEBA differed significantly and they should not be considered interchangeable.

  4. A Comparison of Military and Law Enforcement Body Armour

    Directory of Open Access Journals (Sweden)

    Robin Orr

    2018-02-01

    Full Text Available Law-enforcement officers increasingly wear body armour for protection; wearing body armour is common practice in military populations. Law-enforcement and military occupational demands are vastly different and military-styled body armour may not be suitable for law-enforcement. This study investigated differences between selected military body armour (MBA: 6.4 kg and law-enforcement body armour (LEBA: 2.1 kg in impacts on postural sway, vertical jump, agility, a functional movement screen (FMS, task simulations (vehicle exit; victim recovery, and subjective measures. Ten volunteer police officers (six females, four males were randomly allocated to one of the designs on each of two days. Body armour type did not significantly affect postural sway, vertical jump, vehicle exit and 5 m sprint times, or victim recovery times. Both armour types increased sway velocity and sway-path length in the final five seconds compared to the first 5 s of a balance task. The MBA was associated with significantly slower times to complete the agility task, poorer FMS total scores, and poorer subjective ratings of performance and comfort. The LEBA was perceived as more comfortable and received more positive performance ratings during the agility test and task simulations. The impacts of MBA and LEBA differed significantly and they should not be considered interchangeable.

  5. Clean Cities 2011 Vehicle Buyer's Guide

    Energy Technology Data Exchange (ETDEWEB)

    2011-01-01

    The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

  6. Robust two degree of freedom vehicle steering control satisfying mixed sensitivity constraint

    OpenAIRE

    Aksun-Güvenc, B.; Güvenc, L.; Odenthal, D.; Bünte, T.

    2001-01-01

    Robust steering control is used here for improving the yaw dynamics of a passenger car. A specific two degree of freedom control structure is adapted to the vehicle yaw dynamics problem and shown to robustly improve performance. The design study is based on six operating conditions for vehicle speed and the coefficient of friction between the tires and the road representing the operating domain of the vehicle. The relevant design specifications are formulated as attaining Hurwitz stability a...

  7. Strand-Specific RNA-Seq Analyses of Fruiting Body Development in Coprinopsis cinerea.

    Directory of Open Access Journals (Sweden)

    Hajime Muraguchi

    Full Text Available The basidiomycete fungus Coprinopsis cinerea is an important model system for multicellular development. Fruiting bodies of C. cinerea are typical mushrooms, which can be produced synchronously on defined media in the laboratory. To investigate the transcriptome in detail during fruiting body development, high-throughput sequencing (RNA-seq was performed using cDNA libraries strand-specifically constructed from 13 points (stages/tissues with two biological replicates. The reads were aligned to 14,245 predicted transcripts, and counted for forward and reverse transcripts. Differentially expressed genes (DEGs between two adjacent points and between vegetative mycelium and each point were detected by Tag Count Comparison (TCC. To validate RNA-seq data, expression levels of selected genes were compared using RPKM values in RNA-seq data and qRT-PCR data, and DEGs detected in microarray data were examined in MA plots of RNA-seq data by TCC. We discuss events deduced from GO analysis of DEGs. In addition, we uncovered both transcription factor candidates and antisense transcripts that are likely to be involved in developmental regulation for fruiting.

  8. Near-term hybrid vehicle program, phase 1

    Science.gov (United States)

    1979-01-01

    The preliminary design of a hybrid vehicle which fully meets or exceeds the requirements set forth in the Near Term Hybrid Vehicle Program is documented. Topics addressed include the general layout and styling, the power train specifications with discussion of each major component, vehicle weight and weight breakdown, vehicle performance, measures of energy consumption, and initial cost and ownership cost. Alternative design options considered and their relationship to the design adopted, computer simulation used, and maintenance and reliability considerations are also discussed.

  9. On the required complexity of vehicle dynamic models for use in simulation-based highway design.

    Science.gov (United States)

    Brown, Alexander; Brennan, Sean

    2014-06-01

    This paper presents the results of a comprehensive project whose goal is to identify roadway design practices that maximize the margin of safety between the friction supply and friction demand. This study is motivated by the concern for increased accident rates on curves with steep downgrades, geometries that contain features that interact in all three dimensions - planar curves, grade, and superelevation. This complexity makes the prediction of vehicle skidding quite difficult, particularly for simple simulation models that have historically been used for road geometry design guidance. To obtain estimates of friction margin, this study considers a range of vehicle models, including: a point-mass model used by the American Association of State Highway Transportation Officials (AASHTO) design policy, a steady-state "bicycle model" formulation that considers only per-axle forces, a transient formulation of the bicycle model commonly used in vehicle stability control systems, and finally, a full multi-body simulation (CarSim and TruckSim) regularly used in the automotive industry for high-fidelity vehicle behavior prediction. The presence of skidding--the friction demand exceeding supply--was calculated for each model considering a wide range of vehicles and road situations. The results indicate that the most complicated vehicle models are generally unnecessary for predicting skidding events. However, there are specific maneuvers, namely braking events within lane changes and curves, which consistently predict the worst-case friction margins across all models. This suggests that any vehicle model used for roadway safety analysis should include the effects of combined cornering and braking. The point-mass model typically used by highway design professionals may not be appropriate to predict vehicle behavior on high-speed curves during braking in low-friction situations. However, engineers can use the results of this study to help select the appropriate vehicle dynamic

  10. Parking Space Detection and Trajectory Tracking Control for Vehicle Auto-Parking

    OpenAIRE

    Shiuh-Jer Huang; Yu-Sheng Hsu

    2017-01-01

    On-board available parking space detecting system, parking trajectory planning and tracking control mechanism are the key components of vehicle backward auto-parking system. Firstly, pair of ultrasonic sensors is installed on each side of vehicle body surface to detect the relative distance between ego-car and surrounding obstacle. The dimension of a found empty space can be calculated based on vehicle speed and the time history of ultrasonic sensor detecting information. This result can be u...

  11. Relationship between US Societal Fatality Risk per Vehicle Miles of Travel and Mass, for Individual Vehicle Models over Time (Model Year)

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Technologies Area. Building Technology and Urban Systems Division

    2016-07-27

    This report presents a new approach to analyze the relationship between vehicle mass and risk: tracking fatality risk by vehicle model year and mass, for individual vehicle models. This approach is appealing as it greatly minimizes the influence of driver characteristics and behavior, and crash circumstances, on fatality risk. However, only the most popular vehicle models, with the largest number of fatalities, can be analyzed in this manner. While the analysis of all vehicle models of a given type suggests that there is a relationship between increased mass and fatality risk, analysis of the ten most popular four-door car models separately suggests that this relationship is weak: in many cases when the mass of a specific vehicle model is increased societal fatality risk is unchanged or even increases. These results suggest that increasing the mass of an individual vehicle model does not necessarily lead to decreased societal fatality risk.

  12. Numerical calculation on infrared characteristics of the special vehicle exhaust system

    Science.gov (United States)

    Feng, Yun-song; Li, Xiao-xia; Jin, Wei

    2017-10-01

    For mastery of infrared radiation characteristics and flow field of the special vehicle exhaust system, first, a physical model of the special vehicle exhaust system is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the special vehicle exhaust system, and the datum of flow field, such as temperature, pressure and density, are obtained. Thirdly, based on the plume temperature, the special vehicle exhaust space is divided. The exhaust is equivalent to a gray-body. A calculating model of the vehicle exhaust infrared radiation is established, and the exhaust infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. Finally, the numerical results are analyzing, and the basic laws of the special vehicle exhaust infrared radiation are explored. The results show that with the increase of the engine speed, the temperature of the exhaust pipe wall of the special vehicle increases, and the temperature and pressure of the exhaust gas flow field increase, which leads to the enhancement of the infrared radiation intensity

  13. Investigating methods for determining mismatch in near side vehicle impacts - biomed 2009.

    Science.gov (United States)

    Loftis, Kathryn; Martin, R Shayn; Meredith, J Wayne; Stitzel, Joel

    2009-01-01

    This study investigates vehicle mismatch in severe side-impact motor vehicle collisions. Research conducted by the Insurance Institute for Highway Safety has determined that vehicle mismatch often leads to very severe injuries for occupants in the struck vehicle, because the larger striking vehicle does not engage the lower sill upon impact, resulting in severe intrusions into the occupant compartment. Previous studies have analyzed mismatched collisions according to vehicle type, not by the difference in vehicle height and weight. It is hypothesized that the combination of a heavier striking vehicle at a taller height results in more intrusion for the struck vehicle and severe injury for the near side occupant. By analyzing Crash Injury Research and Engineering Network (CIREN) data and occupant injury severity, it is possible to study intrusion and injuries that occur due to vehicle mismatch. CIREN enrolls seriously injured occupants involved in motor vehicle crashes (MVC) across the United States. From the Toyota-Wake Forest University CIREN center, 23 near side impact cases involving two vehicles were recorded. Only 3 of these seriously injured occupant cases were not considered mismatched according to vehicle curb weight, and only 2 were not considered vehicle mismatched according to height differences. The mismatched CIREN cases had an average difference in vehicle curb weight of 737.0 kg (standard deviation of 646.8) and an average difference in vehicle height of 16.38 cm (standard deviation of 7.186). There were 13 occupants with rib fractures, 12 occupants with pelvic fractures, 9 occupants with pulmonary contusion, and 5 occupants with head injuries, among other multiple injuries. The average Injury Severity Score (ISS) for these occupants was 27, with a standard deviation of 16. The most serious injuries resulted in an Abbreviated Injury Scale (AIS) of 5, which included 3 occupants. Each of these AIS 5 injuries were to different body regions on different

  14. Semi-active control of tracked vehicle suspension incorporating magnetorheological dampers

    Science.gov (United States)

    Ata, W. G.; Salem, A. M.

    2017-05-01

    In past years, the application of magnetorheological (MR) and electrorheological dampers in vehicle suspension has been widely studied, mainly for the purpose of vibration control. This paper presents theoretical study to identify an appropriate semi-active control method for MR-tracked vehicle suspension. Three representative control algorithms are simulated including the skyhook, hybrid and fuzzy-hybrid controllers. A seven degrees-of-freedom tracked vehicle suspension model incorporating MR dampers has been adopted for comparison between the performance of the three controllers. The model differential equations are derived based on Newton's second law of motion and the proposed control methods are developed. The performance of each control method under bump and sinusoidal road profiles for different vehicle speeds is simulated and compared with the performance of the conventional suspension system in time and frequency domains. The results show that the performance of tracked vehicle suspension with MR dampers is substantially improved. Moreover, the fuzzy-hybrid controller offers an excellent integrated performance in reducing the body accelerations as well as wheel bounce responses compared with the classical skyhook and hybrid controllers.

  15. Estimating light-vehicle sales in Turkey

    Directory of Open Access Journals (Sweden)

    Ufuk Demiroğlu

    2016-09-01

    Full Text Available This paper is motivated by the surprising rapid growth of new light-vehicle sales in Turkey in 2015. Domestic sales grew 25%, dramatically surpassing the industry estimates of around 8%. Our approach is to inform the sales trend estimate with the information obtained from the light-vehicle stock (the number of cars and light trucks officially registered in the country, and the scrappage data. More specifically, we improve the sales trend estimate by estimating the trend of its stock. Using household data, we show that an important reason for the rapid sales growth is that an increasing share of household budgets is spent on automobile purchases. The elasticity of light-vehicle sales to cyclical changes in aggregate demand is high and robust; its estimates are around 6 with a standard deviation of about 0.5. The price elasticity of light-vehicle sales is estimated to be about 0.8, but the estimates are imprecise and not robust. We estimate the trend level of light-vehicle sales to be roughly 7 percent of the existing stock. A remarkable out-of-sample forecast performance is obtained for horizons up to nearly a decade by a regression equation using only a cyclical gap measure, the time trend and obvious policy dummies. Various specifications suggest that the strong 2015 growth of light-vehicle sales was predictable in late 2014.

  16. 49 CFR 38.173 - Automated guideway transit vehicles and systems.

    Science.gov (United States)

    2010-10-01

    ... accomplished by vehicle air suspension or other suitable means of meeting the requirement. (c) In stations... 49 Transportation 1 2010-10-01 2010-10-01 false Automated guideway transit vehicles and systems... DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 38...

  17. Monitoring operational conditions of vehicle tyre pressure levels and ...

    African Journals Online (AJOL)

    Compliance with vehicle tyre inflation pressure and tread depth standard specifications and legal requirements were monitored by survey study in Kumasi Metropolis, Ghana. The survey covered 400 vehicles, comprising cars (28 %), medium buses (25 %), large capacity buses (15 %) and trucks (32 %). There were wide ...

  18. Managing the Diffusion of Low Emission Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Van der Vooren, A.; Alkemade, F. [Innovation Studies Group, Copernicus Institute of Sustainable Development, Utrecht University, 3508TC Utrecht (Netherlands)

    2012-03-13

    There is significant uncertainty among technology providers, governments, and consumers about which technology will be the vehicle technology of the future. Governments try to stimulate the diffusion of low emission vehicles with diverse policy measures such as purchase price subsidies. However, the effect of such support measures on the speed and direction of technological change is unclear as different vehicle technologies might be preferred under different policy conditions. Decision makers, such as firm actors involved in green technology management, are thus strongly dependent on government policy when making strategic decisions. For these firm actors, determining their strategy regarding low emission vehicles is a complex task in a changing environment of coevolving consumer preferences, technology characteristics, and green technology policies. This paper presents an agent-based model of the competition between several emerging and market-ready low emission vehicle technologies and the dominant fossil-fuel-based internal combustion engine vehicles. The simulations illustrate the effects of different policy measures on technological change and their implications for the strategic actions of firm actors. More specifically, collaboration and standardization strategies can lead to synergies that contribute to technological change without risking early lock-in.

  19. Ride comfort enhancement in railway vehicle by the reduction of the car body structural flexural vibration

    Science.gov (United States)

    Dumitriu, M.

    2017-08-01

    The paper approaches the issue of reduction in the vertical bending vibrations of the railway vehicle carbody and the ride comfort enhancement at high velocities, starting from the prospect of isolating the vibrations by the best possible selection of the passive suspension damping in the vehicle. To this purpose, the examination falls on the influence of the vertical suspension damping upon the vibrations regime of the vehicle at the bending resonance frequency and upon the ride comfort. The results of the numerical simulations regarding the frequency response of the carbody acceleration and the comfort index will be therefore used. A value of the secondary suspension damping can be thus identified that will provide the best ride comfort performance. Similarly, the ride comfort can be increased by raising the primary suspension damping ratio.

  20. Monitoring Technology for Vehicle Loading Status Based on the Analysis of Suspension Vibration Characters

    Directory of Open Access Journals (Sweden)

    Shiwu Li

    2014-01-01

    Full Text Available Monitoring and early warning of vehicle risk status was one of the key technologies of transportation security, and real-time monitoring load status could reduce the transportation accidents effectively. In order to obtain vehicle load status information, vehicle characters of suspension were analyzed and simulated under different working conditions. On the basis of this, the device that can detect suspension load with overload protection structure was designed and a method of monitored vehicle load status was proposed. The monitoring platform of vehicle load status was constructed and developed for a FAW truck and system was tested on level-A road and body twist lane. The results show that the measurement error is less than 5% and horizontal centre-of-mass of vehicle was positioned accurately. The platform enables providing technical support for the real-time monitoring and warning of vehicles risk status in transit.

  1. REUSE OF AUTOMOTIVE COMPONENTS FROM DISMANTLED END OF LIFE VEHICLES

    Directory of Open Access Journals (Sweden)

    Piotr NOWAKOWSKI

    2013-12-01

    Full Text Available The problem of recycling end of life automotive vehicles is serious worldwide. It is one of the most important streams of waste in developed countries. It has big importance as recycling potential of raw materials content in automotive vehicles is valuable. Different parts and assemblies after dismantling can also be reused in vehicles where replacement of specific component is necessary. Reuse of the components should be taken into consideration in selecting the vehicles dismantling strategy. It also complies with European Union policy concerning end of life vehicles (ELV. In the paper it is presented systematic approach to dismantling strategies including disassembly oriented on further reuse of components. It is focused on decision making and possible benefits calculation from economic and environmental point of view.

  2. Effect of suspension kinematic on 14 DOF vehicle model

    Science.gov (United States)

    Wongpattananukul, T.; Chantharasenawong, C.

    2017-12-01

    Computer simulations play a major role in shaping modern science and engineering. They reduce time and resource consumption in new studies and designs. Vehicle simulations have been studied extensively to achieve a vehicle model used in minimum lap time solution. Simulation result accuracy depends on the abilities of these models to represent real phenomenon. Vehicles models with 7 degrees of freedom (DOF), 10 DOF and 14 DOF are normally used in optimal control to solve for minimum lap time. However, suspension kinematics are always neglected on these models. Suspension kinematics are defined as wheel movements with respect to the vehicle body. Tire forces are expressed as a function of wheel slip and wheel position. Therefore, the suspension kinematic relation is appended to the 14 DOF vehicle model to investigate its effects on the accuracy of simulate trajectory. Classical 14 DOF vehicle model is chosen as baseline model. Experiment data is collected from formula student style car test runs as baseline data for simulation and comparison between baseline model and model with suspension kinematic. Results show that in a single long turn there is an accumulated trajectory error in baseline model compared to model with suspension kinematic. While in short alternate turns, the trajectory error is much smaller. These results show that suspension kinematic had an effect on the trajectory simulation of vehicle. Which optimal control that use baseline model will result in inaccuracy control scheme.

  3. Crash fatality risk and unibody versus body-on-frame structure in SUVs.

    Science.gov (United States)

    Ossiander, Eric M; Koepsell, Thomas D; McKnight, Barbara

    2014-09-01

    In crashes between cars and SUVs, car occupants are more likely to be killed than if they crashed with another car. An increasing proportion of SUVs are built with unibody, rather than truck-like body-on-frame construction. Unibody SUVs are generally lighter, less stiff, and less likely to roll over than body-on-frame SUVs, but whether unibody structure affects risk of death in crashes is unknown. To determine whether unibody SUVs differ from body-on-frame SUVs in the danger they pose to occupants of other vehicles and in the self-protection they offer to their own occupants. Case-control study of crashes between one compact SUV and one other passenger vehicle in the US during 1995-2008, in which the SUV was model year 1996-2006. Cases were all decedents in fatal crashes, one control was selected from each non-fatal crash. Occupants of passenger vehicles that crashed with compact unibody SUVs were at 18% lower risk of death compared to those that crashed with compact body-on-frame SUVs (adjusted odds ratio 0.82 (95% confidence interval 0.73-0.94)). Occupants of compact unibody SUVs were also at lower risk of death compared to occupants of body-on-frame SUVs (0.86 (0.72-1.02)). In two-vehicle collisions involving compact SUVs, unibody structure was associated with lower risk of death both in occupants of other vehicles in the crash, and in SUVs' own occupants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Identification of vehicle components associated with severe thoracic injury in motor vehicle crashes: a CIREN and NASS analysis.

    Science.gov (United States)

    Nirula, R; Pintar, F A

    2008-01-01

    Thoracic trauma secondary to motor vehicle crashes (MVC) continues to be a major cause of morbidity and mortality. Specific vehicle features may increase the risk of severe thoracic injury when striking the occupant. We sought to determine which vehicle contact points were associated with an increased risk of severe thoracic injury in MVC to focus subsequent design modifications necessary to reduce thoracic injury. The National Automotive Sampling System (NASS) databases from 1993 to 2001 and the Crash Injury Research and Engineering Network (CIREN) databases from 1996 to 2004 were analyzed separately using univariate and multivariate logistic regression stratified by restraint use and crash direction. The risk of driver thoracic injury, defined as an abbreviated injury scale (AIS) of score > or =3, was determined as it related to specific points of contact between the vehicle and the driver. The incidence of severe chest injury in NASS and CIREN were 5.5% and 33%, respectively. The steering wheel, door panel, armrest, and seat were identified as contact points associated with an increased risk of severe chest injury. The door panel and arm rest were consistently a frequent cause of severe injury in both the NASS and CIREN data. Several vehicle contact points, including the steering wheel, door panel, armrest and seat are associated with an increased risk of severe thoracic injury when striking the occupant. These elements need to be further investigated to determine which characteristics need to be manipulated in order to reduce thoracic trauma during a crash.

  5. Evaluating damping elements for two-stage suspension vehicles

    Directory of Open Access Journals (Sweden)

    Ronald M. Martinod R.

    2012-01-01

    Full Text Available The technical state of the damping elements for a vehicle having two-stage suspension was evaluated by using numerical models based on the multi-body system theory; a set of virtual tests used the eigenproblem mathematical method. A test was developed based on experimental modal analysis (EMA applied to a physical system as the basis for validating the numerical models. The study focused on evaluating vehicle dynamics to determine the influence of the dampers’ technical state in each suspension state.

  6. Associations between damage location and five main body region injuries of MAIS 3-6 injured occupants.

    Science.gov (United States)

    Tang, Youming; Cao, Libo; Kan, Steven

    2014-05-08

    To examine the damage location distribution of five main body region injuries of maximum abbreviated injury score (MAIS) 3-6 injured occupants for nearside struck vehicle in front-to-side impact crashes. MAIS 3-6 injured occupants information was extracted from the US-National Automotive Sampling System/Crashworthiness Data System in the year 2007; it included the head/face/neck, chest, pelvis, upper extremity and lower extremity. Struck vehicle collision damage was classified in a three-dimensional system according to the J224 Collision Deformation Classification of SAE Surface Vehicle Standard. Nearside occupants seated directly adjacent to the struck side of the vehicle with MAIS 3-6 injured, in light truck vehicles-passenger cars (LTV-PC) side impact crashes. Distribution of MAIS 3-6 injured occupants by body regions and specific location of damage (lateral direction, horizontal direction and vertical direction) were examined. Injury risk ratio was also assessed. The lateral crush zone contributed to MAIS 3-6 injured occupants (n=705) and 50th centile injury risks when extended into zone 3. When the crush extended to zone 4, the injury risk ratio of MAIS 3-6 injured occupants approached 81%. The horizontal crush zones contributing to the highest injury risk ratio of MAIS 3-6 occupants were zones 'D' and 'Y', and the injury risk ratios were 25.4% and 36.9%, respectively. In contrast, the lowest injury risk ratio was 5.67% caused by zone 'B'. The vertical crush zone which contributed to the highest injury risk ratio of MAIS 3-6 occupants was zone 'E', whose injury risk ratio was 58%. In contrast, the lowest injury risk ratio was 0.14% caused by zone 'G+M'. The highest injury risk ratio of MAIS 3-6 injured occupants caused by crush intrusion between 40 and 60 cm in LTV-PC nearside impact collisions and the damage region of the struck vehicle was in the zones 'E' and 'Y'.

  7. CFD simulation of a cabin thermal environment with and without human body - thermal comfort evaluation

    Science.gov (United States)

    Danca, Paul; Bode, Florin; Nastase, Ilinca; Meslem, Amina

    2018-02-01

    Nowadays, thermal comfort became one of the criteria in choosing a vehicle. In last decades time spent by people in vehicles had risen substantially. During each trip, thermal comfort must to be ensured for a good psychological and physical state of the passengers. Also, a comfortable environment leads to a higher power concentration of the driver thereby to a safe trip for vehicle occupants and for all traffic participants. The present study numerically investigated the effect of human body sited in the driver's place, over the air velocity distribution and over the thermal comfort in a passenger compartment. CFD simulations were made with different angles of the left inlet grill, in both cases, with and without driver presence. In majority of the actual vehicles environment studies, are made without consideration of human body geometry, in this case, the results precision can be affected. The results show that the presence of human body, lead to global changing of the whole flow pattern inside the vehicular cabin. Also, the locations of the maximum velocities are changing with the angle of the guiding vanes. The thermal comfort PMV/PPD indexes were calculated for each case. The presence of human body leads to a more comfortable environment.

  8. Sliding mode-based lateral vehicle dynamics control using tyre force measurements

    Science.gov (United States)

    Kunnappillil Madhusudhanan, Anil; Corno, Matteo; Holweg, Edward

    2015-11-01

    In this work, a lateral vehicle dynamics control based on tyre force measurements is proposed. Most of the lateral vehicle dynamics control schemes are based on yaw rate whereas tyre forces are the most important variables in vehicle dynamics as tyres are the only contact points between the vehicle and road. In the proposed method, active front steering is employed to uniformly distribute the required lateral force among the front left and right tyres. The force distribution is quantified through the tyre utilisation coefficients. In order to address the nonlinearities and uncertainties of the vehicle model, a gain scheduling sliding-mode control technique is used. In addition to stabilising the lateral dynamics, the proposed controller is able to maintain maximum lateral acceleration. The proposed method is tested and validated on a multi-body vehicle simulator.

  9. Pregnant women in vehicles: Driving habits, position and risk of injury.

    Science.gov (United States)

    Auriault, F; Brandt, C; Chopin, A; Gadegbeku, B; Ndiaye, A; Balzing, M-P; Thollon, L; Behr, M

    2016-04-01

    This study proposed to broadly examine vehicle use by pregnant women in order to improve realism of accident simulations involving these particular occupants. Three research pathways were developed: the first consisted in a questionnaire survey examining the driving habits of 135 pregnant women, the second obtained measurements of 15 pregnant women driving position in their own vehicle from the 6th to the 9th month of pregnancy by measuring distances between body parts and vehicle parts, and the third examined car accidents involving pregnant occupants. Results obtained indicate that between 90% and 100% of pregnant women wore their seat belts whatever their stage of pregnancy, although nearly one third of subjects considered the seat belt was dangerous for their unborn child. The measurements obtained also showed that the position of the pregnant woman in her vehicle, in relation to the various elements of the passenger compartment, changed significantly during pregnancy. In the studied accidents, no correlation was found between the conditions of the accident and the resulting fetal injury. Results reveal that pregnant women do not modify significantly the seat setting as a function of pregnancy stage. Only the distance between maternal abdomen and steering wheel change significantly, from 16 cm to 12 cm at 6 and 9 month respectively. Pregnant women are mainly drivers before 8 months of pregnancy, passengers after that. Car use frequency falls down rapidly from 6 to 9 months of pregnancy. Real crashes investigations indicate a low rate of casualties, i.e. 342 car accidents involving pregnant women for a period of 9 years in an approximately 1.7 million inhabitants area. No specific injury was found as a function of stage of pregnancy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The influence of personal protection equipment, occupant body size, and restraint system on the frontal impact responses of Hybrid III ATDs in tactical vehicles.

    Science.gov (United States)

    Zaseck, Lauren Wood; Orton, Nichole Ritchie; Gruber, Rebekah; Rupp, Jonathan; Scherer, Risa; Reed, Matthew; Hu, Jingwen

    2017-08-18

    Although advanced restraint systems, such as seat belt pretensioners and load limiters, can provide improved occupant protection in crashes, such technologies are currently not utilized in military vehicles. The design and use of military vehicles presents unique challenges to occupant safety-including differences in compartment geometry and occupant clothing and gear-that make direct application of optimal civilian restraint systems to military vehicles inappropriate. For military vehicle environments, finite element (FE) modeling can be used to assess various configurations of restraint systems and determine the optimal configuration that minimizes injury risk to the occupant. The models must, however, be validated against physical tests before implementation. The objective of this study was therefore to provide the data necessary for FE model validation by conducting sled tests using anthropomorphic test devices (ATDs). A secondary objective of this test series was to examine the influence of occupant body size (5th percentile female, 50th percentile male, and 95th percentile male), military gear (helmet/vest/tactical assault panels), seat belt type (3-point and 5-point), and advanced seat belt technologies (pretensioner and load limiter) on occupant kinematics and injury risk in frontal crashes. In total, 20 frontal sled tests were conducted using a custom sled buck that was reconfigurable to represent both the driver and passenger compartments of a light tactical military vehicle. Tests were performed at a delta-V of 30 mph and a peak acceleration of 25 g. The sled tests used the Hybrid III 5th percentile female, 50th percentile male, and 95th percentile male ATDs outfitted with standard combat boots and advanced combat helmets. In some tests, the ATDs were outfitted with additional military gear, which included an improved outer tactical vest (IOTV), IOTV and squad automatic weapon (SAW) gunner with a tactical assault panel (TAP), or IOTV and rifleman with

  11. Eco-Material Selection for Auto Bodies

    Energy Technology Data Exchange (ETDEWEB)

    Mayyas, Ahmad T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Omar, Mohammed [Masdar Institute of Science & Technology; Hayajneh, Mohammed T. [Jordan University of Science and Technology

    2017-09-25

    In the last decades, majority of automakers started to include lightweight materials in their vehicles to meet hard environmental regulations and to improve fuel efficiency of their vehicles. As a result, eco-material selection for vehicles emerged as a new discipline under design for environment. This chapter will summarize methods of eco-material selections for automotive applications with more emphasis into auto-bodies. A set of metrics for eco-material selection that takes into account all economic, environmental and social factors will be developed using numerical and qualitative methods. These metrics cover products' environmental impact, functionality and manufacturability, in addition to the economic and societal factors.

  12. Vibrations control of light rail transportation vehicle via PID type fuzzy controller using parameters adaptive method

    OpenAIRE

    METİN, Muzaffer; GÜÇLÜ, Rahmi

    2014-01-01

    In this study, a conventional PID type fuzzy controller and parameter adaptive fuzzy controller are designed to control vibrations actively of a light rail transport vehicle which modeled as 6 degree-of-freedom system and compared performances of these two controllers. Rail vehicle model consists of a passenger seat and its suspension system, vehicle body, bogie, primary and secondary suspensions and wheels. The similarity between mathematical model and real system is shown by compar...

  13. Commercial viability of hybrid vehicles : best household use and cross national considerations.

    Energy Technology Data Exchange (ETDEWEB)

    Santini, D. J.; Vyas, A. D.

    1999-07-16

    Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of

  14. The importance of high vehicle power for passenger car emissions

    Science.gov (United States)

    Carslaw, David C.; Williams, Martin L.; Tate, James E.; Beevers, Sean D.

    2013-04-01

    In this paper we use a quantile regression technique to explore the emissions characteristics of petrol and diesel passenger cars to reveal the importance of high vehicle power on exhaust emissions. A large database of ≈67,000 passenger cars from vehicle emission remote sensing data was used from surveys from several campaigns around the UK. Most previous remote sensing studies have focused on presenting mean emission estimates by vehicle type over time. However, as shown in the current work, considerably more insight can be gained into vehicle emission characteristics if techniques are used that can describe and model the full distribution of vehicle emissions as a function of important explanatory variables. For post-2000 model year (Euro 3-5) diesel cars it is shown that there is a strong dependence of vehicle specific power for emissions of NOx that was absent in earlier models and is absent for other pollutants such as CO, hydrocarbons and 'smoke'. Furthermore, we also find a stronger dependence on vehicle specific power for older catalyst-equipped petrol vehicles (Euro 1/2) on emissions of NOx that is less important for other emissions such as CO and hydrocarbons. Moreover, it is shown that while the rated maximum power output of petrol cars has remained almost constant over the past 15-20 years, the power output from diesel cars has increased markedly by about 50%. These results suggest that changes to vehicle technology, driving conditions and driver behaviour have become more important determinants of passenger car NOx emissions in recent years and may help explain why urban ambient concentrations of NOx have not decreased as much as anticipated.

  15. Assessment of exposure to whole body vibration in Yazd city taxi drivers

    Directory of Open Access Journals (Sweden)

    F Samoori sakhvidi

    2016-11-01

    Full Text Available Assessment of exposure to whole body vibration in Yazd city taxi drivers Samoori-Sakhvidi F (MSc* Barkhordari A (PhD** Dehghani A (PhD*** Tavakoli-Manesh S (MSc**** *Corresponding Author: MSc Student in Department of Occupational Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran ** Professor, Department of Occupational Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran *** Professor, Department of Statistics and Epidemiology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran **** MSc Student in Department of Occupational Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Abstract Introduction: One of the most common sources of whole body vibration are vehicles in which the driver is exposed to vibration caused by the vehicle and the road. Including the people who continuously exposure to whole-body vibration can be noted to taxi drivers. Taxi drivers during their work shift Encountered with numerous deleterious effects such as noise, vibration, air pollution, and psychological stress and long work shifts. Long-term exposure to whole body vibration in the taxi drivers can communicate with adverse effects such as reduce perception, annoyance, disturbance of vision and fine motor tasks, spinal cord injury, damage to the digestive and reproductive systems. The purpose of this study was cross - sectional study of whole body vibration exposure in Yazd city taxi drivers. Methods: This study was designed to evaluate exposure to whole body vibration in taxi drivers, vibration measurement Was carried out in 80 taxi from 3 vehicle (Samand-Peugeot 405 and Pridein 3 mileage groups, with 63 male drivers and 17 female drivers. parameters Including the vibration Weighing the acceleration frequency (rms, Equivalent acceleration (Aeq and vibration doseVDV in 3-axis was recorded. The results obtained were compared with the values recommended by the standard (ISO 2631-1. Results: The mean (rms acceleration

  16. Fault Tolerant Autonomous Lateral Control for Heavy Vehicles

    OpenAIRE

    Talbot, Craig Matthew; Papadimitriou, Iakovos; Tomizuka, Masayoshi

    2004-01-01

    This report summarizes the research results of TO4233, "Fault Tolerant Autonomous Lateral Control for Heavy Vehicles". This project represents a continuing effort of PATH's research on Automated Highway Systems (AHS) and more specifically in the area of heavy vehicles. Research on the lateral control of heavy vehicles for AHS has been going on at PATH since 1993. MOU129, "Steering and Braking Control of Heavy Duty Vehicles" was the first project and it was followed by MOU242, "Lateral Control...

  17. A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2014-03-01

    Full Text Available How to compare the environmental performance of different vehicle technologies? Vehicles with lower tailpipe emissions are perceived as cleaner. However, does it make sense to look only to tailpipe emissions? Limiting the comparison only to these emissions denies the fact that there are emissions involved during the production of a fuel and this approach gives too much advantage to zero-tailpipe vehicles like battery electric vehicles (BEV and fuel cell electric vehicle (FCEV. Would it be enough to combine fuel production and tailpipe emissions? Especially when comparing the environmental performance of alternative vehicle technologies, the emissions during production of the specific components and their appropriate end-of-life treatment processes should also be taken into account. Therefore, the complete life cycle of the vehicle should be included in order to avoid problem shifting from one life stage to another. In this article, a full life cycle assessment (LCA of petrol, diesel, fuel cell electric (FCEV, compressed natural gas (CNG, liquefied petroleum gas (LPG, hybrid electric, battery electric (BEV, bio-diesel and bio-ethanol vehicles has been performed. The aim of the manuscript is to investigate the impact of the different vehicle technologies on the environment and to develop a range-based modeling system that enables a more robust interpretation of the LCA results for a group of vehicles. Results are shown for climate change, respiratory effects, acidification and mineral extraction damage of the different vehicle technologies. A broad range of results is obtained due to the variability within the car market. It is concluded that it is essential to take into account the influence of all the vehicle parameters on the LCA results.

  18. Motor Torque Calculations For Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Saurabh Chauhan

    2015-08-01

    Full Text Available Abstract It is estimated that 25 of the total cars across the world will run on electricity by 2025. An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle. The following work aims at simplifying the calculations required to decide the capacity of the motor that should be used to drive a vehicle of particular specifications.

  19. The perspectives of development of natural gas for vehicles

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This short paper analyses the actions carried out in the world, and in particular in France, to develop and promote the use of natural gas for vehicles (NGV). In France, a protocol of agreement was signed in June 1994 between the French car manufacturers, Gaz de France and the French Association of Natural Gas for Vehicles (AFGNV) in order to develop new kinds of gas fueled vehicles, more optimized engines, to increase the number of gas distribution stations, to ratify the new models of vehicles and the specific parts for these vehicles (composite materials tanks), to carry out R and D work on gas compressors, and to develop public and private fleets of urban buses and public service vehicles. The forthcoming application of the 'Clean Air Law' will support these actions. Significant and similar developments take place also in more than 30 other countries under the same environmental motivation and ambitious programs are planned in the USA, Japan and Argentina for the year 2000. The R and D effort now focusses on the use of LNG instead of compressed natural gas. (J.S.)

  20. Economical vehicle body in white concepts of series production. A holistic approach to technology trends under the aspect of the climate debate; Wirtschaftliche Fahrzeugleichtbaukonzepte grosser Baureihen. Ein holistischer Ansatz zu Technologietrends im Rahmen der Klimadebatte

    Energy Technology Data Exchange (ETDEWEB)

    Klose, Peter L.M. [MBtech Consulting GmbH, Sindelfingen (Germany). Bereich ' Innovations- und Technologiemanagement' ; Gaenzle, Steffen [MBtech Consulting GmbH, Sindelfingen (Germany). Lean Development and Launch Consulting

    2009-07-01

    Automotive light weight construction does not only mean to choose light weight materials. It is also an integrated concept and therefore the consideration of interactions for whole chain of vehicle development is required. The inter-dependencies and demands of raw material suppliers, fabricators, system suppliers and vehicle manufacturers will be outlined. An insight into the most important trends of automotive body in white construction methods, material concepts, joining technologies on a holistic system overview will be given. Approaches of an economic implementation through build up of system alliances between OEM/suppliers and refinancing of development costs during generation programs will be pointed out. (orig.)

  1. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    Science.gov (United States)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  2. Research of braking process of transport vehicle with hydraulic brake system parameters

    OpenAIRE

    Vladimirov, Oleg

    2005-01-01

    Emergency braking of a vehicle is bound with many factors, such as the behaviour of the driver, the drive of the vehicle braking system, the braking mechanisms, the condition of the tyres, and the properties of the pavement. This process involves all parameters of the system “the driver – the vehicle – the road”. In order to investigate the efficiency of braking process upon specific conditions, it is necessary to examine all physical processes that take place in the vehicle on pressing the b...

  3. Driving Simulator Study of Effect of Inside Shoulder on Vehicle Operation

    Directory of Open Access Journals (Sweden)

    Han Ding

    2015-02-01

    Full Text Available According to the Chinese Design Specification for Highway Alignment (JTG D20-2006, eight-lane expressways should be paved with an inside shoulder of 2.5 m; however, this regulation is rarely obeyed in engineering practice. On the basis of driving simulator experiment, this research examined the impacts of inside shoulder on vehicle operation with and without the speed limitation. A virtual scenario, consisting of five expressways with different inside shoulder widths, was created and displayed in driving simulator, and vehicle operational data—speed and lane position—were recorded. Authors used analysis of variance (ANOVA and contrast analysis to examine whether inside shoulder width had statistically significant effects on travel speed and lane position. Analytical results indicated that there is a kind of quadratic relationship between inside shoulder width and driver's speed choice, while driver's speed choice is not significantly affected by inside shoulder width. What is more, inside shoulder width has statistically significant effects on vehicle's lane positions, and vehicle's lane position is negatively correlated to inside shoulder width. Specifically, the vehicle can be maintained at the center of lane when the inside shoulder width is 2.5 m.

  4. Neighborhood electric vehicle market test development project: Sacramento electric transportation consortium Ra 93-23 program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Warf, W.R.

    1997-02-01

    The neighborhood electric vehicle (NEV) niche is the object of this market and product test project. The project availed itself of a limited production three wheel, single passenger low performance NEV designed and produced in Denmark to determine the acceptability of the design for production and use in North America. This vehicle, as well as a prototype four wheel vehicle designed and constructed through this project, are entirely reinforced plastic chassis and body. Pacific Electric Vehicles was the primary participant in the Project. Included are the evaluation of drive system components, battery charging schemes, body and chassis and glazing material suitability. The project determined and/or verified many of the realities of motor vehicle development and usage in the U.S., which remain more restrictive than elsewhere. Statistical usage data, maintenance requirements, and user experiences are reported and analyzed.

  5. Investigation on dynamical interaction between a heavy vehicle and road pavement

    Science.gov (United States)

    Yang, Shaopu; Li, Shaohua; Lu, Yongjie

    2010-08-01

    This paper presents a model for three-dimensional, heavy vehicle-pavement-foundation coupled system, which is modelled as a seven-DOF vehicle moving along a simply supported double-layer rectangular thin plate on a linear viscoelastic foundation. The vertical tyre force is described by a single point-contact model, while the pavement-foundation is modelled as a double-layer plate on a linear viscoelastic foundation. Using the Galerkin method and quick direct integral method, the dynamical behaviour of the vehicle-pavement-foundation coupled system is investigated numerically and compared with that of traditional vehicle system and pavement system. The effects of coupling action on vehicle body vertical acceleration, suspension deformations, tyre forces and pavement displacements are also obtained. The investigation shows that the coupling action could not be neglected even on a smooth road surface, such as highway. Thus, it is necessary to investigate the dynamics of vehicle and pavement simultaneously based on the vehicle-pavement-foundation coupled system.

  6. How important is vehicle safety for older consumers in the vehicle purchase process?

    Science.gov (United States)

    Koppel, Sjaan; Clark, Belinda; Hoareau, Effie; Charlton, Judith L; Newstead, Stuart V

    2013-01-01

    and their family from a crash, their traffic infringement history, and whether they had children. These findings are consistent with previous research that suggests that, though older consumers highlight the importance of safety features (i.e., seat belts, air bags, braking), they often downplay the role of safety in their vehicle purchasing process and are more likely to equate vehicle safety with the presence of specific vehicle safety features or technologies rather than the vehicle's crash safety/test results or crashworthiness. The findings from this study provide a foundation to support further research in this area that can be used by policy makers, manufacturers, and other stakeholders to better target the promotion and publicity of vehicle safety features to particular consumer groups (such as older consumers). Better targeted campaigns may help to emphasize the value of safety features and their role in reducing the risk of injury/death. If older consumers are better informed of the benefits of safety features when purchasing a vehicle, a further reduction in injuries and deaths related to motor vehicle crashes may be realized.

  7. Multi-Disciplinary Design Optimization of Hypersonic Air-Breathing Vehicle

    Science.gov (United States)

    Wu, Peng; Tang, Zhili; Sheng, Jianda

    2016-06-01

    A 2D hypersonic vehicle shape with an idealized scramjet is designed at a cruise regime: Mach number (Ma) = 8.0, Angle of attack (AOA) = 0 deg and altitude (H) = 30kms. Then a multi-objective design optimization of the 2D vehicle is carried out by using a Pareto Non-dominated Sorting Genetic Algorithm II (NSGA-II). In the optimization process, the flow around the air-breathing vehicle is simulated by inviscid Euler equations using FLUENT software and the combustion in the combustor is modeled by a methodology based on the well known combination effects of area-varying pipe flow and heat transfer pipe flow. Optimization results reveal tradeoffs among total pressure recovery coefficient of forebody, lift to drag ratio of vehicle, specific impulse of scramjet engine and the maximum temperature on the surface of vehicle.

  8. Near term hybrid passenger vehicle development program, phase 1

    Science.gov (United States)

    1980-01-01

    Missions for hybrid vehicles that promise to yield high petroleum impact were identified and a preliminary design, was developed that satisfies the mission requirements and performance specifications. Technologies that are critical to successful vehicle design, development and fabrication were determined. Trade-off studies to maximize fuel savings were used to develop initial design specifications of the near term hybrid vehicle. Various designs were "driven" through detailed computer simulations which calculate the petroleum consumption in standard driving cycles, the petroleum and electricity consumptions over the specified missions, and the vehicle's life cycle costs over a 10 year vehicle lifetime. Particular attention was given to the selection of the electric motor, heat engine, drivetrain, battery pack and control system. The preliminary design reflects a modified current compact car powered by a currently available turbocharged diesel engine and a 24 kW (peak) compound dc electric motor.

  9. All-Ceramic Body Flap Qualified for Space Flight on X38

    Science.gov (United States)

    Pfeiffer, H.; Peetz, K.

    2002-01-01

    electromechanical actuator having a third hot bearing. The hinge line gap at the front part of the body flap is closed by a dynamic sealing system to minimize the flow of very hot gases to the leeward side. The paper in hand reports on design, manufacturing and assembly, together with the qualification of the body flaps and their components while the qualification test of the complete flap assembly is brought into focus. Flight readiness was approved by a series of qualification tests representing the full load spectrum of the X- 38 mission. It covered acceptance -, ascend vibration -, thermal transient -, static pressure - and finally descend vibration tests. Special facilities have been developed and manufactured for ground qualification of the flap assembly and the critical subcomponents. The manufacture and qualification of the X-38 body flaps represent a true milestone in the application of CMC. The stringent requirements and constraints, resulting from the assembly of many complex subcompo- nents and vehicle interfaces, require high material quality and precise manufacturing tolerances. Each qualification - and flight hardware element is therefore subjected to rigorous specifications, following detailed manufacturing process procedures with extensive quality control steps, as well as comprehensive documentation of design, analysis, manufacturing, assembly, interface control and vehicle integration. This challenge has been accepted and the objective to utilize MAN Technology's C/SiC as hot, load-carrying structures has reached a promising threshold. Material maturity as well as manufacturing competence is at a level where design and fabrication of CMC components for a operational re-entry vehicle can be proposed. The implementation of lightweight, durable ceramic hot structures is an innovative step forward in new spacecraft design. 1Name of Conference to which abstract is53 rd IAC 2Submission StatusFirst Submission 3TitleAll-Ceramic Body Flap Qualified for Space 4Authors

  10. Environmental Evaluation of New Generation Vehicles and Vehicle Components

    Energy Technology Data Exchange (ETDEWEB)

    Schexnayder, S.M.

    2002-02-06

    This report documents assessments that address waste issues and life cycle impacts associated with the vehicle materials and vehicle technologies being developed under the Partnership for a New Generation of Vehicles (PNGV) program. We refer to these vehicles as 3XVs, referring to the PNGV goal that their fuel mileage be three times better than the baseline vehicle. To meet the program's fuel consumption goals, these vehicles substitute lightweight materials for heavier materials such as steel and iron that currently dominate the composition of vehicles, and use engineering and power system changes. Alternative power systems being developed through the PNGV program include batteries for hybrid electric vehicles and fuel cells. With respect to all these developments, it is imperative to learn what effects they will have on the environment before adopting these designs and technologies on a large-scale basis.

  11. Trajectories and Maneuvers of Surrounding Vehicles with Panoramic Camera Arrays

    DEFF Research Database (Denmark)

    Dueholm, Jacob Velling; Kristoffersen, Miklas Strøm; Satzoda, Ravi K.

    2016-01-01

    Vision-based research for intelligent vehicles have traditionally focused on specific regions around a vehicle, such as a front looking camera for, e.g., lane estimation. Traffic scenes are complex and vital information could be lost in unobserved regions. This paper proposes a framework that uses...... four visual sensors for a full surround view of a vehicle in order to achieve an understanding of surrounding vehicle behaviors. The framework will assist the analysis of naturalistic driving studies by automating the task of data reduction of the observed trajectories. To this end, trajectories...... are estimated using a vehicle detector together with a multiperspective optimized tracker in each view. The trajectories are transformed to a common ground plane, where they are associated between perspectives and analyzed to reveal tendencies around the ego-vehicle. The system is tested on sequences from 2.5 h...

  12. FORECASTING OF PERFORMANCE EVALUATION OF NEW VEHICLES

    Directory of Open Access Journals (Sweden)

    O. S. Krasheninin

    2016-12-01

    Full Text Available Purpose. The research work focuses on forecasting of performance evaluation of the tractive and non-tractive vehicles that will satisfy and meet the needs and requirements of the railway industry, which is constantly evolving. Methodology. Analysis of the technical condition of the existing fleet of rolling stock (tractive and non-tractive of Ukrainian Railways shows a substantial reduction that occurs in connection with its moral and physical wear and tear, as well as insufficient and limited purchase of new units of the tractive and non-tractive rolling stock in the desired quantity. In this situation there is a necessity of search of the methods for determination of rolling stock technical characteristics. One of such urgent and effective measures is to conduct forecasting of the defining characteristics of the vehicles based on the processes of their reproduction in conditions of limited resources using a continuous exponential function. The function of the growth rate of the projected figure degree for the vehicle determines the logistic characteristic that with unlimited resources has the form of an exponent, and with low ones – that of a line. Findings. The data obtained according to the proposed method allowed determining the expected (future value, that is the ratio of load to volume of the body for non-tractive rolling stock (gondola cars and weight-to-power for tractive rolling stock, the degree of forecast reliability and the standard forecast error, which show high prediction accuracy for the completed procedure. As a result, this will allow estimating the required characteristics of vehicles in the forecast year with high accuracy. Originality. The concept of forecasting the characteristics of the vehicles for decision-making on the evaluation of their prospects was proposed. Practical value. The forecasting methodology will reliably determine the technical parameters of tractive and non-tractive rolling stock, which will meet

  13. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies

    DEFF Research Database (Denmark)

    NN, NN; Whitlock, Gary; Lewington, Sarah

    2009-01-01

    BACKGROUND: The main associations of body-mass index (BMI) with overall and cause-specific mortality can best be assessed by long-term prospective follow-up of large numbers of people. The Prospective Studies Collaboration aimed to investigate these associations by sharing data from many studies....

  14. Influence of Wheel Eccentricity on Vertical Vibration of Suspended Monorail Vehicle: Experiment and Simulation

    OpenAIRE

    Kaikai Lv; Kaiyun Wang; Zhihui Chen; Chengbiao Cai; Lirong Guo

    2017-01-01

    This paper investigates the influence of wheel eccentricity on vertical vibration of suspended monorail vehicle based on experiment and simulation. Two sets of tests are conducted in the first Chinese suspended monorail, and the tested acceleration is analyzed and exhibited. A multibody dynamic model of the suspended monorail vehicle is established to simulate the vertical vibration of car body excited by wheel eccentricity. The results show that there are three factors which may cause an abn...

  15. Sex- and age-specific percentiles of body composition indices for Chinese adults using dual-energy X-ray absorptiometry.

    Science.gov (United States)

    Xiao, Zeyu; Guo, Bin; Gong, Jian; Tang, Yongjin; Shang, Jingjie; Cheng, Yong; Xu, Hao

    2017-10-01

    The aims of the study were to develop sex- and age-specific percentiles for lean mass index (LMI), appendicular LMI (aLMI), fat mass index (FMI), and body fat distribution indices in Chinese adults using dual-energy X-ray absorptiometry (DXA), and to compare those indices with those of other ethnicities using the US NHANES data. Whole-body and regional lean mass and fat mass (FM) were measured using DXA in 5688 healthy males (n = 1693) and females (n = 3995) aged 20-90 years. Body fat distribution indices were expressed as % fat trunk/% fat legs, trunk/appendicular FM ratio (FMR), and android/gynoid FMR. Percentile curves of LMI, aLMI, FMI, and body fat distribution indices were obtained by the Lambda-Mu-Sigma method. The aLMI and LMI were negatively associated with age, decreasing from the fifth decade for males, but were not associated with age in females. Females had more total FM than males, whereas males had greater central adiposity (% fat trunk/% fat legs ratio, trunk/appendicular FMR, and android/gynoid FMR) than females. Moreover, FMI and body fat distribution indices consistently increased with age in both sexes, especially in women. In comparison with white, black, and Mexican populations in the USA, Chinese adults had lower total FM, but had greater central adiposity (% fat trunk/% fat legs ratio and trunk/appendicular FMR). Additionally, older white and Mexican populations showed greater decreases for aLMI and LMI than their Chinese counterparts. We present the sex- and age-specific percentiles for aLMI, LMI, FMI, and body fat distribution indices by DXA in Chinese adults, which may refine the individual assessment of the nutritional status of Chinese adults.

  16. Canadians' perceptions of electric vehicle technology : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-03-15

    While Canadians seem to appreciate some of the possible benefits of electric vehicle technology (EVT), they generally lack knowledge or understanding of EVTs, in terms of how they operate and what types of EVT vehicles are currently available. This paper described the challenges associated with the adoption of EVT in Canada. In particular, it described a research program that was designed to assess Canadians' attitudes towards electric vehicle technology, in order to provide input into the development of a technology roadmap and its implementation plan, to provide input into communications plans and strategies to promote greater awareness and acceptance of the technology, and to establish baseline attitudinal indicators that could be tracked over time. Specifically, the objectives of the paper were to measure the Canadian public's levels of awareness, knowledge and comfort with EVTs; determine the motivators to adoption of EVT; determine the barriers to broader acceptance and market diffusion of EVT; and identify key group differences. Topics that were discussed included public awareness and knowledge of electric vehicle technology; and interest in plug-in hybrid vehicles and battery-electric vehicles, including perceived advantages and barriers. A profile of drivers consisted of a review of vehicle type; vehicle use profile; size of vehicle; considerations when choosing a vehicle; personal orientation to vehicle ownership; attitudes about vehicle choice; and attitudes about vehicles and air quality. Descriptions of the quantitative and qualitative methods employed in conducting the research, as well as the survey questionnaire and discussion guide were included as appendices. It was concluded that the small proportion of Canadian drivers who see vehicles as a form of personal expression are more likely to be interested in a future plug-in hybrid electric vehicles purchase or rental. tabs., figs., appendices.

  17. 41 CFR 101-45.003 - Vehicle reconditioning.

    Science.gov (United States)

    2010-07-01

    ... vehicle designed primarily for highway use that is to be disposed of through surplus or exchange/sale...) For the trunk— (i) Wash interior surface; and (ii) Spray-dye mats. (3) For the engine compartment— (i... color if scrapes, dings, etc., are excessive; (vii) Repair minor body damage; (viii) Apply decorative...

  18. ELECTROMAGNETIC BIOSPHERE POLLUTION BY MOTOR TRANSPORT (VEHICLES, ELECTRIC VEHICLES, HYBRID VEHICLES

    Directory of Open Access Journals (Sweden)

    S. Selivanov

    2009-01-01

    Full Text Available The physics of the electromagnetic field is considered. The analysis of electromagnetic radiation on the human-being, the origin of which is the vehicle the electric vehicle, the hybrid vehicle is being considered. The monitoring of electromagnetic radiation of vehicles is carried out.

  19. Letter to the Editor: Electric Vehicle Demand Model for Load Flow Studies

    DEFF Research Database (Denmark)

    Garcia-Valle, Rodrigo; Vlachogiannis, Ioannis (John)

    2009-01-01

    This paper introduces specific and simple model for electric vehicles suitable for load flow studies. The electric vehicles demand system is modelled as PQ bus with stochastic characteristics based on the concept of queuing theory. All appropriate variables of stochastic PQ buses are given...... with closed formulae as a function of charging time. Specific manufacturer model of electric vehicles is used as study case....

  20. Normative legal regulating of vehicles with a high degree of automation of control: strategy and tactics for implementation in Russia

    Science.gov (United States)

    Kisulenko, B. V.; Bocharov, A. V.; Pugachev, V. V.

    2018-02-01

    The article discusses the risks specific to vehicles with a high level of automation of control, and conditions the limits on the operating conditions of such vehicles. The article determines existing legal barriers to the implementation of autonomous vehicles. The article contains an analysis of foreign practice of regulating in the European Union, Japan and the United States and information about the UNECE activities aimed at enabling operation of vehicles with a high degree of automation control. Basing on the results of the analysis, the authors made proposals for removal of legal barriers. The article also contains proposals for the development of specific requirements for autonomous vehicles associated with their specific features of design.

  1. Incidence and mechanism of neurological deficit after thoracolumbar fractures sustained in motor vehicle collisions.

    Science.gov (United States)

    Mukherjee, Sourabh; Beck, Chad; Yoganandan, Narayan; Rao, Raj D

    2015-10-09

    OBJECT To determine the incidence of and assess the risk factors associated with neurological injury in motor vehicle occupants who sustain fractures of the thoracolumbar spine. METHODS In this study, the authors queried medical, vehicle, and crash data elements from the Crash Injury Research and Engineering Network (CIREN), a prospectively gathered multicenter database compiled from Level I trauma centers. Subjects had fractures involving the T1-L5 vertebral segments, an Abbreviated Injury Scale (AIS) score of ≥ 3, or injury to 2 body regions with an AIS score of ≥ 2 in each region. Demographic parameters obtained for all subjects included age, sex, height, body weight, and body mass index. Clinical parameters obtained included the level of the injured vertebra and the level and type of spinal cord injury. Vehicular crash data included vehicle make, seatbelt type, and usage and appropriate use of the seatbelt. Crash data parameters included the principal direction of force, change in velocity on impact (ΔV), airbag deployment, and vehicle rollover. The authors performed a univariate analysis of the incidence and the odds of sustaining spinal neurological injury associated with major thoracolumbar fractures with respect to the demographic, clinical, and crash parameters. RESULTS Neurological deficit associated with thoracolumbar fracture was most frequent at extremes of age; the highest rates were in the 0- to 10-year (26.7% [4 of 15]) and 70- to 80-year (18.4% [7 of 38]) age groups. Underweight occupants (OR 3.52 [CI 1.055-11.7]) and obese occupants (OR 3.27 [CI 1.28-8.31]) both had higher odds of sustaining spinal cord injury than occupants with a normal body mass index. The highest risk of neurological injury existed in crashes in which airbags deployed and the occupant was not restrained by a seatbelt (OR 2.35 [CI 0.087-1.62]). Reduction in the risk of neurological injuries occurred when 3-point seatbelts were used correctly in conjunction with the

  2. Impact Foam Testing for Multi-Mission Earth Entry Vehicle Applications

    Science.gov (United States)

    Glaab, Louis J.; Agrawal, Paul; Hawbaker, James

    2013-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, two different Rohacell foams were tested to determine their thermal conductivity in support of MMEEV design applications. These applications include thermal insulation during atmospheric entry, impact attenuation, and post-impact thermal insulation in support of thermal soak analysis. Results indicate that for these closed-cell foams, the effect of impact is limited on thermal conductivity due to the venting of the virgin material gas and subsequent ambient air replacement. Results also indicate that the effect of foam temperature is significant compared to data suggested by manufacturer's specifications.

  3. Study of a method for reducing fuel consumption and the amount of specific emissions of harmful substances with exhaust gases of passenger cars when using the “climate control” system

    Science.gov (United States)

    Burakova, L. N.; Anisimov, I. A.; Burakova, A. D.; Burakova, O. D.

    2018-05-01

    The article deals with the issue of improving the fuel economy and environmental friendliness of motor vehicles which serve the administrative and management personnel of the oil and gas industry. It is established that fuel consumption and the amount of specific emissions of harmful substances with exhaust gases of cars when using the “climate control” system depend on the effective ambient temperature, the color of the opaque car body elements, the power of the car engine and the interior volume. However, the simplest controlled factor is the color of the opaque car body elements, which is characterized by the coefficient of light reflection. In the course of experimental studies, we established the dependences of a change in fuel consumption and a share of reducing emissions of harmful substances with exhaust gases of passenger cars with the “climate control” system on the coefficient of light reflection. A method has been developed to reduce fuel consumption and the amount of specific emissions of harmful substances with the exhaust gases of passenger cars using the “climate control” system, which involves painting the vehicle roof white and allows reducing fuel consumption by 5.5-10.3%, and the amount of specific emissions of harmful substances by 0.8-2.3%.

  4. Investigating the Potential of Ridesharing to Reduce Vehicle Emissions

    Directory of Open Access Journals (Sweden)

    Roozbeh Jalali

    2017-06-01

    Full Text Available As urban populations grow, cities need new strategies to maintain a good standard of living while enhancing services and infrastructure development. A key area for improving city operations and spatial layout is the transportation of people and goods. While conventional transportation systems (i.e., fossil fuel based are struggling to serve mobility needs for growing populations, they also represent serious environmental threats. Alternative-fuel vehicles can reduce emissions that contribute to local air pollution and greenhouse gases as mobility needs grow. However, even if alternative-powered vehicles were widely employed, road congestion would still increase. This paper investigates ridesharing as a mobility option to reduce emissions (carbon, particulates and ozone while accommodating growing transportation needs and reducing overall congestion. The potential of ridesharing to reduce carbon emissions from personal vehicles in Changsha, China, is examined by reviewing mobility patterns of approximately 8,900 privately-owned vehicles over two months. Big data analytics identify ridesharing potential among these drivers by grouping vehicles by their trajectory similarity. The approach includes five steps: data preprocessing, trip recognition, feature vector creation, similarity measurement and clustering. Potential reductions in vehicle emissions through ridesharing among a specific group of drivers are calculated and discussed. While the quantitative results of this analysis are specific to the population of Changsha, they provide useful insights for the potential of ridesharing to reduce vehicle emissions and the congestion expected to grow with mobility needs. Within the study area, ridesharing has the potential to reduce total kilometers driven by about 24% assuming a maximum distance between trips less than 10 kilometers, and schedule time less than 60 minutes. For a more conservative maximum trip distance of 2 kilometers and passenger

  5. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines: Evaporative and Refueling Emission Regulations for Gasolineand Methanol-Fueled Light-Duty Vehicles and Light-Duty Trucks and Heavy-Duty Vehicles; Technical Amen

    Science.gov (United States)

    On March 24, 1993 EPA finalized a new test procedure to measure evaporative emissions from motor vehicles. The amendments modify several of the test procedure’s tolerances, equipment specifications, and procedural steps.

  6. Development of the Tri-ATHLETE Lunar Vehicle Prototype

    Science.gov (United States)

    Heverly, Matt; Matthews, Jaret; Frost, Matt; Quin, Chris

    2010-01-01

    The Tri-ATHLETE (All Terrain Hex Limed Extra Terrestrial Explorer) vehicle is the second generation of a wheel-on-limb vehicle being developed to support the return of humans to the lunar surface. This paper describes the design, assembly, and test of the Tri-ATHLETE robotic system with a specific emphasis on the limb joint actuators. The design and implementation of the structural components is discussed, and a novel and low cost approach to approximating flight-like cabling is also presented. The paper concludes with a discussion of the "second system effect" and other lessons learned as well as results from a three week long field trial of the vehicle in the Arizona desert.

  7. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, R P; Dimbylow, P J [National Radiological Protection Board, Chilton, Didcot, Oxon OX11 0RQ (United Kingdom)

    2005-08-21

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions.

  8. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    International Nuclear Information System (INIS)

    Findlay, R P; Dimbylow, P J

    2005-01-01

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions

  9. Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body

    Science.gov (United States)

    Findlay, R. P.; Dimbylow, P. J.

    2005-08-01

    A change in the posture of the human body can significantly affect the way in which it absorbs radiofrequency electromagnetic radiation. To study this, an anatomically realistic model of the body has been modified to develop new voxel models in postures other than the standard standing position with arms to the side. These postures were sitting, arms stretched out horizontally to the side and vertically above the head. Finite-difference time-domain (FDTD) calculations of the whole-body averaged specific energy absorption rate (SAR) have been performed from 10 MHz to 300 MHz at a resolution of 4 mm. Calculations show that the effect of a raised arm above the head posture was to increase the value of the whole-body averaged SAR at resonance by up to 35% when compared to the standard, arms by the side position. SAR values, both whole-body averaged and localized in the ankle, were used to derive the external electric field values required to produce the SAR basic restrictions of the ICNIRP guidelines. It was found that, in certain postures, external electric field reference levels alone would not provide a conservative estimate of localized SAR exposure and it would be necessary to invoke secondary reference levels on limb currents to provide compliance with restrictions.

  10. Hybrid-Wing-Body Vehicle Composite Fuselage Analysis and Case Study

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2014-01-01

    Recent progress in the structural analysis of a Hybrid Wing-Body (HWB) fuselage concept is presented with the objective of structural weight reduction under a set of critical design loads. This pressurized efficient HWB fuselage design is presently being investigated by the NASA Environmentally Responsible Aviation (ERA) project in collaboration with the Boeing Company, Huntington Beach. The Pultruded Rod-Stiffened Efficient Unitized Structure (PRSEUS) composite concept, developed at the Boeing Company, is approximately modeled for an analytical study and finite element analysis. Stiffened plate linear theories are employed for a parametric case study. Maximum deflection and stress levels are obtained with appropriate assumptions for a set of feasible stiffened panel configurations. An analytical parametric case study is presented to examine the effects of discrete stiffener spacing and skin thickness on structural weight, deflection and stress. A finite-element model (FEM) of an integrated fuselage section with bulkhead is developed for an independent assessment. Stress analysis and scenario based case studies are conducted for design improvement. The FEM model specific weight of the improved fuselage concept is computed and compared to previous studies, in order to assess the relative weight/strength advantages of this advanced composite airframe technology

  11. Accidents in The Netherlands involving heavy motor vehicles : an analysis concerning underrun protection of rear ends, compared to the sides and the front ends. On behalf of RDW Vehicle Technology & Information Centre.

    NARCIS (Netherlands)

    Kampen, L.T.B. van

    1998-01-01

    In this report accident data concerning heavy vehicles (all motor vehicles with a total weight of more than 3500 kg) are studied. Special attention is given to the question whether accidents involving heavy motor vehicles gave specific reason for concern regarding other road users with respect to

  12. Systematic review of military motor vehicle crash-related injuries.

    Science.gov (United States)

    Krahl, Pamela L; Jankosky, Christopher J; Thomas, Richard J; Hooper, Tomoko I

    2010-01-01

    Motor vehicle crashes account for nearly one third of U.S. military fatalities annually. The objective of this review is to summarize the published evidence on injuries due specifically to military motor vehicle (MMV) crashes. A search of 18 electronic databases identified English language publications addressing MMV crash-related injuries between 1970 and 2006 that were available to the general public. Documents limited in distribution to military or government personnel were not evaluated. Relevant articles were categorized by study design. The search identified only 13 studies related specifically to MMV crashes. Most were case reports or case series (n=8); only one could be classified as an intervention study. Nine of the studies were based solely on data from service-specific military safety centers. Few studies exist on injuries resulting from crashes of military motor vehicles. Epidemiologic studies that assess injury rates, type, severity, and risk factors are needed, followed by studies to evaluate targeted interventions and prevention strategies. Interventions currently underway should be evaluated for effectiveness, and those proven effective in the civilian community, such as graduated driver licensing, should be considered for implementation and evaluation in military populations. Published by Elsevier Inc.

  13. Analysis of annual exposure of private farmers to noise and whole body vibration

    Directory of Open Access Journals (Sweden)

    Leszek Solecki

    2012-06-01

    Full Text Available Based on a literature review for the period of 1982– 2011, an analysis was performed of studies by various researchers concerning the exposure of private farmers to noise and vibration of the whole body with particular consideration of the annual exposure to these factors. The main sources of noise occurring in agriculture are: agricultural tractors mounted with a set of farm machinery, self-propelled machines, machinery for the production of fodder and workshop equipment. The review of literature showed that the highest values of equivalent exposure to noise (EA, T or noise doses (d were noted during the summer-autumn season and in spring. Mean noise levels for the entire year (of over 90 dB-A, considerably exceeded permissible values.The primary sources of the whole body vibration are agricultural vehicles including agricultural tractors of various types and self-propelled agricultural vehicles. In these vehicles vibration transmitted from the seat to the whole body is of basic importance. The measurements of vibration acceleration indicated that mechanical vibration on seats was produced while performing following activities: hay tedding and raking, sowing of fertilizers, aggregation of soil, grass mowing and cultivation. All of them may create a considerable health risk. These work activities are performed at elevated working speeds of tractors, most often along with hardened or uneven surfaces. In relation to the standard values (A(840.8 m/s2, the mean daily vibration acceleration values remain below the permissible levels during all months of the year. However, considering the occurrence of mechanical shocks of high values (above the Maximum Acceptable Intensity on agricultural vehicles there is a high risk for the spine problems among operators of agricultural vehicles.

  14. Development of a method to rate the primary safety of vehicles using linked New Zealand crash and vehicle licensing data.

    Science.gov (United States)

    Keall, Michael D; Newstead, Stuart

    2016-01-01

    Vehicle safety rating systems aim firstly to inform consumers about safe vehicle choices and, secondly, to encourage vehicle manufacturers to aspire to safer levels of vehicle performance. Primary rating systems (that measure the ability of a vehicle to assist the driver in avoiding crashes) have not been developed for a variety of reasons, mainly associated with the difficult task of disassociating driver behavior and vehicle exposure characteristics from the estimation of crash involvement risk specific to a given vehicle. The aim of the current study was to explore different approaches to primary safety estimation, identifying which approaches (if any) may be most valid and most practical, given typical data that may be available for producing ratings. Data analyzed consisted of crash data and motor vehicle registration data for the period 2003 to 2012: 21,643,864 observations (representing vehicle-years) and 135,578 crashed vehicles. Various logistic models were tested as a means to estimate primary safety: Conditional models (conditioning on the vehicle owner over all vehicles owned); full models not conditioned on the owner, with all available owner and vehicle data; reduced models with few variables; induced exposure models; and models that synthesised elements from the latter two models. It was found that excluding young drivers (aged 25 and under) from all primary safety estimates attenuated some high risks estimated for make/model combinations favored by young people. The conditional model had clear biases that made it unsuitable. Estimates from a reduced model based just on crash rates per year (but including an owner location variable) produced estimates that were generally similar to the full model, although there was more spread in the estimates. The best replication of the full model estimates was generated by a synthesis of the reduced model and an induced exposure model. This study compared approaches to estimating primary safety that could mimic

  15. Energy harvesting by means of flow-induced vibrations on aerospace vehicles

    Science.gov (United States)

    Li, Daochun; Wu, Yining; Da Ronch, Andrea; Xiang, Jinwu

    2016-10-01

    This paper reviews the design, implementation, and demonstration of energy harvesting devices that exploit flow-induced vibrations as the main source of energy. Starting with a presentation of various concepts of energy harvesters that are designed to benefit from a general class of flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to extend the operational capabilities and to monitor critical parameters of unmanned aerial vehicles. Various phenomena characterized by flow-induced vibrations are discussed, including limit cycle oscillations of plates and wing sections, vortex-induced and galloping oscillations of bluff bodies, vortex-induced vibrations of downstream structures, and atmospheric turbulence and gusts. It was found that linear or linearized modeling approaches are commonly employed to support the design phase of energy harvesters. As a result, highly nonlinear and coupled phenomena that characterize flow-induced vibrations are neglected in the design process. The Authors encourage a shift in the current design paradigm: considering coupled nonlinear phenomena, and adequate modeling tools to support their analysis, from a design limitation to a design opportunity. Special emphasis is placed on identifying designs and implementations applicable to aircraft configurations. Application fields of flow-induced vibrations-based energy harvesters are discussed including power supply for wireless sensor networks and simultaneous energy harvest and control. A large body of work on energy harvesters is included in this review journal. Whereas most of the references claim direct applications to unmanned aerial vehicles, it is apparent that, in most of the cases presented, the working principles and characteristics of the energy harvesters are incompatible with any aerospace applications. Finally, the challenges that hold back the integration of energy harvesting

  16. Noise, vibration and harshness (NVH) criteria as functions of vehicle design and consumer expectations

    Science.gov (United States)

    Raichel, Daniel R.

    2005-09-01

    The criteria for NVH design are to a large degree determined by the types of vehicles and the perceived desires of the purchasers of vehicles, as well as the cost of incorporating NVH measures. Vehicles may be classified into specific types, e.g., economy car, midsize passenger, near-luxury and luxury passenger cars, sports cars, vans, minivans, and sports utility vehicles of varying sizes. The owner of a luxury sedan would expect a quiet ride with minimal vibration and harshness-however, if that sedan is to display sporting characteristics, some aspects of NVH may actually have to be increased in order to enhance a feeling of driver exhilaration. A discussion of the requirements for specific types of vehicles is provided, with due regard for effects on the usability of installed sound/video systems, driver and passenger fatigue, feel of steering mechanisms and other mechanical components, consumer market research, etc. A number of examples of vehicles on the market are cited.

  17. A wind-tunnel study on exhaust gas dispersion from road vehicles. Part 1. Velocity and concentration fields behind single vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Isao; Uehara, Kiyoshi; Yamao, Yukio [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 (Japan); Yoshikawa, Yasuo; Morikawa, Tazuko [Petroleum Energy Center, 4-3-9 Toranomon, Minato-ku, Tokyo, 105-0001 (Japan)

    2006-09-15

    By a reduced-scale model in a wind tunnel, we investigate the dispersion behavior of exhaust gas from automobiles. Two types of vehicles are considered, a passenger car and a small-size truck. Tracer gas experiments show that the exhaust gas dispersion is enhanced significantly by the vehicle wake compared to the case when the vehicle body is absent. The passenger car and the truck promote dispersion in the horizontal and the vertical direction, respectively. The wake field is analyzed by particle image velocimetry (PIV), and the distribution of the mean and the fluctuation fields is found to conform to the concentration field of the exhaust gas. The buoyancy of the exhaust gas has minor effect except on the vertical spread behind the truck whose wake flow amplifies the vertical displacement generated near the pipe exit. (author)

  18. Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller

    Directory of Open Access Journals (Sweden)

    Muzaffer Metin

    2014-01-01

    Full Text Available In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain.

  19. Description of light-vehicle pre-crash scenarios for safety applications based on vehicle-to-vehicle communications

    Science.gov (United States)

    2013-05-31

    This report describes pre-crash scenarios that might be addressed by vehicle-to-vehicle communications. The focus is on crashes involving at least 1 light vehicle with a gross vehicle weight rating of 10,000 pounds or less. The 2004-2008 General Esti...

  20. Considerations on the use of elastic wheels to the urban transport vehicles

    Science.gov (United States)

    Sebesan, Ioan; Arsene, Sorin; Manea, Ion

    2018-03-01

    To minimize dynamic wheel-rail interaction efforts a condition is that the unassembled mass of the vehicle is as small as possible. The elastic wheel by its construction fulfills these conditions - she has interposed between the crown and the body of the wheel, the elastic rubber elements. In this way, it can be considered that the unsupported mass is represented only by the mass of the wheel crown. Additionally, this elasticity also has a reduction effect on rolling noise. This feature makes it suitable for use on urban transport vehicles.

  1. CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle

    Science.gov (United States)

    Rege, Alok Ashok

    The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better

  2. Motion control of rigid bodies in SE(3)

    Science.gov (United States)

    Roza, Ashton

    This thesis investigates the control of motion for a general class of vehicles that rotate and translate in three-space, and are propelled by a thrust vector which has fixed direction in body frame. The thesis addresses the problems of path following and position control. For path following, a feedback linearization controller is presented that makes the vehicle follow an arbitrary closed curve while simultaneously allowing the designer to specify the velocity profile of the vehicle on the path and its heading. For position control, a two-stage approach is presented that decouples position control from attitude control, allowing for a modular design and yielding almost global asymptotic stability of any desired hovering equilibrium. The effectiveness of the proposed method is verified both in simulation and experimentally by means of a hardware-in-the-loop setup emulating a co-axial helicopter.

  3. The Ergonomics of Human Space Flight: NASA Vehicles and Spacesuits

    Science.gov (United States)

    Reid, Christopher R.; Rajulu, Sudhakar

    2014-01-01

    Space...the final frontier...these are the voyages of the starship...wait, wait, wait...that's not right...let's try that again. NASA is currently focusing on developing multiple strategies to prepare humans for a future trip to Mars. This includes (1) learning and characterizing the human system while in the weightlessness of low earth orbit on the International Space Station and (2) seeding the creation of commercial inspired vehicles by providing guidance and funding to US companies. At the same time, NASA is slowly leading the efforts of reestablishing human deep space travel through the development of the Multi-Purpose Crew Vehicle (MPCV) known as Orion and the Space Launch System (SLS) with the interim aim of visiting and exploring an asteroid. Without Earth's gravity, current and future human space travel exposes humans to micro- and partial gravity conditions, which are known to force the body to adapt both physically and physiologically. Without the protection of Earth's atmosphere, space is hazardous to most living organisms. To protect themselves from these difficult conditions, Astronauts utilize pressurized spacesuits for both intravehicular travel and extravehicular activities (EVAs). Ensuring a safe living and working environment for space missions requires the creativity of scientists and engineers to assess and mitigate potential risks through engineering designs. The discipline of human factors and ergonomics at NASA is critical in making sure these designs are not just functionally designed for people to use, but are optimally designed to work within the capacities specific to the Astronaut Corps. This lecture will review both current and future NASA vehicles and spacesuits while providing an ergonomic perspective using case studies that were and are being carried out by the Anthropometry and Biomechanics Facility (ABF) at NASA's Johnson Space Center.

  4. On the Possibility of using Alluminium-Magnesium Alloys with Improved Mechanical Characteristics for Body Elements of Zenit-2S Launch Vehicle Propellant Tanks

    Science.gov (United States)

    Sitalo, V.; Lytvyshko, T.

    2002-01-01

    of yield strength. The analysis of the performed work showed good prospects of using the alluminium-magnesium alloys with increased mechanical characteristics for making body elements of propellant tanks of the Zenit -2S launch vehicles. The use of these alloys can give the increase of structural strength by 20-30% and considerable increase of payload weight.

  5. Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance

    Directory of Open Access Journals (Sweden)

    Alberto Chávez-Aragón

    2013-01-01

    Full Text Available This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot with enough spatial information to interact with automobile panels using various tools. When a vehicle is positioned inside the defined scanning area, a collection of reference parts on the bodywork are automatically recognized from a mosaic of color images collected by a network of Kinect sensors distributed around the vehicle and a global frame of reference is set up. Sections of the depth information on one side of the vehicle are then collected, aligned, and merged into a global RGB-D model. Finally, a 3D triangular mesh modelling the body panels of the vehicle is automatically built. The approach has applications in the intelligent transportation industry, automated vehicle inspection, quality control, automatic car wash systems, automotive production lines, and scan alignment and interpretation.

  6. State-of-the-art assessment of electric vehicles and hybrid vehicles

    Science.gov (United States)

    1977-01-01

    The Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976 (PL 94-413) requires that data be developed to characterize the state of the art of vehicles powered by an electric motor and those propelled by a combination of an electric motor and an internal combustion engine or other power sources. Data obtained from controlled tests of a representative number of sample vehicles, from information supplied by manufacturers or contained in the literature, and from surveys of fleet operators of individual owners of electric vehicles is discussed. The results of track and dynamometer tests conducted by NASA on 22 electric, 2 hybrid, and 5 conventional vehicles, as well as on 5 spark-ignition-engine-powered vehicles, the conventional counterparts of 5 of the vehicles, are presented.

  7. Tracking of Vehicle Movement on a Parking Lot Based on Video Detection

    Directory of Open Access Journals (Sweden)

    Ján HALGAŠ

    2014-06-01

    Full Text Available This article deals with topic of transport vehicles identification for dynamic and static transport based on video detection. It explains some of the technologies and approaches necessary for processing of specific image information (transport situation. The paper also describes a design of algorithm for vehicle detection on parking lot and consecutive record of trajectory into virtual environment. It shows a new approach to moving object detection (vehicles, people, and handlers on an enclosed area with emphasis on secure parking. The created application enables automatic identification of trajectory of specific objects moving within the parking area. The application was created in program language C++ with using an open source library OpenCV.

  8. Modeling and testing of a tube-in-tube separation mechanism of bodies in space

    Science.gov (United States)

    Michaels, Dan; Gany, Alon

    2016-12-01

    A tube-in-tube concept for separation of bodies in space was investigated theoretically and experimentally. The separation system is based on generation of high pressure gas by combustion of solid propellant and restricting the expansion of the gas only by ejecting the two bodies in opposite directions, in such a fashion that maximizes generated impulse. An interior ballistics model was developed in order to investigate the potential benefits of the separation system for a large range of space body masses and for different design parameters such as geometry and propellant. The model takes into account solid propellant combustion, heat losses, and gas phase chemical reactions. The model shows that for large bodies (above 100 kg) and typical separation velocities of 5 m/s, the proposed separation mechanism may be characterized by a specific impulse of 25,000 s, two order of magnitude larger than that of conventional solid rockets. It means that the proposed separation system requires only 1% of the propellant mass that would be needed for a conventional rocket for the same mission. Since many existing launch vehicles obtain such separation velocities by using conventional solid rocket motors (retro-rockets), the implementation of the new separation system design can reduce dramatically the mass of the separation system and increase safety. A dedicated experimental setup was built in order to demonstrate the concept and validate the model. The experimental results revealed specific impulse values of up to 27,000 s and showed good correspondence with the model.

  9. An algorithm on simultaneous optimization of performance and mass parameters of open-cycle liquid-propellant engine of launch vehicles

    Science.gov (United States)

    Eskandari, M. A.; Mazraeshahi, H. K.; Ramesh, D.; Montazer, E.; Salami, E.; Romli, F. I.

    2017-12-01

    In this paper, a new method for the determination of optimum parameters of open-cycle liquid-propellant engine of launch vehicles is introduced. The parameters affecting the objective function, which is the ratio of specific impulse to gross mass of the launch vehicle, are chosen to achieve maximum specific impulse as well as minimum mass for the structure of engine, tanks, etc. The proposed algorithm uses constant integration of thrust with respect to time for launch vehicle with specific diameter and length to calculate the optimum working condition. The results by this novel algorithm are compared to those obtained from using Genetic Algorithm method and they are also validated against the results of existing launch vehicle.

  10. Energy-optimal motion planning for multiple robotic vehicles with collision avoidance

    NARCIS (Netherlands)

    Häusler, A.J.; Saccon, A.; Aguiar, A.P.; Hauser, J.; Pascoal, A.M.

    2016-01-01

    We propose a numerical algorithm for multiple-vehicle motion planning that explicitly takes into account the vehicle dynamics, temporal and spatial specifications, and energy-related requirements. As a motivating example, we consider the case where a group of vehicles is tasked to reach a number of

  11. Effectiveness of vehicle weight enforcement in a developing country using weigh-in-motion sorting system considering vehicle by-pass and enforcement capability

    Directory of Open Access Journals (Sweden)

    Mohamed Rehan Karim

    2014-03-01

    Full Text Available Vehicle overloading has been identified as one of the major contributors to road pavement damage in Malaysia. In this study, the weigh-in-motion (WIM system has been used to function as a vehicle weight sorting tool to complement the exsiting static weigh bridge enforcement station. Data collected from the developed system is used to explore the effectiveness of using WIM system in terms of generating more accurate data for enforcement purposes and at the same time improving safety and reducing the number of vehicle weight violations on the roads. This study specifically focus on the effect of vehicle by-pass and static weigh station enforcement capability on the overall effectiveness of vehicle weight enforcement system in a developing country. Results from this study suggest that the WIM system will significantly enhance the effectiveness and efficiency of the current vehicle weight enforcement, thus generating substantial revenue that would greatly off-set the current road maintenance budget that comes from tax payers money. If there is substantial reduction in overloaded vehicles, the public will still gain through reduction in road maintenance budget, less accident risks involving heavy trucks, and lesser greenhouse gases (GHGs emissions.

  12. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Chauveron, S. de

    1996-01-01

    This article presents compressed natural gas for vehicles (CNG), which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical descriptions is given of CNG stations and vehicles, with the aim of acquainting the reader with some of CNG's specific technical features as compared to gasoline and diesel oil. Here CNG technologies are seen to be very close to the more conventional ones. (author)

  13. Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?

    Directory of Open Access Journals (Sweden)

    Seiho Kim

    2017-10-01

    Full Text Available This study aims to determine the influential factors on the market share of electric vehicles through panel data analysis based on time series data from 2011 to 2015 in 31 countries. We selected five significant independent variables that are expected to affect electric vehicle adoption based on literature review. The econometric model in this study suggests that the relative price of electric vehicle compared to internal combustion engine vehicle, driving range, and number of models available in markets are correlated to the market share of electric vehicles. On the other hand, relationship between recharging infrastructure—an important factor for electric vehicle adoption in many studies—and market share of electric vehicles turned out to be insignificant in this study. From a political point of view, we argue that policy makers need to allocate more resources to research and development in order to extend driving range at the early stage of electric vehicle deployment in the markets.

  14. Analysis of Non-Tactical Vehicle Utilization at Fort Carson Colorado

    Science.gov (United States)

    2012-01-01

    regenerative braking energy recovery. The mass of the vehicles monitored in this study was not known. However, some useful information may be...Unclassified: Distribution A. Approved for Public Release 2012 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM MODELING... regenerative energy recovery potential for specific duty cycles was also quantified through a cumulative assessment of the number and severity of deceleration

  15. Using fleets of electric-drive vehicles for grid support

    International Nuclear Information System (INIS)

    Tomic, Jasna; Kempton, Willett

    2007-01-01

    Electric-drive vehicles can provide power to the electric grid when they are parked (vehicle-to-grid power). We evaluated the economic potential of two utility-owned fleets of battery-electric vehicles to provide power for a specific electricity market, regulation, in four US regional regulation services markets. The two battery-electric fleet cases are: (a) 100 Th.nk City vehicle and (b) 252 Toyota RAV4. Important variables are: (a) the market value of regulation services, (b) the power capacity (kW) of the electrical connections and wiring, and (c) the energy capacity (kWh) of the vehicle's battery. With a few exceptions when the annual market value of regulation was low, we find that vehicle-to-grid power for regulation services is profitable across all four markets analyzed. Assuming now more than current Level 2 charging infrastructure (6.6 kW) the annual net profit for the Th.nk City fleet is from US$ 7000 to 70,000 providing regulation down only. For the RAV4 fleet the annual net profit ranges from US$ 24,000 to 260,000 providing regulation down and up. Vehicle-to-grid power could provide a significant revenue stream that would improve the economics of grid-connected electric-drive vehicles and further encourage their adoption. It would also improve the stability of the electrical grid. (author)

  16. Prediction of dynamics of bellows in exhaust system of vehicle using equivalent beam modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Ho; Kim, Yong Dae; Lee, Nam Young; Lee, Sang Woo [Noise and vibration CAE Team, Hyundai Motor Company, Ulsan (Korea, Republic of)

    2015-11-15

    The exhaust system is one of the major sources of vibrations, along with the suspension system and engine. When the exhaust system is connected directly to the engine, it transfers vibrations to the vehicle body through the body mounts. Therefore, in order to reduce the vibrations transmitted from the exhaust system, the vibration characteristics of the exhaust system should be predicted. Thus, the dynamic characteristics of the bellows, which form a key component of the exhaust system, must be modeled accurately. However, it is difficult to model the bellows because of the complicated geometry. Though the equivalent beam modeling technique has been applied in the design stage, it is not sufficiently accurate in the case of the bellows which have complicated geometries. In this paper, we present an improved technique for modeling the bellows in a vehicle. The accuracy of the modeling method is verified by comparison with the experimental results.

  17. 78 FR 78467 - Connected Vehicle Research Program Public Meeting; Notice of Public Meeting

    Science.gov (United States)

    2013-12-26

    ... connected vehicle technologies. The primary target audience for the meeting is State and local Departments... meeting is specifically focused for an audience that has followed connected vehicle research and is...

  18. Vehicle Routing Problems for Drone Delivery

    OpenAIRE

    Dorling, Kevin; Heinrichs, Jordan; Messier, Geoffrey G.; Magierowski, Sebastian

    2016-01-01

    Unmanned aerial vehicles, or drones, have the potential to significantly reduce the cost and time of making last-mile deliveries and responding to emergencies. Despite this potential, little work has gone into developing vehicle routing problems (VRPs) specifically for drone delivery scenarios. Existing VRPs are insufficient for planning drone deliveries: either multiple trips to the depot are not permitted, leading to solutions with excess drones, or the effect of battery and payload weight ...

  19. Development of Vehicle Model Test for Road Loading Analysis of Sedan Model

    Science.gov (United States)

    Mohd Nor, M. K.; Noordin, A.; Ruzali, M. F. S.; Hussen, M. H.

    2016-11-01

    Simple Structural Surfaces (SSS) method is offered as a means of organizing the process for rationalizing the basic vehicle body structure load paths. The application of this simplified approach is highly beneficial in the design development of modern passenger car structure especially during the conceptual stage. In Malaysia, however, there is no real physical model of SSS available to gain considerable insight and understanding into the function of each major subassembly in the whole vehicle structures. Based on this motivation, a physical model of SSS for sedan model with the corresponding model vehicle tests of bending and torsion is proposed in this work. The proposed approach is relatively easy to understand as compared to Finite Element Method (FEM). The results show that the proposed vehicle model test is capable to show that satisfactory load paths can give a sufficient structural stiffness within the vehicle structure. It is clearly observed that the global bending stiffness reduce significantly when more panels are removed from a complete SSS model. It is identified that parcel shelf is an important subassembly to sustain bending load. The results also match with the theoretical hypothesis, as the stiffness of the structure in an open section condition is shown weak when subjected to torsion load compared to bending load. The proposed approach can potentially be integrated with FEM to speed up the design process of automotive vehicle.

  20. Traffic Information Unit, Traffic Information System, Vehicle Management System, Vehicle, and Method of Controlling a Vehicle

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A traffic information unit (MD1, MD2, MD3) according to the invention comprises a facility (MI) for tracking vehicle state information of individual vehicles present at a traffic infrastructure and a facility (T) for transmitting said vehicle state information to a vehicle (70B, 70E). A traffic

  1. Propulsion requirements for reusable single-stage-to-orbit rocket vehicles

    Science.gov (United States)

    Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger

    1994-05-01

    The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.

  2. Fuzzy-Skyhook Control for Active Suspension Systems Applied to a Full Vehicle Model

    Directory of Open Access Journals (Sweden)

    Aref M.A. Soliman

    2012-04-01

    Full Text Available Nowadays, most modern vehicles are equipped with controlled suspension systems for improving the vehicle ride comfort. Therefore, this paper is concerned with a theoretical study for the ride comfort performance of the vehicle. The theoretical investigation includes a suggestion of an active suspension system controller using fuzzy-skyhook control theory, which offers new opportunities for the improvement of vehicle ride performance. The ride comfort of the active suspension system has been evaluated using a 7 degree of freedom full vehicle mathematical model. The simulation results are presented in the time and frequency domain, also in terms of RMS values, and it’s shown that the proposed active suspension system with fuzzy-skyhook control improved the vehicle ride quality in terms of body acceleration, suspension working space and dynamic tyre load in comparison with the passive and skyhook suspension systems.

  3. Vehicle choice in aging population: Some insights from a stated preference survey for California

    Energy Technology Data Exchange (ETDEWEB)

    Kavalec, C.

    1999-07-01

    This paper investigates the potential effects that an aging baby boomer generation will have on gasoline use through their vehicle choice decisions. The study uses stated preference data for both conventional and alternative fuel vehicles, and measures the impact of age of survey respondent on the perceived value of vehicle characteristics such as fuel economy, performance, and body style (e.g., car vs. truck). The results suggest the possibility that average fleet fuel economy may improve in the next few years, if survey preferences translate to actual purchase behavior. No clear implications can be drawn regarding the demand for alternative fuel vehicles.

  4. Finite element crash simulations of the human body: Passive and ...

    Indian Academy of Sciences (India)

    of the vehicle that cause injury and their zone of action on the human body. For example .... The commonly used hyper elastic material models to predict the soft tissue responses ..... forces during post impact move- .... electromyogram in man.

  5. Knowledge-based fault diagnosis system for refuse collection vehicle

    International Nuclear Information System (INIS)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y.

    2015-01-01

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle

  6. Knowledge-based fault diagnosis system for refuse collection vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y. [Centre of Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka (Malaysia)

    2015-05-15

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  7. Observing bodies. Camera surveillance and the significance of the body.

    NARCIS (Netherlands)

    Dubbeld, L.

    2003-01-01

    At the most mundane level, CCTV observes bodies, and as such attaches great importance to the specific features of the human body. At the same time, however, bodies tend to disappear, as they are represented electronically by the camera monitors and, in the case of image recording, by the computer

  8. Identification of a functional element in the promoter of the silkworm (Bombyx mori) fat body-specific gene Bmlp3.

    Science.gov (United States)

    Xu, Hanfu; Deng, Dangjun; Yuan, Lin; Wang, Yuancheng; Wang, Feng; Xia, Qingyou

    2014-08-01

    30K proteins are a group of structurally related proteins that play important roles in the life cycle of the silkworm Bombyx mori and are largely synthesized and regulated in a time-dependent manner in the fat body. Little is known about the upstream regulatory elements associated with the genes encoding these proteins. In the present study, the promoter of Bmlp3, a fat body-specific gene encoding a 30K protein family member, was characterized by joining sequences containing the Bmlp3 promoter with various amounts of 5' upstream sequences to a luciferase reporter gene. The results indicated that the sequences from -150 to -250bp and -597 to -675bp upstream of the Bmlp3 transcription start site were necessary for high levels of luciferase activity. Further analysis showed that a 21-bp sequence located between -230 and -250 was specifically recognized by nuclear factors from silkworm fat bodies and BmE cells, and could enhance luciferase reporter-gene expression 2.8-fold in BmE cells. This study provides new insights into the Bmlp3 promoter and contributes to the further clarification of the function and developmental regulation of Bmlp3. Copyright © 2014. Published by Elsevier B.V.

  9. 2014 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Diegel, Susan W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  10. A Low-Cost Vehicle Anti-Theft System Using Obsolete Smartphone

    Directory of Open Access Journals (Sweden)

    Bang Liu

    2018-01-01

    Full Text Available In modern society, vehicle theft has become an increasing problem to the general public. Deploying onboard anti-theft systems could relieve this problem, but it often requires extra investment for vehicle owners. In this paper, we propose the idea of PhoneInside, which does not need a special device but leverages an obsolete smartphone to build a low-cost vehicle anti-theft system. After being fixed in the vehicle body with a car charger, the smartphone can detect vehicle movement and adaptively use GPS, cellular/WiFi localization, and dead reckoning to locate the vehicle during driving. Especially, a novel Velocity-Aware Dead Reckoning (VA-DR method is presented, which utilizes map knowledge and vehicle’s turns at road curves and intersections to estimate velocity for trajectory computation. Compared to traditional dead reckoning, it reduces accumulated errors and achieves great improvement in localization accuracy. Furthermore, based on the learning of the driving history, our system can establish individual mobility model for a vehicle and distinguish abnormal driving behaviors by a Long Short Term Memory (LSTM network. With the help of ad hoc authentication, the system can identify vehicle theft and send out timely alarming and tracking messages for rapid recovery. The realistic experiments running on Android smartphones prove that our system can detect vehicle theft effectively and locate a stolen vehicle accurately, with average errors less than the sight range.

  11. Car firms and low-emission vehicles: The evolution of incumbents’ strategies in relation to policy developments

    NARCIS (Netherlands)

    Bohnsack, R.

    2013-01-01

    This dissertation explores the developments in the international car industry from 1997 to 2010 in relation to low-emission vehicles, with specific attention to electric vehicles. More specifically, the study seeks to better understand strategies of car manufacturers and the interplay of

  12. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    International Nuclear Information System (INIS)

    Askin, Amanda C.; Barter, Garrett E.; West, Todd H.; Manley, Dawn K.

    2015-01-01

    We present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. The model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives. -- Highlights: •We present a parametric analysis of factors U.S. Class 7–8 trucks through 2050. •Conventional diesels will be more than 70% of U.S. heavy-duty vehicles through 2050. •CNG trucks are well suited to large, urban fleets with private refueling. •Ultra-efficient long haul diesel trucks are preferred over LNG at current fuel prices

  13. Fifty years of fuel quality and vehicle emissions

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K. [CONCAWE, Brussels (Belgium)

    2013-04-01

    In the late 1970s, with growing emphasis on urban air quality in Europe, CONCAWE embarked on new research related to fuels and vehicles. After only a few years, it became clear that fuel properties and specifications would be increasingly important to the future of the European refining industry, and considerable research was completed in the 1970s to better understand the impact of fuel composition on vehicle performance and emissions. This early work led to the formation of the first Fuels and Emissions Management Group (FEMG) in 1982, almost 20 years after the formation of the CONCAWE Association. Since these early days, FEMG has been responsible for ensuring CONCAWE's strategic outlook on future vehicle and fuel developments, monitoring regulatory and vehicle developments, and overseeing a diverse portfolio of fuel quality and vehicle emissions research. Since the 1980s, tremendous progress has been made in improving European air quality, in part by reducing emissions from road transport and other sectors, and major improvements in European fuel qualities have contributed to these reductions. Nevertheless, many challenges are still ahead, especially further reductions in pollutant emissions from vehicles while also reducing greenhouse gas (GHG) emissions from transport. In the near-term, these GHG reductions will largely come from improvements in engine and vehicle fuel consumption and by blending of GHG-reducing bio-blending components. Dealing with these challenges to fuel quality and performance will require a continuing focus on CONCAWE's founding principles: sound science, cost effectiveness and transparency.

  14. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J [ORNL

    2015-08-01

    This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local Motors Inc. Phase 1 was previously reported as Advanced Manufacturing of Complex Cyber Mechanical Devices through Community Engagement and Micro-manufacturing and demonstrated the integration of components onto a prototype body part for a vehicle. Phase 2 was reported as Utility of Big Area Additive Manufacturing (BAAM) for the Rapid Manufacture of Customized Electric Vehicles and demonstrated the high profile live printing of an all-electric vehicle using ONRL s Big Area Additive Manufacturing (BAAM) technology. This demonstration generated considerable national attention and successfully demonstrated the capabilities of the BAAM system as developed by ORNL and Cincinnati, Inc. and the feasibility of additive manufacturing of a full scale electric vehicle as envisioned by the CRADA partner Local Motors, Inc.

  15. Hybrid Aerial/Rover Vehicle

    Science.gov (United States)

    Bachelder, Aaron

    2003-01-01

    A proposed instrumented robotic vehicle called an "aerover" would fly, roll along the ground, and/or float on bodies of liquid, as needed. The aerover would combine features of an aerobot (a robotic lighter-than-air balloon) and a wheeled robot of the "rover" class. An aerover would also look very much like a variant of the "beach-ball" rovers. Although the aerover was conceived for use in scientific exploration of Titan (the largest moon of the planet Saturn), the aerover concept could readily be adapted to similar uses on Earth.

  16. Integrated vehicle control and guidance systems in unmanned ground vehicles for commercial applications

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' unmanned vehicle. One of our systems was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. In order to deliver fixed price commercial projects now, it was apparent system and component costs were of paramount importance. Cyplex has developed a robust, cost effective single wire guidance system. This system has inherent advantages in system simplicity. Multi-signal (per vehicle lane) systems complicate path planning and layout when multiple lanes and lane changes are required, as on actual highways. The system has demonstrated high enough immunity to rain and light snow cover that normal safety reductions in speed are adequate to stay within the required system performance envelope. This system and it's antenna interface have shown the ability to guide the vehicle at slow speeds (10 MPH) with a tracking repeatability of plus or minus 1/8 of an inch. The basic guide and antenna system has been tested at speeds up to 80 mph. The system has inherently superior abilities for lane changes and precision vehicle placement. The operation of this system will be described and the impact of a system that is commercially viable now for highway and off road use will be discussed.

  17. Design Specification for a Thrust-Vectoring, Actuated-Nose-Strake Flight Control Law for the High-Alpha Research Vehicle

    Science.gov (United States)

    Bacon, Barton J.; Carzoo, Susan W.; Davidson, John B.; Hoffler, Keith D.; Lallman, Frederick J.; Messina, Michael D.; Murphy, Patrick C.; Ostroff, Aaron J.; Proffitt, Melissa S.; Yeager, Jessie C.; hide

    1996-01-01

    Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.

  18. INTERACTIVE MOTION PLATFORMS AND VIRTUAL REALITY FOR VEHICLE SIMULATORS

    Directory of Open Access Journals (Sweden)

    Evžen Thöndel

    2017-12-01

    Full Text Available Interactive motion platforms are intended for vehicle simulators, where the direct interaction of the human body is used for controlling the simulated vehicle (e.g. bicycle, motorbike or other sports vehicles. The second use of interactive motion platforms is for entertainment purposes or fitness. The development of interactive motion platforms reacts to recent calls in the simulation industry to provide a device, which further enhances the virtual reality experience, especially with connection to the new and very fast growing business in virtual reality glasses. The paper looks at the design and control of an interactive motion platform with two degrees of freedom to be used in virtual reality applications. The paper provides the description of the control methods and new problems related to the virtual reality sickness are discussed here.

  19. A numerical simulation of wheel spray for simplified vehicle model based on discrete phase method

    Directory of Open Access Journals (Sweden)

    Xingjun Hu

    2015-07-01

    Full Text Available Road spray greatly affects vehicle body soiling and driving safety. The study of road spray has attracted increasing attention. In this article, computational fluid dynamics software with widely used finite volume method code was employed to investigate the numerical simulation of spray induced by a simplified wheel model and a modified square-back model proposed by the Motor Industry Research Association. Shear stress transport k-omega turbulence model, discrete phase model, and Eulerian wall-film model were selected. In the simulation process, the phenomenon of breakup and coalescence of drops were considered, and the continuous and discrete phases were treated as two-way coupled in momentum and turbulent motion. The relationship between the vehicle external flow structure and body soiling was also discussed.

  20. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    International Nuclear Information System (INIS)

    Knecht, Sean D.; Mead, Franklin B.; Thomas, Robert E.; Miley, George H.; Froning, David

    2006-01-01

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ηprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ηprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons

  1. Control of a Virtual Vehicle Influences Postural Activity and Motion Sickness

    Science.gov (United States)

    Dong, Xiao; Yoshida, Ken; Stoffregen, Thomas A.

    2011-01-01

    Everyday experience suggests that drivers are less susceptible to motion sickness than passengers. In the context of inertial motion (i.e., physical displacement), this effect has been confirmed in laboratory research using whole body motion devices. We asked whether a similar effect would occur in the context of simulated vehicles in a visual…

  2. 78 FR 51381 - Early Warning Reporting, Foreign Defect Reporting, and Motor Vehicle and Equipment Recall...

    Science.gov (United States)

    2013-08-20

    ... Toyota Motor North America, Inc. (Toyota). The specific comments of each entity will be discussed below... Toyota commented specifically on the proposal to amend Sec. 579.21(b) and (c) to require light vehicle.... Toyota indicated that they could determine the vehicle type from vehicle model; while Ford indicated that...

  3. Occupant-vehicle dynamics and the role of the internal model

    Science.gov (United States)

    Cole, David J.

    2018-05-01

    With the increasing need to reduce time and cost of vehicle development there is increasing advantage in simulating mathematically the dynamic interaction of a vehicle and its occupant. The larger design space arising from the introduction of automated vehicles further increases the potential advantage. The aim of the paper is to outline the role of the internal model hypothesis in understanding and modelling occupant-vehicle dynamics, specifically the dynamics associated with direction and speed control of the vehicle. The internal model is the driver's or passenger's understanding of the vehicle dynamics and is thought to be employed in the perception, cognition and action processes of the brain. The internal model aids the estimation of the states of the vehicle from noisy sensory measurements. It can also be used to optimise cognitive control action by predicting the consequence of the action; thus model predictive control (MPC) theory provides a foundation for modelling the cognition process. The stretch reflex of the neuromuscular system also makes use of the prediction of the internal model. Extensions to the MPC approach are described which account for: interaction with an automated vehicle; robust control; intermittent control; and cognitive workload. Further work to extend understanding of occupant-vehicle dynamic interaction is outlined. This paper is based on a keynote presentation given by the author to the 13th International Symposium on Advanced Vehicle Control (AVEC) conference held in Munich, September 2016.

  4. A novel core 1 O-linked glycan-specific binding lectin from the fruiting body of Hericium erinaceus.

    Science.gov (United States)

    Kim, Seonghun

    2018-02-01

    Mucin-type O-glycans are involved in biological functions on the cell surface as well as the glycoproteins and can also be used as specific carbohydrate biomarkers of many diseases. In this study, I purified a novel core 1 O-linked glycan specific lectin, Hericium erinaceus lecin (HeL), from the fruiting body of the mushroom Hericium erinaceus, which is known as the natural source for a sialic acid-binding lectin. Upon optimization of the purification conditions, a sequence of ion exchange, affinity, ion exchange, and size-exclusion chromatography resulted in the highest yield and best quality of lectin without protease activity. The resulting purified HeL is an apparent hexameric protein with a subunit molecular weight of 15kDa, and a pI of 4.3. In hemagglutination inhibition assay, the purified lectin was only inhibited by glycoproteins containing mucin-type O-glycans and reacted weakly with Galβ(1,3)GalNAc. Glycan array analyses showed that HeL specifically interacts with core 1 O-linked glycans as well as extended O-glycan structures containing sialylation or fucosylation. The glycan binding specificity of HeL is comparable to that of peanut agglutinin for detection of a broader range of extended core 1 O-glycan structures. Taken together, these results provide an efficient and optimized procedure for the purification of HeL from the fruiting body of the mushroom Hericium erinaceus. Moreover, HeL represents a powerful tool for analyzing core 1 and extended core 1 O- glycan structures in diagnosis assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Implications of advanced vehicle technologies for older drivers.

    Science.gov (United States)

    Molnar, Lisa J; Eby, David W

    2017-09-01

    Advances are being made in vehicle technologies that may help older adults compensate for some of the declines in abilities associated with aging. These advances hold promise for increasing vehicle safety, reducing injuries, and making the driving task more comfortable. However, important research gaps remain with regard to how various advanced technologies impact the safety of older drivers, as well as older drivers' perceptions about these technologies. This special issue contains seven original contributions that address these issues. Specific topics include the: congruence of design guidelines with the needs and abilities of older drivers, transfer of control between automated and manual driving, use of in-vehicle monitoring technology, motivations for technology use and assigned meanings, technology valuation, and effects on driving behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Design study of flat belt CVT for electric vehicles

    Science.gov (United States)

    Kumm, E. L.

    1980-01-01

    A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the drive train of an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle operation. A design consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of how the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.

  7. All Electric Passenger Vehicle Sales in India by 2030: Value proposition to Electric Utilities, Government, and Vehicle Owners

    Energy Technology Data Exchange (ETDEWEB)

    Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gopal, Anand R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sheppard, Colin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-20

    In India, there is growing interest among policymakers, planners, and regulators for aggressive electrification of passenger vehicles. For example, Piyush Goyal, the Minister of State for India’s Ministry of Coal, Power, New and Renewable Energy, announced an aspirational goal of converting all vehicle sales in India to battery electric vehicles (BEVs) by 2030 (Economic Times, 2016). In 2012, India has already announced the National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020 (DHI, 2012). A major policy motivation for transport electrification is to reduce India’s oil import dependency. The objective of this paper is to assess the effect of full electrification of vehicle sales in India by 2030 on the key stakeholders such as BEV owners, electric utilities, and the government. Specifically, we attempt to answer the following questions: (a) How does the total vehicle ownership cost of BEVs compare with the conventional vehicles? (b) What is the additional load due BEV charging? (c) What is the impact on the power sector investments, costs, and utility revenue? (d) How can smart BEV charging help renewable energy grid integration? (e) What is the impact on the crude oil imports? (f) What is the impact on the greenhouse gas (GHG) emissions?

  8. 49 CFR 571.221 - Standard No. 221, School bus body joint strength.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Standard No. 221, School bus body joint strength. 571.221 Section 571.221 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR VEHICLE SAFETY STANDARDS Federal Motor Vehicle Safety Standard...

  9. 78 FR 14533 - Official Release of EMFAC2011 Motor Vehicle Emission Factor Model for Use in the State of California

    Science.gov (United States)

    2013-03-06

    ...-two different vehicle classes composed of passenger cars, various types of trucks and buses... inventory in tons/day for a specific year, month, or season, and as a function of ambient temperature... site-specific ambient temperature and relative humidity profiles, project-specific vehicle age...

  10. Rigid body dynamics of mechanisms

    CERN Document Server

    Hahn, Hubert

    2003-01-01

    The second volume of Rigid Body Dynamics of Mechanisms covers applications via a systematic method for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume that introduces the theoretical mechanical aspects of mechatronic systems. Here the focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, plus active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. The examples included are a likely source from which to choose models for university lectures.

  11. International Launch Vehicle Selection for Interplanetary Travel

    Science.gov (United States)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  12. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  13. Vibrational Comfort on Board the Vehicle: Influence of Speed Bumps and Comparison between Different Categories of Vehicle

    Directory of Open Access Journals (Sweden)

    Vincenzo Barone

    2016-01-01

    Full Text Available This paper shows the results of a study conducted on five different categories of vehicles in a specific test site. The aim was to investigate how the effect of the test site discontinuity determines variations of comfort related to the increase in speed and to the five selected road vehicles of different classes. Measurements were obtained by combining data relating to vibrations in the three reference axes, detected through a vibration dosimeter (VIB-008, and geolocation data (latitude, longitude, and speed identified by the GPS inside a smartphone. This procedure, through the synchronization between dosimeter and GPS location, has been helpful in postprocessing to eliminate any measurement anomalies generated by the operator. After the survey campaign it was determined that a formulation allows defining a Comfort Index (CI depending on velocity and five vehicles of different classes. This study showed that the presence of speed bumps, in the test site investigated, appears to be uncomfortable even at speeds well below those required by the Highway Code.

  14. [Mortality among able-bodied population in industrial cities in accordance with specific enterprise forming a company city].

    Science.gov (United States)

    Tikhonova, G I; Gorchakova, T Iu; Churanova, A N

    2013-01-01

    The article covers comparative analysis of mortality causes and levels among male able-bodied population in small and medium industrial cities of Murmansk region in accordance with specific enterprise forming a company city. Findings are that, if compared to Murmansk having no enterprise forming a company, other industrial cities in the region, situated in the same climate area, demonstrated higher levels of mortality among the male able-bodied population with the death causes associated etiologically to occupational hazards on the enterprises forming a company city.

  15. Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet

    International Nuclear Information System (INIS)

    Bandivadekar, Anup; Cheah, Lynette; Evans, Christopher; Groode, Tiffany; Heywood, John; Kasseris, Emmanuel; Kromer, Matthew; Weiss, Malcolm

    2008-01-01

    The unrelenting increase in the consumption of oil in the US light-duty vehicle fleet (cars and light trucks) presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce petroleum use and greenhouse gas emissions from motor vehicles. Even so, achieving a noticeable reduction on both fronts in the near term will require rapid penetration of these technologies into the vehicle fleet, and not all alternatives can meet both objectives simultaneously. Placing a much greater emphasis on reducing fuel consumption rather than improving vehicle performance can greatly reduce the required market penetration rates. Addressing the vehicle performance-size-fuel consumption trade-off should be the priority for policymakers rather than promoting specific vehicle technologies and fuels

  16. Specifics of the Court of Arbitration in sport as an international arbitration body

    Directory of Open Access Journals (Sweden)

    Galantić Miloš B.

    2015-01-01

    Full Text Available The Court of arbitration in sport represents an arbitral body whose task is to resolve the most significant disputes in the international community, within the autonomy of sport. With its adaptation to the contemporary system of sovereign states, by applying the classical principles of arbitration, with some degree of correction due to the specificity of sport, as well as the application of appropriate norms of international public law, achieved a situation that arbitration decisions of the Court are final. Despite its importance in the international community, domestic legal theory does not pay adequate attention to the above phenomenon. The task of this paper is to draw attention of the wider legal population to the existence of the Court of Arbitration in Sport, as well as pointing out the specifics of the Court of Arbitration in Sport to those skilled in classic commercial arbitration. Smaller or greater variations from the classical principles of commercial arbitration are conditioned by the specificity of social relations in sport. The focus of the analysis is placed primarily on issues of the legal fiction of arbitral tribunal seat, mandatory clause of acceptance of jurisdiction, the existence of the closed list of arbitrators and the lack of choice of arbitrators in the case of Ad hoc divisions, prohibition of addressing to the ordinary courts to establish a temporary measures and exclusive jurisdiction of CAS in a given matter, the publication of arbitral awards and 24-hour deadline for the application of the prescribed procedures and decision-making in the case of Ad hoc divisions.

  17. Analyzing Damping Vibration Methods of Large-Size Space Vehicles in the Earth's Magnetic Field

    Directory of Open Access Journals (Sweden)

    G. A. Shcheglov

    2016-01-01

    Full Text Available It is known that most of today's space vehicles comprise large antennas, which are bracket-attached to the vehicle body. Dimensions of reflector antennas may be of 30 ... 50 m. The weight of such constructions can reach approximately 200 kg.Since the antenna dimensions are significantly larger than the size of the vehicle body and the points to attach the brackets to the space vehicles have a low stiffness, conventional dampers may be inefficient. The paper proposes to consider the damping antenna in terms of its interaction with the Earth's magnetic field.A simple dynamic model of the space vehicle equipped with a large-size structure is built. The space vehicle is a parallelepiped to which the antenna is attached through a beam.To solve the model problems, was used a simplified model of Earth's magnetic field: uniform, with intensity lines parallel to each other and perpendicular to the plane of the antenna.The paper considers two layouts of coils with respect to the antenna, namely: a vertical one in which an axis of magnetic dipole is perpendicular to the antenna plane, and a horizontal layout in which an axis of magnetic dipole lies in the antenna plane. It also explores two ways for magnetic damping of oscillations: through the controlled current that is supplied from the power supply system of the space vehicle, and by the self-induction current in the coil. Thus, four objectives were formulated.In each task was formulated an oscillation equation. Then a ratio of oscillation amplitudes and their decay time were estimated. It was found that each task requires the certain parameters either of the antenna itself, its dimensions and moment of inertia, or of the coil and, respectively, the current, which is supplied from the space vehicle. In each task for these parameters were found the ranges, which allow us to tell of efficient damping vibrations.The conclusion can be drawn based on the analysis of tasks that a specialized control system

  18. Mathematical human body modelling for impact loading

    NARCIS (Netherlands)

    Happee, R.; Morsink, P.L.J.; Wismans, J.S.H.M.

    1999-01-01

    Mathematical modelling of the human body is widely used for automotive crash safety research and design. Simulations have contributed to a reduction of injury numbers by optimisation of vehicle structures and restraint systems. Currently such simulations are largely performed using occupant models

  19. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    Science.gov (United States)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  20. Vehicle modeling and duty cycle analysis to validate technology feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, S. [National Centre for Advanced Transportation, Saint-Jerome, PQ (Canada)

    2010-07-01

    The National Centre for Advanced Transportation (CNTA) is a non-profit organization with a board consisting of representatives from the transportation industry, public service and public transit organizations, research and teaching institutions, and from municipal and economic development organizations. The objectives of the CNTA are to accelerate the introduction of electric and hybrid vehicles; act as a catalyst in projects; assist in increasing Canadian technology assets; initiate and support electric vehicle conversion projects; increase Canadian business for electric vehicles, hybrid vehicles, and plug-in electric vehicles; and provide a cost-effective solution and aggressive payback for road/off-road vehicles. This presentation provided an overview of the objectives and services of the CNTA. It discussed various road and off-road vehicles, duty cycle and technology of electric vehicles. Specific topics related to the technology were discussed, including configuration; controls and interface; efficiency maps; models and simulation; validation; and support. figs.

  1. Contamination and decontamination of vehicles driven in radioactive areas

    International Nuclear Information System (INIS)

    Ulvsand, T.; Nygren, U.

    1999-03-01

    There is reason to ask whether it is beneficial to decontaminate vehicles, in view of the great effort applied. If the level of contamination is low before the decontamination process, then the cost is not motivated, even if the decontamination is shown to be effective in relative terms. The report describes two trials at the National NBC Defence School in Umeaa and one trial at the French test site in Bourges. The aim is to investigate how vehicles are contaminated and at which ground deposition levels troublesome levels of contamination will arise. In the trials, a non-radioactive agent substituting real radioactivity was used. The trials in Sweden so far have used the oversnow vehicle BV 206, during both winter and summer conditions. The vehicles were driven a specific distance along a road on which a known amount of the test substance had been dispersed. Samples were taken on pre-determined areas on one side of the vehicles to measure the amount of test substance. Later, the vehicles continued along a 'clean' road where additional samples were taken, but on the other side of the vehicles. The largest amount of test substance was collected on the tracks and on the back of the vehicle. The tracks and mud-flaps were effectively decontaminated when the vehicles were driven along a clean road, while most of the contamination remained on the backside. The purpose of the trials in France was to compare the results from our non-radioactive and their radioactive method, based on the radioactive La-140. Due to ground conditions, the level of contamination on the vehicles was much less than in the trials in Umeaa, but the effect decontamination could be measured after all

  2. Effects of alternative-fuel vehicles on air quality in Ontario, Canada

    International Nuclear Information System (INIS)

    Kantor, I.; Fowler, M.; Hajimiragha, A.; Canizares, C.; Elkamel, A.

    2009-01-01

    The economies of the developed world are increasingly including green technologies and processes that consider social, environmental and economic consequences. Hybrid electric vehicles and other fuel-efficient vehicle types can supply consumers with vehicles that decrease their ecological footprint and reduce the cost of fuel. However, one of the societal concerns often overlooked is the impact of alternative-fuel vehicle usage on the air quality in the urban environment. This paper presented a study that assessed the impact on air quality stemming from the operation of alternative fuel vehicles in urban environments. The study specifically focused on the province-wide emissions in Ontario and urban air pollution in the city of Toronto. The paper considered the life-cycle impacts of using alternative fuels for transportation purposes in terms of six major stressors for climate change, acidification and urban air quality. The two types of vehicles that were studied were plug-in hybrid electric vehicles (PHEVs) and fuel cell vehicles. Modeling of the penetration rates for both types of vehicles was completed based on the maximum capacity of the electrical grid including planned improvements. The scope of the study and discussion of health effects was first presented followed by data gathering and usage, methodology, results of supportable penetration and vehicle growth, and pollution abatement results. It was concluded that fuel cell vehicles have an advantage over, or near-equality with, PHEVs in almost every aspect of their emissions. 13 refs., 2 tabs., 10 figs

  3. Design of a multi-vehicles delivery tours satisfying duration constraints

    Energy Technology Data Exchange (ETDEWEB)

    Langevin, A; Soumis, F

    1987-01-01

    The following organization was studied for the letter and parcel pick-up and delivery problem in an urban environment. The day is divided in periods of time in which each vehicle starts from a sorting centre, travels to a very precise area of the region, picks up and delivers letters and parcels, and returns to the depot to have the collected material sorted out for delivery during the following period. The intent of this approach is to have each zone serviced by one vehicle only, in order to facilitate the work of the dispatcher and routing of each vehicle. A method has been developed of partitioning an urban region into zones to be assigned, each one to a specific vehicle, so as to minimize the total number of vehicles used or the total distance travelled by all vehicles. The first part of the method determines the zones and the average number of points to visit. Then, a first refinement of the method takes into account the daily variability of the demand in each zone, whereas a second refinement examines the advantage of allowing some overlapping of zones for the purpose of having an overloaded vehicle relieved by one from an adjacent zone. 17 refs., 11 figs., 2 tabs.

  4. Dynamic Parameter Identification of Subject-Specific Body Segment Parameters Using Robotics Formalism: Case Study Head Complex.

    Science.gov (United States)

    Díaz-Rodríguez, Miguel; Valera, Angel; Page, Alvaro; Besa, Antonio; Mata, Vicente

    2016-05-01

    Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.

  5. A Study to Identify Data Voids in the Application of Hi-Glide Canopies to Remotely Piloted Vehicles (RPV)

    Science.gov (United States)

    1976-01-01

    Parawing Vehicle (M.S. Thesis, Virginia Polytechnic Inst) N66-29712*# NASA-TM-X-57693 33. Clemmons , Dewey L. Some Analysis of Parawing Behavior... Maurice P. Two Body Trajectory Analysis of a Parachute-Cargo Airdrop System 79. Glauert, H. Heavy Flexible Cable for Towing a Heavy Body below an

  6. Disorders of body temperature.

    Science.gov (United States)

    Gomez, Camilo R

    2014-01-01

    The human body generates heat capable of raising body temperature by approximately 1°C per hour. Normally, this heat is dissipated by means of a thermoregulatory system. Disorders resulting from abnormally high or low body temperature result in neurologic dysfunction and pose a threat to life. In response to thermal stress, maintenance of normal body temperature is primarily maintained by convection and evaporation. Hyperthermia results from abnormal temperature regulation, leading to extremely elevated body temperature while fever results from a normal thermoregulatory mechanism operating at a higher set point. The former leads to specific clinical syndromes with inability of the thermoregulatory mechanism to maintain a constant body temperature. Heat related illness encompasses heat rash, heat cramps, heat exhaustion and heat stroke, in order of severity. In addition, drugs can induce hyperthermia and produce one of several specific clinical syndromes. Hypothermia is the reduction of body temperature to levels below 35°C from environmental exposure, metabolic disorders, or therapeutic intervention. Management of disorders of body temperature should be carried out decisively and expeditiously, in order to avoid secondary neurologic injury. © 2014 Elsevier B.V. All rights reserved.

  7. A New Model of Stopping Sight Distance of Curve Braking Based on Vehicle Dynamics

    Directory of Open Access Journals (Sweden)

    Rong-xia Xia

    2016-01-01

    Full Text Available Compared with straight-line braking, cornering brake has longer braking distance and poorer stability. Therefore, drivers are more prone to making mistakes. The braking process and the dynamics of vehicles in emergency situations on curves were analyzed. A biaxial four-wheel vehicle was simplified to a single model. Considering the braking process, dynamics, force distribution, and stability, a stopping sight distance of the curve braking calculation model was built. Then a driver-vehicle-road simulation platform was built using multibody dynamic software. The vehicle test of brake-in-turn was realized in this platform. The comparison of experimental and calculated values verified the reliability of the computational model. Eventually, the experimental values and calculated values were compared with the stopping sight distance recommended by the Highway Route Design Specification (JTGD20-2006; the current specification of stopping sight distance does not apply to cornering brake sight distance requirements. In this paper, the general values and limits of the curve stopping sight distance are presented.

  8. Electric vehicle equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett

    2013-08-13

    Methods, systems, and apparatus for interfacing an electric vehicle with an electric power grid are disclosed. An exemplary apparatus may include a station communication port for interfacing with electric vehicle station equipment (EVSE), a vehicle communication port for interfacing with a vehicle management system (VMS), and a processor coupled to the station communication port and the vehicle communication port to establish communication with the EVSE via the station communication port, receive EVSE attributes from the EVSE, and issue commands to the VMS to manage power flow between the electric vehicle and the EVSE based on the EVSE attributes. An electric vehicle may interface with the grid by establishing communication with the EVSE, receiving the EVSE attributes, and managing power flow between the EVE and the grid based on the EVSE attributes.

  9. Evaluation of Vehicle-Based Crash Severity Metrics.

    Science.gov (United States)

    Tsoi, Ada H; Gabler, Hampton C

    2015-01-01

    Vehicle change in velocity (delta-v) is a widely used crash severity metric used to estimate occupant injury risk. Despite its widespread use, delta-v has several limitations. Of most concern, delta-v is a vehicle-based metric which does not consider the crash pulse or the performance of occupant restraints, e.g. seatbelts and airbags. Such criticisms have prompted the search for alternative impact severity metrics based upon vehicle kinematics. The purpose of this study was to assess the ability of the occupant impact velocity (OIV), acceleration severity index (ASI), vehicle pulse index (VPI), and maximum delta-v (delta-v) to predict serious injury in real world crashes. The study was based on the analysis of event data recorders (EDRs) downloaded from the National Automotive Sampling System / Crashworthiness Data System (NASS-CDS) 2000-2013 cases. All vehicles in the sample were GM passenger cars and light trucks involved in a frontal collision. Rollover crashes were excluded. Vehicles were restricted to single-event crashes that caused an airbag deployment. All EDR data were checked for a successful, completed recording of the event and that the crash pulse was complete. The maximum abbreviated injury scale (MAIS) was used to describe occupant injury outcome. Drivers were categorized into either non-seriously injured group (MAIS2-) or seriously injured group (MAIS3+), based on the severity of any injuries to the thorax, abdomen, and spine. ASI and OIV were calculated according to the Manual for Assessing Safety Hardware. VPI was calculated according to ISO/TR 12353-3, with vehicle-specific parameters determined from U.S. New Car Assessment Program crash tests. Using binary logistic regression, the cumulative probability of injury risk was determined for each metric and assessed for statistical significance, goodness-of-fit, and prediction accuracy. The dataset included 102,744 vehicles. A Wald chi-square test showed each vehicle-based crash severity metric

  10. Launch vehicle design and GNC sizing with ASTOS

    Science.gov (United States)

    Cremaschi, Francesco; Winter, Sebastian; Rossi, Valerio; Wiegand, Andreas

    2018-03-01

    The European Space Agency (ESA) is currently involved in several activities related to launch vehicle designs (Future Launcher Preparatory Program, Ariane 6, VEGA evolutions, etc.). Within these activities, ESA has identified the importance of developing a simulation infrastructure capable of supporting the multi-disciplinary design and preliminary guidance navigation and control (GNC) design of different launch vehicle configurations. Astos Solutions has developed the multi-disciplinary optimization and launcher GNC simulation and sizing tool (LGSST) under ESA contract. The functionality is integrated in the Analysis, Simulation and Trajectory Optimization Software for space applications (ASTOS) and is intended to be used from the early design phases up to phase B1 activities. ASTOS shall enable the user to perform detailed vehicle design tasks and assessment of GNC systems, covering all aspects of rapid configuration and scenario management, sizing of stages, trajectory-dependent estimation of structural masses, rigid and flexible body dynamics, navigation, guidance and control, worst case analysis, launch safety analysis, performance analysis, and reporting.

  11. Modelling and analysis of the dynamics of a tilting three-wheeled vehicle

    International Nuclear Information System (INIS)

    Edelmann, Johannes; Plöchl, Manfred; Lugner, Peter

    2011-01-01

    To understand the handling behaviour of a three-wheeled tilting vehicle, models of the vehicle with different level of detail, corresponding to specific fields of investigation, have been developed. Then the proposed kinematics of the three-wheeler are assessed and optimized with respect to desired dynamic properties by applying a detailed multibody system model. The partially unstable nature of the motion of the vehicle suggests the application of an analytically derived, simplified model, to allow for focusing on stability aspects and steady-state handling properties. These investigations reveal the necessity of employing a steer-by-wire control system to support the driver by stabilizing the motion of the vehicle. Thus, an additional basic vehicle model is derived for control design, and an energy-efficient control strategy is presented. Numerical simulation results demonstrate the dynamic properties of the optimized kinematics and the control system, approved by successful test runs of a prototype.

  12. Autopilot Using Differential Thrust for ARIES Autonomous Underwater Vehicle

    National Research Council Canada - National Science Library

    Sarton, Christopher

    2003-01-01

    .... Unfortunately, communication antennas must point to specific satellites in this system and thus underwater vehicles must steer a specific course on the surface during the communication process...

  13. Diagnostic performance of body mass index to identify excess body fat in children with cerebral palsy.

    Science.gov (United States)

    Duran, Ibrahim; Schulze, Josefa; Martakis, KyriakoS; Stark, Christina; Schoenau, Eckhard

    2018-03-07

    To assess the diagnostic performance of body mass index (BMI) cut-off values according to recommendations of the World Health Organization (WHO), the World Obesity Federation (WOF), and the German Society for Adiposity (DAG) to identify excess body fat in children with cerebral palsy (CP). The present study was a monocentric retrospective analysis of prospectively collected data among children and adolescents with CP participating in a rehabilitation programme. Excess body fat was defined as a body fat percentage above the 85th centile assessed by dual-energy X-ray absorptiometry. In total, 329 children (181 males, 148 females) with CP were eligible for analysis. The mean age was 12 years 4 months (standard deviation 2y 9mo). The BMI cut-off values for 'overweight' according to the WHO, WOF, and DAG showed the following sensitivities and specificities for the prediction of excess body fat in our population: WHO: sensitivity 0.768 (95% confidence interval [CI] 0.636-0.870), specificity 0.894 (95% CI 0.851-0.928); WOF: sensitivity 0.696 (95% CI 0.559-0.812), specificity 0.934 (95% CI 0.898-0.960); DAG: sensitivity 0.411 (95% CI 0.281-0.550), specificity 0.993 (95% CI 0.974-0.999). Body mass index showed high specificity, but low sensitivity in children with CP. Thus, 'normal-weight obese' children with CP were overlooked, when assessing excess body fat only using BMI. Excess body fat in children with cerebral palsy (CP) is less common than previously reported. Body mass index (BMI) had high specificity but low sensitivity in detecting excess body fat in children with CP. BMI evaluation criteria of the German Society for Adiposity could be improved in children with CP. © 2018 Mac Keith Press.

  14. Can Coronene and/or Benzo(a)pyrene/Coronene ratio act as unique markers for vehicle emission?

    International Nuclear Information System (INIS)

    Shen, Guofeng; Chen, Yuanchen; Wei, Siye; Fu, Xiaofang; Ding, Aijun; Wu, Haisuo; Tao, Shu

    2014-01-01

    Coronene is a high molecular weight polycyclic aromatic hydrocarbon with seven aromatic rings. It, more specifically a lower ratio of Benzo[a]pyrene to Coronone (BaP/COR), is suggested as a marker for vehicle emission. In the present study, emissions of Coronene were measured from residential combustions of wood, crop straw, and pellets. The detection of COR in non-vehicle emission sources, and comparable BaP/COR ratios between the solid fuel combustion and vehicle emissions indicated that the generality of COR or the BaP/COR ratio as markers for the vehicle emission would be questionable, especially for the area where solid fuel combustion dominated the PAHs emission. Highlights: • Coronene alone is not a unique marker for vehicle emission. • The specific ratio, BaP/Coronene, could be very high for gasoline emission. • The use of a specific ratio, BaP/Coronene, as a marker is debatable. -- Coronene alone is not a unique tracer for vehicle emission and the use of specific Benzo[a]pyrene to Coronene ratio needs more evaluation studies

  15. Numerical study of flow control strategies for a simplified square back ground vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Eulalie, Yoann; Gilotte, Philippe [Plastic Omnium, Avenue du bois des vergnes, F-01150 Sainte-Julie (France); Mortazavi, Iraj, E-mail: iraj.mortazavi@cnam.fr [Team M2N, CNAM Paris, 292 Rue St. Martin, 75003 Paris (France)

    2017-06-15

    Current automotive trends lead to vertical shapes in the region of the rear tailgates, which induce high aerodynamical losses at the rear wall of vehicles. It is therefore important to work on turbulent wake in order to find drag reduction solutions for the current vehicle design. This paper focuses on flow control strategies, which are designed to interact with shear layers backward from the detachment region, in order to increase pressure values in the wake of a square back bluff body. This study involves large eddy simulation results validated by experimental data. After the first section, which represents experimental validation of LES computations with and without active flow control on an Ahmed bluff body, we will present a wide range of numerical results describing several active and passive flow control solutions leading to drag reductions of up to 10%. The last part of this paper will focus on some fluid mechanisms, which could explain these aerodynamical performances. (paper)

  16. Numerical study of flow control strategies for a simplified square back ground vehicle

    International Nuclear Information System (INIS)

    Eulalie, Yoann; Gilotte, Philippe; Mortazavi, Iraj

    2017-01-01

    Current automotive trends lead to vertical shapes in the region of the rear tailgates, which induce high aerodynamical losses at the rear wall of vehicles. It is therefore important to work on turbulent wake in order to find drag reduction solutions for the current vehicle design. This paper focuses on flow control strategies, which are designed to interact with shear layers backward from the detachment region, in order to increase pressure values in the wake of a square back bluff body. This study involves large eddy simulation results validated by experimental data. After the first section, which represents experimental validation of LES computations with and without active flow control on an Ahmed bluff body, we will present a wide range of numerical results describing several active and passive flow control solutions leading to drag reductions of up to 10%. The last part of this paper will focus on some fluid mechanisms, which could explain these aerodynamical performances. (paper)

  17. Numerical Simulation and Experiment of a Lifting Body with Leading-Edge Rotating Cylinder

    OpenAIRE

    A. Badarudin; C. S. Oon; S. N. Kazi; N. Nik-Ghazali; Y. J. Lee; W. T. Chong

    2013-01-01

    An experimental and simulation flight test has been carried out to evaluate the longitudinal gliding characteristics of a lifting body with blunted half-cone geometry. The novelty here is the lifting body's pitch control mechanism, which consists of a pair of leading-edge rotating cylinders. Flight simulation uses aerodynamic data from computational fluid dynamics supported by wind-tunnel test. Flight test consists of releasing an aluminum lifting body model from a moving vehicle at the appro...

  18. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  19. Vehicle technologies, fuel-economy policies, and fuel-consumption rates of Chinese vehicles

    International Nuclear Information System (INIS)

    Huo Hong; He Kebin; Wang, Michael; Yao Zhiliang

    2012-01-01

    One of the principal ways to reduce transport-related energy use is to reduce fuel-consumption rates of motor vehicles (usually measured in liters of fuel per 100 km). Since 2004, China has implemented policies to improve vehicle technologies and lower the fuel-consumption rates of individual vehicles. Policy evaluation requires accurate and adequate information on vehicle fuel-consumption rates. However, such information, especially for Chinese vehicles under real-world operating conditions, is rarely available from official sources in China. For each vehicle type we first review the vehicle technologies and fuel-economy policies currently in place in China and their impacts. We then derive real-world (or on-road) fuel-consumption rates on the basis of information collected from various sources. We estimate that the real-world fuel-consumption rates of vehicles in China sold in 2009 are 9 L/100 km for light-duty passenger vehicles, 11.4 L/100 km for light-duty trucks, 22 L/100 km for inter-city transport buses, 40 L/100 km for urban transit buses, and 24.9 L/100 km for heavy-duty trucks. These results aid in understanding the levels of fuel consumption of existing Chinese vehicle fleets and the effectiveness of policies in reducing on-road fuel consumption, which can help in designing and evaluating future vehicle energy-efficiency policies. - Highlights: ► Vehicle fuel-consumption rate (VFCR) data are rarely available in China. ► We review the fuel-economy policies currently in place in China and their impacts. ► We derive real-world VFCRs on the basis of information collected from various sources. ► Results aid in understanding the fuel consumption levels of Chinese vehicle fleets. ► Results help in designing and evaluating future vehicle energy-efficiency policies.

  20. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  1. Remotely detected vehicle mass from engine torque-induced frame twisting

    Science.gov (United States)

    McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.

    2017-06-01

    Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.

  2. 77 FR 48105 - Federal Motor Vehicle Safety Standards; Motorcycle Helmets

    Science.gov (United States)

    2012-08-13

    ... [Docket No. NHTSA-2012-0112] Federal Motor Vehicle Safety Standards; Motorcycle Helmets AGENCY: National... Vehicle Safety Standard for motorcycle helmets. Specifically, the final rule amended the helmet labeling... compliance test procedures of FMVSS No. 218, Motorcycle helmets, in order to make it more difficult to...

  3. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds.

    Science.gov (United States)

    Liu, Wen Xian; Liu, Hua Liang; Qu, Le Qing

    2013-09-01

    Oleosin is the most abundant protein in the oil bodies of plant seeds, playing an important role in regulating oil body formation and lipid accumulation. To investigate whether lipid accumulation in transgenic rice seeds depends on the expression level of oleosin, we introduced two soybean oleosin genes encoding 24 kDa proteins into rice under the control of an embryo-specific rice promoter REG-2. Overexpression of soybean oleosin in transgenic rice leads to an increase of seed lipid content up to 36.93 and 46.06 % higher than that of the non-transgenic control, respectively, while the overall fatty acid profiles of triacylglycerols remained unchanged. The overexpression of soybean oleosin in transgenic rice seeds resulted in more numerous and smaller oil bodies compared with wild type, suggesting that an inverse relationship exists between oil body size and the total oleosin level. The increase in lipid content is accompanied by a reduction in the accumulation of total seed protein. Our results suggest that it is possible to increase rice seed oil content for food use and for use as a low-cost feedstock for biodiesel by overexpressing oleosin in rice seeds.

  4. Selecting Design Parameters for Flying Vehicles

    Science.gov (United States)

    Makeev, V. I.; Strel'nikova, E. A.; Trofimenko, P. E.; Bondar', A. V.

    2013-09-01

    Studying the influence of a number of design parameters of solid-propellant rockets on the longitudinal and lateral dispersion is an important applied problem. A mathematical model of a rigid body of variable mass moving in a disturbed medium exerting both wave drag and friction is considered. The model makes it possible to determine the coefficients of aerodynamic forces and moments, which affect the motion of vehicles, and to assess the effect of design parameters on their accuracy

  5. Passive Earth Entry Vehicle Landing Test

    Science.gov (United States)

    Kellas, Sotiris

    2017-01-01

    Two full-scale passive Earth Entry Vehicles (EEV) with realistic structure, surrogate sample container, and surrogate Thermal Protection System (TPS) were built at NASA Langley Research Center (LaRC) and tested at the Utah Test and Training Range (UTTR). The main test objective was to demonstrate structural integrity and investigate possible impact response deviations of the realistic vehicle as compared to rigid penetrometer responses. With the exception of the surrogate TPS and minor structural differences in the back shell construction, the two test vehicles were identical in geometry and both utilized the Integrated Composite Stiffener Structure (ICoSS) structural concept in the forward shell. The ICoSS concept is a lightweight and highly adaptable composite concept developed at NASA LaRC specifically for entry vehicle TPS carrier structures. The instrumented test vehicles were released from a helicopter approximately 400 m above ground. The drop height was selected such that at least 98% of the vehicles terminal velocity would be achieved. While drop tests of spherical penetrometers and a low fidelity aerodynamic EEV model were conducted at UTTR in 1998 and 2000, this was the first time a passive EEV with flight-like structure, surrogate TPS, and sample container was tested at UTTR for the purpose of complete structural system validation. Test results showed that at a landing vertical speed of approximately 30 m/s, the test vehicle maintained structural integrity and enough rigidity to penetrate the sandy clay surface thus attenuating the landing load, as measured at the vehicle CG, to less than 600 g. This measured deceleration was found to be in family with rigid penetrometer test data from the 1998 and 2000 test campaigns. Design implications of vehicle structure/soil interaction with respect to sample container and sample survivability are briefly discussed.

  6. Choice of teenagers' vehicles and views on vehicle safety: survey of parents of novice teenage drivers.

    Science.gov (United States)

    Hellinga, Laurie A; McCartt, Anne T; Haire, Emily R

    2007-01-01

    To examine parental decisions about vehicles driven by teenagers and parental knowledge of vehicle safety. About 300 parents were interviewed during spring 2006 in Minnesota, North Carolina, and Rhode Island while teenagers took their first on-road driving tests. Fewer than half of parents surveyed said teenagers would be the primary drivers of the chosen vehicles. Parents most often cited safety, existing family vehicle, and reliability when explaining the choices for their teenagers' vehicles. About half of the vehicles intended for teenagers were small/mini/sports cars, pickups, or SUVs - vehicles considered less safe for teenagers than midsize/large cars or minivans. A large majority of vehicles were 2001 models or earlier. Vehicles purchased in anticipation of adding a new driver to the family were more likely to be the sizes/types considered less safe than vehicles already owned. Few parents insisted on side airbags or electronic stability control, despite strong evidence of their safety benefits. Even when asked to identify ideal vehicles for their teenagers to drive, about half of parents identified less safe vehicle sizes/types. Most parents knew that midsize/large vehicles are safer than small vehicles, and at least half of parents said SUVs and pickups are not safe for teenage drivers, citing instability. The majority of parents understood some of the important criteria for choosing safe vehicles for their teenagers. However, parents actually selected many vehicles for teenagers that provide inferior crash protection. Vehicle safety varies substantially by vehicle size, type, and safety features. Many teenagers are driving inferior vehicles in terms of crashworthiness and crash avoidance.

  7. Advanced continuously variable transmissions for electric and hybrid vehicles

    Science.gov (United States)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  8. Operator Informational Needs for Multiple Autonomous Small Vehicles

    Science.gov (United States)

    Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal

    2015-01-01

    With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.

  9. Detection and 3d Modelling of Vehicles from Terrestrial Stereo Image Pairs

    Science.gov (United States)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2017-05-01

    The detection and pose estimation of vehicles plays an important role for automated and autonomous moving objects e.g. in autonomous driving environments. We tackle that problem on the basis of street level stereo images, obtained from a moving vehicle. Processing every stereo pair individually, our approach is divided into two subsequent steps: the vehicle detection and the modelling step. For the detection, we make use of the 3D stereo information and incorporate geometric assumptions on vehicle inherent properties in a firstly applied generic 3D object detection. By combining our generic detection approach with a state of the art vehicle detector, we are able to achieve satisfying detection results with values for completeness and correctness up to more than 86%. By fitting an object specific vehicle model into the vehicle detections, we are able to reconstruct the vehicles in 3D and to derive pose estimations as well as shape parameters for each vehicle. To deal with the intra-class variability of vehicles, we make use of a deformable 3D active shape model learned from 3D CAD vehicle data in our model fitting approach. While we achieve encouraging values up to 67.2% for correct position estimations, we are facing larger problems concerning the orientation estimation. The evaluation is done by using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012).

  10. Clustering Vehicle Temporal and Spatial Travel Behavior Using License Plate Recognition Data

    Directory of Open Access Journals (Sweden)

    Huiyu Chen

    2017-01-01

    Full Text Available Understanding travel patterns of vehicle can support the planning and design of better services. In addition, vehicle clustering can improve management efficiency through more targeted access to groups of interest and facilitate planning by more specific survey design. This paper clustered 854,712 vehicles in a week using K-means clustering algorithm based on license plate recognition (LPR data obtained in Shenzhen, China. Firstly, several travel characteristics related to temporal and spatial variability and activity patterns are used to identify homogeneous clusters. Then, Davies-Bouldin index (DBI and Silhouette Coefficient (SC are applied to capture the optimal number of groups and, consequently, six groups are classified in weekdays and three groups are sorted in weekends, including commuting vehicles and some other occasional leisure travel vehicles. Moreover, a detailed analysis of the characteristics of each group in terms of spatial travel patterns and temporal changes are presented. This study highlights the possibility of applying LPR data for discovering the underlying factor in vehicle travel patterns and examining the characteristic of some groups specifically.

  11. Moments of Inertia: Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    Science.gov (United States)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  12. Moments of Inertia - Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    Science.gov (United States)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  13. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle

    Science.gov (United States)

    Schwartz, H. J.

    1983-01-01

    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  14. Gender- and Gestational Age-Specific Body Fat Percentage at Birth.

    LENUS (Irish Health Repository)

    Hawkes, Colin P

    2011-08-08

    Background: There is increasing evidence that in utero growth has both immediate and far-reaching influence on health. Birth weight and length are used as surrogate measures of in utero growth. However, these measures poorly reflect neonatal adiposity. Air-displacement plethysmography has been validated for the measurement of body fat in the neonatal population. Objective: The goal of this study was to show the normal reference values of percentage body fat (%BF) in infants during the first 4 days of life. Methods: As part of a large population-based birth cohort study, fat mass, fat-free mass, and %BF were measured within the first 4 days of life using air-displacement plethsymography. Infants were grouped into gestational age and gender categories. Results: Of the 786 enrolled infants, fat mass, fat-free mass, and %BF were measured in 743 (94.5%) infants within the first 4 days of life. %BF increased significantly with gestational age. Mean (SD) %BF at 36 to 37 weeks\\' gestation was 8.9% (3.5%); at 38 to 39 weeks\\' gestation, 10.3% (4%); and at 40 to 41 weeks\\' gestation, 11.2% (4.3%) (P < .001). Female infants had significantly increased mean (SD) %BF at 38 to 39(11.1% [3.9%] vs 9.8% [3.9%]; P = .012) and at 40 to 41 (12.5% [4.4%] vs 10% [3.9%]; P < .001) weeks\\' gestation compared with male infants. Gender- and gestational age-specific centiles were calculated, and a normative table was generated for reference. Conclusion: %BF at birth is influenced by gestational age and gender. We generated accurate %BF centiles from a large population-based cohort.

  15. Vehicle-manipulator systems modeling for simulation, analysis, and control

    CERN Document Server

    From, Pal Johan; Pettersen, Kristin Ytterstad

    2014-01-01

    Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas.  The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain glob...

  16. 76 FR 28947 - Bus Testing: Calculation of Average Passenger Weight and Test Vehicle Weight, and Public Meeting...

    Science.gov (United States)

    2011-05-19

    ...-0015] RIN 2132-AB01 Bus Testing: Calculation of Average Passenger Weight and Test Vehicle Weight, and... of proposed rulemaking (NPRM) regarding the calculation of average passenger weights and test vehicle... passenger weights and actual transit vehicle loads. Specifically, FTA proposed to change the average...

  17. LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle

    Science.gov (United States)

    Hughes, Hunter Douglas

    using the nonlinear flexible hypersonic model for both the velocity tracking and altitude tracking cases. Both of these cases were subject to a ramp input and a multi-step input both with and without perturbation in the model. The results of the simulation show that the tracking state follows the command signal successfully though the perturbed system does show some higher frequency characteristics in the non-tracking states. It was discovered that there is an issue with integral windup when switching takes place in the controller, so an algorithm was implemented to reset the integration of the error on the tracking state when the switch takes place. It was also seen that there was a decline in altitude when tracking velocity, and a large change in velocity that occurred during altitude tracking. These results lead to the decision to include a unity gain regulation state on velocity for the altitude tracking and the altitude for the velocity tracking during the output feedback control synthesis. The procedure for synthesizing an output feedback H infinity LPV controller for the hypersonic vehicle is also discussed in this dissertation. The output feedback design looked at velocity tracking and altitude tracking with rigid body motion variables for both the exible and rigid body hypersonic vehicle models. As with the full state feedback controller, a parametric study was conducted on each of these controllers to determine the number of gridding points in the parameter space and the parameter variation rate limits in the system. The parametric study reveals a 7x7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.1 200]T is preferable for both the velocity tracking and altitude tracking cases with both the exible and rigid body assumptions. The resulting Hinfinity robust performances were gamma = 113:2146 for the exible body velocity tracking case, gamma = 83.6931 for the rigid body

  18. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  19. Autonomous control of a locomotion vehicle

    International Nuclear Information System (INIS)

    Ichikawa, Yoshiaki; Senoh, Makoto; Miyata, Kenji

    1984-01-01

    A path planner and an execution system are proposed for autonomous vehicle control. The planner creates a near shortest path avoiding obstacles that are represented by combinations of circles and line segments on a two dimensional map. For realizing real time execution, path search procedures employ a heuristic pruning strategies in selecting a node to expand and in generating successor nodes. Nodes are selected for expansion in order, according to a cost assigned to each node. The cost is mainly evaluated by approximating a path length from the initial node to the goal node. In order to expand a node and to generate successor nodes, a specific search procedure is activated that finds positions avoiding obstacles in the direction of the goal, and creates successor nodes corresponding to the positions. The execution system, utilizing an ultrasonic range finder equipped to the vehicle performs a plan repair against unknown obstacles when echoes from the obstacles are observed. The plan repair is conducted by a map edition and replanning in such a way that new circles representing the echoes are added to the map. Obstacle avoidance tests with a vehicle controlled by microprocessors demonstrate the utility of heuristics just outlined. (author)

  20. Comments on the Calculations of Specific Electricity and Fuel Consumption

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1996-01-01

    Calculation of specific consumption of electricity and fuel for model electrical vehicles (passenger cars and vans). Both the present technological level and projected future technological developments. Used as background paper for a review of the scope for electrical vehicles in Denmark, carried...

  1. Patient-specific lean body mass can be estimated from limited-coverage computed tomography images.

    Science.gov (United States)

    Devriese, Joke; Beels, Laurence; Maes, Alex; van de Wiele, Christophe; Pottel, Hans

    2018-06-01

    In PET/CT, quantitative evaluation of tumour metabolic activity is possible through standardized uptake values, usually normalized for body weight (BW) or lean body mass (LBM). Patient-specific LBM can be estimated from whole-body (WB) CT images. As most clinical indications only warrant PET/CT examinations covering head to midthigh, the aim of this study was to develop a simple and reliable method to estimate LBM from limited-coverage (LC) CT images and test its validity. Head-to-toe PET/CT examinations were retrospectively retrieved and semiautomatically segmented into tissue types based on thresholding of CT Hounsfield units. LC was obtained by omitting image slices. Image segmentation was validated on the WB CT examinations by comparing CT-estimated BW with actual BW, and LBM estimated from LC images were compared with LBM estimated from WB images. A direct method and an indirect method were developed and validated on an independent data set. Comparing LBM estimated from LC examinations with estimates from WB examinations (LBMWB) showed a significant but limited bias of 1.2 kg (direct method) and nonsignificant bias of 0.05 kg (indirect method). This study demonstrates that LBM can be estimated from LC CT images with no significant difference from LBMWB.

  2. Ethnic variability in body size, proportions and composition in children aged 5 to 11 years: is ethnic-specific calibration of bioelectrical impedance required?

    Directory of Open Access Journals (Sweden)

    Simon Lee

    Full Text Available Bioelectrical Impedance Analysis (BIA has the potential to be used widely as a method of assessing body fatness and composition, both in clinical and community settings. BIA provides bioelectrical properties, such as whole-body impedance which ideally needs to be calibrated against a gold-standard method in order to provide accurate estimates of fat-free mass. UK studies in older children and adolescents have shown that, when used in multi-ethnic populations, calibration equations need to include ethnic-specific terms, but whether this holds true for younger children remains to be elucidated. The aims of this study were to examine ethnic differences in body size, proportions and composition in children aged 5 to 11 years, and to establish the extent to which such differences could influence BIA calibration.In a multi-ethnic population of 2171 London primary school-children (47% boys; 34% White, 29% Black African/Caribbean, 25% South Asian, 12% Other detailed anthropometric measurements were performed and ethnic differences in body size and proportion were assessed. Ethnic differences in fat-free mass, derived by deuterium dilution, were further evaluated in a subsample of the population (n = 698. Multiple linear regression models were used to calibrate BIA against deuterium dilution.In children < 11 years of age, Black African/Caribbean children were significantly taller, heavier and had larger body size than children of other ethnicities. They also had larger waist and limb girths and relatively longer legs. Despite these differences, ethnic-specific terms did not contribute significantly to the BIA calibration equation (Fat-free mass = 1.12+0.71*(height2/impedance+0.18*weight.Although clear ethnic differences in body size, proportions and composition were evident in this population of young children aged 5 to 11 years, an ethnic-specific BIA calibration equation was not required.

  3. Studying the Effect of Roughness of Wet Road on Critical speed of Vehicle

    Directory of Open Access Journals (Sweden)

    Ali K. Mohammed

    2018-01-01

    Full Text Available Hydroplaning is one the most dangerous phenomena which effect on the safety of driving cars on wet roads, then, the critical speed of slipping cars is an important parameter in the hydroplaning ,and depends on the properties of  the following three  parameters: tires, water layer and  road surface. The road texture is the main property of road specifications which affect directly on the critical speed of the vehicle. In the present work, the properties of road roughness and influence of surface texture on critical speed of vehicle are studied with variation of the following parameters: thickness and dynamic viscosity of water on the road surface and the vehicle load. The results showed that increasing the road surface roughness and the vehicle load both has a appositive influence on the critical speed (increaseof the vehicle, while increasing the dynamic viscosity and thickness of the water layer on the road surface has a negative influence on the critical speed (decrease of the vehicle. DOI: http://dx.doi.org/10.25130/tjes.24.2017.24

  4. Evaluating the accuracy of vehicle tracking data obtained from Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Giuseppe Guido

    2016-10-01

    Full Text Available This paper presents a methodology for tracking moving vehicles that integrates Unmanned Aerial Vehicles with video processing techniques. The authors investigated the usefulness of Unmanned Aerial Vehicles to capture reliable individual vehicle data by using GPS technology as a benchmark. A video processing algorithm for vehicles trajectory acquisition is introduced. The algorithm is based on OpenCV libraries. In order to assess the accuracy of the proposed video processing algorithm an instrumented vehicle was equipped with a high precision GPS. The video capture experiments were performed in two case studies. From the field, about 24,000 positioning data were acquired for the analysis. The results of these experiments highlight the versatility of the Unmanned Aerial Vehicles technology combined with video processing technique in monitoring real traffic data.

  5. Body-part specific interactions of action verb processing with motor behaviour.

    Science.gov (United States)

    Klepp, Anne; Niccolai, Valentina; Sieksmeyer, Jan; Arnzen, Stephanie; Indefrey, Peter; Schnitzler, Alfons; Biermann-Ruben, Katja

    2017-06-15

    The interaction of action-related language processing with actual movement is an indicator of the functional role of motor cortical involvement in language understanding. This paper describes two experiments using single action verb stimuli. Motor responses were performed with the hand or the foot. To test the double dissociation of language-motor facilitation effects within subjects, Experiments 1 and 2 used a priming procedure where both hand and foot reactions had to be performed in response to different geometrical shapes, which were preceded by action verbs. In Experiment 1, the semantics of the verbs could be ignored whereas Experiment 2 included semantic decisions. Only Experiment 2 revealed a clear double dissociation in reaction times: reactions were facilitated when preceded by verbs describing actions with the matching effector. In Experiment 1, by contrast, there was an interaction between verb-response congruence and a semantic variable related to motor features of the verbs. Thus, the double dissociation paradigm of semantic motor priming was effective, corroborating the role of the motor system in action-related language processing. Importantly, this effect was body part specific. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Power analysis and simulation of a vehicle under combined loads

    International Nuclear Information System (INIS)

    Khayyam, H.; Kouzani, A.Z.; Khoshmanesh, K.; Hu, E.

    2008-01-01

    Reducing fuel consumption in vehicles offers many obvious economic benefits, and also helps reduce air pollution emission levels. Mechanical engineers and automotive researches have continuously searched for ways to optimize fuel consumption in vehicles. This paper presented an analytical model of fuel consumption (AMFC) in an effort to coordinate the driving power and manage the overall fuel consumption for an internal combustion engine vehicle. The model calculated the different loads applied on the vehicle, such as road-slope, road-friction, wind-drag, accessories, and mechanical losses. It also solved the combustion equation of the engine under different working conditions including various fuel compositions, excess airs and air inlet temperatures. The model then determined the contribution of each load to signify the energy distribution and power flows of the vehicle. In order to assess the model's sensitivity to different loads, the following four simulations were conducted: flat-windless, flat-windy, sloppy-windless, sloppy-windy. The average fuel consumption for the four simulations was presented. The paper outlined the specification of the vehicle and environment as well as the simulation methodology. The model, algorithm, slope simulation, and drive strategy were presented. It was concluded that the power consumption significantly increased where the slope friction came into play and that the model has the potential to assist in vehicle energy management. 16 refs., 4 tabs., 14 figs

  7. Associations between damage location and five main body region injuries of MAIS 3–6 injured occupants

    Science.gov (United States)

    Tang, Youming; Cao, Libo; Kan, Steven

    2014-01-01

    Objectives To examine the damage location distribution of five main body region injuries of maximum abbreviated injury score (MAIS) 3–6 injured occupants for nearside struck vehicle in front-to-side impact crashes. Design and setting MAIS 3–6 injured occupants information was extracted from the US-National Automotive Sampling System/Crashworthiness Data System in the year 2007; it included the head/face/neck, chest, pelvis, upper extremity and lower extremity. Struck vehicle collision damage was classified in a three-dimensional system according to the J224 Collision Deformation Classification of SAE Surface Vehicle Standard. Participants Nearside occupants seated directly adjacent to the struck side of the vehicle with MAIS 3–6 injured, in light truck vehicles–passenger cars (LTV–PC) side impact crashes. Outcome measures Distribution of MAIS 3–6 injured occupants by body regions and specific location of damage (lateral direction, horizontal direction and vertical direction) were examined. Injury risk ratio was also assessed. Results The lateral crush zone contributed to MAIS 3–6 injured occupants (n=705) and 50th centile injury risks when extended into zone 3. When the crush extended to zone 4, the injury risk ratio of MAIS 3–6 injured occupants approached 81%. The horizontal crush zones contributing to the highest injury risk ratio of MAIS 3–6 occupants were zones ‘D’ and ‘Y’, and the injury risk ratios were 25.4% and 36.9%, respectively. In contrast, the lowest injury risk ratio was 5.67% caused by zone ‘B’. The vertical crush zone which contributed to the highest injury risk ratio of MAIS 3–6 occupants was zone ‘E’, whose injury risk ratio was 58%. In contrast, the lowest injury risk ratio was 0.14% caused by zone ‘G+M’. Conclusions The highest injury risk ratio of MAIS 3–6 injured occupants caused by crush intrusion between 40 and 60 cm in LTV–PC nearside impact collisions and the damage region of the struck

  8. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    Science.gov (United States)

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231

  9. Conversion of Diesel Vehicles to Electric Vehicles and Controlled by PID Controller

    OpenAIRE

    Mengi, Onur Özdal

    2017-01-01

    Internal combustion engine vehicles are the most producedand sold vehicles on the market. In recent years, interest in electric vehicleshas begun to increase, especially due to the environmental problems. In thenear future, it is estimated that gasoline and diesel vehicles will becompletely electric vehicles. For this reason, many studies have been conductedon electric vehicles. Particularly the change of the engine parts, the turningof the internal combustion part to the electric motor, and ...

  10. Electric vehicle station equipment for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett; Kiamilev, Fouad; McGee, Rodney; Waite, Nick

    2017-09-05

    Methods, systems, and apparatus transferring power between the grid and an electric vehicle are disclosed. The apparatus may include at least one vehicle communication port for interfacing with electric vehicle equipment (EVE) and a processor coupled to the at least one vehicle communication port to establish communication with the EVE, receive EVE attributes from the EVE, and transmit electric vehicle station equipment (EVSE) attributes to the EVE. Power may be transferred between the grid and the electric vehicle by maintaining EVSE attributes, establishing communication with the EVE, and transmitting the EVSE maintained attributes to the EVE.

  11. Registration of vehicles at the Gex sous-préfecture: now by appointment only

    CERN Multimedia

    2016-01-01

    The Gex sous-préfecture has informed CERN that it has taken the following steps in order to reduce waiting times at its counters for the issue of carte grise vehicle registration certificates. As of 1 February 2016, you must book an appointment via the website http://www.rdv.ain.gouv.fr/ for all services relating to the registration of vehicles, in particular the:   change of the holder of a registration certificate, issue of a certificat de situation administrative (administrative status certificate required for the sale of a vehicle), change of marital status (or company name in the case of legal entities), change of address, change in the technical specification of the vehicle, corrections to registration certificates, equests for duplicates (loss or theft of registration certificates), registration of a diplomatic vehicle (CERN), registration of a new vehicle, registration of vehicles purchased tax-free in the Pays de Gex free zone (formerly TTW series), and import of vehicles (from ...

  12. Transport vehicle for manned Mars missions powered by inertial confinement fusion

    International Nuclear Information System (INIS)

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-01-01

    Inertial confinement fusion (ICF) is an ideal engine power source for manned spacecraft to Mars because of its inherently high power-to-mass ratios and high specific impulses. We have produced a concept for a vehicle powered by ICF and utilizing a magnetic thrust chamber to avoid plasma thermalization with wall structures and the resultant degradation of specific impulse that are unavoidable with the use of mechanical thrust chambers. This vehicle is capable of 100-day manned Mars missions with a 100-metric-ton payload and a total vehicle launch mass near 6000 metric tons, based on advanced technology assumed to be available by A.D. 2020. Such short-duration missions minimize radiation exposures and physiological deterioration of astronauts

  13. Statistical analysis of vehicle loads measured with three different vehicle weighing devices

    CSIR Research Space (South Africa)

    Mkhize, ZQP

    2005-07-01

    Full Text Available MEASURED WITH THREE DIFFERENT VEHICLE WEIGHING DEVICES Z Q P MKHIZE and M DE BEER CSIR Transportek, PO Box 395, Pretoria, 0001 ABSTRACT This study introduces a new scale for weighing individual tyres of slow moving vehicles. The new technology... that vehicles exert on pavements plays a vital part in the deterioration of the structural and functional capacity of the road. It also influences the safety of the vehicles, especially when vehicles are operated under overloaded and/or inappropriately loaded...

  14. Hyper-X Vehicle Model - Side View

    Science.gov (United States)

    1996-01-01

    vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  15. Hyper-X Vehicle Model - Front View

    Science.gov (United States)

    1996-01-01

    vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  16. Beam response analysis of moving vehicle with half car modeling

    International Nuclear Information System (INIS)

    Badriyah, A.N.; Arifianto, D.; Susatio, Y.

    2016-01-01

    There were several tragedies concerning damages of bridge which seem to be sooner than the predicted period. One of hypothesis in this situation is an addition of vibration caused by long vehicle such as super long truck which has huge force transferred into the bridge and its long body causes more vibration due to phase difference of front and rear tire. The selected method which is used in this problem is using a simulation for modeling a bridge- vehicle system using half car vehicle model. The simulation is done using ANSYS Workbench 15.0 with some variation such us the thickness of beam and its supports. There are 3 kind of variation used in the thickness variety which are 2 m, 1 m, and 0.5 m. While in supports variation, we have fixed support, knife-edge support, and slider support. The results show that there is addition of vibration caused by long vehicle. It is proved by an oscillation which is showed in every response of beam's total deformation. Highest total deformation is achieved in slider support beam of 0.5 thicknesses, 1.08 mm in 1.12 second. First ripple seen in responses is at 0.84 second. Meanwhile, response of knife-edge and fixed support beam show a similarity. The ripple in this situation is caused by beat modulation from the front and rear tire. (paper)

  17. Beam response analysis of moving vehicle with half car modeling

    Science.gov (United States)

    Badriyah, A. N.; Arifianto, D.; Susatio, Y.

    2016-11-01

    There were several tragedies concerning damages of bridge which seem to be sooner than the predicted period. One of hypothesis in this situation is an addition of vibration caused by long vehicle such as super long truck which has huge force transferred into the bridge and its long body causes more vibration due to phase difference of front and rear tire. The selected method which is used in this problem is using a simulation for modeling a bridge- vehicle system using half car vehicle model. The simulation is done using ANSYS Workbench 15.0 with some variation such us the thickness of beam and its supports. There are 3 kind of variation used in the thickness variety which are 2 m, 1 m, and 0.5 m. While in supports variation, we have fixed support, knife-edge support, and slider support. The results show that there is addition of vibration caused by long vehicle. It is proved by an oscillation which is showed in every response of beam's total deformation. Highest total deformation is achieved in slider support beam of 0.5 thicknesses, 1.08 mm in 1.12 second. First ripple seen in responses is at 0.84 second. Meanwhile, response of knife-edge and fixed support beam show a similarity. The ripple in this situation is caused by beat modulation from the front and rear tire.

  18. The Effects of Propulsive Jetting on Drag of a Streamlined body

    Science.gov (United States)

    Krieg, Michael; Mohseni, Kamran

    2017-11-01

    Recently an abundance of bioinspired underwater vehicles have emerged to leverage eons of evolution. Our group has developed a propulsion technique inspired by jellyfish and squid. Propulsive jets are generated by ingesting and expelling water from a flexible internal cavity. We have demonstrated thruster capabilities for maneuvering on AUV platforms, where the internal thruster geometry minimized forward drag; however, such a setup cannot characterize propulsive efficiency. Therefore, we created a new streamlined vehicle platform that produces unsteady jets for forward propulsion rather than maneuvering. The streamlined jetting body is placed in a water tunnel and held stationary while jetting frequency and background flow velocity are varied. For each frequency/velocity pair the flow field is measured around the surface and in the wake using PIV. Using the zero jetting frequency as a baseline for each background velocity, the passive body drag is related to the velocity distribution. For cases with active jetting the drag and jetting forces are estimated from the velocity field and compared to the passive case. For this streamlined body, the entrainment of surrounding flow into the propulsive jet can reduce drag forces in addition to the momentum transfer of the jet itself. Office of Naval Research.

  19. Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed

    Science.gov (United States)

    Giuliani, Alessandro; Tomita, Masaru

    2010-01-01

    Cell fate decision remarkably generates specific cell differentiation path among the multiple possibilities that can arise through the complex interplay of high-dimensional genome activities. The coordinated action of thousands of genes to switch cell fate decision has indicated the existence of stable attractors guiding the process. However, origins of the intracellular mechanisms that create “cellular attractor” still remain unknown. Here, we examined the collective behavior of genome-wide expressions for neutrophil differentiation through two different stimuli, dimethyl sulfoxide (DMSO) and all-trans-retinoic acid (atRA). To overcome the difficulties of dealing with single gene expression noises, we grouped genes into ensembles and analyzed their expression dynamics in correlation space defined by Pearson correlation and mutual information. The standard deviation of correlation distributions of gene ensembles reduces when the ensemble size is increased following the inverse square root law, for both ensembles chosen randomly from whole genome and ranked according to expression variances across time. Choosing the ensemble size of 200 genes, we show the two probability distributions of correlations of randomly selected genes for atRA and DMSO responses overlapped after 48 hours, defining the neutrophil attractor. Next, tracking the ranked ensembles' trajectories, we noticed that only certain, not all, fall into the attractor in a fractal-like manner. The removal of these genome elements from the whole genomes, for both atRA and DMSO responses, destroys the attractor providing evidence for the existence of specific genome elements (named “genome vehicle”) responsible for the neutrophil attractor. Notably, within the genome vehicles, genes with low or moderate expression changes, which are often considered noisy and insignificant, are essential components for the creation of the neutrophil attractor. Further investigations along with our findings might

  20. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  1. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  2. Waist circumference as compared with body-mass index in predicting mortality from specific causes.

    Directory of Open Access Journals (Sweden)

    Michael F Leitzmann

    2011-04-01

    Full Text Available Whether waist circumference provides clinically meaningful information not delivered by body-mass index regarding prediction of cause-specific death is uncertain.We prospectively examined waist circumference (WC and body-mass index (BMI in relation to cause-specific death in 225,712 U.S. women and men. Cox regression was used to estimate relative risks and 95% confidence intervals (CI. Statistical analyses were conducted using SAS version 9.1.During follow-up from 1996 through 2005, we documented 20,977 deaths. Increased WC consistently predicted risk of death due to any cause as well as major causes of death, including deaths from cancer, cardiovascular disease, and non-cancer/non-cardiovascular diseases, independent of BMI, age, sex, race/ethnicity, smoking status, and alcohol intake. When WC and BMI were mutually adjusted in a model, WC was related to 1.37 fold increased risk of death from any cancer and 1.82 fold increase risk of death from cardiovascular disease, comparing the highest versus lowest WC categories. Importantly, WC, but not BMI showed statistically significant positive associations with deaths from lung cancer and chronic respiratory disease. Participants in the highest versus lowest WC category had a relative risk of death from lung cancer of 1.77 (95% CI, 1.41 to 2.23 and of death from chronic respiratory disease of 2.77 (95% CI, 1.95 to 3.95. In contrast, subjects in the highest versus lowest BMI category had a relative risk of death from lung cancer of 0.94 (95% CI, 0.75 to 1.17 and of death from chronic respiratory disease of 1.18 (95% CI, 0.89 to 1.56.Increased abdominal fat measured by WC was related to a higher risk of deaths from major specific causes, including deaths from lung cancer and chronic respiratory disease, independent of BMI.

  3. Contamination and decontamination of vehicles when driven in radioactive areas

    International Nuclear Information System (INIS)

    Ulvsand, T.; Nygren, U.

    1999-10-01

    There is reason to ask whether it is beneficial to decontaminate vehicles, in view of the great effort applied. If the level of contamination is low before the decontamination process, then the cost is not motivated, even if the decontamination is shown to be effective in relative terms. The report describes two trials at the National NBC Defence School in Umeaa and one trial at the French test site in Bourges. The aim is to investigate how vehicles are contaminated and at which ground deposition levels troublesome levels of contamination will arise. In the trials, a non-radioactive agent substituting real radioactivity was used. The trials in Sweden so far have used the oversnow vehicle BV 206, during both winter and summer conditions. The vehicles were driven a specific distance along a road on which a known amount of the test substance had been dispersed. Samples were taken on pre-determined areas on one side of the vehicles to measure the amount of test substance. Later, the vehicles continued along a 'clean' road where additional samples were taken, but on the other side of the vehicles. The largest amount of test substance was collected on the tracks and on the back of the vehicle. The tracks and mud-flaps were effectively decontaminated when the vehicles were driven along a clean road, while most of the contamination remained on the backside. The purpose of the trials in France was to compare the results from our non-radioactive and their radioactive method, based on the radioactive La-140. Due to ground conditions, the level of contamination on the vehicles was much less than in the trials in Umeaa, but the effect decontamination could be measured after all

  4. Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control

    Science.gov (United States)

    Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh

    2017-11-01

    Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.

  5. Modelling and modal properties of the railway vehicle bogie with two individual wheelset drives

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2007-10-01

    Full Text Available The paper deals with mathematical modelling of vibration and modal analysis of two-axled bogie of a railway vehicle. In comparison with recent publications introducing mathematical models of an individual wheelset drive, this paper is focused on modelling of complex bogie vibration. The bogie frame is linked by primary suspension to the two wheelset drives with hollow shafts and by secondary suspension to the car body. The method is based on the system decomposition into three subsystems – two individual wheelset drives including the mass of the rail and the bogie frame coupled with a half of the car body – and on modelling of couplings among subsystems. The eigenvalues of a linearized autonomous model and stability conditions are investigated in dependence on longitudinal creepage and forward velocity of the railway vehicle. The nonlinear model will be used for investigating the dynamic loading of bogie components caused by different types of excitation.

  6. Reusable Launch Vehicle Technology Program

    Science.gov (United States)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  7. Developing Autonomous Vehicles That Learn to Navigate by Mimicking Human Behavior

    Science.gov (United States)

    2006-09-28

    navigate in an unstructured environment to a specific target or location. 15. SUBJECT TERMS autonomous vehicles , fuzzy logic, learning behavior...ANSI-Std Z39-18 Developing Autonomous Vehicles That Learn to Navigate by Mimicking Human Behavior FINAL REPORT 9/28/2006 Dean B. Edwards Department...the future, as greater numbers of autonomous vehicles are employed, it is hoped that lower LONG-TERM GOALS Use LAGR (Learning Applied to Ground Robots

  8. Vehicle Remote Health Monitoring and Prognostic Maintenance System

    Directory of Open Access Journals (Sweden)

    Uferah Shafi

    2018-01-01

    Full Text Available In many industries inclusive of automotive vehicle industry, predictive maintenance has become more important. It is hard to diagnose failure in advance in the vehicle industry because of the limited availability of sensors and some of the designing exertions. However with the great development in automotive industry, it looks feasible today to analyze sensor’s data along with machine learning techniques for failure prediction. In this article, an approach is presented for fault prediction of four main subsystems of vehicle, fuel system, ignition system, exhaust system, and cooling system. Sensor is collected when vehicle is on the move, both in faulty condition (when any failure in specific system has occurred and in normal condition. The data is transmitted to the server which analyzes the data. Interesting patterns are learned using four classifiers, Decision Tree, Support Vector Machine, K Nearest Neighbor, and Random Forest. These patterns are later used to detect future failures in other vehicles which show the similar behavior. The approach is produced with the end goal of expanding vehicle up-time and was demonstrated on 70 vehicles of Toyota Corolla type. Accuracy comparison of all classifiers is performed on the basis of Receiver Operating Characteristics (ROC curves.

  9. The impact of vehicle appearance and vehicle behavior on pedestrian interaction with autonomous vehicles

    NARCIS (Netherlands)

    Dey, D.; Martens, M.H.; Eggen, J.H.; Terken, J.M.B.

    2017-01-01

    In this paper, we present the preliminary results of a study that aims to investigate the role of an approaching vehicle's behavior and outer appearance in determining pedestrians' decisions while crossing a street. Concerning appearance, some vehicles are designed to look more assertive than

  10. The Impact of Vehicle Appearance and Vehicle Behavior on Pedestrian Interaction with Autonomous Vehicles

    NARCIS (Netherlands)

    Dey, Debargha; Martens, Marieke; Eggen, Berry; Terken, Jacques

    2017-01-01

    In this paper, we present the preliminary results of a study that aims to investigate the role of an approaching vehicle's behavior and outer appearance in determining pedestrians' decisions while crossing a street. Concerning appearance, some vehicles are designed to look more assertive than

  11. Potential Exposure to Ebola Virus from Body Fluids due to Ambulance Compartment Permeability in Sierra Leone.

    Science.gov (United States)

    Casey, Megan L; Nguyen, Duong T; Idriss, Barrie; Bennett, Sarah; Dunn, Angela; Martin, Stephen

    2015-12-01

    Prehospital care, including patient transport, is integral in the patient care process during the Ebola response. Transporting ill persons from the community to Ebola care facilities can stop community spread. Vehicles used for patient transport in infectious disease outbreaks should be evaluated for adequate infection prevention and control. An ambulance driver in Sierra Leone attributed his Ebola infection to exposure to body fluids that leaked from the patient compartment to the driver cabin of the ambulance. A convenience sample of 14 vehicles used to transport patients with suspected or confirmed Ebola in Sierra Leone were assessed. The walls separating the patient compartment and driver cabin in these vehicles were evaluated for structural integrity and potential pathways for body fluid leakage. Ambulance drivers and other staff were asked to describe their cleaning and decontamination practices. Ambulance construction and design standards from the National Fire Protection Association, US General Services Administration, and European Committee on Standardization (CEN) were reviewed. Many vehicles used by ambulance staff in Sierra Leone were not traditional ambulances, but were pick-up trucks or sport-utility vehicles that had been assembled or modified for patient transport. The wall separating the patient compartment and driver cabin in many vehicles did not have a waterproof seal around the edges. Staff responsible for cleaning and disinfection did not thoroughly clean bulk body fluids with disposable towels before disinfection of the patient compartment. Pressure from chlorine sprayers used in the decontamination process may have pushed body fluids from the patient compartment into the driver cabin through gaps around the wall. Ambulance design standards do not require a waterproof seal between the patient compartment and driver cabin. Sealing the wall by tightening or replacing existing bolts is recommended, followed by caulking of all seams with a

  12. Influence of wheel-rail contact modelling on vehicle dynamic simulation

    Science.gov (United States)

    Burgelman, Nico; Sichani, Matin Sh.; Enblom, Roger; Berg, Mats; Li, Zili; Dollevoet, Rolf

    2015-08-01

    This paper presents a comparison of four models of rolling contact used for online contact force evaluation in rail vehicle dynamics. Until now only a few wheel-rail contact models have been used for online simulation in multibody software (MBS). Many more models exist and their behaviour has been studied offline, but a comparative study of the mutual influence between the calculation of the creep forces and the simulated vehicle dynamics seems to be missing. Such a comparison would help researchers with the assessment of accuracy and calculation time. The contact methods investigated in this paper are FASTSIM, Linder, Kik-Piotrowski and Stripes. They are compared through a coupling between an MBS for the vehicle simulation and Matlab for the contact models. This way the influence of the creep force calculation on the vehicle simulation is investigated. More specifically this study focuses on the influence of the contact model on the simulation of the hunting motion and on the curving behaviour.

  13. Optimal Vehicle Design Using the Integrated System and Cost Modeling Tool Suite

    Science.gov (United States)

    2010-08-01

    Space Vehicle Costing ( ACEIT ) • New Small Sat Model Development & Production Cost O&M Cost Module  Radiation Exposure  Radiation Detector Response...Reliability OML Availability Risk l l Tools CEA, SRM Model, POST, ACEIT , Inflation Model, Rotor Blade Des, Microsoft Project, ATSV, S/1-iABP...space STK, SOAP – Specific mission • Space Vehicle Design (SMAD) • Space Vehicle Propulsion • Orbit Propagation • Space Vehicle Costing ( ACEIT ) • New

  14. Motion coordination for VTOL unmanned aerial vehicles attitude synchronisation and formation control

    CERN Document Server

    Abdessameud, Abdelkader

    2013-01-01

    Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents  a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems’ inputs, states measurements, and  restrictions on the interconnection  topology  between the aerial vehicles in the team  are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book. The material presented is primarily intended for researchers an...

  15. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Under contract to the Jet Propulsion Laboratory of the California Institute of Technology, Minicars conducted Phase I of the Near-Term Hybrid Passenger Vehicle (NTHV) Development Program. This program led to the preliminary design of a hybrid (electric and internal combustion engine powered) vehicle and fulfilled the objectives set by JPL. JPL requested that the report address certain specific topics. A brief summary of all Phase I activities is given initially; the hybrid vehicle preliminary design is described in Sections 4, 5, and 6. Table 2 of the Summary lists performance projections for the overall vehicle and some of its subsystems. Section 4.5 gives references to the more-detailed design information found in the Preliminary Design Data Package (Appendix C). Alternative hybrid-vehicle design options are discussed in Sections 3 through 6. A listing of the tradeoff study alternatives is included in Section 3. Computer simulations are discussed in Section 9. Section 8 describes the supporting economic analyses. Reliability and safety considerations are discussed specifically in Section 7 and are mentioned in Sections 4, 5, and 6. Section 10 lists conclusions and recommendations arrived at during the performance of Phase I. A complete bibliography follows the list of references.

  16. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  17. Hyperspectral Vehicle BRDF Learning: An Exploration of Vehicle Reflectance Variation and Optimal Measures of Spectral Similarity for Vehicle Reacquisition and Tracking Algorithms

    Science.gov (United States)

    Svejkosky, Joseph

    The spectral signatures of vehicles in hyperspectral imagery exhibit temporal variations due to the preponderance of surfaces with material properties that display non-Lambertian bi-directional reflectance distribution functions (BRDFs). These temporal variations are caused by changing illumination conditions, changing sun-target-sensor geometry, changing road surface properties, and changing vehicle orientations. To quantify these variations and determine their relative importance in a sub-pixel vehicle reacquisition and tracking scenario, a hyperspectral vehicle BRDF sampling experiment was conducted in which four vehicles were rotated at different orientations and imaged over a six-hour period. The hyperspectral imagery was calibrated using novel in-scene methods and converted to reflectance imagery. The resulting BRDF sampled time-series imagery showed a strong vehicle level BRDF dependence on vehicle shape in off-nadir imaging scenarios and a strong dependence on vehicle color in simulated nadir imaging scenarios. The imagery also exhibited spectral features characteristic of sampling the BRDF of non-Lambertian targets, which were subsequently verified with simulations. In addition, the imagery demonstrated that the illumination contribution from vehicle adjacent horizontal surfaces significantly altered the shape and magnitude of the vehicle reflectance spectrum. The results of the BRDF sampling experiment illustrate the need for a target vehicle BRDF model and detection scheme that incorporates non-Lambertian BRDFs. A new detection algorithm called Eigenvector Loading Regression (ELR) is proposed that learns a hyperspectral vehicle BRDF from a series of BRDF measurements using regression in a lower dimensional space and then applies the learned BRDF to make test spectrum predictions. In cases of non-Lambertian vehicle BRDF, this detection methodology performs favorably when compared to subspace detections algorithms and graph-based detection algorithms that

  18. Isolated step-down DC -DC converter for electric vehicles

    Science.gov (United States)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  19. 26 CFR 48.4061(a)-5 - Sale of automobile truck bodies and chassis.

    Science.gov (United States)

    2010-04-01

    ... selling price of the entire vehicle unless adequate records are available to show the portion of the total selling price attributable to the body. (b) Cross references. For special rules relating to the sale of a...

  20. Computational investigations of blunt body drag-reduction spikes in hypersonic flows

    International Nuclear Information System (INIS)

    Kamran, N.; Zahir, S.; Khan, M.A.

    2003-01-01

    Drag is an important parameter in the designing of high-speed vehicles. Such vehicles include hypervelocity projectiles, reentry modules, and hypersonic aircrafts. Therefore, there exists an active or passive technique to reduce drag due to the high pressures at nosetip region of the vehicle. Drag can be reduced by attaching a forward facing spike on the nose of the vehicle. The present study reviews and deals with the CFD analysis made on a standard blunt body to reduce aerodynamic drag due to the attachment of forward facing spikes for High-Speed vehicles. Different spike lengths have been examined to study the forebody flowfield. The investigation concludes that spikes are an effective way to reduce the aerodynamic drag due to reduced dynamic pressure on the nose caused by the separated flow on the spikes. With the accomplishment of confidence on computational data, study was extended in hypersonic Mach range with a drag prediction accuracy of ± 10%. In the present work, viscous fluid dynamics studies were performed for a complete freestream Mach number range of 5.0, 6.0, 7.0 and 8.0 for different spike lengths and zero degree angle of attack. (author)

  1. Compressed Natural Gas Vehicle Maintenance Facility Modification Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K.; Melendez, M.; Gonzales, J.; Lynch, L.; Boale, B.; Kohout, J.

    2017-09-28

    To ensure the safety of personnel and facilities, vehicle maintenance facilities are required by law and by guidelines of the National Fire Protection Association (NFPA) and the International Fire Code (IFC) to exhibit certain design features. They are also required to be fitted with certain fire protection equipment and devices because of the potential for fire or explosion in the event of fuel leakage or spills. All fuels have an explosion or fire potential if specific conditions are present. This handbook covers the primary elements that must be considered when developing a CNG vehicle maintenance facility design that will protect against the ignition of natural gas releases. It also discusses specific protocols and training needed to ensure safety.

  2. Driving with advanced vehicle technology: A qualitative investigation of older drivers' perceptions and motivations for use.

    Science.gov (United States)

    Gish, Jessica; Vrkljan, Brenda; Grenier, Amanda; Van Miltenburg, Benita

    2017-09-01

    For older drivers, in-vehicle technology offers much potential to improve safety and increase longevity of retaining both licensure and community mobility. However, little is known about how older drivers perceive Advanced Vehicle Technologies (AVTs) based on everyday driving experience. Interviews with 35 older drivers (20 men; 15 women) aged 60-85 who owned a vehicle with at least two AVTs (e.g., back-up camera, lane departure warning) were conducted to explore the meanings that older drivers assigned to AVTs and motivations for use, including whether age-related functional changes were part of their automobile purchase decision. Findings indicate that age-related changes are not a primary reason for why older adults seek out AVTs, but they still perceived and experienced AVTs to counteract age-related changes in driving performance based upon changes they felt occurring within the body. Older drivers also described AVTs as generating a sense of comfort behind-the-wheel. Comfort with this technology was equated with convenience, ease of use, and increased feelings of safety. Discussion emphasizes how assessments of the quality of driving performance and value of technology occur in relation to an aging body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. 77 FR 3386 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Clean Vehicles Program

    Science.gov (United States)

    2012-01-24

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Clean Vehicles Program AGENCY: Environmental... vehicles (LEV II). The Clean Air Act (CAA) contains specific authority allowing any state to adopt new... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference...

  4. The perception of emotion in body expressions.

    Science.gov (United States)

    de Gelder, B; de Borst, A W; Watson, R

    2015-01-01

    During communication, we perceive and express emotional information through many different channels, including facial expressions, prosody, body motion, and posture. Although historically the human body has been perceived primarily as a tool for actions, there is now increased understanding that the body is also an important medium for emotional expression. Indeed, research on emotional body language is rapidly emerging as a new field in cognitive and affective neuroscience. This article reviews how whole-body signals are processed and understood, at the behavioral and neural levels, with specific reference to their role in emotional communication. The first part of this review outlines brain regions and spectrotemporal dynamics underlying perception of isolated neutral and affective bodies, the second part details the contextual effects on body emotion recognition, and final part discusses body processing on a subconscious level. More specifically, research has shown that body expressions as compared with neutral bodies draw upon a larger network of regions responsible for action observation and preparation, emotion processing, body processing, and integrative processes. Results from neurotypical populations and masking paradigms suggest that subconscious processing of affective bodies relies on a specific subset of these regions. Moreover, recent evidence has shown that emotional information from the face, voice, and body all interact, with body motion and posture often highlighting and intensifying the emotion expressed in the face and voice. © 2014 John Wiley & Sons, Ltd.

  5. Autonomous vehicles: from paradigms to technology

    Science.gov (United States)

    Ionita, Silviu

    2017-10-01

    Mobility is a basic necessity of contemporary society and it is a key factor in global economic development. The basic requirements for the transport of people and goods are: safety and duration of travel, but also a number of additional criteria are very important: energy saving, pollution, passenger comfort. Due to advances in hardware and software, automation has penetrated massively in transport systems both on infrastructure and on vehicles, but man is still the key element in vehicle driving. However, the classic concept of ‘human-in-the-loop’ in terms of ‘hands on’ in driving the cars is competing aside from the self-driving startups working towards so-called ‘Level 4 autonomy’, which is defined as “a self-driving system that does not requires human intervention in most scenarios”. In this paper, a conceptual synthesis of the autonomous vehicle issue is made in connection with the artificial intelligence paradigm. It presents a classification of the tasks that take place during the driving of the vehicle and its modeling from the perspective of traditional control engineering and artificial intelligence. The issue of autonomous vehicle management is addressed on three levels: navigation, movement in traffic, respectively effective maneuver and vehicle dynamics control. Each level is then described in terms of specific tasks, such as: route selection, planning and reconfiguration, recognition of traffic signs and reaction to signaling and traffic events, as well as control of effective speed, distance and direction. The approach will lead to a better understanding of the way technology is moving when talking about autonomous cars, smart/intelligent cars or intelligent transport systems. Keywords: self-driving vehicle, artificial intelligence, deep learning, intelligent transport systems.

  6. Protection against malevolent use of vehicles at Nuclear Power Plants. Vehicle barrier system selection guidance

    International Nuclear Information System (INIS)

    Nebuda, D.T.

    1994-08-01

    This manual provides a simplified procedure for selecting land vehicle barriers that will stop the design basis vehicle threat adopted by the U.S. Nuclear Regulatory Commission. Proper selection and construction of vehicle barriers should prevent intrusion of the design basis vehicle. In addition, vital safety related equipment should survive a design basis vehicle bomb attack when vehicle barriers are properly selected, sited, and constructed. This manual addresses passive vehicle barriers, active vehicle barriers, and site design features that can be used to reduce vehicle impact velocity

  7. Development of a Refined Space Vehicle Rollout Forcing Function

    Science.gov (United States)

    James, George; Tucker, Jon-Michael; Valle, Gerard; Grady, Robert; Schliesing, John; Fahling, James; Emory, Benjamin; Armand, Sasan

    2016-01-01

    For several decades, American manned spaceflight vehicles and the associated launch platforms have been transported from final assembly to the launch pad via a pre-launch phase called rollout. The rollout environment is rich with forced harmonics and higher order effects can be used for extracting structural dynamics information. To enable this utilization, processing tools are needed to move from measured and analytical data to dynamic metrics such as transfer functions, mode shapes, modal frequencies, and damping. This paper covers the range of systems and tests that are available to estimate rollout forcing functions for the Space Launch System (SLS). The specific information covered in this paper includes: the different definitions of rollout forcing functions; the operational and developmental data sets that are available; the suite of analytical processes that are currently in-place or in-development; and the plans and future work underway to solve two immediate problems related to rollout forcing functions. Problem 1 involves estimating enforced accelerations to drive finite element models for developing design requirements for the SLS class of launch vehicles. Problem 2 involves processing rollout measured data in near real time to understand structural dynamics properties of a specific vehicle and the class to which it belongs.

  8. Stability control for high speed tracked unmanned vehicles

    Science.gov (United States)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  9. Fault classification method for the driving safety of electrified vehicles

    Science.gov (United States)

    Wanner, Daniel; Drugge, Lars; Stensson Trigell, Annika

    2014-05-01

    A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.

  10. Adjacent Vehicle Number-Triggered Adaptive Transmission for V2V Communications.

    Science.gov (United States)

    Wei, Yiqiao; Chen, Jingjun; Hwang, Seung-Hoon

    2018-03-02

    For vehicle-to-vehicle (V2V) communication, such issues as continuity and reliability still have to be solved. Specifically, it is necessary to consider a more scalable physical layer due to the high-speed mobility of vehicles and the complex channel environment. Adaptive transmission has been adapted in channel-dependent scheduling. However, it has been neglected with regards to the physical topology changes in the vehicle network. In this paper, we propose a physical topology-triggered adaptive transmission scheme which adjusts the data rate between vehicles according to the number of connectable vehicles nearby. Also, we investigate the performance of the proposed method using computer simulations and compare it with the conventional methods. The numerical results show that the proposed method can provide more continuous and reliable data transmission for V2V communications.

  11. Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions

    Science.gov (United States)

    Yau, J. D.

    2010-05-01

    This paper intends to present a computational framework of aerodynamic analysis for a maglev (magnetically levitated) vehicle traveling over flexible guideways under oncoming wind loads. The guideway unit is simulated as a series of simple beams with identical span and the maglev vehicle as a rigid car body supported by levitation forces. To carry out the interaction dynamics of maglev vehicle/guideway system, this study adopts an onboard PID (proportional-integral-derivative) controller based on Ziegler-Nicholas (Z-N) method to control the levitation forces. Interaction of wind with high-speed train is a complicated situation arising from unsteady airflow around the train. In this study, the oncoming wind loads acting on the running maglev vehicle are generated in temporal/spatial domain using digital simulation techniques that can account for the moving effect of vehicle's speed and the spatial correlation of stochastic airflow velocity field. Considering the motion-dependent nature of levitation forces and the non-conservative characteristics of turbulent airflows, an iterative approach is used to compute the interaction response of the maglev vehicle/guideway coupling system under wind actions. For the purpose of numerical simulation, this paper employs Galerkin's method to convert the governing equations containing a maglev vehicle into a set of differential equations in generalized systems, and then solve the two sets of differential equations using an iterative approach with the Newmark method. From the present investigation, the aerodynamic forces may result in a significant amplification on acceleration amplitude of the running maglev vehicle at higher speeds. For this problem, a PID+LQR (linear quadratic regulator) controller is proposed to reduce the vehicle's acceleration response for the ride comfort of passengers.

  12. Materialism, Altruism, Environmental Values, Learning Strategies and Sustainable Claim on Purchase Intention of Energy Efficient Vehicle (EEV) - A Literature Review

    Science.gov (United States)

    Syakir Shukor, Muhamad; Sulaiman, Zuraidah; Chin, Thoo Ai; Zakuan, Norhayati; Merlinda Muharam, Farrah

    2017-06-01

    One of the toughest challenges in social marketing is behaviour intervention. Previous research have developed various models and theories to simultaneously examine behaviour changes and their effects. Due to resources scarcity and global warming, automakers have come out with an innovative idea of Energy Efficient Vehicle (EEV) which has been a great improvement in the automotive industry. This invention targets for behavioral change or behavioral adoption for consumers to adjust their preferences from conventional vehicle to EEV. High market growth in automotive industry have encouraged social marketers, policymakers, governments and academics to propose suitable intervention approach in motivating preferences toward EEV. This study will explore the causal model of Environmental Responsible Behaviour (ERB) in measuring the purchase intention of EEV in Malaysia. In specific, this study focuses on two types of EEV - hybrid car and fuel efficient car. This study will hopefully add onto the body of knowledge for value orientation that influences green behaviour. From the practical perspective, this study may provide insights in assisting the stakeholders and automotive industry players on promoting the pro-behaviour toward EEV.

  13. ITOS to EDGE "Bridge" Software for Morpheus Lunar/Martian Vehicle

    Science.gov (United States)

    Hirsh, Robert; Fuchs, Jordan

    2012-01-01

    My project Involved Improving upon existing software and writing new software for the Project Morpheus Team. Specifically, I created and updated Integrated Test and Operations Systems (ITOS) user Interfaces for on-board Interaction with the vehicle during archive playback as well as live streaming data. These Interfaces are an integral part of the testing and operations for the Morpheus vehicle providing any and all information from the vehicle to evaluate instruments and insure coherence and control of the vehicle during Morpheus missions. I also created a "bridge" program for Interfacing "live" telemetry data with the Engineering DOUG Graphics Engine (EDGE) software for a graphical (standalone or VR dome) view of live Morpheus nights or archive replays, providing graphical representation of vehicle night and movement during subsequent tests and in real missions.

  14. Vehicle Tracking System, Vehicle Infrastructure Provided with Vehicle Tracking System and Method for Tracking

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A vehicle tracking system is described comprising - a plurality of sensor nodes (10) that each provide a message (D) indicative for an occupancy status of a detection area of an vehicle infrastructure monitored by said sensor node, said sensor nodes (10) being arranged in the vehicle infrastructure

  15. Communication Challenges in on-Body and Body-to-Body Wearable Wireless Networks—A Connectivity Perspective

    Directory of Open Access Journals (Sweden)

    Dhafer Ben Arbia

    2017-07-01

    Full Text Available Wearable wireless networks (WWNs offer innovative ways to connect humans and/or objects anywhere, anytime, within an infinite variety of applications. WWNs include three levels of communications: on-body, body-to-body and off-body communication. Successful communication in on-body and body-to-body networks is often challenging due to ultra-low power consumption, processing and storage capabilities, which have a significant impact on the achievable throughput and packet reception ratio as well as latency. Consequently, all these factors make it difficult to opt for an appropriate technology to optimize communication performance, which predominantly depends on the given application. In particular, this work emphasizes the impact of coarse-grain factors (such as dynamic and diverse mobility, radio-link and signal propagation, interference management, data dissemination schemes, and routing approaches directly affecting the communication performance in WWNs. Experiments have been performed on a real testbed to investigate the connectivity behavior on two wireless communication levels: on-body and body-to-body. It is concluded that by considering the impact of above-mentioned factors, the general perception of using specific technologies may not be correct. Indeed, for on-body communication, by using the IEEE 802.15.6 standard (which is specifically designed for on-body communication, it is observed that while operating at low transmission power under realistic conditions, the connectivity can be significantly low, thus, the transmission power has to be tuned carefully. Similarly, for body-to-body communication in an indoor environment, WiFi IEEE 802.11n also has a high threshold of end-to-end disconnections beyond two hops (approximatively 25 m. Therefore, these facts promote the use of novel technologies such as 802.11ac, NarrowBand-IoT (NB-IoT etc. as possible candidates for body-to-body communications as a part of the Internet of humans concept.

  16. Inspection vehicle

    International Nuclear Information System (INIS)

    Takahashi, Masaki; Omote, Tatsuyuki; Yoneya, Yutaka; Tanaka, Keiji; Waki, Tetsuro; Yoshida, Tomiji; Kido, Tsuyoshi.

    1993-01-01

    An inspection vehicle comprises a small-sized battery directly connected with a power motor or a direct power source from trolly lines and a switching circuit operated by external signals. The switch judges advance or retreat by two kinds of signals and the inspection vehicle is recovered by self-running. In order to recover the abnormally stopped inspection vehicle to the targeted place, the inspection vehicle is made in a free-running state by using a clutch mechanism and is pushed by an other vehicle. (T.M.)

  17. Prostate specific antigen in a community-based sample of men without prostate cancer: Correlations with prostate volume, age, body mass index, and symptoms of prostatism

    NARCIS (Netherlands)

    J.L.H.R. Bosch (Ruud); W.C.J. Hop (Wim); C.H. Bangma (Chris); W.J. Kirkels (Wim); F.H. Schröder (Fritz)

    1995-01-01

    textabstractThe correlation between both prostate specific antigen levels (PSA) and prostate specific antigen density (PSAD) and age, prostate volume parameters, body mass index, and the International Prostate Symptom Score (IPSS) were studied in a community‐based population. A sample of 502 men

  18. ANTAGONISM OF PROGESTERONE RECEPTOR SUPPRESSES CAROTID BODY RESPONSES TO HYPOXIA AND NICOTINE IN RAT PUPS

    OpenAIRE

    JOSEPH, V.; NIANE, L. M.; BAIRAM, A.

    2012-01-01

    We tested the hypothesis that antagonism of progesterone receptor (PR) in newborn rats alters carotid body and respiratory responses to hypoxia and nicotinic receptor agonists. Rats were treated with the PR antagonist mifepristone (daily oral gavage 40 μg/g/d) or vehicle between post-natal days 3 and 15. In 11–14-day-old rats, we used in vitro carotid body/carotid sinus nerve preparation and whole body plethysmography to assess the carotid body and ventilatory responses to hypoxia (65 mmHg in...

  19. On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles

    Science.gov (United States)

    2006-02-17

    On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles Report Title ABSTRACT In this work we proposed two semi-analytic...298-102 Enclosure 1 On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles by...Specifically, the following problems will be addressed during this project: 2.1 Challenges The problem of trajectory planning for high-speed autonomous vehicles is

  20. Plug-in electric vehicles integrating fluctuating renewable electricity

    Energy Technology Data Exchange (ETDEWEB)

    Dallinger, David

    2013-11-01

    This paper examines a method to model plug-in electric vehicles as part of the power system and presents results for the contribution of plug-in electric vehicles to balance the fluctuating electricity generation of renewable energy sources. The scientific contribution includes: - A novel approach to characterizing fluctuating generation. This allows the detailed comparison of results from energy analysis and is the basis to describe the effect of electricity from renewable energy sources and plug-in electric vehicles on the power system. - The characterization of mobile storage, which includes the description of mobility behavior using probabilities and battery discharging costs. - The introduction of an agent-based simulation approach, coupling energy markets and distributed grids using a price-based mechanism design. - The description of an agent with specific driving behavior, battery discharging costs and optimization algorithm suitable for real plug-in vehicles and simulation models. - A case study for a 2030 scenario describing the contribution of plug-in electric vehicles to balance generation from renewable energy sources in California and Germany.

  1. ENERGY EFFICIENCY AS A CRITERION IN THE VEHICLE FLEET MANAGEMENT PROCESS

    Directory of Open Access Journals (Sweden)

    Davor Vujanović

    2010-01-01

    Full Text Available Transport represents an industry sector with intense energy consumption, the road transport sector within is the dominant subsector. The objective of the research presented in this paper is in defining the activities which applied within road freight transport companies contribute to enhancing vehicles' energy efficiency. Vehicle fleet operation management process effects on fuel consumption decrease have been looked into. Operation parameters that influence vehicle fuel consumption were analysed. In this sense, a survey has been realised in order to evaluate the vehicle load factor impact on the specific fuel consumption. Measures for enhancing vehicle's logistics efficiency have been defined. As a tool for those measures' implementation an algorithm for vehicle fleet operation management was developed which represented a basis for a dedicated software package development for vehicle dispatching process decision support. A set of measures has been recommended and their effects in fuel savings were evaluated.

  2. A sustainability assessment of electric vehicles as a personal mobility system

    International Nuclear Information System (INIS)

    Faria, Ricardo; Moura, Pedro; Delgado, Joaquim; Almeida, Anibal T. de

    2012-01-01

    Highlights: ► Ownership cost and CO 2 emissions for electric and internal combustion engine vehicles. ► Well-to-Wheel energy assessment in electric vehicles. ► Main factors that contribute to overall energy consumption. ► Real world experiments to characterize electric vehicles energy consumption. - Abstract: This paper presents a study of the economic and environmental balances for Electric Vehicles (EVs) versus Internal Combustion Engine Vehicle (ICEV). The analyses were based on the Well-to-Wheel (WTW) methodology, a specific type of Life Cycle Assessment (LCA). WTW balances were carried out taking into account different scenarios for the primary energy supply and different vehicle technologies. The primary energy supply includes non-renewable sources (fossil fuels and nuclear) and Renewable Energy Source (RES). Vehicle technologies include Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV) and Plug-in Hybrid Electric Vehicle (PHEV). The generation scenarios considered in the study include the present European Union (EU) average mix and a planned increasing contribution from RESs. For the BEV, several real world driving cycle scenarios were investigated, using a custom built data acquisition system, in order to characterize the main factors that contribute to the overall energy consumption, associated cost and emissions. In terms of environmental impact, for the average EU electricity mix, BEVs have less than a half of the emissions than an ICEV. However, the ownership costs during its life cycle (about 10 y) are similar to an equivalent ICEV, despite the lower operational costs for BEVs. The likely battery price reduction, leading to a lower investment cost, will gradually tip the balance in favour of EVs.

  3. [Solubilization Specificities Interferon beta-1b from Inclusion Bodies].

    Science.gov (United States)

    Zhuravko, A S; Kononova, N V; Bobruskin, A I

    2015-01-01

    A new solubilization method of recombinant interferon beta-1b (IFNβ-1b) from the inclusion bodies was developed. This method allows to extract the target protein selectively in the solutions of different alcohols, such as ethanol, propanol and isopropanol. It was shown that the more effective IFNβ-1b solubilization was achieved in the 55% propanol solution. This method allowed to extract the target protein from inclusion bodies around 85-90%, and significantly reduced Escherichia coli content in the solubilizate, in comparison with standard methods.

  4. Body and Terror: Women’s Bodies as Victims and Perpetrators of Terror

    Directory of Open Access Journals (Sweden)

    Parvin Sultana

    2014-07-01

    Full Text Available Bodies are vulnerable because they are intrinsically linked to death. Bodies are social and they are embedded with meaning. They cannot be extracted from their specific contexts. The nation is also often equated with body politic. As a result individual bodies become the site of security/ insecurity depending on the social location of bodies. Within this discourse, this article tries to locate the bodies of women. It will look at the bodies of women as victims of terror as well as perpetrators of terror. It will try to understand if in these differentiated roles, women are able to break away from stereotypes or are still caught in heteronormative narratives. Keywords: Body, Suicide Bombers, Victims, Ethnic Conflict, Terrorism.

  5. Usability Analysis of Collision Avoidance System in Vehicle-to-Vehicle Communication Environment

    Directory of Open Access Journals (Sweden)

    Hong Cho

    2014-01-01

    Full Text Available Conventional intelligent vehicles have performance limitations owing to the short road and obstacle detection range of the installed sensors. In this study, to overcome this limitation, we tested the usability of a new conceptual autonomous emergency braking (AEB system that employs vehicle-to-vehicle (V2V communication technology in the existing AEB system. To this end, a radar sensor and a driving and communication environment constituting the AEB system were simulated; the simulation was then linked by applying vehicle dynamics and control logic. The simulation results show that the collision avoidance relaxation rate of V2V communication-based AEB system was reduced compared with that of existing vehicle-mounted-sensor-based system. Thus, a method that can lower the collision risk of the existing AEB system, which uses only a sensor cluster installed on the vehicle, is realized.

  6. SAFER vehicle inspection: a multimodal robotic sensing platform

    Science.gov (United States)

    Page, David L.; Fougerolle, Yohan; Koschan, Andreas F.; Gribok, Andrei; Abidi, Mongi A.; Gorsich, David J.; Gerhart, Grant R.

    2004-09-01

    The current threats to U.S. security both military and civilian have led to an increased interest in the development of technologies to safeguard national facilities such as military bases, federal buildings, nuclear power plants, and national laboratories. As a result, the Imaging, Robotics, and Intelligent Systems (IRIS) Laboratory at The University of Tennessee (UT) has established a research consortium, known as SAFER (Security Automation and Future Electromotive Robotics), to develop, test, and deploy sensing and imaging systems for unmanned ground vehicles (UGV). The targeted missions for these UGV systems include -- but are not limited to --under vehicle threat assessment, stand-off check-point inspections, scout surveillance, intruder detection, obstacle-breach situations, and render-safe scenarios. This paper presents a general overview of the SAFER project. Beyond this general overview, we further focus on a specific problem where we collect 3D range scans of under vehicle carriages. These scans require appropriate segmentation and representation algorithms to facilitate the vehicle inspection process. We discuss the theory for these algorithms and present results from applying them to actual vehicle scans.

  7. A comparative study on patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2015-01-01

    Full Text Available Purpose: To compare the results of patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom. Methods: Fifteen intensity modulated radiotherapy (IMRT plans already planned on treatment planning system (TPS for head-and-neck cancer patients were exported on all three kinds of phantoms viz. slab phantom, acrylic body phantom and goat head phantom, and dose was calculated using anisotropic analytic algorithm (AAA. All the gantry angles were set to zero in case of slab phantom while set to as it is in actual plan in case of other two phantoms. All the plans were delivered by linear accelerator (LA and dose for each plan was measured by 0.13 cc ion chamber. The percentage (% variations between planned and measured doses were calculated and analyzed. Results: The mean % variations between planned and measured doses of all IMRT quality assurance (QA plans were as 0.65 (Standard deviation (SD: 0.38 with confidence limit (CL 1.39, 1.16 (SD: 0.61 with CL 2.36 and 2.40 (SD: 0.86 with CL 4.09 for slab phantom, acrylic head phantom and goat head phantom respectively. Conclusion: Higher dose variations found in case of real tissue phantom compare to results in case of slab and acrylic body phantoms. The algorithm AAA does not calculate doses in heterogeneous medium as accurate as it calculates in homogeneous medium. Therefore the patient specific absolute dosimetry should be done using heterogeneous phantom mimicking density wise as well as design wise to the actual human body.  

  8. Vehicle-to-vehicle communications : readiness of V2V technology for application.

    Science.gov (United States)

    2014-08-01

    The purpose of this research report is to assess the readiness for application of vehicle-to-vehicle (V2V) : communications, a system designed to transmit basic safety information between vehicles to facilitate warnings to : drivers concerning impend...

  9. CAE for the development of two-wheeled vehicles. Nirinsha kaihatsu no tame no CAE

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T. (Suzuki Motor Co. Ltd., Shizuoka (Japan))

    1992-11-01

    Applications of CAE to the development of two-wheeled vehicles were outlined. The performance estimation program for 4-cycle engines featured by its easy execution was presented illustrating an estimation model and estimated results, and the FEM generator for strength/rigidity analysis CAE indicating analytical examples of a piston and frame which is featured by easy formation of models and easy execution of advanced analyses by beginners. The vibration analysis system to estimate exciting forces from engine specifications and to estimate vibration levels of bodies with FEM models was also presented together with the estimation system of rider's vibration sensitivity. Furthermore, the noise suppression/ exhaust pressure calculation program to support muffler designs by simultaneous calculation was presented together with the thermal flow analysis program featured by easy calculation with more suitable models illustrating the analytical example of thermal flow in a large luggage box. 7 refs., 15 figs.

  10. Investigations of coastal zones using a modular amphibious vehicle

    Science.gov (United States)

    Zeziulin, Denis; Makarov, Vladimir; Filatov, Valery; Beresnev, Pavel; Belyakov, Vladimir; Kurkin, Andrey

    2017-04-01

    The project aims to develop a means of verification of data on sea excitement derived from Autonomous mobile robotic system (AMRS) for coastal monitoring and forecasting marine natural disasters [Kurkin A., Pelinovsky E., Tyugin D., Giniyatullin A., Kurkina O., Belyakov V., Makarov V., Zeziulin D., Kuznetsov K. Autonomous Robotic System for Coastal Monitoring // Proceedings of the 12th International Conference on the Mediterranean Coastal Environment MEDCOAST. 2015. V. 2. P. 933-944]. The chassis of the developed remote-controlled modular amphibious vehicle (MAV) will be equipped with a video camera and a hydrostatic wave-plotting device with strings sensors mounted on the stationary body's supports. To track the position of the MAV there will be installed the navigation system in order to correct the measurement data. The peculiarity of the tricycle MAV is the ability to change its geometric parameters that will increase its stability to actions of destructive waves and mobility. In May-June 2016 authors took part in conducting field tests of the AMRS on the Gulf of Mordvinov (Sea of Okhotsk, Sakhalin Island). Participation in this expedition contributed to obtaining experimental data on the topography and the physical and mechanical properties of the surf zone of the most promising field of using the MAV as a road for its moving. Within the project there was developed a mathematical model of the MAV motion in coastal conditions taking into account the new analytical dependences describing the physical and mechanical characteristics of the ground surfaces and the landscape, as well as hydrodynamic effects of surf zones. The reasonable selection of rational parameters of the MAV and developing the methodology of creating effective vehicles for investigations of specific coastal areas of the Okhotsk Sea will be made by using the mathematical model.

  11. Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer

    Science.gov (United States)

    Price, T. W.; Wirth, V. A., Jr.; Pompa, M. F.

    1981-01-01

    Tests were performed to characterize certain parameters of the EVA Pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller and motor. The tests included coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other electric and hybrid vehicles. The Pacer performance was approximately equal to the majority of those vehicles assessed in 1977.

  12. Minautor: the 100% electric mining vehicle; Developpement d'un vehicule minier 100% electrique le Minautor

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Francois

    2011-04-15

    PEDNO, in collaboration with Quebec's advanced transport institute (ITAQ) has developed a 4x4 fully electric vehicle suitable for use in mines. PEDNO undertook this project to replace diesel-powered vehicles which emit high levels of pollutants and push up ventilation costs. This vehicle, named Minautor, has certain features designed to meet the conditions of a subterranean environment: the body is made of aluminum to reduce weight and therefore the energy needed for mobility while Li-ion batteries, which are lighter and safer, have also been incorporated. After the vehicle was successfully tested, ITAQ transferred the technology to PEDNO so that they would be in a position to develop the next generation of the Minautor themselves.

  13. Concept of intellectual charging system for electrical and plug-in hybrid vehicles in Russian Federation

    Science.gov (United States)

    Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.

    2018-02-01

    Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.

  14. The body teaching male: its variations and (in conformities

    Directory of Open Access Journals (Sweden)

    Rogério Machado Rosa

    2013-01-01

    Full Text Available In this text we attempt to map from a dialogue with authors such as Deleuze, Guattari and Nietzsche the process of change-shift-multiplication of the male body teaching, aesthetic sensibilities and bodily assemblages that inspire pedagogical meetings. The body-teaching-male and its variations (in conformities will be taken like a registration plan and vehicle of emotional and vibratory forces which pass by and turn him on territorialisation, deterritorialization and reterritorialization movement. So, we question the pedagogical meeting place as a possible device mechanic, pointing to the idea that the assemblages produced from this place operate in the creation of body experiences that move the male body from the places consecrated by the standard approach to the male-body-marginal, replete with becoming and organized: body without organs.

  15. 77 FR 65767 - Petition for Exemption From the Federal Motor Vehicle Theft Prevention Standard; Chrysler

    Science.gov (United States)

    2012-10-30

    ... (RFHM), Ignition Node Module (IGNM), Engine Control Module, Body Controller Module, Sentry Key... disable engine operation and immobilize the vehicle after two seconds of running. This process is also...

  16. Solvent neurotoxicity in vehicle collision repair workers in New Zealand.

    Science.gov (United States)

    Keer, Samuel; Glass, Bill; Prezant, Bradley; McLean, David; Pearce, Neil; Harding, Elizabeth; Echeverria, Diana; McGlothlin, James; Babbage, Duncan R; Douwes, Jeroen

    2016-12-01

    To assess whether solvent use and workplace practices in the vehicle collision repair industry are associated with symptoms of neurotoxicity in spray painters and panel beaters (auto body repair workers). Neurobehavioural symptoms were assessed using a cross-sectional study design in 370 vehicle collision repair and 211 reference workers using the EUROQUEST questionnaire. Full-shift airborne solvent levels were measured in a subset (n=92) of collision repair workers. Solvent exposures were higher in spray painters than in panel beaters, but levels were below current international exposure standards. Collision repair workers were more likely to report symptoms of neurotoxicity than reference workers with ORs of 2.0, 2.4 and 6.4 (all p<0.05) for reporting ≥5, ≥10 and ≥15 symptoms respectively. This trend was generally strongest for panel beaters (ORs of 2.1, 3.3 and 8.2 for ≥5, ≥10 and ≥15 symptoms respectively). Associations with specific symptom domains showed increased risks for neurological (OR 4.2), psychosomatic (OR 3.2), mood (OR 2.1), memory (OR 2.9) and memory and concentration symptoms combined (OR 2.4; all p<0.05). Workers who had worked for 10-19 years or 20+ years in the collision repair industry reported consistently more symptoms than those who had only worked less than 10 years even after adjusting for age. However, those who worked more than 20 years generally reported fewer symptoms than those who worked 10-19 years, suggesting a possible healthy worker survivor bias. Despite low airborne solvent exposures, vehicle collision repair spray painters and panel beaters continue to be at risk of symptoms of neurotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Application of Finite Element Based Simulation and Modal Testing Methods to Improve Vehicle Powertrain Idle Vibration

    Directory of Open Access Journals (Sweden)

    Polat Sendur

    2017-01-01

    Full Text Available Current practice of analytical and test methods related to the analysis, testing and improvement of vehicle vibrations is overviewed. The methods are illustrated on the determination and improvement of powertrain induced steering wheel vibration of a heavy commercial truck. More specifically, the transmissibility of powertrain idle vibration to cabin is investigated with respect to powertrain rigid body modes and modal alignment of the steering column/wheel system is considered. It is found out that roll mode of the powertrain is not separated from idle excitation for effective vibration isolation as well as steering wheel column mode is close to the 3rd engine excitation frequency order, which results in high vibration levels. Powertrain roll mode is optimized by tuning the powertrain mount stiffness to improve the performance. Steering column mode is also separated from the 3rd engine excitation frequency by the application of a mass absorber. It is concluded that the use of analytical and test methods to address the complex relation between design parameters and powertrain idle response is effective to optimize the system performance and evaluate the trade-offs in the vehicle design such as vibration performance and weight. Reference Number: www.asrongo.org/doi:4.2017.2.1.10

  18. Design and analysis of truck body for increasing the payload capacity

    Science.gov (United States)

    Vamshi Krishna, K.; Yugandhar Reddy, K.; Venugopal, K.; Ravi, K.

    2017-11-01

    Truck industry is a major source of transportation in India. With an average truck travelling about 300 kilometers per day [1], every kilogram of truck weight is of concern to the industry in order to get the best out of the truck. The main objective of this project is to increase the payload capacity of automotive truck body. Every kilogram of increased vehicle weight will decrease the vehicle payload capacity in turn increasing the manufacturing cost and reducing the fuel economy by increase the fuel consumption. With the intension of weight reduction, standard truck body has been designed and analyzed in ANSYS software. C-cross section beams were used instead of conventional rectangular box sections to reduce the weight of the body. Light-weight Aluminum alloy Al 6061 T6 is used to increase the payload capacity. The strength of the Truck platform is monitored in terms of deformation and stress concentration. These parameters will be obtained in structural analysis test condition environment. For reducing the stress concentration the concept of beams of uniform strength is used. Accordingly necessary modifications are done so that the optimized model has a better stress distribution and much lesser weight compared to the conventional model. The results obtained by analyzing the modified model are compared with the standard model.

  19. Nonlinear Dynamic Characteristics of the Railway Vehicle

    Science.gov (United States)

    Uyulan, Çağlar; Gokasan, Metin

    2017-06-01

    The nonlinear dynamic characteristics of a railway vehicle are checked into thoroughly by applying two different wheel-rail contact model: a heuristic nonlinear friction creepage model derived by using Kalker 's theory and Polach model including dead-zone clearance. This two models are matched with the quasi-static form of the LuGre model to obtain more realistic wheel-rail contact model. LuGre model parameters are determined using nonlinear optimization method, which it's objective is to minimize the error between the output of the Polach and Kalker model and quasi-static LuGre model for specific operating conditions. The symmetric/asymmetric bifurcation attitude and stable/unstable motion of the railway vehicle in the presence of nonlinearities which are yaw damping forces in the longitudinal suspension system are analyzed in great detail by changing the vehicle speed. Phase portraits of the lateral displacement of the leading wheelset of the railway vehicle are drawn below and on the critical speeds, where sub-critical Hopf bifurcation take place, for two wheel-rail contact model. Asymmetric periodic motions have been observed during the simulation in the lateral displacement of the wheelset under different vehicle speed range. The coexistence of multiple steady states cause bounces in the amplitude of vibrations, resulting instability problems of the railway vehicle. By using Lyapunov's indirect method, the critical hunting speeds are calculated with respect to the radius of the curved track parameter changes. Hunting, which is defined as the oscillation of the lateral displacement of wheelset with a large domain, is described by a limit cycle-type oscillation nature. The evaluated accuracy of the LuGre model adopted from Kalker's model results for prediction of critical speed is higher than the results of the LuGre model adopted from Polach's model. From the results of the analysis, the critical hunting speed must be resolved by investigating the track tests

  20. Adjacent Vehicle Number-Triggered Adaptive Transmission for V2V Communications

    Science.gov (United States)

    Wei, Yiqiao; Chen, Jingjun

    2018-01-01

    For vehicle-to-vehicle (V2V) communication, such issues as continuity and reliability still have to be solved. Specifically, it is necessary to consider a more scalable physical layer due to the high-speed mobility of vehicles and the complex channel environment. Adaptive transmission has been adapted in channel-dependent scheduling. However, it has been neglected with regards to the physical topology changes in the vehicle network. In this paper, we propose a physical topology-triggered adaptive transmission scheme which adjusts the data rate between vehicles according to the number of connectable vehicles nearby. Also, we investigate the performance of the proposed method using computer simulations and compare it with the conventional methods. The numerical results show that the proposed method can provide more continuous and reliable data transmission for V2V communications. PMID:29498646

  1. Simulated annealing (SA to vehicle routing problems with soft time windows

    Directory of Open Access Journals (Sweden)

    Suphan Sodsoon

    2014-12-01

    Full Text Available The researcher has applied and develops the meta-heuristics method to solve Vehicle Routing Problems with Soft Time Windows (VRPSTW. For this case there was only one depot, multi customers which each generally sparse either or demand was different though perceived number of demand and specific period of time to receive them. The Operation Research was representative combinatorial optimization problems and is known to be NP-hard. In this research algorithm, use Simulated Annealing (SA to determine the optimum solutions which rapidly time solving. After developed the algorithms, apply them to examine the factors and the optimum extended time windows and test these factors with vehicle problem routing under specific time windows by Solomon in OR-Library in case of maximum 25 customers. Meanwhile, 6 problems are including of C101, C102, R101, R102, RC101 and RC102 respectively. The result shows the optimum extended time windows at level of 50%. At last, after comparison these answers with the case of vehicle problem routing under specific time windows and flexible time windows, found that percentage errors on number of vehicles approximately by -28.57% and percentage errors on distances approximately by -28.57% which this algorithm spent average processing time on 45.5 sec/problems.

  2. Prospective, Randomized, Double-Blind, Parallel-Group, Comparative Effectiveness Clinical Trial Comparing a Powder Vehicle Compound of Vitamin D With an Oil Vehicle Compound in Adults With Cystic Fibrosis.

    Science.gov (United States)

    Hermes, Wendy A; Alvarez, Jessica A; Lee, Moon J; Chesdachai, Supavit; Lodin, Daud; Horst, Ron; Tangpricha, Vin

    2017-08-01

    There is little consensus on the most efficacious vehicle substance for vitamin D supplements. Fat malabsorption may impede the ability of patients with cystic fibrosis (CF) to absorb vitamin D in an oil vehicle. We hypothesized that vitamin D contained in a powder vehicle would be absorbed more efficiently than vitamin D contained in an oil vehicle in patients with CF. In this double-blind, randomized controlled trial, hospitalized adults with CF were given a one-time bolus dose of 100,000 IU of cholecalciferol (D 3 ) in a powder-based or oil-based vehicle. Serum D 3 , 25-hydroxyvitamin D, and parathyroid hormone concentrations were analyzed at 0, 12, 24, and 48 hours posttreatment. The area under the curve for serum D 3 and the 12-hour time point were also assessed as indicators of D 3 absorption. This trial was completed by 15 patients with CF. The median (interquartile range) age, body mass index, and forced expiratory volume in 1 second were 23.7 (19.9-33.2) years, 19.9 (18.6-22.6) kg/m 2 , and 63% (37%-80%), respectively. The increase in serum D 3 and the area under the curve was greater in the powder group ( P = .002 and P = .036, respectively). Serum D 3 was higher at 12 hours in the powder group compared with the oil group ( P = .002), although levels were similar between groups by 48 hours. In adults with CF, cholecalciferol is more efficiently absorbed in a powder compared with an oil vehicle. Physicians should consider prescribing vitamin D in a powder vehicle in patients with CF to improve the absorption of vitamin D from supplements.

  3. 75 FR 22317 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Science.gov (United States)

    2010-04-28

    ... 1300 [Docket No. NHTSA-2010-0054] Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of..., multipurpose passenger vehicles, trucks, buses, trailers, incomplete vehicles, motorcycles, and motor vehicle...

  4. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.

    Science.gov (United States)

    Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro

    2016-04-22

    The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional-integral-derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle.

  5. Current Launch Vehicle Practice and Data Base Assessment. Volume 1. Executive Summary and Report Body

    Science.gov (United States)

    1989-06-01

    4 4 2 .2 .4 B a y e sia n .............................................................................................. 4...basic assumption for the method of estimating system relaibility in the present study is that the failure of the launch vehicle must occur in one of its

  6. Large-scale model-based assessment of deer-vehicle collision risk.

    Directory of Open Access Journals (Sweden)

    Torsten Hothorn

    Full Text Available Ungulates, in particular the Central European roe deer Capreolus capreolus and the North American white-tailed deer Odocoileus virginianus, are economically and ecologically important. The two species are risk factors for deer-vehicle collisions and as browsers of palatable trees have implications for forest regeneration. However, no large-scale management systems for ungulates have been implemented, mainly because of the high efforts and costs associated with attempts to estimate population sizes of free-living ungulates living in a complex landscape. Attempts to directly estimate population sizes of deer are problematic owing to poor data quality and lack of spatial representation on larger scales. We used data on >74,000 deer-vehicle collisions observed in 2006 and 2009 in Bavaria, Germany, to model the local risk of deer-vehicle collisions and to investigate the relationship between deer-vehicle collisions and both environmental conditions and browsing intensities. An innovative modelling approach for the number of deer-vehicle collisions, which allows nonlinear environment-deer relationships and assessment of spatial heterogeneity, was the basis for estimating the local risk of collisions for specific road types on the scale of Bavarian municipalities. Based on this risk model, we propose a new "deer-vehicle collision index" for deer management. We show that the risk of deer-vehicle collisions is positively correlated to browsing intensity and to harvest numbers. Overall, our results demonstrate that the number of deer-vehicle collisions can be predicted with high precision on the scale of municipalities. In the densely populated and intensively used landscapes of Central Europe and North America, a model-based risk assessment for deer-vehicle collisions provides a cost-efficient instrument for deer management on the landscape scale. The measures derived from our model provide valuable information for planning road protection and defining

  7. Electrification Beyond Light Duty: Class 2b-3 Commercial Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Birky, Alicia [Energetics Incorporated; Laughlin, Michael [Energetics Incorporated; Tartaglia, Katie [Energetics Incorporated; Price, Rebecca [Energetics Incorporated; Lim, Brandon [Energetics Incorporated; Lin, Zhenhong [ORNL

    2018-01-01

    The class 2b-3 truck market covers a wide range of commercial truck applications across a half-million vehicle sales annually. This report collected public information and stakeholder input to assess the opportunity for electrification in this market. Although class 2b-3 pickup truck and van bodies are very similar to personal light vehicles, their functional requirements are quite different due to the demands of the commercial market. These demands vary by application and often vary from day to day for a single application. Fleet customers purchase these vehicles to perform a particular job for their business and are concerned about the overall cost of doing that job. Therefore, the vehicles must meet the job requirements cost effectively. Customers also are sensitive to initial cost. Electrification offers the potential to reduce vehicle operating costs and possibly improve vehicle functionality. However, the current market for class 2b-3 electrified trucks is very small, and the trucks are costly. Increased production volumes are key to cost reductions and may be assisted by sharing components with larger or smaller truck classes. Expanding demand is also crucial and stakeholders identified several niche markets with duty cycles that are likely well-suited to electrified class 2b-3 trucks. To expand beyond these niches, class 2b-3 electric solutions must be robust, flexible, and adaptable in order to cover a wide range of vocations, applications, and duty cycles.

  8. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Mohamed [Automotive and Tractors Department, Faculty of Engineering, Minia University (Egypt)

    2011-07-01

    Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  9. Nonlinear finite element analysis of liquid sloshing in complex vehicle motion scenarios

    Science.gov (United States)

    Nicolsen, Brynne; Wang, Liang; Shabana, Ahmed

    2017-09-01

    The objective of this investigation is to develop a new total Lagrangian continuum-based liquid sloshing model that can be systematically integrated with multibody system (MBS) algorithms in order to allow for studying complex motion scenarios. The new approach allows for accurately capturing the effect of the sloshing forces during curve negotiation, rapid lane change, and accelerating and braking scenarios. In these motion scenarios, the liquid experiences large displacements and significant changes in shape that can be captured effectively using the finite element (FE) absolute nodal coordinate formulation (ANCF). ANCF elements are used in this investigation to describe complex mesh geometries, to capture the change in inertia due to the change in the fluid shape, and to accurately calculate the centrifugal forces, which for flexible bodies do not take the simple form used in rigid body dynamics. A penalty formulation is used to define the contact between the rigid tank walls and the fluid. A fully nonlinear MBS truck model that includes a suspension system and Pacejka's brush tire model is developed. Specified motion trajectories are used to examine the vehicle dynamics in three different scenarios - deceleration during straight-line motion, rapid lane change, and curve negotiation. It is demonstrated that the liquid sloshing changes the contact forces between the tires and the ground - increasing the forces on certain wheels and decreasing the forces on other wheels. In cases of extreme sloshing, this dynamic behavior can negatively impact the vehicle stability by increasing the possibility of wheel lift and vehicle rollover.

  10. Analyzing Real-World Light Duty Vehicle Efficiency Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, Jeffrey; Wood, Eric; Chaney, Larry; Holden, Jacob; Jeffers, Matthew; Wang, Lijuan

    2016-06-08

    Off-cycle technologies represent an important pathway to achieve real-world fuel savings, through which OEMs can potentially receive credit toward CAFE compliance. DOE national labs such as NREL are well positioned to provide objective input on these technologies using large, national data sets in conjunction with OEM- and technology-specific testing. This project demonstrates an approach that combines vehicle testing (dynamometer and on-road) with powertrain modeling and simulation over large, representative datasets to quantify real-world fuel economy. The approach can be applied to specific off-cycle technologies (engine encapsulation, start/stop, connected vehicle, etc.) in A/B comparisons to support calculation of realistic real-world impacts. Future work will focus on testing-based A/B technology comparisons that demonstrate the significance of this approach.

  11. The changes of the frequency specific impedance of the human body due to the resonance in the kHz range in cancer diagnostics

    Science.gov (United States)

    Michalak, K. P.; Nawrocka-Bogusz, H.

    2011-12-01

    The frequency-specific absorption of kHz signals has been postulated for different tissues, trace elements, vitamins, toxins, pathogens, allergens etc. for low-power (μV) signals. An increase in the impedance of the human body is observed only up to the given power of the applied signal. The highest amplification of the given signal being damped by the body makes it possible to determine the intensity of the given process in the body (e.g. amount of the toxin, trace element, intensity of the allergy) being connected with a given frequency spectrum of the signal. The mechanism of frequency-specific absorption can be explained by means of the Quantum Field Theory being applied to the structure of the water. Substantially high coincidence between the frequencies of the rotation of free quasi-excited electrons in coherent domains of water and the frequencies being used in the MORA diagnostics (Med-Tronic GmbH, EN ISO 13485, EN ISO 9001) can be observed. These frequencies are located in the proximity of f = 7kHz · i (i = 1,3,5,7,...). This fact suggests that the coherent domains with the admixtures of the given substances create structure-specific coherent domains that possess frequency-specific absorption spectra. The diagnostic tool called "MORA System diagnosis" was used to investigate 102 patients with different types and stages of cancer. Many signals were observed to be absorbed by many cancer patients, e.g.: 'Cellular defense system', 'Degeneration tendencies', Manganese, Magnesium, Zinc, Selenium, Vitamin E, Glutamine, Glutathione, Cysteine, Candida albicans, Mycosis. The results confirm the role of oxidative stress, immunological system deficiency and mitochondria malfunction in the development of cancer.

  12. Simulation and analysis of vertical displacement characteristics of three wheels reverse trike vehicle with PID controller application

    Science.gov (United States)

    Wibowo, Lambang, Lullus; Erick Chandra, N.; Muhayat, Nurul; Jaka S., B.

    2017-08-01

    The purpose of this research is to obtain a mathematical model (Full Vehicle Model) and compare the performance of passive and active suspension systems of a Three-Wheels Reverse Trike vehicle. Vehicle suspension system should able to provide good steering handling and passenger comfort. Vehicle suspension system generally only uses passive suspension components with fix spring and damper coefficients. An active suspension developed from the traditional (passive) suspension design can directly control the actuator force in the suspension system. In this paper, modeling and simulation of passive and active suspension system for a Full Vehicle Model is performed using Simulink-MATLAB software. Ziegler & Nichols tuning method is used to obtain controller parameters of Proportional Integral Derivative (PID) controller. Comparison between passive and active suspension with PID controller is conducted for disturbances input of single bump road surface profile 0.1 meters. The results are the displacement and acceleration of the vehicle body in the vertical direction of active suspension system with PID control is better in providing handling capabilities and comfort for the driver than of passive suspension system. The acceleration of 1,8G with the down time of 2.5 seconds is smaller than the acceleration of 2.5G with down time of 5.5 seconds.

  13. Hyper-X Vehicle Model - Top Front View

    Science.gov (United States)

    1996-01-01

    be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  14. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  15. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  16. 76 FR 68260 - Petition for Exemption From the Federal Motor Vehicle Theft Prevention Standard; Chrysler

    Science.gov (United States)

    2011-11-03

    ...), Ignition Node Module (IGNM), Engine Control Module (ECM), Body Controller Module (BCM), Sentry Key... and immobilize the vehicle after two seconds of running. This process is also similar for the keyless...

  17. Comparison of Vehicle Choice Models

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Thomas S. [Argonne National Lab. (ANL), Argonne, IL (United States); Levinson, Rebecca S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Changzheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lin, Zhenhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Birky, Alicia [Energetics Incorporated, Columbia, MD (United States); Kontou, Eleftheria [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-01

    Five consumer vehicle choice models that give projections of future sales shares of light-duty vehicles were compared by running each model using the same inputs, where possible, for two scenarios. The five models compared — LVCFlex, MA3T, LAVE-Trans, ParaChoice, and ADOPT — have been used in support of the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office in analyses of future light-duty vehicle markets under different assumptions about future vehicle technologies and market conditions. The models give projections of sales shares by powertrain technology. Projections made using common, but not identical, inputs showed qualitative agreement, with the exception of ADOPT. ADOPT estimated somewhat lower advanced vehicle shares, mostly composed of hybrid electric vehicles. Other models projected large shares of multiple advanced vehicle powertrains. Projections of models differed in significant ways, including how different technologies penetrated cars and light trucks. Since the models are constructed differently and take different inputs, not all inputs were identical, but were the same or very similar where possible.

  18. Hyper-X Vehicle Model - Top Rear View

    Science.gov (United States)

    1996-01-01

    , future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  19. Clustering Vehicle Temporal and Spatial Travel Behavior Using License Plate Recognition Data

    OpenAIRE

    Huiyu Chen; Chao Yang; Xiangdong Xu

    2017-01-01

    Understanding travel patterns of vehicle can support the planning and design of better services. In addition, vehicle clustering can improve management efficiency through more targeted access to groups of interest and facilitate planning by more specific survey design. This paper clustered 854,712 vehicles in a week using K-means clustering algorithm based on license plate recognition (LPR) data obtained in Shenzhen, China. Firstly, several travel characteristics related to temporal and spati...

  20. Expanding the Availability of Lightweight Aluminum Alloy Armor Plate Procured from Detailed Military Specifications

    Science.gov (United States)

    Doherty, Kevin; Squillacioti, Richard; Cheeseman, Bryan; Placzankis, Brian; Gallardy, Denver

    For many years, the range of aluminum alloys for armor plate applications obtainable in accordance with detailed military specifications was very limited. However, the development of improved aluminum alloys for aerospace and other applications has provided an opportunity to modernize the Army portfolio for ground vehicle armor applications. While the benefits of offering additional alloy choices to vehicle designers is obvious, the process of creating detailed military specifications for armor plate applications is not trivial. A significant amount of material and testing is required to develop the details required by an armor plate specification. Due to the vast number of material programs that require standardization and with a limited amount of manpower and funds as a result of Standardization Reform in 1995, one typically requires a need statement from a vehicle program office to justify and sponsor the work. This presentation will focus on recent aluminum alloy armor plate specifications that have added capability to vehicle designers' selection of armor materials that offer possible benefits such as lower cost, higher strength, better ballistic and corrosion resistance, improved weldability, etc.

  1. X-43A Vehicle During Ground Testing

    Science.gov (United States)

    1999-01-01

    fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  2. Development of Highly Sensitive and Specific mRNA Multiplex System (XCYR1) for Forensic Human Body Fluids and Tissues Identification

    Science.gov (United States)

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples. PMID:24991806

  3. Observation of increases in emission from modern vehicles over time in Hong Kong using remote sensing

    International Nuclear Information System (INIS)

    Lau, Jason; Hung, W.T.; Cheung, C.S.

    2012-01-01

    In this study on-road gaseous emissions of vehicles are investigated using remote sensing measurements collected over three different periods. The results show that a high percentage of gaseous pollutants were emitted from a small percentage of vehicles. Liquified Petroleum Gas (LPG) vehicles generally have higher gaseous emissions compared to other vehicles, particularly among higher-emitting vehicles. Vehicles with high vehicle specific power (VSP) tend to have lower CO and HC emissions while petrol and LPG vehicles tend to have higher NO emissions when engine load is high. It can be observed that gaseous emission factors of petrol and LPG vehicles increase greatly within 2 years of being introduced to the vehicle fleet, suggesting that engine and catalyst performance deteriorate rapidly. It can be observed that LPG vehicles have higher levels of gaseous emissions than petrol vehicles, suggesting that proper maintenance of LPG vehicles is essential in reducing gaseous emissions from vehicles. - Highlights: ► Emissions collected in 3 different periods to examine changes in emission over time. ► LPG vehicles generally emit more gaseous pollutants compared to other vehicles. ► Large increase in emissions from modern petrol/LPG vehicles after 2 years' operation. ► CO and NO emissions of modern diesel vehicles are similar to those of older vehicles. - Remote sensing measurements show large increases in gaseous emissions from vehicles in Hong Kong after 2 years of operation, indicating that engine and catalyst performance deteriorate rapidly.

  4. Electromagnetic support and/or guide system for levitating vehicles. Elektromagnetisches Trag- und/oder Fuehrungssystem fuer Schwebefahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Breitling, U; Simon, K

    1978-01-26

    The invention refers to an electromagnetic support and/or guide system for levitating vehicles (MAGLEV system). These levitating vehicles can move along tracks with at least one fixed branch-off. The parts of the system on the vehicle are arranged symmetrically to the vehicle's longitudinal axis above or below the vehicle body. There are 2 parallel rows of magnets provided for each longitudinal side of the vehicle, where only one magnet can act on the track outside the branch-off, and both magnets can act alternately on the track within the branch-off. The purpose of the invention is to develop such a system so that interference forces on the core parts are avoided. According to the invention this is achieved by the first row of each parallel longitudinal row of electromagnets and the armature rails allocated to the first row having a different pole spacing from the second row of electromagnets of the parallel row concerned and the armature rails of the associated second row.

  5. Plasma leptin determination in ruminants: effect of nutritional status and body fatness on plasma leptin concentration assessed by a specific RIA in sheep.

    Science.gov (United States)

    Delavaud, C; Bocquier, F; Chilliard, Y; Keisler, D H; Gertler, A; Kann, G

    2000-05-01

    A specific leptin RIA was developed to assess concentrations of leptin in ovine plasma, and was shown to be efficient with bovine and caprine plasma. A specific, high-affinity antibody was generated against recombinant ovine leptin which, when used in a competitive leptin RIA, provided valid estimates of linearity (r=+0.989-0.998), recovery (102%), repeatability (13%) and limit of sensitivity (0.83 ng/ml for 100 microl sample size). Serial dilutions of five ovine, bovine or caprine plasma samples showed good linearity and parallelism with the recombinant ovine leptin standard curve. A comparison of this RIA was made with a commercial 'multi-species' RIA kit using 56 ovine plasma samples. Major differences were found in assay sensitivity. Non-lactating, non-pregnant, ovariectomized ewes were fed a ration for 65 days which provided 90+/-9% (control; n=12) or 39+/-2% of maintenance energy requirements (underfed; n=16) in order to analyse the respective effects of body fatness (estimated by either an in vivo dilution technique or body condition scoring) and of nutritional status on plasma leptin concentration. There was a significant positive correlation between body fatness or body condition score and plasma leptin levels (r=+0.68, Pnutritional status (17%).

  6. Motor vehicle-related air toxics study. Final report

    International Nuclear Information System (INIS)

    1993-04-01

    Section 202 (1)(1) of the Clean Air Act (CAA), as amended (Section 206 of the Clean Air Act Amendments) (CAAA) of 1990 added paragraph (1) to Section 202 of the (CAA), directs the Environmental Protection Agency (EPA) to complete a study by May 15, 1992 of the need for, and feasibility of, controlling emissions of toxic air pollutants which are unregulated under the Act and associated with motor vehicles and motor vehicle fuels. The report has been prepared in response to Section 202 (1)(1). Specific pollutants or pollutant categories which are discussed in the report include benezene, formaldehyde, 1,3-butadiene, acetaldehyde, diesel particulate matter, gasoline particulate matter, and gasoline vapors as well as certain of the metals and motor vehicle-related pollutants identified in Section 112 of the Clean Air Act. The focus of the report is on carcinogenic risk. The study attempts to summarize what is known about motor vehicle-related air toxics and to present all significant scientific opinion on each issue

  7. Battery electric vehicles - implications for the driver interface.

    Science.gov (United States)

    Neumann, Isabel; Krems, Josef F

    2016-03-01

    The current study examines the human-machine interface of a battery electric vehicle (BEV) from a user-perspective, focussing on the evaluation of BEV-specific displays, the relevance of provided information and challenges for drivers due to the concept of electricity in a road vehicle. A sample of 40 users drove a BEV for 6 months. Data were gathered at three points of data collection. Participants perceived the BEV-specific displays as only moderately reliable and helpful for estimating the displayed parameters. This was even less the case after driving the BEV for 3 months. A taxonomy of user requirements was compiled revealing the need for improved and additional information, especially regarding energy consumption and efficiency. Drivers had difficulty understanding electrical units and the energy consumption of the BEV. On the background of general principles for display design, results provide implications how to display relevant information and how to facilitate drivers' understanding of energy consumption in BEVs. Practitioner Summary: Battery electric vehicle (BEV) displays need to incorporate new information. A taxonomy of user requirements was compiled revealing the need for improved and additional information in the BEV interface. Furthermore, drivers had trouble understanding electrical units and energy consumption; therefore, appropriate assistance is required. Design principles which are specifically important in the BEV context are discussed.

  8. Comparison of real-world and certification emission rates for light duty gasoline vehicles.

    Science.gov (United States)

    Khan, Tanzila; Frey, H Christopher

    2018-05-01

    U.S. light duty vehicles are subject to the U.S. Environmental Protection Agency (EPA) emission standards. Emission compliance is determined by certification testing of selected emissions from representative vehicles on standard driving cycles using chassis dynamometers. Test results are also used in many emission inventories. The dynamometer based emission rates are adjusted to provide the certification levels (CL), which must be lower than the standards for compliance. Although standard driving cycles are based on specific observations of real-world driving, they are not necessarily real-world representative. A systematic comparison of the real-world emission rates of U.S. light duty gasoline vehicles (LDGVs) versus CL, and emission standards has not been previously reported. The purpose of this work is to compare regulatory limits (both CLs and emission standards) and the real-world emissions of LDGVs. The sensitivity of the comparisons to cold start emission was assessed. Portable Emission Measurement Systems (PEMS) were used to measure hot stabilized exhaust emissions of 122 LDGVs on a specified 110 mile test route. Cold start emissions were measured with PEMS for a selected vehicle sample of 32 vehicles. Emissions were measured for carbon dioxide (CO 2 ), carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NO x ). For each vehicle, a Vehicle Specific Power (VSP) modal emission rate model was developed. The VSP modal rates were weighted by the standard driving cycles and real-world driving cycles to estimate the respective cycle average emission rates (CAERs). Measured vehicles were matched with certification test vehicles for comparison. For systematic trends in comparison, vehicles were classified into four groups based on the Tier 1 and Tier 2 emission regulation, and the vehicle type such as passenger car and passenger truck. Depending on the cycle-pollutant and the vehicle groups, hot stabilized CAERs are on average either statistically

  9. MODULTEC - Modular technology for lightweight vehicles; MODULTEC - Modultechnologie fuer Leichtmobile

    Energy Technology Data Exchange (ETDEWEB)

    Horlacher, M.; Efler, T.; Wegmann, S.

    2003-07-01

    This final report for the Swiss Federal Office of Energy presents the results of two research projects (MODULTEC I and II) that were carried out between 1995 and 2002. The project's aims were to develop and assess components for light-weight car bodies, study and test novel reinforced plastic materials and to examine the industrial implementation of light-weight vehicles. The report presents details on prototype vehicles and transport systems, as well as crash tests. The development of compound plastics and appropriate adhesives is discussed as is the co-operation with various industrial partners. Various prototype components are described and other associated topics such as recycling, storage of alternative fuels and pedestrian protection issues are discussed.

  10. 77 FR 60170 - Americans With Disabilities Act: Proposed Circular Chapter, Vehicle Acquisition

    Science.gov (United States)

    2012-10-02

    ... specifications in Part 38 by vehicle type. The section begins by emphasizing that an accessible bus or rail car... With Disabilities Act: Proposed Circular Chapter, Vehicle Acquisition AGENCY: Federal Transit... buses and rail cars they acquire meet the requirements of the U.S. Department of Transportation's (DOT...

  11. Gypsy pentecostal ascetism and body management

    Directory of Open Access Journals (Sweden)

    Mena Cabezas, Ignacio Ramón

    2008-05-01

    Full Text Available Pentecostal religious beliefs and practices consist of a complex set of strategies of transformation and personal renewal. Among other aspects of their experiences in the Church of Philadelphia, the social construction of Gypsy reality turns on the reform of the body. The present paper lies on aspects such as the body as object and subject of biopolitical and religious practices; the relationships between religious experience and body management; new social and community interactions; and autobiographical discourse as the ideological vehicle of personal conversion and transformation. All these processes reveal how social practices remake and shape bodily behaviour and its meaning. Pentecostal charismatic practices channel and express the community and individual demands of Church of Philadelphia converts, and represent central issues in the Pentecostal management of body and spirit. Our aim in this paper is to analyze the bodily practices which provide for believers´ transformation, and which shape community rituals and the congregation's interactions.

  12. Body composition in Nepalese children using isotope dilution: the production of ethnic-specific calibration equations and an exploration of methodological issues.

    Science.gov (United States)

    Devakumar, Delan; Grijalva-Eternod, Carlos S; Roberts, Sebastian; Chaube, Shiva Shankar; Saville, Naomi M; Manandhar, Dharma S; Costello, Anthony; Osrin, David; Wells, Jonathan C K

    2015-01-01

    Background. Body composition is important as a marker of both current and future health. Bioelectrical impedance (BIA) is a simple and accurate method for estimating body composition, but requires population-specific calibration equations. Objectives. (1) To generate population specific calibration equations to predict lean mass (LM) from BIA in Nepalese children aged 7-9 years. (2) To explore methodological changes that may extend the range and improve accuracy. Methods. BIA measurements were obtained from 102 Nepalese children (52 girls) using the Tanita BC-418. Isotope dilution with deuterium oxide was used to measure total body water and to estimate LM. Prediction equations for estimating LM from BIA data were developed using linear regression, and estimates were compared with those obtained from the Tanita system. We assessed the effects of flexing the arms of children to extend the range of coverage towards lower weights. We also estimated potential error if the number of children included in the study was reduced. Findings. Prediction equations were generated, incorporating height, impedance index, weight and sex as predictors (R (2) 93%). The Tanita system tended to under-estimate LM, with a mean error of 2.2%, but extending up to 25.8%. Flexing the arms to 90° increased the lower weight range, but produced a small error that was not significant when applied to children <16 kg (p 0.42). Reducing the number of children increased the error at the tails of the weight distribution. Conclusions. Population-specific isotope calibration of BIA for Nepalese children has high accuracy. Arm position is important and can be used to extend the range of low weight covered. Smaller samples reduce resource requirements, but leads to large errors at the tails of the weight distribution.

  13. Body composition in Nepalese children using isotope dilution: the production of ethnic-specific calibration equations and an exploration of methodological issues

    Directory of Open Access Journals (Sweden)

    Delan Devakumar

    2015-03-01

    Full Text Available Background. Body composition is important as a marker of both current and future health. Bioelectrical impedance (BIA is a simple and accurate method for estimating body composition, but requires population-specific calibration equations.Objectives. (1 To generate population specific calibration equations to predict lean mass (LM from BIA in Nepalese children aged 7–9 years. (2 To explore methodological changes that may extend the range and improve accuracy.Methods. BIA measurements were obtained from 102 Nepalese children (52 girls using the Tanita BC-418. Isotope dilution with deuterium oxide was used to measure total body water and to estimate LM. Prediction equations for estimating LM from BIA data were developed using linear regression, and estimates were compared with those obtained from the Tanita system. We assessed the effects of flexing the arms of children to extend the range of coverage towards lower weights. We also estimated potential error if the number of children included in the study was reduced.Findings. Prediction equations were generated, incorporating height, impedance index, weight and sex as predictors (R2 93%. The Tanita system tended to under-estimate LM, with a mean error of 2.2%, but extending up to 25.8%. Flexing the arms to 90° increased the lower weight range, but produced a small error that was not significant when applied to children <16 kg (p 0.42. Reducing the number of children increased the error at the tails of the weight distribution.Conclusions. Population-specific isotope calibration of BIA for Nepalese children has high accuracy. Arm position is important and can be used to extend the range of low weight covered. Smaller samples reduce resource requirements, but leads to large errors at the tails of the weight distribution.

  14. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  15. Cinnamate of inulin as a vehicle for delivery of colonic drugs.

    Science.gov (United States)

    López-Molina, Dorotea; Chazarra, Soledad; How, Chee Wun; Pruidze, Nikolov; Navarro-Perán, Enma; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio; Rojas-Melgarejo, Francisco; Rodríguez-López, José Neptuno

    2015-02-01

    Colon diseases are difficult to treat because oral administrated drugs are absorbed at the stomach and intestine levels and they do not reach colon; in addition, intravenous administrated drugs are eliminated from the body before reaching colon. Inulin is a naturally occurring polysaccharide found in many plants. It consists of β 2-1 linked D-fructose molecules having a glucosyl unit at the reducing end. Various inulin and dextran hydrogels have been developed that serve as potential carrier for introduction of drugs into the colon. Because inulin is not absorbed in the stomach or in the small intestine, and inulin is degraded by colonic bacteria, drugs encapsulated in inulin-coated vesicles could be specifically liberated in the colon. Therefore, the use of inulin-coated vesicles could represent an advance for the treatment of colon diseases. Here, we study the use of a cinnamoylated derivative of chicory inulin as a vehicle for the controlled delivery of colonic drugs. The encapsulation of methotrexate in inulin vesicles and its release and activity was studied in colon cancer cells in cultures. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect

    Science.gov (United States)

    Xu, H. L.; He, L.; An, D.

    2017-11-01

    The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.

  17. The Story of Ever Diminishing Vehicle Tailpipe Emissions as Observed in the Chicago, Illinois Area.

    Science.gov (United States)

    Bishop, Gary A; Haugen, Molly J

    2018-05-15

    The University of Denver has collected on-road fuel specific vehicle emissions measurements in the Chicago area since 1989. This nearly 30 year record illustrates the large reductions in light-duty vehicle tailpipe emissions and the remarkable improvements in emissions control durability to maintain low emissions over increasing periods of time. Since 1989 fuel specific carbon monoxide (CO) emissions have been reduced by an order of magnitude and hydrocarbon (HC) emissions by more than a factor of 20. Nitric oxide (NO) emissions have only been collected since 1997 but have seen reductions of 79%. This has increased the skewness of the emissions distribution where the 2016 fleet's 99th percentile contributes ∼3 times more of the 1990 total for CO and HC emissions. There are signs that these reductions may be leveling out as the emissions durability of Tier 2 vehicles in use today has almost eliminated the emissions reduction benefit of fleet turnover. Since 1997, the average age of the Chicago on-road fleet has increased 2 model years and the percentage of passenger vehicles has dropped from 71 to 52% of the fleet. Emissions are now so well controlled that the influence of driving mode has been completely eliminated as a factor for fuel specific CO and NO emissions.

  18. Application of the advanced engineering environment for optimization energy consumption in designed vehicles

    Science.gov (United States)

    Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.

    2016-08-01

    Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.

  19. Sex-specific functional adaptation of the femoral diaphysis to body composition.

    Science.gov (United States)

    Lacoste Jeanson, Alizé; Santos, Frédéric; Dupej, Ján; Velemínská, Jana; Brůžek, Jaroslav

    2018-03-24

    The human femoral diaphysis is often used to reconstruct loading histories (mobility, activity, body mass). The proximal femur is known to be differentially affected by changes in total fat-mass (FM), fat-free mass (FFM), and body fat percentage (BF%), but the adaptation of the entire diaphysis to body composition has not been thoroughly characterized to date. Understanding how the femoral diaphysis adapts to body components would benefit biomechanical interpretations of the femoral variation and nutrition-related studies. Combining various methods from clinical nutrition, biological anthropology, and geometric morphometrics, we evaluated the correlation of measures taken on the entire femoral diaphysis with estimated FM, FFM, and BF% from 61 CT scans (17 females, 44 males). The sample was predominantly composed of people with obesity. Cortical area of the cross-sections and local cortical thickness showed high correlation with BF% in particular, in females only. The curvature significantly decreased with FM and BF% in both sexes. The lowest correlations are found with FFM. The observed sexual dimorphism is consistent with differing aging processes; cortical bone decreases in females through endosteal resorption while it remains almost constant in males who compensate for endosteal resorption by periosteal apposition on the diaphyseal surface. The functional adaptation to compressive forces indicates a systemic endosteal apposition of bone material with increased BF% and FM in females only. FM and BF% are linked to a straighter femur in both sexes, suggesting an optimization of the resistance to compressive loads by distributing them more linearly along the entire diaphysis. © 2018 Wiley Periodicals, Inc.

  20. Using virtual environment for autonomous vehicle algorithm validation

    Science.gov (United States)

    Levinskis, Aleksandrs

    2018-04-01

    This paper describes possible use of modern game engine for validating and proving the concept of algorithm design. As the result simple visual odometry algorithm will be provided to show the concept and go over all workflow stages. Some of stages will involve using of Kalman filter in such a way that it will estimate optical flow velocity as well as position of moving camera located at vehicle body. In particular Unreal Engine 4 game engine will be used for generating optical flow patterns and ground truth path. For optical flow determination Horn and Schunck method will be applied. As the result, it will be shown that such method can estimate position of the camera attached to vehicle with certain displacement error respect to ground truth depending on optical flow pattern. For displacement rate RMS error is calculating between estimated and actual position.