WorldWideScience

Sample records for bnl

  1. FPC conditioning cart at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.; Ben-Zvi, I.; Altinbas, F.Z.; Belomestnykh, S.; Burrill, A.; Cole, M.; Deonarine, J.; Jamilkowski, J.; Kayran, D.; Laloudakis, N.; Masi Jr, L.; McIntyre, G.; Pate, D.; Philips, D.; Seda, T.; Steszyn, A.; Tallerico, T.; Todd, R.; Weiss, D.; White, G.; Zaltsman, A.

    2011-03-28

    The 703 MHz superconducting gun for the BNL Energy Recovery Linac (ERL) prototype has two fundamental power couplers (FPCs), and each of them will deliver up to 500 kW of CW RF power. In order to prepare the couplers for high power RF service and process multipacting, the FPCs should be conditioned prior to installation into the gun cryomodule. A conditioning cart based test stand, which includes a vacuum pumping system, controllable bake-out system, diagnostics, interlocks and data log system has been designed, constructed and commissioned by collaboration of BNL and AES. This paper presents FPC conditioning cart systems and the conditioning process.

  2. BNL heavy ion fusion program

    International Nuclear Information System (INIS)

    A principal attraction of heavy ion fusion is that existing accelerator technology and theory are sufficiently advanced to allow one to commence the design of a machine capable of igniting thermonuclear explosions. There are, however, a number of features which are not found in existing accelerators built for other purposes. The main thrust of the BNL Heavy Ion Fusion program has been to explore these features. Longitudinal beam bunching, very low velocity acceleration, and space charge neutralization are briefly discussed

  3. BNL ATF II beamlines design

    International Nuclear Information System (INIS)

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, will be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.

  4. BNL Direct Wind Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  5. BWR stability analyses at BNL

    International Nuclear Information System (INIS)

    The March 9, 1988 instability at the LaSalle County-2 boiling water reactor power plant at Seneca, IL was simulated with Brookhaven National Laboratory's (BNL's) Engineering Plant Analyzer (EPA) for the purpose of demonstrating that the EPA is suitable for simulating large-amplitude, limit-cycle power and flow oscillations. It was shown in fall of 1988, by comparing all the available plant data from the STARTREC recording system of LaSalle-2 with EPA simulation results, that the EPA reproduces the LaSalle-2 oscillations without the use of stabilizing or destabilizing model or parameter modifications. The power vs. flow map of the LaSalle-2 plant was also reproduced at five lines of constant control rod positions. The LaSalle-2 stability boundary was established with the EPA and confirmed within ±15% accuracy by comparing the EPA results with the results of the frequency domain code LAPUR of Oak Ridge National Laboratory. Comparisons of EPA simulation results with plant data from three Peach Bottom stability tests show an agreement, based on mean and standard deviation, of -10±28%, -1±40% and +28±52% (low power) in the gain of the pressure to power transfer functions. This demonstrates that the time domain code HIPA in the EPA is capable of simulating instabilities

  6. BNL ATF II beamlines design

    Energy Technology Data Exchange (ETDEWEB)

    Fedurin, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jing, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratakis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Swinson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, will be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.

  7. 2013 BNL Site Environmental Report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Ratel, K.; Remien, J.; Pohlot, P.; Williams, J.; Green, T.; Paquette, P.; Dorsch, W.; Welty, T.; Burke, J.

    2014-10-01

    A summary of Brookhaven National Laboratory’s (BNL) Site Environmental Report, meant to inform the public, regulators, employees, and other stakeholders of the Laboratory’s environmental performance in the lab’s surrounding area during the calendar year. The review is comprised of multiple volumes relevant to environmental data/environmental management performance and groundwater status report.

  8. PHENIX Spinfest School 2009 at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Foster,S.P.; Foster,S.; Seidl, R.; Goto, Y.; Okada, K.

    2009-08-07

    Since 2005, the PHENIX Spin Physics Working Group has set aside several weeks each summer for the purposes of training and integrating recent members of the working group as well as coordinating and making rapid progress on support tasks and data analysis. One week is dedicated to more formal didactic lectures by outside speakers. The location has so far alternated between BNL and the RIKEN campus in Wako, Japan, with support provided by RBRC and LANL.

  9. BNL ENVIRONMENTAL MONITORING PLAN TRIENNIAL UPDATE, JANUARY 2003.

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY

    2003-01-01

    Brookhaven National Laboratory (BNL) is a multi-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy (DOE) and is located on a 5,265-acre site in Suffolk County, Long Island, New York. BNL has a comprehensive Environmental Management System (EMS) in place, which meets the requirements of the International Organization for Standardization 14001 EMS Standard, as described in the BNL EMS Manual. BNL's extensive environmental monitoring program is one component of the EMS, and the BNL Environmental Monitoring Plan (EMP) describes this program in detail. The data derived from systematically monitoring the various environmental media on site enable BNL to make informed decisions concerning the protection of human health and the environment and to be responsive to community concerns.

  10. BNl 703 MHz superconducting RF cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, B.; Altinbas, Z.; Burrill, A.; Ben-Zvi, I.; Gassner, D.; Hahn, H.; Hammons, L.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Laloudakis, N.; Lederle, D.; Litvinenko, V.; McIntyre, G.; Pate, D.; Phillips, D.; Schultheiss, C.; Seda,T.; Than, R.; Xu, W.; Zaltsman, A.; Schultheiss, T.

    2011-03-28

    The BNL 5-cell, 703 MHz superconducting accelerating cavity has been installed in the high-current ERL experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q{sub 0} of 1e10. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.

  11. OPERATIONS ELECTRONIC LOGBOOK EXPERIENCE AT BNL.

    Energy Technology Data Exchange (ETDEWEB)

    SATOGATA,T.; CAMPBELL,I.; MARR,G.; SAMPSON,P.

    2002-06-02

    A web-based system for electronic logbooks, ''elog'', developed at Fermilab (FNAL), has been adopted for use by AGS and RHIC operations and physicists at BNL for the 2001-2 fixed target and collider runs. This paper describes the main functional and technical issues encountered in the first year of electronic logbook use, including security, search and indexing, sequencer integration, archival, and graphics management. We also comment on organizational experience and planned changes for the next facility run starting in September 2002.

  12. Highlights from BNL and RHIC 2015

    CERN Document Server

    Tannenbaum, M J

    2016-01-01

    Highlights of news from Brookhaven National Laboratory (BNL) and results from the Relativistic Heavy Ion Collider (RHIC) in the period July 2014-June 2015 are presented. The news this year was mostly very positive. The major event at BNL was the startup and dedication of the new NSLS II, "the World's brightest Synchrotron Light Source". The operation of RHIC was outstanding with a polarized p+p run at $\\sqrt{s}=200$ GeV with integrated luminosity that exceeded the sum of all previous p+p integrated luminosity at this $\\sqrt{s}$. For the first time at RHIC asymmetric p+Au and p+Al runs were made but the p+Al run caused damage in the PHENIX forward detectors from quenches that were inadequately shielded for this first p+A run. This was also the 10th anniversary of the 2005 announcement of the Perfect Liquid Quark Gluon Plasma at RHIC and a review is presented of the discoveries leading to this claim. A new result on net-charge fluctuations (with no particle identification) from PHENIX based on previous scans ov...

  13. Heavy Ion results from RHIC-BNL

    Directory of Open Access Journals (Sweden)

    Esumi Shinlchi

    2013-05-01

    Full Text Available Recent results from heavy ion collision experiments from RHIC at BNL are presented and discussed in terms of Quark Gluon Plasm properties, such as partonic collectivity and partonic energy loss. The experimental results with direct photons and heavy quarks have given important additional insights of the plasma on top of what has been known with light hadrons. Higher order event anisotropies and the related results have provided the geometrical, temporal and dynamical information of the plasma. The beam energy dependence of the various measurements could reveal the structure of QCD phase diagram and possibly the critical point in the diagram, where the properties of phase transition are expected to change drastically.

  14. Emergency response training with the BNL plant analyzer

    International Nuclear Information System (INIS)

    Presented in the experience in the use of the BNL plant analyzer for NRC emergency response training to simulated accidents in a BWR. The unique features of the BNL Plant Analyzer that are important for the emergency response training are summarized. A closed-loop simulation of all the key systems of a power plant in question was found essential to the realism of the emergency drills conducted at NRC. The faster than real-time simulation speeds afforded by the BNL Plant Analyzer have demonstrated its usefulness for the timely conduct of the emergency response training

  15. Radionuclide production and radiopharmaceutical chemistry with BNL cyclotrons

    International Nuclear Information System (INIS)

    The Brookhaven National Laboratory (BNL) radiopharmaceutical chemistry program focuses on production and utilization of radionuclides having a half-life of > 2 hr. However, a major portion of the BNL program is devoted to short-lived radionuclides, such as 11C and 18F. Activities encompassed in the program are classified into seven areas: cyclotron parameters, radiochemistry, design and rapid synthesis of radiopharmaceuticals and labeled compounds, radiotracer evaluation in animals, studies in humans, technology transfer, and several other areas

  16. Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD project. Proceedings of RIKEN BNL Research Center workshop: Volume 13

    International Nuclear Information System (INIS)

    A workshop was held at the RIKEN-BNL Research Center on October 16, 1998, as part of the first anniversary celebration for the center. This meeting brought together the physicists from RIKEN-BNL, BNL and Columbia who are using the QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer at the RIKEN-BNL Research Center for studies of QCD. Many of the talks in the workshop were devoted to domain wall fermions, a discretization of the continuum description of fermions which preserves the global symmetries of the continuum, even at finite lattice spacing. This formulation has been the subject of analytic investigation for some time and has reached the stage where large-scale simulations in QCD seem very promising. With the computational power available from the QCDSP computers, scientists are looking forward to an exciting time for numerical simulations of QCD

  17. Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD project. Proceedings of RIKEN BNL Research Center workshop: Volume 13

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-16

    A workshop was held at the RIKEN-BNL Research Center on October 16, 1998, as part of the first anniversary celebration for the center. This meeting brought together the physicists from RIKEN-BNL, BNL and Columbia who are using the QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer at the RIKEN-BNL Research Center for studies of QCD. Many of the talks in the workshop were devoted to domain wall fermions, a discretization of the continuum description of fermions which preserves the global symmetries of the continuum, even at finite lattice spacing. This formulation has been the subject of analytic investigation for some time and has reached the stage where large-scale simulations in QCD seem very promising. With the computational power available from the QCDSP computers, scientists are looking forward to an exciting time for numerical simulations of QCD.

  18. The Future Of Spin Physics At BNL

    Science.gov (United States)

    Aronson, Samuel; Deshpande, Abhay

    2007-06-01

    The Relativistic Heavy Ion Collider (RHIC) at BNL is the world's only polarized proton-proton collider. Collisions at center-of-mass energies up to 500 GeV and beam polarizations approaching 70% (longitudinal or transverse) are provided to two experiments, STAR and PHENIX, at luminosities ⩾ 1032/cm2/sec. Transverse polarized beam has also been provided to the BRAHMS experiment. Measurements that bear on the important question of the spin content of the nucleon are beginning to appear. Over the next 10 years, as the performance of polarized proton running at RHIC is farmer developed, the Spin Physics program at RHIC will provide definitive measurements of the contributions to the proton's spin of the gluon, the sea quarks and the orbital motion of the partons in the proton's wave function. We plan to extend the reach of our study of the role of spin in QCD with the development of "eRHIC," which will provide polarized e-p collisions to a new detector.

  19. THE FUTURE OF SPIN PHYSICS AT BNL.

    Energy Technology Data Exchange (ETDEWEB)

    ARONSON, S.; DESHPANDE, A.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) at BNL is the world's only polarized proton-proton collider. Collisions at center-of-mass energies up to 500 GeV and beam polarizations approaching 70% (longitudinal or transverse) are provided to two experiments, STAR and PHENIX, at luminosities {ge} 10{sup 32}/cm{sup 2}/sec. Transverse polarized beam has also been provided to the BRAHMS experiment. Measurements that bear on the important question of the spin content of the nucleon are beginning to appear. Over the next 10 years, as the performance of polarized proton running at RHIC is further developed, the Spin Physics program at RHIC will provide definitive measurements of the contributions to the proton's spin of the gluon, the sea quarks and the orbital motion of the partons in the proton's wave function. We plan to extend the reach of our study of the role of spin in QCD with the development of ''eRHIC'', which will provide polarized e-p collisions to a new detector.

  20. Review: BNL graphite blanket design concepts

    International Nuclear Information System (INIS)

    A review of the Brookhaven National Laboratory (BNL) minimum activity graphite blanket designs is made. Three designs are identified and discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a thick graphite screen (typically 30 cm or greater, depending on type as well as application-experimental power reactor or commercial reactor). Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy. This energy is then either radiated to a secondary blanket with coolant tubes, as in types A and B, or is removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the structural material of the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude by the graphite screen, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma, whatever the degree of radiation damage

  1. Highlights from BNL and RHIC 2014

    CERN Document Server

    Tannenbaum, M J

    2015-01-01

    Highlights of news from Brookhaven National Laboratory (BNL) and results from the Relativistic Heavy Ion Collider (RHIC) in the period July 2013-June 2014 are presented. It was a busy year for news, most notably a U. S. Government shutdown for 16 days beginning October 1, 2013 due to the lack of an approved budget for FY2014. Even with this unusual government activity, the $\\sqrt{s_{NN}}=200$ GeV Au+Au Run14 at RHIC was the best ever with integrated luminosity exceeding the sum of all previous runs. Additionally there was a brief He$^3$+Au run to continue the study of collective flow in small systems which was reinforced by new results presented on identified particle flow in d+Au. The other scientific highlights are also mostly concerned with ``soft (low $p_T$)'' physics complemented by the first preliminary results of reconstructed jets from hard-scattered partons in Au+Au collisions at RHIC . The measurements of transverse energy ($E_T$) spectra in p-p, d+Au and Au+Au collisions, which demonstrated last ye...

  2. BNL ALARA Center: ALARA Notes, No. 9

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Xie, J.W.; Beckman, M.C. [eds.] [and others

    1994-02-01

    This issue of the Brookhaven National Laboratory`s Alara Notes includes the agenda for the Third International Workshop on ALARA and specific instructions on the use of the on-line fax-on-demand service provided by BNL. Other topics included in this issue are: (1) A discussion of low-level discharges from Canadian nuclear plants, (2) Safety issues at French nuclear plants, (3) Acoustic emission as a means of leak detection, (4) Replacement of steam generators at Doel-3, Beaznau, and North Anna-1, (5) Remote handling equipment at Bruce, (6) EPRI`s low level waste program, (7) Radiation protection during concrete repairs at Savannah River, (8) Reactor vessel stud removal/repair at Comanche Peak-1, (9) Rework of reactor coolant pump motors, (10) Restoration of service water at North Anna-1 and -2, (11) Steam generator tubing problems at Mihama-1, (12) Full system decontamination at Indian Point-2, (13) Chemical decontamination at Browns Ferry-2, and (14) Inspection methodolody in France and Japan.

  3. BNL ALARA Center: ALARA Notes, No. 9

    International Nuclear Information System (INIS)

    This issue of the Brookhaven National Laboratory's Alara Notes includes the agenda for the Third International Workshop on ALARA and specific instructions on the use of the on-line fax-on-demand service provided by BNL. Other topics included in this issue are: (1) A discussion of low-level discharges from Canadian nuclear plants, (2) Safety issues at French nuclear plants, (3) Acoustic emission as a means of leak detection, (4) Replacement of steam generators at Doel-3, Beaznau, and North Anna-1, (5) Remote handling equipment at Bruce, (6) EPRI's low level waste program, (7) Radiation protection during concrete repairs at Savannah River, (8) Reactor vessel stud removal/repair at Comanche Peak-1, (9) Rework of reactor coolant pump motors, (10) Restoration of service water at North Anna-1 and -2, (11) Steam generator tubing problems at Mihama-1, (12) Full system decontamination at Indian Point-2, (13) Chemical decontamination at Browns Ferry-2, and (14) Inspection methodolody in France and Japan

  4. Strangelet Search at the BNL Relativistic Heavy Ion Collider

    OpenAIRE

    Abelev, B. I.

    2008-01-01

    We have searched for strangelets in a triggered sample of 61 million central (top 4percent) Au+Au collisions at sqrt sNN = 200 GeV near beam rapidities at the STAR solenoidal tracker detector at the BNL Relativistic Heavy Ion Collider. We have sensitivity to metastable strangelets with lifetimes of order >_0.1 ns, in contrast to limits over ten times longer in BNL Alternating Gradient Synchrotron (AGS) studies and longer still at the CERN Super Proton Synchrotron (SPS). Upper limits of a few ...

  5. Data Model of the BNL Archive and Dissemination System

    Energy Technology Data Exchange (ETDEWEB)

    Heller, J; Osterer, L

    1977-02-01

    The Data Model, i.e., the information content of the data base as it is viewed by the users, of the BNL Archive and Dissemination System is presented. The syntax of the data model is stated in BNF form, and the semantic meaning is discussed. Examples of the use of the data model are given. 3 figs.

  6. BNL hypernuclear spectrometers and instrumentation present and future

    International Nuclear Information System (INIS)

    During the period 1981 to 1984 the BNL hypernuclear spectrometer system was upgraded resulting in an increase in kaon flux and an increase in solid angle and momentum acceptance. The modifications require drift chambers to be operated at rates up to 107 s-1. The performance of the spectrometer-drift chamber systems will be discussed

  7. BNL Activities in Advanced Neutron Source Development: Past and Present

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  8. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    Energy Technology Data Exchange (ETDEWEB)

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  9. BNL 56 MHz HOM damper prototype fabrication at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Huque, N.; McIntyre, G.; Daly, E. F.; Clemens, W.; Wu, Q.; Seberg, S.; Bellavia, S.

    2015-05-03

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider’s (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  10. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Naeem A. [Jefferson Lab., Newport News, VA (United States); Daly, Edward F. [Jefferson Lab., Newport News, VA (United States); Clemens, William A. [Jefferson Lab., Newport News, VA (United States); McIntyre, Gary T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Qiong [Brookhaven National Lab. (BNL), Upton, NY (United States); Seberg, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, Steve [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-01

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  11. Results from the experiment E895 at the BNL AGS

    CERN Document Server

    Rai, G; Alexander, J; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D A; Chance, J L; Chung, P; Cole, B; Crowe, K; Das, A; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A S; Hjort, E L; Huo, L; Justice, M; Kaplan, M; Keane, D; Kintner, J; Klay, J; Krofcheck, D; Lacey, R; Lisa, M A; Liu, H; Liu, Y M; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D L; Panitkin, S Y; Pinkenburg, C H; Porile, N T; Ritter, H G; Romero, J L; Scharenberg, R P; Schröder, L S; Srivastava, B K; Stone, N T B; Symons, T J M; Wang, S; Wells, R; Whitfield, J; Wienold, T; Witt, R; Wood, L; Yang, X; Zhang, W; Zhang, Y

    1999-01-01

    We present some of the latest results from the E895 experiment conducted at the BNL AGS accelerator. Au+Au collisions were recorded by the EOS Time Projection Chamber (TPC) at beam energies of 2, 4, 6, and 8 A GeV. The TPC detector permitted the reconstruction of individual collision events with almost 4 pi acceptance and good particle identification. This capability allowed E895 to study global observables and two particle correlations with respect to symmetries of the event. Flow excitation functions are examined and discussed in the context of the Nuclear Equation of State.

  12. DOE/NORA/BNL oil heat research agenda development

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J. [Brookhaven National Lab., Upton, NY (United States); Batey, J. [Energy Research Center, Easton, CT (United States)

    1996-07-01

    The National Oilheat Research Alliance (NORA) has been formed and is currently working to establish a Congressionally approved oilheat check-off program to provide funding for research, education, training, safety, and marketing to benefit the US oilheat industry. NORA will be presenting this program to the Congress for its consideration and approval in the coming year. It will follow the same path as the National Propane Gas Association which is currently working on obtaining Congressional approval of a propane check off program that has already attracted over 120 cosponsors in the House of representatives. An effort to define the basis of a joint US Department of Energy (DOE) and Oilheat industry (marketers) program for future oilheat equipment research and development will be conducted during FY-1996. At the request of NORA representatives BNL will coordinate the development of a research agenda addressing three categories of activities, research appropriate for DOE support only, research appropriate for NORA support only, and research appropriate for co-funding by both organizations. This will also serve to update a prior oil-fueled research plan developed for DOE ten years ago which has been the road map for DOE`s very successful Oil Heat R&D program at BNL.

  13. Cooling Scheme for BNL-Built LHC Magnets

    CERN Document Server

    Ostojic, R; Van Weelderen, R; Willen, E H; Wu, K C

    1999-01-01

    Brookhaven National Laboratory (BNL) will provide four types of magnets, identified as D1, D2, D3 and D4, for the Insertion Regions of the Large Hadron Collider (LHC) as part of an international collaboration. These magnets utilize the dipole coil design of the Relativistic Heavy Ion Collider (RHIC) at BNL, for performance, reliability and cost reasons. The magnet cold mass and cryostat have been designed to ensure that these magnets meet all performance requirements in the LHC sloped tunnel using its cryogenic distribution system. D1 is a RHIC arc dipole magnet. D2 and D4 are 2-in-1 magnets, two coils in one cold mass, in a cryostat. D3 is a 1-in-1 magnet, one coil in one cold mass, with two cold masses side by side in a cryostat. D1 and D4 will be cooled by helium II at 1.9 K using a bayonet heat exchanger similar to the main cooling system of LHC. D2 and D3 will be cooled by liquid helium at 4.5 K using a Two-Feed scheme. A detailed description of the cooling scheme for these magnets, their cryostats, spec...

  14. Proceedings of RIKEN BNL Research Center workwhop on RHIC spin

    Energy Technology Data Exchange (ETDEWEB)

    SOFFER,J.

    1999-10-06

    This RHIC Spin Workshop is the 1999 annual meeting of the RHIC Spin Collaboration, and the second to be hosted at Brookhaven and sponsored by the RIKEN BNL Research Center. The previous meetings were at Brookhaven (1998), Marseille (1996), MIT in 1995, Argonne 1994, Tucson in 1991, and the Polarized Collider Workshop at Penn State in 1990. As noted last year, the Center provides a home for combined work on spin by theorists, experimenters, and accelerator physicists. This proceedings, as last year, is a compilation of 1 page summaries and 5 selected transparencies for each speaker. It is designed to be available soon after the workshop is completed. Speakers are welcome to include web or other references for additional material. The RHIC spin program and RHIC are rapidly becoming reality. RHIC has completed its first commissioning run, as described here by Steve Peggs. The first Siberian Snake for spin has been completed and is being installed in RHIC. A new polarized source from KEK and Triumf with over 1 milliampere of polarized H{sup minus} is being installed, described by Anatoli Zelenski. They have had a successful test of a new polarimeter for RHIC, described by Kazu Kurita and Haixin Huang. Spin commissioning is expected next spring (2000), and the first physics run for spin is anticipated for spring 2001. The purpose of the workshop is to get everyone together about once per year and discuss goals of the spin program, progress, problems, and new ideas. They also have many separate regular forums on spin. There are spin discussion sessions every Tuesday, now organized by Naohito Saito and Werner Vogelsang. The spin discussion schedule and copies of presentations are posted on http://riksg01.rhic.bnl.gov/rsc. Speakers and other spinners are encouraged to come to BNL and to lead a discussion on your favorite idea. They also have regular polarimeter and snake meetings on alternate Thursdays, led by Bill McGahern, the lead engineer for the accelerator spin

  15. Beam Loss Estimates and Control for the BNL Neutrino Facility

    CERN Document Server

    Weng, Wu-Tsung; Raparia, Deepak; Tsoupas, Nicholaos; Wei, Jie; Yung Lee, Yong; Zhang, S Y

    2005-01-01

    BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW for a very long baseline neutrino oscillation experiment. This increase in beam power is mainly due to the faster repetition rate of the AGS by a new 1.5 GeV superconductiong linac as injector, replacing the existing booster. The requirement for low beam loss is very important both to protect the beam component, and to make the hands-on maintenance possible. In this report, the design considerations for achieving high intensity and low loss will be presented. We start by specifying the beam loss limit at every physical process followed by the proper design and parameters for realising the required goals. The process considered in this paper include the emittance growth in the linac, the H-

  16. Field testing the prototype BNL fan-atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  17. PHYSICS OF THE 1 TERAFLOP RIKEN-BNL-COLUMBIA QCD PROJECT.

    Energy Technology Data Exchange (ETDEWEB)

    MAWHINNEY,R.

    1998-10-16

    A workshop was held at the RIKEN-BNL Research Center on the afternoon of October 16, i 998, as part of the first anniversary ceremony for the center. Titled ''Workshop on Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project'', this meeting brought together the physicists from RIKEN-BNL, BNL and Columbia who are using the QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer at the RIKEN-BNL Research Center for studies of QCD. In addition, Akira Ukawa, a leader of the CP-PACS project at the University of Tsukuba in Japan, attended and gave a talk on the Aoki phase. There were also others in attendance who were interested in more general properties of the QCDSP computer. The QCDSP computer and lattice QCD had been presented during the morning ceremony by Shigemi Ohta of KEK and the RIKEN-BNL Research Center. This was followed by a tour of the QCDSP machine room and a formal unveiling of the computer to the attendees of the anniversary ceremony and the press. The rapid completion of construction of the QCDSP computer was made possible through many factors: (1) the existence of a complete design and working hardware at Columbia when the RIKEN-BNL center was being set up, (2) strong support for the project from RIKEN and the center and (3) aggressive involvement of members of the Computing and Communications Division at BNL. With this powerful new resource, the members of the RIKEN-BNL-Columbia, QCD project are looking forward to advances in our understanding of QCD.

  18. PHYSICS OF THE 1 TERAFLOP RIKEN-BNL-COLUMBIA QCD PROJECT.

    Energy Technology Data Exchange (ETDEWEB)

    MAWHINNEY,R.

    1998-10-16

    A workshop was held at the RIKEN-BNL Research Center on the afternoon of October 16, 1998, as part of the first anniversary ceremony for the center. Titled ''Workshop on Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project'', this meeting brought together the physicists from RIKEN-BNL, BNL and Columbia who are using the QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer at the RIKEN-BNL Research Center for studies of QCD. In addition, Akira Ukawa, a leader of the CP-PACS project at the University of Tsukuba in Japan, attended and gave a talk on the Aoki phase. There were also others in attendance who were interested in more general properties of the QCDSP computer. The QCDSP computer and lattice QCD had been presented during the morning ceremony by Shigemi Ohta of KEK and the RIKEN-BNL Research Center. This was followed by a tour of the QCDSP machine room and a formal unveiling of the computer to the attendees of the anniversary ceremony and the press. The rapid completion of construction of the QCDSP computer was made possible through many factors: (1) the existence of a complete design and working hardware at Columbia when the RIKEN-BNL center was being set up, (2) strong support for the project from RIKEN and the center and (3) aggressive involvement of members of the Computing and Communications Division at BNL. With this powerful new resource, the members of the RIKEN-BNL-Columbia, QCD project are looking forward to advances in our understanding of QCD.

  19. BNL workshop on rare K decays and CP violation, August 25-27, 1988

    International Nuclear Information System (INIS)

    This report contains viewgraphs on the following topics: rare and forbidden K decays; CP violation in the K system; the status of current experiments at BNL, CERN, FNAL, and KEK; and future experiments and facilities

  20. BNL workshop on rare K decays and CP violation, August 25-27, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This report contains viewgraphs on the following topics: rare and forbidden K decays; CP violation in the K system; the status of current experiments at BNL, CERN, FNAL, and KEK; and future experiments and facilities.

  1. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs

  2. First Results from the DUV-FEL Upgrade at BNL

    CERN Document Server

    Wang, Xijie; Murphy, James; Pinayev, Igor; Rakowsky, George; Rose, James; Shaftan, Timur; Sheehy, Brian; Skaritka, John; Wu, Zilu; Yu Li Hua

    2005-01-01

    The DUV-FEL at BNL is the world’s only facility dedicated to laser-seeded FEL R&D and its applications. Tremendous progress was made in both HGHG FEL and its applications in the last couple years.*,** In response to the requests of many users to study chemical science at the facility, the DUV-FEL linac was upgraded from 200 to 300 MeV to enable the HGHG FEL to produce 100 uJ pulses of 100 nm light. This will establish the DUV FEL as a premier user facility for ultraviolet radiation and enable state-of-the-art gas phase photochemistry research. The upgraded facility will also make possible key R&D experiments such as higher harmonic HGHG (n>5) that would lay the groundwork for future X-ray FEL based on HGHG. The upgraded HGHG FEL will operate at the 4th harmonic with the seed laser at either 800 nm or 400nm. The increase of the electron beam energy will be accomplished by installing a 5th linac cavity and two 45 MW klystrons. New HGHG modulator and dispersion sections vacuum chambers w...

  3. The BNL fan-atomized burner system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    Brookhaven National Laboratory (BNL) has a continuing interest in the development of advanced oil burners which can provide new capabilities not currently available with pressure atomized, retention head burners. Specifically program goals include: the ability to operate at firing rates as low as 0.25 gph; the ability to operate with very low excess air levels for high steady state efficiency and to minimize formation of sulfuric acid and iron sulfate fouling; low emissions of smoke, CO, and NO{sub x} even at very low excess air levels; and the potential for modulation - either staged firing or continuous modulation. In addition any such advanced burner must have production costs which would be sufficiently attractive to allow commercialization. The primary motivation for all work sponsored by the US DOE is, of course, improved efficiency. With existing boiler and furnace models this can be achieved through down-firing and low excess air operation. Also, with low excess air operation fouling and efficiency degradation due to iron-sulfate scale formation are reduced.

  4. BWR stability analysis with the BNL Engineering Plant Analyzer

    International Nuclear Information System (INIS)

    March 9, 1989 instability at the LaSalle-2 Power Plant and more than ninety related BWR transients have been simulated on the BNL Engineering Plant Analyzer (EPA). Power peaks were found to be potentially seventeen times greater than the rated power, flow reversal occurs momentarily during large power oscillations, the fuel centerline temperature oscillates between 1,030 and 2,090 K, while the cladding temperature oscillates between 560 and 570 K. The Suppression Pool reaches its specified temperature limit either never or in as little as 4.3 minutes, depending on operator actions and transient scenario. Thermohydraulic oscillations occur at low core coolant flow (both Recirculation Pumps tripped), with sharp axial or redial fission power peaking and with partial loss of feedwater preheating while the feedwater is flow kept high to maintain coolant inventory in the vessel. Effects from BOP system were shown to influence reactor stability strongly through dosed-loop resonance feedback. High feedwater flow and low temperature destabilize the reactor. Low feedwater flow restabilizes the reactor, because of steam condensation and feedwater preheating in the downcomer, which reduces effectively the destabilizing core inlet subcooling. The EPA has been found to be capable of analyzing BWR stability '' shown to be effective for scoping calculations and for supporting accident management

  5. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett

    2005-01-01

    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  6. Measurements of the radioactive inventory of the old effluent pipe line on the BNL site

    International Nuclear Information System (INIS)

    When Berkeley Nuclear Laboratory (BNL) was built, a 3 inch cast iron pipe was laid to carry the radioactive effluent from the BNL effluent treatment plant to the power station for further treatment and/or discharge. In 1980/81 a new pipe line was installed and since then the old line has remained unused. As part of the refurbishment of certain parts of the BNL site currently in progress, the majority of the pipe is to be dug up in two stages, although a small length of the pipe which runs under existing foundations will be left in the ground. This report gives the radioactive inventory of the pipe based on measurements made during the first state of removal. Samples from the trench dug to expose the pipe were taken before and after the removal of the pipe and analysed to determine whether the pipe had leaked and the level of contamination caused by the pipe's removal. (author)

  7. Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.

    Science.gov (United States)

    Miller, J; Zeitlin, C

    2016-06-01

    Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven. PMID:27345198

  8. Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory

    Science.gov (United States)

    Miller, J.; Zeitlin, C.

    2016-06-01

    Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven.

  9. Red Hat Enterprise Virtualization - KVM-based infrastructure services at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Cortijo, D.

    2011-06-14

    Over the past 18 months, BNL has moved a large percentage of its Linux-based servers and services into a Red Hat Enterprise Virtualization (RHEV) environment. This presentation will address our approach to virtualization, critical decision points, and a discussion of our implementation. Specific topics will include an overview of hardware and software requirements, networking, and storage; discussion of the decision of Red Hat solution over competing products (VMWare, Xen, etc); details on some of the features of RHEV - both current and on their roadmap; Review of performance and reliability gains since deployment completion; path forward for RHEV at BNL and caveats and potential problems.

  10. First test of BNL electron beam ion source with high current density electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard [CERN, CH-1211 Geneva 23 (Switzerland)

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  11. Implications of BNL measurement of dam on a class of scalar leptoquark interactions

    CERN Document Server

    Mahanta, U

    2001-01-01

    Recently BNL have measured the muon magnetic moment anomaly with increased precision [1]. The world average experimental value shows a discrepancy of 43(16)x 10^{-10} from the current Standard Model value. In this paper we investigate the implications of this difference on a class of scalar leptoquark interactions to SM quark lepton pair.

  12. New result on K+ → π+ ν νbar from BNL E787

    International Nuclear Information System (INIS)

    E787 at BNL has reported evidence for the rare decay K+ → π+νbar ν, based on the observation of one candidate event. In this paper, we present the result of analyzing a new dataset of comparable sensitivity to the published result

  13. QUARKONIUM PRODUCTION IN RELATIVISTIC NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 12

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    1999-04-20

    The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.

  14. First test of BNL electron beam ion source with high current density electron beam

    International Nuclear Information System (INIS)

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given

  15. OVERVIEW ON BNL ASSESSMENT OF SEISMIC ANALYSIS METHODS FOR DEEPLY EMBEDDED NPP STRUCTURES.

    Energy Technology Data Exchange (ETDEWEB)

    XU,J.; COSTANTINO, C.; HOFMAYER, C.; GRAVES, H.

    2007-04-01

    A study was performed by Brookhaven National Laboratory (BNL) under the sponsorship of the U. S. Nuclear Regulatory Commission (USNRC), to determine the applicability of established soil-structure interaction analysis methods and computer programs to deeply embedded and/or buried (DEB) nuclear power plant (NPP) structures. This paper provides an overview of the BNL study including a description and discussions of analyses performed to assess relative performance of various SSI analysis methods typically applied to NPP structures, as well as the importance of interface modeling for DEB structures. There are four main elements contained in the BNL study: (1) Review and evaluation of existing seismic design practice, (2) Assessment of simplified vs. detailed methods for SSI in-structure response spectrum analysis of DEB structures, (3) Assessment of methods for computing seismic induced earth pressures on DEB structures, and (4) Development of the criteria for benchmark problems which could be used for validating computer programs for computing seismic responses of DEB NPP structures. The BNL study concluded that the equivalent linear SSI methods, including both simplified and detailed approaches, can be extended to DEB structures and produce acceptable SSI response calculations, provided that the SSI response induced by the ground motion is very much within the linear regime or the non-linear effect is not anticipated to control the SSI response parameters. The BNL study also revealed that the response calculation is sensitive to the modeling assumptions made for the soil/structure interface and application of a particular material model for the soil.

  16. PRODEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP : HIGH PERFORMANCE COMPUTING WITH QCDOC AND BLUEGENE.

    Energy Technology Data Exchange (ETDEWEB)

    CHRIST,N.; DAVENPORT,J.; DENG,Y.; GARA,A.; GLIMM,J.; MAWHINNEY,R.; MCFADDEN,E.; PESKIN,A.; PULLEYBLANK,W.

    2003-03-11

    Staff of Brookhaven National Laboratory, Columbia University, IBM and the RIKEN BNL Research Center organized a one-day workshop held on February 28, 2003 at Brookhaven to promote the following goals: (1) To explore areas other than QCD applications where the QCDOC and BlueGene/L machines can be applied to good advantage, (2) To identify areas where collaboration among the sponsoring institutions can be fruitful, and (3) To expose scientists to the emerging software architecture. This workshop grew out of an informal visit last fall by BNL staff to the IBM Thomas J. Watson Research Center that resulted in a continuing dialog among participants on issues common to these two related supercomputers. The workshop was divided into three sessions, addressing the hardware and software status of each system, prospective applications, and future directions.

  17. STATUS OF HIGH TEMPERATURE SUPERCONDUCTOR MAGNET R AND D AT BNL.

    Energy Technology Data Exchange (ETDEWEB)

    GUPTA,R.; ANERELLA,M.; COZZOLINO,J.; ESCALLIER,J.; GANETIS,G.; GHOSH,A.; ET AL.

    2004-01-22

    We report the status and test results of the High Temperature Superconductor (HTS) cable and magnet R&D at Brookhaven National Laboratory (BNL). If successful, this will enhance the performance and reduce the cost of operation of magnets that must absorb a large amount of energy. The need for developing this technology has been seen in a number of high field magnet applications for high energy colliders, and a medium field application in the proposed Rare Isotope Accelerator (RIA). The likelihood of the future use of HTS is improving because of the availability of longer and more uniform length tapes and cables and because of the ongoing construction and test experience at BNL and elsewhere. The design of a super-ferric quadrupole, that must survive the very high radiation environment of RIA, and operate at 20-40 K, is also presented.

  18. NEUTRINO SUPER BEAM FACILITY FOR A LONG BASELINE EXPERIMENT FROM BNL TO HOMESTAKE.

    Energy Technology Data Exchange (ETDEWEB)

    KAHN,S.

    2002-10-21

    An upgrade to the BNL Alternate Gradient Synchrotron (AGS) could produce a very intense proton source at a relatively low cost. Such a proton beam could be used to generate a conventional neutrino beam with a significant flux at large distances from the laboratory. This provides the possibility of a very long baseline neutrino experiment at the Homestake mine. The construction of this facility would allow a program of experiments to study many of the aspects of neutrino oscillations including CP violations. This study examines a 1 MW proton source at BNL and a large 1 megaton detector positioned at the Homestake Mine as the ultimate goal of a staged program to study neutrino oscillations.

  19. A wire scanner system for characterizing the BNL energy recovery LINAC beam position monitor system

    Energy Technology Data Exchange (ETDEWEB)

    Michnoff R.; Biscardi, C.; Cerniglia, P.; Degen, C.; Gassner, D.; Hoff, L.; Hulsart, R.

    2012-04-15

    A stepper motor controlled wire scanner system has recently been modified to support testing of the Brookhaven National Laboratory (BNL) Collider-Accelerator department's Energy Recovery Linac (ERL) beam position monitor (BPM) system. The ERL BPM consists of four 9.33 mm diameter buttons mounted at 90 degree spacing in a cube with 1.875 inch inside diameter. The buttons were designed by BNL and fabricated by Times Microwave Systems. Libera brilliance single pass BPM electronic modules with 700 MHz bandpass filter, manufactured by Instrumentation Technologies, will be used to measure the transverse beam positions at 14 locations around the ERL. The wire scanner assembly provides the ability to measure the BPM button response to a pulsed wire, and evaluate and calibrate the Libera position measurement electronics. A description of the wire scanner system and test result data will be presented.

  20. Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Michael P [Brookhaven National Lab. (BNL), Upton, NY (United States); Giangrande, Scott E [Brookhaven National Lab. (BNL), Upton, NY (United States); Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) [http://www.arm.gov/campaigns/osc2013rwpcf] campaign was scheduled to take place from 15 July 2013 through 15 July 2015 (or until shipped for the next U.S. Department of Energy Atmospheric Radiation Measurement [ARM] Climate Research Facility first Mobile Facility [AMF1] deployment). The campaign involved the deployment of the AMF1 Scintec 915 MHz Radar Wind Profiler (RWP) at BNL, in conjunction with several other ARM, BNL and National Weather Service (NWS) instruments. The two main scientific foci of the campaign were: 1) To provide profiles of the horizontal wind to be used to test and validate short-term cloud advection forecasts for solar-energy applications and 2) to provide vertical profiling capabilities for the study of dynamics (i.e., vertical velocity) and hydrometeors in winter storms. This campaign was a serendipitous opportunity that arose following the deployment of the RWP at the Two-Column Aerosol Project (TCAP) campaign in Cape Cod, Massachusetts and restriction from participation in the Green Ocean Amazon 2014/15 (GoAmazon 2014/15) campaign due to radio-frequency allocation restriction for international deployments. The RWP arrived at BNL in the fall of 2013, but deployment was delayed until fall of 2014 as work/safety planning and site preparation were completed. The RWP further encountered multiple electrical failures, which eventually required several shipments of instrument power supplies and the final amplifier to the vendor to complete repairs. Data collection began in late January 2015. The operational modes of the RWP were changed such that in addition to collecting traditional profiles of the horizontal wind, a vertically pointing mode was also included for the purpose of precipitation sensing and estimation of vertical velocities. The RWP operated well until the end of the campaign in July 2015 and collected observations for more than 20 precipitation

  1. BNL program in support of LWR degraded-core accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ginsberg, T.; Greene, G.A.

    1982-01-01

    Two major sources of loading on dry watr reactor containments are steam generatin from core debris water thermal interactions and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described in this paper. 8 figures.

  2. SynapSense Wireless Environmental Monitoring System of the RHIC & ATLAS Computing Facility at BNL

    Science.gov (United States)

    Casella, K.; Garcia, E.; Hogue, R.; Hollowell, C.; Strecker-Kellogg, W.; Wong, A.; Zaytsev, A.

    2014-06-01

    RHIC & ATLAS Computing Facility (RACF) at BNL is a 15000 sq. ft. facility hosting the IT equipment of the BNL ATLAS WLCG Tier-1 site, offline farms for the STAR and PHENIX experiments operating at the Relativistic Heavy Ion Collider (RHIC), the BNL Cloud installation, various Open Science Grid (OSG) resources, and many other small physics research oriented IT installations. The facility originated in 1990 and grew steadily up to the present configuration with 4 physically isolated IT areas with the maximum rack capacity of about 1000 racks and the total peak power consumption of 1.5 MW. In June 2012 a project was initiated with the primary goal to replace several environmental monitoring systems deployed earlier within RACF with a single commercial hardware and software solution by SynapSense Corporation based on wireless sensor groups and proprietary SynapSense™ MapSense™ software that offers a unified solution for monitoring the temperature and humidity within the rack/CRAC units as well as pressure distribution underneath the raised floor across the entire facility. The deployment was completed successfully in 2013. The new system also supports a set of additional features such as capacity planning based on measurements of total heat load, power consumption monitoring and control, CRAC unit power consumption optimization based on feedback from the temperature measurements and overall power usage efficiency estimations that are not currently implemented within RACF but may be deployed in the future.

  3. THE BNL ASTD FIELD LAB - NEAR - REAL - TIME CHARACTERIZATION OF BNL STOCKPILED SOILS TO ACCELERATE COMPLETION OF THE EM CHEMICAL HOLES PROJECT

    International Nuclear Information System (INIS)

    As of October 2001, approximately 7,000 yd3 of stockpiled soil remained at Brookhaven National Laboratory (BNL) after the remediation of the BNL Chemical/Animal/Glass Pits disposal area. The soils were originally contaminated with radioactive materials and heavy metals, depending on what materials had been interred in the pits, and how the pits were excavated. During the 1997 removal action, the more hazardous/radioactive materials were segregated, along with, chemical liquids and solids, animal carcasses, intact gas cylinders, and a large quantity of metal and glass debris. Nearly all of these materials have been disposed of. In order to ensure that all debris was removed and to characterize the large quantity of heterogeneous soil, BNL initiated an extended sorting, segregation, and characterization project directed at the remaining soil stockpiles. The project was co-funded by the Department of Energy Environmental Management Office (DOE EM) through the BNL Environmental Restoration program and through the DOE EM Office of Science and Technology Accelerated Site Technology Deployment (ASTD) program. The focus was to remove any non-conforming items, and to assure that mercury and radioactive contaminant levels were within acceptable limits for disposal as low-level radioactive waste. Soils with mercury concentrations above allowable levels would be separated for disposal as mixed waste. Sorting and segregation were conducted simultaneously. Large stockpiles (ranging from 150 to 1,200 yd3) were subdivided into manageable 20 yd3 units after powered vibratory screening. The 1/2-inch screen removed almost all non-conforming items (plus some gravel). Non-conforming items were separated for further characterization. Soil that passed through the screen was also visually inspected before being moved to a 20 yd3 ''subpile.'' Eight samples from each subpile were collected after establishing a grid of four quadrants: north, east, south and west, and two layers: top and

  4. US-Japan collaboration in the construction of the BNL superconducting muon storage ring and inflector

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Hiromi; Yamamoto, Akira [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2003-03-01

    The US-Japan collaboration in the contraction of a BNL muon storage ring for the g-2 experiment (E821) is described from the viewpoint of Japanese collaborators. Japan has contributed in the production of the pole pieces made of a vacuum-melted Ultra-Low Carbon Steel, Al-stabilized Nb/Ti superconductors for the superferric storage ring dipole coils, including technology transfer, and the development of a sophisticated superconducting inflector for muon injection. All of above items seem to be essential techniques to pursue accurate and detailed muon g-2 experiments. Recent experimental results are also mentioned in the latter part of this report. (author)

  5. Design and Data Model of the BNL Archive and Dissemination System

    Energy Technology Data Exchange (ETDEWEB)

    Heller, J.; Osterer, L.

    1977-03-01

    The BNL Archive and Dissemination (BNLAD) System was designed to operate on a homogeneous distributed data base in a computer network. Its primary function is to present a uniform logical and physical view of already existing sequential files of data, so that these files can be accessed at any node of a computer network where the BNLAD System is operable. The architecture of the system, based on a subset of PL/I (the host language), is presented. The Data Model, i.e. the information content of the data base as it is viewed by the users, of the BNLAD System is discussed by means of examples. 7 figs.

  6. Target and orbit feedback simulations of a muSR beamline at BNL

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, W. W. [Residence, 25 Rhododendron Circle, Asheville, NC (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. The use of the AGS complex at BNL has been explored for a muSR facility previously. Here we report simulations of a beamline with a target inside a solenoidal field, and of an orbit feed-back system with single muon beam positioning monitors based on technology available today

  7. Proceedings of RIKEN BNL Research Center Workshop: Progress in High-pT Physics at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bazilevsky, A.; Bland, L.; Vogelsang, W.

    2010-03-17

    This volume archives the presentations at the RIKEN BNL Research Center workshop 'Progress in High-PT Physics at RHIC', held at BNL in March 2010. Much has been learned from high-p{sub T} physics after 10 years of RHIC operations for heavy-ion collisions, polarized proton collisions and d+Au collisions. The workshop focused on recent progress in these areas by both theory and experiment. The first morning saw review talks on the theory of RHIC high-p{sub T} physics by G. Sterman and J. Soffer, and on the experimental results by M. Tannenbaum. One of the most exciting recent results from the RHIC spin program is the first observation of W bosons and their associated single-spin asymmetry. The new preliminary data were reported on the first day of our workshop, along with a theoretical perspective. There also were detailed discussions on the global analysis of polarized parton distributions, including the knowledge on gluon polarization and the impact of the W-data. The main topic of the second workshop day were single-transverse spin asymmetries and their analysis in terms of transverse-momentum dependent parton distributions. There is currently much interest in a future Drell-Yan program at RHIC, thanks to the exciting physics opportunities this would offer. This was addressed in some of the talks. There also were presentations on the latest results on transverse-spin physics from HERMES and BELLE. On the final day of the workshop, the focus shifted toward forward and small-x physics at RHIC, which has become a cornerstone of the whole RHIC program. Exciting new data were presented and discussed in terms of their possible implications for our understanding of strong color-field phenomena in QCD. In the afternoon, there were discussions of nuclear parton distributions and jet observables, among them fragmentation. The workshop was concluded with outlooks toward the near-term (LHC, JLab) and longer-term (EIC) future. The workshop has been a great success

  8. Simulations of the recent Lasalle-2 incident with the BNL plant analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.S.; Mallen, A.N.; Wulff, W.

    1989-01-01

    This paper presents the results of simulations of the recent power oscillation incident at the LaSalle-2 Nuclear Power Plant using the BNL Plant Analyzer. The causes of the oscillation were investigated and the sensitivity of the oscillation to key parameters was studied. It is concluded that the observed power oscillation was caused by boiling instability (i.e., density wave oscillation) reinforced by the reactivity feedback in neutron kinetics, and that the density wave oscillation resulted from flow reduction due to recirculation pump trip and feedwater temperature reduction due to partial loss of feedwater heating capability as well as power peaking. 7 refs., 9 figs., 1 tab.

  9. The Cornell-BNL FFAG-ERL Test Accelerator: White Paper

    CERN Document Server

    Bazarov, Ivan; Dunham, Bruce; Hoffstaetter, Georg; Mayes, Christopher; Patterson, Ritchie; Sagan, David; Ben-Zvi, Ilan; Berg, Scott; Blaskiewicz, Michael; Brooks, Stephen; Brown, Kevin; Fischer, Wolfram; Hao, Yue; Meng, Wuzheng; Méot, François; Minty, Michiko; Peggs, Stephen; Ptitsin, Vadim; Roser, Thomas; Thieberger, Peter; Trbojevic, Dejan; Tsoupas, Nick

    2015-01-01

    The Cornell-BNL FFAG-ERL Test Accelerator (C$\\beta$) will comprise the first ever Energy Recovery Linac (ERL) based on a Fixed Field Alternating Gradient (FFAG) lattice. In particular, we plan to use a Non Scaling FFAG (NS-FFAG) lattice that is very compact and thus space- and cost- effective, enabling multiple passes of the electron beam in a single recirculation beam line, using the superconducting RF (SRF) linac multiple times. The FFAG-ERL moves the cost optimized linac and recirculation lattice to a dramatically better optimum. The prime accelerator science motivation for C$\\beta$ is proving that the FFAG-ERL concept works. This is an important milestone for the Brookhaven National Laboratory (BNL) plans to build a major Nuclear Physics facility, eRHIC, based on producing 21 GeV electron beams to collide with the RHIC ion beams. A consequence of the C$\\beta$ work would be the availability of significantly better, cost-effective, compact CW high-brightness electron beams for a plethora of scientific inves...

  10. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, James; /UCLA; Travish, Gil; /UCLA; Hogan, Mark; /SLAC; Muggli, Patric; /Southern California U.

    2012-07-05

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are planning measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for efficient operation with pulse trains.

  11. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP FUTURE TRANSVERSITY MEASUREMENTS (VOLUME 29).

    Energy Technology Data Exchange (ETDEWEB)

    Boer, D.; Grosse Perdekamp, M.

    2001-01-02

    The RIKEN-BNL Research Center workshop on ''Future Transversity Measurements'' was held at BNL from September 18-20, 2000. The main goal of the workshop was to explore future measurements of transversity distributions. This issue is of importance to the RHIC experiments, which will study polarized proton-proton collisions with great precision. One of the workshop's goals was to enhance interactions between the DIS community at HERA and the spin community at RHIC in this field. The workshop has been well received by the participants; the number of 69 registered participants demonstrates broad interest in the workshop's topics. The program contained 35 talks and there was ample time for lively discussions. The program covered all recent work in the field and in addition some very elucidating educational talks were given. At the workshop the present status of the field was discussed and it has succeeded in stimulating new experimental and theoretical studies (e.g. model calculations for interference fragmentation functions (IFF), IFF analysis at DELPHI). It also functioned to focus attention on the open questions that need to be resolved for near future experiments. In general, the conclusions were optimistic, i.e. measuring the transversity functions seems to be possible, although some new experimental hurdles will have to be taken.

  12. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.; Yuan, F.

    2011-08-02

    Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty years ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the

  13. Chemical aspects of the commissioning and early operation of the BNL pond water treatment plant

    International Nuclear Information System (INIS)

    An account is given of the chemical aspects of the work done in commissioning and setting-to-work the pond water treatment plant at BNL. The plant is designed to maintain the fuel pond within the specified chemical conditions for Magnox fuel storage. In normal operation the treatment requirements are met by anion exchange, i.e. the carbonate and other impurity anions in the pond water are replaced by hydroxide held on an anion exchange resin. This method is referred to as ''anion only''. In the commissioning tests the performance of the plant was substantiated by passing simulated pond water of the correct chemical composition through the plant and monitoring the water quality at the plant outlet. During the first phase of operation on the pond itself the plant was operated in non-standard fashion to convert the chemistry from the previous ''carbonate'' regime to the required conditions. (author)

  14. Parameters Optimization for a Novel Vacuum Laser Acceleration Test at BNL-ATF

    CERN Document Server

    Shao, Lei; Zhou, Feng

    2005-01-01

    This paper presents a new VLA theory model which has revealed that the injection electrons with low energy and small incident angle relative to the laser beam are captured and significantly accelerated in a strong laser field. For the further step for verifying the novel-VLA mechanics, we propose to use the BNL-ATF Terawatt CO2 laser and a high-brightness electron beam to carry out a proof-of-principle beam experiment. Experiment setup including the laser injection optics and electron extraction system and beam diagnostics is presented. Extensive optimized simulation results with ATF practical parameters are also presented, which shows that even when the laser intensity is not very high, the net energy gain still can be seen obviously. This could be prospect for a new revolution of vacuum laser acceleration.

  15. Performance on the low charge state laser ion source in BNL

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M.; Alessi, J.; Beebe, E.; Costanzo, M.; DeSanto, L.; Jamilkowski, J.; Kanesue, T.; Lambiase, R.; Lehn, D.; Liaw, C. J.; McCafferty, D.; Morris, J.; Olsen, R.; Pikin, A.; Raparia, D.; Steszyn, A.; Ikeda, S.

    2015-09-07

    On March 2014, a Laser Ion Source (LIS) was commissioned which delivers high-brightness, low-charge-state heavy ions for the hadron accelerator complex in Brookhaven National Laboratory (BNL). Since then, the LIS has provided many heavy ion species successfully. The low-charge-state (mostly singly charged) beams are injected to the Electron Beam Ion Source (EBIS), where ions are then highly ionized to fit to the following accelerator’s Q/M acceptance, like Au32+. Recently we upgraded the LIS to be able to provide two different beams into EBIS on a pulse-to-pulse basis. Now the LIS is simultaneously providing beams for both the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL).

  16. A combined model for pseudorapidity distributions in Cu-Cu collisions at BNL-RHIC energies

    CERN Document Server

    Jiang, Zhjin; Huang, Yan

    2016-01-01

    The charged particles produced in nucleus-nucleus collisions come from leading particles and those frozen out from the hot and dense matter created in collisions. The leading particles are conventionally supposed having Gaussian rapidity distributions normalized to the number of participants. The hot and dense matter is assumed to expand according to the unified hydrodynamics, a hydro model which unifies the features of Landau and Hwa-Bjorken model, and freeze out into charged particles from a space-like hypersurface with a proper time of Tau_FO . The rapidity distribution of this part of charged particles can be derived out analytically. The combined contribution from both leading particles and unified hydrodynamics is then compared against the experimental data performed by BNL-RHIC-PHOBOS Collaboration in different centrality Cu-Cu collisions at sqrt(s_NN)=200 and 62.4 GeV, respectively. The model predictions are in well consistent with experimental measurements.

  17. Studies of material properties under irradiation at BNL Linear Isotope Producer (BLIP)

    CERN Document Server

    Simos, N; Ludewig, H; Mokhov, N; Hurh, P; Misek, J

    2012-01-01

    Effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been under study using the Brookhaven National Laboratory's (BNL) 200 MeV Linac. The primary objectives of the study that includes a wide array of materials and alloys ranging between low and high-Z are to (a) observe changes in physio-mechanical properties which are important in maintaining high-power target functionality, (b) identify possible limits of proton flux or fluence above which certain material seize to maintain integrity, (c) study the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) correlate radiation damage effects of different species such as energetic protons and neutrons on materials by utilizing reactor and particle accelerator experience data. These objectives are specifically being addressed in the latest material irradiation study linked to the Long Baseline Neutrino Experiment (LBNE). Observations on irradiation effects on m...

  18. Progress on the high-current 704 MHz superconducting RF cavity at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Xu W.; Astefanous, C.; Belomestnykh, S.; Ben-Zvi, I.; et al

    2012-05-20

    The 704 MHz high current superconducting cavity has been designed with consideration of both performance of fundamental mode and damping of higher order modes. A copper prototype cavity was fabricated by AES and delivered to BNL. RF measurements were carried out on this prototype cavity, including fundamental pass-band and HOM spectrum measurements, HOM studies using bead-pull setup, prototyping of antenna-type HOM couplers. The measurements show that the cavity has very good damping for the higher-order modes, which was one of the main goals for the high current cavity design. 3D cavity models were simulated with Omega3P code developed by SLAC to compare with the measurements. The paper describes the cavity design, RF measurement setups and results for the copper prototype. The progress with the niobium cavity fabrication will also be described.

  19. Hadron spin-flip at RHIC energies: Volume 3. Proceedings of RIKEN BNL Research Center workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    From July 21 to August 22, 1997 a working group sponsored by the RIKEN BNL Research Center was convened to consider ``Hadron Spin-Flip at RHIC Energies.`` The original motivation for this arose from the importance of understanding the hadronic part of the proton-proton spin flip amplitude in using the Coulomb-Nuclear Interference for polarimetry. This is a very difficult, non-perturbative problem and it is not possible to make a calculation with controlled approximations, so a number of approaches were followed: (1) methods to extract the necessary information from past experiments and from RHIC experiments were examined; (2) phenomenological, Regge models--some of them very old--were reviewed; (3) the predictions of several non-perturbative theoretical models were evaluated; (4) the use of nuclei for the CNI experiment was quantitatively considered; (5) alternative methods of polarimetry were critically studied. These included Primikoff effect, large-t pp scattering, and pe double spin asymmetry.

  20. Hadron spin-flip at RHIC energies: Volume 3. Proceedings of RIKEN BNL Research Center workshop

    International Nuclear Information System (INIS)

    From July 21 to August 22, 1997 a working group sponsored by the RIKEN BNL Research Center was convened to consider ''Hadron Spin-Flip at RHIC Energies.'' The original motivation for this arose from the importance of understanding the hadronic part of the proton-proton spin flip amplitude in using the Coulomb-Nuclear Interference for polarimetry. This is a very difficult, non-perturbative problem and it is not possible to make a calculation with controlled approximations, so a number of approaches were followed: (1) methods to extract the necessary information from past experiments and from RHIC experiments were examined; (2) phenomenological, Regge models--some of them very old--were reviewed; (3) the predictions of several non-perturbative theoretical models were evaluated; (4) the use of nuclei for the CNI experiment was quantitatively considered; (5) alternative methods of polarimetry were critically studied. These included Primikoff effect, large-t pp scattering, and pe double spin asymmetry

  1. Target and orbit feedback simulations of a muSR beam line at BNL

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-28

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ+ should be about 40 kHz/mm2. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss the desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.

  2. Performance of microstrip gas chambers in BNL-E885: a search for LAMBDA LAMBDA-hypernuclei

    CERN Document Server

    Landry, M; Davis, C A; Faszer, W; Gan, L; Lee, L; Page, S A; Ramsay, W D; Salomon, M; Oers, W T H

    1999-01-01

    The performance of MicroStrip Gas Chambers (MSGC) in BNL Experiment 885, a search for LAMBDA LAMBDA-hypernuclei, is detailed. Chambers with an active area of 80x50 mm sup 2 were instrumented and operated as a vertex detector in the experiment. Furthermore, two distinct types of microstrip prints were utilized in these chambers. Prints manufactured with Integrated Circuit (IC) photolithographic technology have fine tolerances and thin minimum trace widths, but can suffer from a high rate of defects per print and are more costly. Prints constructed with Printed Circuit (PC) photolithographic technology have coarser tolerances but relatively few defects per print, and are extremely cost-effective. Results of bench and beam tests of both IC and PC based MSGCs are presented and their performance in BNL-E885 is discussed. E885 marks the first use of PC based MSGCs in an experiment.

  3. Status of 4-cm-aperture, 17-m-long SSC dipole magnet R ampersand D program at BNL

    International Nuclear Information System (INIS)

    Over the last year-and-a-half, several 4-cm-aperture, 17-m-long dipole magnet prototypes were built by Brookhaven National Laboratory (BNL) under contract with the Superconducting Super Collider (SSC) Laboratory. These prototypes are the last phase of a half-decade-long R ampersand D program, carried out in collaboration with Fermi National Accelerator Laboratory and Lawrence Berkeley Laboratory, and aimed at demonstrating the feasibility of the SSC main ring dipole magnets. They also prepare the way of the 5-cm-aperture dipole magnet program to be started soon. In this paper, we analyze the mechanical behavior of the BNL prototypes during cool-down and excitation, and we attempt to relate this behavior to the magnet features. The data reveal that the mechanical behavior is sensitive to the vertical collar-yoke interference, and that the magnets exhibited somewhat erratic changes in coil end-loading during cool-down. 9 refs., 6 figs

  4. Sulfur polymer stabilization/solidification (SPSS) treatment of mixed waste mercury recovered from environmental restoration activities at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.; Adams, J.; Milian, L.

    2001-01-29

    Over 1,140 yd{sup 3} of radioactively contaminated soil containing toxic mercury (Hg) and several liters of mixed-waste elemental mercury were generated during a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal action at Brookhaven National Laboratory (BNL). The US Department of Energy's (DOE) Office of Science and Technology Mixed Waste Focus Area (DOE MWFA) is sponsoring a comparison of several technologies that may be used to treat these wastes and similar wastes at BNL and other sites across the DOE complex. This report describes work conducted at BNL on the application and pilot-scale demonstration of the newly developed Sulfur Polymer Stabilization/Solidification (SPSS) process for treatment of contaminated mixed-waste soils containing high concentrations ({approximately} 5,000 mg/L) of mercury and liquid elemental mercury. BNL's SPSS (patent pending) process chemically stabilizes the mercury to reduce vapor pressure and leachability and physically encapsulates the waste in a solid matrix to eliminate dispersion and provide long-term durability. Two 55-gallon drums of mixed-waste soil containing high concentrations of mercury and about 62 kg of radioactive contaminated elemental mercury were successfully treated. Waste loadings of 60 wt% soil were achieved without resulting in any increase in waste volume, while elemental mercury was solidified at a waste loading of 33 wt% mercury. Toxicity Characteristic Leaching Procedure (TCLP) analyses indicate the final waste form products pass current Environmental Protection Agency (EPA) allowable TCLP concentrations as well as the more stringent proposed Universal Treatment Standards. Mass balance measurements show that 99.7% of the mercury treated was successfully retained within the waste form, while only 0.3% was captured in the off gas system.

  5. Environmental radioactivity measurements at BNL during the year following the Chernobyl accident

    International Nuclear Information System (INIS)

    The accident which destroyed Unit 4 of the Chernobyl Nuclear Power Station on 26 April 1986 provided the world's scientists with an opportunity, unique in recent years, to study many of the processes which follow the release of large quantities of radioactivity into the atmosphere. BNL undertook a wide ranging programme of environmental measurements after the accident, the immediate aim being to supply HM Government with data to help assess the radiological consequences to the UK population. As it became clear that the UK dose commitment was relatively low, the thrust of the measurements began to be concentrated on airborne radioactivity and the movement of nuclides in the grass-soil system. The aim of these studies was to assess dispersion and diffusion of radioactivity in these particular compartments of the environment. The measurements have continued over the twelve month period since the Chernobyl accident. This report aims to disseminate the year's data and to offer some initial interpretations of the trends. (U.K.)

  6. Proceedings of RIKEN BNL Research Center Workshop, Volume 91, RBRC Scientific Review Committee Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Samios,N.P.

    2008-11-17

    The ninth evaluation of the RIKEN BNL Research Center (RBRC) took place on Nov. 17-18, 2008, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Dr. Wit Busza (Chair), Dr. Miklos Gyulassy, Dr. Akira Masaike, Dr. Richard Milner, Dr. Alfred Mueller, and Dr. Akira Ukawa. We are pleased that Dr. Yasushige Yano, the Director of the Nishina Institute of RIKEN, Japan participated in this meeting both in informing the committee of the activities of the Nishina Institute and the role of RBRC and as an observer of this review. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on his/her research efforts. This encompassed three major areas of investigation, theoretical, experimental and computational physics. In addition the committee met privately with the fellows and postdocs to ascertain their opinions and concerns. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  7. SCIENTIFIC PRESENTATION. 7TH MEETING OF THE MANAGEMENT STEERING COMMITTEE OF THE RIKEN BNL COLLABORATION.

    Energy Technology Data Exchange (ETDEWEB)

    LEE,T.D.

    2001-02-13

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho,'' (RIKEN) The Institute of Physical and Chemical Research, of Japan. The Center is dedicated to the study of strong 'interactions, including hard QCD/spin physics, lattice QCD and RHIC (Relativistic Heavy Ion Collider) physics through nurturing of a new generation of young physicists. The Director of RBRC is Professor T. D. Lee. The first years were dedicated to the establishment of a theory group. This has essentially been completed consisting of Fellows, Postdocs, and RHIC Physics/University Fellows, with an active group of consultants. The center also organizes an extensive series of workshops on specific topics in strong interactions with an accompanying series of published proceedings. In addition, a 0.6 teraflop parallel processor computer has been constructed and operational since August 1998. It was awarded the Supercomputer 1998 Gordon Bell Prize for price performance. An active experimental group centered around the spin physics program at RHIC has subsequently also been established at RBRC. It presently consists of five Fellows, one Postdoc and several scientific collaborators with more appointments being expected in the near future. Members and participants of RBRC on occasion will develop articles such as this one, in the nature of a status report or a general review.

  8. SCIENTIFIC PRESENTATION. 7TH MEETING OF THE MANAGEMENT STEERING COMMITTEE OF THE RIKEN BNL COLLABORATION.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.D.

    2001-02-13

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho,'' (RIKEN) The Institute of Physical and Chemical Research, of Japan. The Center is dedicated to the study of strong interactions, including hard QCD/spin physics, lattice QCD and RHIC (Relativistic Heavy Ion Collider) physics through nurturing of a new generation of young physicists. The Director of RBRC is Professor T. D. Lee. The first years were dedicated to the establishment of a theory group. This has essentially been completed consisting of Fellows, Postdocs, and RHIC Physics/University Fellows, with an active group of consultants. The center also organizes an extensive series of workshops on specific topics in strong interactions with an accompanying series of published proceedings. In addition, a 0.6 teraflop parallel processor computer has been constructed and operational since August 1998. It was awarded the Supercomputer 1998 Gordon Bell Prize for price performance. An active experimental group centered around the spin physics program at RHIC has subsequently also been established at RBRC. It presently consists of five Fellows, one Postdoc and several scientific collaborators with more appointments being expected in the near future. Members and participants of RBRC on occasion will develop articles such as this one, in the nature of a status report or a general review.

  9. The Upgrade of the DUV-FEL Facility at the BNL

    CERN Document Server

    Wang, Xijie; Murphy, James; Rakowsky, George; Rose, James; Sheehy, Brian; Shen, Yuzhen; Skaritka, John; Wu, Zilu; Yu Li Hua

    2004-01-01

    The DUV-FEL at BNL, is the world's only facility dedicated to laser-seeded FEL R&D and its applications. The HGHG at the DUV-FEL reached saturation at 266 nm with 800 nm seeding [1] in 2002. Since then, the first chemical science experiment ? ion pair imaging, was successfully completed [2].The DUV-FEL linac is being upgraded from 200 to 300 MeV to enable the HGHG FEL to produce 100 μJ pulses of 100 nm light. This will establish the DUV FEL as a premier user facility for XUV radiation. The upgraded facility will also enable several critical R&Ds for a future X-ray FEL based on HGHG, such as cascaded HGHG and higher harmonic HGHG (n>5). The upgraded HGHG will operate at the 4th harmonic with the seed laser at 400nm. The increase of the electron beam energy will be accomplished by installing a 5th linac cavity and two 45 MW klystrons. New modulator and dispersion sections vacuum chambers will be manufactured to accommodate new matching optics and 8th harmonic HGHG. The status of the DUV-FEL upgra...

  10. eRHIC Design Study: An Electron-Ion Collider at BNL

    CERN Document Server

    Aschenauer, E C; Bazilevsky, A; Boyle, K; Belomestnykh, S; Ben-Zvi, I; Brooks, S; Brutus, C; Burton, T; Fazio, S; Fedotov, A; Gassner, D; Hao, Y; Jing, Y; Kayran, D; Kiselev, A; Lamont, M A C; Lee, J -H; Litvinenko, V N; Liu, C; Ludlam, T; Mahler, G; McIntyre, G; Meng, W; Meot, F; Miller, T; Minty, M; Parker, B; Pinayev, I; Ptitsyn, V; Roser, T; Stratmann, M; Sichtermann, E; Skaritka, J; Tchoubar, O; Thieberger, P; Toll, T; Trbojevic, D; Tsoupas, N; Tuozzolo, J; Ullrich, T; Wang, E; Wang, G; Wu, Q; Xu, W; Zheng, L

    2014-01-01

    This document presents BNL's plan for an electron-ion collider, eRHIC, a major new research tool that builds on the existing RHIC facility to advance the long-term vision for Nuclear Physics to discover and understand the emergent phenomena of Quantum Chromodynamics (QCD), the fundamental theory of the strong interaction that binds the atomic nucleus. We describe the scientific requirements for such a facility, following up on the community wide 2012 white paper, "Electron-Ion Collider: the Next QCD Frontier", and present a design concept that incorporates new, innovative accelerator techniques to provide a cost-effective upgrade of RHIC with polarized electron beams colliding with the full array of RHIC hadron beams. The new facility will deliver electron-nucleon luminosity of $\\sim10^{33} cm^{-2}sec^{-1}$ for collisions of 15.9 GeV polarized electrons on either 250 GeV polarized protons or 100 GeV/u heavy ion beams. The facility will also be capable of providing an electron beam energy of 21.2 GeV, at reduc...

  11. Proposal for Reduction of Transverse Emittance of BNL 200 MeV Linac

    CERN Document Server

    Alessi, J; Raparia, D; Weng, W T

    2004-01-01

    BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW and beyond for such a neutrino facility which consists of two major subsystems. First is a 1.2 GeV super-conducting linac (SCL) to replace the booster as injector for the AGS. Second is the performance upgrade for the AGS itself for the higher intensity and repetition rate. For high intensity proton accelerators, such as the upgraded AGS, there are very stringent limitations on uncontrolled beam losses. A direct effect of linac beam emittance is the halo/tail generation in the circulating beam. Studies show the estimated halo/tail generation in the beam for present normalized RMS emittance of linac beam is unacceptable. To reduce the transverse emittance of 200 MeV linac, the existing radio frequency quadrupole linac (RFQ) has to be relocated closer to drift tube linac (DTL) tank 1 to meet emittance requirement for the AGS injection with low loss. This paper will present the various options of matching between RFQ and DTL,...

  12. A FIVE-WATTS G-M/J-T REFRIGERATOR FOR THE TARGET AT BNL

    International Nuclear Information System (INIS)

    A five-watts G-M/J-T refrigerator was built and installed for the high-energy physics research at Brookhaven National Laboratory in 2001. A liquid helium target of 8.25 liters was required for an experiment in the proton beam line at the Alternating Gradient Synchrotron (AGS) of BNL. The large radiation heat load towards the target requires a five-watts refrigerator at 4.2 K to support a liquid helium flask of 0.2 meter in diameter and 0.3 meter in length which is made of Mylar film of 0.35 mm in thickness. The liquid helium flask is thermally exposed to the vacuum windows that are also made of 0.35 mm thickness Mylar film at room temperature. The refrigerator uses a two-stage Gifford-McMahon cryocooler for precooling the Joule-Thomson circuit that consists of five Linde-type heat exchangers. A mass flow rate of 0.8(approx) 1.0 grams per second at 17.7 atm is applied to the refrigerator cold box. The two-phase helium flows between the liquid target and liquid/gas separator by means of thermosyphon. The paper presents the system design as well as the test results including the control of thermal oscillation

  13. Proceedings of RIKEN BNL Research Center Workshop: The Physics of W and Z Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, S.; Okada, K.; Patwa, A.; Qiu, J.; Surrow, B.

    2010-06-24

    A two-day workshop on 'The Physics of Wand Z Bosons' Was held at the RIKEN BNL Research Center at Brookhaven National Laboratory on June 24-25, 2010. With the recent release of the first measurement of W bosons in proton-proton collisions at RHIC and the first observation of W events at the LHC, the workshop was a timely opportunity to bring together experts from both the high energy particle and nuclear physics communities to share their ideas and expertise on the physics of Wand Z bosons, with the aim of fully exploring the potential of the W/Z physics programs at RHIC and the LHC. The focus was on the production and measurement of W/Z bosons in both polarized and unpolarized proton-proton collisions, and the role of W/Z production in probing the parton flavor and helicity structure of the colliding proton and in the search for new physics. There were lively discussions about the potential and future prospects of W/Z programs at RHIC, Tevatron, and the LHC.

  14. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED - DOMAIN WALL FERMIONS AT TEN YEARS (VOLUME 84)

    Energy Technology Data Exchange (ETDEWEB)

    BLUM,T.; SONI,A.

    2007-03-15

    The workshop was held to mark the 10th anniversary of the first numerical simulations of QCD using domain wall fermions initiated at BNL. It is very gratifying that in the intervening decade widespread use of domain wall and overlap fermions is being made. It therefore seemed appropriate at this stage for some ''communal introspection'' of the progress that has been made, hurdles that need to be overcome, and physics that can and should be done with chiral fermions. The meeting was very well attended, drawing about 60 registered participants primarily from Europe, Japan and the US. It was quite remarkable that pioneers David Kaplan, Herbert Neuberger, Rajamani Narayanan, Yigal Shamir, Sinya Aoki, and Pavlos Vranas all attended the workshop. Comparisons between domain wall and overlap formulations, with their respective advantages and limitations, were discussed at length, and a broad physics program including pion and kaon physics, the epsilon regime, nucleon structure, and topology, among others, emerged. New machines and improved algorithms have played a key role in realizing realistic dynamical fermion lattice simulations (small quark mass, large volume, and so on), so much in fact that measurements are now as costly. Consequently, ways to make the measurements more efficient were also discussed. We were very pleased to see the keen and ever growing interest in chiral fermions in our community and the significant strides our colleagues have made in bringing chiral fermions to the fore of lattice QCD calculations. Their contributions made the workshop a success, and we thank them deeply for sharing their time and ideas. Finally, we must especially acknowledge Norman Christ and Bob Mawhinney for their early and continued collaboration without which the success of domain wall fermions would not have been possible.

  15. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOLUME 55) COLLECTIVE FLOW AND QGP PROPERTIES.

    Energy Technology Data Exchange (ETDEWEB)

    BASS,S.ESUMI,S.HEINZ,U.KOLB,P.SHURYAK,E.XU,N.

    2003-11-17

    The first three years of RHIC physics, with Au/Au collisions induced at 65, 130 and 200 GeV per nucleon pair, produced dramatic results, particularly with respect to collective observables such as transverse flow and anisotropies in transverse momentum spectra. It has become clear that the data show very strong rescattering at very early times of the reaction, strong enough in fact to be described by the hydrodynamic limit. Therefore, with today's experiments, we are able to investigate the equation of state of hot quark gluon matter, discuss its thermodynamic properties and relate them to experimental observables. At this workshop we came together to discuss our latest efforts both in the theoretical description of heavy ion collisions as well as most recent experimental results that ultimately allow us to extract information on the properties of RHIC matter. About 50 participants registered for the workshop, but many more dropped in from the offices at BNL. The workshop lasted for three days, of which each day was assigned a special topic on which the talks focused. On the first day we dealt with the more general question what the strong collective phenomena observed in RHIC collisions tell us about the properties and the dynamics of RHIC matter. The second day covered all different aspects of momentum anisotropies, and interesting new experimental results were presented for the first time. On the third day, we focused on the late fireball dynamics and the breakdown of the assumption of thermalization. New experimental observables were discussed, which will deliver more information of how the expanding fireball breaks up, once the frequent interaction ceases.

  16. Establishment of a Photon Data Section of the BNL National Nuclear Data Center: A preliminary proposal

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, A.L.; Pearlstein, S.

    1992-05-01

    It is proposed to establish a Photon Data Section (PDS) of the BNL National Nuclear Data Center (NNDC). This would be a total program encompassing both photon-atom and photon-nucleus interactions. By utilizing the existing NNDC data base management expertise and on-line access capabilities, the implementation of photon interaction data activities within the existing NNDC nuclear structure and nuclear-reaction activities can reestablish a viable photon interaction data program at minimum cost. By taking advantage of the on-line capabilities, the x-ray users' community will have access to a dynamic, state-of-the-art data base of interaction information. The proposed information base would include data that presently are scattered throughout the literature usually in tabulated form. It is expected that the data bases would include at least the most precise data available in photoelectric cross sections, atomic form factors and incoherent scattering functions, anomalous scattering factors, oscillator strengths and oscillator densities, fluorescence yields, Auger electron yields, etc. It could also include information not presently available in tabulations or in existing data bases such as EXAFS (extended x-ray absorption fine structure) reference spectra, chemical bonding induced shifts in the photoelectric absorption edge, matrix corrections, x-ray Raman, and x-ray resonant Raman cross sections. The data base will also include the best estimates of the accuracy of the interaction data as it exists in the data base. It is proposed that the PDS would support computer programs written for calculating scattering cross sections for given solid angles, sample geometries, and polarization of incident x-rays, for calculating Compton profiles, and for analyzing data as in EXAFS and x-ray fluorescence.

  17. Establishment of a Photon Data Section of the BNL National Nuclear Data Center: A preliminary proposal

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, A.L.; Pearlstein, S.

    1992-05-01

    It is proposed to establish a Photon Data Section (PDS) of the BNL National Nuclear Data Center (NNDC). This would be a total program encompassing both photon-atom and photon-nucleus interactions. By utilizing the existing NNDC data base management expertise and on-line access capabilities, the implementation of photon interaction data activities within the existing NNDC nuclear structure and nuclear-reaction activities can reestablish a viable photon interaction data program at minimum cost. By taking advantage of the on-line capabilities, the x-ray users` community will have access to a dynamic, state-of-the-art data base of interaction information. The proposed information base would include data that presently are scattered throughout the literature usually in tabulated form. It is expected that the data bases would include at least the most precise data available in photoelectric cross sections, atomic form factors and incoherent scattering functions, anomalous scattering factors, oscillator strengths and oscillator densities, fluorescence yields, Auger electron yields, etc. It could also include information not presently available in tabulations or in existing data bases such as EXAFS (extended x-ray absorption fine structure) reference spectra, chemical bonding induced shifts in the photoelectric absorption edge, matrix corrections, x-ray Raman, and x-ray resonant Raman cross sections. The data base will also include the best estimates of the accuracy of the interaction data as it exists in the data base. It is proposed that the PDS would support computer programs written for calculating scattering cross sections for given solid angles, sample geometries, and polarization of incident x-rays, for calculating Compton profiles, and for analyzing data as in EXAFS and x-ray fluorescence.

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED - DOMAIN WALL FERMIONS AT TEN YEARS (VOLUME 84)

    International Nuclear Information System (INIS)

    The workshop was held to mark the 10th anniversary of the first numerical simulations of QCD using domain wall fermions initiated at BNL. It is very gratifying that in the intervening decade widespread use of domain wall and overlap fermions is being made. It therefore seemed appropriate at this stage for some ''communal introspection'' of the progress that has been made, hurdles that need to be overcome, and physics that can and should be done with chiral fermions. The meeting was very well attended, drawing about 60 registered participants primarily from Europe, Japan and the US. It was quite remarkable that pioneers David Kaplan, Herbert Neuberger, Rajamani Narayanan, Yigal Shamir, Sinya Aoki, and Pavlos Vranas all attended the workshop. Comparisons between domain wall and overlap formulations, with their respective advantages and limitations, were discussed at length, and a broad physics program including pion and kaon physics, the epsilon regime, nucleon structure, and topology, among others, emerged. New machines and improved algorithms have played a key role in realizing realistic dynamical fermion lattice simulations (small quark mass, large volume, and so on), so much in fact that measurements are now as costly. Consequently, ways to make the measurements more efficient were also discussed. We were very pleased to see the keen and ever growing interest in chiral fermions in our community and the significant strides our colleagues have made in bringing chiral fermions to the fore of lattice QCD calculations. Their contributions made the workshop a success, and we thank them deeply for sharing their time and ideas. Finally, we must especially acknowledge Norman Christ and Bob Mawhinney for their early and continued collaboration without which the success of domain wall fermions would not have been possible

  19. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN PHYSICS V, VOLUME 32, FEBRUARY 21, 2001.

    Energy Technology Data Exchange (ETDEWEB)

    BUNCE,G.; SAITO,N.; VIGDOR,S.; ROSER,T.; SPINKA,H.; ENYO,H.; BLAND,L.C.; GURYN,W.

    2001-02-21

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD and RHIC physics through the nurturing of a new generation of young physicists. During the fast year, the Center had only a Theory Group. In the second year, an Experimental Group was also established at the Center. At present, there are seven Fellows and nine post dots in these two groups. During the third year, we started a new Tenure Track Strong Interaction Theory RHIC Physics Fellow Program, with six positions in the academic year 1999-2000; this program will increase to include eleven theorists in the next academic year, and, in the year after, also be extended to experimental physics. In addition, the Center has an active workshop program on strong interaction physics, about ten workshops a year, with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. The construction of a 0.6 teraflop parallel processor, which was begun at the Center on February 19, 1998, was completed on August 28, 1998.

  20. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 77, RBRC SCIENTIFIC REVIEW COMMITTEE MEETING, OCTOBER 10-12, 2005

    International Nuclear Information System (INIS)

    The eighth evaluation of the RIKEN BNL Research Center (RBRC) took place on October 10-12, 2005, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Jean-Paul Blaizot, Professor Makoto Kobayashi, Dr. Akira Masaike, Professor Charles Young Prescott (Chair), Professor Stephen Sharpe (absent), and Professor Jack Sandweiss. We are grateful to Professor Akira Ukawa who was appointed to the SRC to cover Professor Sharpe's area of expertise. In addition to reviewing this year's program, the committee, augmented by Professor Kozi Nakai, evaluated the RBRC proposal for a five-year extension of the RIKEN BNL Collaboration MOU beyond 2007. Dr. Koji Kaya, Director of the Discovery Research Institute, RIKEN, Japan, presided over the session on the extension proposal. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on higher research efforts. In addition, a special session was held in connection with the RBRC QCDSP and QCDOC supercomputers. Professor Norman H. Christ, a collaborator from Columbia University, gave a presentation on the progress and status of the project, and Professor Frithjof Karsch of BNL presented the first physics results from QCDOC. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment

  1. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 77, RBRC SCIENTIFIC REVIEW COMMITTEE MEETING, OCTOBER 10-12, 2005

    Energy Technology Data Exchange (ETDEWEB)

    SAMIOS, N.P.

    2005-10-10

    The eighth evaluation of the RIKEN BNL Research Center (RBRC) took place on October 10-12, 2005, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Jean-Paul Blaizot, Professor Makoto Kobayashi, Dr. Akira Masaike, Professor Charles Young Prescott (Chair), Professor Stephen Sharpe (absent), and Professor Jack Sandweiss. We are grateful to Professor Akira Ukawa who was appointed to the SRC to cover Professor Sharpe's area of expertise. In addition to reviewing this year's program, the committee, augmented by Professor Kozi Nakai, evaluated the RBRC proposal for a five-year extension of the RIKEN BNL Collaboration MOU beyond 2007. Dr. Koji Kaya, Director of the Discovery Research Institute, RIKEN, Japan, presided over the session on the extension proposal. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on higher research efforts. In addition, a special session was held in connection with the RBRC QCDSP and QCDOC supercomputers. Professor Norman H. Christ, a collaborator from Columbia University, gave a presentation on the progress and status of the project, and Professor Frithjof Karsch of BNL presented the first physics results from QCDOC. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  2. Development of a practical training program based on BNL`s input to new NFPA Lined Masonary Chimney Venting Tables

    Energy Technology Data Exchange (ETDEWEB)

    Potter, G. [Agway Energy Products, Tully, NJ (United States)

    1997-09-01

    This paper describes how we developed a practical training program for technicians and sales personnel from the BNL studies that evolved into the Lined Chimney Venting Tables. One of the topics discussed is our search for solutions to the reoccurring problems associated with flue gas condensation on newly installed oil fired appliances. The paper will also discuss our own experiences in applying the new venting tables and working through the questions that arise when we encounter installations beyond the scope of the present tables.

  3. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN COLLABORATION MEETINGS XII AND XIII, SEPTEMBER 16, 2002, OCTOBER 22, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,B.

    2003-03-06

    Since its inception, the RHIC Spin Collaboration (RSC) has held semi-regular meetings each year to discuss the physics possibilities and the operational details of the program. Having collected our first data sample of polarized proton-proton collisions in Run02 of RHIC, we are now in the process of examining the performance of both the accelerator and the experiments. During the PAC meeting on August 29, 2002, the beam use proposal with a four week, polarized proton physics run was approved as part of the plan for Run-03. So, we meet at BNL on September 16, 2002 to discuss the concrete plans for this proton-proton run.

  4. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 72, RHIC SPIN COLLABORATION MEETINGS XXXI, XXXII, XXXIII.

    Energy Technology Data Exchange (ETDEWEB)

    OGAWA, A.

    2005-04-11

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has both a theory and experimental component. At present the theoretical group has 4 Fellows and 3 Research Associates as well as 11 RHIC Physics/University Fellows (academic year 2003-2004). To date there are approximately 30 graduates from the program of which 13 have attained tenure positions at major institutions worldwide. The experimental group is smaller and has 2 Fellows and 3 RHIC Physics/University Fellows and 3 Research Associates, and historically 6 individuals have attained permanent positions. Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists. A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center. RBRC has an active workshop program on strong interaction physics with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are seventy-two proceeding volumes available. The construction of a 0.6 teraflops parallel processor, dedicated to lattice QCD, begun at the Center on February 19, 1998, was completed on August

  5. PROCEEDINGS FROM RIKEN-BNL RESEARCH CENTER WORKSHOP: PARITY-VIOLATING SPIN ASYMMETRIES AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    VOGELSANG,W.; PERDEKAMP, M.; SURROW, B.

    2007-04-26

    . Also, new observables, such as jet and W+charrn final states and spin asymmetries in Z production, were proposed and discussed. All of the talks attracted much interest and initiated active discussions. This was a very successful workshop. It stimulated many discussions and new collaborations. We are grateful to all participants and speakers for coming to the Center, and for their excellent work. The support provided for this workshop by Dr. N. Samios and his RIKEN-BNL Research Center has been magnificent, and we are very grateful for it. We thank Brookhaven National Laboratory and the U.S. Department of Energy for providing the facilities to hold the workshop. Finally, sincere thanks go to Jane Lysik for her efficient work on organizing and running the workshop.

  6. Demonstration of the BNL Continuous Dual Trap Analyzer to Detect Perfluorocarbon Tracers for the Tag, Track and Location Program

    Energy Technology Data Exchange (ETDEWEB)

    Heiser,J.H.; Adams, J.; Dietz, R..; Milian, L.; Watson, T.

    2008-10-07

    The Tag, Track and Location System (TTL) Program is investigating methods of tracking an asset using perfluorocarbon tracers (PFT). The success of any TTL method requires sound detection/location instrumentation. Tracer Detection Technologies Corp (TDT), through a contract with the Office of Naval Research (ONR), is investigating different detection systems. The detections systems generally fall into two categories; proximity detectors and standoff detectors. Proximity detectors, as the name implies, need to be in close proximity (e.g., meter to 10's of meters) to the PFT source. Standoff detection searches for the PFT from a greater distance away from the source (e.g., 100's of meters to kilometers). Gas Chromatographs (GC) are generally considered a proximity detection systems, but in the case of PFTs should be considered for both proximity and standoff detection with the caveat that in standoff use the GC needs to be somewhere in the PFT plume, i.e., generally downwind of the source. With a properly sized PFT source, the right GC can afford fairly large standoff (distance from the source) distances; 100's of meters to kilometers downwind. Brookhaven National Laboratory (BNL) has such a GC system and offered to demonstrate the CDTA for TTL as a no cost addition to the TDTTTL project, of which BNL was a participant. BNL is a leading authority on the sampling, collection, release and detection of PFTs. In addition, the BNL team has extensive background in atmospheric dispersion, the application of PFTs to such studies and the development of applications utilizing PFTs such as building infiltration measurements, control room integrity determination, leak location and environmental investigations. This experience and expertise is essential in developing any PFT application were dispersion, dilution and overcoming environmental conditions and interferences are integral to success. BNL has developed sophisticated gas chromatography methods and

  7. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 57, HIGH PT PHYSICS AT RHIC, DECEMBER 2-6, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kretzer, Stefan; Venugopalan, Raju; Vogelsang, Werner

    2004-02-18

    The AuAu, dAu, and pp collision modes of the RHIC collider at BNL have led to the publication of exciting high p{perpendicular} particle production data. There have also been two physics runs with polarized protons, and preliminary results on the double-spin asymmetry for pion production had been presented very recently. The ontological questions behind these measurements are fascinating: Did RHIC collisions create a Quark-Gluon-Plasma phase and did they verify the Color Glass Condensate as the high energy limit of QCD? Will the Spin Crisis finally be resolved in terms of gluon polarization and what new surprises are we yet to meet for Transverse Spin? Phenomena related to sub-microscopic questions as important as these call for interpretations that are footed in solid theory. At large p{perpendicular}, perturbative concepts are legitimately expected to provide useful approaches. The corresponding hard parton dynamics are, in several ways, key to unraveling the initial or final state and collisional phase of hard scattering events in vacuum as well as in hot or cold nuclear matter. Before the advent of RHIC data, a RIKEN-BNL workshop had been held at BNL in March 1999 on ''Hard Parton Physics in High Energy Nuclear Collisions''. The 2003 workshop on ''High p{perpendicular} Physics at RHIC'' was a logical continuation of this previous workshop. It gave the opportunity to revisit the 1999 expectations in the light of what has been found in the meantime and, at the same time, to critically discuss the underlying theoretical concepts. We brought together theorists who have done seminal work on the foundations of parton phenomenology in field theory, with theorists and experimentalists who are presently working on RHIC phenomenology. The participants were both from a high-energy physics and nuclear physics background and it remains only to be said here that this chemistry worked perfectly and the workshop was a great success.

  8. The operation of the BNL/ATF gun-IV photocathode RF gun at the Advanced Photon Source

    International Nuclear Information System (INIS)

    At the Advanced Photon Source (APS) at Argonne National Laboratory (ANL), a free-electron laser (FEL) based on the self-amplified spontaneous emission (SASE) process is nearing completion. Recently, an rf photoinjector gun system was made available to the APS by Brookhaven National Laboratory/Accelerator Test Facility (BNL/ATF). It will be used to provide the high-brightness, low-emittance, and low-energy spread electron beam required by the SASE FEL theory. A Nd:Glass laser system, capable of producing a maximum of 500 microJ of UV in a 1-10 ps pulse at up to a 10-Hz repetition rate, serves as the photoinjector's drive laser. Here, the design, commissioning, and integration of this gun with the APS is discussed

  9. Proceedings of RIKEN BNL Research Center Workshop: Thermal Photons and Dileptons in Heavy-Ion Collisions. Volume 119

    Energy Technology Data Exchange (ETDEWEB)

    David, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Rapp, R. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Ruan, L. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Yee, H-U. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2014-09-11

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The primary theme for this workshop related to sharing the latest experimental and theoretical developments in area of low transverse momentum (pT) dielectron and photons. All the presentations given at the workshop are included in this proceedings, primarily as PowerPoint presentations.

  10. EVENT DRIVEN AUTOMATIC STATE MODIFICATION OF BNL'S BOOSTER FOR NASA SPACE RADIATION LABORATORY SOLAR PARTICLE SIMULATOR.

    Energy Technology Data Exchange (ETDEWEB)

    BROWN, D.; BINELLO, S.; HARVEY, M.; MORRIS, J.; RUSEK, A.; TSOUPAS, N.

    2005-05-16

    The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. NASA is interested in reproducing the energy spectrum from a solar flare in the space environment for a single ion species. To do this we have built and tested a set of software tools which allow the state of the Booster and the NSRL beam line to be changed automatically. In this report we will describe the system and present results of beam tests.

  11. The HANARO neutron reflectometer with horizontal sample geometry. Relocation and upgrade plans of the BNL H9-A reflectometer

    Science.gov (United States)

    Lee, Chong Oh; Shin, Kwanwoo; Lee, Jeong Soo; Lee, Chang-Hee; Cho, Sang Jin; Hong, Kwang Pyo

    2006-11-01

    A new neutron reflectometer with horizontal sample geometry is under construction at a thermal neutron port at HANARO, the 30 MW research reactor at KAERI. It was originally designed and operated at the H9-A beam port at Brookhaven National Laboratory (BNL), and was relocated to HANARO in 2004. It will be initially installed at the ST3 thermal-neutron port without any significant modification, and significant improvements in structure and performance are planned when the new cold source is installed in 2008. If successfully installed, it will be the first reflectometer in Korea for the study of free surfaces, which is currently lacking. For the thermal source, the feasible wavelength of incident neutron beam is 2.5 Å and this would permits the q ranges up to 0.21 Å -1.

  12. The Unified Hydrodynamics and the Pseudorapidity Distributions in Heavy Ion Collisions at BNL-RHIC and CERN-LHC Energies

    Directory of Open Access Journals (Sweden)

    Z. J. Jiang

    2015-01-01

    Full Text Available The charged particles produced in nucleus-nucleus collisions are divided into two parts. One is from the hot and dense matter created in collisions. The other is from leading particles. The hot and dense matter is assumed to expand according to unified hydrodynamics and freezes out into charged particles from a space-like hypersurface with a fixed proper time of τFO. The leading particles are conventionally taken as the particles which inherit the quantum numbers of colliding nucleons and carry off most of incident energy. The rapidity distributions of the charged particles from these two parts are formulated analytically, and a comparison is made between the theoretical results and the experimental measurements performed in Au-Au and Pb-Pb collisions at the respective BNL-RHIC and CERN-LHC energies. The theoretical results are well consistent with experimental data.

  13. Perturbative QCD as a probe of hadron structure: Volume 2. Proceedings of RIKEN BNL Research Center workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The workshop brought together about thirty invited participants from around the world, and an almost equal number of Brookhaven users and staff, to discuss recent developments and future prospects for hadronic strong interaction studies at high energy, particularly relating to the RHIC project at Brookhaven. RIKEN and Brookhaven have long traditions in and commitments to the study of the strong interactions, and the advent of the RHIC collider will open new opportunities both for relativistic heavy ion and polarized proton-proton studies. Activities at the RIKEN BNL Research Center are intended to focus on physics opportunities stimulated by this new facility. Thus, one of the purposes of the center is to provide a forum where workers in the field can gather to share and develop their ideas in a stimulating environment. The purpose of the workshop was both to delineate theoretical problems and stimulate collaborations to address them. The workshop focused primarily, but not exclusively, on spin and small-x physics.

  14. HARD PARTON PHYSICS IN HIGH ENERGY NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 17

    Energy Technology Data Exchange (ETDEWEB)

    CARROLL,J.

    1999-09-10

    The RIKEN-BNL center workshop on ''Hard parton physics in high energy nuclear collisions'' was held at BNL from March 1st-5th! 1999. The focus of the workshop was on hard probes of nucleus-nucleus collisions that will be measured at RHIC with the PHENIX and STAR detectors. There were about 45 speakers and over 70 registered participants at the workshop, with roughly a quarter of the speakers from overseas. About 60% of the talks were theory talks. A nice overview of theory for RHIC was provided by George Sterman. The theoretical talks were on a wide range of topics in QCD which can be classified under the following: (a) energy loss and the Landau-Pomeranchuk-Migdal effect; (b) minijet production and equilibration; (c) small x physics and initial conditions; (d) nuclear parton distributions and shadowing; (e) spin physics; (f) photon, di-lepton, and charm production; and (g) hadronization, and simulations of high pt physics in event generators. Several of the experimental talks discussed the capabilities of the PHENIX and STAR detectors at RHIC in measuring high pt particles in heavy ion collisions. In general, these talks were included in the relevant theory sessions. A session was set aside to discuss the spin program at RHIC with polarized proton beams. In addition, there were speakers from 08, HERA, the fixed target experiments at Fermilab, and the CERN fixed target Pb+Pb program, who provided additional perspective on a range of issues of relevance to RHIC; from jets at the Tevatron, to saturation of parton distributions at HERA, and recent puzzling data on direct photon production in fixed target experiments, among others.

  15. Proceedings of RIKEN BNL Research Center Workshop: Understanding QGP through Spectral Functions and Euclidean Correlators (Volume 89)

    Energy Technology Data Exchange (ETDEWEB)

    Mocsy,A.; Petreczky, P.

    2008-06-27

    In the past two decades, one of the most important goals of the nuclear physics community has been the production and characterization of the new state of matter--Quark-Gluon Plasma (QGP). Understanding how properties of hadrons change in medium, particularly, the bound state of a very heavy quark and its antiquark, known as quarkonium, as well as determining the transport coefficients is crucial for identifying the properties of QGP and for the understanding of the experimental data from RHIC. On April 23rd, more than sixty physicists from twenty-seven institutions gathered for this three-day topical workshop held at BNL to discuss how to understand the properties of the new state of matter obtained in ultra-relativistic heavy ion collisions (particularly at RHIC-BNL) through spectral functions. In-medium properties of the different particle species and the transport properties of the medium are encoded in spectral functions. The former could yield important signatures of deconfinement and chiral symmetry restoration at high temperatures and densities, while the later are crucial for the understanding of the dynamics of ultra-relativistic heavy ion collisions. Participants at the workshop are experts in various areas of spectral function studies. The workshop encouraged direct exchange of scientific information among experts, as well as between the younger and the more established scientists. The workshops success is evident from the coherent picture that developed of the current understanding of transport properties and in-medium particle properties, illustrated in the current proceedings. The following pages show calculations of meson spectral functions in lattice QCD, as well as implications of these for quarkonia melting/survival in the quark gluon plasma; Lattice calculations of the transport coefficients (shear and bulk viscosities, electric conductivity); Calculation of spectral functions and transport coefficients in field theories using weak coupling

  16. Wake-field and space charge effects on high brightness beams calculations and measured results for the laser driven photoelectrons at BNL-ATF

    International Nuclear Information System (INIS)

    We discuss the formalism used to study the effects of the interactions between the highly charged particles and the fields in the accelerating structure, including space charge and wake fields. Some of our calculations and numerical simulation results obtained for the Brookhaven National Laboratory (BNL) high-brightness photoelectron beam at the Accelerator Test Facility (ATF) and the measured data at ATF are also included

  17. NUMERICAL ALGORITHMS AT NON-ZERO CHEMICAL POTENTIAL. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 19

    Energy Technology Data Exchange (ETDEWEB)

    BLUM,T.

    1999-09-14

    The RIKEN BNL Research Center hosted its 19th workshop April 27th through May 1, 1999. The topic was Numerical Algorithms at Non-Zero Chemical Potential. QCD at a non-zero chemical potential (non-zero density) poses a long-standing unsolved challenge for lattice gauge theory. Indeed, it is the primary unresolved issue in the fundamental formulation of lattice gauge theory. The chemical potential renders conventional lattice actions complex, practically excluding the usual Monte Carlo techniques which rely on a positive definite measure for the partition function. This ''sign'' problem appears in a wide range of physical systems, ranging from strongly coupled electronic systems to QCD. The lack of a viable numerical technique at non-zero density is particularly acute since new exotic ''color superconducting'' phases of quark matter have recently been predicted in model calculations. A first principles confirmation of the phase diagram is desirable since experimental verification is not expected soon. At the workshop several proposals for new algorithms were made: cluster algorithms, direct simulation of Grassman variables, and a bosonization of the fermion determinant. All generated considerable discussion and seem worthy of continued investigation. Several interesting results using conventional algorithms were also presented: condensates in four fermion models, SU(2) gauge theory in fundamental and adjoint representations, and lessons learned from strong; coupling, non-zero temperature and heavy quarks applied to non-zero density simulations.

  18. Open charm meson production at BNL RHIC within $k_{t}$-factorization approach and revision of their semileptonic decays

    CERN Document Server

    Maciula, Rafal; Luszczak, Marta

    2015-01-01

    We discuss inclusive production of open charm mesons in proton-proton scattering at the BNL RHIC. The calculation is performed in the framework of $k_t$-factorization approach which effectively includes higher-order pQCD corrections. Different models of unintegrated gluon distributions (UGDF) from the literature are used. We focus on UGDF models favoured by the LHC data and on a new up-to-date parametrizations based on the HERA collider DIS high-precision data. Results of the $k_t$-factorization approach are compared to next-to-leading order collinear predictions. The hadronization of heavy quarks is done by means of fragmentation function technique. The theoretical transverse momentum distributions of charmed mesons are compared with recent experimental data of the STAR collaboration at $\\sqrt{s} = 200$ and $500$ GeV. Theoretical uncertainties related to the choice of renormalization and factorization scales as well as due to the quark mass are discussed. Very good description of the measured integrated cros...

  19. Proceedings of RIKEN BNL Research Center Workshop: The Approach to Equilibrium in Strongly Interacting Matter. Volume 118

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Venugopalan, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berges, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaizot, J. -P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gelis, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-04-09

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory*. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The purpose of this Workshop is to critically review the recent progress on the theory and phenomenology of early time dynamics in relativistic heavy ion collisions from RHIC to LHC energies, to examine the various approaches on thermalization and existing issues, and to formulate new research efforts for the future. Topics slated to be covered include Experimental evidence for equilibration/isotropization, comparison of various approaches, dependence on the initial conditions and couplings, and turbulent cascades and Bose-Einstein condensation.

  20. Effects of varying doses of gamma radiation on locally adapted Tradescantia clone 02 (BNL) (Brookhaven National Laboratory)

    International Nuclear Information System (INIS)

    This study determined the effects of gamma radiation on the meiotic cells of Tradescantia bracteata clone 02 (BNL). The flower buds collected were exposed through dosages ranging from 1 Gy to 5 Gy using gamma cell 220 machine (AECL) in a central axis position (c/a) and grown in Peralta's solution for three days. Out of the twenty buds designated for each dosages, ten buds were treated with 0.05% colchicine solution. The occurrence of micronuclei among the irradiated pollen mother cells suggested a linear relation with the quantity of radiation dose. The occurrence of MN among cells increased linearly from 1 Gy until it reached 3 Gy and 4 Gy. Beyond this maximum dose, cells were less responsive to the dose caused by inhibition of cell division, as demonstrated in the buds exposed to 5 Gy. This result was validated through the kruskal-Wallis test, where the computed h value was 3.44 (critical region of X20.05 = 9.49) Experimental results also showed chromosomal breaks, sticky chromosomes, and anaphase bridges in the pollen mother cells of irradiated buds. A significant numbers of cells were also found to have micronuclei, which may vary from 1 to 6 per pollen mother cell, and this showed no relationship with radiation dose. (Author)

  1. Development of brazing technique for a 1.6 cell BNL/SLAC/UCLA type photocathode guns by hydrogen brazing

    International Nuclear Information System (INIS)

    Two prototypes of a 1.6 cell BNL/SLAC/UCLA type RF photocathode gun, a precision machined RF structure capable of supporting gradients in excess of 80 MV/m, have been successfully brazed and leak rates of 10-10 mbar l/s have been achieved. Brazing, is carried out in two steps in a hydrogen furnace, it involves joining of two RF cavities, 6 cylindrical ports, one rectangular waveguide and one seal plate. The cavities and waveguide are made of copper and the ports and seal plate are of stainless steel. Fixtures were designed and fabricated indigenously to maintain the required assembly tolerances during brazing. This was important for brazing of ports, two of which are brazed to one cavity at an angle of 22.50 at diametrically opposite locations, and the remaining four are brazed to the other cavity in mutually perpendicular orientations. All joints were brazed using copper-silver eutectic (72-28) alloy in foil and wire forms. This paper discusses the brazing requirement, design of fixtures, and the procedure adopted for brazing of the photocathode gun. The paper also discusses results of the tests carried out to qualify the brazed joints. (author)

  2. Summary of the Mini BNL/LARP/CARE-HHH Workshop on Crab Cavities for the LHC (LHC-CC08)

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi,I.; Calaga, R.; Zimmermann, F.

    2008-05-01

    The first mini-workshop on crab compensation for the LHC luminosity upgrade (LHC-CC08) was held February 24-25, 2008 at the Brookhaven National Laboratory. A total of 35 participants from 3 continents and 15 institutions from around the world participated to discuss the exciting prospect of a crab scheme for the LHC. If realized it will be the first demonstration in hadron colliders. The workshop is organized by joint collaboration of BNL, US-LARP and CARE-HHH. The enormous interest in the subject of crab cavities for the international linear collider and future light sources has resulted in a large international collaboration to exchange aspects of synergy and expertise. A central repository for this exchange of information documenting the latest design effort for LHC crab cavities is consolidated in a wiki page: https://twiki.cern.ch/twiki/bin/view/Main/LHCCrabCavities. The main goal of this workshop was to define a road-map for a prototype crab cavity to be installed in the LHC and to discuss the associated R&D and beam dynamics challenges. The diverse subject of implementing the crab scheme resulted in a scientific program with a wide range of subtopics which were divided into 8 sessions. Each session was given a list of fundamental questions to be addressed and used as a guideline to steer the discussions.

  3. New dynamics information from experimental results obtained in d-Au collisions at RHIC-BNL energies

    International Nuclear Information System (INIS)

    During the last runs d-Au collisions at √sNN = 200 GeV have been investigated at RHIC-BNL using the BRAHMS Experiment. Some interesting experimental results on charged particle multiplicities, rapidity distributions, transverse momentum spectra, antiparticle to particle ratios, participant spectator evolution have been obtained. In this work the most interesting results are presented for different rapidity and collision centrality ranges. Taking into account the importance of the collision geometry and collision symmetry in the collision dynamics, comparisons with the similar experimental results obtained in Au-Au collisions have been done. New interesting results can be reported. The most significant are related to the evolution of the nuclear modification factor with rapidity and collision centrality. The high transverse momentum suppression and the behaviours in different rapidity and centrality ranges suggest strong initial state effects. These effects could be related to the gluonic structure of the colliding nuclei. Some insights on the Color Glass Condensate formation are possible. (author)

  4. Plant-originated glycoprotein (24 kDa) has an inhibitory effect on proliferation of BNL CL.2 cells in response to di(2-ethylhexyl)phthalate.

    Science.gov (United States)

    Lee, Jin; Lim, Kye-Taek

    2011-08-01

    Di(2-ethylhexyl)phthalate (DEHP) is one of the many environmental chemicals that are widely used in polyvinyl chloride products, vinyl flooring, food packaging and infant toys. They cause cell proliferation or dysfunction of human liver. The purpose of this study is to investigate the inhibitory effect of a glycoprotein (24 kDa) isolated from Zanthoxylum piperitum DC (ZPDC) on proliferation of liver cell in the DEHP-induced BNL CL. 2 cells. [³H]-thymidine incorporation, intracellular reactive oxygen species (ROS), intracellular Ca²⁺ mobilization and activity of protein kinase C (PKC) were measured using radioactivity and fluorescence method respectively. The expression of mitogen-activated protein kinases [extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK)], activator protein (AP)-1 (c-Jun and c-Fos), proliferating cell nuclear antigen (PCNA) and cell cycle-related factors (cyclin D1/cyclin-dependent kinase [CDK] 4) were evaluated using Western blotting or electrophoretic mobility shift assay. The results in this study showed that the levels of [³H]-thymidine incorporation, intracellular ROS, intracellular Ca²⁺ mobilization and activity of PKCα were inhibited by ZPDC glycoprotein (100 µg/ml) in the DEHP-induced BNL CL. 2 cells. Also, activities of ERK, JNK and AP-1 were reduced by ZPDC glycoprotein (100 µg/ml). With regard to cell proliferation, activities of PCNA and cyclin D1/CDK4 were significantly suppressed at treatment with ZPDC glycoprotein (100 µg/ml) in the presence of DEHP. Taken together, these findings suggest that ZPDC glycoprotein significantly normalized activities of PCNA and cyclin D1/CDK4, which relate to cell proliferation factors. Thus, ZPDC glycoprotein appears to be one of the compounds derived from natural products that are able to inhibit cell proliferation in the phthalate-induced BNL CL. 2 cells. PMID:21721021

  5. Energy Dependence of Directed Flow over a Wide Range of Pseudorapidity in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2006-07-01

    We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of sNN=19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.

  6. Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and

  7. Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, A.; Fukushima, K.; Kharzeev, D.; Warringa, H.; Voloshin, S.

    2010-04-26

    This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and

  8. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Quarkonium Production in Elementary and Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dumitru, A.; Lourenco, C.; Petreczky, P.; Qiu, J., Ruan, L.

    2011-08-03

    Understanding the structure of the hadron is of fundamental importance in subatomic physics. Production of heavy quarkonia is arguably one of the most fascinating subjects in strong interaction physics. It offers unique perspectives into the formation of QCD bound states. Heavy quarkonia are among the most studied particles both theoretically and experimentally. They have been, and continue to be, the focus of measurements in all high energy colliders around the world. Because of their distinct multiple mass scales, heavy quarkonia were suggested as a probe of the hot quark-gluon matter produced in heavy-ion collisions; and their production has been one of the main subjects of the experimental heavy-ion programs at the SPS and RHIC. However, since the discovery of J/psi at Brookhaven National Laboratory and SLAC National Accelerator Laboratory over 36 years ago, theorists still have not been able to fully understand the production mechanism of heavy quarkonia, although major progresses have been made in recent years. With this in mind, a two-week program on quarkonium production was organized at BNL on June 6-17, 2011. Many new experimental data from LHC and from RHIC were presented during the program, including results from the LHC heavy ion run. To analyze and correctly interpret these measurements, and in order to quantify properties of the hot matter produced in heavy-ion collisions, it is necessary to improve our theoretical understanding of quarkonium production. Therefore, a wide range of theoretical aspects on the production mechanism in the vacuum as well as in cold nuclear and hot quark-gluon medium were discussed during the program from the controlled calculations in QCD and its effective theories such as NRQCD to various models, and to the first principle lattice calculation. The scientific program was divided into three major scientific parts: basic production mechanism for heavy quarkonium in vacuum or in high energy elementary collisions; the

  9. BNL multiparticle spectrometer software

    International Nuclear Information System (INIS)

    This paper discusses some solutions to problems common to the design, management and maintenance of a large high energy physics spectrometer software system. The experience of dealing with a large, complex program and the necessity of having the program controlled by various people at different levels of computer experience has led us to design a program control structure of mnemonic and self-explanatory nature. The use of this control language in both on-line and off-line operation of the program will be discussed. The solution of structuring a large program for modularity so that substantial changes to the program can be made easily for a wide variety of high energy physics experiments is discussed. Specialized tools for this type of large program management are also discussed

  10. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 65, RHIC SPIN COLLABORATION MEETINGS XXVII, XXVIII, and XXX

    International Nuclear Information System (INIS)

    The RIKEN BNL Research Center (RSRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the 'Rikagaku Kenkyusho' (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has both a theory and experimental component. At present the theoretical group has 4 Fellows and 3 Research Associates as well as 11 RHIC Physics/University Fellows (academic year 2003-2004). To date there are approximately 30 graduates from the program of which 13 have attained tenure positions at major institutions worldwide. The experimental group is smaller and has 2 Fellows and 3 RHIC Physics/University Fellows and 3 Research Associates, and historically 6 individuals have attained permanent positions. Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists, A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center. RBRC has an active workshop program on strong interaction physics with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are sixty nine proceedings volumes available. The construction of a 0.6 teraflops parallel processor, dedicated to lattice QCD, begun at the Center on February 19, 1998, was completed on August 28, 1998 and is still

  11. Microwave measurements and beam dynamics simulations of the BNL/SLAC/UCLA emittance-compensated 1.6-cell photocathode rf gun

    Science.gov (United States)

    Palmer, Dennis T.; Miller, Roger H.; Winick, Herman; Wang, Xi J.; Batchelor, Kenneth; Woodle, Martin H.; Ben-Zvi, Ilan

    1995-09-01

    A dedicated low energy (2 to 10 MeV) experimental beam line is now under construction at Brookhaven National Laboratory/Accelerator Test Facility (BNL/ATF) for photocathode RF gun testing and photoemission experiments. Microwave measurements of the 1.6 cell photocathode RF gun have been conducted along with beam dynamics simulations of the emittance compensated low energy beam. These simulations indicate that the 1.6 cell photocathode RF gun in combination with solenoidal emittance compensation will be capable of producing a high brightness beam with a normalization rms emittance of (epsilon) n,rms approximately equals 1 (pi) mm mrad. The longitudinal accelerating field Ez has been measured as a function of azimuthal angle in the full cell of the cold test model for the 1.6 cell BNL/SLAC/UCLA #3 S-band RF Gun using a needle rotation/frequency perturbation technique. These measurements were conducted before and after symmetrizing the full cell with a vacuum pump out port and an adjustable short. Two different waveguide to full cell coupling schemes were studied. Experimental and theoretical studies of the field balance versus mode separation were conducted. The dipole mode of the full cell using the (theta) - coupling scheme is an order of magnitude less severe before symmetrization than the Z- coupling scheme. The multi-pole contribution to the longitudinal field asymmetry are calculated using standard Fourier series techniques for both coupling schemes. The Panofsky- Wenzel theorem is used in estimating the transverse emittance due to the multipole components of Ez. Detailed beam dynamics simulations were performed for the 1.6 cell photocathode RF gun injector using a solenoidal emittance compensation technique. The design of the experimental line along with a proposed experimental program using the 1.6 cell photocathode RF gun developed by the BNL/SLAC/UCLA RF gun collaboration is presented. This experimental program includes measurements of beam loading caused

  12. CMBE v05-Implementation of a toy-model for chaos analysis of relativistic nuclear collisions at the present BNL energies

    Science.gov (United States)

    Grossu, I. V.; Felea, D.; Jipa, Al.; Besliu, C.; Stan, E.; Ristea, O.; Ristea, C.; Calin, M.; Esanu, T.; Bordeianu, C.; Tuturas, N.

    2014-11-01

    In this paper we present a new version of Chaos Many-Body Engine (CMBE) Grossu et al. (2014) [1]. Inspired by the Mean Free Path concept, we implemented a new parameter, namely the “Mean Free Time”, which is defined as the mean time between one particle’s creation and its stimulated decay. This new parameter should be understood as an effect of the nuclear environment and, as opposed to the particle lifetime, it has the advantage of not being affected by the relativistic dilation. In [2] we presented a toy-model for chaos analysis of relativistic nuclear collisions at 4.5 A GeV/c (the SKM 200 collaboration). In this work, we extended our model to 200 A GeV (the maximum BNL energy). Catalogue identifier: AEGH_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v5_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Microsoft Public License (Ms-PL) No. of lines in distributed program, including test data, etc.: 638984 No. of bytes in distributed program, including test data, etc.: 15918340 Distribution format: tar.gz Programming language: Visual C# .Net 2010 Computer: PC Operating system: .Net Framework 4.0 running on MS Windows RAM: 128 MB Classification: 24.60.Lz, 05.45.a Catalogue identifier of previous version: AEGH_v4_0 Journal reference of previous version: Computer Physics Communications 185 (2014) 1339 Does the new version supersede the previous version?: Yes Nature of problem: Toy-model for relativistic nuclear collisions at present BNL energies. Solution method: Relativistic many-body OOP engine, including a reactions module. Implementation of the “Mean Free Time” parameter; Implementation of a new example of use for relativistic nuclear collisions at present BNL energies. Implementation of a new parameter, namely the “Mean Free Time”, defined as the mean time between one particle’s creation and its stimulated decay. The Mean Free Time should be understood as an

  13. New experimental results obtained in Au-Au collisions at the energies available to the RHIC-BNL using BRAHMS experimental setup

    International Nuclear Information System (INIS)

    Many experimental data for Au-Au collisions at √sNN = 130 GeV and √sNN = 200 GeV have been obtained in the last two years at the Relativistic Heavy Ion Collider (RHIC) from Brookhaven National Laboratory, Upton, New York, USA. The experimental setup BRAHMS is one of the five experimental setups used at RHIC-BNL. Interesting experimental results on many physical quantities with dynamic signification have been obtained. In the present work we report the new results on charged particle multiplicities, pseudorapidities, rapidities, transverse, momentum spectra, and particle to antiparticle ratios. These experimental results lead to nuclear temperatures and nuclear densities at different collision centralities and rapidities. Some interesting results on collective flow velocities of the nuclear matter are also obtained. Dependencies on the collision centrality, pseudorapidity and beam energy, in the center-of-mass system, are included in the work. The highest multiplicities (more than 5000 charged particles per event) and the highest pionic, kaonic and protonic temperatures obtained up to now are reported for the most central collisions (0-6%). The Coulomb effects are very low at very small velocities. A significant increase of the negative kaon to positive kaon ratio appears at rapidities around y = 0.0. Similar results are obtained for antiproton to proton ratio. The stopping of the nuclear matter is reflected by the high collective velocities obtained in the same rapidity range (up to 0.6 c). All these experimental results, as well as the experimental results obtained in the frame of other collaborations, including the RHIC-BNL collaboration, will be used to obtain new information on the behaviour of the highly excited and dense nuclear matter and the formation conditions for the quark-gluon plasma. Interesting information on the Universe behaviour in the first microsecond after Big Bang can also be obtained. (authors)

  14. Tropical Ocean Climate Study (TOCS) and Japan-United States Tropical Ocean Study (JUSTOS) on the R/V KAIYO, 25 Jan to 2 March 1997, to the Tropical Western Pacific Ocean BNL component

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, R.M.; Smith, S.

    1997-04-11

    The Japanese U.S. Tropical Ocean Study (JUSTOS) cruise on the R/V KAIYO in the Tropical Western Pacific Ocean was a collaborative effort with participants from the Japanese Marine Science and Technology Center (JAMSTEC), the National Center for Atmospheric Research (NCAR), and Brookhaven National Laboratory BNL. This report is a summary of the instruments, measurements, and initial analysis of the BNL portion of the cruise only. It includes a brief description of the instrument system, calibration procedures, problems and resolutions, data collection, processing and data file descriptions. This is a working document, which is meant to provide both a good description of the work and as much information as possible in one place for future analysis.

  15. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN COLLABORATION MEETINGS VIII, IX, X, XI, APRIL 12, MAY, 22, JUNE 17, JULY 29, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,B.

    2003-03-06

    Since its inception, the RHIC Spin Collaboration (RSC) has held semi-regular meetings each year to discuss the physics possibilities and the operational details of the program. Having collected our first data sample of polarized proton-proton collisions in Run02 of RHIC, we are now in the process of examining the performance of both the accelerator and the experiments. From this evaluation, we not only aim to formulate a consensus plan for polarized proton-proton during Run03 of RHIC but also to look more forward into the future to ensure the success of the spin program. In the second meeting of this series (which took place at BNL on April 12, 2002), we focused on Run02 polarization issues. This meeting opened with a presentation by Thomas Roser about his reflections on the outcome from the RHIC retreat during which the Run02 performance was evaluated. Of particular importance, Thomas pointed out that, with the expected beam time and his estimates for machine-tuning requirements, the experiments should limit their beam requests to two or three programs.

  16. Study of νd→μ-pps and νd→μ-Δ++(1232)ns using the BNL 7-foot deuterium-filled bubble chamber

    International Nuclear Information System (INIS)

    The weak nucleon axial-vector (FA) and vector (FV) form factors are determined from the momentum-transfer-squared (Q2) distributions using 2538 μ- p and 1384 μ-Δ++ events. The data were obtained from 1 800 000 pictures taken in the BNL 7-foot deuterium-filled bubble chamber exposed to a wide-band neutrino beam with a mean energy Eν=1.6 GeV. In the framework of the conventional V-A theory with standard assumptions, the value obtained from the μ-p events for the axial-vector mass MA in the pure dipole parameterization is 1.070-0.045+0.040 GeV and from the μ-Δ++ events is 1.28-0.10+0.08 GeV. These results are in good agreement with an earlier measurement from this experiment and other recent results. The reaction mechanisms for both processes are compared and found to be very similar. A two-parameter fit for the quasielastic reaction, using dipole forms for FV and FA, yields MA=0.97-0.11+0.14 GeV and MV=0.89-0.07+0.04 GeV, which is in good agreement with the conserved-vector-current value of MV=0.84 GeV. Possible deviations from the standard assumptions are also discussed

  17. Uniform description of bulk observables in the hydrokinetic model of A+A collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    Science.gov (United States)

    Karpenko, Iu. A.; Sinyukov, Yu. M.; Werner, K.

    2013-02-01

    A simultaneous description of hadronic yields; pion, kaon, and proton spectra; elliptic flows; and femtoscopy scales in the hydrokinetic model of A+A collisions is presented at different centralities for the top BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC) 2.76-TeV energies. The initial conditions are based on the Monte Carlo Glauber simulations. When going from RHIC to LHC energy in the model, the only parameters changed are the normalization of the initial entropy defined by the number of all charged particles in most central collisions, contribution to entropy from binary collisions, and barionic chemical potential. The hydrokinetic model is used in its hybrid version, which provides the correct match (at the isochronic hypersurface) of the decaying hadron matter evolution with hadronic ultrarelativistic quantum molecular dynamics cascade. The results are compared with the standard hybrid models where hydrodynamics and hadronic cascade are matching just at the non-space-like hypersurface of chemical freeze-out or on the isochronic hypersurface. The modification of the particle-number ratios at LHC caused, in particular, by the particle annihilations at the afterburn stage is also analyzed.

  18. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-08-01

    Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.

  19. Evolution-dominated Hydrodynamic Model and the Pseudorapidity Distributions of the Charged Particles Pro duced in Cu-Cu Collisions at BNL-RHIC Energies%演化过程主导的流体力学模型与Cu-Cu在BNL-RHIC能量碰撞中带电粒子的赝快度分布

    Institute of Scientific and Technical Information of China (English)

    姜志进; 王杰; 张海丽; 马可

    2014-01-01

    The charged particles resulting in high energy heavy ion collisions consist of two parts: One is from the hot and dense matter produced in collisions. The other is the leading particles. We suppose that the hot and dense matter expands and freezes out into the charged particles according to the evolution-dominated hydrodynamics, and the leading particles are from participants with approximately the same energy. On the basis of this assumption, we get the pseudorapidity distributions of the charged particles produced in high energy heavy ion collisions, and make a comparison with the experimental data presented by PHOBOS Collaboration at BNL-RHIC in Cu-Cu collisions at√sNN=62.4 and 200 GeV. The theoretical predictions are in good accordance with experimental measurements.%高能重离子碰撞产生的带电粒子由两部分组成:一部分来源于碰撞产生的高温高密度物质,另一部分是带头粒子。假设高温高密度物质按照由演化过程主导的流体力学的规律膨胀并冻析为带电粒子,带头粒子来源于参与者且具有大致相同的能量。基于该假设,得到了高能重离子碰撞带电粒子的赝快度分布,并与BNL-RHIC上的PHOBOS合作组在√sNN=62.4与200 GeV的Cu-Cu碰撞中给出的实验结果相比较,理论与实验测量符合得很好。

  20. 演化过程主导的流体力学模型与Cu-Cu在BNL-RHIC能量碰撞中带电粒子的赝快度分布%Evolution-dominated Hydrodynamic Model and the Pseudorapidity Distributions of the Charged Particles Pro duced in Cu-Cu Collisions at BNL-RHIC Energies

    Institute of Scientific and Technical Information of China (English)

    姜志进; 王杰; 张海丽; 马可

    2014-01-01

    The charged particles resulting in high energy heavy ion collisions consist of two parts: One is from the hot and dense matter produced in collisions. The other is the leading particles. We suppose that the hot and dense matter expands and freezes out into the charged particles according to the evolution-dominated hydrodynamics, and the leading particles are from participants with approximately the same energy. On the basis of this assumption, we get the pseudorapidity distributions of the charged particles produced in high energy heavy ion collisions, and make a comparison with the experimental data presented by PHOBOS Collaboration at BNL-RHIC in Cu-Cu collisions at√sNN=62.4 and 200 GeV. The theoretical predictions are in good accordance with experimental measurements.%高能重离子碰撞产生的带电粒子由两部分组成:一部分来源于碰撞产生的高温高密度物质,另一部分是带头粒子。假设高温高密度物质按照由演化过程主导的流体力学的规律膨胀并冻析为带电粒子,带头粒子来源于参与者且具有大致相同的能量。基于该假设,得到了高能重离子碰撞带电粒子的赝快度分布,并与BNL-RHIC上的PHOBOS合作组在√sNN=62.4与200 GeV的Cu-Cu碰撞中给出的实验结果相比较,理论与实验测量符合得很好。

  1. Some comments on the phase diagram parameters for the nuclear matter formed in Au-Au collisions at RHIC-BNL energies

    International Nuclear Information System (INIS)

    The formation of highly excited dense nuclear matter in laboratory, with the possibility to evidence a phase transition to deconfined quark-gluon plasma, can be analysed in ultrarelativistic heavy ion collisions. The rapidity density and pseudorapidity density, respectively, are used to estimate energy density in Au-Au collisions at √sNN = 130 GeV and √sNN = 200 GeV. From transverse mass spectra and transverse momentum spectra - obtained in the same collision - pion, kaon, proton and antiproton temperatures are extracted. These quantities are important parameters of the phase diagram of the nuclear matter formed in such collisions. The mass dependence of the slope parameters provides evidence of collective transverse flow. Comparisons with the predictions with UrQMD and HIJING codes are included in this paper. Taking into account the fact that some information on the dynamics of high-energy Au-Au collisions is obtained from the analysis of the antiparticles to particles ratios, we calculated these ratios for different rapidities. We investigate the Coulomb interaction through the ratio of negative to positive pions produced in very high-energy heavy ion collisions at BRAHMS experiment. The study of Coulomb interaction could also provide information on the collision dynamics, such as collective expansion and the charge of the system produced in the central region of the collisions because the effect of the nuclear medium is not evident for particles related to the later collision stages. They can affect the phase diagram parameters. The values of the energy and baryonic densities - over 10 normal values - as well as the agreement between the experimental values on participants and phenomenological model estimations, represent a support for the estimated thermodynamic parameters of the nuclear matter in Au-Au collisions at RHIC-BNL energies. This information can be used to study the formation of the quark plasma and quark-gluon plasma in these collisions

  2. The experimental and simulated LET spectrum and charge spectrum from CR-39 detectors exposed to irons near CRaTER at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D., E-mail: dzhou@ems.jsc.nasa.go [NASA-Johnson Space Center, 2101 Nasa Parkway, Houston, TX 77058 (United States); Universities Space Research Association, 3600 Bay Area Blvd, Houston, TX 77058 (United States); Semones, E.; Guetersloh, S.; Zapp, N.; Weyland, M. [NASA-Johnson Space Center, 2101 Nasa Parkway, Houston, TX 77058 (United States); Benton, E.R. [Eril Research Inc., 1110 Innovation Way, Suite 100, Stillwater, OK 74074 (United States)

    2010-09-15

    with CR-39 detectors and simulated with PHITS (Particle and Heavy Ion Transport System). This paper introduces the LET spectrum method and charge spectrum method using CR-39 PNTDs and the Monte Carlo simulation method for CR-39 detectors, presents and compares the results measured with CR-39 PNTDs and simulated for CR-39 detectors exposed to heavy irons (600 MeV/n) in BNL (Brookhaven National Laboratory) in front and behind the CRaTER.

  3. Highlights from BNL-RHIC

    CERN Document Server

    Tannenbaum, M J

    2012-01-01

    Recent highlights from Brookhaven National Laboratory and the Relativistic Heavy Ion Collider (RHIC) are reviewed and discussed. Topics include: Discovery of the strongly interacting Quark Gluon Plasma (sQGP) in 2005; RHIC machine operation in 2011 as well as latest achievements from the superconducting Magnet Division and the National Synchrotron Light Source II project. Highlights from QGP physics at RHIC include: comparison of new measurements of charged multiplicity in A+A collisions by ALICE at the LHC to previous RHIC measurements; Observation of the anti-alpha particle by the STAR experiment; Collective Flow, including the Triangular Flow discovery and the latest results on v3; the RHIC beam energy scan in search of the QCD critical point. The pioneering use at RHIC of hard-scattering as a probe of the sQGP will also be reviewed and the latest results presented including: jet-quenching via suppression of high pT particles and two particle correlations; new results on fragmentation functions using gamma...

  4. RESTful Web Services at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Casella, R.

    2011-06-14

    RESTful (REpresentational State Transfer) web services are an alternative implementation to SOAP/RPC web services in a client/server model. BNLs IT Division has started deploying RESTful Web Services for enterprise data retrieval and manipulation. Data is currently used by system administrators for tracking configuration information and as it is expanded will be used by Cyber Security for vulnerability management and as an aid to cyber investigations. This talk will describe the implementation and outstanding issues as well as some of the reasons for choosing RESTful over SOAP/RPC and future directions.

  5. The testis-specific VAD1.3/AEP1 interacts with {beta}-actin and syntaxin 1 and directs peri-nuclear/Golgi expression with bipartite nucleus localization (BNL) sequence

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Yan; Gao, Jing [Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam (Hong Kong); Yeung, William S.B. [Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam (Hong Kong); Centre for Reproduction, Development and Growth, Hong Kong Jockey Club Clinical Research Centre, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam (Hong Kong); Lee, Kai-Fai, E-mail: ckflee@hkucc.hku.hk [Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam (Hong Kong); Centre for Reproduction, Development and Growth, Hong Kong Jockey Club Clinical Research Centre, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam (Hong Kong)

    2010-10-15

    Research highlights: {yields} VAD1.3 interacts {beta}-actin and syntaxin 1. {yields} VAD1.3 colocalizes {beta}-actin in spermatids. {yields} The bipartite nucleus localization (BNL) signal is important for peri-nuclear/Golgi expression in transfected cells. {yields} The C-terminal region of VAD1.3 direct nuclei localization. -- Abstract: VAD1.3 (AEP1), a novel testis-specific gene, was first isolated from the testis of a retinol-treated vitamin-A-deficient (VAD) rat model. It is expressed at the acrosomal region of spermatids from postnatal day 25. VAD1.3 immunoreactivity is present in rat, human, monkey and porcine spermatids and spermatozoa, suggesting that VAD1.3 may play a role in acrosome formation. However, direct evidence on the detailed sub-cellular localization of the VAD1.3 protein in the acrosome and how VAD1.3 is involved in acrosome formation remains largely unknown. Here, we isolated and identified VAD1.3 interacting proteins by immunoprecipitation followed by mass spectrometry, and determined the functional motifs of VAD1.3 that were important for its specific sub-cellular location in vitro. We found that VAD1.3 bound to syntaxin 1 and {beta}-actin proteins in vitro. Immunogold electron microscopic study localized VAD1.3 immunoreactivity to the acrosome membranes and matrix, and colocalized it with the {beta}-actin protein. The full-length GFP-VAD (1-3601) and GFP-VAD (1-730) fusion proteins that contain the bipartite nucleus localization (BNL) signal were located in the peri-nucleus/Golgi of the transfected cells. In addition, the GFP signal colocalized with the endoplasmic reticulum marker and the syntaxin 1 protein in the transfected HeLa and GC-2spd cells. The C-terminal GFP-VAD (1770-3601) was expressed in the nucleus. Taken together, VAD1.3 interacts with {beta}-actin and syntaxin 1 in vitro. The BNL signal may mediate the peri-nuclei localization of the protein that may interact with syntaxin 1 and {beta}-actin for acrosome formation in

  6. Production of light (anti)nuclei, (anti)hypertriton and di-$\\Lambda$ in central Au+Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    CERN Document Server

    Xue, L; Chen, J H; Zhang, S; 10.1103/PhysRevC.85.064912

    2012-01-01

    A simple coalescence model is employed to investigate the production of light (anti)nuclei and (anti)hypertriton as well as di-$\\rm\\Lambda$ in the most central Au+Au collisions. The invariant yields of \\He(\\Hebar), \\hypert(\\hypertbar), and \\Hee(\\Heebar) obtained within current framework are found to be consistent with the measurements of the solenoidal tracker at the BNL Relativistic Heavy Ion Collider (STAR) detector. We also investigate the coalescence parameters $B_{A}$ (A = 2, 3, 4) as a function of transverse momentum for $d$(\\dbar), \\He(\\Hebar), \\hypert(\\hypertbar), and \\Hee(\\Heebar), respectively. $B_{2}$ for $d$(\\dbar) and $B_{3}$ for \\He(\\Hebar) are comparable with the STAR measurement within statistical uncertainties. The transverse momentum ($p_{T}$) integrated yields for di-$\\rm\\Lambda$ $dN_{\\Lambda\\Lambda}/dy \\sim 2.23\\times10^{-5}$, and is not strongly dependent on the parameter employed for the coalescence process. Combining the data points extracted by the PHENIX Collaboration, the coalescence...

  7. NRC plant-analyzer development at BNL

    International Nuclear Information System (INIS)

    The objective of this program is to develop an LWR engineering plant analyzer capable of performing realistic and accurate simulations of plant transients and Small-Break Loss of Coolant Accidents at real-time and faster than real-time computing speeds and at low costs for preparing, executing and evaluating such simulations. The program is directed toward facilitating reactor safety analyses, on-line plant monitoring, on-line accident diagnosis and mitigation and toward improving reactor operator training. The AD10 of Applied Dynamics International, Ann Arbor, MI, a special-purpose peripheral processor for high-speed systems simulation, is programmed through a PDP-11/34 minicomputer and carries out digital simulations with analog hardware in the input/output loop (up to 256 channels). Analog signals from a control panel are being used now to activate or to disable valves and to trip pump drive motors or regulators without interrupting the simulation. An IBM personal computer with multicolor graphics capabilities and a CRT monitor are used to produce on-line labelled diagrams of selected plant parameters as functions of time

  8. Highlights from BNL-RHIC-2012

    CERN Document Server

    Tannenbaum, M J

    2013-01-01

    Recent highlights from Brookhaven National Laboratory and the Relativistic Heavy Ion Collider (RHIC) are reviewed and discussed in the context of the discovery of the strongly interacting Quark Gluon Plasma (sQGP) at RHIC in 2005 as confirmed by results from the CERN-LHC Pb+Pb program. Outstanding RHIC machine operation in 2012 with 3-dimensional stochastic cooling and a new EBIS ion source enabled measurements with Cu+Au, U+U, for which multiplicity distributions are shown, as well as with polarized p-p collisions. Differences of the physics and goals of p-p versus A+A are discussed leading to a review of RHIC results on pi0 suppression in Au+Au collisions and comparison to LHC Pb+Pb results in the same range 5 30 GeV. Improved measurements of direct photon production and correlation with charged particles at RHIC are shown, including the absence of a low pT (thermal) photon enhancement in d+Au collisions. Attempts to understand the apparent equality of the energy loss of light and heavy quarks in the QGP by...

  9. BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.

    Energy Technology Data Exchange (ETDEWEB)

    MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

    2001-06-18

    Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

  10. BNL Citric Acid Technology: Pilot Scale Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS, A J; DODGE,; J, C; GILLOW, J B; FORRESTER, K E

    1999-09-24

    The objective of this project is to remove toxic metals such as lead and cadmium from incinerator ash using the Citric Acid Process developed at Brookhaven National Laboratory. In this process toxic metals in bottom ash from the incineration of municipal solid waste were first extracted with citric acid followed by biodegradation of the citric acid-metal extract by the bacterium Pseudomonas fluorescens for metals recovery. The ash contained the following metals: Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, Sr, Ti, and Zn. Optimization of the Citric Acid Process parameters which included citric acid molarity, contact time, the impact of mixing aggressiveness during extraction and pretreatment showed lead and cadmium removal from incinerator ash of >90%. Seeding the treated ash with P. fluorescens resulted in the removal of residual citric acid and biostabilization of any leachable lead, thus allowing it to pass EPA?s Toxicity Characteristic Leaching Procedure. Biodegradation of the citric acid extract removed >99% of the lead from the extract as well as other metals such as Al, Ca, Cu, Fe, Mg, Mn, Ti, and Zn. Speciation of the bioprecipitated lead by Extended X-ray Absorption Fine Structure at the National Synchrotron Light Source showed that the lead is predominantly associated with the phosphate and carboxyl functional groups in a stable form. Citric acid was completely recovered (>99%) from the extract by sulfide precipitation technique and the extraction efficiency of recovered citric acid is similar to that of the fresh citric acid. Recycling of the citric acid should result in considerable savings in the overall treatment cost. We have shown the potential application of this technology to remove and recover the metal contaminants from incinerator ash as well as from other heavy metal bearing wastes (i.e., electric arc furnace dust from steel industry) or soils. Information developed from this project is being applied to demonstrate the remediation of lead paint contaminated soils on Long Island.

  11. HOM absorbers for ERL cryomodules at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Ben-Zvi, I.; Hammons, L.; Xu, W.

    2009-09-20

    The physics needs and technical requirements for several future accelerator projects at the Relativistic Heavy Ion Collider (RHIC) all involve electron Energy Recovery Linacs (ERL). The required high-current, high-charge operating parameters make effective higher-order-mode (HOM) damping mandatory and the development of HOM dampers for a prototypical five-cell cavity is actively pursued. An experimental five-cell niobium cavity with ferrite dampers has been constructed, and effective HOM damping has been demonstrated at room and superconducting (SC) temperatures. A novel type of ferrite damper around a ceramic break has been developed for the ERL electron gun and prototype tests are also reported. Contemplated future projects are based on assembling a chain of superconducting cavities in a common cryomodule with the dampers placed in the cold space between the cavities, imposing severe longitudinal space constraints. Various damper configurations have been studied by placing them between two five-cell copper cavities. Measured and simulated copper cavity results, external Q-values of possible dampers and fundamental mode losses are presented.

  12. BNL ACCELERATOR-BASED RADIOBIOLOGY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    LOWENSTEIN,D.I.

    2000-05-28

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40--3,000 MeV/nucleon with maximum beam intensities of 10{sup 10} to 10{sup 11} ions per pulse. The BAF Project is described and the future AGS and BAF operation plans are presented.

  13. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOL. 71)

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV, D.; STASTO, A.; TUCHIN, K.; VOGELSANG, W.

    2005-03-07

    The high energy limit of Quantum Chromodynamics is one of the most fascinating areas in the theory of strong interactions. Over a decade ago the HERA experiment at DESY in Hamburg provided strong evidence for the rise of the proton structure function at small values of the Bjorken variable x. This behavior can be explained as an increase of the gluon density of the proton with energy or correspondingly with smaller values of x. This increase can be attributed on the other hand to the large probability of gluon splitting in QCD. The natural framework for describing the gluon dynamics at small x is the Balitskii-Fadin-Kuraev-Lipatov formalism developed some 30 years ago. It predicts that the gluon density grows very fast with increasing energy, as a power with a large intercept. This increase has to be tamed in order to satisfy the unitarily bound. Over two decades ago, Gribov, Levin and Ryskin proposed the mechanism called the parton saturation, which slows down the fast rise of the gluon density. This formalism accounts for an additional gluon recombination apart from the pure gluon splitting. It leads to the very interesting non-linear modification of the evolution equations for the gluon distributions. Since then, much progress has been made in the theoretical formulation of the parton saturation. Currently the most complete theory for parton saturation is the Color Glass Condensate (CGC) with the corresponding renormalization group functional evolution equation, the JIMWLK equation, which describes the nonlinear evolution of the gluon density at small values of x and in the regime where gluon fields are strong. The simpler form of the JIMWLK equation, the Balitskii-Kovchegov (BK) equation has been successfully used to explain the experimental data on proton structure function. The models, which include the parton saturation, have been applied to explain the experimental data at Tevatron and RHIC. In the latter case the Color Glass Condensate can be thought of as an initial stage for the subsequent formation of the Quark Gluon Plasma. Despite its success in describing various observables, the parton saturation phenomenon still needs deeper understanding and improvements; in particular, the existence or limitations on geometrical scaling, the edge effects in the high energy collisions, or impact parameter dependence. In particular it has been recently realized that the current evolution equations of CGC, the JWIWLK equations miss some of the important contributions coming from the resummation of the so-called Pomeron loops. These terms are known to provide sizeable corrections to the asymptotic high energy behavior. Also, the CGC formalism was constructed within the leading logarithmic approximation, and it is known that the corrections which go beyond this order are large.

  14. BNL National Synchrotron Light Source activity report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications.

  15. Status of the BNL muon (g-2) experiment

    NARCIS (Netherlands)

    Prigl, R; Brown, HN; Bunce, G; Carey, RM; Cushman, P; Danby, GT; Debevec, PT; Deng, H; Deninger, W; Dhawan, SK; Druzhinin, VP; Duong, L; Earle, W; Efstathiadis, E; Farley, FJM; Fedotovich, GV; Giron, S; Gray, F; Perdekamp, MG; Grossmann, A; Haeberlen, U; Hare, M; Hazen, ES; Hertzog, DW; Hughes, VW; Iwasaki, M; Jungmann, K; Kawall, D; Kawamura, M; Khazin, BI; Kindem, J; Krienen, F; Kronkvist, I.; Larsen, R; Lee, YY; Liu, W; Logashenko, I.; McNabb, R; Meng, W; Mi, JL; Miller, D; Miller, JP; Morse, WM; Neumayer, P; Onderwater, CJG; Orlov, Y; Pai, C; Polly, C; Pretz, J; Putlitz, GZ; Redin, SI; Rind, O; Roberts, BL; Ryskulov, N; Sanders, R; Sedykh, S; Semertzidis, YK; Serednyakov, S; Shatunov, YM; Solodov, E; Sossong, M; Steinmetz, A; Sulak, LR; Tanaka, M; Timmermans, C; Trofimov, A; Urner, D; Warburton, D; Winn, D; Yamamoto, A; Zimmerman, D

    1999-01-01

    The muon (g-2) experiment at Brookhaven completed a first run in June and July 1997. The main components of the experiment, which include the superconducting inflector, the superferric storage ring, the electrostatic quadrupoles and the lead scintillating fiber electron calorimeters, have been commi

  16. PROCEEDINGS OF RIKIN BNL RESEARCH CENTER WORKSHOP - VOLUME 79

    Energy Technology Data Exchange (ETDEWEB)

    SAMIOS,N.

    2006-02-16

    Since the earliest days of ultra-relativistic heavy ion physics, there has been interest in strange particle production. Originally, an anomalously large strangeness production was believed to be a signature of the Quark Gluon Plasma. Now the flavor composition of the plasma as reflected in the ratios of abundances of strange and non-strange particles is believed by advocates to tell us the temperature and baryon number density of the Quark Gluon Plasma at decoupling. In addition, there are arguments that suggest that the abundances of strange particles might at intermediate energy or at non-central rapidity, signal the existence of a critical end point of phase transitions in the baryon number chemical potential temperature plane. The purpose of this workshop is to assess the current theoretical and experimental understanding of strangeness production for ultra-relativistic heavy ion collisions.

  17. High power RF systems for the BNL ERL project

    Energy Technology Data Exchange (ETDEWEB)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  18. News from the Muon (g-2) experiment at BNL

    NARCIS (Netherlands)

    Deile, M

    2003-01-01

    The magnetic moment anomaly a(mu) = (g(mu) - 2)/2 of the positive muon has been measured at the Brookhaven Alternating Gradient Synchrotron with an uncertainty of 0.7 ppm. The new result, based on data taken in 2000, agrees well with previous measurements. Standard Model evaluations currently differ

  19. Commissioning and performance of the BNL EBIS LLRF system

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, S.; Smith, K.S.; Hayes, T.; Severino, F.; Harvey, M.; Narayan, G.; Zaltsman, A.

    2011-03-28

    The Electron Beam Ion Source (EBIS) LLRF system utilizes the RHIC LLRF upgrade platform to achieve the required functionality and flexibility. The LLRF system provides drive to the EBIS high-level RF system, employs I-Q feedback to provide required amplitude and phase stability, and implements a cavity resonance control scheme. The embedded system provides the interface to the existing Controls System, making remote system control and diagnostics possible. The flexibility of the system allows us to reuse VHDL codes, develop new functionalities, improve current designs, and implement new features with relative ease. In this paper, we will discuss the commissioning process, issues encountered, and performance of the system.

  20. BNL National Synchrotron Light Source activity report 1997

    International Nuclear Information System (INIS)

    During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications

  1. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOLUME 70)

    Energy Technology Data Exchange (ETDEWEB)

    JACAK, B.; SHURYAK, E.; HALLMAN, T.; BASS, S.; DAVIDSON, R.

    2005-01-14

    The Relativistic Heavy Ion Collider (RHIC) was commissioned for heavy ion collisions and for polarized pp collisions in 2001. All principal components of the accelerator chain were operational by the 2003 RHIC run. Approximately 50 papers on RHIC experimental results have been published in refereed journals to date. This is a testament to the vast amount of exciting new information and the unprecedented analysis and publication rate from RHIC. A number of signals of creation of matter at extreme energy density, and of new physics in that matter, have been observed. The RHIC community has been heavily engaged in discussion about these signals, and about the appropriate level of proof for Quark Gluon Plasma discovery at the RHIC. In fact, such discussions were the subject of an earlier RBRC Workshop. One of the striking results from heavy ion collisions at RHIC is that the quark gluon plasma accessible appears to be strongly coupled. The properties of strongly coupled plasmas are of intense interest in the traditional Plasma Physics community, who have been developing tools to study such matter theoretically and experimentally. Despite the fact that one plasma interacts electromagnetically and the other through the strong interaction, there is tremendous commonality in the intellectual approach and even the theoretical and experimental tools. It is important to broaden the discussion of Quark Gluon Plasma discovery beyond possible signals of deconfinement to also encompass signals of plasma phenomena in heavy ion collisions. Thus it is imperative establish more direct contact among Nuclear, Plasma and Atomic physicists to share techniques and ideas. RHIC physicists will benefit from familiarity with typical plasma diagnostics and theoretical methods to study strongly coupled plasmas. Plasma and Atomic physicists may fmd new techniques parallel to the multi-particle correlations used in RHIC data analysis, and theoretical tools to study high energy density matter where the coupling constant is not small. The goal of this Workshop was to bring together experts at the forefront of theoretical and experimental work on strongly coupled systems in the three communities. From the variety and depth of the presentations at the workshop, we believe that we successfully fostered the exchange of information and ideas. Furthermore, many overlaps and possible exchanges of techniques were identified. Extremely interesting discussions took place, identifying possible avenues for further exchanges and interdisciplinary collaborations.

  2. X-ray microtomography of porous media at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, B. [Brookhaven National Labs., Upton, NY (United States)

    1997-02-01

    This session is comprised of pertinent information about the historical aspects, current status of research, technical achievements, and future plans in X-ray computed microtomography at Brookhaven National Laboratories. An explanation with specifications and diagrams of X-ray instrumentation is provided. Several high resolution 3-D color images of reservoir rock drill cores and other materials are included.

  3. The new BNL AGS phase, radial and synchronization loops

    Energy Technology Data Exchange (ETDEWEB)

    Onillon, E.; Brennan, J.M.

    1996-07-01

    The AGS and the RHIC must be synchronized before bunch-to-bucket transfer of the beam. A feedback loop has been designed and an improvement has been made to the AGS phase and radial loops. In both cases, the design uses a state variable representation to achieve greater stability and smaller errors. The state variables are beam phase, frequency and radius , the integral of the difference between the radius and its reference and the phase deviation of the bunch from the synchronous phase. Furthermore, the feedback gains are programmed as a function of the beam parameters to keep the same loop performances through the acceleration cycle.

  4. A description of the BNL active surface analysis facility

    International Nuclear Information System (INIS)

    Berkeley Nuclear Laboratories has a responsibility for the assessment of radioactive specimens arising both from post irradiation examination of power reactor components and structures and experimental programmes concerned with fission and activation product transport. Existing analytical facilities have been extended with the commissioning of an active surface analysis instrument (XSAM 800pci, Kratos Analytical). Surface analysis involves the characterisation of the outer few atomic layers of a solid surface/interface whose chemical composition and electronic structure will probably be different from the bulk. The new instrument consists three interconnected chambers positioned in series; comprising of a high vacuum sample introduction chamber, an ultra-high vacuum sample treatment/fracture chamber and an ultra-high vacuum sample analysis chamber. The sample analysis chamber contains the electron, X-ray and ion-guns and the electron and ion detectors necessary for performing X-ray photoelectron spectroscopy, scanning Auger microscopy and secondary-ion mass spectroscopy. The chamber also contains a high stability manipulator to enable sub-micron imaging of specimens to be achieved and provide sample heating and cooling between - 180 and 6000C. (author)

  5. Electromagnetic calorimeters for the BNL muon (g-2) experiment

    NARCIS (Netherlands)

    Sedykh, SA; Blackburn, Adrian G.; Bunker, BD; Debevec, PT; Gray, FE; Hertzog, DW; Jones, TD; Onderwater, CJG; Polly, CC; Urner, DC; Carey, RM; Coulsey, C; de Santi, G; Hare, M; Miller, JP; Ouyang, J; Rind, O; Trofimov, A; Cushman, P; Giron, S; Kindem, J; Timmermans, C; Zimmerman, D; Winn, D; Druzhinin, V.P.

    2000-01-01

    A set of 24 lead/scintillating fiber electromagnetic calorimeters has been constructed for the new muon (g - 2) experiment at the Brookhaven AGS. These calorimeters were designed to provide very good energy resolution for electrons up to 3 GeV while also yielding excellent timing information. Specia

  6. First beam commissioning at BNL ERL SRF Gun

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Altinbas, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy; Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy; Deonarine, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; DeSanto, L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Gassner, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Gupta, R. C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hahn, H. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hammons, L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Ho, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Jamilkoski, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Kankiya, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Kayran, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Kellerman, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Laloudakis, N. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Lambiase, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liaw, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy; Mahler, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Masi, L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Miller, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Philips, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Seda, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Sheehy, B. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Steszyn, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tallerico, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tuozollo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Weiss, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Wiliniski, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    The 704 MHz SRF gun successfully generated the first photoemission beam in November of 2014. The configurations of the test and the sub-systems are described.The latest results of SRF commissioning, including the cavity performance, cathode QE measurements, beam current/energy measurements, are presented in the paper.

  7. EDDY CURRENT EFFECT OF THE BNL-AGS VACUUM CHAMBER ON THE OPTICS OF THE BNL-AGS SYNCHROTRON.

    Energy Technology Data Exchange (ETDEWEB)

    TSOUPAS,N.; AHRENS,L.; BROWN,K.A.; GLENN,J.W.; GARDNER,K.

    1999-03-29

    During the acceleration cycle of the AGS synchrotron, eddy currents are generated within the walls of the vacuum chambers of the AGS main magnets. The vacuum chambers have elliptical cross section, are made of inconel material with a wall thickness of 2 mm and are placed within the gap of the combined-function main magnets of the AGS synchrotron. The generation of the eddy currents in the walls of the vacuum chambers, creates various magnetic multipoles, which affect the optics of the AGS machine. In this report these magnetic multipoles are calculated for various time interval starting at the acceleration cycle, where the magnetic field of the main magnet is {approx}0.1 T, and ending before the beam extraction process, where the magnetic field of the main magnet is almost constant at {approx}1.1 T. The calculations show that the magnetic multipoles generated by the eddy-currents affect the optics of the AGS synchrotron during the acceleration cycle and in particular at low magnetic fields of the main magnet. Their effect is too weak to affect the optics of the AGS machine during beam extraction at the nominal energies.

  8. RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20

    Energy Technology Data Exchange (ETDEWEB)

    VAN BAAL,P.; ORLAND,P.; PISARSKI,R.

    2000-06-01

    This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.

  9. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED "ODDERON SEARCHES AT RHIC" (VOLUME 76)

    Energy Technology Data Exchange (ETDEWEB)

    ORGANIZERS: GURYN, W.; KOVCHEGOV, Y.; VOGELSANG, W.; TRUEMAN, L.

    2005-10-25

    The Odderon, a charge-conjugation-odd partner of the Pomeron, has been a puzzle ever since its introduction in 1973. The Pomeron describes a colorless exchange with vacuum quantum numbers in the t-channel of hadronic scattering at high energies. The concept was originally formulated for the non-perturbative regime of Quantum Chromodynamics (QCD). In perturbation theory, the simplest picture of the Poineron is that of a two-gluon exchange process, whereas an Odderon can be thought of as an exchange of three gluons. Both the Pomeron and the Odderon are expected in QCD. However, while there exists plenty of experimental data that could be successfully described by Pomeron exchanges (for example in electron-proton and hadron-hadron scattering at high energies), no experimental sign of the Odderon has been observed. One of the very few hints so far is the difference in the diffractive minima of elastic proton-proton and proton-antiproton scattering measured at the ISR. The Odderon has recently received renewed attention by QCD researchers, mainly for the following two reasons. First of all, RHIC has entered the scene, offering exciting unique new opportunities for Odderon searches. RHIC provides collisions of nuclei at center-of-mass energies far exceeding those at all previous experiments. RHIC also provides collisions of protons of the highest center-of-mass energy, and in the interval, which has not been explored previously in p {bar p} collisions. In addition, it also has the unique feature of polarization for the proton beams, promising to become a crucial tool in Odderon searches. Indeed, theorists have proposed possible signatures of the Odderon in some spin asymmetries measurable at RHIC. Qualitatively unique signals should be seen in these observables if the Odderon coupling is large. Secondly, the Odderon has recently been shown to naturally emerge from the Color Glass Condensate (CGC), a theory for the high-energy asymptotics of QCD. It has been argued that saturation/CGC effects tend to decrease the Odderon intercept, possibly providing an explanation for the lack of experimental evidence for the Odderon so far. This has added further motivation for pursuing searches for the Odderon. During the workshop the status of the Odderon in QCD and its phenomenology were reviewed. The participants also agreed on the most promising observables for the Odderon search at RHIC, which we list. The conclusion of the workshop is that the best available setup to address experimental questions related to the search for the Odderon at RHIC is the proposed combination of STAR experiment and Roman pots of pp2pp experiment, described in the proposal ''Physics with Tagged Forward Protons with the STAR detector at RHIC''.

  10. RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20

    International Nuclear Information System (INIS)

    This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma

  11. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, VOLUME 37, RHIC SPIN COLLABORATION MEETING VI (PART 2).

    Energy Technology Data Exchange (ETDEWEB)

    BLAND, L.; SAITO, N.

    2001-11-15

    The second part of the sixth RHIC Spin Collaboration (RSC) meeting was held on November 15, 2001 at Brookhaven National Laboratory. Previous meetings have elaborated on the new generation of proton spin-structure studies (e.g. gluon polarization and flavor separation of q and {bar q} polarizations via real W{sup {+-}} production) enabled by studying polarized proton collisions at energies and momentum transfers where perturbative QCD models are expected to be applicable. The focus of this meeting was on many of the experimental issues that must be resolved to achieve these physics goals. This summary is written with the benefit of hindsight following the completion of the first-ever run of a polarized proton collider. This first run can be considered as a successfully completed milestone of the RHIC Spin Collaboration. Other milestones remain important. Long term machine items were identified in Waldo Mackay's talk, the most important being the completion of the spin rotator magnets that will be installed in 2002 to allow the flexible orientation of the proton beam polarization at the PHENM and STAR experiments. At the meeting Waldo discussed a stronger partial snake magnet for the AGS as a means of producing highly polarized proton beams to inject into RHIC. Developments subsequent to this meeting suggest that a superconducting helical dipole magnet may be feasible for the AGS, and is likely to be needed to achieve the 70% beam polarization in RHIC. Longer term items were also presented, including potential increases in luminosity by the addition of electron cooling to RHIC and the possibility of increasing the collision energy by {approx}20% by replacement of the DX magnets. These items could be considered for a second generation of RHIC spin experiments. The other topics covered at the meeting were related to polarimetry and to the absolute calibration of the proton beam polarization in RHIC. These topics were divided into short- and long-term solutions to polarimetry issues. George Igo led a discussion about the addition of a Coulomb-Nuclear Interference (CNI) polarimeter to the AGS prior to FY2003 RHIC operations. The experience from the first RHIC spin run reinforces the need for reducing the time needed to complete polarization measurements in the AGS, and illustrated the importance of polarization measurements at different energies in the RHIC injectors. Progress continues to be made on the completion of a CNI polarimeter for the AGS prior to the FY2003 run.

  12. BNL ALARA Center's development of a computerized radiological assessment and design system (RADS)

    International Nuclear Information System (INIS)

    The US Department of Energy's (DOE) Office of Health Physics and Industrial Hygiene sponsored a study of Radiological Engineering Programs at selected DOE contractor facilities. This study was conducted to review, evaluate, and summarize techniques and practices that should be considered in the design phase that reduce dose and the spread of radioactive materials during subsequent construction and operation of DOE radiological facilities. As in a previous study on operational ALARA programs, a variety of good-practice documents will be generated. It is envisioned that these documents will serve as a resource to assist radiological engineers in the process of designing radiological facilities, and in performing radiological safety/ALARA design reviews. This paper presents the features for three good-practice documents and related software applications that are being developed based on the findings of this study. The proposed software called Radiological Assessment and Design System (RADS) will be a menu-driven database and spreadsheet program. It will be designed to provide easy, consistent, and effective implementation of the methodologies described in the three good-practice documents. These documents and the associated RADS software will provide the user with the following three functions: (1) enter dose assessment information and data into computer worksheets and provide printed tables of the results which can then be inserted into safety analysis reports or cost-benefit analyses, (2) perform a wide variety of sorts of radiological design criteria from DOE Orders and produce a checklist of the desired design criteria, and (3) enter cost/benefit data and qualitative rating of attributes for various design alternatives which reduce dose into computer worksheets and provide printed reports of cost-effectiveness results

  13. Pressure loads and structural response of the BNL high-temperature detonation tube

    OpenAIRE

    Shepherd, Joseph E.

    1992-01-01

    The high-temperature detonation tube facility being designed at Brookhaven National Laboratory must withstand dynamic pressure loads. These loads are associated with both detonations and deflagration-to-detonation transition (DDT). The present report documents the results of computations of the pressure loads and structural response. Structural response considerations indicate that radial motion of the tube is sufficiently rapid that the tube actualkly responds to the peak pressure behi...

  14. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    Energy Technology Data Exchange (ETDEWEB)

    Karsch, F.; Kojo, T.; Mukherjee, S.; Stephanov, M.; Xu, N.

    2011-10-27

    Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that at zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical background for the search of the CEP using observables related to fluctuations and correlations. While new data are pouring in from the RHIC low energy scan program, many recent advances have also been made in the phenomenological and lattice gauge theory sides in order to have a better theoretical understanding of the wealth of new data. This workshop tried to create a synergy between the experimental, phenomenological and lattice QCD aspects of the fluctuation and correlation related studies of the RHIC low energy scan program. The workshop brought together all the leading experts from related fields under the same forum to share new ideas among themselves in order to streamline the continuing search of CEP in the RHIC low energy scan program.

  15. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, RHIC SPIN COLLABORATION MEETING VI, VOLUME 36.

    Energy Technology Data Exchange (ETDEWEB)

    BLAND,L.; SAITO,N.

    2001-10-10

    The sixth meeting of the RHIC Spin Collaboration (RSC) took place on October 1, 2001 at Brookhaven National Laboratory. RHIC is now in its second year of operation for physics production and the first polarized proton collision run at {radical}s=200 GeV is expected to start in eight weeks. The RSC has developed a plan for this coming run through two previous meetings, RHIC Spin Physics III (August 3, 2000) and IV (October 13-14, 2000). We requested the following: two weeks of polarized proton studies in AGS, three weeks of polarized collider commissioning, and five weeks of polarized proton physics run. As a result, we have obtained all we asked and the above plans are implemented in the current operation schedule. The focus of the present meeting was to bring all involved in the RHIC Spin activities up-to-date on the progress of machine development, theory issues, and experimental issues. This meeting was right after the Program Advisory Committee (PAC) meeting and it started with the comments on the PAC discussion by Gerry Bunce, who was informed about the PAC deliberations by Tom Kirk. The PAC was fully supportive to complete the proposed spin program within the currently available budget for RHIC run 2 operations. Gerry further explained the expected luminosity to be {integral} Ldt = 0.5 pb{sup -1} per week, reflecting the current machine status. The introductory session also had a talk from Werner Vogelsang that reviewed the progress in perturbative QCD theory focused on spin effects.

  16. Studies of the chromatic properties and dynamic aperture of the BNL colliding beam accelerator

    International Nuclear Information System (INIS)

    The PATRICIA particle tracking program has been used to study chromatic effects in the Brookhaven CBA (Colliding Beam Accelerator). The short term behavior of particles in the CBA has been followed for particle histories of 300 turns. Contributions from magnet multipoles characteristic of superconducting magnets and closed orbit errors have been included in determining the dynamic aperture of the CBA for on and off momentum particles. The width of the third integer stopband produced by the temperature dependence of magnetization induced sextupoles in the CBA cable dipoles is evaluated for helium distribution systems having periodicity of one and six. The stopband width at a tune of 68/3 is naturally zero for the system having a periodicity of six and is ∫10-4 for the system having a periodicity of one. Results from theory are compared with results obtained with PATRICIA; the results agree within a factor of slightly more than two

  17. Final report of the E821 muon anomalous magnetic moment measurement at BNL

    NARCIS (Netherlands)

    Bennett, GW; Bousquet, B; Brown, HN; Bunce, G; Carey, RM; Cushman, P; Danby, GT; Debevec, PT; Deile, M; Deng, H; Deninger, W; Dhawan, SK; Druzhinin, VP; Duong, L; Efstathiadis, E; Farley, FJM; Fedotovich, GV; Giron, S; Gray, FE; Grigoriev, D; Grosse-Perdekamp, M; Grossmann, A; Hare, MF; Hertzog, DW; Huang, [No Value; Hughes, VW; Iwasaki, M; Jungmann, Klaus-Peter; Kawall, D; Kawamura, M; Khazin, BI; Kindem, J; Krienen, F; Kronkvist, [No Value; Lam, A; Larsen, R.; Lee, YY; Logashenko, [No Value; McNabb, R; Meng, W; Mi, J; Miller, JP; Mizumachi, Y; Morse, WM; Nikas, D; Onderwater, Gerco; Orlov, Y; Ozben, CS; Paley, JM; Peng, Q; Polly, CC; Pretz, J; Prigl, R; Putlitz, GZ; Qian, T; Redin, SI; Rind, O; Roberts, BL; Ryskulov, N; Sedykh, S; Semertzidis, YK; Shagin, P; Shatunov, YM; Sichtermann, EP; Solodov, E; Sossong, M; Steinmetz, A; Sulak, LR; Timmermans, C; Trofimov, A; Urner, D; von Walter, P; Warburton, D; Winn, D; Yamamoto, A; Zimmerman, D

    2006-01-01

    We present the final report from a series of precision measurements of the muon anomalous magnetic moment, a(mu)=(g-2)/2. The details of the experimental method, apparatus, data taking, and analysis are summarized. Data obtained at Brookhaven National Laboratory, using nearly equal samples of positi

  18. Magnetic measurements of modulator and dispersion sections for the BNL HGFEL

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, L.; Graves, W.S.; Ben-Zvi, I. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1995-12-31

    The Harmonic Generation Free Electron Laser is a high-gain amplifier FEL configured as an optical klystron. It is presently under construction at Brookhaven National Lab. Each of the three superconducting magnet sections (modulator, buncher, radiator) has been built and the magnetic fields have been measured. This paper reports the measurement results and compares them with three-dimensional simulations.

  19. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, VOLUME 37, RHIC SPIN COLLABORATION MEETING VI (PART 2)

    International Nuclear Information System (INIS)

    The second part of the sixth RHIC Spin Collaboration (RSC) meeting was held on November 15, 2001 at Brookhaven National Laboratory. Previous meetings have elaborated on the new generation of proton spin-structure studies (e.g. gluon polarization and flavor separation of q and bar q polarizations via real W± production) enabled by studying polarized proton collisions at energies and momentum transfers where perturbative QCD models are expected to be applicable. The focus of this meeting was on many of the experimental issues that must be resolved to achieve these physics goals. This summary is written with the benefit of hindsight following the completion of the first-ever run of a polarized proton collider. This first run can be considered as a successfully completed milestone of the RHIC Spin Collaboration. Other milestones remain important. Long term machine items were identified in Waldo Mackay's talk, the most important being the completion of the spin rotator magnets that will be installed in 2002 to allow the flexible orientation of the proton beam polarization at the PHENM and STAR experiments. At the meeting Waldo discussed a stronger partial snake magnet for the AGS as a means of producing highly polarized proton beams to inject into RHIC. Developments subsequent to this meeting suggest that a superconducting helical dipole magnet may be feasible for the AGS, and is likely to be needed to achieve the 70% beam polarization in RHIC. Longer term items were also presented, including potential increases in luminosity by the addition of electron cooling to RHIC and the possibility of increasing the collision energy by ∼20% by replacement of the DX magnets. These items could be considered for a second generation of RHIC spin experiments. The other topics covered at the meeting were related to polarimetry and to the absolute calibration of the proton beam polarization in RHIC. These topics were divided into short- and long-term solutions to polarimetry issues. George Igo led a discussion about the addition of a Coulomb-Nuclear Interference (CNI) polarimeter to the AGS prior to FY2003 RHIC operations. The experience from the first RHIC spin run reinforces the need for reducing the time needed to complete polarization measurements in the AGS, and illustrated the importance of polarization measurements at different energies in the RHIC injectors. Progress continues to be made on the completion of a CNI polarimeter for the AGS prior to the FY2003 run

  20. The BNL Relativistic Heavy Ion Collider (A new frontier in nuclear physics)

    International Nuclear Information System (INIS)

    The Relativistic Heavy Ion Collider at Brookhaven is in its second year of construction with a target date for completion in late 1997. In this report, I will describe the status of the project, the designated milestones and the capabilities of this collider that set it apart as the premier facility to probe the new frontier of nuclear matter under extreme temperatures and densities. Two large detectors and a pair of smaller detectors, which are in various stages of approval, form the experimental program at this point. They provide a complementary set of probes to study quark gluon plasma formation through different signatures. The two ring design of this collider allows for collisions between different ion species ranging from protons to gold

  1. The BNL relativistic heavy ion collider (A new frontier in nuclear physics)

    International Nuclear Information System (INIS)

    The Relativistic Heavy Ion Collider at Brookhaven is in its second year of construction with a target date for completion in late 1997. In this report, I will describe the status of the project, the designated milestones and the capabilities of this collider that set it apart as the premier facility to probe the new frontier of nuclear matter under extreme temperatures and densities

  2. Asymmetry in inclusive π±, p production at 22 GeV, BNL E925

    International Nuclear Information System (INIS)

    Preliminary results from Experiment E925 on inclusive pion asymmetries from a 22 GeV/c polarized proton beam on a carbon target show significant asymmetries for π± production similar to those observed earlier at the ZGS and Fermilab with beams of 12 and 200 GeV respectively. This experiment demonstrates the viability of using the analyzing power in inclusive pion production for high energy beam polarimetry at RHIC. Inclusive proton asymmetries are consistent with zero

  3. RIKEN BNL RESEARCH CENTER WORKSHOP ON HIGH ENERGY POLARIMETRY, VOLUME 23

    Energy Technology Data Exchange (ETDEWEB)

    LEADER,E.

    2000-06-15

    The RHIC collider, in its pp mode, will be a unique machine. It will open up a new frontier in the use of spin in the study of hadronic physics. Using its polarized beams, a whole new range of tests of the Standard Model will become feasible, and much new information about the detailed partonic structure of-the nucleon will emerge. It will also be possible to answer intriguing questions concerning the relationship between pp and pp total cross-sections and real parts of forward amplitudes, questions which are relevant to attempts to understand certain aspects of non-perturbative QCD. This entire, rich program relies upon an accurate determination of the polarization of the proton beams, a matter which is far from trivial. In the summer of 1997 Larry Trueman and the author ran a six-week Working Group, the aim of which was to try to understand theoretically the accuracy with which one could predict the analyzing power of various reactions which were under consideration as high energy proton polarimeters. The results of the study were somewhat negative in the sense that they concluded that analyzing powers could only be predicted to within an accuracy of {+-}10%, whereas RHIC was aiming for {+-}5%. On the other hand some very positive consequences followed. The working group stimulated the study of a polarimeter based on CNI in proton-carbon scattering and this is the polarimeter that will be used in the early stages of RHIC operation. It will be regarded as a relative polarimeter and will have to be calibrated absolutely at some later stage, probably via use of a polarized jet hydrogen target. In addition the surprising discovery was made that proton-proton elastic scattering, at high energy and very small momentum transfer, is self-spin analyzing, in the sense that the measurement of a sufficient number of spin-dependent observables will yield not only the values of the helicity amplitudes, but also the value of the beam and target polarizations.

  4. Experience with Multi-Tier Grid MySQL Database Service Resiliency at BNL

    International Nuclear Information System (INIS)

    We describe the use of F5's BIG-IP smart switch technology (3600 Series and Local Traffic Manager v9.0) to provide load balancing and automatic fail-over to multiple Grid services (GUMS, VOMS) and their associated back-end MySQL databases. This resiliency is introduced in front of the external application servers and also for the back-end database systems, which is what makes it 'multi-tier'. The combination of solutions chosen to ensure high availability of the services, in particular the database replication and fail-over mechanism, are discussed in detail. The paper explains the design and configuration of the overall system, including virtual servers, machine pools, and health monitors (which govern routing), as well as the master-slave database scheme and fail-over policies and procedures. Pre-deployment planning and stress testing will be outlined. Integration of the systems with our Nagios-based facility monitoring and alerting is also described. And application characteristics of GUMS and VOMS which enable effective clustering will be explained. We then summarize our practical experiences and real-world scenarios resulting from operating a major US Grid center, and assess the applicability of our approach to other Grid services in the future.

  5. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  6. Tracking algorithms in ultrarelativistic nuclear experiments applied at BRAHMS - RHIC (BNL)

    International Nuclear Information System (INIS)

    Considering the experimental results obtained in one of the major experiments at the Relativistic Heavy Ion Collider from Brookhaven National Laboratory - Upton, New York, USA - namely BRAHMS (Broad Range Hadron Magnetic Spectrometers) Experiment - which studies Au + Au collisions at 200 GeV/n (center of mass system), we study the collision geometry implications upon the experimental yields. Making use of the two spectrometers from BRAHMS - providing very accurate angular distributions - we find out the importance of vertex determination on the physical event reconstruction and on the centrality cuts. The vertex problem is of major importance in collider physics, showing wide distributions. In this analysis of the experimental data are used three groups of detectors, namely: the Beam - Beam Counters and the Zero Degree Calorimeters, providing vertex measurements by time-of-flight right-left methods, and the time projection chambers that reconstruct the vertex by the back-projection of the produced clusters. The methods used are presented and a qualitative comparison between the experimental data from Au + Au collisions at 130 GeV and 200 GeV energies is made. Finally, we present the main problems regarding the track reconstruction and also some visualization algorithms from peculiar tracking detectors from BRAHMS. (authors)

  7. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON RHIC SPIN PHYSICS III AND IV, POLARIZED PARTONS AT HIGH Q2 REGION, AUGUST 3, 2000 AT BNL, OCTOBER 14, 2000 AT KYOTO UNIVERSITY.

    Energy Technology Data Exchange (ETDEWEB)

    BUNCE, G.; VIGDOR, S.

    2001-03-15

    International workshop on II Polarized Partons at High Q2 region 11 was held at the Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan on October 13-14, 2000, as a satellite of the international conference ''SPIN 2000'' (Osaka, Japan, October 16-21,2000). This workshop was supported by RIKEN (The Institute of Physical and Chemical Research) and by Yukawa Institute. The scientific program was focused on the upcoming polarized collider RHIC. The workshop was also an annual meeting of RHIC Spin Collaboration (RSC). The number of participants was 55, including 28 foreign visitors and 8 foreign-resident Japanese participants, reflecting the international nature of the RHIC spin program. At the workshop there were 25 oral presentations in four sessions, (1) RHIC Spin Commissioning, (2) Polarized Partons, Present and Future, (3) New Ideas on Polarization Phenomena, (4) Strategy for the Coming Spin Running. In (1) the successful polarized proton commissioning and the readiness of the accelerator for the physics program impressed us. In (2) and (3) active discussions were made on the new structure function to be firstly measured at RHIC, and several new theoretical ideas were presented. In session (4) we have established a plan for the beam time requirement toward the first collision of polarized protons. These proceedings include the transparencies presented at the workshop. The discussion on ''Strategy for the Coming Spin Running'' was summarized by the chairman of the session, S. Vigdor and G. Bunce.

  8. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    International Nuclear Information System (INIS)

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  9. Proceedings of RIKEN BNL research center workshop, equilibrium and non-equilibrium aspects of hot, dense QCD, Vol. 28

    International Nuclear Information System (INIS)

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation ∼2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision

  10. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    Science.gov (United States)

    Alessi, James; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-01

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  11. Proceedings of RIKEN BNL Research Center Workshop entitled Hydrodynamics in Heavy Ion Collisions and QCD Equation of State (Volume 88)

    Energy Technology Data Exchange (ETDEWEB)

    Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.

    2008-04-21

    The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.

  12. Symposium on neutron cross-sections from 10 to 50 MeV. [BNL, May 12-14, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.R.; Pearlstein, S. (eds.)

    1980-07-01

    Separate abstracts were prepared for 22 of the papers in this volume. The remaining six have already been cited in ERA, and can be located by reference to the entry CONF-800551--(Vol.1) in the Report Number Index. CINDA and charged-particle reaction indexes for both volumes of this report appear at the end of volume II. (RWR)

  13. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Science.gov (United States)

    Tsoupas, N.; Huang, H.; MacKay, W. W.; Meot, F.; Roser, T.; Trbojevic, D.

    2013-04-01

    The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS) which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to accommodate the four helices. In addition, the four partial helix solution is an optimum solution because it eliminates all the spin resonances for any synchrotron which operates in the same energy range as the AGS.

  14. Production of doubly-strange systems in the (K sup - , K sup +) reaction in E885 at BNL

    CERN Document Server

    Khaustov, P; Barnes, P D; Bassalleck, B; Berdoz, A R; Biglan, A; Buerger, T; Carman, D S; Chrien, R E; Davis, C A; Fischer, H; Franklin, G B; Franz, J; Gan, L; Ichikawa, A; Iijima, T; Imai, K; Kondo, Y; Koran, P; Landry, M; Lee, L; Lowe, J; Magahiz, R; May, M; McCrady, R; Meyer, C A; Merrill, F; Motoba, T; Page, S A; Paschke, K; Pile, P H; Quinn, B; Ramsay, W D; Rusek, A; Sawafta, R; Schmitt, H; Schumacher, R A; Stotzer, R W; Sutter, R; Takeutchi, F; Oers, W T H V; Yamamoto, K; Yamamoto, Y; Yosoi, M; Zeps, V J

    2000-01-01

    The E885 collaboration utilized the 1.8 GeV/c K sup - beam line at the AGS to accumulate greater than 10 times the world's existing data sample of (K sup - ,K sup +) events on carbon. The data were used to search for signatures of the production of XI hypernuclei, double-LAMBDA hypernuclei, and H Dibaryons. Evidence for the creation of sup 1 sup 2 subXI Be is seen. Reasonable agreement between the data and theory is achieved by assuming a XI-nucleus Wood-Saxon potential well depth, V sub 0 subXI, of about 14 MeV. Upper limits for the production of double-LAMBDA hypernuclei are presented. Upper limits for H-Dibaryon production are presented which are a factor of 50 below calculated rates.

  15. Symposium on neutron cross-sections from 10 to 50 MeV. [BNL, May 12-14, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, M.R.; Pearlstein, S. (eds.)

    1980-07-01

    Separate abstracts were prepared for four of the papers in this volume. The remaining fifteen have already been cited in ERA, and can be located by reference to the entry CONF-800551--(Vol.2) in the Report Number Index. CINDA and charged-particle reaction indexes are included. (RWR)

  16. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    DE VEGA,H.J.; BOYANOVSKY,D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  17. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    De Vega, H.J.; Boyanovsky, D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED "GLOBAL ANALYSIS OF POLARIZED PARTON DESTRIBUTIONS IN THE RHIC ERA" (VOLUME 86).

    Energy Technology Data Exchange (ETDEWEB)

    DESHPANDE,A.; VOGELSANG, W.

    2007-10-08

    The determination of the polarized gluon distribution is a central goal of the RHIC spin program. Recent achievements in polarization and luminosity of the proton beams in RHIC, has enabled the RHIC experiments to acquire substantial amounts of high quality data with polarized proton beams at 200 and 62.4 GeV center of mass energy, allowing a first glimpse of the polarized gluon distribution at RHIC. Short test operation at 500 GeV center of mass energy has also been successful, indicating absence of any fundamental roadblocks for measurements of polarized quark and anti-quark distributions planned at that energy in a couple of years. With this background, it has now become high time to consider how all these data sets may be employed most effectively to determine the polarized parton distributions in the nucleon, in general, and the polarized gluon distribution, in particular. A global analysis of the polarized DIS data from the past and present fixed target experiments jointly with the present and anticipated RHIC Spin data is needed.

  19. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON SPIN PHYSICS AT RHIC IN YEAR-1 AND BEYOND.

    Energy Technology Data Exchange (ETDEWEB)

    BLAND, L.; BOER, D.; SAITO, N.; VOGELSANG, W.

    2001-05-14

    The much anticipated RHIC spin physics program will commence this fall when the first physics run with colliding beams of polarized protons is expected. More specifically, the planned year-1 RHIC-Spin measurements are (1) the double-spin asymmetry A{sub LL}{sup {pi}} in production of pions by collisions of longitudinally polarized protons (in order to obtain first information on the proton's spin-dependent gluon density, {Delta}g); (2) the transverse single-spin asymmetry A{sub N}{sup {pi}} for pion production. These two reactions provided part of the motivation for our workshop. On the first day there were informative talks on the specific plans of STAR (by Rakness) and PHENIX (by Goto) for the polarized run of Year-1. Some of the theoretical questions related to the double-spin asymmetry A{sub LL}{sup {pi}} were discussed on the first day by Vogelsang and Kretzer, which centered mostly around the questions of how well the unpolarized fragmentation functions are known, the need for next-to-leading order calculations, and on how sensitive the asymmetry is to the possible {Delta}g distributions. Vetterli presented HERMES measurements of fragmentation functions, which overlap in Q{sup 2} with the future lower-p{sub T} measurements at RHIC.

  20. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP CIRCUM-PAN-PACIFIC RIKEN SYMPOSIUM ON HIGH ENERGY SPIN PHYSICS, VOLUME 25

    International Nuclear Information System (INIS)

    The Circum-Pan-Pacific Riken Symposium on High Energy Spin Physics was held at Oukouchi Memorial Hall in Riken from November 3 through 6, 1999. It was held as a joint meeting of the 2nd Circum-Pan-Pacific Symposium on High Energy Spin Physics and the 3rd of the series of Riken Symposia related to the RHIC-SPIN. The 1st Circum-Pan-Pacific Symposium on High Energy Spin Physics was held at Kobe in 1996 and the RHIC-SPIN Riken Symposia had been held every two years since 1995. As Prof. Ozaki mentioned in his talk at the beginning of this meeting, the RHIC was ready for the first beam, physics experiments scheduled in 2000, and the RHIC-SPIN would start in 2001. It was therefore considered to be very timely for the researchers in the field of high energy spin physics to get together, clarifying the present status of the field and discussing interesting and important topics as well as experimental subjects to be pursued. It is especially important for the success of the RHIC-SPIN project that the researchers in the neighboring countries surrounding the Pacific are actively involved in it. This is why the above two series were joined in this. symposium. The subjects discussed in the symposium include: Hard processes probing spin-structure functions, polarization mechanisms in high energy reactions, lattice studies of polarized structure functions, theoretical models for the nucleon and its spin structure, RHIC and RHIC-SPIN projects, results and future projects of existing experimental facilities. Totally 73 scientists participated in the symposium, 27 from abroad and 46 from Japan. it consisted of 13 main sessions, with 33 invited and contributed talks, and 4 discussion sessions covering recent experimental and theoretical developments and important topics in high energy spin physics and closely related fields

  1. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, James, E-mail: alessi@bnl.gov; Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-15

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  2. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    International Nuclear Information System (INIS)

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam-mixtures to undergo detonations and, equally important, to support design of the larger-scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperature between 300K and 650K at a fixed pressure of 0.1 MPa. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K to 650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments. Experiments were conducted to measure the rate of hydrogen oxidation in the absence of ignition sources at temperatures of 500K and 650K, for hydrogen-air mixtures of 15% and 50%, and for a mixture of equimolar hydrogen-air and 30% steam at 650K. The rate of hydrogen oxidation was found to be significant at 650K. Reduction of hydrogen concentration by chemical reaction from 50 to 44% hydrogen, and from 15 to 11% hydrogen, were observed on a time frame of minutes. The DeSoete rate equation predicts the 50% experiment very well, but greatly underestimates the reaction rate of the lean mixtures

  3. Using a commercial mathematics software package for on-line analysis at the BNL Accelerator Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R.; Wang, X.J.

    1999-06-14

    BY WRITING BOTH A CUSTOM WINDOWS(NTTM) DYNAMIC LINK LIBRARY AND GENERIC COMPANION SERVER SOFTWARE, THE INTRINSIC FUNCTIONS OF MATHSOFT MATHCAD(TM) HAVE BEEN EXTENDED WITH NEW CAPABILITIES WHICH PERMIT DIRECT ACCESS TO THE CONTROL SYSTEM DATABASES OF BROOKHAVEN NATIONAL LABORATORY ACCELERATOR TEST FACILITY. UNDER THIS SCHEME, A MATHCAD WORKSHEET EXECUTING ON A PERSONAL COMPUTER BECOMES A CLIENT WHICH CAN BOTH IMPORT AND EXPORT DATA TO A CONTROL SYSTEM SERVER VIA A NETWORK STREAM SOCKET CONNECTION. THE RESULT IS AN ALTERNATIVE, MATHEMATICALLY ORIENTED VIEW OF CONTROLLING THE ACCELERATOR INTERACTIVELY.

  4. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED ''SINGLE SPIN ASYMMETRIES'' (VOLUME 75)

    Energy Technology Data Exchange (ETDEWEB)

    YUAN, F.; VOGELSANG, W.

    2005-06-01

    Single-transverse spin asymmetries (SSA) in strong interactions have a long history, starting from the 1970s and 1980s when surprisingly large single-transverse spin asymmetries were observed in p+p {yields} {pi}X and pp {yields} {Lambda} + X, where really none were expected. They have again attracted much interest in recent years from both experimental and theoretical sides. In particular, first measurements by the STAR, PHENIX, and BRAHMS collaborations at RHIC have now become available which again reveal large single transverse spin asymmetries for hadron production in polarized proton proton scattering. This extends the SSA observations from the fixed target energy range to the collider regime. Meanwhile, experimental studies in Deep Inelastic Scattering by the HERMES collaboration at DESY, SMC at CERN, and CLAS at JLab also show a remarkably large SSA in semi-inclusive hadron production, {gamma}*p {yields} {pi}X, when the proton is transversely polarized. On the theoretical side, there are several approaches to understanding SSA within Quantum Chromodynamics (QCD). For example, to explain the large SSAs for hadron production in hadron collisions, a mechanism that takes into account the contribution from quark-gluon-quark correlations (twist-3) in the nucleon was proposed. On the other hand, possible origins of SSA in DIS and hadronic scattering were also found in leading-twist transverse momentum dependent parton distributions. Current theoretical efforts aim at a better conceptual understanding of these two types of mechanisms, and of their connections. We were very happy at this timely date to bring together the theorists and experimentalists of this field to review and discuss the current theoretical status and the latest experimental results. The whole workshop contained 25 formal talks, both experiment (15) and theory (10), and a few informal talks and many fruitful discussions. The topics covered all the relevant SSA observables, including in Deep Inelastic Scattering, the Drell-Yan process, and in inclusive hadron production and dijet correlations at hadron colliders. There were not only discussions on possible interpretations of the existing SSA data, but also on the future observables for the ongoing experiments as well as for planned experiments (such as RHIC II and eRHIC). On the theory side, the talks ranged from overviews and descriptions of the fundamental aspects of SSAs, to presentations of detailed phenomenological studies. All of the talks attracted much interest and initiated active discussions. Directions for future measurements were pointed out, in particular for studies at RHIC. Also, significant theoretical advances were made that may tie together some of the currently proposed mechanisms for single-spin asymmetries. This was a very successful workshop. It stimulated many discussions and new collaborations.

  5. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON BARYON DYNAMICS AT RHIC, MARCH 28-30, 2002, BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    GYULASSY,M.; KHARZEEV,D.; XU,N.

    2002-03-28

    One of the striking observations at RHIC is the large valence baryon rapidity density observed at mid rapidity in central Au+Au at 130 A GeV. There are about twice as many valence protons at mid-rapidity than predicted based on extrapolation from p+p collisions. Even more striking PHENIX observed that the high pt spectrum is dominated by baryons and anti-baryons. The STAR measured event anisotropy parameter v2 for lambdas are as high as charged particles at pt {approx} 2.5 GeV/c. These are completely unexpected based on conventional pQCD parton fragmentation phenomenology. One exciting possibility is that these observables reveal the topological gluon field origin of baryon number transport referred to as baryon junctions. Another is that hydrodynamics may apply up to high pt in A+A. There is no consensus on what are the correct mechanisms for producing baryons and hyperons at high pt and large rapidity shifts and the new RHIC data provide a strong motivation to hold a meeting focusing on this class of observables. The possible role of junctions in forming CP violating domain walls and novel nuclear bucky-ball configurations would also be discussed. In this workshop, we focused on all measured baryon distributions at RHIC energies and related theoretical considerations. To facilitate the discussions, results of heavy ion collisions at lower beam energies, results from p+A /p+p/e+e collisions were included. Some suggestions for future measurements have been made at the workshop.

  6. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON SPIN PHYSICS AT RHIC IN YEAR-1 AND BEYOND

    International Nuclear Information System (INIS)

    The much anticipated RHIC spin physics program will commence this fall when the first physics run with colliding beams of polarized protons is expected. More specifically, the planned year-1 RHIC-Spin measurements are (1) the double-spin asymmetry ALLπ in production of pions by collisions of longitudinally polarized protons (in order to obtain first information on the proton's spin-dependent gluon density, Δg); (2) the transverse single-spin asymmetry ANπ for pion production. These two reactions provided part of the motivation for our workshop. On the first day there were informative talks on the specific plans of STAR (by Rakness) and PHENIX (by Goto) for the polarized run of Year-1. Some of the theoretical questions related to the double-spin asymmetry ALLπ were discussed on the first day by Vogelsang and Kretzer, which centered mostly around the questions of how well the unpolarized fragmentation functions are known, the need for next-to-leading order calculations, and on how sensitive the asymmetry is to the possible Δg distributions. Vetterli presented HERMES measurements of fragmentation functions, which overlap in Q2 with the future lower-pT measurements at RHIC

  7. Correlation between multiplicity and impact parameters in Au-Au nuclear collision at energies available at RHIC-BNL

    International Nuclear Information System (INIS)

    The nuclear collisions at high energies offer conditions for different phase transition in nuclear matter. One of main goal of the BRAHMS Experiment is establishing the collisions dynamics and the search for the experimental signals evidencing the quark-gluon plasma. Because the dynamics is in great extent dependent on the collision geometry we consider necessary a good correlation between the level of collision centrality and the behaviour of some specific physical quantities. The present work presents an analysis of the multiplicity distribution shape in relationship with the impact parameter and a comparison of the experimental results with the predictions of different simulation models. (authors)

  8. High-brightness picosecond ion beam source based on BNL Terawatt CO2 laser: Proof-of-principle experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnikov, Peter

    2012-10-04

    Under the continuing DOE support, we have: o assembled the basic experiment setup and then continued expanding it to include diverse diagnostics and to accommodate gas jet targets in addition to metal foils; o conducted an extensive study of our novel laser, significantly enhanced laser beam diagnostics, and improved relevant laser parameters; o turned our experiments into a truly international endeavor with active collaboration of close to 20 researchers in US, UK, and Germany; o conducted the first ever experiments with proton and ion acceleration by lasers interacting with overcritical plasma of gas jets; o for the first time directly observed radiation pressure acceleration of protons, including quasi-monoenergetic spectra promising for future applications; o for the first time directly observed quasi-stable, bubble-like plasma structures that likely evolved from relativistic laser-plasma solitons (post-solitons). Thus, we have confirmed a strong potential of a picosecond TW CO2 laser as a research tool in laser-plasma science and as a promising vehicle for future applications of laser ion acceleration. This has led to apparent increase of the interest in mid-IR laser ion acceleration. In particular, another major research group began extensive proton acceleration experiments with their own CO2 laser at UCLA. As a result, the mechanisms responsible for laser proton acceleration in gas jets have become somewhat clearer. It is also important to note that modest DOE funding played the role of a seed support ensuring the formation of a multinational research team, whose members contributed its time and equipment with value well in excess of that seed amount.

  9. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility

    International Nuclear Information System (INIS)

    The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K ± 14K. A unique feature of the HTCF is the 'diaphragmless' acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel'dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs

  10. RIKEN WINTER SCHOOL: STRUCTURE OF HADRONS - INTRODUCTION TO QCD HARD PROCESSES. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, DECEMBER 9-12, 1998.

    Energy Technology Data Exchange (ETDEWEB)

    SAITO,N.

    1999-12-09

    In this lecture I give a pedagogical introduction to the Perturbative QCD to understand the short-distance dynamics of the strong interaction. Starting with fundamental concepts such as the color degree of freedom of QCD, non-abelian gauge field theory, renormalization group equation etc., I explain a basic idea of the perturbative QCD and apply this idea to the e{sup +}e{sup {minus}} processes and the structure functions. The notion of mass singularity and the necessity of its factorization is discussed in some detail.

  11. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON RHIC SPIN PHYSICS III AND IV, POLARIZED PARTONS AT HIGH Q2 REGION (VOLUME 31)

    International Nuclear Information System (INIS)

    International workshop on II Polarized Partons at High Q2 region 11 was held at the Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan on October 13-14, 2000, as a satellite of the international conference ''SPIN 2000'' (Osaka, Japan, October 16-21,2000). This workshop was supported by RIKEN (The Institute of Physical and Chemical Research) and by Yukawa Institute. The scientific program was focused on the upcoming polarized collider RHIC. The workshop was also an annual meeting of RHIC Spin Collaboration (RSC). The number of participants was 55, including 28 foreign visitors and 8 foreign-resident Japanese participants, reflecting the international nature of the RHIC spin program. At the workshop there were 25 oral presentations in four sessions, (1) RHIC Spin Commissioning, (2) Polarized Partons, Present and Future, (3) New Ideas on Polarization Phenomena, (4) Strategy for the Coming Spin Running. In (1) the successful polarized proton commissioning and the readiness of the accelerator for the physics program impressed us. In (2) and (3) active discussions were made on the new structure function to be firstly measured at RHIC, and several new theoretical ideas were presented. In session (4) we have established a plan for the beam time requirement toward the first collision of polarized protons. These proceedings include the transparencies presented at the workshop. The discussion on ''Strategy for the Coming Spin Running'' was summarized by the chairman of the session, S. Vigdor and G. Bunce

  12. Energy Dependence of Elliptic Flow over a Large Pseudorapidity Range in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of √(sNN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of η'=|η|-ybeam, scale with approximate linearity throughout η', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  13. Recent Results on High-Energy Spin Phenomena of Gluons and Sea-Quarks in Polarized Proton-Proton Collisions at Rhic at Bnl

    Science.gov (United States)

    Surrow, Bernd

    2014-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory is carrying out a spin physics program in high-energy polarized proton collisions at √ {s} = 200 GeV and √ {s} = 500 GeV to gain a deeper insight into the spin structure and dynamics of the proton. One of the main objectives of the spin physics program at RHIC is the precise determination of the polarized gluon distribution function. The STAR detector is well suited for the reconstruction of various final states involving jets, π0, π±, e± and γ, which allows to measure several different processes. Recent results suggest a gluon spin contribution to the proton spin at the same level as the quark spin contribution itself. The production of W bosons in polarized p+p collisions at √ {s} = 500 GeV opens a new era in the study of the spin-flavor structure of the proton. W-(+) bosons are produced in \\bar {u} + d (\\bar {d} + u) collisions and can be detected through their leptonic decays, e- + \\bar {ν }e (e++ν e), where only the respective charged lepton is measured. Results of W-(+) production suggest a large asymmetry between the polarization of anti-u and anti-d quarks.

  14. Data formats and procedures for the evaluated nuclear data format. ENDF-IV. Reprint of the report BNL-NCS-50496 (ENDF-102), revised

    International Nuclear Information System (INIS)

    These revisions to Data Formats and Procedures for the ENDF Neutron Cross Section Library, ENDF-102, pertain to the latest version of ENDF/B-IV.The descriptions of the formats have been brought up to date and important procedural matters have been explained. Three new appendices have been added

  15. Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Pang, Long-Gang; Endrődi, Gergely; Petersen, Hannah

    2016-04-01

    In off-central heavy-ion collisions, quark-gluon plasma (QGP) is exposed to the strongest magnetic fields ever created in the universe. Because of the paramagnetic nature of the QGP at high temperatures, the spatially inhomogeneous magnetic field configuration exerts an anisotropic force density that competes with the pressure gradients resulting from purely geometric effects. In this paper, we simulate (3+1)-dimensional ideal hydrodynamics with external magnetic fields to estimate the effect of this force density on the anisotropic expansion of the QGP in collisions at the Relativistic Heavy Ion Collider and at the Large Hadron Collider (LHC). While negligible for quickly decaying magnetic fields, we find that long-lived fields generate a substantial force density that suppresses the momentum anisotropy of the plasma by up to 20 % at the LHC energy and also leaves its imprint on the elliptic flow v2 of charged pions.

  16. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, RIKEN WINTER SCHOOL, QUARK GLUON STRUCTURE OF THE NUCLEON AND QCD, MARCH 29-31, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    EN YO,H.; SAITO,N.; SHIBATA,T.A.; YAZAKI,K.; BUNCE,G.

    2002-03-29

    The RIKEN School on ''Quark-Gluon Structure of the Nucleon and QCD'' was held from March 29th through 31st at the Nishina Memorial Hall of RIKEN, Wako, Saitama, Japan, sponsored by RIKEN (the Institute of Physical and Chemical Research). The school was the second of a new series with a broad perspective of hadron and nuclear physics. The purpose of the school was to offer young researchers an opportunity to learn theoretical aspects of hadron physics based on QCD and related experimental programs being or to be carried out by Japanese groups. We had 3 theoretical courses, each consisting of 3 one-hour lectures, and 6 experimental courses, each consisting of a one-hour lecture.

  17. Chiral electric field in relativistic heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin

    2016-08-01

    It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)

  18. The Study of Advanced Accelerator Physics Research at UCLA Using the ATF at BNL: Vacuum Acceleration by Laser of Free Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Cline, David B. [Univ. of California, Los Angeles, CA (United States)

    2016-09-07

    An experiment was designed and data taken to demonstrate that a tightly focused laser on vacuum can accelerate an electron beam in free space. The experiment was proof-of-principle and showed a clear effect for the laser beam off and on. The size of the effect was about 20% and was consistent over 30 laser and beam shots.

  19. Uncertainty analysis of suppression pool heating during an ATWS in a BWR-5 plant. An application of the CSAU methodology using the BNL engineering plant analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.; Cheng, H.S.; Mallen, A.N. [Brookhaven National Lab., Upton, NY (United States); Johnsen, G.W. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Lellouche, G.S. [Technical Data Services, Chicago, IL (United States)

    1994-03-01

    The uncertainty has been estimated of predicting the peak temperature in the suppression pool of a BWR power plant, which undergoes an NRC-postulated Anticipated Transient Without Scram (ATWS). The ATWS is initiated by recirculation-pump trips, and then leads to power and flow oscillations as they had occurred at the LaSalle-2 Power Station in March of 1988. After limit-cycle oscillations have been established, the turbines are tripped, but without MSIV closure, allowing steam discharge through the turbine bypass into the condenser. Postulated operator actions, namely to lower the reactor vessel pressure and the level elevation in the downcomer, are simulated by a robot model which accounts for operator uncertainty. All balance of plant and control systems modeling uncertainties were part of the statistical uncertainty analysis that was patterned after the Code Scaling, Applicability and Uncertainty (CSAU) evaluation methodology. The analysis showed that the predicted suppression-pool peak temperature of 329.3 K (133{degrees}F) has a 95-percentile uncertainty of 14.4 K (26{degrees}F), and that the size of this uncertainty bracket is dominated by the experimental uncertainty of measuring Safety and Relief Valve mass flow rates under critical-flow conditions. The analysis showed also that the probability of exceeding the suppression-pool temperature limit of 352.6 K (175{degrees}F) is most likely zero (it is estimated as < 5-104). The square root of the sum of the squares of all the computed peak pool temperatures is 350.7 K (171.6{degrees}F).

  20. A study of the #Delta# I = 1/2 rule in the weak decay of S-shell hypernuclei: BNL E931

    International Nuclear Information System (INIS)

    It is empirically observed that the non-leptonic decay of strange hadrons is enhanced when the change in isospin is 1/2. This is generalized in the ''ΔI = 1/2 rule'' that states that all such decays proceed predominantly through ΔI = 1/2 amplitudes. However, there is no definitive explanation for this apparently universal rule. Non-mesonic decay of Λ-hypernuclei can occur through a weak decay process ΛN -> ηN. When stimulated by a neutron, two neutrons are emitted from the nucleus, and when stimulated by a proton, a proton and neutron are emitted. By measuring the relative decay widths (Γn/Γp) in the full set of s-shell hypernuclei, a sensitive test of the ΔI = 1/2 rule, and the determination of its applicability to non-mesonic decays can be made. In addition, information about the spin-isospin dependence of the weak decay process can be extracted. A measurement of Γn/Γp, to an accuracy of even 50% will be sufficient to address important issues relating to the ΔI = 1/2 rule and to the weak decay process. The experiment will measure the ratio Γn/Γp, following the decay of 4H which is produced by a stopped K- beam in a liquid Helium target. The Neutral Meson Spectrometer will be used to identify stopped kaon events by detection of the gamma rays that follow the decay of the emitted π0. Arrays of charged particle and neutron detectors will measure the relative neutron and proton emission probabilities. An engineering run was performed in 1998, without the Helium target, which demonstrated that the technique is feasible. The full experiment is scheduled at the Alternating Gradient Synchrotron for the spring 2001 running period

  1. A study of the Delta I = 1/2 rule in the weak decay of S-shell hypernuclei: BNL E931

    Energy Technology Data Exchange (ETDEWEB)

    GILL,R.L., FOR THE E931 COLLABORATION.

    2000-10-23

    It is empirically observed that the non-leptonic decay of strange hadrons is enhanced when the change in isospin is 1/2. This is generalized in the ''{Delta}I = 1/2 rule'' that states that all such decays proceed predominantly through {Delta}I = 1/2 amplitudes. However, there is no definitive explanation for this apparently universal rule. Non-mesonic decay of {Lambda}-hypernuclei can occur through a weak decay process {Lambda}N {r_arrow} {eta}N. When stimulated by a neutron, two neutrons are emitted from the nucleus, and when stimulated by a proton, a proton and neutron are emitted. By measuring the relative decay widths ({Gamma}{sub n}/{Gamma}{sub p}) in the full set of s-shell hypernuclei, a sensitive test of the {Delta}I = 1/2 rule, and the determination of its applicability to non-mesonic decays can be made. In addition, information about the spin-isospin dependence of the weak decay process can be extracted. A measurement of {Gamma}{sub n}/{Gamma}{sub p}, to an accuracy of even 50% will be sufficient to address important issues relating to the {Delta}I = 1/2 rule and to the weak decay process. The experiment will measure the ratio {Gamma}{sub n}/{Gamma}{sub p}, following the decay of {sup 4}H which is produced by a stopped K{sup {minus}} beam in a liquid Helium target. The Neutral Meson Spectrometer will be used to identify stopped kaon events by detection of the gamma rays that follow the decay of the emitted {pi}{sup 0}. Arrays of charged particle and neutron detectors will measure the relative neutron and proton emission probabilities. An engineering run was performed in 1998, without the Helium target, which demonstrated that the technique is feasible. The full experiment is scheduled at the Alternating Gradient Synchrotron for the spring 2001 running period.

  2. A Bionic Neural Link for peripheral nerve repair.

    Science.gov (United States)

    Xu, Yong Ping; Yen, Shih-Cheng; Ng, Kian Ann; Liu, Xu; Tan, Ter Chyan

    2012-01-01

    Peripheral nerve injuries with large gaps and long nerve regrowth paths are difficult to repair using existing surgical techniques, due to nerve degeneration and muscle atrophy. This paper proposes a Bionic Neural Link (BNL) as an alternative way for peripheral nerve repair. The concept of the BNL is described, along with the hypothetical benefits. A prototype monolithic single channel BNL has been developed, which consists of 16 neural recording channels and one stimulation channel, and is implemented in a 0.35-µm CMOS technology. The BNL has been tested in in-vivo animal experiments. Full function of the BNL chip has been demonstrated.

  3. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL's Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed

  4. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1997-01-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed.

  5. Radiological environmental monitoring report for Brookhaven National Laboratory 1967--1970

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, C.B.; Hull, A.P.

    1998-10-01

    Brookhaven National Laboratory (BNL) was established in 1947 on the former Army Camp Upton site located in central Long Island, New York. From the very beginning, BNL has monitored the environment on and around the Laboratory site to assess the effects of its operations on the environment. This document summarizes the environmental data collected for the years 1967, 1968, 1969, and 1970. Thus, it fills a gap in the series of BNL annual environmental reports beginning in 1962. The data in this document reflect measurements for those four years of concentrations and/or amounts of airborne radioactivity, radioactivity in streams and ground water, and external radiation levels in the vicinity of BNL. Also included are estimates, made at that time, of BNL`s contribution to radioactivity in the environment. Among the major scientific facilities operated at BNL are the High Flux Beam Reactor, Medical Research Reactor, Brookhaven Graphite Research Reactor, Alternating Gradient Synchrotron, and the 60-inch Cyclotron.

  6. Selected text of Atomic Energy Act, Executive Orders and other laws of general interest to safeguards and security executives

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J.J.; Ruger, C.J.

    1995-12-01

    This document is one of a three report set, BNL 52201 contains detailed information for use by executives. BNL 52202 is titled, U.S. Statutes of General Interest to Safeguards and Security Officers, and contains less detail than BNL 52201. It is intended for use by officers. BNL 52203 is titled, U.S.Statutes for Enforcement by Security Inspectors, and only contains statutes to be applied by uniformed security inspectors. These are a newly updated version of a set of documents of similar titles published in September 1988, which were an updated version of an original set of documents published in November 1983.

  7. Summary of proposed approach for deriving cleanup guidelines for radionuclides in soil at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1996-11-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory, carried out under an Interagency Agreement (IAG) with the United States Department of Energy (DOE), the United States Environmental Protection Agency (EPA) and the New York State Department of Environmental Conservation (NYSDEC). The objective of this paper is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL.

  8. Staff roster for 1979-Energy Sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B.; Gurinsky, D.H.

    1979-12-01

    This publication lists the education, research interests, professional affiliations, committee memberships, research experience, and selected publications of BNL staff members in energy sciences programs. (RWR)

  9. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    Science.gov (United States)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  10. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source

    International Nuclear Information System (INIS)

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  11. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline. PMID:22380298

  12. Selected text of Atomic Energy Act, Executive Orders and other laws of general interest to safeguards and security executives

    International Nuclear Information System (INIS)

    This document is one of a three report set, BNL 52201 contains detailed information for use by executives. BNL 52202 is titled, U.S. Statutes of General Interest to Safeguards and Security Officers, and contains less detail than BNL 52201. It is intended for use by officers. BNL 52203 is titled, U.S.Statutes for Enforcement by Security Inspectors, and only contains statutes to be applied by uniformed security inspectors. These are a newly updated version of a set of documents of similar titles published in September 1988, which were an updated version of an original set of documents published in November 1983

  13. US statutes for enforcement by security inspectors

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J.J.; Ruger, C.J.

    1995-12-01

    This document is one of a three volume set. BNL 52201 is titled `Selected Text of Atomic Energy Act Executive Orders and Other Laws of General Interest to Safeguards and Security Executives`, and it contains detailed information for use by executives. BNL 52202 is titled `U.S. Statutes of General Interest to Safeguards and Security Officers`, and contains less detail than BNL 52201. It is intended for use by officers. BNL 52203 is titled `U.S. Statutes for Enforcement by Security Inspectors`, and it contains statutes to be applied by uniformed security inspectors.

  14. 多剤耐性遺伝子(MDR1)過剰発現肝細胞癌に対するelectrochemotherapyの有用性に関する基礎的検討

    OpenAIRE

    西脇, 功

    2003-01-01

    The aim of this study was to investigate the role of electroporation in thetreatment of carcinoma expressing multidrug resistance gene 1 (MDR1). The cells stablyexpressing MDR1 gene (BNL/MDR1-Bulk) and the clone expressing the MDR1 gene atthe highest level (BNL/MDR1-Clone) were established by transducing human MDR1gene into the mouse hepatocellular carcinoma (HCC) cell line, BNLIME.7R.1. Theexpressions of P-glycoprotein on the cell surface of the established HCC cells,BNL/MDR1-Bulk and BNL/MD...

  15. Considerations for an Ac Dipole for the LHC

    CERN Document Server

    Bai, M; Fischer, W; Oddo, P; Schmickler, Hermann; Serrano, J; Jansson, A; Syphers, M; Kopp, S; Miyamoto, R

    2007-01-01

    Following successful experience at the BNL AGS, FNAL Tevatron, and CERN SPS, an AC Dipole will be adopted at the LHC for rapid measurements of ring optics. This paper describes some of the parameters of the AC dipole for the LHC, scaling from performance of the FNAL and BNL devices.

  16. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    Itzhak Tserruya

    2003-04-01

    The field of relativistic heavy-ion physics is reviewed with emphasis on new results and highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super proton synchrotron (SPS) at CERN and the AGS at BNL.

  17. Semi-empirical mass formula for drops of strange matter and constrains from recent experiments

    International Nuclear Information System (INIS)

    Fixed-target experiments with relativistic heavy-ion collisons at BNL and CERN search for small metastable drops of strange matter, S drops. A useful semi-empirical mass formula for S drops is presented here. This mass formula can easily be fitted to the experimental results. The results of an experiment at BNL are used to constrain the parameters

  18. 2009 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Ratel, K.M.; Brookhaven National Laboratory

    2010-09-30

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

  19. 2006 SITE ENVIRONMENTAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY; RATEL,K.

    2007-10-01

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

  20. 2004 SITE ENVIRONMENTAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY; SER TEAM; ENVIRONMENTAL INFORMATION MANAGEMENT SERVICES GROUP; ENVIROMENTAL AND WASTE MANAGEMENT SERVICES DIVISION FIELD SAMPLING TEAM; (MANY OTHER CONTRIBUTORS)

    2005-08-22

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy (DOE). The SER is written to inform the public, regulators, Laboratory employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The report summarizes BNL's environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The SER is intended to be a technical document. It is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/esd/SER.htm. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD version of the full report. The summary supports BNL's educational and community outreach program.

  1. 2003 SITE ENVIRONMENTAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    ENVIRONMENT AND WASTE MANAGMENT SERVICES DIVISION; ET AL.

    2004-10-01

    Each year, Brookhaven National Laboratory (BNL), a multi-program national laboratory, prepares an annual Site Environmental Report (SER) in accordance with Order 231.1A, Environment, Safety and Health Reporting, of the U.S. Department of Energy (DOE). The SER is written to inform outside regulators, the public, and Laboratory employees of BNL's environmental performance during the calendar year in review, and to summarize BNL's on-site environmental data; environmental management performance; compliance with applicable DOE, Environmental Protection Agency (EPA), state, and local regulations; and environmental, restoration, and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. This report is intended to be a technical document. It is available in print and as a downloadable file on the BNL web page at http://www.bnl.ser.htm. A summary of the SER is also prepared each year to provide a general overview, and is distributed with a CD version of the full-length SER. The summary supports BNL's educational and community outreach program.

  2. Natural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Green, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Schwager, K. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-10-01

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265-acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 15 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan works toward sound ecological management that not only benefits BNL’s ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text.

  3. Brookhaven National Laboratory site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance.

  4. Brookhaven National Laboratory site environmental report for calendar year 1990

    International Nuclear Information System (INIS)

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance

  5. Brookhaven National Laboratory site environmental report for calendar year 1991

    International Nuclear Information System (INIS)

    This publication presents the results of BNL's environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively

  6. Brookhaven National Laboratory site report for calendar year 1988

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1989-06-01

    Brookhaven National Laboratory (BNL) is managed by Associated Universities Inc. (AUI). AUI was formed in 1946 by a group of nine universities whose purpose was to create and manage a laboratory in the Northeast in order to advance scientific research in areas of interest to universities, industry, and government. On January 31, 1947, the contract for BNL was approved by the Manhattan District of the Army Corps of Engineers and BNL was established on the former Camp Upton army camp. 54 refs., 21 figs., 78 tabs.

  7. Reactivity of Peroxynitrite: Implications for Hanford Waste Management and Remediation

    Energy Technology Data Exchange (ETDEWEB)

    James K. Hurst

    2003-11-06

    The purpose of this grant has been to provide basic chemical research in support of a major project undertaken at Brookhaven National Laboratory (BNL) whose purpose was to provide better understanding of the complex chemical processes occurring an nuclear storage tanks on the Hanford reservation. More specifically, the BNL grant was directed at evaluating the extend of radiation-induced formation of peroxynitrite anion (ONOO) in the tanks and its possible use in was incorporated as a subcontract EMSP 73824, but was later changed to an independent grant to avoid unnecessary duplication of administrative support at both WSU and BNL.

  8. Brookhaven National Laboratory site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL`s environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

  9. Brookhaven National Laboratory site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL's environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

  10. Experimental particle physics at the University of Pittsburgh

    International Nuclear Information System (INIS)

    This report discusses research on the following topics: helios; K-decay and CP violation at INP; rare K-decays at BNL; direct photon production at the Tevatron; CDF; and fractional charge particles in semiconductors

  11. Brookhaven National Laboratory's capabilities for advanced analyses of cyber threats

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M. P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-01-01

    BNL has several ongoing, mature, and successful programs and areas of core scientific expertise that readily could be modified to address problems facing national security and efforts by the IC related to securing our nation’s computer networks. In supporting these programs, BNL houses an expansive, scalable infrastructure built exclusively for transporting, storing, and analyzing large disparate data-sets. Our ongoing research projects on various infrastructural issues in computer science undoubtedly would be relevant to national security. Furthermore, BNL frequently partners with researchers in academia and industry worldwide to foster unique and innovative ideas for expanding research opportunities and extending our insights. Because the basic science conducted at BNL is unique, such projects have led to advanced techniques, unlike any others, to support our mission of discovery. Many of them are modular techniques, thus making them ideal for abstraction and retrofitting to other uses including those facing national security, specifically the safety of the nation’s cyber space.

  12. BROOKHAVEN NATIONAL LABORATORYS CAPABILITIES FOR ADVANCED ANALYSES OF CYBER THREATS

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips M. P.

    2014-06-06

    BNL has several ongoing, mature, and successful programs and areas of core scientific expertise that readily could be modified to address problems facing national security and efforts by the IC related to securing our nation’s computer networks. In supporting these programs, BNL houses an expansive, scalable infrastructure built exclusively for transporting, storing, and analyzing large disparate data-sets. Our ongoing research projects on various infrastructural issues in computer science undoubtedly would be relevant to national security. Furthermore, BNL frequently partners with researchers in academia and industry worldwide to foster unique and innovative ideas for expanding research opportunities and extending our insights. Because the basic science conducted at BNL is unique, such projects have led to advanced techniques, unlike any others, to support our mission of discovery. Many of them are modular techniques, thus making them ideal for abstraction and retrofitting to other uses including those facing national security, specifically the safety of the nation’s cyber space.

  13. BROOKHAVEN NATIONAL LABORATORY WILDLIFE MANAGEMENT PLAN.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.

    2002-10-22

    The purpose of the Wildlife Management Plan (WMP) is to promote stewardship of the natural resources found at the Brookhaven National Laboratory (BNL), and to integrate their protection with pursuit of the Laboratory's mission.

  14. Nitrogen fixation in seedlings of Mimosa tenuiflora cultivated with different times of regeneration of caatinga

    International Nuclear Information System (INIS)

    The aim of this study was to estimate the efficiency of the populations of bacteria that form nodules on legumes (BNL) in areas at different times of regeneration of native 'caatinga' using a leguminous tree of the study area

  15. Rare kaon decays: $K^{+} → ^{+} \\bar{}$ and future

    Indian Academy of Sciences (India)

    Bipul Bhuyan

    2004-03-01

    The experimental progress in the search for $K^{+} → ^{+} \\bar{}$ will be presented in this paper. Also the physics potential of the proposed BNL experiment to search for $K_{L}^{0} → ^{0} \\bar{}$ (KOPIO) will be discussed.

  16. New Brookhaven chief seeks cross-cutting research

    CERN Multimedia

    Jones, D

    2003-01-01

    Brookhaven National Laboratory will pursue opportunities for promoting commercial development of energy systems and other technologies while focusing on the lab's primary mission of basic science research, according to the incoming BNL director, Praveen Chaudhari (1 page).

  17. Experimental results on radiative kaon decays

    International Nuclear Information System (INIS)

    This paper reviews the current status of experimental results on radiative kaon decays. Several experiments at BNL, CERN and FNAL have recently or will soon complete data collection; as a result, there are several new results

  18. Advancing the Deployment of Utility-Scale Photovoltaic Plants in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Lofaro R.; Villaran, M; Colli, A.

    2012-06-03

    As one of the premier research laboratories operated by the Department of Energy, Brookhaven National Laboratory (BNL) is pursuing an energy research agenda that focuses on renewable energy systems and will help to secure the nation's energy security. A key element of the BNL research is the advancement of grid-connected utility-scale solar photovoltaic (PV) plants, particularly in the northeastern part of the country where BNL is located. While a great deal of information has been generated regarding solar PV systems located in mostly sunny, hot, arid climates of the southwest US, very little data is available to characterize the performance of these systems in the cool, humid, frequently overcast climates experienced in the northeastern portion of the country. Recognizing that there is both a need and a market for solar PV generation in the northeast, BNL is pursuing research that will advance the deployment of this important renewable energy resource. BNL's research will leverage access to unique time-resolved data sets from the 37MWp solar array recently developed on its campus. In addition, BNL is developing a separate 1MWp solar research array on its campus that will allow field testing of new PV system technologies, including solar modules and balance of plant equipment, such as inverters, energy storage devices, and control platforms. These research capabilities will form the cornerstone of the new Northeast Solar Energy Research Center (NSERC) being developed at BNL. In this paper, an overview of BNL's energy research agenda is given, along with a description of the 37MWp solar array and the NSERC.

  19. Brookhaven National Laboratory source water assessment for drinking water supply wells

    International Nuclear Information System (INIS)

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wells 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past

  20. Department of Energy’s ARM Climate Research Facility External Data Center Operations Plan Located At Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cialella, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gregory, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lazar, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liang, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ma, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tilp, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wagener, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-01

    The External Data Center (XDC) Operations Plan describes the activities performed to manage the XDC, located at Brookhaven National Laboratory (BNL), for the Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. It includes all ARM infrastructure activities performed by the Data Management and Software Engineering Group (DMSE) at BNL. This plan establishes a baseline of expectation within the ARM Operations Management for the group managing the XDC.

  1. The future is yours--Get ready! Career options in scientific and technical fields. Revision

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    This 50 page brochure was developed by Brookhaven National Laboratory to encourage high school students to begin considering careers in the scientific and technical fields. The topics of the brochure include career selection, career options, a review of training required for each occupation, a collection of profiles of BNL employees describing how they chose and prepared for their careers, a description of BNL educational programs for high school students, and profiles of some of the students participating in these programs.

  2. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  3. Natural Resource Management Plan for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    green, T.

    2011-08-15

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in

  4. WILDLAND FIRE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    ENVIRONMENTAL AND WASTE MANAGEMENT SERVICES DIVISION

    2003-09-01

    This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) and the Upton Ecological and Research Reserve (Upton Reserve) is based on the U.S. Fish & Wildlife Service (FWS) fire management planning procedures and was developed in cooperation with the Department of Energy (DOE) by Brookhaven Science Associates. As the Upton Reserve is contained within the BNL 5,265-acre site, it is logical that the plan applies to both the Upton Reserve and BNL. The Department of the Interior policy for managing wildland fires requires that all areas managed by FWS that can sustain fire must have an FMP that details fire management guidelines for operational procedures and specifies values to be protected or enhanced. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL/Upton Reserve Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered and threatened species and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL and the Upton Reserve. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of FWS, BNL, and the Upton Reserve. This Fire Management Plan is a modified version of the Long Island National Wildlife Refuge Complex Fire plan (updated in 2000), which contains all FWS fire plan requirements and is presented in the format specified by the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. FWS shall be, through an Interagency Agreement dated November 2000 (Appendix C), responsible for coordinating and

  5. Aerobic methanotrophs drive the formation of a seasonal anoxic benthic nepheloid layer in monomictic Lake Lugano

    Science.gov (United States)

    Blees, Jan; Niemann, Helge; Wenk, Christine B.; Zopfi, Jacob; Schubert, Carsten J.; Jenzer, Joël S.; Veronesi, Mauro L.; Lehmann, Moritz F.

    2014-05-01

    In the southern basin of Lake Lugano, thermal stratification of the water column during summer and autumn leads to a lack of exchange between surface and deep water masses, and consequently to seasonal bottom water anoxia, associated with high methane concentrations. With the onset of bottom water anoxia, a dense layer of high particulate matter concentration - a so-called benthic nepheloid layer (BNL) - develops in the bottom waters. A sharp redox gradient marks the upper boundary of the BNL. At its maximum, the BNL extends 15 - 30 m from the sediment into the water column. We investigated the identity of the BNL and key environmental factors controlling its formation in the framework of a seasonal study. Compound specific C-isotope measurements and Fluorescence In Situ Hybridisation (FISH) of suspended particulate organic matter, radioactive tracer based measurements of methane oxidation, as well as investigation of geochemical water column parameters were performed in spring and autumn. Our analyses revealed that the microbial biomass within the BNL is dominated by methanotrophic bacteria. Aerobic methane oxidation (MOx) was restricted to a narrow zone at the top of the BNL, reaching maximum rates of up to 1.8 μM/day. The rates of MOx activity effectively consumed most (>99%) of the uprising methane, leading to the formation of a sharp CH4 concentration gradient and a strongly suppressed kinetic isotope effect (ɛ = -2.8o). CH4 oxidation was limited by the diffusive supply of O2 from the upper hypolimnion, implying that methanotrophy is the primary driver of the seasonal expansion of the anoxic bottom water volume, and explaining the vertical migration of the BNL in response to its own O2 consumption. The bulk organic matter extracted from the BNL was strongly depleted in 13C (δ13C methanotrophic. The cell size of methanotrophs was significantly larger than of other microbial cells, and an independent approach to quantify the contribution of methanotroph

  6. Wildland Fire Management Plan for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Green,T.

    2009-10-23

    This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) updates the 2003 plan incorporating changes necessary to comply with DOE Order 450.1 and DOE P 450.4, Federal Wildland Fire Management Policy and Program Review; Wildland and Prescribed Fire Management Policy and implementation Procedures Reference Guide. This current plan incorporates changes since the original draft of the FMP that result from new policies on the national level. This update also removes references and dependence on the U.S. Fish & Wildlife Service and Department of the Interior, fully transitioning Wildland Fire Management responsibilities to BNL. The Department of Energy policy for managing wildland fires requires that all areas, managed by the DOE and/or its various contractors, that can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wild fire, operational, and prescribed fires. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, 'prescribed' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of the DOE and BNL. This Fire Management Plan is presented in a format that coverers all aspects specified by DOE guidance documents which are based on the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. This FMP is to be used and implemented for the

  7. SITE ENVIRONMENTAL REPORT 2000 (SEPTEMBER 2001).

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORTORY; PROJECT MANAGER BARBARA COX

    2001-09-27

    Brookhaven National Laboratory (BNL) strives for excellence in both its science research and its facility operations. BNL manages its world-class scientific research with particular sensitivity to environmental and community issues through its internationally recognized Environmental Management System (EMS) and award-winning community relations program. The Site Environmental Report 2000 (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the Laboratory site and fully integrating environmental stewardship into all facets of BNL's mission. BNL's motto, ''Exploring Earth's Mysteries... Protecting its Future,'' describes how the Laboratory approaches its work, with balance between science and the environment. One of the newest initiatives at the Laboratory, the Upton Ecological and Research Reserve, will permanently preserve 530 acres (212 hectares) of the Long Island Central Pine Barrens, a unique ecosystem of forests and wetlands. The Reserve sets aside 10% of BNL property for conservation and ecological research through a partnership between the U.S. Department of Energy (DOE) and the U.S. Fish and Wildlife Service. The Reserve provides habitat for approximately 27 endangered, threatened, or species of special concern, including the state-endangered eastern tiger salamander, state-threatened banded sunfish, and swamp darter, along with a number of other species found onsite, such as the wild turkey and red-tailed hawk.

  8. 2005 SITE ENVIRONMENTAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY

    2006-08-29

    Each year, Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy (DOE). The report is written to inform the public, regulators, employees, and other stakeholders of BNL's environmental performance during the calendar year in review. The SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and compliance, restoration, and surveillance monitoring program performance. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. The report is available in print and as a downloadable file on the BNL web page at http://www.bnl.gov/ewms/ser/. A summary of the SER is also prepared each year to provide a general overview of the report, and is distributed with a CD of the full report.

  9. Brookhaven National Laboratory 2008 Site Environment Report Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Brookhaven National Laboratory

    2009-10-01

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in this volume in Chapter 7, Groundwater Protection. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report.

  10. 2007 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Ratel,K.

    2008-10-01

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in this volume in Chapter 7, Groundwater Protection. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the-length report.

  11. Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs

  12. Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs.

  13. A field exercise course to train IAEA safeguards inspectors in implementing the additional protocol and performing complementary access activities (LA-UR-06-5798)

    International Nuclear Information System (INIS)

    Full text: The IAEA Department of Safeguards has the task of implementing the Additional Protocol (AP) in the Member States that have signed agreements bringing that treaty into force. The IAEA inspector under the traditional INFCIRC/153 safeguards has been an accountant focused on the declared nuclear material stores of a Member State. The INFCIRC/540 Strengthened Safeguards System (SSS) provides the Agency and its inspectors with the right to investigate a Member State's nuclear programme to see if all declared activities are in order and no undeclared activities exist. This broadening of the scope of the inspector's responsibilities has changed the training of the inspectors to orient them to being an investigator compared to an accountant. The Safeguards training department has created a curriculum of courses that provides the background to train the inspectorate into this new inspection regime. The United States Support Program (USSP) has contributed to this curriculum by putting together a course at Brookhaven National Laboratory (BNL) in Additional Protocol Complementary Access (APCA) to give the IAEA the opportunity to provide inspectors a necessary field exercise in a realistic environment at a research site. Brookhaven National Laboratory contains three shutdown nuclear research reactors, operating particle accelerators, hot cells, radioactive waste storage, laser laboratories, and magnet production facilities on a large site very similar to numerous research facilities around the world situated in non-nuclear weapon states (NNWS). The BNL team created an Article 2 declaration containing annotated maps of the site, descriptions of the buildings on site, satellite and aerial photographs of the area, and a declaration of research activities on the site. The declaration is as realistic to actual BNL research except that proprietary and security concerns of the BNL site have been taken into account. The BNL team felt the best training vehicle provides a

  14. Brookhaven highlights 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Established in 1947 on Long Island, New York, on the site of the former army Camp Upton, BNL is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated Universities, Inc., under contract to the US Department of Energy. BNL`s annual budget is about $400 million, and the Laboratory`s facilities are valued at replacements cost in excess of over $2.8 billion. Employees number around 3,300,and over 4,000 guests, collaborators and students come each year to use the Laboratory`s facilities and work with the staff. Scientific and technical achievements at BNL have made their way into daily life in areas as varied as health care, construction materials and video games. The backbone of these developments is fundamental research, which is and always will be an investment in the future.

  15. Wildland Fire Management Plan for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schwager, K.; Green, T. M.

    2014-10-01

    The DOE policy for managing wildland fires requires that all areas managed by DOE and/or Its various contractors which can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wildland fire, operational, and prescribed fires. FMPs provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. The plan will be reviewed periodically to ensure fire program advances and will evolve with the missions of DOE and BNL.

  16. REACHING OUT TO INTERESTED PARTIES: NEW APPROACHES FOR A NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Brookhaven National Laboratory (BNL) is a multi-disciplinary research facility that experienced several environmental incidents, resulting in an immediate and intense reaction from community members, activist groups, elected officials and regulators. A new management firm with a strong commitment to environmental stewardship, open communication, and cultural change, assumed management of BNL in March 1998, and immediately began to develop an IS0 14001 Environmental Management System that emphasized community outreach. This paper describes how BSA reengineered their external communications program to regain the trust of their stakeholders. The underlying goal was to ''inform and involve.'' A Community Involvement Plan was developed to solicit input from interested parties and use it in Laboratory decision-making processes. A Community Advisory Committee was formed to provide direct input to the Laboratory Director. A formal channel for two-way communication with elected officials and regulators was created. Finally, BNL utilized a previously untapped yet invaluable resource to reach out to the community: their employees

  17. Documentation of the Brookhaven energy I-O and I-O/BESOM linkage

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J T

    1978-08-01

    This paper documents the BNL input-output model and its linkage with the BNL linear activity analysis model, BESOM. Linking of the I-O and the linear programming (LP) models permits assessment of economy-wide impacts of future technological changes in both the energy sector and elsewhere in the economy as well as impacts arising from a wide range of government energy policies. This paper describes the development and structure of the current version of the BNL I-O model presently in use and the structural modifications of a capital-investment routine, and a balance-of-payments routine that have been incorporated. Also, the structure and solution techniques for the linked I-O/LP model are described.

  18. Brookhaven highlights 1994

    International Nuclear Information System (INIS)

    Established in 1947 on Long Island, New York, on the site of the former army Camp Upton, BNL is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated Universities, Inc., under contract to the US Department of Energy. BNL's annual budget is about $400 million, and the Laboratory's facilities are valued at replacements cost in excess of over $2.8 billion. Employees number around 3,300,and over 4,000 guests, collaborators and students come each year to use the Laboratory's facilities and work with the staff. Scientific and technical achievements at BNL have made their way into daily life in areas as varied as health care, construction materials and video games. The backbone of these developments is fundamental research, which is and always will be an investment in the future

  19. Multiple-Input Data Acquisition System (MIDAS) for Measuring the Carbon Content in Soil Using Inelastic Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, William K. [XIA LLC

    2014-01-24

    This report describes work funder under STTR grants Phase I and II and carried out jointly by XIA LLC and Brookhaven National Laboratory (BNL). The project goal was to develop a mobile nuclear activation analysis instrument that could be towed behind a tractor to document soil carbon levels in agricultural lands for carbon credit certification. XIA developed large NaI(Tl) detectors with integrated digital pulse processors controlled over USB 2.0 and delivered 16 of these units to BNL for integration into the prototype instrument, together with the necessary software to calibrate them and collect data. For reasons that are unknown to XIA, the BNL participants never completed the prototype vehicle, performed system integration, or carried out the proposed qualification and field tests, leaving the project incomplete.

  20. High performance visual display for HENP detectors

    CERN Document Server

    McGuigan, M; Spiletic, J; Fine, V; Nevski, P

    2001-01-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactiv...

  1. IDENTIFICATION OF FREE-FIELD SOIL PROPERTIES USING NUPEC RECORDED GROUND MOTIONS.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Costantino, C.; Hofmayer, C.; Murphy, A.; Chokshi, N.; Kitada, Y.

    2001-03-22

    Over the past twenty years, the Nuclear Power Engineering Corporation (NUPEC) of Japan has conducted a series of field model test programs to investigate various aspects of soil-structure interaction (SSI) effects on nuclear power plant structures, including embedment and dynamic structure-soil-structure interaction (SSSI) effects. As part of a collaborative agreement between the US Nuclear Regulatory Commission (NRC) and NUPEC, Brookhaven National Laboratory (BNL) performed a numerical analysis to predict the free field soil profile using industry standard methods and the recorded free field responses to actual earthquake events. This paper describes the BNL free-field analyses, including the methods and the analysis results and their comparison to recorded data in the free field. The free-field soil profiles determined from the BNL analyses are being used for both the embedment and SSSI studies, the results of which will be made available upon their completion.

  2. Meteorological Services Annual Data Report for 2014

    Energy Technology Data Exchange (ETDEWEB)

    Heiser J.; Smith, S.

    2015-01-21

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2014. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  3. Spin physics at RHIC: Present and future

    Indian Academy of Sciences (India)

    Abhay Deshpande

    2003-11-01

    In 2001–2002 the relativistic heavy-ion collider (RHIC) at the Brookhaven National Laboratory (BNL) was first commissioned for polarized proton collisions. Polarized protons were injected into the RHIC, accelerated to 100 GeV, stored and the two beams were made to collide in four interaction regions. I will review the progress made by the RHIC spin program, followed by the physics goals for the next few years. After that I will present a brief overview of a proposal to build a high intensity polarized electron/positron beam facility at BNL which would enable deep inelastic scattering (DIS) experiments to be pursued at BNL by its collisions with the RHIC hadron beams.

  4. Volatile metabolites analysis and molecular identification of endophytic fungi bn12.from Cinnamomum camphora chvar, borneol%龙脑樟中内生真菌bn12分子鉴定及挥发性代谢产物分析

    Institute of Scientific and Technical Information of China (English)

    陈美兰; 杨立; 李琴; 申业; 邵爱娟; 林淑芳; 黄璐琦

    2011-01-01

    Objective; To identify endophytic fungi bnl2 from Cinnamomum camphora chvar. Borneol and analysis its volatile metabolites. Method: The endophytic fungi bnl2 was identified by morphological observation, volatile metabolites of endophytic fungi bnl2 was analyzed by gas chromatography/mass spectrography (GC-MS). Result: Volatile metabolites of endophytic fungi bnl2 contain borneol and much indoles. The ITS sequence of endophytic fungi bnl2 is most similar to the ITS sequence of pleosporaceae fungus, particularly C. Nisikadoi. Conclusion; Endophytic fungi bnl2 is belong to pleosporaceae fungus. It has the ability of producing brone-oL%目的:对龙脑樟中内生真菌bn12菌种进行鉴定,并对其的挥发性代谢产物进行分析.方法:采用形态学结合ITS序列分析法对菌种进行鉴定,采用GC-MS对挥发油成分进行分析.结果:内生真菌bn12的ITS序列与格孢菌目Pleosporales中格孢菌科Pleosporaceae的真菌相似度最大,并且与Cochliobolusnisikadoi ITS序列同源性比较高;龙脑樟内生真菌bn12的挥发性代谢产物中含有龙脑以及大量的吲哚类物质.结论:内生真菌bn12属于座囊菌纲的格孢菌科真菌,具有产生龙脑的能力.

  5. Antitumor effects of interleukin-18 gene-modified hepatocyte cell line on implanted liver carcinoma

    Institute of Scientific and Technical Information of China (English)

    冷建杭; 张立煌; 姚航平; 曹雪涛

    2003-01-01

    Objective To investigate the antitumor effects of intrasplenically transplanted interleukin-18 (IL-18) gene-modified hepatocytes on murine implanted liver carcinoma.Methods Embryonic murine hepatocyte cell line (BNL-CL2) was transfected with a recombinant adenovirus encoding IL-18 and used as delivery cells for IL-18 gene transfer. Two cell lines, BNL-LacZ and BNL-CL2, were used as controls. One week after intrasplenic injection of C26 cells (colon carcinoma line), tumor-bearing syngeneic mice underwent the intrasplenic transplantation of IL-18 gene-modified hepatocyte cell line and were divided into treatment group (BNL IL-18) and control groups (BNL-LacZ and BNL-CL2 ). Two weeks later, the serum levels of IL-18, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) in the implanted liver carcinoma-bearing mice were assayed, the cytotoxicity of murine splenic cytotoxic T-lymphocytes (CTLs) was measured, and the morphology of the hepatic tumors was studied to evaluate the antitumor effects of the approach. Results In the treatment group, the serum levels of IL-18, IFN-γ, TNF-α and NO increased significantly. The splenic CTL activity increased markedly (P<0.01) , accompanied by a substantial decrease in tumor volume and the percentage of tumor area and prolonged survival of liver carcinomo-being mice.Conclusions In vivo IL-18 expression by ex vivo manipulated cells with IL-18 recombinant adenovirus is able to exert potent antitumor effects by inducing a predominantly T-cell-helper type 1 (Th1) immune response. Intrasplenic transplantation of adenovirus-mediated IL-18 gene-modified hepatocytes could be used as a targeting treatment for implanted liver carcinoma.

  6. Spatial and temporal variability of Alexandrium cyst fluxes in the Gulf of Maine: Relationship to seasonal particle export and resuspension

    Science.gov (United States)

    Pilskaln, C. H.; Anderson, D. M.; McGillicuddy, D. J.; Keafer, B. A.; Hayashi, K.; Norton, K.

    2014-05-01

    Quantification of Alexandrium cyst fluxes through the Gulf of Maine water column is central to understanding the linkage between the source and fate of annual Alexandrium blooms in the offshore waters. These blooms often lead to paralytic shellfish poisoning (PSP) and extensive closures of shellfish beds. We report here on time-series sediment trap deployments completed at four offshore locations in the gulf between 2005 and 2010 as components of two ECOHAB-GOM field programs. Data presented documents the substantial spatial and temporal fluctuations in Alexandrium fundyense cyst fluxes in the gulf. Cyst delivery out of the euphotic zone peaked primarily between July and August following annual spring-summer Alexandrium blooms and was greatest in the western gulf. At all sites, cyst flux maxima to the subsurface waters were rarely coincident with seasonal peaks in the total mass export of particulate material indicating that cyst delivery was primarily via individually sinking cysts. Where persistent benthic nepheloid layers (BNLs) exist, significant sediment resuspension input of cysts to the near-bottom water column was evidenced by deep cyst fluxes that were up to several orders of magnitude greater than that measured above the BNL. The largest cyst fluxes in the BNL were observed in the eastern gulf, suggesting greater resuspension energy and BNL cyst inventories in this region. Temporal similarities between peak cyst export out of the upper ocean and peak cyst fluxes in the BNL were observed and document the contribution of seasonal, newly formed cysts to the BNL. The data however also suggest that many Alexandrium cells comprising the massive, short-lived blooms do not transition into cysts. Time-series flow measurements and a simple 1D model demonstrate that the BNL cyst fluxes reflect the combined effects of tidal energy-maintained resuspension, deposition, and input of cysts from the overlying water column.

  7. Benthic nepheloid layers in the Gulf of Maine and Alexandrium cyst inventories

    Science.gov (United States)

    Pilskaln, C. H.; Hayashi, K.; Keafer, B. A.; Anderson, D. M.; McGillicuddy, D. J.

    2014-05-01

    Cysts residing in benthic nepheloid layers (BNLs) documented in the Gulf of Maine have been proposed as a possible source of inoculum for annual blooms of a toxic dinoflagellate in the region. Herein we present a spatially extensive data set of the distribution and thickness of benthic nepheloid layers in the Gulf of Maine and the abundance and inventories of suspended Alexandrium fundyense cysts within these near-bottom layers. BNLs are pervasive throughout the gulf and adjacent Bay of Fundy with maximum layer thicknesses of 50-60 m observed. Mean BNL thickness is 30 m in the eastern gulf and Bay of Fundy, and 20 m in the western gulf. Cyst densities in the near-bottom particle resuspension layers varied by three orders of magnitude across the gulf with maxima of 105 cysts m-3. An important interconnection of elevated BNL cyst densities is observed between the Bay of Fundy, the Maine Coastal Current and the south-central region of the gulf. BNL cyst inventories estimated for the eastern and western gulf are each on the order of 1015 cysts, whereas the BNL inventory in the Bay of Fundy is on the order of 1016. Although BNL cyst inventories in the eastern and western gulf are 1-2 orders of magnitude smaller than the abundance of cysts in the upper 1 cm of sediment in those regions, BNL and sediment-bound cyst inventories are comparable in the Bay of Fundy. The existence of widespread BNLs containing substantial cyst inventories indicates that these near-bottom layers represent an important source of germinating A. fundyense cysts in the region.

  8. Strangelet search in Au+Au collisions at VsNN=200 GeV

    OpenAIRE

    Bai, Y.(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China); Benedosso, F.; Botje, M.A.J.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M.J.; Snellings, R.J.M.; van der Kolk, N.

    2007-01-01

    We have searched for strangelets in a triggered sample of 61 million central (top 4%) Au+Au collisions at √sNN=200 GeV near beam rapidities at the STAR solenoidal tracker detector at the BNL Relativistic Heavy Ion Collider. We have sensitivity to metastable strangelets with lifetimes of order ⩾0.1 ns, in contrast to limits over ten times longer in BNL Alternating Gradient Synchrotron (AGS) studies and longer still at the CERN Super Proton Synchrotron (SPS). Upper limits of a few 10-6 to 10-7 ...

  9. RHIC/AGS Online Model Environments: Experiences and Design for AGS Modeling

    International Nuclear Information System (INIS)

    The RHIC/AGS online modeling environment, a general client-server modeling package that supports cdev and straightforward integration of diverse computational modeling engines (CMEs), is being adapted to model the AGS and Booster at BNL. This implementation uses a version of MAD modified at BNL that allows traditional lattice structure analysis, single pass beam line analysis, multi-particle tracking, interactive graphics, and the use of field maps. The on-line model system is still under development, a real working prototype exists and is being tested. This paper describes the system and experience with its design and use for AGS and AGS Booster online modeling

  10. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  11. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  12. Non-Supersymmetric New Physics and Polarized M\\o{}ller Scattering

    CERN Document Server

    Chang, We-Fu; Wu, Jackson M S

    2009-01-01

    We study in an effective operator approach how the effect of new physics from various scenarios, including those with an extra $Z'$ neutral gauge boson and doubly charged scalars, and the Randall-Sundrum scenario, can affect and thus be tested by the precision polarized M\\o{}ller scattering experiments. We give the Wilson coefficients for various classes of models, generic for each class, and we deduce constraints on parameter space from the results of SLAC E158 and BNL $g-2$ experiments. We find that the BNL deviation from the Standard Model cannot be attributed to a light extra $Z'$ neutral gauge boson.

  13. Identification and Assessment of Material Models for Age-Related Degradation of Structures and Passive Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    This report describes the research effort performed by BNL for the Year 2 scope of work. This research focused on methods that could be used to represent the long-term behavior of materials used at NPPs. To achieve this BNL reviewed time-dependent models which can approximate the degradation effects of the key materials used in the construction of structures and passive components determined to be of interest in the Year 1 effort. The intent was to review the degradation models that would cover the most common time-dependent changes in material properties for concrete and steel components

  14. 2010 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Ratel, K.; Lee, R; Remien, J; Hooda, B; Green, T; Williams, J; Pohlot, P; Dorsch, W; Paquette, D; Burke, J

    2011-10-01

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in Chapter 7, Groundwater Protection, of this volume. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report. BNL is operated and managed for DOE's Office of Science by Brookhaven Science Associates (BSA), a partnership formed by Stony Brook University and Battelle Memorial Institute. For more than 60 years, the Laboratory has played a lead role in the DOE Science and Technology mission and continues to contribute to the DOE missions in energy resources, environmental quality, and

  15. Assessment of the current status of basic nuclear data compilations

    International Nuclear Information System (INIS)

    The Panel on Basic Nuclear Data Compilations met at the National Nuclear Data Center at Brookhaven National Laboratory (BNL). All 7 panel members were present, together with 17 other individuals with various responsibilities and interests in the US Nuclear Data Network (USNDN). Status reports were presented to the panel by the five US evaluation centers, located at Brookhaven (BNL), Idaho Falls (INEL), Berkeley (LBL), Oak Ridge (ORNL), and the University of Pennsylvania. The reports from the centers outlined the status of their mass chain evaluations and of a number of other projects related to this work; these areas are discussed in more detail in this report

  16. Superconductivity Technology Program for electric power systems: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, K.B.

    1993-09-01

    Twenty-seven presentations are included in viewgraph form for the wire development panel, applications development panel, and thallium workshop. Authors and affiliations are: (wire development panel) Kreoger/Christen (ORNL), Malozemoff (American Superconductor Corp.), Blaugher (National Renewable Energy Lab.), Haldar (Intermagnetics), Gray/Lanagan/Eror (ANL), Bickel/Voigt/Roth (Sandia), Tkaczyk (GE), Suenaga (BNL), Willis/Korzekwa/Maley (Los Alamos); (applications development panel) Peterson/Stewart (Los Alamos), Iwasa (BNL), Hull/Nieman (ANL), Murphy/DeGregoria (ORNL), Hazelton (Intermagnetics), Dykhuizen (Sandia); (thallium workshop) Goodrich (NIST), Blaugher (NREL), Roth (Sandia), Holstein (DuPont), Paranthaman (ORNL), and Willis (Los Alamos).

  17. Digraph Matrix Analysis for systems interactions at Indian Point Unit 3. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Alesso, H.P.; Altenbach, T.J.; Prassinos, P.G.; Lappa, D.A.; Kimura, C.Y.; Patenaude, C.J.; Sacks, I.J.; Ashmore, B.C.; Fromme, D.C.; Hershberger, M.V.

    1986-01-01

    This report documents the analysis of the Indian Point Plant, Unit 3 (IP-3) for adverse systems interactions using DMA. The primary objective of the study was to compare the effectiveness of DMA in finding systems interactions. To this end a parallel study was funded at Brookhaven National Laboratory (BNL). The results of this study and the BNL study will then be compared by NRC to the results of a similar study performed by the Power Authority of the State of New York. A secondary objective of this study was to determine systems interactions in selected combinations of safety systems at IP-3. 24 refs., 22 figs., 29 tabs.

  18. Dose assessment for CEGB users of the Kodak type 2 film used in the NRPB/AERE holder

    International Nuclear Information System (INIS)

    Some work, complementary to that of the National Radiological Protection Board (NRPB) and the Atomic Energy Research Establishment (AERE), has been done at Berkeley Nuclear Laboratories (BNL) on the response of the Kodak Type 2 film in the NRPB/AERE holder. Initial results indicate that the combination forms a satisfactory dosemeter. Comparison between the BNL and NRPB results shows differences which appear to be due to the fact that the angle of incidence was 900 for the former and 350 for the latter. Some conclusions are drawn on dosimetry but in general, for CEGB users, no substantial changes from existing procedures are required. (author)

  19. 1995 Annual epidemiologic surveillance report for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The US Department of Energy`s (DOE) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report summarizes epidemiologic surveillance data collected from Brookhaven National Laboratory (BNL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at BNL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out.

  20. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE BROOKHAVEN GRAPHITE RESEARCH REACTOR ENGINEERED CAP, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK DCN 5098-SR-07-0

    Energy Technology Data Exchange (ETDEWEB)

    Evan Harpenau

    2011-07-15

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the Brookhaven Graphite Research Reactor (BGRR) Engineered Cap at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Science Associates (BSA) have completed removal of affected soils and performed as-left surveys by BSA associated with the BGRR Engineered Cap. Sample results have been submitted, as required, to demonstrate that remediation efforts comply with the cleanup goal of {approx}15 mrem/yr above background to a resident in 50 years (BNL 2011a).

  1. Review of polarized ion sources (invited).

    Science.gov (United States)

    Zelenski, A

    2010-02-01

    Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H(-) ion (proton), D(-) (D(+)), and (3)He(++) ion beams are discussed. Feasibility studies of these techniques are in progress at BNL and other laboratories. Polarized deuteron beams will be required for the polarization program at the Dubna Nuclotron and at the deuteron electric dipole moment experiment at BNL. Experiments with polarized (3)He(++) ion beams are a part of the experimental program at the future electron ion collider.

  2. Low excess air operations of oil boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Celebi, Y.; Litzke, Wai Lin [Brookhaven National Labs., Upton, NY (United States)

    1997-09-01

    To quantify the benefits which operation at very low excess air operation may have on heat exchanger fouling BNL has recently started a test project. The test allows simultaneous measurement of fouling rate, flue gas filterable soot, flue gas sulfuric acid content, and flue gas sulfur dioxide.

  3. CULTURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS, M.

    2005-04-01

    The Cultural Resource Management Plan (CRMP) for Brookhaven National Laboratory (BNL) provides an organized guide that describes or references all facets and interrelationships of cultural resources at BNL. This document specifically follows, where applicable, the format of the U.S. Department of Energy (DOE) Environmental Guidelines for Development of Cultural Resource Management Plans, DOE G 450.1-3 (9-22-04[m1]). Management strategies included within this CRMP are designed to adequately identify the cultural resources that BNL and DOE consider significant and to acknowledge associated management actions. A principal objective of the CRMP is to reduce the need for additional regulatory documents and to serve as the basis for a formal agreement between the DOE and the New York State Historic Preservation Officer (NYSHPO). The BNL CRMP is designed to be a ''living document.'' Each section includes identified gaps in the management plan, with proposed goals and actions for addressing each gap. The plan will be periodically revised to incorporate new documentation.

  4. Task A, High Energy Physics Program experiment and theory: Task B, High Energy Physics Program numerical simulation of quantum field theories. [Particle Physics Group, Physics Dept. , The Florida State Univ. , Tallahassee

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The effort of the experimental group has been concentrated on the CERN ALEPH and FERMILAB D0 collider experiments and completion of two fixed target experiments. The BNL fixed target experiment 771 took the world's largest sample of D(1285) and E/iota(1420) events, using pion, kaon and antiproton beams. Observing the following resonances: 0[sup [minus plus

  5. Tiger Team assessment of the Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL. This volume contains appendices.

  6. Detectors for relativistic heavy-ion experiments

    International Nuclear Information System (INIS)

    We present in some detail an overview of the detectors currently used in relativistic heavy-ion research at the BNL AGS and the CERN SPS. Following that, a detailed list of RandD projects is given, including specific areas of work which need to be addressed in preparation for further experiments at the AGS and SPS for the upcoming experiments at RHIC

  7. Analysis of nuclear piping system seismic tests with conventional and energy absorbing supports

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.; DeGrassi, G.; Hofmayer, C.; Bezler, P. [Brookhaven National Lab., Upton, NY (United States); Chokshi, N. [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-04-01

    Large-scale models of main steam and feedwater piping systems were tested on the shaking table by the Nuclear Power Engineering Cooperation (NUPEC) of Japan, as part of the Seismic Proving Test Program. This paper describes the linear and nonlinear analyses performed by NRC/BNL and compares the results to the test data.

  8. Recent results from E885 -- A search for doubly strange objects

    Energy Technology Data Exchange (ETDEWEB)

    MAY,M., FOR THE E885 COLLABORATION

    2000-10-23

    E885, an experiment performed at the Brookhaven National Laboratory Alternate Gradient Synchrotron (BNL AGS) achieved high sensitivity in a search for {Lambda}{Lambda} hypernuclei, {Xi} hypernuclei, and the H particle. Evidence was found for {Xi} hypernuclei. Possible extensions of the methods used are discussed.

  9. Proceedings of the first international symposium on neutron capture therapy

    International Nuclear Information System (INIS)

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration

  10. HANFORD DOUBLE-SHELL TANK THERMAL AND SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DST PRIMARY TANK

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABATT FG; RINKER MW

    2009-08-18

    This report (Rev 1) incorporates corrections and clarifications regarding the interpretation of solutions in BNL (1995) per reviewer comments from a June 7-8, 2007 review meeting. The review comments affect Appendixes C and D of this report - the body of the report is unchanged.

  11. HBT Interferometry: Historical Perspective

    CERN Document Server

    Padula, S S

    2004-01-01

    I review the history of HBT interferometry, since its discovery in the mid 50's, up to the recent developments and results from BNL/RHIC experiments. I focus the discussion on the contributions to the subject given by members of our Brazilian group.

  12. 2014 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Douglas [Brookhaven National Lab. (BNL), Upton, NY (United States); Remien, Jason [Brookhaven National Lab. (BNL), Upton, NY (United States); Foley, Brian [Brookhaven National Lab. (BNL), Upton, NY (United States); Burke, John [Brookhaven National Lab. (BNL), Upton, NY (United States); Dorsch, William [Brookhaven National Lab. (BNL), Upton, NY (United States); Ratel, Karen [Brookhaven National Lab. (BNL), Upton, NY (United States); Howe, Robert [Brookhaven National Lab. (BNL), Upton, NY (United States); Welty, Tim [Brookhaven National Lab. (BNL), Upton, NY (United States); Williams, Jeffrey [Brookhaven National Lab. (BNL), Upton, NY (United States); Pohlpt, Peter [Brookhaven National Lab. (BNL), Upton, NY (United States); Lagattolla, Richard [Brookhaven National Lab. (BNL), Upton, NY (United States); Metz, Robert [Brookhaven National Lab. (BNL), Upton, NY (United States); Milligan, James [Brookhaven National Lab. (BNL), Upton, NY (United States); Lettieri, Lawrence [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-01

    BNL prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory’s environmental performance during the calendar year in review.

  13. Summary of the HEPiX autumn meeting

    CERN Document Server

    CERN. Geneva; VALSAN, Liviu; Dr. WIEBALCK, Arne

    2014-01-01

    The HEPiX forum brings together worldwide Information Technology staff, including system administrators, system engineers, and managers from the High Energy Physics and Nuclear Physics laboratories and institutes, to foster a learning and sharing experience between sites facing scientific computing and data challenges. Participating sites include BNL, CERN, DESY, FNAL, IN2P3, INFN, JLAB, NIKHEF, RAL, SLAC, TRIUMF and many others.

  14. Table-top generation and spectroscopic study of ∼10 TPa high-energy density materials with C60+ hypervelocity (∼100 km/s) impact

    International Nuclear Information System (INIS)

    The use of nanoparticles as flyers to create shock pressures exceeding 10 TPa and to investigate the matters in planetary or stellar interiors has been pursued by the author for two decades. Previous studies led by the author at Brookhaven National Lab (BNL) in 1994 proved that such ultra-strong shocks can be generated with charged bio and water nanoparticles by accelerating them with an electrostatic accelerator and impacting them on solids at ∼ 100 km/s. The author in 2008 showed that the BNL nanoplasmas produced intense bursts of soft x-rays (hv ∼ 100 eV) from optical decay of excimer-like Metastable Innershell Molecular State, MIMS, formed by inner-shell electron excitation. The conversion efficiency from the nano-flyer kinetic energy to the radiation energy was unexpectedly high, ∼38%, which was attributed to high efficiency pressure ionization conversion of impact energy to MIMS excitation energy and MIMS collective optical decay in tens of fs via Dicke Superradiance. Now, this paper reports an experimental study performed with C60 as a nano-flyer that permitted reduction of the size and complexity of the apparatus by orders of magnitude compared with the BNL one. The present results confirm the BNL results unambiguously, demonstrate a pathway to scaling up of soft x-ray intensity, and open doors to a wide range of applications from lithography to inertial fusion.

  15. Nitrogen fixation in seedlings of Mimosa tenuiflora cultivated with different times of regeneration of caatinga; Fixacao de nitrogenio em mudas de Mimosa tenuiflora cultivadas em solos com diferentes tempos de regeneracao da caatinga

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Arthur Jorge da; Andrade, Monaliza Mirella de Morais; Santana, Augusto Cesar de Arruda; Freitas, Ana Dolores Santiago de, E-mail: arthur.floresta.jorge@gmail.com, E-mail: monaliza.mirella@gmail.com, E-mail: augusto.arruda26@yahoo.com.br, E-mail: ana.freitas@depa.ufrpe.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Agronomia

    2013-07-01

    The aim of this study was to estimate the efficiency of the populations of bacteria that form nodules on legumes (BNL) in areas at different times of regeneration of native 'caatinga' using a leguminous tree of the study area.

  16. International Conference on Human Resource Development for Nuclear Power Programmes: Strategies for Education and Training, Networking and Knowledge Management

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, Susan E. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nonproliferation and National Security Dept.; Bachner, Katherine M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Nonproliferation and National Security Dept.

    2014-06-24

    The report includes a summary of the overall workshop results and also copies of the two papers and interactive presentations given by BNL staff at the meeting. The two presentations were titled ''The value of the Junior Professional Officer (JPO) program to the IAEA and its Member States'' and ''Promoting intercultural competencies''.

  17. Energy Technology Programs: program summaries for 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Energy Technology Programs in the BNL Department of Energy and Environment cover a broad range of activities, namely: electrochemical research, chemical energy storage, chemical heat pumps, solar technology, fossil technology, catalytic systems development, space-conditioning technology, and technical support/program management. Summaries of the individual tasks associated with these activities along with publications, significant accomplishments, and program funding levels are presented.

  18. Evaluations of 1990 PRISM design revisions

    Energy Technology Data Exchange (ETDEWEB)

    Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Aronson, A.L.; Kennett, R.J. [Brookhaven National Lab., Upton, NY (United States)

    1992-03-01

    Analyses of the 1990 version of the PRISM Advanced Liquid Metal Reactor (ALMR) design are presented and discussed. Most of the calculations were performed using BNL computer codes, particularly SSC and MINET. In many cases, independent BNL calculations were compared against analyses presented by General Electric when they submitted the PRISM design revisions for evaluation by the Nuclear Regulatory Commission (NRC). The current PRISM design utilizes the metallic fuel developed by Argonne National Laboratory (ANL) which facilitates the passive/``inherent`` shutdown mechanism that acts to shut down reactor power production whenever the system overheats. There are a few vulnerabilities in the passive shutdown, with the most worrisome being the positive feedback from sodium density decreases or sodium voiding. Various postulated unscrammed events were examined by GE and/or BNL, and much of the analysis discussed in this report is focused on this category of events. For the most part, the BNL evaluations confirm the information submitted by General Electric. The principal areas of concern are related to the performance of the ternary metal fuel, and may be resolved as ANL continues with its fuel development and testing program.

  19. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    This progress report describes the participation of members of the Nevis group in different experiments during the FY93 period. There was major involvement in: BNL/AGS experiment E802/859/866; BNL RHIC experiment PHENIX; and CERN/SPS experiment NA44. The group was also involved in the small scale experiment E858/878 at BNL/AGS. For the BNL/AGS experiment data collection is now complete, and the group is involved in data analysis. Contributions to systematic procedures for measuring and maintaining the high calibration of the time-of-flight system, along with the previously developed trigger system have been significant contributions to the physics which is beginning to emerge from this heavy ion experiment. The CERN experiment has published first results on S-Pb collisions, with emphasis on two particle correlations. The group has been actively involved in data collection this year. Emphasis is being placed on proton-proton interactions in S-Pb and proton-Pb collisions. The PHENIX experiment is aimed at measuring signatures of quark-gluon plasma. The Nevis group has been actively involved in this experiment from design of the time-of-flight and trigger system, to acting as experiment spokesman

  20. Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at sqrt(s)NN = 9.2 GeV

    NARCIS (Netherlands)

    Abelev, B.I.; Benedosso, F.; Braidot, E; Mischke, A.; Peitzmann, T.; Russcher, M.J.

    2010-01-01

    We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au+Au collisions below the nominal injection energy at the BNL Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance solenoidal tracker

  1. Charged and strange hadron elliptic flow in Cu+Cu collisions at sqrt(s)NN = 62.4 and 200 GeV

    NARCIS (Netherlands)

    Aggarwal, M.M.; Braidot, E; Mischke, A.; Peitzmann, T.; van Leeuwen, M.

    2010-01-01

    We present the results of an elliptic flow, v2, analysis of Cu+Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at √sNN=62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v2(pT), is reported for different collision centr

  2. Strangelet search in Au+Au collisions at VsNN=200 GeV

    NARCIS (Netherlands)

    Bai, Y.; Benedosso, F.; Botje, M.A.J.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M.J.; Snellings, R.J.M.; van der Kolk, N.

    2007-01-01

    We have searched for strangelets in a triggered sample of 61 million central (top 4%) Au+Au collisions at √sNN=200 GeV near beam rapidities at the STAR solenoidal tracker detector at the BNL Relativistic Heavy Ion Collider. We have sensitivity to metastable strangelets with lifetimes of order ⩾0.1 n

  3. BROOKHAVEN NATIONAL LABORATORY INSTRUMENTATION DIVISION, R AND D PROGRAMS, FACILITIES, STAFF.

    Energy Technology Data Exchange (ETDEWEB)

    INSTRUMENTATION DIVISION STAFF

    1999-06-01

    To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientists from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations.

  4. g-2 of the Muon : After 10 years still a puzzle for the now consistent theory - The Brookhaven Experiment moves to Fermilab

    NARCIS (Netherlands)

    Jungmann, Klaus P.

    2012-01-01

    The experimental value a _μ^\\rmexp for the muon magnetic anomaly measured at the Brookhaven National Laboratory (BNL), Upton, USA, and the latest theoretical value a _μ^\\rmtheo based on a number of calculations and auxiliary experiments differ today by 3.3 standard deviations. Discrepancies between

  5. Particle physics experiments 1988

    International Nuclear Information System (INIS)

    This report describes work carried out in 1988 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. More than forty projects at different accelerators (SPS, ISIS, PETRA, LAMPF, LEP, HERA, BNL, ILL, LEAR) are listed. Different organisations collaborate on different projects. A brief progress report is given. References to published articles are given. (author)

  6. HEPiX Summary

    CERN Document Server

    CERN. Geneva; BONFILLOU, Eric; Dr. WIEBALCK, Arne

    2015-01-01

    The HEPiX forum brings together worldwide Information Technology staff, including system administrators, system engineers, and managers from the High Energy Physics and Nuclear Physics laboratories and institutes, to foster a learning and sharing experience between sites facing scientific computing and data challenges. Participating sites include BNL, CERN, DESY, FNAL, IN2P3, INFN, JLAB, NIKHEF, RAL, SLAC, TRIUMF and many others.

  7. CRYSNET manual. Informal report. [Hardware and software of crystallographic computing network

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1976-07-01

    This manual describes the hardware and software which together make up the crystallographic computing network (CRYSNET). The manual is intended as a users' guide and also provides general information for persons without any experience with the system. CRYSNET is a network of intelligent remote graphics terminals that are used to communicate with the CDC Cyber 70/76 computing system at the Brookhaven National Laboratory (BNL) Central Scientific Computing Facility. Terminals are in active use by four research groups in the field of crystallography. A protein data bank has been established at BNL to store in machine-readable form atomic coordinates and other crystallographic data for macromolecules. The bank currently includes data for more than 20 proteins. This structural information can be accessed at BNL directly by the CRYSNET graphics terminals. More than two years of experience has been accumulated with CRYSNET. During this period, it has been demonstrated that the terminals, which provide access to a large, fast third-generation computer, plus stand-alone interactive graphics capability, are useful for computations in crystallography, and in a variety of other applications as well. The terminal hardware, the actual operations of the terminals, and the operations of the BNL Central Facility are described in some detail, and documentation of the terminal and central-site software is given. (RWR)

  8. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider

  9. Cryogenic Test of Double Quarter Wave Crab Cavity for the LHC High Luminosity Upgrade

    CERN Document Server

    Xiao, B; Belomestnykh, S; Ben-Zvi, I; Calaga, Rama; Cullen, C; Capatina, Ofelia; Hammons, L; Li, Z; Marques, C; Skaritka, J; Verdú-Andres, S; Wu, Q

    2015-01-01

    A Proof-of-Principle (PoP) Double Quarter Wave Crab Cavity (DQWCC) was designed and fabricated for the Large Hadron Collider (LHC) luminosity upgrade. A vertical cryogenic test has been done at Brookhaven National Lab (BNL). The cavity achieved 4.5 MV deflecting voltage with a quality factor above 3×109 . We report the test results of this design.

  10. A precise measurement of the muon magnetic anomaly

    NARCIS (Netherlands)

    Jungmann, KP

    2003-01-01

    At the Brookhaven National Laboratory (BNL) a precision experiment of the muon magnetic anomaly a(mu) in a magnetic storage ring is on its way. Measurements carried out on positive muons in 1999 have resulted in a(mu+) = 11,659,202(14)(6) x 10(-10) (1.3 ppm). A difference between this value and the

  11. Power Spectrum Analysis of Physikalisch-Technische Bundesanstalt Decay-Rate Data: Evidence for Solar Rotational Modulation

    CERN Document Server

    Sturrock, P A; Fischbach, E; Gruenwald, J T; Javorsek, D; Jenkins, J H; Lee, R H; Mattes, J J; Newport, J R

    2010-01-01

    Evidence for an anomalous annual periodicity in certain nuclear decay data has led to speculation concerning a possible solar influence on nuclear processes. We have recently analyzed data concerning the decay rates of Cl-36 and Si-32, acquired at the Brookhaven National Laboratory (BNL), to search for evidence that might be indicative of a process involving solar rotation. Smoothing of the power spectrum by weighted-running-mean analysis leads to a significant peak at frequency 11.18/yr, which is lower than the equatorial synodic rotation rates of the convection and radiative zones. This article concerns measurements of the decay rates of Ra-226 acquired at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. We find that a similar (but not identical) analysis yields a significant peak in the PTB dataset at frequency 11.21/yr, and a peak in the BNL dataset at 11.25/yr. The change in the BNL result is not significant since the uncertainties in the BNL and PTB analyses are estimated to be 0.13/yr and 0....

  12. Quark Matter '87: Concluding remarks

    International Nuclear Information System (INIS)

    This year marked the beginning of the experimental program at BNL and CERN to probe the properties of ultra dense hadronic matter and to search for the quark-gluon plasma phase of matter. Possible implications of the preliminary findings are discussed. Problems needing further theoretical and experimental study are pointed out. 50 refs

  13. Scientific articles of the RBRC/CCAST Symposium on Spin Physics Lattice QCD and RHIC Physics

    International Nuclear Information System (INIS)

    This volume comprises scientific articles of the symposium on spin physics, lattice QCD and RHIC physics organized by RIKEN BNL research center (RBRC) and China center of advanced science and technology (CCAST). The talks were discussing the spin structure of nucleons and other problems of RHIC physics

  14. Site environmental report for calendar year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1993-05-01

    This report documents the results of the Environmental Monitoring Program at BNL and presents summary information about environmental compliance for 1992. To evaluate the effect of BNL operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, ground water and vegetation were made at the BNL site and at sites adjacent to the Laboratory. Brookhaven National Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment were evaluated. Among the permitted facilities, only the discharge from the Sewage Treatment Plant (STP) to the Peconic River exceeded, on occasion only, the fecal and total coliform concentration limits at the discharge point. This was later attributed to off-site Contractor Laboratory quality assurance problems. The environmental monitoring data has continued to demonstrate, besides the site specific contamination of ground water and soil resulting from past operations, that compliance was achieved with environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at BNL are minimal and pose no threat to the public or to the environment. This report meets the requirements of DOE Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  15. Domain analysis of computational science - Fifty years of a scientific computing group

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M.

    2010-02-23

    I employed bibliometric- and historical-methods to study the domain of the Scientific Computing group at Brookhaven National Laboratory (BNL) for an extended period of fifty years, from 1958 to 2007. I noted and confirmed the growing emergence of interdisciplinarity within the group. I also identified a strong, consistent mathematics and physics orientation within it.

  16. Laboratory Directed Research and Development Program Assessment for FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  17. Challenge Team Report: Brookhaven National Laboratory Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    T. L. Page; M. S. Montgomery

    1999-07-19

    The overall conclusion is that the BNL ER program has accomplished much and is well positioned to move aggressively towards closure. Seven removal actions have been completed. A record of decision (ROD) has been reached on Operable Unit IV, and interim soil cleanup has been completed. The remaining three RODs are under negotiation now.

  18. Butachlor, a suspected carcinogen, alters growth and transformation characteristics of mouse liver cells.

    Science.gov (United States)

    Ou, Y H; Chung, P C; Chang, Y C; Ngo, F Q; Hsu, K Y; Chen, F D

    2000-12-01

    Butachlor is a widely used herbicide in Asia and South America. Previous investigations have indicated that it is a suspected carcinogen. To understand more about the biological effects of butachlor on cultured cells and the mechanism(s) of its carcinogenicity, we studied the alteration of the growth characteristics that was induced by butachlor in normal mouse liver cells (BNL CL2). This study demonstrates that butachlor decreases the population-doubling time of BNL CL2 cells, suggesting that it stimulates cell proliferation. To support this finding, a thymidine incorporation assay was conducted and a similar result that butachlor stimulates cell proliferation was elucidated. In addition, we show that butachlor increases the saturation density of the BNL CL2 cells. When combined with the tumor initiator N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), butachlor transforms cells efficiently, as demonstrated by loss of contact inhibition. These findings indicate that butachlor alters the growth characteristics of BNL CL2 cells and suggest that butachlor may induce malignant transformation through stimulation of cell proliferation, alteration of cell cycle regulation, and suppression of cell density-dependent inhibition of proliferation.

  19. Neutron dosimetry and radiation damage calculations for HFBR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., TN (United States)

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  20. Tiger Team assessment of the Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the Laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL.

  1. International Conference on Human Resource Development for Nuclear Power Programmes: Strategies for Education and Training, Networking and Knowledge Management

    International Nuclear Information System (INIS)

    The report includes a summary of the overall workshop results and also copies of the two papers and interactive presentations given by BNL staff at the meeting. The two presentations were titled ''The value of the Junior Professional Officer (JPO) program to the IAEA and its Member States'' and ''Promoting intercultural competencies''.

  2. Brookhaven National Laboratory moves to the fast lane

    CERN Multimedia

    2006-01-01

    "The U.S. Department of Energy's energy sciences network (ESnet) continues to roll out its next-generation architecture on schedule with the March 14 completion of the Long Island Metropolitan Area Network, connecting Brookhaven National Laboratory (BNL) to the ESnet point of presente (PO) 60 miles away in New York City." (1 page)

  3. 2002 SITE ENVIRONMENTAL REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY

    2003-10-01

    The 2002 Site Environmental Report (SER) is prepared in accordance with DOE Order 231.1, ''Environment, Safety and Health Reporting'', and summarizes the status of Brookhaven National Laboratory's (BNL) environmental programs and performance and restoration efforts, as well as any impacts, both past and present, that Laboratory operations have had on the environment. The document is intended to be technical in nature. A summary of the report is also prepared as a separate document to provide a general overview and includes a CD version of the full report. Operated by Brookhaven Science Associates (BSA) for the Department of Energy (DOE), BNL manages its world-class scientific research with particular sensitivity to environmental and community issues. BNL's motto, ''Exploring Life's Mysteries...Protecting its Future'', reflects BNL's management philosophy to fully integrate environmental stewardship into all facets of its missions, with a health balance between science and the environment.

  4. The PHENIX experiment at RHIC

    CERN Document Server

    Aronson, Samuel H

    2001-01-01

    PHENIX is a large detector at the Relativistic Heavy Ion Collider (RHIC) at BNL. RHIC and PHENIX have recently operated for the first time, producing and detecting collisions of gold ions at beam energies of 30 and 65 GeV per nucleon. The current performance and future plans of PHENIX and of RHIC are presented. (2 refs).

  5. Pion production uncertainty in context of Tokai2Kamioka (T2K) experiment

    CERN Document Server

    Przewłocki, P; Kiełczewska, D; Sobczyk, J T

    2010-01-01

    We evaluate uncertainty of the neutral current !0 production coming from li- mited knowledge of axial form-factor. The uncertainties of the form-factor pa- rameters are obtained from a self-consistent fit to the results of ANL and BNL experiments measuring pion production free of significant nuclear effects. The evaluated uncertainities are important for T2K background estimates.

  6. 76 FR 28819 - NUREG/CR-XXXX, Development of Quantitative Software Reliability Models for Digital Protection...

    Science.gov (United States)

    2011-05-18

    ... actions of nuclear power plants (NPPs). The objective of this research is to identify and develop methods... ``Review of Quantitative Software Reliability Methods,'' BNL- 94047-2010 (ADAMS Accession No. ML102240566), documented a review of currently available quantitative software reliability methods (QSRMs) that can be...

  7. Evidences for a new state of the nuclear matter: quark gluon plasma in liquid phase

    International Nuclear Information System (INIS)

    The experimental results obtained in the last years at the RHIC BNL (USA) allowed to obtain an important experimental result, namely the observation of the quark gluon plasma formation in nucleus-nucleus collisions at 200 A GeV in CMS. Evidences for this new state of nuclear matter are presented in this work. The results of the BRAHMS Experiment are detailed. (author)

  8. Proceedings of the first international symposium on neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Brownell, G.L. (eds.)

    1982-01-01

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration.

  9. The Global Future Circular Colliders Effort

    CERN Document Server

    Benedikt, Michael

    2013-01-01

    This presentation has been given during the P5 Workshop at BNL Brookhaven (US). It contains - Global Future Circular Collier Studies Overview and Status - Main challenges and R&D areas for hadron collider - Main challenges and R&D areas for lepton collider - Conclusions

  10. NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,T.ET AL.

    2003-12-31

    Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

  11. Anti-hepatitis B virus activity of Boehmeria nivea leaf extracts in human HepG2.2.15 cells.

    Science.gov (United States)

    Wei, Jingchen; Lin, Lianku; Su, Xiaojian; Qin, Shaoyan; Xu, Qing; Tang, Zunian; Deng, Yan; Zhou, Yuehan; He, Songqing

    2014-01-01

    Boehmeria nivea (Linn.) Gaudich of the Urticaceae family is a perennial ratoon herbal plant, the root of which is used in traditional Chinese medicine and possesses a variety of pharmacological properties. The 20% ethanol Boehmeria nivea root extract was shown to exert an anti-hepatitis B virus (HBV) effect in vitro and in vivo; however, whether the Boehmeria nivea leaf (BNL) extract possesses similar properties has not been determined. In this study, we aimed to investigate the anti-HBV effects of the BNL extract in HepG2.2.15 cells transfected with human HBV DNA. Our results demonstrated that the secretion of HBsAg and HBeAg was reduced in HepG2.2.15 cells treated with the BNL extract, without any recorded cytotoxic effects. In addition, the chloroform fraction (CF) and ethyl acetate fraction (EAF) of BNL were shown to be more potent compared to the other fractions: CF (100 mg/l) inhibited the secretion of HBsAg by 94.00±1.78% [inhibitory concentration 50 (IC50) = 20.92 mg/l] and that of HBeAg by 100.19±0.35% (IC50=19.67 mg/l) after 9 days of treatment. Similarly, EAF (200 mg/l) inhibited the secretion of HBsAg by 89.95±2.26% (IC50=39.90 mg/l) and that of HBeAg by 98.90±1.42% (IC50=36.45 mg/l). Furthermore, we observed that the content of HBV DNA in the medium secreted by the HepG2.2.15 cells was significantly decreased under CF (100 mg/l) or EAF (200 mg/l) treatment. Thus, we concluded that the BNL extracts exhibited anti-HBV activity, with CF and EAF being the most potent among the fractions.

  12. Review of APR+ Level 2 PSA. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, John R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mubayi, Vinod [Brookhaven National Lab. (BNL), Upton, NY (United States); Pratt, W. Trevor [Brookhaven National Lab. (BNL), Upton, NY (United States); Kim, Do Sam [Korea Institute of Nuclear Safety (KINS), Daejeon (Korea, Republic of); Cho, Yong Jin [Korea Institute of Nuclear Safety (KINS), Daejeon (Korea, Republic of); Cho, Sang Jin [Korea Institute of Nuclear Safety (KINS), Daejeon (Korea, Republic of); Kim, In Goo [Korea Institute of Nuclear Safety (KINS), Daejeon (Korea, Republic of)

    2012-02-17

    Brookhaven National Laboratory (BNL) assisted the Korea Institute of Nuclear Safety (KINS) in reviewing the Level 2 Probabilistic Safety Assessment (PSA) of the APR+ Advanced Pressurized Water Reactor (PWR) prepared by the Korea Hydro & Nuclear Power Co., Ltd (KHNP) and KEPCO Engineering & Construction Co., Inc. (KEPCO-E&C). The work described in this report involves a review of the APR+ Level 2 PSA submittal [Ref. 1]. The PSA and, therefore, the review is limited to consideration of accidents initiated by internal events. As part of the review process, the review team also developed three sets of Requests for Additional Information (RAIs). These RAIs were provided to KHNP and KEPCO-E&C for their evaluation and response. This final detailed report documents the review findings for each technical element of the PSA and includes consideration of all of the RAIs made by the reviewers as well as the associated responses. This final report was preceded by an interim report [Ref. 2] that focused on identifying important issues regarding the PSA. In addition, a final meeting on the project was held at BNL on November 21-22, 2011, where BNL and KINS reviewers discussed their preliminary review findings with KHNP and KEPCO-E&C staffs. Additional information obtained during this final meeting was also used to inform the review findings of this final report. The review focused not only on the robustness of the APR+ design to withstand severe accidents, but also on the capability and acceptability of the Level 2 PSA in terms of level of detail and completeness. The Korean nuclear regulatory authorities will decide whether the PSA is acceptable and the BNL review team is providing its comments for KINS consideration. Section 2.0 provides the basis for the BNL review. Section 3.0 presents the review of each technical element of the PSA. Conclusions and a summary are presented in Section 4.0. Section 5.0 contains the references.

  13. A field exercise course to train IAEA Safeguards inspectors in implementing the additional protocol and performing complementary access activities

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) Department of Safeguards has the task of implementing the Additional Protocol (AP) in the Member States that have signed agreements bringing that treaty into force. The IAEA inspector under the traditional INFCIRC/153 safeguards has been an accountant focused on the declared nuclear material stores of a Member State. The INFCIRC/540 Strengthened Safeguards System (SSS) provides the Agency and its inspectors with the right to investigate a Member State's nuclear programme to see if all declared activities are in order and no undeclared activities exist. This broadening of the scope of the inspector's responsibilities has changed the training of the inspectors to orient them to being an investigator compared to an accountant. The Safeguards training department has created a curriculum of courses that provides the background to train the inspectorate into this new inspection regime. The United States Support Program (USSP) has contributed to this curriculum by putting together a course at Brookhaven National Laboratory (BNL) in Additional Protocol Complementary Access (APCA) to give the IAEA the opportunity to provide inspectors a necessary field exercise in a realistic environment at a research site. Brookhaven National Laboratory contains three shutdown nuclear research reactors, operating particle accelerators, hot cells, radioactive waste storage, laser laboratories, and magnet production facilities on a large site very similar to numerous research facilities around the world situated in non-nuclear weapon states (NNWS). The USSP Team created an Article 2 declaration containing annotated maps of the site, descriptions of the buildings on site, satellite and aerial photographs of the area, and a declaration of research activities on the site. The declaration is as realistic to actual BNL research except that proprietary and security concerns of the BNL site have been taken into account. The USSP Team felt the best

  14. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  15. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas

  16. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  17. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  18. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 D/F WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 2; the D/F Waste Line removal at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed the final status survey (FSS) of the D/F Waste Line that provided the conduit for pumping waste from Building 750 to Building 801. Sample results have been submitted as required to demonstrate that the cleanup goals of 15 mrem/yr above background to a resident in 50 years have been met. Four rounds of sampling, from pre-excavation to final status survey (FSS), were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the US Departmental of Energy (DOE) to perform independent verifications of decontamination and decomissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task at the HFBR. ORISE together with DOE determined that a Type A verification of the D/F Waste Line was appropriate based on its method of construction and upon the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages in the process to decommission the HFBR facility and support structures. Phase 2 of this project included the grouting and removal of 1100 feet of 2-inch pipe and 640 feet of 4-inch pipe that served as the D/F Waste Line. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that addressed each ORISE comment adequately (BNL 2010a). ORISE referred to the revised Phase 2 D/F Waste Line removal FSP FSS data to conduct the Type A verification and determine whether the intent odf

  19. Medium energy measurements of N-N parameters. Progress report: January 1, 1990--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, D.; Bachman, M.; Coffey, P.; Glass, G.; Jobst, B.; McNaughton, K.H.; Nguyen, C.; Riley, P.J.

    1993-10-01

    The authors report here progress made during the three year period January 1, 1990, to December 31, 1993, for the Department of Energy Three-Year Grant No. DE-FG05-88ER40446, third year. A major part of the work has been associated with nucleon-nucleon (N-N) research carried out at the Nucleon Physics Laboratory (NPL) at the Los Alamos Meson Physics Facility (LAMPF). During this period they also completed data acquisition and analyses of a TRIUMF experiment, but they have no further plans for experimental work at TRIUMF. Other research has been and will be continued to be carried out at BNL, and involves two rare kaon decay experiments, BNL E791, now completed, and a second generation rare kaon decay experiment, E871, which has just this summer completed an engineering test run. The authors are now also members of a proposed experiment, STAR, (Solenoidal Tracker at RHIC) to be carried out at the Relativistic Heavy Ion Collider facility, RHIC, at BNL. The past three years have been a time of rapid change in the focus of the experimental program. A LAMPF experiment, E1097, in which they spent a large amount of effort during the past three years, was terminated due to funding shortages after they had fabricated the detector, but before data acquisition, and consequently they increased their participation in the rare kaon experiment at BNL, E871. It now appears that there will be no LAMPF N-N program after 1993, so that the research efforts will concentrate on the BNL rare kaon decay measurement, E871, and on STAR. The authors expect that STAR, which requires the fabrication of a large colliding beam detector facility, will use an increasing amount of their research efforts during the next few years. In what follows they describe recent progress on the LAMPF and TRIUMF N-N measurements, on the BNL rare kaon decay work, and on the initial work with the STAR group.

  20. Designing acoustics for linguistically diverse classrooms: Effects of background noise, reverberation and talker foreign accent on speech comprehension by native and non-native English-speaking listeners

    Science.gov (United States)

    Peng, Zhao Ellen

    The current classroom acoustics standard (ANSI S12.60-2010) recommends core learning spaces not to exceed background noise level (BNL) of 35 dBA and reverberation time (RT) of 0.6 second, based on speech intelligibility performance mainly by the native English-speaking population. Existing literature has not correlated these recommended values well with student learning outcomes. With a growing population of non-native English speakers in American classrooms, the special needs for perceiving degraded speech among non-native listeners, either due to realistic room acoustics or talker foreign accent, have not been addressed in the current standard. This research seeks to investigate the effects of BNL and RT on the comprehension of English speech from native English and native Mandarin Chinese talkers as perceived by native and non-native English listeners, and to provide acoustic design guidelines to supplement the existing standard. This dissertation presents two studies on the effects of RT and BNL on more realistic classroom learning experiences. How do native and non-native English-speaking listeners perform on speech comprehension tasks under adverse acoustic conditions, if the English speech is produced by talkers of native English (Study 1) versus native Mandarin Chinese (Study 2)? Speech comprehension materials were played back in a listening chamber to individual listeners: native and non-native English-speaking in Study 1; native English, native Mandarin Chinese, and other non-native English-speaking in Study 2. Each listener was screened for baseline English proficiency level, and completed dual tasks simultaneously involving speech comprehension and adaptive dot-tracing under 15 acoustic conditions, comprised of three BNL conditions (RC-30, 40, and 50) and five RT scenarios (0.4 to 1.2 seconds). The results show that BNL and RT negatively affect both objective performance and subjective perception of speech comprehension, more severely for non

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2000.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2000-12-31

    The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and I exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, ,projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2000. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2000 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2001. The BNL LDRD budget authority by DOE in FY 2000 was $6 million. The.actual allocation totaled $5.5 million. The following sections in this report contain the management processes, peer

  2. First lasing of a high-gain harmonic generation free-electron laser experiment

    International Nuclear Information System (INIS)

    We report on the first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse energy that is 2 x 107 times larger than the spontaneous radiation, In a purely self-amplified spontaneous emission (SASE) mode of operation, the signal was measured as 10 times larger than the spontaneous radiation in the same distance (approximately2 m) through the same wiggler. This means the HGHG signal is 2 x 106 times larger than the SASE signal. To obtain the same saturated output power by the SASE process, the radiator would have to be 3 times longer (6 m)

  3. First lasing of a high-gain harmonic generation free- electron laser experiment

    International Nuclear Information System (INIS)

    We report on the first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse energy that is 2x107 times larger than the spontaneous radiation. In a purely self-amplified spontaneous emission (SASE) mode of operation, the signal was measured as 10 times larger than the spontaneous radiation in the same distance (∼2 m) through the same wiggler. This means the HGHG signal is 2x106 times larger than the SASE signal. To obtain the same saturated output power by the SASE process, the radiator would have to be 3 times longer (6 m)

  4. DEVELOPMENT OF ENDF/B-VII.1 AND ITS COVARIANCE COMPONENT

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M.

    2010-04-30

    The US nuclear data community, coordinated by CSEWG, is preparing release of the ENDF/B-VII.1 library. This new release will address deficiencies identified in ENDF/B-VII.0, include improved evaluations for some 50-60 materials and provide covariances for more than 110 materials. The major players in this undertaking are LANL, BNL, ORNL, and LLNL. We summarize deficiencies in the ENDF/B-VII.0 and outline development of the new library. We concentrate on the BNL activities which aim in providing covariances for the materials important for the design of the innovative reactors. Finally we outline a futuristic approach, known as assimilation that tries to link nuclear reaction theory and integral experiments.

  5. HFBR handbook, 1992: High flux beam reactor

    International Nuclear Information System (INIS)

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance

  6. Proceedings of the 1993 oil heat technology conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J.

    1993-09-01

    This report documents the proceedings of the 1993 Oil Heat Technology Conference and Workshop, held on March 25--26 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the seventh held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space- conditioning equipment. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  7. TED KYCIA MEMORIAL SYMPOSIUM.

    Energy Technology Data Exchange (ETDEWEB)

    LITTENBERG, L.; RUBINSTEIN, R.; SAMIOS, N.; LI, K.; GIACOMELLI, G.; MOCKETT, P.; CARROLL, A.; JOHNSON, R.; BRYMAN, D.; TIPPENS, B.

    2000-05-19

    On the afternoon of May 19 2000, a Memorial Seminar was held in the BNL physics Large Seminar Room to honor the memory of Ted Kyeia, a prominent particle physicist who had been a member of the BNL staff for 40 years. Although it was understandably a somewhat sad occasion because Ted was no longer with us, nevertheless there was much for his colleagues and friends to celebrate in recalling the outstanding contributions that he had made in those four decades. The Seminar speakers were all people who had worked with Ted during that period; each discussed one aspect of his career, but also included anecdotes and personal reminiscences. This booklet contains the Seminar program, listing the speakers, and also copies of transparencies of the talks (and one paper which was a later expansion of a talk); sadly, not all of the personal remarks appeared on the transparencies.

  8. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-07-03

    Design, analysis, and low-power tests are described on a ferroelectric tuner concept that could be used for controlling external coupling to RF cavities for the superconducting Energy Recovery Linac (ERL) in the electron cooler of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). The tuner configuration utilizes several small donut-shaped ferroelectric assemblies, which allow the design to be simpler and more flexible, as compared to previous designs. Design parameters for 704 and 1300 MHz versions of the tuner are given. Simulation results point to efficient performance that could reduce by a factor-of-ten the RF power levels required for driving superconducting cavities in the BNL ERL.

  9. Melcor benchmarking against integral severe fuel damage tests

    Energy Technology Data Exchange (ETDEWEB)

    Madni, I.K. [Brookhaven National Lab., Upton, NY (United States)

    1995-09-01

    MELCOR is a fully integrated computer code that models all phases of the progression of severe accidents in light water reactor nuclear power plants, and is being developed for the U.S. Nuclear Regulatory Commission (NRC) by Sandia National Laboratories (SNL). Brookhaven National Laboratory (BNL) has a program with the NRC to provide independent assessment of MELCOR, and a very important part of this program is to benchmark MELCOR against experimental data from integral severe fuel damage tests and predictions of that data from more mechanistic codes such as SCDAP or SCDAP/RELAP5. Benchmarking analyses with MELCOR have been carried out at BNL for five integral severe fuel damage tests, namely, PBF SFD 1-1, SFD 14, and NRU FLHT-2, analyses, and their role in identifying areas of modeling strengths and weaknesses in MELCOR.

  10. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  11. TEST OF A MODEL SUPERCONDUCTING MAGNET FOR THE HERA EP INTERACTION REGIONS

    International Nuclear Information System (INIS)

    For the HERA luminosity upgrade two types of compact multifunction superconducting magnets, denoted GO and GG, are needed for installation inside the existing ZEUS and Hl experimental detectors in the year 2000. These magnets contain multiple concentric coil layers organized into independently powered quadrupole, dipole, skew quadrupole and skew dipole coil windings. Production of the first of three GO magnets using a newly constructed coil winding machine is currently in progress at BNL. The GG design is being completed and parallel production at BNL of three GG units will start soon. In this paper we highlight HERA upgrade magnet design challenges, present our production solutions and relate experience and results gained from warm and cold testing of short model magnets

  12. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-10

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and the nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.

  13. Landmarks in particle physics at Brookhaven National Laboratory: Brookhaven Lecture Series, Number 238

    International Nuclear Information System (INIS)

    Robert Adair's lecture on Landmarks in Particle Physics at Brookhaven National Laboratory (BNL) is a commemoration of the 40th Anniversary of Brookhaven National Laboratory. Adair describes ten researches in elementary particle physics at Brookhaven that had a revolutionary impact on the understanding of elementary particles. Two of the discoveries were made in 1952 and 1956 at the Cosmotron, BNL's first proton accelerator. Four were made in 1962 and 1964 at the Alternating Gradient Synchrotron, the Cosmotron's replacement. Two other discoveries in 1954 and 1956 were theoretical, and strong focusing (1952) is the only technical discovery. One discovery (1958) happened in an old barrack. Four of the discoveries were awarded the Nobel prize in Physics. Adair believes that all of the discoveries are worthy of the Nobel prize. 14 figs

  14. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  15. Development and Evaluation of Rhenium-188-labeled Radioactive Stents for Restenosis Therapy and Development of Strategies for Radiolabeling Brachytherapy Sources with Palladium-103

    International Nuclear Information System (INIS)

    This project involved collaboration between InnerDyne, Inc., and radiopharmaceutical research programs at the Oak Ridge National Laboratory (ORNL) and Brookhaven National Laboratory (BNL) which explored new strategies for the development and animal testing of radioactive rhenium-188-labeled implantable stent sources for the treatment of coronary restenosis after angioplasty and the development of chemical species radiolabeled with the palladium-103 radioisotope for the treatment of cancer. Rhenium-188 was made available for these studies from radioactive decay of tungsten-188 produced in the ORNL High Flux Isotope Reactor (HFIR). Stent activation and coating technology was developed and provided by InnerDyne, Inc., and stent radiolabeling technology and animal studies were conducted by InnerDyne staff in conjunction with investigators at BNL. Collaborative studies in animals were supported at sites by InnerDyne, Inc. New chemical methods for attaching the palladium-103 radioisotope to bifunctional chelate technologies were developed by investigators at ORNL

  16. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  17. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 5 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the concrete duct from Trench 5 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 5 was appropriate based on recent verification results from Trenches 2, 3, and 4, and the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch pipe from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 5. Based on the pre-excavation sample results of the soil overburden the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that resolved each ORISE comment adequately (BNL 2010a). ORISE referred to the revised HFBR Underground Utilities FSP FSS data to conduct the Type A verification

  18. AFCI-2.0 Library of Neutron Cross Section Covariances

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M.; Herman,M.; Oblozinsky,P.; Mattoon,C.; Pigni,M.; Hoblit,S.; Mughabghab,S.F.; Sonzogni,A.; Talou,P.; Chadwick,M.B.; Hale.G.M.; Kahler,A.C.; Kawano,T.; Little,R.C.; Young,P.G.

    2011-06-26

    Neutron cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The primary purpose of the library is to provide covariances for the Advanced Fuel Cycle Initiative (AFCI) data adjustment project, which is focusing on the needs of fast advanced burner reactors. The covariances refer to central values given in the 2006 release of the U.S. neutron evaluated library ENDF/B-VII. The preliminary version (AFCI-2.0beta) has been completed in October 2010 and made available to the users for comments. In the final 2.0 release, covariances for a few materials were updated, in particular new LANL evaluations for {sup 238,240}Pu and {sup 241}Am were adopted. BNL was responsible for covariances for structural materials and fission products, management of the library and coordination of the work, while LANL was in charge of covariances for light nuclei and for actinides.

  19. g-2 of the muon in SUSY Models with Gauge Multiplets in the Bulk of Extra-Dimensions

    CERN Document Server

    Enqvist, Kari; Huitu, K; Enqvist, Kari; Gabrielli, Emidio; Huitu, Katri

    2001-01-01

    We analyze the supersymmetric contributions to the anomalous magnetic moment of the muon (a_\\mu) in the framework of pure and gaugino-assisted anomaly mediation models, and gaugino mediation models. In the last two models the gauge multiplets propagate in the higher dimensional bulk, providing a natural mechanism for solving the problem of negative squared slepton masses present in the pure anomaly mediation models. In the light of the new BNL results for a_\\mu, we found that the pure and gaugino-assisted anomaly mediation models are almost excluded by the BNL constraints at 2\\sigma level when combined with CLEO constraints on b->sg at 90 % of C.L. In contrast, the gaugino mediation models provide extensive regions in the SUSY parameter space where both of these constraints are satisfied.

  20. Polarized Electron Gun Development at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Development of two different polarized electron guns is ongoing at BNL. One aims at extremely high brightness at a moderate beam current. This design uses a superconducting RF gun and a test setup is built to show that a Gallium-Arsenide cathode with negative affinity has a sufficiently long quantum efficiency lifetime in such an environment. An electron injector using this technology may eliminate the need of the electron damping ring and a long transport line at the International Linear Collider. The other project aims at producing a high beam current with moderate emittance requirements, dubbed the 'Gatling gun'. In this DC gun, bunches are extracted from 20 separate cathodes and merged into a single beam using a rotating magnetic field. Such an electron gun could serve as an injector for the electron-ion collider eRHIC, which is planned at BNL. We will report on the status of these projects.

  1. Power Spectrum Analyses of Nuclear Decay Rates

    CERN Document Server

    Javorsek, D; Lasenby, R N; Lasenby, A N; Buncher, J B; Fischbach, E; Gruenwald, J T; Hoft, A W; Horan, T J; Jenkins, J H; Kerford, J L; Lee, R H; Longman, A; Mattes, J J; Morreale, B L; Morris, D B; Mudry, R N; Newport, J R; O'Keefe, D; Petrelli, M A; Silver, M A; Stewart, C A; Terry, B; 10.1016/j.astropartphys.2010.06.011

    2010-01-01

    We provide the results from a spectral analysis of nuclear decay data displaying annually varying periodic fluctuations. The analyzed data were obtained from three distinct data sets: 32Si and 36Cl decays reported by an experiment performed at the Brookhaven National Laboratory (BNL), 56Mn decay reported by the Children's Nutrition Research Center (CNRC), but also performed at BNL, and 226Ra decay reported by an experiment performed at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. All three data sets exhibit the same primary frequency mode consisting of an annual period. Additional spectral comparisons of the data to local ambient temperature, atmospheric pressure, relative humidity, Earth-Sun distance, and their reciprocals were performed. No common phases were found between the factors investigated and those exhibited by the nuclear decay data. This suggests that either a combination of factors was responsible, or that, if it was a single factor, its effects on the decay rate experiments are n...

  2. Critical current and instability threshold measurement of Nb$_{3}$ Sn cables for high field accelerator magnets

    CERN Document Server

    Ambrosio, Giorgio; Bartlett, S E; Barzi, E; Denarié, C H; Dietderich, D R; Ghosh, Arup K; Verweij, A P; Zlobin, A V

    2005-01-01

    Rutherford-type cables made of high critical current Nb/sub 3/Sn strands are being used in several laboratories for developing new generation superconducting magnets for present and future accelerators and upgrades. Testing of cable short samples is an important part of these R&D programs and the instability problem found in some short model magnets at Fermilab made these tests even more significant. Fermilab in collaboration with BNL, CERN and LBNL has developed sample holders and sample preparation infrastructure and procedures for testing Nb/sub 3/Sn cable short samples at BNL and CERN test facilities. This paper describes the sample holders, sample preparation and instrumentation, and test results. Several samples made of MJR or PIT strands 1 mm in diameter have been tested. Some samples were unstable (i.e. quenched at low transport currents) at low fields and reached the critical surface at higher fields.

  3. First lasing of a high-gain harmonic generation free- electron laser experiment

    CERN Document Server

    Yu, L H; Ben-Zvi, I; Di Mauro, Louis F; Doyuran, A; Graves, W; Johnson, E; Krinsky, S; Malone, R; Pogorelsky, I V; Skaritka, J; Rakowsky, G; Solomon, L; Wang, X J; Woodle, M; Yakimenko, V; Biedron, S G; Galayda, J N; Gluskin, E; Jagger, J; Sajaev, Vadim; Vasserman, I

    2000-01-01

    We report on the first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse energy that is 2x10 sup 7 times larger than the spontaneous radiation. In a purely self-amplified spontaneous emission (SASE) mode of operation, the signal was measured as 10 times larger than the spontaneous radiation in the same distance (approx 2 m) through the same wiggler. This means the HGHG signal is 2x10 sup 6 times larger than the SASE signal. To obtain the same saturated output power by the SASE process, the radiator would have to be 3 times longer (6 m).

  4. Analysis of fission-product effects in a Fast Mixed-Spectrum Reactor concept

    International Nuclear Information System (INIS)

    The Fast Mixed-Spectrum Reactor (FMSR) concept has been proposed by BNL as a means of alleviating certain nonproliferation concerns relating to civilian nuclear power. This breeder reactor concept has been tailored to operate on natural uranium feed (after initial startup), thus eliminating the need for fuel reprocessing. The fissile material required for criticality is produced, in situ, from the fertile feed material. This process requires that large burnup and fluence levels be achievable, which, in turn, necessarily implies that large fission-product inventories will exist in the reactor. It was the purpose of this study to investigate the effects of large fission-product inventories and to analyze the effect of burnup on fission-product nuclide distributions and effective cross sections. In addition, BNL requested that a representative 50-group fission-product library be generated for use in FMSR design calculations

  5. DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA

    Energy Technology Data Exchange (ETDEWEB)

    Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

    2009-07-12

    The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

  6. MEVSIM: A Monte Carlo Event Generator for STAR

    OpenAIRE

    Ray, R. L.; Longacre, R. S.

    2000-01-01

    A fast, simple to use Monte Carlo based event generator is presented which is intended to facilitate simulation studies and the development of analysis software for the Solenoidal Tracker at RHIC (Relativistic Heavy Ion Collider) (STAR) experiment at the Brookhaven National Laboratory (BNL). This new event generator provides a fast, convenient means for producing large numbers of uncorrelated A+A collision events which can be used for a variety of applications in STAR, including quality assur...

  7. The Forward GEM Tracker of STAR at RHIC

    OpenAIRE

    Simon, F.; Balewski, J.; Fatemi, R.; Hasell, D.; Kelsey, J.; Majka, R.; Page, B.; Plesko, M.; Underwood, D.; Smirnov, N.; Sowinski, J.; Spinka, H.; Surrow, B.(Temple University, Philadelphia, PA, 19122, USA); Visser, G.

    2008-01-01

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is in the process of designing and constructing a forward tracking system based on triple GEM technology. This upgrade is necessary to give STAR the capability to reconstruct and identify the charge sign of W bosons over an extended rapidity range through their leptonic decay mode into an electron (positron) and a neutrino. This will allow a detailed study of the flavor-separated spin str...

  8. Quasielastic axial-vector mass from experiments on neutrino-nucleus scattering

    CERN Document Server

    Kuzmin, Konstantin S; Naumov, Vadim A

    2008-01-01

    We analyse available experimental data on the total and differential charged-current cross sections for quasielastic neutrino and antineutrino scattering off nucleons, measured with a variety of nuclear targets in the accelerator experiments at ANL, BNL, FNAL, CERN, and IHEP, dating from the end of sixties to the present day. The data are used to adjust the poorly known value of the axial-vector mass of the nucleon.

  9. Quasielastic axial-vector mass from experiments on neutrino-nucleus scattering

    OpenAIRE

    Kuzmin, Konstantin S.; Lyubushkin, Vladimir V.; Naumov, Vadim A.

    2007-01-01

    We analyze available experimental data on the total and differential charged-current cross sections for quasielastic neutrino and antineutrino scattering off nucleons, measured with a variety of nuclear targets in the accelerator experiments at ANL, BNL, FNAL, CERN, and IHEP, dating from the end of sixties to the present day. The data are used to adjust the poorly known value of the axial-vector mass of the nucleon.

  10. Characterization of an 800 nm SASE FEL at saturation

    CERN Document Server

    Tremaine, Aaron M; Ben-Zvi, I; Bertolini, L R; Carr, R; Cornacchia, M; Frigola, P; Hill, J M; Johnson, E; Klaisner, L; Le Sage, G P; Libkind, M; Malone, R; Murokh, A; Nuhn, H D; Pellegrini, C; Rakowsky, G; Reiche, S; Rosenzweig, J; Ruland, R; Skaritka, J; Toor, A; Van Bibber, K A; Wang, X J

    2002-01-01

    Visible to Infrared SASE Amplifier is a free electron laser (FEL) designed to saturate at a radiation wavelength of 800 nm within a 4 m long, strong focusing undulator. Large gain is achieved by driving the FEL with 72 MeV, high brightness beam of BNL's accelerator test facility. We present measurements that demonstrate saturation in addition to the frequency spectrum of the FEL radiation. Energy, gain length and spectral characteristics are compared and shown to agree with simulation and theoretical predictions.

  11. Mechanisms of wet oxidation by hydrogen peroxide

    International Nuclear Information System (INIS)

    A research programme is currently under way at BNL and MEL to investigate the possible use of Hydrogen Peroxide with metal ion catalysts as a wet oxidation treatment system for CEGB organic radioactive wastes. The published literature relating to the kinetics and mechanism of oxidation and decomposition reactions of hydrogen peroxide is reviewed and the links with practical waste management by wet oxidation are examined. Alternative wet oxidation systems are described and the similarities to the CEGB research effort are noted. (author)

  12. First large scale application of novel Si stripixel detector in real large experiment: Si VTX in PHENIX upgrade at RHIC

    Institute of Scientific and Technical Information of China (English)

    LI Zheng; H. ENYO; Y. GOTO; J. TOJO; Y. AKIBA; R. NOUICER; A. L. DESHPANDE; K. BOYLE; V. CIANCIOLO

    2006-01-01

    2D position sensitive,single-sided Si stripixel detector was selected as the one of the two main components of the Si vertex tracker (Si SVX) in the upgraded PHENIX detector at RHIC (relativistic heavy ion collider) in Brookhaven National Laboratory (BNL). This is the first large scale application of the novel Si stripixel detector in a real large experiment after many years of research and development at BNL. The first and second prototype fabrication runs of the SVX stripixel detectors were carried out successfully in BNL's Si detector development and processing Lab. The processing of these stripixel detectors is similar to that for the standard single-sided strip detectors: one-sided processing,single implant for the pixel (strip) electrodes,etc. The only additional processing step is the double metal process,a technology that is simple and well matured by many Si detector processing industries and labs,including BNL. The laser and beam tests on those prototype detectors show the 2D position sensitivity and good position resolution in both X and U coordinates (about 25 μm for 80 μm pitch). For the mass production of 400 sensors needed for the Si SVX,the processing technology has been successfully transferred to the industrial: Hamamatsu Photonics (HPK). HPK has produced a pre-production run of stripixel sensors with the full PHENIX SVX specification on 150 mm diameter wafers. The laser tests on these pre-production wafers show good signal to noise ratio (about 20:1).

  13. International and interlaboratory collaboration on Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    For effectiveness of facility development for Neutron Science Projects at JAERI, international and interlaboratory collaborations have been extensively planned and promoted, especially in the areas of accelerator and target technology. Here status of two collaborations relevant to a spallation neutron target development is highlighted from those collaborations. The two collaborations are experiments on BNL-AGS spallation target simulation and PSI materials irradiation. Both are planned to start in spring of 1997. (author)

  14. Gluon saturation and pseudo-rapidity distributions of charged hadrons at RHIC energy regions

    Institute of Scientific and Technical Information of China (English)

    WEI Xin-Bing; FENG Sheng-Qin

    2012-01-01

    We modified the gluon saturation model by rescaling the momentum fraction according to saturation momentum and introduced Cooper-Frye hydrodynamic evolution to systematically study the pseudorapidity distributions of final charged hadrons at different energies and different centralities for Au-Au collisions in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC).The features of both gluon saturation and hydrodynamic evolution at different energies and different centralities for Au-Au collisions are investigated in this paper.

  15. Amphiphilic oligoethyleneimine-β-cyclodextrin "click" clusters for enhanced DNA delivery.

    Science.gov (United States)

    Martínez, Álvaro; Bienvenu, Céline; Jiménez Blanco, José L; Vierling, Pierre; Mellet, Carmen Ortiz; García Fernández, José M; Di Giorgio, Christophe

    2013-08-16

    Monodisperse amphiphilic oligoethyleneimine (OEI)-β-cyclodextrin (βCD) clusters have been prepared, and their potential as gene delivery systems has been evaluated in comparison with a nonamphiphilic congener. The general prototype incorporates tetraethyleneimine segments linked to the primary rim of βCD through either triazolyl or thioureidocysteaminyl connectors. Transfection efficiency data for the corresponding CD:pDNA nanocomplexes (CDplexes) in BNL-CL2 murine hepatocytes evidenced the strong beneficial effect of facial amphiphilicity. PMID:23859761

  16. Annual summary of programs in energy sciences

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This report presents an inventory and brief overview of the research programs carried out in the Energy Sciences area of the BNL Department of Energy and Environment. More complete and extensive descriptions of these programs exist in other documents, including the various publications cited herein. Each program description includes a statement of activities planned for the coming year. Thus, some sense of direction is indicated for each program. (RWR)

  17. Heating of nuclear matter and multifragmentation: antiprotons vs. pions

    International Nuclear Information System (INIS)

    Heating of nuclear matter with 8 GeV/c bar p and π- beams has been investigated in an experiment conducted at BNL AGS accelerator. All charged particles from protons to Z ≅ 16 were detected using the Indiana Silicon Sphere 4π array. Significant enhancement of energy deposition in high multiplicity events is observed for antiprotons compared to other hadron beams. The experimental trends are qualitatively consistent with predictions from an intranuclear cascade code

  18. Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac

    International Nuclear Information System (INIS)

    The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems

  19. Proceedings of the CAP meetings, November 1990--February 1991

    International Nuclear Information System (INIS)

    This report contains viewgraph material on the following topics: on beam emittance -- application to ATF; a review of Brookhaven Accelerator Test Facility (AFT); on development of a superconducting RFQ at Stony Brook University; development of new methods for charged particle acceleration at Yerevan Physics Institute; theory of high gain free electron laser; on ultra violet free electron laser at BNL; high luminosity at SSC; and nonlinear dynamics studies of accelerators

  20. A new measurement of the neutron detection efficiency for the NaI Crystal Ball detector

    International Nuclear Information System (INIS)

    We report on a measurement of the neutron detection efficiency in NaI crystals in the Crystal Ball detector obtained from a study of single π0 photoproduction on deuterium using the tagged photon beam at the Mainz Microtron. The results were obtained up to a neutron energy of 400 MeV . They are compared to previous measurements made more than 15 years ago at the pion beam at the BNL AGS

  1. Fiscal Year 2014 Annual Report on BNLs Next Generation Safeguards Initiative Human Capital Development Activities

    Energy Technology Data Exchange (ETDEWEB)

    Pepper S. E.

    2014-10-10

    Brookhaven National Laboratory’s (BNL’s) Nonproliferation and National Security Department contributes to the National Nuclear Security Administration Office of Nonproliferation and International Security Next Generation Safeguards Initiative (NGSI) through university engagement, safeguards internships, safeguards courses, professional development, recruitment, and other activities aimed at ensuring the next generation of international safeguards professionals is adequately prepared to support the U.S. safeguards mission. This report is a summary of BNL s work under the NGSI program in Fiscal Year 2014.

  2. Current experiments in elementary-particle physics - March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated. (WHK)

  3. Analysis of Genetic Polymorphic SSR Markers in Germplasm Resources of the Natural Colored Cotton

    Institute of Scientific and Technical Information of China (English)

    WANG Ju-qin; LI Fu-zhen; QIU Xin-mian; BAO Li-sheng; LU Yan-ting

    2008-01-01

    @@ Short sequence repeats (microsatellite,SSR) and expressed sequence tags-SSR (EST-SSR) markers were employed to analyze the genetic diversity of natural colored cotton varieties.About 490 pairs of SSR markers spanning the 26 chromosomes were selected from the cotton microsatellite database,they were composed of the NAU,BNL,MUSS,and CIR markers,and there was one marker every 5 cM on average.

  4. The Search for the QGP A Critical Appraisal

    CERN Document Server

    Satz, Helmut

    2001-01-01

    Over the past 15 years, an extensive program of high energy nuclear collisions at BNL and CERN has been devoted to the experimental search for the quark-gluon plasma predicted by QCD. The start of RHIC this year will increase the highest available collision energy by a factor 10. This seems a good time for a critical assessment: what have we learned so far and what can we hope to learn in the coming years?

  5. Staff rosters for 1979: environmental programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The roster of the scientific and professional staffs of the Environmental Programs of the Department of Energy and Environment has been compiled as of December 1979. Staff members have been listed according to their organizational units, i.e., the Atmospheric Sciences Division, the Environmental Chemistry Division, the Oceanographic Sciences Division, and the Land and Freshwater Environmental Sciences Group. Educational background, research interests, professional activities, summary of experience at BNL, and selected publications have been included for each member listed.

  6. The Strongly Interacting Quark Gluon Plasma at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Tserruya Itzhak

    2014-04-01

    Full Text Available The study of heavy-ion collisions has currently unprecedented opportunities with two first class facilities, the Relativistic Heavy Ion Collider (RHIC at BNL and the Large Hadron Collider (LHC at CERN, and five large experiments ALICE, ATLAS, CMS, PHENIX and STAR producing a wealth of high quality data. Selected results recently obtained are presented on the study of flow, energy loss and direct photons.

  7. Phenomenology of Heavy Flavors in Ultrarelativistic Heavy-Ion Collisions

    CERN Document Server

    Isayev, A A

    2010-01-01

    Some recent experimental results obtained in collisions of heavy nuclei ($\\sqrt{s}=200$ GeV) at BNL Relativistic Heavy-Ion Collider (RHIC) are discussed. The probes of dense matter created in heavy-ion collision by quarkonia, $D$ and $B$ mesons containing heavy charm and beauty quarks are considered. The centrality, rapidity and transverse momentum dependences of the nuclear modification factor and elliptic flow coefficient are presented and their possible theoretical interpretation is provided.

  8. Design of normal conducting 704 MHz and 2.1 GHz cavities for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Veshcherevich, V. [Cornell Univ., Ithaca, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under development at BNL. Two normal conducting cavities, a single cell 704 MHz cavity and a 3 cell 2.1 GHz third harmonic cavity, will be used in LEReC for energy spread correction. In this paper we report the design of these two cavities.

  9. Database activities at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Brookhaven National Laboratory is a multi-disciplinary lab in the DOE system of research laboratories. Database activities are correspondingly diverse within the restrictions imposed by the dominant relational database paradigm. The authors discuss related activities and tools used in RHIC and in the other major projects at BNL. The others are the Protein Data Bank being maintained by the Chemistry department, and a Geographical Information System (GIS)--a Superfund sponsored environmental monitoring project under development in the Office of Environmental Restoration

  10. Workshop on detectors for third-generation synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    The aims of the workshop were (1) to acquaint APS users with current R and D being carried out on detectors, (2) to identify new detector systems possible during the next five years, (3) to identify new detectors theoretically possible in the future, (4) to stimulate interactions between user groups and detector developers, and (5) to obtain recommendations from expert panels on technical issues needing resolution. Development of detectors at ESRF, Spring-8, BNL, CERN and LBL are included

  11. Construction and operation of a support facilities (Building 729) for operation/testing of a prototype accelerator/storage ring (XLS) and machine shop for the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    Proposed action is to construct at BNL a 5,600-ft2 support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS

  12. Measurement of Acceptable Noise Level with Background Music

    OpenAIRE

    Ahn, Hyun-Jung; Bahng, Junghwa; Lee, Jae Hee

    2015-01-01

    Background and Objectives Acceptable noise level (ANL) is a measure of the maximum background noise level (BNL) that a person is willing to tolerate while following a target story. Although researchers have used various sources of target sound in ANL measures, a limited type of background noise has been used. Extending the previous study of Gordon-Hickey & Moore (2007), the current study determined the effect of music genre and tempo on ANLs as possible factors affecting ANLs. We also investi...

  13. Influences of Upwind Emission Sources and Atmospheric Processing on Aerosol Chemistry and Properties at a Rural Location in the Northeastern US

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shan; Collier, Sonya; Xu, Jianzhong; Mei, Fan; Wang, Jian; Lee, Yin-Nan; Sedlacek, Art; Springston, Stephen R.; Sun, Yele; Zhang, Qi

    2016-05-27

    Continuous real-time measurements of atmospheric aerosol with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS) coupled with a fast temperature-stepping thermodenuder were carried out in summer 2011 at Brookhaven National Laboratory (BNL, 40.871°N, 72.89°W) during the DOE Aerosol Life Cycle Intensive Operational Period (ALC-IOP) campaign.

  14. Ionization Chambers for Monitoring in High-Intensity Neutrino Beams

    CERN Document Server

    McDonald, J; Velissaris, C; Erwin, A R; Ping, H; Viren, B M; Diwan, M V

    2002-01-01

    Radiation-hard ionization chambers were tested using an intense electron beam from the accelerator test facility (ATF) at the Brookhaven National Laboratory (BNL). The detectors were designed to be used as the basic element for monitoring muons in the Main Injector Neutrino beamline (NuMI) at the Fermi National Accelerator Laboratory (FNAL). Measurements of linearity of response, voltage dependence, and the onset of ionization saturation as a function of gap voltage were performed.

  15. Constituent quarks and proton break-up in p-A collisions at the AGS

    CERN Document Server

    Cole, B A

    1999-01-01

    Results are presented from BNL experiment 910 on the centrality and target dependence of projectile stopping, LAMBDA and K sup 0 sub S production, and pi sup - production in p-A collisions. The data, taken together, suggest that the 'stopping' of the baryon number and the stopping of the energy carried by the incident baryon in p-A collisions proceeds via different physical processes. We discuss a possible interpretation of the data in terms of constituent or valence quark interactions.

  16. Seismic fragility of nuclear power plant components. Phase I

    International Nuclear Information System (INIS)

    As part of the Component Fragility Research Program, sponsored by the US Nuclear Regulatory Commission, BNL is involved in establishing seismic fragility levels for various nuclear power plant equipment by identifying, collecting and analyzing existing test data from various sources. In Phase I of this program, BNL has reviewed approximately seventy test reports to collect fragility or high level test data for switchgears, motor control centers and similar electrical cabinets, valve actuators and numerous electrical devices of various manufacturers and models. This report provides an assessment and evaluation of the data collected in Phase I. The fragility data for medium voltage and low voltage switchgears and motor control centers are analyzed using the test response spectra (TRS) as a measure of the fragility level. The analysis reveals that fragility levels can best be described by a group of TRS curves corresponding to various failure modes. The lower-bound curve indicates the initiation of malfunctioning or structural damage; whereas, the upper-bound curve corresponds to overall failure of the equipment based on known failure modes. High level test data for some components are included in the report. These data indicate that some components are inherently strong and do not exhibit any failure mode even when tested at the vibration limit of a shake table. The common failure modes are identified in the report. The fragility levels determined in this report have been compared with those used in the PRA and Seismic Margin Studies. It appears that the BNL data better correlate with the HCLPF (High Confidence of a Low Probability of Failure) level used in Seismic Margin Studies and can improve this level as high as 60% for certain applications. Specific recommendations are provided for proper application of BNL fragility data to other studies

  17. A New Measurement of the Muon Magnetic Anomaly

    OpenAIRE

    Jungmann, K.; :; collaboration, g-2

    2000-01-01

    The muon magnetic anomaly may contain contributions from physics beyond the standard model. At the Brookhaven National Laboratory (BNL) a precision experiment aims for a measurement of the muon magnetic anomaly $a_{\\mu}$ to 0.35 ppm, where conclusions about various theoretical approaches beyond standard theory can be expected. The difference between the spin precession and cyclotron frequencies is measured in a magnetic storage ring with highly homogeneous field. Data taking is in progress an...

  18. Editorial

    Science.gov (United States)

    Hei, Tom K.

    2016-06-01

    Ground based radiation research facilities are indispensable for a better understanding of the biological principles governing the responses of living organisms to space radiation and for advancing our knowledge in space radiation dosimetry and protection. 2015 marked the 20th anniversary of the first acquisition of space radiation biology and physics data at the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL) in Upton, New York. Use of the BNL AGS was the product of a collaborative agreement between NASA and BNL to promote the goals of NASA to "expand human presence in the solar system and to the surface of Mars and to advance exploration, science, innovation and benefits to humanity and international collaboration". This collaborative agreement signed on April 8th, 1994 built on previous work at the Lawrence Berkeley National Laboratory Bevalac and paved the way for the approval and construction of a dedicated space radiation laboratory at BNL, the NASA Space Radiation Laboratory (NSRL). In this volume we present three review articles: on the history of the creation of the NSRL, by Walter Schimmerling; on the physics-related research at the AGS and NSRL, by Jack Miller and Cary Zeitlin; and on the identification and evaluation of biomarkers for modeling cancer risk after exposure to space radiation, by Janice Pluth and her colleagues. It is the hope of the editors that our readers, and especially those relatively new to the field, will find these articles to be informative and interesting and that they will foster an appreciation of the importance of ground based radiation research in protecting the health of crew members as they venture out into the solar system in the coming decades.

  19. EXFOR basics. A short guide to the nuclear reaction data exchange format

    International Nuclear Information System (INIS)

    EXFOR is the agreed exchange format for the transmission of experimental nuclear reaction data between national and international nuclear data centers for the benefit of nuclear data users in all countries. This report is intended as a guide to data users. For a complete guide to the EXFOR system see: EXFOR Systems Manual, IAEA-NDS-207 (BNL-NCS-63330-00/04-Rev.) (author)

  20. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    Harpeneau, Evan M. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  1. N-Delta(1232) axial form factors from weak pion production

    CERN Document Server

    Hernandez, E; Valverde, M; Vicente-Vacas, M J

    2010-01-01

    The N-Delta axial form factors are determined from neutrino induced pion production ANL & BNL data by using a state of the art theoretical model, which accounts both for background mechanisms and deuteron effects. We find violations of the off diagonal Goldberger-Treiman relation at the level of 2 sigma which might have an impact in background calculations for T2K and MiniBooNE low energy neutrino oscillation precision experiments.

  2. Brookhaven National Laboratory site environmental report for calendar year 1993

    International Nuclear Information System (INIS)

    This report documents the results of the Environmental Monitoring Program at BNL and presents summary information about environmental compliance for 1993. To evaluate the effect of BNL operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, ground water and vegetation were made at the BNL site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment were evaluated. Among the permitted facilities, two instances, of pH exceedances were observed at recharge basins, possible related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant (STP) to the Peconic River exceeded on five occasions, three for residual chlorine and one each for iron and ammonia nitrogen. The chlorine exceedances were related to a malfunctioning hypochlorite dosing pump and ceased when the pump was repaired. While the iron and ammonia-nitrogen could be the result of disturbances to the sand filter beds during maintenance. The environmental monitoring data has identified site-specific contamination of ground water and soil. These areas are subject to Remedial Investigation/Feasibility Studies (RI/FS) under the Inter Agency Agreement (IAG). Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with applicable environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at BNL are minimal and pose no threat to the public or to the environment. This report meets the requirements of DOE Orders 5484. 1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs

  3. ENDF-6 formats manual. Version of June 1997. Written by the members of the US cross section evaluation working group

    International Nuclear Information System (INIS)

    ENDF-6 is the international computer file format for evaluated nuclear data. This document gives a detailed description of the formats and procedures adopted for ENDF-6. It consists of the report BNL-NCS-44945 (Rev. 2/97) (=ENDF-201, Rev. 2/97) with an Interim Revision of June 1997 and a few front pages added by the IAEA Nuclear Data Section. (author)

  4. Soil-structure interaction effects on the reliability evaluation of reactor containments

    International Nuclear Information System (INIS)

    The probability-based method for the seismic reliability assessment of nuclear structures, which has been developed at Brookhaven National Laboratory (BNL), is extended to include the effects of soil-structure interaction. A reinforced concrete containment building is analyzed in order to examine soil-structure interaction effects on: (1) structural fragilities; (2) floor response spectra statistics; and (3) correlation coefficients for total acceleration responses at specified structural locations

  5. Measuring optical surface roughness: Digital optical profiler

    International Nuclear Information System (INIS)

    Mirrors used to reflect and focus x-rays produced by high-brightness synchrotron-radiation sources, such as the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL), need to be made with extremely smooth surface finishes and with very precise overall shapes in order not to degrade the quality of the source. A program was established to develop measurement techniques and instrumentation better suited for characterizing the figure and finish of x-ray mirror surfaces. A recently developed commercial microinterferometer system was adapted to measure the small-scale roughness on smooth surfaces with a precision and accuracy of better than 1 angstrom RMS. A collaborative effort with a researcher from the US Army Research, Development, and Engineering Center resulted in the development of a surface profile analysis code and a method to specify roughness in terms of the average power spectral density function of the surface. Manufacturers have been able to significantly improve the finish quality of their mirrors based on the feedback provided to them by the BNL workers, and synchronous-radiation researchers now have a meaningful way to specify the desired properties of their surfaces. An International Standards Organization drawing standard is now in preparation for the specification of optical surface finish based upon the analytical technique developed at BNL. Work continues in the BNL Optical Metrology Laboratory on the development of a long trace-profiling instrument to measure the figure of cylindrical aspheric surfaces up to 1 meter in length. This kind of measurement cannot currently be made with commercially available measuring instruments

  6. The single fgf receptor gene in the beetle Tribolium castaneum codes for two isoforms that integrate FGF8- and Branchless-dependent signals.

    Science.gov (United States)

    Sharma, Rahul; Beer, Katharina; Iwanov, Katharina; Schmöhl, Felix; Beckmann, Paula Indigo; Schröder, Reinhard

    2015-06-15

    The precise regulation of cell-cell communication by numerous signal-transduction pathways is fundamental for many different processes during embryonic development. One important signalling pathway is the evolutionary conserved fibroblast-growth-factor (FGF)-pathway that controls processes like cell migration, axis specification and mesoderm formation in vertebrate and invertebrate animals. In the model insect Drosophila, the FGF ligand / receptor combinations of FGF8 (Pyramus and Thisbe) / Heartless (Htl) and Branchless (Bnl) / Breathless (Btl) are required for the migration of mesodermal cells and for the formation of the tracheal network respectively with both the receptors functioning independently of each other. However, only a single fgf-receptor gene (Tc-fgfr) has been identified in the genome of the beetle Tribolium. We therefore asked whether both the ligands Fgf8 and Bnl could transduce their signal through a common FGF-receptor in Tribolium. Indeed, we found that the function of the single Tc-fgfr gene is essential for mesoderm differentiation as well as for the formation of the tracheal network during early development. Ligand specific RNAi for Tc-fgf8 and Tc-bnl resulted in two distinct non-overlapping phenotypes of impaired mesoderm differentiation and abnormal formation of the tracheal network in Tc-fgf8- and Tc-bnl(RNAi) embryos respectively. We further show that the single Tc-fgfr gene encodes at least two different receptor isoforms that are generated through alternative splicing. We in addition demonstrate through exon-specific RNAi their distinct tissue-specific functions. Finally, we discuss the structure of the fgf-receptor gene from an evolutionary perspective.

  7. A 3000 element lead-glass electromagnetic calorimeter

    International Nuclear Information System (INIS)

    A 3045 element lead glass calorimeter and an associated fast trigger processor have been constructed, tested and implemented in BNL experiment E852 in conjunction with the multi-particle spectrometer (MPS). Approximately, 109 all-neutral and neutral plus charged triggers were recorded with this apparatus during data runs in 1994 and 1995. This paper reports on the construction, testing and performance of this lead glass calorimeter and the associated trigger processor. (orig.)

  8. Physics with nuclei at high energies

    International Nuclear Information System (INIS)

    Physics with nuclei at high energy is not reducible to a superposition of interactions involving individual nucleons; rather, qualitatively new phenomena show up. This is what one concludes from recent data on dilepton production off nuclei and on elastic proton-nucleus scattering. Furthermore, recent analyses of ion collisions at BNL and CERN reveal a number of non-conventional features. The relevant contributions to this Rencontre are summarized here. 37 refs., 16 figs

  9. Measuring the Proton Beam Polarization From The Source To RHIC

    Science.gov (United States)

    Makdisi, Yousef I.

    2008-02-01

    Polarimeters are necessary tools for measuring the beam polarization during the acceleration process as well as a yardstick for performing spin physics experiments. In what follows, I will describe the principles of measuring the proton beam polarization and the techniques that are employed at various energies. I will present a tour of the polarimetry employed at the BNL Relativistic Heavy Ion collider (RHIC) polarized proton complex as it spans the full spectrum from the source to collider energies.

  10. Photoinjector beam quality improvement by shaping the wavefront of a drive laser with oblique incidence

    Institute of Scientific and Technical Information of China (English)

    HE Zhi-Gang; WANG Xiao-Hui; JIA Qi-Ka

    2012-01-01

    To increase the quantum efficiency (QE) of a copper photocathode and reduce the thermal emittance of an electron beam,a drive laser with oblique incidence was adopted in a BNL type photocathode rf gun.The disadvantageous effects on the beam quality caused by oblique incidence were analyzed qualitatively.A simple way to solve the problens through wavefront shaping was introduced and the beam quality was improved.

  11. Current experiments in elementary particle physics. Revision

    International Nuclear Information System (INIS)

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  12. Measurement of the analyzing power for proton-carbon elastic scattering in the CNI region with a 22 GeV/c polarized proton beam

    International Nuclear Information System (INIS)

    We have carried out the experiment BNL-AGS E950 to measure the analyzing power for proton-carbon elastic scattering in the Coulomb-Nuclear Interference (CNI) region with a 22 GeV/c polarized proton beam. Recoil carbons from 300 keV to a few MeV in the CNI region, were detected inside the AGS ring to identify proton-carbon elastic scattering. The preliminary results of the analyzing power measurement are presented

  13. Measuring the proton beam polarization from the source to RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi,Y.

    2007-09-10

    Polarimeters are necessary tools for measuring the beam polarization during the acceleration process as well as a yardstick for performing spin physics experiments. In what follows, I will describe the principles of measuring the proton beam polarization and the techniques that are employed at various energies. I will present a tour of the polarimetry employed at the BNL Relativistic Heavy Ion collider (RHIC) polarized proton complex as it spans the full spectrum from the source to collider energies.

  14. Spin at RHIC

    International Nuclear Information System (INIS)

    The relativistic Heavy Ion Collider (RHIC) at BNL is in its fourth year of construction. The target date for completion is March 1999. In this report, I will describe the accelerator complex and its status with special emphasis on its capability as a polarized proton collider, the proposed physics program, the detectors, and the expected sensitivities to physics signatures. copyright 1995 American Institute of Physics

  15. Progress on Test EBIS and the Design of an EBIS-Based RHIC Preinjector

    CERN Document Server

    Alessi, James; Gould, Omar; Kponou, Ahovi; Lockey, Robert; Pikin, Alexander I; Prelec, Krsto; Raparia, Deepak; Ritter, John; Snydstrup, Louis

    2005-01-01

    Following the successful development of the Test EBIS at BNL,* we now have a design for an EBIS-based heavy ion preinjector which would serve as an alternative to the Tandem Van de Graaffs in providing beams for RHIC and the NASA Space Radiation Laboratory. This baseline design includes an EBIS producing mA-level currents of heavy ions (ex. Au 32+) in ~ 10-20

  16. Current experiments in elementary-particle physics

    International Nuclear Information System (INIS)

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated

  17. Workshop on detectors for third-generation synchrotron sources: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    The aims of the workshop were (1) to acquaint APS users with current R and D being carried out on detectors, (2) to identify new detector systems possible during the next five years, (3) to identify new detectors theoretically possible in the future, (4) to stimulate interactions between user groups and detector developers, and (5) to obtain recommendations from expert panels on technical issues needing resolution. Development of detectors at ESRF, Spring-8, BNL, CERN and LBL are included.

  18. Identification and evaluation of PWR in-vessel severe accident management strategies

    International Nuclear Information System (INIS)

    This reports documents work performed the NRC/RES Accident Management Guidance Program to evaluate possible strategies for mitigating the consequences of PWR severe accidents. The selection and evaluation of strategies was limited to the in-vessel phase of the severe accident, i.e., after the initiation of core degradation and prior to RPV failure. A parallel project at BNL has been considering strategies applicable to the ex-vessel phase of PWR severe accidents

  19. High energy accelerator and colliding beam user group

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report discusses the following topics: OPAL experiment at LEP; D{phi} experiment at Fermilab; deep inelastic muon interactions at TEV II; CYGNUS experiment; final results from {nu}{sub e}{sup {minus}e} elastic scattering; physics with CLEO detector at CESR; results from JADE at PETRA; rare kaon-decay experiment at BNL; search for top quark; and super conducting super collider activities.

  20. RF Design of Normal Conducting 704 MHz and 2.1 GHz Cavities for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Binping [Brookhaven Natl. Lab.; Belomestnykh, Sergey [SUNY, Stony Brook; Ben-Zvi, Ilan [RIKEN BNL; Blaskiewicz, Michael [RIKEN BNL; Brennan, Joseph [RIKEN BNL; Brutus, Jean Clifford [RIKEN BNL; Fedotov, Alexei [RIKEN BNL; Hahn, Harald [Brookhaven; McIntyre, Gary [RIKEN BNL; Pai, Chien [RIKEN BNL; Smith, Kevin [RIKEN BNL; Tuozzolo, Joseph [RIKEN BNL; Veshcherevich, Vadim [Cornell U., CLASSE; Wu, Qiong [RIKEN BNL; Xin, Tianmu [RIKEN BNL; Xu, Wencan [RIKEN BNL; Zaltsman, Alex [RIKEN BNL

    2016-06-01

    To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under development at BNL. Two normal conducting cavities, a single cell 704 MHz cavity and a 3 cell 2.1 GHz third harmonic cavity, will be used in LEReC for energy spread correction. Currently these two cavities are under fabrication. In this paper we report the RF design of these two cavities.

  1. Studies of the strain-dependent properties of A15 filamentary conductors at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Work at BNL pertaining to the strain response of filamentary bronze-processed superconductors is reviewed. This work includes the intrinsic strain dependence of the critical properties of A15 structure compounds, the nature of the initial internal strain state of composite conductors, and the interplay between these residual strains and applied strains which governs the response of the conductor to external strain. Some factors which can enhance the strain tolerances of filamentary conductors are briefly discussed

  2. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  3. Brookhaven National Laboratory site environmental report for calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1994-05-01

    This report documents the results of the Environmental Monitoring Program at BNL and presents summary information about environmental compliance for 1993. To evaluate the effect of BNL operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, ground water and vegetation were made at the BNL site and at sites adjacent to the Laboratory. Brookhaven National Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment were evaluated. Among the permitted facilities, two instances, of pH exceedances were observed at recharge basins, possible related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant (STP) to the Peconic River exceeded on five occasions, three for residual chlorine and one each for iron and ammonia nitrogen. The chlorine exceedances were related to a malfunctioning hypochlorite dosing pump and ceased when the pump was repaired. While the iron and ammonia-nitrogen could be the result of disturbances to the sand filter beds during maintenance. The environmental monitoring data has identified site-specific contamination of ground water and soil. These areas are subject to Remedial Investigation/Feasibility Studies (RI/FS) under the Inter Agency Agreement (IAG). Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with applicable environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at BNL are minimal and pose no threat to the public or to the environment. This report meets the requirements of DOE Orders 5484. 1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  4. Oil heat technology research and development

    Energy Technology Data Exchange (ETDEWEB)

    Kweller, E.R. [Department of Energy, Washington, DC (United States); McDonald, R.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    The purpose of this United States Department of Energy (DOE)/Brookhaven National Laboratory (BNL) program is to develop a technology base for advancing the state-of-the-art related to oilfired combustion equipment. The major thrust is through technology based research that will seek new knowledge leading to improved designs and equipment optimization. The Combustion Equipment space Conditioning Technology program currently deals exclusively with residential and small commercial building oil heat technology.

  5. SNS RING STUDY AT THE AGS BOOSTER.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG, S.Y.; AHRENS, L.; BEEBE-WANG, J.; BLASKIEWICZ, M.; FEDOTOV, A.; GARDNER, C.; LEE, Y.Y.; LUCCIO, A.; MALITSKY, N.; ROSER, T.; WENG, W.T.; WEI, J.; ZENO, K.; REECE, K.; WANG, J.G.

    2000-06-30

    During the g-2 run at the BNL AGS in early 2000, a 200 MeV storage-ring-like magnetic cycle has been set-up and tuned at the Booster in preparing for the Spallation Neutron Source (SNS) accumulator ring study. In this article, we report the progress of the machine set-up, tuning, some preliminary studies, and the future plan.

  6. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    Energy Technology Data Exchange (ETDEWEB)

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  7. Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); McIntosh, P. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Moss, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wheelhouse, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xin, T. [Stony Brook Univ., NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems

  8. HARMONIC CAVITY PERFORMANCE FOR NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    BLEDNYKH, A.; KRINSKY, S.; PODOBEDOV, B.; ROSE, J.; TOWNE, N.; WANG, J.M.

    2005-05-15

    NSLS-II is a 3 GeV ultra-high brightness storage ring planned to succeed the present NSLS rings at BNL. Ultralow emittance combined with short bunch length means that it is critical to minimize the effects of Touschek scattering and coherent instabilities. Improved lifetime and stability can be achieved by including a third-harmonic RF cavity in the baseline design. This paper describes the required harmonic RF parameters and the expected system performance.

  9. From SPS to RHIC: Maurice and the CERN heavy-ion programme

    OpenAIRE

    Heinz, Ulrich W.

    2008-01-01

    Maurice Jacob played a key role in bringing together different groups from the experimental and theoretical nuclear and particle physics communities to initiate an ultrarelativistic heavy-ion collision program at the CERN SPS, in order to search for the quark-gluon plasma. I review the history of this program from its beginnings to the time when the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) started operation. I close by providing a glimpse of the important...

  10. Cryogenic test of double quarter wave crab cavity for the LHC High luminosity upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alberty, L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Calaga, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Cullen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Capatina, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Hammons, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Marques, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Verdu-Andres, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A Proof-of-Principle (PoP) Double Quarter Wave Crab Cavity (DQWCC) was designed and fabricated for the Large Hadron Collider (LHC) luminosity upgrade. A vertical cryogenic test has been done at Brookhaven National Lab (BNL). The cavity achieved 4.5 MV deflecting voltage with a quality factor above 3×109. We report the test results of this design.

  11. Summary of longitudinal instabilities workshop

    International Nuclear Information System (INIS)

    A five-day ISABELLE workshop on longitudinal instabilities was held at BNL, August 9--13, 1976. Heavy emphasis was put on single bunched beam instabilities in the microwave region extending above the cut-off frequency of the ISABELLE vacuum chamber. A discussion is given of the mechanism governing the instability, and calculations as well as measurements of the longitudinal coupling impedances in the ISABELLE rings are described

  12. Heavy ions at the LHC: Physics perspectives and experimental program

    Indian Academy of Sciences (India)

    J Schukraft

    2001-08-01

    Ultrarelativistic heavy ion physics is entering the new era of collider experiments with the start-up of RHIC at BNL and construction for detectors at LHC well under way. At this crossroads, the article will give a summary of the experimental program and our current view of heavy ion physics at the LHC, concentrating in particular on physics topics that are different or unique compared to current facilities.

  13. Current experiments in elementary particle physics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  14. Commissioning and Early Operation for the NSLS-II Booster RF System

    Energy Technology Data Exchange (ETDEWEB)

    Marques, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cupolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Davila, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gao, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Goel, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holub, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kulpin, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); McDonald, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Oliva, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Papu, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ramirez, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rose, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sikora, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sorrentino, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Towne, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL) is a third generation 3GeV, 500mA synchrotron light source. We discuss the booster synchrotron RF system responsible for providing power to accelerate an electron beam from 200MeV to 3GeV. The RF system design and construction are complete and is currently in the operational phase of the NSLS-II project. Preliminary operational data is also discussed.

  15. Big Bang machine could destroy the earth

    CERN Multimedia

    Leake, J

    1999-01-01

    BNL have set up a committee to investigate the possibility that operation of RHIC will create a 'strangelets' chain reaction whereby the strange particles formed in the accelerator go on to convert anything they touch into more strange matter. The committee will also consider the alternative possibility that colliding particles could achieve such high density they form a mini black hole. Both scenarios are considered extremely unlikely (1 page).

  16. Beam energy dependence of two-proton correlations at the AGS

    CERN Document Server

    Panitkin, S Y; Alexander, J; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D; Chance, J; Chung, J; Cole, B; Crowe, K M; Das, A; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A; Hjort, E; Huo, L; Justice, M; Kaplan, M; Keane, D; Kintner, J C; Klay, J L; Krofcheck, D; Lacey, R A; Lisa, M A; Liu, H; Liu, Y; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D; Pinkenburg, C H; Porile, N T; Rai, G; Ritter, H G; Romero, J; Scharenberg, R P; Schröder, L; Srivastava, B; Stone, N; Symons, T J M; Wang, S; Whitfield, J; Wienold, T; Witt, R; Wood, L; Yang, X; Zhang, W; Zhang, Y

    1999-01-01

    First measurements of the beam energy dependence of the two proton correlation function in central Au+Au collisions are performed by the E895 Collaboration at the BNL AGS. No significant changes with beam energy were observed. The imaging technique of Brown-Danielewicz is used in order to extract information about the space-time content of the proton source at freeze-out. Extracted source functions show peculiar enhancement at low relative separation.

  17. Analogies between 'classical' plasmas and quark gluon plasma

    International Nuclear Information System (INIS)

    Using characterization methods specific to complex plasmas some information of the new state of the nuclear matter was reported by four major experiments from RHIC BNL (USA), namely the quark-gluon plasma. Additional arguments for the existence of the quark-gluon plasma in liquid phase is done. An equivalent Coulomb coupling parameter is used. Evidences for the liquid phase of the quark-gluon plasma are obtained, in agreement with the other experimental results. (author)

  18. An evaluation of vertical stroke V{sub us} vertical stroke and precise tests of the standard model from world data on leptonic and semileptonic kaon decays

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, M.; Isidori, G.; Moulson, M.; Palutan, M.; Sciascia, B. [Laboratori Nazionali di Frascati dell' INFN, Frascati, RM (Italy); Cirigliano, V. [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM (United States); Mescia, F. [Universitat de Barcelona, Dep. ECM and ICC, Barcelona (Spain); Neufeld, H. [Universitaet Wien, Fakultaet fuer Physik, Vienna (Austria); Passemar, E. [Universitat de Valencia - CSIC, Departament de Fisica Teorica, IFIC, Valencia (Spain); Sozzi, M. [Universita di Pisa e Sezione dell' INFN di Pisa, Dipartimento di Fisica, Pisa (Italy); Wanke, R. [Universitaet Mainz, Institut fuer Physik, Mainz (Germany); Yushchenko, O.P. [Institute for High Energy Physics, Protvino (Russian Federation)

    2010-10-15

    We present a global analysis of leptonic and semileptonic kaon decay data, including all recent results published by the BNL-E865, KLOE, KTeV, ISTRA+ and NA48 experiments. This analysis, in conjunction with precise lattice calculations of the hadronic matrix elements now available, leads to a very precise determination of vertical stroke V{sub us} vertical stroke and allows us to perform several stringent tests of the standard model. (orig.)

  19. An evaluation of |Vus| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays

    CERN Document Server

    Antonelli, M; Isidori, G; Mescia, F; Moulson, M; Neufeld, H; Passemar, E; Palutan, M; Sciascia, B; Sozzi, M; Wanke, R; Yushchenko, O P

    2010-01-01

    We present a global analysis of leptonic and semileptonic kaon decay data, including all recent results published by the BNL-E865, KLOE, KTeV, ISTRA+ and NA48 experiments. This analysis, in conjunction with precise lattice calculations of the hadronic matrix elements now available, leads to a very precise determination of |Vus| and allows us to perform several stringent tests of the Standard Model.

  20. Construction and operation of a support facilities (Building 729) for operation/testing of a prototype accelerator/storage ring (XLS) and machine shop for the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Proposed action is to construct at BNL a 5,600-ft{sup 2} support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS.

  1. Construction and operation of a support facilities (Building 729) for operation/testing of a prototype accelerator/storage ring (XLS) and machine shop for the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Proposed action is to construct at BNL a 5,600-ft[sup 2] support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS.

  2. Next Generation Muon g-2 Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, David W. [Washington U., Seattle

    2015-12-02

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of $a_\\mu$ from Brookhaven E821 by a factor of 4; that is, $\\delta a_\\mu \\sim 16 \\times 10^{-11}$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.

  3. Future land use plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

  4. Experimental study of collective flow phenomena in high-energy nucleus-nucleus collisions

    CERN Document Server

    Chkhaidze, L V; Kharkhelauri, L L

    2002-01-01

    The results of the experimental study of collective flow phenomena, such as the sideward and elliptic flow of nuclear matter, discovered during the last 10-15 years in high-energy nucleus-nucleus collisions are presented in this review. Sideward (often termed directed) and elliptic flows have been observed for protons, antiprotons, light nuclei, pions, kaons, and lambdas emitted in nucleus-nucleus collisions at 0.1-1.8 GeV/nucleon of LBL Bevalac and GSI/SIS by Plastic-Ball, Streamer Chamber, EOS-NPC, FOPI, LAND, TAPS, and KAOS collaborations; at 2-4 GeV/nucleon of Dubna JINR by SKM-200-GIBS, Propane Buble Chamber, and Emulsion Chamber collaborations; at 2-14 GeV/nucleon of BNL AGS, by the E877, E895, and E917 collaborations; and at 60 and 200 GeV/nucleon of CERN SPS, by the WA98 and NA49 collaborations and more recently by the STAR at RHIC BNL. In the review, the results of the SKM-200-GIBS collaboration of JINR are presented and compared with the results of different experiments by Bevalac, GSI/SIS, BNL, and...

  5. 1999 SITE ENVIRONMENTAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    ENGEL-COX,J.; ZIMMERMAN,E.; LEE,R.; WILLIAMS,J.; GREEN,T.; PAQUETTE,D.; HOODA,B.; SCARPITTA,S.; GENZER,P.; ET AL

    2000-09-01

    Throughout the scientific community, Brookhaven National Laboratory (BNL) is renowned for its leading-edge research in physics, medicine, chemistry, biology, materials, and the environment. BNL is committed to supporting its world-class scientific research with an internationally recognized environmental protection program. The 1999 Site Environmental Report (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the site and fully integrating environmental stewardship into all facets of the Laboratory's mission. BNL is located on 5,265 acres of pine barrens in Suffolk County in the center of Long Island, New York. The Laboratory is situated above a sole source aquifer at the headwaters of the Peconic River; therefore, protecting ground and surface water quality is a special concern. Approximately 3,600 acres of the site are undeveloped and serve as habitat for a wide variety of animals and plants, including one New York State endangered species, the tiger salamander, and two New York State threatened species, the banded sunfish and the stiff goldenrod. Monitoring, preserving, and restoring these ecological resources is a high priority for the Laboratory.

  6. Northeast Waste Management Alliance (NEWMA)

    International Nuclear Information System (INIS)

    Funding was provided to Brookhaven National Laboratory in the fourth quarter of FY93 to establish a regional alliance as defined by Dr. Clyde Frank during his visit to BNL on March 7, 1993. In collaboration with the Long Island Research Institute (LIRI), BNL developed a business plan for the Northeast Waste Management Alliance (NEWMA). Concurrently, informal discussions were initiated with representatives of the waste management industry, and meetings were held with local and state regulatory and governmental personnel to obtain their enthusiasm and involvement. A subcontract to LIRI was written to enable it to formalize interactions with companies offering new waste management technologies selected for their dual value to the DOE and local governments in the Northeast. LIRI was founded to develop and coordinate economic growth via introduction of new technologies. As a not-for-profit institution it is in an ideal position to manage the development of NEWMA through ready access to venture capital and strong interactions with the business community, universities, and BNL. Another subcontract was written with a professor at SUNY/Stony Brook to perform an evaluation of new pyrolitic processes, some of which may be appropriate for development by NEWMA. Independent endorsement of the business plan recently by another organization, GETF, with broad knowledge of DOE/EM-50 objectives, provides a further incentive for moving rapidly to implement the NEWMA strategy. This report describes progress made during the last quarter of FY93

  7. Electron-Ion Collider: The next QCD frontier. Understanding the glue that binds us all

    Science.gov (United States)

    Accardi, A.; Albacete, J. L.; Anselmino, M.; Armesto, N.; Aschenauer, E. C.; Bacchetta, A.; Boer, D.; Brooks, W. K.; Burton, T.; Chang, N.-B.; Deng, W.-T.; Deshpande, A.; Diehl, M.; Dumitru, A.; Dupré, R.; Ent, R.; Fazio, S.; Gao, H.; Guzey, V.; Hakobyan, H.; Hao, Y.; Hasch, D.; Holt, R.; Horn, T.; Huang, M.; Hutton, A.; Hyde, C.; Jalilian-Marian, J.; Klein, S.; Kopeliovich, B.; Kovchegov, Y.; Kumar, K.; Kumerički, K.; Lamont, M. A. C.; Lappi, T.; Lee, J.-H.; Lee, Y.; Levin, E. M.; Lin, F.-L.; Litvinenko, V.; Ludlam, T. W.; Marquet, C.; Meziani, Z.-E.; McKeown, R.; Metz, A.; Milner, R.; Morozov, V. S.; Mueller, A. H.; Müller, B.; Müller, D.; Nadel-Turonski, P.; Paukkunen, H.; Prokudin, A.; Ptitsyn, V.; Qian, X.; Qiu, J.-W.; Ramsey-Musolf, M.; Roser, T.; Sabatié, F.; Sassot, R.; Schnell, G.; Schweitzer, P.; Sichtermann, E.; Stratmann, M.; Strikman, M.; Sullivan, M.; Taneja, S.; Toll, T.; Trbojevic, D.; Ullrich, T.; Venugopalan, R.; Vigdor, S.; Vogelsang, W.; Weiss, C.; Xiao, B.-W.; Yuan, F.; Zhang, Y.-H.; Zheng, L.

    2016-09-01

    This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focused ten-week program on "Gluons and quark sea at high energies" at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users' communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.

  8. Use of human reliability data reported in probabilistic risk assessments in addressing human factors safety issues

    International Nuclear Information System (INIS)

    This paper describes a research program currently being performed by Brookhaven National Laboratory (BNL) which aims to identify and improve means of using probabilistic risk assessment (PRA) results to address human factors safety issues. The long-term goal of this research (FY 1987) will be to make the development process and documentation structure of PRAs more applicable to human factors safety issues facing NRC. Of particular interest are (1) the identification of retrofit requirements, (2) development of baseline measures to evaluate them, and (3) identification of future human factors research needs. Research has started in two phases at BNL. These steps involve (1) identifying and cataloging the human reliability data reported in PRAs and (2) identifying and articulating human factors safety issues confronting NRC. Human factors safety issues and human reliability PRA data will be matched in order to determine how useful current PRA results are in addressing those issues. Methods of using PRA data through manipulation and combination with other data sources to address issues will also be developed. In addition, information concerning errors of commission and omission used in PRAs are being examined and reported on. In the following fiscal years, changes in the PRA process and structure proposed in related efforts will be evaluated by BNL to determine how to optimize the usefulness of PRAs as a regulatory tool. These efforts are discussed separately in the paper

  9. High energy physics research

    International Nuclear Information System (INIS)

    The goal of this research is to understand the fundamental constituents of matter and their interactions. At this time, the following activities are underway: e+e- interactions and Z0 physics at CERN; studies to upgrade the L3 detector at LHC; very high statistics charm physics at Fermilab; search for the H particle at BNL; search for the fifth force; rare kaon decay experiments at BNL; study of B-meson physics at hadron colliders; e+e- pair creation by light at SLAC; R ampersand D related to SSC experiments and the GEM detector; and theoretical research in elementary particle physics and cosmology. The main additions to the activities described in detail in the original grant proposal are (1) an experiment at SLAC (E-144) to study strong-field QED effects in e-laser and γ-laser collisions, and (2) a search for the H particle at BNL (E-188). The R ampersand D efforts for the GEM detector have also considerably expanded. In this paper we give a brief status report for each activity currently under way

  10. A Superconducting Magnet Upgrade of the ATF2 Final Focus

    Energy Technology Data Exchange (ETDEWEB)

    Parker B.; Anerella M.; Escallier J.; He P.; Jain A.; Marone A.; Wanderer P.; Wu K.C.; Hauviller C.; Marin E.; Tomas R.; Zimmermann F.; Bolzon B.; Jeremie A.; Kimura N.; Kubo K.; Kume T.; Kuroda S.; Okugi T.; Tauchi T.; Terunuma N.; Tomaru T.; Tsuchiya K.; Urakawa J.; Yamamoto A.; Bambabe P.; Coe P.; Urner D.; Seryi A.; Spencer C.; White G.

    2010-05-23

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC QD0 R and D FF prototype under construction at BNL.

  11. A Superconducting Magnet Upgrade of the ATF2 Final Focus

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Brett; /Brookhaven; Anerella, Michael; /Brookhaven; Escallier, John; /Brookhaven; He, Ping; /Brookhaven; Jain, Animesh; /Brookhaven; Marone, Andrew; /Brookhaven; Wanderer, Peter; /Brookhaven; Wu, Kuo-Chen; /Brookhaven; Bambade, Philip; /Orsay, LAL; Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea; /Annecy, LAPP; Coe, Paul; /Oxford U.; Urner, David /Oxford U.; Hauviller, Claude; /CERN; Marin, Eduardo; /CERN; Tomas, Rogelio; /CERN; Zimmermann, Frank; /CERN; Kimura, Nobuhiro; /KEK, Tsukuba; Kubo, Kiyoshi; /KEK, Tsukuba; Kume, Tatsuya /KEK, Tsukuba; Kuroda, Shigeru; /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /SLAC /SLAC /SLAC

    2012-07-05

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC QD0 R&D FF prototype under construction at BNL.

  12. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL

  13. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    Science.gov (United States)

    Ikeda, S.; Kumaki, M.; Kanesue, T.; Okamura, M.

    2016-02-01

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.

  14. Component fragilities. Data collection, analysis and interpretation

    International Nuclear Information System (INIS)

    As part of the component fragility research program sponsored by the US NRC, BNL is involved in establishing seismic fragility levels for various nuclear power plant equipment with emphasis on electrical equipment. To date, BNL has reviewed approximately seventy test reports to collect fragility or high level test data for switchgears, motor control centers and similar electrical cabinets, valve actuators and numerous electrical and control devices, e.g., switches, transmitters, potentiometers, indicators, relays, etc., of various manufacturers and models. BNL has also obtained test data from EPRI/ANCO. Analysis of the collected data reveals that fragility levels can best be described by a group of curves corresponding to various failure modes. The lower bound curve indicates the initiation of malfunctioning or structural damage, whereas the upper bound curve corresponds to overall failure of the equipment based on known failure modes occurring separately or interactively. For some components, the upper and lower bound fragility levels are observed to vary appreciably depending upon the manufacturers and models. For some devices, testing even at the shake table vibration limit does not exhibit any failure. Failure of a relay is observed to be a frequent cause of failure of an electrical panel or a system. An extensive amount of additional fregility or high level test data exists

  15. Future land use plan

    International Nuclear Information System (INIS)

    The US Department of Energy's (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ''Future Land Use'' initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities' interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory's view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts

  16. Next Generation Muon g-2 Experiments

    CERN Document Server

    Hertzog, David W

    2015-01-01

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of $a_\\mu$ from Brookhaven E821 by a factor of 4; that is, $\\delta a_\\mu \\sim 16 \\times 10^{-11}$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.

  17. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 216-8502 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Kumaki, M. [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Kanesue, T.; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-02-15

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.

  18. In vivo distribution and gene expression of genetically modified hepatocytes after intrasplenic transplantation

    Institute of Scientific and Technical Information of China (English)

    章卫平; 曹雪涛; 黄欣; 王建莉; 陶群; 叶天星

    1997-01-01

    To investigate the feasibility and efficacy of liver gene therapy mediated by intrasplenic transplanta-tion of genetically modified hepatocytes, the normal mouse liver cell line BNL CL. 2 cells were introduced with Neo-re-sistant (NeoR) gene or interleukin-2 (IL-2) gene in vitro, and transplanted intrasplenically into normal syngeneic mice (2 × 106 cell/mouse); subsequently, the expressions of the introduced genes in vivo were detected. The RT-PCR results showed that NeoR mRNA expressions were detectable in livers 24 h after transplantation and lasted over 11 weeks. Moreover, The NeoR mRNA was detected to be expressed temporarily in spleens (24 h- 1 week) and lungs (24-96 h) after transplantation. After intrasplenic transplantation of IL-2 gene-modified BNL CL.2 cells, the stable expressions of IL-2 mRNA in the livers of transplanted mice were detectable by RT-PCR (24 h-11 weeks), and certain levels of IL-2 (5-40 pg/mL) remained in the peripheral blood. When IL-2 gene-modified BNL CL. 2 cells were tran

  19. Test results for prototypes of the twin aperture dipoles for the LHC insertion region

    CERN Document Server

    Muratore, J; Cozzolino, J P; Ganetis, G; Ghosh, A; Gupta, R; Harrison, M; Jain, A; Marone, A; Plate, S R; Schmalzle, J D; Thomas, R; Wanderer, P J; Willen, E; Wu, K C

    2002-01-01

    The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) is building 20 insertion region dipoles of various types for the Large Hadron Collider (LHC) at CERN. These 9.45 m-long, 8 cm aperture magnets use the same coil design as the arc dipoles for the Relativistic Heavy Ion Collider (RHIC) at BNL. The most challenging of these dipoles are the twin aperture magnets. The two apertures are separated by 188 to 234 mm, and the dipole fields in both the apertures point in the same direction. In order to test the design and determine various operating parameters of these magnets, two three m-long prototypes were built and tested at BNL. Tests were done to measure spontaneous quench performance, conductor temperature at quench, coil stress behavior during cool-downs, warm-ups and excitation ramps, and quench protection heater performance. Extensive magnetic field measurements were done with a 3.58-meter long integral coil, as well as a one-meter long coil at the axial center of the magnet. Dynamic ...

  20. Next Generation Muon g − 2 Experiments

    Directory of Open Access Journals (Sweden)

    Hertzog David W.

    2016-01-01

    Full Text Available I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty of aμ from Brookhaven E821 by a factor of 4; that is, δaμ ∼ 16 × 10−11, a relative uncertainty of 140 ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase 1 installation.

  1. Northeast Waste Management Alliance (NEWMA). Annual report FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.; Kaplan, E.

    1993-11-01

    Funding was provided to Brookhaven National Laboratory in the fourth quarter of FY93 to establish a regional alliance as defined by Dr. Clyde Frank during his visit to BNL on March 7, 1993. In collaboration with the Long Island Research Institute (LIRI), BNL developed a business plan for the Northeast Waste Management Alliance (NEWMA). Concurrently, informal discussions were initiated with representatives of the waste management industry, and meetings were held with local and state regulatory and governmental personnel to obtain their enthusiasm and involvement. A subcontract to LIRI was written to enable it to formalize interactions with companies offering new waste management technologies selected for their dual value to the DOE and local governments in the Northeast. LIRI was founded to develop and coordinate economic growth via introduction of new technologies. As a not-for-profit institution it is in an ideal position to manage the development of NEWMA through ready access to venture capital and strong interactions with the business community, universities, and BNL. Another subcontract was written with a professor at SUNY/Stony Brook to perform an evaluation of new pyrolitic processes, some of which may be appropriate for development by NEWMA. Independent endorsement of the business plan recently by another organization, GETF, with broad knowledge of DOE/EM-50 objectives, provides a further incentive for moving rapidly to implement the NEWMA strategy. This report describes progress made during the last quarter of FY93.

  2. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    Energy Technology Data Exchange (ETDEWEB)

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  3. Technical developments at the NASA Space Radiation Laboratory.

    Science.gov (United States)

    Lowenstein, D I; Rusek, A

    2007-06-01

    The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26-29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program's Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from 1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described.

  4. Identification and Assessment of Material Models for Age-Related Degradation of Structures and Passive Components in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nie,J.; Braverman, J.; Hofmayer, C.; Kim, M. K.; Choi, I-K.

    2009-04-27

    When performing seismic safety assessments of nuclear power plants (NPPs), the potential effects of age-related degradation on structures, systems, and components (SSCs) should be considered. To address the issue of aging degradation, the Korea Atomic Energy Research Institute (KAERI) has embarked on a five-year research project to develop a realistic seismic risk evaluation system which will include the consideration of aging of structures and components in NPPs. Three specific areas that are included in the KAERI research project, related to seismic probabilistic risk assessment (PRA), are probabilistic seismic hazard analysis, seismic fragility analysis including the effects of aging, and a plant seismic risk analysis. To support the development of seismic capability evaluation technology for degraded structures and components, KAERI entered into a collaboration agreement with Brookhaven National Laboratory (BNL) in 2007. The collaborative research effort is intended to continue over a five year period with the goal of developing seismic fragility analysis methods that consider the potential effects of age-related degradation of SSCs, and using these results as input to seismic PRAs. In the Year 1 scope of work BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations that will be performed in the subsequent evaluations in the years that follow. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. This report

  5. Identification and Assessment of Material Models for Age-Related Degradation of Structures and Passive Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    When performing seismic safety assessments of nuclear power plants (NPPs), the potential effects of age-related degradation on structures, systems, and components (SSCs) should be considered. To address the issue of aging degradation, the Korea Atomic Energy Research Institute (KAERI) has embarked on a five-year research project to develop a realistic seismic risk evaluation system which will include the consideration of aging of structures and components in NPPs. Three specific areas that are included in the KAERI research project, related to seismic probabilistic risk assessment (PRA), are probabilistic seismic hazard analysis, seismic fragility analysis including the effects of aging, and a plant seismic risk analysis. To support the development of seismic capability evaluation technology for degraded structures and components, KAERI entered into a collaboration agreement with Brookhaven National Laboratory (BNL) in 2007. The collaborative research effort is intended to continue over a five year period with the goal of developing seismic fragility analysis methods that consider the potential effects of age-related degradation of SSCs, and using these results as input to seismic PRAs. In the Year 1 scope of work BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations that will be performed in the subsequent evaluations in the years that follow. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. This report

  6. Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated using a Condensate Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y.; Kim, M.; Choi, I.

    2010-06-30

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are

  7. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  8. Mapping of glyphosate-resistant gene CP4-EPSPS in cotton%棉花草甘膦抗性基因CP4-EPSPS的初步定位

    Institute of Scientific and Technical Information of China (English)

    刘吉焘; 马晓杰; 狄佳春; 陈旭升

    2013-01-01

    以抗草甘膦陆地棉品系G-6和不抗草甘膦海岛棉品系海7124为试验材料,对分离世代进行检测,分析抗性基因的遗传规律;利用覆盖棉花26条染色体的234对核心引物,通过群体分离分析法进行差异性标记筛选,利用F2分离群体对抗性基因进行染色体定位.结果表明,抗草甘膦性状是受1对显性基因控制的质量性状.特异引物检测显示控制抗草甘膦性状的基因为人工合成基因CP4-EPSPS.利用筛选获得的(27)对多态性引物检测F2作图群体每个单株的基因型,发现分子标记NAU5417、NAU1339、BNL3992、BNL2448、NAU2140与目的基因CP4-EPSPS连锁.进一步筛选,共得到15个分子标记.参照现有的遗传图谱,推断目的基因CP4-EPSPS位于棉花第5染色体BNL2448与NAU2140之间,遗传距离分别为7.0 cM和16.2 cM.%G-6 (glyphosate-resistant cotton) and Hai 7124 (non-resistant sea island cotton) were used in this study.The hybrid F1 population was resistant to glyphosate.The ratio of resistant plants to non-resistant ones in F2 population was consistent with 3 ∶ 1,and the ratio in recessive backcross population BC2 was consistent with 1 ∶ 1,indicating that glyphosate-resistant trait was controlled by a pair of dominant genes.The glyphosate-resistant gene was detected to be an artificially synthesized one,CP4-EPSPS,using a pair of distinctive primers.By bulk segregation analysis,a total of 27 polymorphic primers were obtained from 234 pairs covering 26 pairs of chromosomes in cotton,among which 5 pairs of primers,NAU5417,NAU1339,BNL3992,BNL2448 and NAU2140 were found to be linked with target gene CP4-EPSPS.Further screening showed 15 pairs of primers linked to the gene.According to a known genetic map,CP4-EPSPS was located on BNL2448 and NAU2140 of the fifth chromosome,with genetic distances of 7.0 cM and 16.2 cM,respectively.

  9. 不同来源国家的三套棉花胞质雄性不育恢复基因的分子标记定位%Study on Three Sets of Cytoplasmic Male Sterility Cotton from Different Countries:Locate the Molecular Markers of Restoring Genes

    Institute of Scientific and Technical Information of China (English)

    尤春源; 聂新辉; 雷江荣; 冯国礼; 吕军; 华金平

    2013-01-01

    [目的]研究定位出来源于不同国家的棉花细胞质雄性不育恢复基因的分子标记,为棉花三系杂交育种提供恢复系分子标记辅助选育技术.[方法]对国内、以色列和美国引进的三套棉花胞质雄性不育系及相应恢复系,通过构建的三套BC1育性BSA-DNA池,利用1 000对SSR和STS、RAPD等分子标记的分析.[结果]来源于美国引进恢复系含恢复基因有2个,而来源于国内与以色列引进的恢复系,只含有1个恢复基因.定位出与恢复基因紧密连锁的两侧标记(美国、国内、以色列)分别为:Rf1位于BNL3535、CIR179间,两标记间5.3 cM.Rf2位于STS659、BNL1045间,两标记间4.8 cM;Rf位于CIR222、BNL632间,两标记间6.7 cM;Rf位于STS147、CIR179间,两标记间4.3 cM.[结论]初步获得三套来源于不同国家的细胞质雄性不育恢复基因的分子标记图谱.%[Objective]The main purpose of this research is to study sets of cytoplasmic male sterility cotton from different countries and locate the molecular markers of restoring genes in the hope of providing seed selection techniques for restoring line-assisted selection by the technology of molecular maker in cotton three -lines hybrid breeding.[Method] Three sets of BSA-DNA pools of BC1 fertility were constructed by three sets of cotton cytoplasmic male sterility lines corresponding to restorers from China,Israel and the United States,which were analyzed by 1 000 suits molecular markers of SSR,STS,and RAPD.[Result] Three sets of molecular marker maps linkage closely with restoring gene were obtained:there are two restoring genes from restorers that were derived from the United States,but only one restoring gene in restorers was derived from China and Israel.Marks (from the United States:Rf1 and Rf2,China and Israel:Rf) on both sides of the linkage closely restoring genes were separately located:Rf1 lies in between BNL3535 and CIR179,in which the distance was 5.3 cM ;Rf2 lies in

  10. RADIOLOGICAL EMISSIONS AND ENVIRONMENTAL MONITORING FOR BROOKHAV EN NATIONAL LABORATORY, 1947 - 1961.

    Energy Technology Data Exchange (ETDEWEB)

    MEINHOLD,C.B.; MEINHOLD,A.F.(EDITED BY BOND,P.D.)

    2001-05-30

    Brookhaven National Laboratory (BNL) has monitored its releases to the environment since its inception in 1947. From 1962 to 1966 and from 1971 to the present, annual reports,were published that recorded the emissions and releases to the environment from Laboratory operations. In 1998, a report was written to summarize the environmental data for the years 1967 to 1970. One of the purposes of the current report is to complete BNL's environmental history by covering the period from 1948 through 1961. The activities in 1947 were primarily organizational and there is no information on the use of radiation at the Laboratory before 1948. An additional objective of this report is to provide environmental data to the Agency for Toxic Substances and Disease Registry (ATSDR). The report does not provide an estimate of the doses associated with BNL operations. The report is comprised of two parts. The first part is a summary of emissions, releases, and environmental monitoring information including a discussion of the uncertainties in these data. Part two contains the detailed information on the approach taken to estimate the releases from the fuel cartridge failures at the Brookhaven Graphite Research Reactor (BGRR). A series of appendices present more detailed information on these events in tabular form. The approach in this report is to be reasonable, conservative, (pessimistic), and transparent in estimating releases from fuel cartridge ruptures. Clearly, reactor stack monitoring records and more extensive records would have greatly improved this effort, but in accordance with Atomic Energy Commission (AEC) Appendix 0230 Annex C-9, many of the detailed records from this time were not retained.

  11. Assessment of mercury health risks to adults from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, F.W.; Moskowitz, P.D.; Fthenakis, V.M.; DePhillips, M.P.; Viren, J.; Saroff, L.

    1994-05-01

    The U.S. Environmental Protection Agency (EPA) is preparing, for the U.S. Congress, a report evaluating the need to regulate mercury (Hg) emissions from electric utilities. This study, to be completed in 1995, will have important health and economic implications. In support of these efforts, the U.S. Department of Energy, Office of Fossil Energy, sponsored a risk assessment project at Brookhaven National Laboratory (BNL) to evaluate methylmercury (MeHg) hazards independently. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1000 MW{sub e} coal-fired power plant were estimated using probabilistic risk assessment techniques. The approach draws on the extant knowledge in each of the important steps in the calculation chain from emissions to health effects. Estimated results at key points in the chain were compared with actual measurements to help validate the modeled estimates. Two cases were considered: the baseline case (no local impacts), and the impact case (maximum local power-plant impact). The BNL study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Many implicit and explicit sources of uncertainty exist in this analysis. Those that appear to be most in need of improvement include data on doses and responses for potentially sensitive subpopulations (e.g., fetal exposures). Rather than considering hypothetical situations, it would also be preferable to assess the risks associated with actual coal-fired power plants and the nearby sensitive water bodies and susceptible subpopulations. Finally, annual total Hg emissions from coal burning and from other anthropogenic sources are still uncertain; this makes it difficult to estimate the effects of U.S. coal burning on global Hg concentration levels, especially over the long term.

  12. Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.

    1996-04-01

    The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

  13. Workshop on body composition in basic and clinical research and the emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.

    2000-12-14

    A special one-day workshop was held to review the status, the need for, and the future role of BNL in the Body Composition Analysis Program (BCAP). Two speakers succinctly outlined the status and future new developments using gamma nuclear resonance technology as it applies to BCAP. Seven speakers from three institutions outlined the continued need for BCAP and presented new clinical applications of BCAP in theirs respective fields of expertise. Extensive increase in the use of surrogate instrumentation, e.g., DXA and BIA, in BCAP was recognized as a significant contributing factor to the growth in BCAP. The growing role of MRI in BCAP was also emphasized. In light of these developments BCAP at BNL, with its specialized In Vivo Neutron Activation (IVNA) facilities, was recognized as a unique user oriented resource that may serve the community hospitals in the area. Three regional large institutions expressed their desire to use these facilities. In addition, IVNA provides direct measure of the human compartments in vivo, thus providing a gold standard for the surrogate methodologies that are in use or to be developed. It was strongly felt that there is a need for a calibration center with a national stature for the different methodologies for in vivo measurements, a role that befits very well a national laboratory. This offers an exquisite justification for DOE to support this orphan technology and to develop BCAP at BNL to, 1, provide a user oriented regional resource, 2, provide a national reference laboratory, and 3, develop new advanced technologies for BCAP.

  14. 915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Giangrande, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds on the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.

  15. 915-Mhz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Bartholomew, M. J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Giangrande, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-03-01

    When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to hours) variability through scattering and reflection of incoming solar radiation. Providing estimates of this short-term variability is important for determining and regulating the output from large solar arrays as they connect with the larger power infrastructure. In support of the installation of a 37-MW solar array on the grounds of Brookhaven National Laboratory (BNL), a study of the impacts of clouds on the output of the solar array has been undertaken. The study emphasis is on predicting the change in surface solar radiation resulting from the observed/forecast cloud field on a 5-minute time scale. At these time scales, advection of cloud elements over the solar array is of particular importance. As part of the BNL Aerosol Life Cycle Intensive Operational Period (IOP), a 915-MHz Radar Wind Profiler (RWP) was deployed to determine the profile of low-level horizontal winds and the depth of the planetary boundary layer. The initial deployment mission of the 915-MHz RWP for cloud forecasting has been expanded the deployment to provide horizontal wind measurements for estimating and constraining cloud advection speeds. A secondary focus is on the observation of dynamics and microphysics of precipitation during cold season/winter storms on Long Island. In total, the profiler was deployed at BNL for 1 year from May 2011 through May 2012.

  16. TAILORING X-RAY BEAM ENERGY SPECTRUM TO ENHANCE IMAGE QUALITY OF NEW RADIOGRAPHY CONTRAST AGENTS BASED ON GD OR OTHER LANTHANIDES

    International Nuclear Information System (INIS)

    Gadovist, a 1.0-molar Gd contrast agent from Schering AG, Berlin Germany, in use in clinical MPI in Europe, was evaluated as a radiography contrast agent. In a collaboration with Brookhaven National Laboratory (BNL), Schering AG is developing several such lanthanide-based contrast agents, while BNL evaluates them using different x-my beam energy spectra. These energy spectra include a ''truly'' monochromatic beam (0.2 keV energy bandwidth) from the National Synchrotron Light Source (NSLS), BNL, tuned above the Gd K-edge, and x-ray-tube beams from different kVp settings and beam filtrations. Radiographs of rabbits' kidneys were obtained with Gadovist at the NSLS. Furthermore, a clinical radiography system was used for imaging rabbits' kidneys comparing Gadovist and Conray, an iodinated contrast agent. The study, using 74 kVp and standard Al beam filter for Conray and 66 kVp and an additional 1.5 mm Cu beam filter for Gadovist, produced comparable images for Gadovist and Conray; the injection volumes were the same, while the radiation absorbed dose for Gadovist was slightly smaller. A bent-crystal silicon monochromator operating in the Laue diffraction mode was developed and tested with a conventional x-ray tube beam; it narrows the energy spectrum to about 4 keV around the anode tungsten's Ku line. Preliminary beam-flux results indicate that the method could be implemented in clinical CT if x-ray tubes with approximately twice higher output become available

  17. PROCEEDINGS OF THE 1999 OIL HEAT TECHNOLOGY CONFERENCE AND WORKSHOP.

    Energy Technology Data Exchange (ETDEWEB)

    MCDONALD,R.J.

    1999-04-01

    The 1999 Oil Heat Technology Conference and Workshop, April 15-16 at Brookhaven National Laboratory (BNL) is sponsored by the U. S. Department of Energy, Office of Building Technology, State and Community Programs (DOEBTS). The meeting is also co-sponsored by the: Petroleum Marketers Association of America, New England Fuel Institute, Oilheat Manufacturers Association, National Association of Oil Heat Service Managers, New York State Energy Research and Development Authority, Empire State Petroleum Association, New York Oil Heating Association, Oil Heat Institute of Long Island, and the Pennsylvania Petroleum Association. BNL is proud to acknowledge all of our 1999 co-sponsors, without their help and support the conference would have been canceled due to budget restrictions. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole. The 1999 Oil Heat Technology Conference and Workshop, will be the thirteenth since 1984, is a very valuable technology transfer activity supported by the ongoing Combustion Equipment Technology (Oilheat R and D) program at BNL. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. They will provide a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector.

  18. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    Energy Technology Data Exchange (ETDEWEB)

    OH,S.Y.; CHANG,J.; MUGHABGHAB,S.

    2000-05-11

    Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.

  19. Charged and strange hadron elliptic flow in Cu+Cu collisions at sqrt(s)NN = 62.4 and 200 GeV

    OpenAIRE

    Aggarwal, M. M.; Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.

    2010-01-01

    We present the results of an elliptic flow, v2, analysis of Cu+Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at √sNN=62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v2(pT), is reported for different collision centralities for charged hadrons h± and strangeness-ontaining hadrons KS0, Λ, Ξ, and ϕ in the midrapidity region |η|

  20. Axial masses in quasielastic neutrino scattering and single-pion neutrinoproduction on nucleons and nuclei

    CERN Document Server

    Kuzmin, K S; Naumov, V A; Kuzmin, Konstantin S.; Lyubushkin, Vladimir V.; Naumov, Vadim A.

    2006-01-01

    We analyse available experimental data on the total charged-current neutrino-nucleon and antineutrino-nucleon cross sections for quasielastic scattering and single-pion neutrinoproduction. Published results from the relevant experiments at ANL, BNL, FNAL, CERN, and IHEP are included dating from the end of sixties to the present day, covering muon neutrino and antineutrino beams on a variety of nuclear targets, with energies from the thresholds to about 350 GeV. The data are used to adjust the poorly known values of the axial masses.