WorldWideScience

Sample records for bnl research center

  1. Proceedings of RIKEN BNL Research Center Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Samios, Nicholas P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-01-24

    The twelfth evaluation of the RIKEN BNL Research Center (RBRC) took place on November 6 – 8, 2012 at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC), present at the meeting, were: Prof. Wit Busza, Prof. Miklos Gyulassy, Prof. Kenichi Imai, Prof. Richard Milner (Chair), Prof. Alfred Mueller, Prof. Charles Young Prescott, and Prof. Akira Ukawa. We are pleased that Dr. Hideto En’yo, the Director of the Nishina Institute of RIKEN, Japan, participated in this meeting both in informing the committee of the activities of the RIKEN Nishina Center for Accelerator- Based Science and the role of RBRC and as an observer of this review. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on his/her research efforts. This encompassed three major areas of investigation: theoretical, experimental and computational physics. In addition, the committee met privately with the fellows and postdocs to ascertain their opinions and concerns. Although the main purpose of this review is a report to RIKEN management on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  2. Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD project. Proceedings of RIKEN BNL Research Center workshop: Volume 13

    International Nuclear Information System (INIS)

    1998-01-01

    A workshop was held at the RIKEN-BNL Research Center on October 16, 1998, as part of the first anniversary celebration for the center. This meeting brought together the physicists from RIKEN-BNL, BNL and Columbia who are using the QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer at the RIKEN-BNL Research Center for studies of QCD. Many of the talks in the workshop were devoted to domain wall fermions, a discretization of the continuum description of fermions which preserves the global symmetries of the continuum, even at finite lattice spacing. This formulation has been the subject of analytic investigation for some time and has reached the stage where large-scale simulations in QCD seem very promising. With the computational power available from the QCDSP computers, scientists are looking forward to an exciting time for numerical simulations of QCD

  3. Proceedings of RIKEN BNL Research Center workwhop on RHIC spin

    Energy Technology Data Exchange (ETDEWEB)

    SOFFER,J.

    1999-10-06

    This RHIC Spin Workshop is the 1999 annual meeting of the RHIC Spin Collaboration, and the second to be hosted at Brookhaven and sponsored by the RIKEN BNL Research Center. The previous meetings were at Brookhaven (1998), Marseille (1996), MIT in 1995, Argonne 1994, Tucson in 1991, and the Polarized Collider Workshop at Penn State in 1990. As noted last year, the Center provides a home for combined work on spin by theorists, experimenters, and accelerator physicists. This proceedings, as last year, is a compilation of 1 page summaries and 5 selected transparencies for each speaker. It is designed to be available soon after the workshop is completed. Speakers are welcome to include web or other references for additional material. The RHIC spin program and RHIC are rapidly becoming reality. RHIC has completed its first commissioning run, as described here by Steve Peggs. The first Siberian Snake for spin has been completed and is being installed in RHIC. A new polarized source from KEK and Triumf with over 1 milliampere of polarized H{sup minus} is being installed, described by Anatoli Zelenski. They have had a successful test of a new polarimeter for RHIC, described by Kazu Kurita and Haixin Huang. Spin commissioning is expected next spring (2000), and the first physics run for spin is anticipated for spring 2001. The purpose of the workshop is to get everyone together about once per year and discuss goals of the spin program, progress, problems, and new ideas. They also have many separate regular forums on spin. There are spin discussion sessions every Tuesday, now organized by Naohito Saito and Werner Vogelsang. The spin discussion schedule and copies of presentations are posted on http://riksg01.rhic.bnl.gov/rsc. Speakers and other spinners are encouraged to come to BNL and to lead a discussion on your favorite idea. They also have regular polarimeter and snake meetings on alternate Thursdays, led by Bill McGahern, the lead engineer for the accelerator spin

  4. Proceedings of RIKEN BNL Research Center workshop on RHIC spin

    International Nuclear Information System (INIS)

    Soffer, J.

    1999-01-01

    This RHIC Spin Workshop is the 1999 annual meeting of the RHIC Spin Collaboration, and the second to be hosted at Brookhaven and sponsored by the RIKEN BNL Research Center. The previous meetings were at Brookhaven (1998), Marseille (1996), MIT in 1995, Argonne 1994, Tucson in 1991, and the Polarized Collider Workshop at Penn State in 1990. As noted last year, the Center provides a home for combined work on spin by theorists, experimenters, and accelerator physicists. This proceedings, as last year, is a compilation of 1 page summaries and 5 selected transparencies for each speaker. It is designed to be available soon after the workshop is completed. Speakers are welcome to include web or other references for additional material. The RHIC spin program and RHIC are rapidly becoming reality. RHIC has completed its first commissioning run, as described here by Steve Peggs. The first Siberian Snake for spin has been completed and is being installed in RHIC. A new polarized source from KEK and Triumf with over 1 milliampere of polarized H minus is being installed, described by Anatoli Zelenski. They have had a successful test of a new polarimeter for RHIC, described by Kazu Kurita and Haixin Huang. Spin commissioning is expected next spring (2000), and the first physics run for spin is anticipated for spring 2001. The purpose of the workshop is to get everyone together about once per year and discuss goals of the spin program, progress, problems, and new ideas. They also have many separate regular forums on spin. There are spin discussion sessions every Tuesday, now organized by Naohito Saito and Werner Vogelsang. The spin discussion schedule and copies of presentations are posted on http://riksg01.rhic.bnl.gov/rsc. Speakers and other spinners are encouraged to come to BNL and to lead a discussion on your favorite idea. They also have regular polarimeter and snake meetings on alternate Thursdays, led by Bill McGahern, the lead engineer for the accelerator spin effort

  5. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 66

    International Nuclear Information System (INIS)

    OGAWA, A.

    2005-01-01

    The RIKEN BNL Research Center (RSRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the 'Rikagaku Kenkyusho (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has both a theory and experimental component. At present the theoretical group has 4 Fellows and 3 Research Associates as well as 11 RHIC Physics/University Fellows (academic year 2003-2004). To date there are approximately 30 graduates from the program of which 13 have attained tenure positions at major institutions worldwide. The experimental group is smaller and has 2 Fellows and 3 RHIC Physics/University Fellows and 3 Research Associates, and historically 6 individuals have attained permanent positions. Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists, A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center. RBRC has an active workshop program on strong interaction physics with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are sixty nine proceedings volumes available. The construction of a 0.6 teraflops parallel processor, dedicated to lattice QCD, begun at the Center on February 19, 1998, was completed on August 28, 1998 and is still

  6. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOLUME 64)

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.; KRETZER,S.; TEANEY,D.; VENUGOPALAN,R.; VOGELSANG,W.

    2004-09-28

    We are presently in a very exciting and important phase of the RHIC era. A huge body of data. has been gathered in heavy-ion collisions that provides very convincing evidence for the formation of a quark. gluon plasma in central collisions. Recently, studies of nuclear modification factors in forward dAu collisions have shown tantalizing signatures that may be understood most naturally in terms of a, universal form of matter controlling the high energy limit of strong interactions, the Color Glass Condensate. Finally, important advances have also been made in spin physics, where first measurements of single-transverse and double-longitudinal spin asymmetries have been presented, marking a qualitatively new era in this field. The wealth of the new experimental data called for a workshop in which theorists took stock and reviewed in depth what has been achieved, in order to give guidance as to what avenues should be taken from here. This was the idea behind the workshop ''Theory Summer Program on RHIC Physics''. We decided to invite a fairly small number of participants--some world leaders in their field, others only at the beginning of their careers, but all actively involved in RHIC physics. Each one of them stayed over an extended period of time from two to six weeks. Such long-terms stays led to particularly fruitful interactions and collaborations with many members of the BNL theory groups, as well as with experimentalists at BNL. They also were most beneficial for achieving the main goal of this workshop, namely to perform detailed studies.

  7. PRODEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP : HIGH PERFORMANCE COMPUTING WITH QCDOC AND BLUEGENE.

    Energy Technology Data Exchange (ETDEWEB)

    CHRIST,N.; DAVENPORT,J.; DENG,Y.; GARA,A.; GLIMM,J.; MAWHINNEY,R.; MCFADDEN,E.; PESKIN,A.; PULLEYBLANK,W.

    2003-03-11

    Staff of Brookhaven National Laboratory, Columbia University, IBM and the RIKEN BNL Research Center organized a one-day workshop held on February 28, 2003 at Brookhaven to promote the following goals: (1) To explore areas other than QCD applications where the QCDOC and BlueGene/L machines can be applied to good advantage, (2) To identify areas where collaboration among the sponsoring institutions can be fruitful, and (3) To expose scientists to the emerging software architecture. This workshop grew out of an informal visit last fall by BNL staff to the IBM Thomas J. Watson Research Center that resulted in a continuing dialog among participants on issues common to these two related supercomputers. The workshop was divided into three sessions, addressing the hardware and software status of each system, prospective applications, and future directions.

  8. Proceedings of RIKEN BNL Research Center Workshop: Progress in High-pT Physics at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bazilevsky, A.; Bland, L.; Vogelsang, W.

    2010-03-17

    This volume archives the presentations at the RIKEN BNL Research Center workshop 'Progress in High-PT Physics at RHIC', held at BNL in March 2010. Much has been learned from high-p{sub T} physics after 10 years of RHIC operations for heavy-ion collisions, polarized proton collisions and d+Au collisions. The workshop focused on recent progress in these areas by both theory and experiment. The first morning saw review talks on the theory of RHIC high-p{sub T} physics by G. Sterman and J. Soffer, and on the experimental results by M. Tannenbaum. One of the most exciting recent results from the RHIC spin program is the first observation of W bosons and their associated single-spin asymmetry. The new preliminary data were reported on the first day of our workshop, along with a theoretical perspective. There also were detailed discussions on the global analysis of polarized parton distributions, including the knowledge on gluon polarization and the impact of the W-data. The main topic of the second workshop day were single-transverse spin asymmetries and their analysis in terms of transverse-momentum dependent parton distributions. There is currently much interest in a future Drell-Yan program at RHIC, thanks to the exciting physics opportunities this would offer. This was addressed in some of the talks. There also were presentations on the latest results on transverse-spin physics from HERMES and BELLE. On the final day of the workshop, the focus shifted toward forward and small-x physics at RHIC, which has become a cornerstone of the whole RHIC program. Exciting new data were presented and discussed in terms of their possible implications for our understanding of strong color-field phenomena in QCD. In the afternoon, there were discussions of nuclear parton distributions and jet observables, among them fragmentation. The workshop was concluded with outlooks toward the near-term (LHC, JLab) and longer-term (EIC) future. The workshop has been a great success

  9. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP FUTURE TRANSVERSITY MEASUREMENTS (VOLUME 29)

    International Nuclear Information System (INIS)

    Boer, D.; Grosse Perdekamp, M.

    2001-01-01

    The RIKEN-BNL Research Center workshop on ''Future Transversity Measurements'' was held at BNL from September 18-20, 2000. The main goal of the workshop was to explore future measurements of transversity distributions. This issue is of importance to the RHIC experiments, which will study polarized proton-proton collisions with great precision. One of the workshop's goals was to enhance interactions between the DIS community at HERA and the spin community at RHIC in this field. The workshop has been well received by the participants; the number of 69 registered participants demonstrates broad interest in the workshop's topics. The program contained 35 talks and there was ample time for lively discussions. The program covered all recent work in the field and in addition some very elucidating educational talks were given. At the workshop the present status of the field was discussed and it has succeeded in stimulating new experimental and theoretical studies (e.g. model calculations for interference fragmentation functions (IFF), IFF analysis at DELPHI). It also functioned to focus attention on the open questions that need to be resolved for near future experiments. In general, the conclusions were optimistic, i.e. measuring the transversity functions seems to be possible, although some new experimental hurdles will have to be taken

  10. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP FUTURE TRANSVERSITY MEASUREMENTS (VOLUME 29).

    Energy Technology Data Exchange (ETDEWEB)

    Boer, D.; Grosse Perdekamp, M.

    2001-01-02

    The RIKEN-BNL Research Center workshop on ''Future Transversity Measurements'' was held at BNL from September 18-20, 2000. The main goal of the workshop was to explore future measurements of transversity distributions. This issue is of importance to the RHIC experiments, which will study polarized proton-proton collisions with great precision. One of the workshop's goals was to enhance interactions between the DIS community at HERA and the spin community at RHIC in this field. The workshop has been well received by the participants; the number of 69 registered participants demonstrates broad interest in the workshop's topics. The program contained 35 talks and there was ample time for lively discussions. The program covered all recent work in the field and in addition some very elucidating educational talks were given. At the workshop the present status of the field was discussed and it has succeeded in stimulating new experimental and theoretical studies (e.g. model calculations for interference fragmentation functions (IFF), IFF analysis at DELPHI). It also functioned to focus attention on the open questions that need to be resolved for near future experiments. In general, the conclusions were optimistic, i.e. measuring the transversity functions seems to be possible, although some new experimental hurdles will have to be taken.

  11. Proceedings of RIKEN BNL Research Center Workshop, RHIC Spin Physics V, Volume 32, February 21, 2001

    International Nuclear Information System (INIS)

    BUNCE, G.; SAITO, N.; VIGDOR, S.; ROSER, T.; SPINKA, H.; ENYO, H.; BLAND, L.C.; GURYN, W.

    2001-01-01

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD and RHIC physics through the nurturing of a new generation of young physicists. During the fast year, the Center had only a Theory Group. In the second year, an Experimental Group was also established at the Center. At present, there are seven Fellows and nine post dots in these two groups. During the third year, we started a new Tenure Track Strong Interaction Theory RHIC Physics Fellow Program, with six positions in the academic year 1999-2000; this program will increase to include eleven theorists in the next academic year, and, in the year after, also be extended to experimental physics. In addition, the Center has an active workshop program on strong interaction physics, about ten workshops a year, with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. The construction of a 0.6 teraflop parallel processor, which was begun at the Center on February 19, 1998, was completed on August 28, 1998

  12. Proceedings of RIKEN BNL Research Center Workshop, Volume 91, RBRC Scientific Review Committee Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Samios,N.P.

    2008-11-17

    The ninth evaluation of the RIKEN BNL Research Center (RBRC) took place on Nov. 17-18, 2008, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Dr. Wit Busza (Chair), Dr. Miklos Gyulassy, Dr. Akira Masaike, Dr. Richard Milner, Dr. Alfred Mueller, and Dr. Akira Ukawa. We are pleased that Dr. Yasushige Yano, the Director of the Nishina Institute of RIKEN, Japan participated in this meeting both in informing the committee of the activities of the Nishina Institute and the role of RBRC and as an observer of this review. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on his/her research efforts. This encompassed three major areas of investigation, theoretical, experimental and computational physics. In addition the committee met privately with the fellows and postdocs to ascertain their opinions and concerns. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  13. Proceedings of RIKEN BNL Research Center Workshop: The Physics of W and Z Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, S.; Okada, K.; Patwa, A.; Qiu, J.; Surrow, B.

    2010-06-24

    A two-day workshop on 'The Physics of Wand Z Bosons' Was held at the RIKEN BNL Research Center at Brookhaven National Laboratory on June 24-25, 2010. With the recent release of the first measurement of W bosons in proton-proton collisions at RHIC and the first observation of W events at the LHC, the workshop was a timely opportunity to bring together experts from both the high energy particle and nuclear physics communities to share their ideas and expertise on the physics of Wand Z bosons, with the aim of fully exploring the potential of the W/Z physics programs at RHIC and the LHC. The focus was on the production and measurement of W/Z bosons in both polarized and unpolarized proton-proton collisions, and the role of W/Z production in probing the parton flavor and helicity structure of the colliding proton and in the search for new physics. There were lively discussions about the potential and future prospects of W/Z programs at RHIC, Tevatron, and the LHC.

  14. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 72, RHIC SPIN COLLABORATION MEETINGS XXXI, XXXII, XXXIII

    International Nuclear Information System (INIS)

    OGAWA, A.

    2005-01-01

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has both a theory and experimental component. At present the theoretical group has 4 Fellows and 3 Research Associates as well as 11 RHIC Physics/University Fellows (academic year 2003-2004). To date there are approximately 30 graduates from the program of which 13 have attained tenure positions at major institutions worldwide. The experimental group is smaller and has 2 Fellows and 3 RHIC Physics/University Fellows and 3 Research Associates, and historically 6 individuals have attained permanent positions. Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists. A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center. RBRC has an active workshop program on strong interaction physics with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are seventy-two proceeding volumes available. The construction of a 0.6 teraflops parallel processor, dedicated to lattice QCD, begun at the Center on February 19, 1998, was completed on August 28, 1998 and is still

  15. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED: ''PARTON ORBITAL ANGULAR MOMENTUM'' VOLUME 81

    International Nuclear Information System (INIS)

    Bunce, G.; Fields, D.; Vogelsang, W.

    2006-01-01

    The joint UNM/RBRC 'Workshop on Parton Orbital Angular Momentum' was held on February 24th through 26th at the University of New Mexico Department of Physics and Astronomy in Albuquerque, New Mexico, and was sponsored by The University of New Mexico (Physics Department, New Mexico Center for Particle Physics, Dean of Arts and Sciences, and Office of the Vice Provost for Research and Economic Development) and the NUN-BNL Research Center. The workshop was motivated by recent and upcoming experimental data based on methods which have been proposed to access partonic angular momenta, including Deeply Virtual Compton Scattering, measuring the Sivers functions, and measuring helicity dependent k t in jets. Our desire was to clarify the state of the art in the theoretical understanding in this area, and to help define what might be learned about partonic orbital angular momenta Erom present and upcoming high precision data, particularly at RHIC, Jlab, COMPASS and HERMES. The workshop filled two rather full days of talks fiom both theorists and experimentalists, with a good deal of discussion during, and in between talks focusing on the relationship between the intrinsic transverse momentum, orbital angular momentum, and observables such as the Sivers Function. These talks and discussions were particularly illuminating and the organizers wish to express their sincere thanks to everyone for contributing to this workshop. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are eighty proceeding volumes available

  16. PROCEEDINGS FROM RIKEN-BNL RESEARCH CENTER WORKSHOP: PARITY-VIOLATING SPIN ASYMMETRIES AT RHIC

    International Nuclear Information System (INIS)

    VOGELSANG, W.; PERDEKAMP, M.; SURROW, B.

    2007-01-01

    as jet and W+charrn final states and spin asymmetries in Z production, were proposed and discussed. All of the talks attracted much interest and initiated active discussions. This was a very successful workshop. It stimulated many discussions and new collaborations. We are grateful to all participants and speakers for coming to the Center, and for their excellent work. The support provided for this workshop by Dr. N. Samios and his RIKEN-BNL Research Center has been magnificent, and we are very grateful for it. We thank Brookhaven National Laboratory and the U.S. Department of Energy for providing the facilities to hold the workshop. Finally, sincere thanks go to Jane Lysik for her efficient work on organizing and running the workshop

  17. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 77, RBRC SCIENTIFIC REVIEW COMMITTEE MEETING, OCTOBER 10-12, 2005

    Energy Technology Data Exchange (ETDEWEB)

    SAMIOS, N.P.

    2005-10-10

    The eighth evaluation of the RIKEN BNL Research Center (RBRC) took place on October 10-12, 2005, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Jean-Paul Blaizot, Professor Makoto Kobayashi, Dr. Akira Masaike, Professor Charles Young Prescott (Chair), Professor Stephen Sharpe (absent), and Professor Jack Sandweiss. We are grateful to Professor Akira Ukawa who was appointed to the SRC to cover Professor Sharpe's area of expertise. In addition to reviewing this year's program, the committee, augmented by Professor Kozi Nakai, evaluated the RBRC proposal for a five-year extension of the RIKEN BNL Collaboration MOU beyond 2007. Dr. Koji Kaya, Director of the Discovery Research Institute, RIKEN, Japan, presided over the session on the extension proposal. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on higher research efforts. In addition, a special session was held in connection with the RBRC QCDSP and QCDOC supercomputers. Professor Norman H. Christ, a collaborator from Columbia University, gave a presentation on the progress and status of the project, and Professor Frithjof Karsch of BNL presented the first physics results from QCDOC. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 77, RBRC SCIENTIFIC REVIEW COMMITTEE MEETING, OCTOBER 10-12, 2005

    International Nuclear Information System (INIS)

    SAMIOS, N.P.

    2005-01-01

    The eighth evaluation of the RIKEN BNL Research Center (RBRC) took place on October 10-12, 2005, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Jean-Paul Blaizot, Professor Makoto Kobayashi, Dr. Akira Masaike, Professor Charles Young Prescott (Chair), Professor Stephen Sharpe (absent), and Professor Jack Sandweiss. We are grateful to Professor Akira Ukawa who was appointed to the SRC to cover Professor Sharpe's area of expertise. In addition to reviewing this year's program, the committee, augmented by Professor Kozi Nakai, evaluated the RBRC proposal for a five-year extension of the RIKEN BNL Collaboration MOU beyond 2007. Dr. Koji Kaya, Director of the Discovery Research Institute, RIKEN, Japan, presided over the session on the extension proposal. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on higher research efforts. In addition, a special session was held in connection with the RBRC QCDSP and QCDOC supercomputers. Professor Norman H. Christ, a collaborator from Columbia University, gave a presentation on the progress and status of the project, and Professor Frithjof Karsch of BNL presented the first physics results from QCDOC. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment

  19. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.; Yuan, F.

    2011-08-02

    Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty years ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the

  20. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP: VOLUME 69 RBRC SCIENTIFIC REVIEW COMMITTEE MEETING

    International Nuclear Information System (INIS)

    SAMIOS, N.P.

    2005-01-01

    The RIKEN BNL Research Center (RSRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the 'Rikagaku Kenkyusho' (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has both a theory and experimental component. At present the theoretical group has 4 Fellows and 3 Research Associates as well as 11 RHIC Physics/University Fellows (academic year 2003-2004). To date there are approximately 30 graduates from the program of which 13 have attained tenure positions at major institutions worldwide. The experimental group is smaller and has 2 Fellows and 3 RHIC Physics/University Fellows and 3 Research Associates, and historically 6 individuals have attained permanent positions. Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists, A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center. RBRC has an active workshop program on strong interaction physics with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are sixty nine proceedings volumes available. The construction of a 0.6 teraflops parallel processor, dedicated to lattice QCD, begun at the Center on February 19, 1998, was completed on August 28, 1998 and is still

  1. Perturbative QCD as a probe of hadron structure: Volume 2. Proceedings of RIKEN BNL Research Center workshop

    International Nuclear Information System (INIS)

    1997-01-01

    The workshop brought together about thirty invited participants from around the world, and an almost equal number of Brookhaven users and staff, to discuss recent developments and future prospects for hadronic strong interaction studies at high energy, particularly relating to the RHIC project at Brookhaven. RIKEN and Brookhaven have long traditions in and commitments to the study of the strong interactions, and the advent of the RHIC collider will open new opportunities both for relativistic heavy ion and polarized proton-proton studies. Activities at the RIKEN BNL Research Center are intended to focus on physics opportunities stimulated by this new facility. Thus, one of the purposes of the center is to provide a forum where workers in the field can gather to share and develop their ideas in a stimulating environment. The purpose of the workshop was both to delineate theoretical problems and stimulate collaborations to address them. The workshop focused primarily, but not exclusively, on spin and small-x physics

  2. QUARKONIUM PRODUCTION IN RELATIVISTIC NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 12

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    1999-04-20

    The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.

  3. Quarkonium production in relativistic nuclear collisions. Proceedings of Riken BNL Research Center Workshop,Volume 12

    International Nuclear Information System (INIS)

    Kharzeev, D.

    1999-01-01

    The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities

  4. Proceedings of RIKEN BNL Research Center Workshop: Thermal Photons and Dileptons in Heavy-Ion Collisions. Volume 119

    Energy Technology Data Exchange (ETDEWEB)

    David, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Rapp, R. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Ruan, L. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Yee, H-U. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2014-09-11

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The primary theme for this workshop related to sharing the latest experimental and theoretical developments in area of low transverse momentum (pT) dielectron and photons. All the presentations given at the workshop are included in this proceedings, primarily as PowerPoint presentations.

  5. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, HADRON STRUCTURE FROM LATTICE QCD, MARCH 18 - 22, 2002, BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    BLUM, T.; BOER, D.; CREUTZ, M.; OHTA, S.; ORGINOS, K.

    2002-03-18

    The RIKEN BNL Research Center workshop on ''Hadron Structure from Lattice QCD'' was held at BNL during March 11-15, 2002. Hadron structure has been the subject of many theoretical and experimental investigations, with significant success in understanding the building blocks of matter. The nonperturbative nature of QCD, however, has always been an obstacle to deepening our understanding of hadronic physics. Lattice QCD provides the tool to overcome these difficulties and hence a link can be established between the fundamental theory of QCD and hadron phenomenology. Due to the steady progress in improving lattice calculations over the years, comparison with experimentally measured hadronic quantities has become important. In this respect the workshop was especially timely. By providing an opportunity for experts from the lattice and hadron structure communities to present their latest results, the workshop enhanced the exchange of knowledge and ideas. With a total of 32 registered participants and 26 talks, the interest of a growing community is clearly exemplified. At the workshop Schierholz and Negele presented the current status of lattice computations of hadron structure. Substantial progress has been made during recent years now that the quenched results are well under control and the first dynamical results have appeared. In both the dynamical and the quenched simulations the lattice results, extrapolated to lighter quark masses, seem to disagree with experiment. Melnitchouk presented a possible explanation (chiral logs) for this disagreement. It became clear from these discussions that lattice computations at significantly lighter quark masses need to be performed.

  6. Proceedings of RIKEN BNL Research Center Workshop: The Approach to Equilibrium in Strongly Interacting Matter. Volume 118

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Venugopalan, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berges, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaizot, J. -P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gelis, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-04-09

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory*. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The purpose of this Workshop is to critically review the recent progress on the theory and phenomenology of early time dynamics in relativistic heavy ion collisions from RHIC to LHC energies, to examine the various approaches on thermalization and existing issues, and to formulate new research efforts for the future. Topics slated to be covered include Experimental evidence for equilibration/isotropization, comparison of various approaches, dependence on the initial conditions and couplings, and turbulent cascades and Bose-Einstein condensation.

  7. NUMERICAL ALGORITHMS AT NON-ZERO CHEMICAL POTENTIAL. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 19

    International Nuclear Information System (INIS)

    Blum, T.; Creutz, M.

    1999-01-01

    The RIKEN BNL Research Center hosted its 19th workshop April 27th through May 1, 1999. The topic was Numerical Algorithms at Non-Zero Chemical Potential. QCD at a non-zero chemical potential (non-zero density) poses a long-standing unsolved challenge for lattice gauge theory. Indeed, it is the primary unresolved issue in the fundamental formulation of lattice gauge theory. The chemical potential renders conventional lattice actions complex, practically excluding the usual Monte Carlo techniques which rely on a positive definite measure for the partition function. This ''sign'' problem appears in a wide range of physical systems, ranging from strongly coupled electronic systems to QCD. The lack of a viable numerical technique at non-zero density is particularly acute since new exotic ''color superconducting'' phases of quark matter have recently been predicted in model calculations. A first principles confirmation of the phase diagram is desirable since experimental verification is not expected soon. At the workshop several proposals for new algorithms were made: cluster algorithms, direct simulation of Grassman variables, and a bosonization of the fermion determinant. All generated considerable discussion and seem worthy of continued investigation. Several interesting results using conventional algorithms were also presented: condensates in four fermion models, SU(2) gauge theory in fundamental and adjoint representations, and lessons learned from strong; coupling, non-zero temperature and heavy quarks applied to non-zero density simulations

  8. Open standards for cascade models for RHIC: Volume 1. Proceedings of RIKEN BNL Research Center workshop

    International Nuclear Information System (INIS)

    1997-01-01

    It is widely recognized that cascade models are potentially effective and powerful tools for interpreting and predicting multi-particle observables in heavy ion physics. However, the lack of common standards, documentation, version control, and accessibility have made it difficult to apply objective scientific criteria for evaluating the many physical and algorithmic assumptions or even to reproduce some published results. The first RIKEN Research Center workshop was proposed by Yang Pang to address this problem by establishing open standards for original codes for applications to nuclear collisions at RHIC energies. The aim of this first workshop is: (1) to prepare a WWW depository site for original source codes and detailed documentation with examples; (2) to develop and perform standardized test for the models such as Lorentz invariance, kinetic theory comparisons, and thermodynamic simulations; (3) to publish a compilation of results of the above work in a journal e.g., ''Heavy Ion Physics''; and (4) to establish a policy statement on a set of minimal requirements for inclusion in the OSCAR-WWW depository

  9. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED "ODDERON SEARCHES AT RHIC" (VOLUME 76)

    Energy Technology Data Exchange (ETDEWEB)

    ORGANIZERS: GURYN, W.; KOVCHEGOV, Y.; VOGELSANG, W.; TRUEMAN, L.

    2005-10-25

    The Odderon, a charge-conjugation-odd partner of the Pomeron, has been a puzzle ever since its introduction in 1973. The Pomeron describes a colorless exchange with vacuum quantum numbers in the t-channel of hadronic scattering at high energies. The concept was originally formulated for the non-perturbative regime of Quantum Chromodynamics (QCD). In perturbation theory, the simplest picture of the Poineron is that of a two-gluon exchange process, whereas an Odderon can be thought of as an exchange of three gluons. Both the Pomeron and the Odderon are expected in QCD. However, while there exists plenty of experimental data that could be successfully described by Pomeron exchanges (for example in electron-proton and hadron-hadron scattering at high energies), no experimental sign of the Odderon has been observed. One of the very few hints so far is the difference in the diffractive minima of elastic proton-proton and proton-antiproton scattering measured at the ISR. The Odderon has recently received renewed attention by QCD researchers, mainly for the following two reasons. First of all, RHIC has entered the scene, offering exciting unique new opportunities for Odderon searches. RHIC provides collisions of nuclei at center-of-mass energies far exceeding those at all previous experiments. RHIC also provides collisions of protons of the highest center-of-mass energy, and in the interval, which has not been explored previously in p {bar p} collisions. In addition, it also has the unique feature of polarization for the proton beams, promising to become a crucial tool in Odderon searches. Indeed, theorists have proposed possible signatures of the Odderon in some spin asymmetries measurable at RHIC. Qualitatively unique signals should be seen in these observables if the Odderon coupling is large. Secondly, the Odderon has recently been shown to naturally emerge from the Color Glass Condensate (CGC), a theory for the high-energy asymptotics of QCD. It has been argued that

  10. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 65, RHIC SPIN COLLABORATION MEETINGS XXVII, XXVIII, and XXX

    International Nuclear Information System (INIS)

    OGAWA, A.

    2004-01-01

    The RIKEN BNL Research Center (RSRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the 'Rikagaku Kenkyusho' (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has both a theory and experimental component. At present the theoretical group has 4 Fellows and 3 Research Associates as well as 11 RHIC Physics/University Fellows (academic year 2003-2004). To date there are approximately 30 graduates from the program of which 13 have attained tenure positions at major institutions worldwide. The experimental group is smaller and has 2 Fellows and 3 RHIC Physics/University Fellows and 3 Research Associates, and historically 6 individuals have attained permanent positions. Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists, A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center. RBRC has an active workshop program on strong interaction physics with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are sixty nine proceedings volumes available. The construction of a 0.6 teraflops parallel processor, dedicated to lattice QCD, begun at the Center on February 19, 1998, was completed on August 28, 1998 and is still

  11. Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, A.; Fukushima, K.; Kharzeev, D.; Warringa, H.; Voloshin, S.

    2010-04-26

    This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and

  12. Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter

    International Nuclear Information System (INIS)

    Deshpande, A.; Fukushima, K.; Kharzeev, D.; Warringa, H.; Voloshin, S.

    2010-01-01

    This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and

  13. HARD PARTON PHYSICS IN HIGH ENERGY NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 17

    Energy Technology Data Exchange (ETDEWEB)

    CARROLL,J.

    1999-09-10

    The RIKEN-BNL center workshop on ''Hard parton physics in high energy nuclear collisions'' was held at BNL from March 1st-5th! 1999. The focus of the workshop was on hard probes of nucleus-nucleus collisions that will be measured at RHIC with the PHENIX and STAR detectors. There were about 45 speakers and over 70 registered participants at the workshop, with roughly a quarter of the speakers from overseas. About 60% of the talks were theory talks. A nice overview of theory for RHIC was provided by George Sterman. The theoretical talks were on a wide range of topics in QCD which can be classified under the following: (a) energy loss and the Landau-Pomeranchuk-Migdal effect; (b) minijet production and equilibration; (c) small x physics and initial conditions; (d) nuclear parton distributions and shadowing; (e) spin physics; (f) photon, di-lepton, and charm production; and (g) hadronization, and simulations of high pt physics in event generators. Several of the experimental talks discussed the capabilities of the PHENIX and STAR detectors at RHIC in measuring high pt particles in heavy ion collisions. In general, these talks were included in the relevant theory sessions. A session was set aside to discuss the spin program at RHIC with polarized proton beams. In addition, there were speakers from 08, HERA, the fixed target experiments at Fermilab, and the CERN fixed target Pb+Pb program, who provided additional perspective on a range of issues of relevance to RHIC; from jets at the Tevatron, to saturation of parton distributions at HERA, and recent puzzling data on direct photon production in fixed target experiments, among others.

  14. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 57, HIGH PT PHYSICS AT RHIC, DECEMBER 2-6, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kretzer, Stefan; Venugopalan, Raju; Vogelsang, Werner

    2004-02-18

    The AuAu, dAu, and pp collision modes of the RHIC collider at BNL have led to the publication of exciting high p{perpendicular} particle production data. There have also been two physics runs with polarized protons, and preliminary results on the double-spin asymmetry for pion production had been presented very recently. The ontological questions behind these measurements are fascinating: Did RHIC collisions create a Quark-Gluon-Plasma phase and did they verify the Color Glass Condensate as the high energy limit of QCD? Will the Spin Crisis finally be resolved in terms of gluon polarization and what new surprises are we yet to meet for Transverse Spin? Phenomena related to sub-microscopic questions as important as these call for interpretations that are footed in solid theory. At large p{perpendicular}, perturbative concepts are legitimately expected to provide useful approaches. The corresponding hard parton dynamics are, in several ways, key to unraveling the initial or final state and collisional phase of hard scattering events in vacuum as well as in hot or cold nuclear matter. Before the advent of RHIC data, a RIKEN-BNL workshop had been held at BNL in March 1999 on ''Hard Parton Physics in High Energy Nuclear Collisions''. The 2003 workshop on ''High p{perpendicular} Physics at RHIC'' was a logical continuation of this previous workshop. It gave the opportunity to revisit the 1999 expectations in the light of what has been found in the meantime and, at the same time, to critically discuss the underlying theoretical concepts. We brought together theorists who have done seminal work on the foundations of parton phenomenology in field theory, with theorists and experimentalists who are presently working on RHIC phenomenology. The participants were both from a high-energy physics and nuclear physics background and it remains only to be said here that this chemistry worked perfectly and the workshop was a great success.

  15. Proceedings of RIKEN BNL Research Center Workshop: Understanding QGP through Spectral Functions and Euclidean Correlators (Volume 89)

    International Nuclear Information System (INIS)

    Mocsy, A.; Petreczky, P.

    2008-01-01

    In the past two decades, one of the most important goals of the nuclear physics community has been the production and characterization of the new state of matter--Quark-Gluon Plasma (QGP). Understanding how properties of hadrons change in medium, particularly, the bound state of a very heavy quark and its antiquark, known as quarkonium, as well as determining the transport coefficients is crucial for identifying the properties of QGP and for the understanding of the experimental data from RHIC. On April 23rd, more than sixty physicists from twenty-seven institutions gathered for this three-day topical workshop held at BNL to discuss how to understand the properties of the new state of matter obtained in ultra-relativistic heavy ion collisions (particularly at RHIC-BNL) through spectral functions. In-medium properties of the different particle species and the transport properties of the medium are encoded in spectral functions. The former could yield important signatures of deconfinement and chiral symmetry restoration at high temperatures and densities, while the later are crucial for the understanding of the dynamics of ultra-relativistic heavy ion collisions. Participants at the workshop are experts in various areas of spectral function studies. The workshop encouraged direct exchange of scientific information among experts, as well as between the younger and the more established scientists. The workshops success is evident from the coherent picture that developed of the current understanding of transport properties and in-medium particle properties, illustrated in the current proceedings. The following pages show calculations of meson spectral functions in lattice QCD, as well as implications of these for quarkonia melting/survival in the quark gluon plasma; Lattice calculations of the transport coefficients (shear and bulk viscosities, electric conductivity); Calculation of spectral functions and transport coefficients in field theories using weak coupling

  16. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Quarkonium Production in Elementary and Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dumitru, A.; Lourenco, C.; Petreczky, P.; Qiu, J., Ruan, L.

    2011-08-03

    Understanding the structure of the hadron is of fundamental importance in subatomic physics. Production of heavy quarkonia is arguably one of the most fascinating subjects in strong interaction physics. It offers unique perspectives into the formation of QCD bound states. Heavy quarkonia are among the most studied particles both theoretically and experimentally. They have been, and continue to be, the focus of measurements in all high energy colliders around the world. Because of their distinct multiple mass scales, heavy quarkonia were suggested as a probe of the hot quark-gluon matter produced in heavy-ion collisions; and their production has been one of the main subjects of the experimental heavy-ion programs at the SPS and RHIC. However, since the discovery of J/psi at Brookhaven National Laboratory and SLAC National Accelerator Laboratory over 36 years ago, theorists still have not been able to fully understand the production mechanism of heavy quarkonia, although major progresses have been made in recent years. With this in mind, a two-week program on quarkonium production was organized at BNL on June 6-17, 2011. Many new experimental data from LHC and from RHIC were presented during the program, including results from the LHC heavy ion run. To analyze and correctly interpret these measurements, and in order to quantify properties of the hot matter produced in heavy-ion collisions, it is necessary to improve our theoretical understanding of quarkonium production. Therefore, a wide range of theoretical aspects on the production mechanism in the vacuum as well as in cold nuclear and hot quark-gluon medium were discussed during the program from the controlled calculations in QCD and its effective theories such as NRQCD to various models, and to the first principle lattice calculation. The scientific program was divided into three major scientific parts: basic production mechanism for heavy quarkonium in vacuum or in high energy elementary collisions; the

  17. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Quarkonium Production in Elementary and Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Dumitru, A.; Lourenco, C.; Petreczky, P.; Qiu, J.; Ruan, L.

    2011-01-01

    Understanding the structure of the hadron is of fundamental importance in subatomic physics. Production of heavy quarkonia is arguably one of the most fascinating subjects in strong interaction physics. It offers unique perspectives into the formation of QCD bound states. Heavy quarkonia are among the most studied particles both theoretically and experimentally. They have been, and continue to be, the focus of measurements in all high energy colliders around the world. Because of their distinct multiple mass scales, heavy quarkonia were suggested as a probe of the hot quark-gluon matter produced in heavy-ion collisions; and their production has been one of the main subjects of the experimental heavy-ion programs at the SPS and RHIC. However, since the discovery of J/psi at Brookhaven National Laboratory and SLAC National Accelerator Laboratory over 36 years ago, theorists still have not been able to fully understand the production mechanism of heavy quarkonia, although major progresses have been made in recent years. With this in mind, a two-week program on quarkonium production was organized at BNL on June 6-17, 2011. Many new experimental data from LHC and from RHIC were presented during the program, including results from the LHC heavy ion run. To analyze and correctly interpret these measurements, and in order to quantify properties of the hot matter produced in heavy-ion collisions, it is necessary to improve our theoretical understanding of quarkonium production. Therefore, a wide range of theoretical aspects on the production mechanism in the vacuum as well as in cold nuclear and hot quark-gluon medium were discussed during the program from the controlled calculations in QCD and its effective theories such as NRQCD to various models, and to the first principle lattice calculation. The scientific program was divided into three major scientific parts: basic production mechanism for heavy quarkonium in vacuum or in high energy elementary collisions; the

  18. BNL ALARA Center: ALARA Notes, No. 9

    International Nuclear Information System (INIS)

    Khan, T.A.; Xie, J.W.; Beckman, M.C.

    1994-02-01

    This issue of the Brookhaven National Laboratory's Alara Notes includes the agenda for the Third International Workshop on ALARA and specific instructions on the use of the on-line fax-on-demand service provided by BNL. Other topics included in this issue are: (1) A discussion of low-level discharges from Canadian nuclear plants, (2) Safety issues at French nuclear plants, (3) Acoustic emission as a means of leak detection, (4) Replacement of steam generators at Doel-3, Beaznau, and North Anna-1, (5) Remote handling equipment at Bruce, (6) EPRI's low level waste program, (7) Radiation protection during concrete repairs at Savannah River, (8) Reactor vessel stud removal/repair at Comanche Peak-1, (9) Rework of reactor coolant pump motors, (10) Restoration of service water at North Anna-1 and -2, (11) Steam generator tubing problems at Mihama-1, (12) Full system decontamination at Indian Point-2, (13) Chemical decontamination at Browns Ferry-2, and (14) Inspection methodolody in France and Japan

  19. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON SPIN PHYSICS AT RHIC IN YEAR-1 AND BEYOND.

    Energy Technology Data Exchange (ETDEWEB)

    BLAND, L.; BOER, D.; SAITO, N.; VOGELSANG, W.

    2001-05-14

    The much anticipated RHIC spin physics program will commence this fall when the first physics run with colliding beams of polarized protons is expected. More specifically, the planned year-1 RHIC-Spin measurements are (1) the double-spin asymmetry A{sub LL}{sup {pi}} in production of pions by collisions of longitudinally polarized protons (in order to obtain first information on the proton's spin-dependent gluon density, {Delta}g); (2) the transverse single-spin asymmetry A{sub N}{sup {pi}} for pion production. These two reactions provided part of the motivation for our workshop. On the first day there were informative talks on the specific plans of STAR (by Rakness) and PHENIX (by Goto) for the polarized run of Year-1. Some of the theoretical questions related to the double-spin asymmetry A{sub LL}{sup {pi}} were discussed on the first day by Vogelsang and Kretzer, which centered mostly around the questions of how well the unpolarized fragmentation functions are known, the need for next-to-leading order calculations, and on how sensitive the asymmetry is to the possible {Delta}g distributions. Vetterli presented HERMES measurements of fragmentation functions, which overlap in Q{sup 2} with the future lower-p{sub T} measurements at RHIC.

  20. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON SPIN PHYSICS AT RHIC IN YEAR-1 AND BEYOND

    International Nuclear Information System (INIS)

    BLAND, L.; BOER, D.; SAITO, N.; VOGELSANG, W.

    2001-01-01

    The much anticipated RHIC spin physics program will commence this fall when the first physics run with colliding beams of polarized protons is expected. More specifically, the planned year-1 RHIC-Spin measurements are (1) the double-spin asymmetry A LL π in production of pions by collisions of longitudinally polarized protons (in order to obtain first information on the proton's spin-dependent gluon density, Δg); (2) the transverse single-spin asymmetry A N π for pion production. These two reactions provided part of the motivation for our workshop. On the first day there were informative talks on the specific plans of STAR (by Rakness) and PHENIX (by Goto) for the polarized run of Year-1. Some of the theoretical questions related to the double-spin asymmetry A LL π were discussed on the first day by Vogelsang and Kretzer, which centered mostly around the questions of how well the unpolarized fragmentation functions are known, the need for next-to-leading order calculations, and on how sensitive the asymmetry is to the possible Δg distributions. Vetterli presented HERMES measurements of fragmentation functions, which overlap in Q 2 with the future lower-p T measurements at RHIC

  1. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP CIRCUM-PAN-PACIFIC RIKEN SYMPOSIUM ON HIGH ENERGY SPIN PHYSICS, VOLUME 25

    Energy Technology Data Exchange (ETDEWEB)

    KUMANO,S.; SHIBATA,T.A.; YAZAKI,K.

    2000-06-28

    The Circum-Pan-Pacific Riken Symposium on High Energy Spin Physics was held at Oukouchi Memorial Hall in Riken from November 3 through 6, 1999. It was held as a joint meeting of the 2nd Circum-Pan-Pacific Symposium on High Energy Spin Physics and the 3rd of the series of Riken Symposia related to the RHIC-SPIN. The 1st Circum-Pan-Pacific Symposium on High Energy Spin Physics was held at Kobe in 1996 and the RHIC-SPIN Riken Symposia had been held every two years since 1995. As Prof. Ozaki mentioned in his talk at the beginning of this meeting, the RHIC was ready for the first beam, physics experiments scheduled in 2000, and the RHIC-SPIN would start in 2001. It was therefore considered to be very timely for the researchers in the field of high energy spin physics to get together, clarifying the present status of the field and discussing interesting and important topics as well as experimental subjects to be pursued. It is especially important for the success of the RHIC-SPIN project that the researchers in the neighboring countries surrounding the Pacific are actively involved in it. This is why the above two series were joined in this. symposium. The subjects discussed in the symposium include: Hard processes probing spin-structure functions, polarization mechanisms in high energy reactions, lattice studies of polarized structure functions, theoretical models for the nucleon and its spin structure, RHIC and RHIC-SPIN projects, results and future projects of existing experimental facilities. Totally 73 scientists participated in the symposium, 27 from abroad and 46 from Japan. it consisted of 13 main sessions, with 33 invited and contributed talks, and 4 discussion sessions covering recent experimental and theoretical developments and important topics in high energy spin physics and closely related fields.

  2. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON RHIC SPIN PHYSICS III AND IV, POLARIZED PARTONS AT HIGH Q2 REGION, AUGUST 3, 2000 AT BNL, OCTOBER 14, 2000 AT KYOTO UNIVERSITY.

    Energy Technology Data Exchange (ETDEWEB)

    BUNCE, G.; VIGDOR, S.

    2001-03-15

    International workshop on II Polarized Partons at High Q2 region 11 was held at the Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan on October 13-14, 2000, as a satellite of the international conference ''SPIN 2000'' (Osaka, Japan, October 16-21,2000). This workshop was supported by RIKEN (The Institute of Physical and Chemical Research) and by Yukawa Institute. The scientific program was focused on the upcoming polarized collider RHIC. The workshop was also an annual meeting of RHIC Spin Collaboration (RSC). The number of participants was 55, including 28 foreign visitors and 8 foreign-resident Japanese participants, reflecting the international nature of the RHIC spin program. At the workshop there were 25 oral presentations in four sessions, (1) RHIC Spin Commissioning, (2) Polarized Partons, Present and Future, (3) New Ideas on Polarization Phenomena, (4) Strategy for the Coming Spin Running. In (1) the successful polarized proton commissioning and the readiness of the accelerator for the physics program impressed us. In (2) and (3) active discussions were made on the new structure function to be firstly measured at RHIC, and several new theoretical ideas were presented. In session (4) we have established a plan for the beam time requirement toward the first collision of polarized protons. These proceedings include the transparencies presented at the workshop. The discussion on ''Strategy for the Coming Spin Running'' was summarized by the chairman of the session, S. Vigdor and G. Bunce.

  3. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN COLLABORATION MEETINGS VIII, IX, X, XI, APRIL 12, MAY, 22, JUNE 17, JULY 29, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,B.

    2003-03-06

    Since its inception, the RHIC Spin Collaboration (RSC) has held semi-regular meetings each year to discuss the physics possibilities and the operational details of the program. Having collected our first data sample of polarized proton-proton collisions in Run02 of RHIC, we are now in the process of examining the performance of both the accelerator and the experiments. From this evaluation, we not only aim to formulate a consensus plan for polarized proton-proton during Run03 of RHIC but also to look more forward into the future to ensure the success of the spin program. In the second meeting of this series (which took place at BNL on April 12, 2002), we focused on Run02 polarization issues. This meeting opened with a presentation by Thomas Roser about his reflections on the outcome from the RHIC retreat during which the Run02 performance was evaluated. Of particular importance, Thomas pointed out that, with the expected beam time and his estimates for machine-tuning requirements, the experiments should limit their beam requests to two or three programs.

  4. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN COLLABORATION MEETINGS VIII, IX, X, XI, APRIL 12, MAY, 22, JUNE 17, JULY 29, 2002

    International Nuclear Information System (INIS)

    FOX, B.

    2003-01-01

    Since its inception, the RHIC Spin Collaboration (RSC) has held semi-regular meetings each year to discuss the physics possibilities and the operational details of the program. Having collected our first data sample of polarized proton-proton collisions in Run02 of RHIC, we are now in the process of examining the performance of both the accelerator and the experiments. From this evaluation, we not only aim to formulate a consensus plan for polarized proton-proton during Run03 of RHIC but also to look more forward into the future to ensure the success of the spin program. In the second meeting of this series (which took place at BNL on April 12, 2002), we focused on Run02 polarization issues. This meeting opened with a presentation by Thomas Roser about his reflections on the outcome from the RHIC retreat during which the Run02 performance was evaluated. Of particular importance, Thomas pointed out that, with the expected beam time and his estimates for machine-tuning requirements, the experiments should limit their beam requests to two or three programs

  5. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, RIKEN WINTER SCHOOL, QUARK GLUON STRUCTURE OF THE NUCLEON AND QCD, MARCH 29-31, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    EN YO,H.; SAITO,N.; SHIBATA,T.A.; YAZAKI,K.; BUNCE,G.

    2002-03-29

    The RIKEN School on ''Quark-Gluon Structure of the Nucleon and QCD'' was held from March 29th through 31st at the Nishina Memorial Hall of RIKEN, Wako, Saitama, Japan, sponsored by RIKEN (the Institute of Physical and Chemical Research). The school was the second of a new series with a broad perspective of hadron and nuclear physics. The purpose of the school was to offer young researchers an opportunity to learn theoretical aspects of hadron physics based on QCD and related experimental programs being or to be carried out by Japanese groups. We had 3 theoretical courses, each consisting of 3 one-hour lectures, and 6 experimental courses, each consisting of a one-hour lecture.

  6. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP: VOLUME 61 RIKEN-TODAI MINI-WORKSHOP ON ''TOPICS IN HADRON PHYSICS AT RHIC''. VOLUME 61

    International Nuclear Information System (INIS)

    EN'YO, H.; HAMAGAKI, H.; HATSUDAT WATANABA, Y.; YAZAKI, K.

    2004-01-01

    The RIKEN-TODAI Mini-Workshop on ''Topics in Hadron Physics at RHIC'' was held on March 23rd and 24th, 2064 at the Nishina Memorial Hall of RIKEN, Wako, Saitama, Japan, sponsored by RIKEN (Institute of Physical and Chemical Research) and TODAI (University of Tokyo). The workshop was planned when we learned that two distinguished theorists in hadron physics, Professors L. McLerran and S.H. Lee, would be visiting TODAI and/or RIKEN during the week of March 22-26. We asked them to give key talks at the beginning of the workshop and attend the sessions consisting of talks by young theorists in RIKEN, TODAI and other institutes in Japan and they kindly agreed on both. Considering the JPS meeting scheduled from March 27 through 30, we decided to have a.one-and-half-a-day workshop on March 23 and 24. The purpose of the workshop was to offer young researchers an opportunity to learn the forefront of hadron physics as well as to discuss their own works with the distinguished theorists

  7. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON RHIC SPIN PHYSICS III AND IV, POLARIZED PARTONS AT HIGH Q2 REGION (VOLUME 31)

    International Nuclear Information System (INIS)

    BUNCE, G.; VIGDOR, S.

    2001-01-01

    International workshop on II Polarized Partons at High Q2 region 11 was held at the Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan on October 13-14, 2000, as a satellite of the international conference ''SPIN 2000'' (Osaka, Japan, October 16-21,2000). This workshop was supported by RIKEN (The Institute of Physical and Chemical Research) and by Yukawa Institute. The scientific program was focused on the upcoming polarized collider RHIC. The workshop was also an annual meeting of RHIC Spin Collaboration (RSC). The number of participants was 55, including 28 foreign visitors and 8 foreign-resident Japanese participants, reflecting the international nature of the RHIC spin program. At the workshop there were 25 oral presentations in four sessions, (1) RHIC Spin Commissioning, (2) Polarized Partons, Present and Future, (3) New Ideas on Polarization Phenomena, (4) Strategy for the Coming Spin Running. In (1) the successful polarized proton commissioning and the readiness of the accelerator for the physics program impressed us. In (2) and (3) active discussions were made on the new structure function to be firstly measured at RHIC, and several new theoretical ideas were presented. In session (4) we have established a plan for the beam time requirement toward the first collision of polarized protons. These proceedings include the transparencies presented at the workshop. The discussion on ''Strategy for the Coming Spin Running'' was summarized by the chairman of the session, S. Vigdor and G. Bunce

  8. BNL ALARA Center experience with an information exchange system on dose control at nuclear power plants

    International Nuclear Information System (INIS)

    Baum, J.W.; Khan, T.A.

    1992-01-01

    The essential elements of an international information exchange system on dose control at nuclear power plants are summarized. Information was collected from literature abstracting services, by attending technical meetings, by circulating data collection forms, and through personal contacts. Data are assembled in various databases and periodically disseminated to several hundred interested participants through a variety of publications and at technical meetings. Immediate on-line access to the data is available to participants with modems, commercially available communications software, and a password that is provided by the Brookhaven National Laboratory (BNL) ALARA Center to authorized users of the system. Since January 1992, rapid access also has been provided to persons with fax machines. Some information is available for ''polling'' the BNL system at any time, and other data can be installed for polling on request. Most information disseminated to data has been through publications; however, new protocols, simplified by the ALARA Center staff, and the convenience of fax machines are likely to make the earlier availability of information through these mechanisms increasingly important

  9. Research at the BNL Tandem Van de Graaff Facility, 1980

    International Nuclear Information System (INIS)

    1981-01-01

    Research programs at the Brookhaven Van de Graaff accelerators are summarized. Major accomplishments of the laboratory are discussed including quasielastic reactions, high-spin spectroscopy, yrast spectra, fusion reactions, and atomic physics. The outside user program at the Laboratory is discussed. Research proposed for 1981 is outlined

  10. Establishment of a Photon Data Section of the BNL National Nuclear Data Center: A preliminary proposal

    International Nuclear Information System (INIS)

    Hanson, A.L.; Pearlstein, S.

    1992-05-01

    It is proposed to establish a Photon Data Section (PDS) of the BNL National Nuclear Data Center (NNDC). This would be a total program encompassing both photon-atom and photon-nucleus interactions. By utilizing the existing NNDC data base management expertise and on-line access capabilities, the implementation of photon interaction data activities within the existing NNDC nuclear structure and nuclear-reaction activities can reestablish a viable photon interaction data program at minimum cost. By taking advantage of the on-line capabilities, the x-ray users' community will have access to a dynamic, state-of-the-art data base of interaction information. The proposed information base would include data that presently are scattered throughout the literature usually in tabulated form. It is expected that the data bases would include at least the most precise data available in photoelectric cross sections, atomic form factors and incoherent scattering functions, anomalous scattering factors, oscillator strengths and oscillator densities, fluorescence yields, Auger electron yields, etc. It could also include information not presently available in tabulations or in existing data bases such as EXAFS (extended x-ray absorption fine structure) reference spectra, chemical bonding induced shifts in the photoelectric absorption edge, matrix corrections, x-ray Raman, and x-ray resonant Raman cross sections. The data base will also include the best estimates of the accuracy of the interaction data as it exists in the data base. It is proposed that the PDS would support computer programs written for calculating scattering cross sections for given solid angles, sample geometries, and polarization of incident x-rays, for calculating Compton profiles, and for analyzing data as in EXAFS and x-ray fluorescence

  11. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOL. 71)

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV, D.; STASTO, A.; TUCHIN, K.; VOGELSANG, W.

    2005-03-07

    The high energy limit of Quantum Chromodynamics is one of the most fascinating areas in the theory of strong interactions. Over a decade ago the HERA experiment at DESY in Hamburg provided strong evidence for the rise of the proton structure function at small values of the Bjorken variable x. This behavior can be explained as an increase of the gluon density of the proton with energy or correspondingly with smaller values of x. This increase can be attributed on the other hand to the large probability of gluon splitting in QCD. The natural framework for describing the gluon dynamics at small x is the Balitskii-Fadin-Kuraev-Lipatov formalism developed some 30 years ago. It predicts that the gluon density grows very fast with increasing energy, as a power with a large intercept. This increase has to be tamed in order to satisfy the unitarily bound. Over two decades ago, Gribov, Levin and Ryskin proposed the mechanism called the parton saturation, which slows down the fast rise of the gluon density. This formalism accounts for an additional gluon recombination apart from the pure gluon splitting. It leads to the very interesting non-linear modification of the evolution equations for the gluon distributions. Since then, much progress has been made in the theoretical formulation of the parton saturation. Currently the most complete theory for parton saturation is the Color Glass Condensate (CGC) with the corresponding renormalization group functional evolution equation, the JIMWLK equation, which describes the nonlinear evolution of the gluon density at small values of x and in the regime where gluon fields are strong. The simpler form of the JIMWLK equation, the Balitskii-Kovchegov (BK) equation has been successfully used to explain the experimental data on proton structure function. The models, which include the parton saturation, have been applied to explain the experimental data at Tevatron and RHIC. In the latter case the Color Glass Condensate can be thought of as an initial stage for the subsequent formation of the Quark Gluon Plasma. Despite its success in describing various observables, the parton saturation phenomenon still needs deeper understanding and improvements; in particular, the existence or limitations on geometrical scaling, the edge effects in the high energy collisions, or impact parameter dependence. In particular it has been recently realized that the current evolution equations of CGC, the JWIWLK equations miss some of the important contributions coming from the resummation of the so-called Pomeron loops. These terms are known to provide sizeable corrections to the asymptotic high energy behavior. Also, the CGC formalism was constructed within the leading logarithmic approximation, and it is known that the corrections which go beyond this order are large.

  12. PROCEEDINGS OF RIKIN BNL RESEARCH CENTER WORKSHOP - VOLUME 79

    Energy Technology Data Exchange (ETDEWEB)

    SAMIOS,N.

    2006-02-16

    Since the earliest days of ultra-relativistic heavy ion physics, there has been interest in strange particle production. Originally, an anomalously large strangeness production was believed to be a signature of the Quark Gluon Plasma. Now the flavor composition of the plasma as reflected in the ratios of abundances of strange and non-strange particles is believed by advocates to tell us the temperature and baryon number density of the Quark Gluon Plasma at decoupling. In addition, there are arguments that suggest that the abundances of strange particles might at intermediate energy or at non-central rapidity, signal the existence of a critical end point of phase transitions in the baryon number chemical potential temperature plane. The purpose of this workshop is to assess the current theoretical and experimental understanding of strangeness production for ultra-relativistic heavy ion collisions.

  13. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOLUME 70)

    Energy Technology Data Exchange (ETDEWEB)

    JACAK, B.; SHURYAK, E.; HALLMAN, T.; BASS, S.; DAVIDSON, R.

    2005-01-14

    The Relativistic Heavy Ion Collider (RHIC) was commissioned for heavy ion collisions and for polarized pp collisions in 2001. All principal components of the accelerator chain were operational by the 2003 RHIC run. Approximately 50 papers on RHIC experimental results have been published in refereed journals to date. This is a testament to the vast amount of exciting new information and the unprecedented analysis and publication rate from RHIC. A number of signals of creation of matter at extreme energy density, and of new physics in that matter, have been observed. The RHIC community has been heavily engaged in discussion about these signals, and about the appropriate level of proof for Quark Gluon Plasma discovery at the RHIC. In fact, such discussions were the subject of an earlier RBRC Workshop. One of the striking results from heavy ion collisions at RHIC is that the quark gluon plasma accessible appears to be strongly coupled. The properties of strongly coupled plasmas are of intense interest in the traditional Plasma Physics community, who have been developing tools to study such matter theoretically and experimentally. Despite the fact that one plasma interacts electromagnetically and the other through the strong interaction, there is tremendous commonality in the intellectual approach and even the theoretical and experimental tools. It is important to broaden the discussion of Quark Gluon Plasma discovery beyond possible signals of deconfinement to also encompass signals of plasma phenomena in heavy ion collisions. Thus it is imperative establish more direct contact among Nuclear, Plasma and Atomic physicists to share techniques and ideas. RHIC physicists will benefit from familiarity with typical plasma diagnostics and theoretical methods to study strongly coupled plasmas. Plasma and Atomic physicists may fmd new techniques parallel to the multi-particle correlations used in RHIC data analysis, and theoretical tools to study high energy density matter where the coupling constant is not small. The goal of this Workshop was to bring together experts at the forefront of theoretical and experimental work on strongly coupled systems in the three communities. From the variety and depth of the presentations at the workshop, we believe that we successfully fostered the exchange of information and ideas. Furthermore, many overlaps and possible exchanges of techniques were identified. Extremely interesting discussions took place, identifying possible avenues for further exchanges and interdisciplinary collaborations.

  14. Relativistic heavy ions from the BNL [Brookhaven National Laboratory] booster medical research and technological applications

    International Nuclear Information System (INIS)

    Thieberger, P.

    1990-05-01

    The BNL Booster, now nearing completion, was designed to inject protons and heavy ions into the Alternating Gradient Synchrotron (AGS) for further acceleration. In the future, ion beams from the AGS will in turn be further accelerated in the Relativistic Heavy Ion Collider (RHIC). Given the wide range of ion masses, energies and beam intensities the Booster will generate, other important applications should be considered. Dedicated use of the Booster for such applications may be possible during limited periods. However shared use would be preferable from the points of view of availability, affordability and efficiency. While heavy ions of a given isotope are injected into the AGS, the same or other ion species from the Booster could be simultaneously delivered to a new irradiation area for treatment of patients, testing of electronic devices or other applications and research. To generate two different beam species, ion sources on both Tandem accelerators would be used; one for AGS injection and the other one for a time-sharing application. Since the beam transport from the Tandems to the Booster can not be rapidly adjusted, it will be necessary to select beams of identical magnetic rigidity. The present study was performed to determine to what extent this compatibility requirement imposes limitations on the available ion species, energies and/or intensities

  15. Centering research

    DEFF Research Database (Denmark)

    Katan, Lina Hauge; Baarts, Charlotte

    Research-based teaching has long been a distinguishing trait of higher education. Engaging students in research-like processes has been employed to great effect in learning and continues to be encouraged by educational studies. The literature on this subject reflects how ‘technical’ or ‘field......’ exercises tend to dominate the common understandings of research-based learning. Here we address a specific area of inquiry overlooked by previous studies: whether and how reading, thinking and writing indeed share the same learning potentials as the practical foundation for research-based teaching....... In the humanities and social sciences, integrated acts of reading, writing and thinking account for an obvious and substantial overlap in student and researcher practices, creating a clear opportunity for research-based teaching. Moreover, our empirical data point to reading, thinking and writing as quintessential...

  16. NGSPN @ BNL

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, S. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bachner, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gomera, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-10-05

    Brookhaven National Laboratory’s (BNL’s) Nonproliferation and National Security Department hosted the Next Generation Safeguards Professional Network (NGSPN) at BNL September 6-9, 2016. Thirteen representatives from seven Department of Energy National Laboratories, including two from BNL, participated in the four-day meeting. The NGSPN meeting was sponsored by the Office of International Nuclear Safeguards (NA-241) of the National Nuclear Security Administration, which provided funding for BNL’s development and conduct of the meeting program and the participant’s labor and travel. NGSPN meetings were previously held at Savannah River National Laboratory, Oak Ridge National Laboratory, Idaho National Laboratory, Sandia National Laboratories, and Los Alamos National Laboratory. The purpose of NGSPN is to provide a forum for early-career international safeguards practitioners to network with their peers, to meet international safeguards experts from other institutions and to learn about organizations other than their employers who contribute to international safeguards.

  17. Tehran Nuclear Research Center

    International Nuclear Information System (INIS)

    Taherzadeh, M.

    1977-01-01

    The Tehran Nuclear Research Center was formerly managed by the University of Tehran. This Center, after its transformation to the AEOI, has now become a focal point for basic research in the area of Nuclear Energy in Iran

  18. Department of Energy’s ARM Climate Research Facility External Data Center Operations Plan Located At Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cialella, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gregory, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lazar, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liang, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ma, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tilp, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wagener, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-01

    The External Data Center (XDC) Operations Plan describes the activities performed to manage the XDC, located at Brookhaven National Laboratory (BNL), for the Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. It includes all ARM infrastructure activities performed by the Data Management and Software Engineering Group (DMSE) at BNL. This plan establishes a baseline of expectation within the ARM Operations Management for the group managing the XDC.

  19. Water Resources Research Center

    Science.gov (United States)

    Untitled Document  Search Welcome to the University of Hawai'i at Manoa Water Resources Research Center At WRRC we concentrate on addressing the unique water and wastewater management problems and issues elsewhere by researching water-related issues distinctive to these areas. We are Hawaii's link in a network

  20. Workshop: Research and development plans for high power spallation neutron testing at BNL

    International Nuclear Information System (INIS)

    1996-01-01

    This report consists of vugraphs from presentations at the meeting. The papers covered the following topics: (1) APS as a proton source; (2) target status for NSNS (National Spallation Neutron Source); (3) spallation neutron source in Japan; (4) liquid LiBi flow loop; and (5) research and development plans for high power tests at the AGS

  1. Illinois Accelerator Research Center

    Science.gov (United States)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  2. PLANS FOR KAON PHYSICS AT BNL.

    Energy Technology Data Exchange (ETDEWEB)

    REDLINGER,G.

    2004-06-05

    The author gives an overview of current plans for kaon physics at BNL. The program is centered around the rare decay modes K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}} and K{sub L} {yields} {pi}{sup 0}{nu}{bar {nu}}.

  3. The DESY Research Center

    International Nuclear Information System (INIS)

    Waloschek, P.

    1988-01-01

    On November 12, 1964, the 6 GeV electrons synchrotron and the associated utility facilities were dedicated for regular operation. Since that date, the DESY Research Center, the German Electron Synchrotron in Hamburg, has offered to scientists from all over the world unique facilities in which to study the smallest constituents of matter. At present, some 580 physicists participate in DESY's research work on particle physics and high energy physics. Most of them are university teachers, a great many come from abroad. Their home institutions make considerable contributions to setting up the measuring equipment. Another 500 physicists annually make use of the extensive synchrotron radiation facilities available at DESY. DESY is one of the thirteen national research laboratories in the Federal Republic of Germany; its annual government grants for operation and personnel (1300 staff members in 1988) amount to some DM 150 million. In addition, some DM 950 million will be invested into the construction of the new HERA facility between 1984 and 1990, of which 15% will be contributed by foreign institutions. The ordinary budget of DESY is paid 90% by the German Federal Ministry for Research and Technology (BMFT) and 10% by the city of Hamburg. (orig.)

  4. Center for Prostate Disease Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Prostate Disease Research is the only free-standing prostate cancer research center in the U.S. This 20,000 square foot state-of-the-art basic science...

  5. Center for Rehabilitation Sciences Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Rehabilitation Sciences Research (CRSR) was established as a research organization to promote successful return to duty and community reintegration of...

  6. Event generator for RHIC spin physics. Proceedings of RIKEN BNL Research Center workshop: Volume 11

    International Nuclear Information System (INIS)

    1998-01-01

    A major objective of the workshop was to establish a firm collaboration to develop suitable event generators for the spin physics program at RHIC. With the completion of the Relativistic Heavy Ion Collider (RHIC) as a polarized collider a completely new domain of high-energy spin physics will be opened. The planned studies address the spin structure of the nucleon, tests of the standard model, and transverse spin effects in initial and final states. RHIC offers the unique opportunity to pursue these studies because of its high and variable energy, 50 ≤ √s ≤ 500 GeV, high polarization, 70%, and high luminosity, 2 x 10 32 cm -2 sec -1 or more at 500 GeV. To maximize the output from the spin program at RHIC, the understanding of both experimental and theoretical systematic errors is crucial. It will require full-fledged event generators, to simulate the processes of interest in great detail. The history of event generators shows that their development and improvement are ongoing processes taking place in parallel to the physics analysis by various experimental groups. The number of processes included in the generators has been increasing and the precision of their predictions is being improved continuously. This workshop aims at getting this process well under way for the spin physics program at RHIC, based on the first development in this direction, SPHINX

  7. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, VOLUME 37, RHIC SPIN COLLABORATION MEETING VI (PART 2)

    International Nuclear Information System (INIS)

    Bland, L.; Saito, N.

    2001-01-01

    The second part of the sixth RHIC Spin Collaboration (RSC) meeting was held on November 15, 2001 at Brookhaven National Laboratory. Previous meetings have elaborated on the new generation of proton spin-structure studies (e.g. gluon polarization and flavor separation of q and bar q polarizations via real W ± production) enabled by studying polarized proton collisions at energies and momentum transfers where perturbative QCD models are expected to be applicable. The focus of this meeting was on many of the experimental issues that must be resolved to achieve these physics goals. This summary is written with the benefit of hindsight following the completion of the first-ever run of a polarized proton collider. This first run can be considered as a successfully completed milestone of the RHIC Spin Collaboration. Other milestones remain important. Long term machine items were identified in Waldo Mackay's talk, the most important being the completion of the spin rotator magnets that will be installed in 2002 to allow the flexible orientation of the proton beam polarization at the PHENM and STAR experiments. At the meeting Waldo discussed a stronger partial snake magnet for the AGS as a means of producing highly polarized proton beams to inject into RHIC. Developments subsequent to this meeting suggest that a superconducting helical dipole magnet may be feasible for the AGS, and is likely to be needed to achieve the 70% beam polarization in RHIC. Longer term items were also presented, including potential increases in luminosity by the addition of electron cooling to RHIC and the possibility of increasing the collision energy by ∼20% by replacement of the DX magnets. These items could be considered for a second generation of RHIC spin experiments. The other topics covered at the meeting were related to polarimetry and to the absolute calibration of the proton beam polarization in RHIC. These topics were divided into short- and long-term solutions to polarimetry issues. George Igo led a discussion about the addition of a Coulomb-Nuclear Interference (CNI) polarimeter to the AGS prior to FY2003 RHIC operations. The experience from the first RHIC spin run reinforces the need for reducing the time needed to complete polarization measurements in the AGS, and illustrated the importance of polarization measurements at different energies in the RHIC injectors. Progress continues to be made on the completion of a CNI polarimeter for the AGS prior to the FY2003 run

  8. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, VOLUME 37, RHIC SPIN COLLABORATION MEETING VI (PART 2).

    Energy Technology Data Exchange (ETDEWEB)

    BLAND, L.; SAITO, N.

    2001-11-15

    The second part of the sixth RHIC Spin Collaboration (RSC) meeting was held on November 15, 2001 at Brookhaven National Laboratory. Previous meetings have elaborated on the new generation of proton spin-structure studies (e.g. gluon polarization and flavor separation of q and {bar q} polarizations via real W{sup {+-}} production) enabled by studying polarized proton collisions at energies and momentum transfers where perturbative QCD models are expected to be applicable. The focus of this meeting was on many of the experimental issues that must be resolved to achieve these physics goals. This summary is written with the benefit of hindsight following the completion of the first-ever run of a polarized proton collider. This first run can be considered as a successfully completed milestone of the RHIC Spin Collaboration. Other milestones remain important. Long term machine items were identified in Waldo Mackay's talk, the most important being the completion of the spin rotator magnets that will be installed in 2002 to allow the flexible orientation of the proton beam polarization at the PHENM and STAR experiments. At the meeting Waldo discussed a stronger partial snake magnet for the AGS as a means of producing highly polarized proton beams to inject into RHIC. Developments subsequent to this meeting suggest that a superconducting helical dipole magnet may be feasible for the AGS, and is likely to be needed to achieve the 70% beam polarization in RHIC. Longer term items were also presented, including potential increases in luminosity by the addition of electron cooling to RHIC and the possibility of increasing the collision energy by {approx}20% by replacement of the DX magnets. These items could be considered for a second generation of RHIC spin experiments. The other topics covered at the meeting were related to polarimetry and to the absolute calibration of the proton beam polarization in RHIC. These topics were divided into short- and long-term solutions to polarimetry issues. George Igo led a discussion about the addition of a Coulomb-Nuclear Interference (CNI) polarimeter to the AGS prior to FY2003 RHIC operations. The experience from the first RHIC spin run reinforces the need for reducing the time needed to complete polarization measurements in the AGS, and illustrated the importance of polarization measurements at different energies in the RHIC injectors. Progress continues to be made on the completion of a CNI polarimeter for the AGS prior to the FY2003 run.

  9. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED ''SINGLE SPIN ASYMMETRIES'' (VOLUME 75)

    International Nuclear Information System (INIS)

    YUAN, F.; VOGELSANG, W.

    2005-01-01

    Single-transverse spin asymmetries (SSA) in strong interactions have a long history, starting from the 1970s and 1980s when surprisingly large single-transverse spin asymmetries were observed in p+p → πX and pp → Λ + X, where really none were expected. They have again attracted much interest in recent years from both experimental and theoretical sides. In particular, first measurements by the STAR, PHENIX, and BRAHMS collaborations at RHIC have now become available which again reveal large single transverse spin asymmetries for hadron production in polarized proton proton scattering. This extends the SSA observations from the fixed target energy range to the collider regime. Meanwhile, experimental studies in Deep Inelastic Scattering by the HERMES collaboration at DESY, SMC at CERN, and CLAS at JLab also show a remarkably large SSA in semi-inclusive hadron production, γ*p → πX, when the proton is transversely polarized. On the theoretical side, there are several approaches to understanding SSA within Quantum Chromodynamics (QCD). For example, to explain the large SSAs for hadron production in hadron collisions, a mechanism that takes into account the contribution from quark-gluon-quark correlations (twist-3) in the nucleon was proposed. On the other hand, possible origins of SSA in DIS and hadronic scattering were also found in leading-twist transverse momentum dependent parton distributions. Current theoretical efforts aim at a better conceptual understanding of these two types of mechanisms, and of their connections. We were very happy at this timely date to bring together the theorists and experimentalists of this field to review and discuss the current theoretical status and the latest experimental results. The whole workshop contained 25 formal talks, both experiment (15) and theory (10), and a few informal talks and many fruitful discussions. The topics covered all the relevant SSA observables, including in Deep Inelastic Scattering, the Drell-Yan process, and in inclusive hadron production and dijet correlations at hadron colliders. There were not only discussions on possible interpretations of the existing SSA data, but also on the future observables for the ongoing experiments as well as for planned experiments (such as RHIC II and eRHIC). On the theory side, the talks ranged from overviews and descriptions of the fundamental aspects of SSAs, to presentations of detailed phenomenological studies. All of the talks attracted much interest and initiated active discussions. Directions for future measurements were pointed out, in particular for studies at RHIC. Also, significant theoretical advances were made that may tie together some of the currently proposed mechanisms for single-spin asymmetries. This was a very successful workshop. It stimulated many discussions and new collaborations

  10. RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20

    Energy Technology Data Exchange (ETDEWEB)

    VAN BAAL,P.; ORLAND,P.; PISARSKI,R.

    2000-06-01

    This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.

  11. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN COLLABORATION MEETING VI, VOLUME 36

    International Nuclear Information System (INIS)

    BLAND, L.; SAITO, N.

    2001-01-01

    The sixth meeting of the RHIC Spin Collaboration (RSC) took place on October 1, 2001 at Brookhaven National Laboratory. RHIC is now in its second year of operation for physics production and the first polarized proton collision run at √s=200 GeV is expected to start in eight weeks. The RSC has developed a plan for this coming run through two previous meetings, RHIC Spin Physics III (August 3, 2000) and IV (October 13-14, 2000). We requested the following: two weeks of polarized proton studies in AGS, three weeks of polarized collider commissioning, and five weeks of polarized proton physics run. As a result, we have obtained all we asked and the above plans are implemented in the current operation schedule. The focus of the present meeting was to bring all involved in the RHIC Spin activities up-to-date on the progress of machine development, theory issues, and experimental issues. This meeting was right after the Program Advisory Committee (PAC) meeting and it started with the comments on the PAC discussion by Gerry Bunce, who was informed about the PAC deliberations by Tom Kirk. The PAC was fully supportive to complete the proposed spin program within the currently available budget for RHIC run 2 operations. Gerry further explained the expected luminosity to be ∫ Ldt = 0.5 pb -1 per week, reflecting the current machine status. The introductory session also had a talk from Werner Vogelsang that reviewed the progress in perturbative QCD theory focused on spin effects

  12. Production and Distribution Research Center

    Science.gov (United States)

    1986-05-01

    Steel, Coca Cola , Standard Oil of Ohio, and Martin Marietta have been involved in joint research with members of the Center. The number of Faculty...permitted the establishment of the Center and supports its continuing development. The Center has also received research sponsorship from the Joint...published relating to results developed within the PDRC under Offce of Naval Research sponsorship . These reports are listed in Appendix A. Many of these

  13. BNL325 - Nuclear reaction data display program

    International Nuclear Information System (INIS)

    Dunford, C.L.

    1994-01-01

    A computer code for the graphical display of nuclear reaction data is described. The code, which works on a computer with VMS operating system, can overlay experimental data from an EXFOR/CSISRS table-computation format with evaluated data from ENDF formatted data libraries. Originally, this code has been used at the U.S. National Nuclear Data Center to produce the well-known neutron cross-section atlas published as report BNL-325. (author). 3 tabs

  14. BNL325 - Nuclear reaction data display program

    Energy Technology Data Exchange (ETDEWEB)

    Dunford, C L

    1994-11-27

    A computer code for the graphical display of nuclear reaction data is described. The code, which works on a computer with VMS operating system, can overlay experimental data from an EXFOR/CSISRS table-computation format with evaluated data from ENDF formatted data libraries. Originally, this code has been used at the U.S. National Nuclear Data Center to produce the well-known neutron cross-section atlas published as report BNL-325. (author). 3 tabs.

  15. The Adirondack research center

    Science.gov (United States)

    Francis M. Rushmore

    1957-01-01

    Some of the first forest research done in North America was done in that lake-spangled land of forests and mountains in upper New York State that we know as the Adirondacks. The very name Adirondacks smacks of forest. The big Webster dictionary says that Adirondacks comes from a Mohawk Indian word, Hatirongtaks, which means literally, "they eat trees."

  16. Transportation Research & Analysis Computing Center

    Data.gov (United States)

    Federal Laboratory Consortium — The technical objectives of the TRACC project included the establishment of a high performance computing center for use by USDOT research teams, including those from...

  17. Research and technology, 1991. Langley Research Center

    Science.gov (United States)

    1992-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights are given of the major accomplishments and applications that have been made during the past year. The highlights illustrate both the broad range of the research and technology (R&T) activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  18. BNL Building 650 lead decontamination and treatment feasibility study. Final report

    International Nuclear Information System (INIS)

    Kalb, P.D.; Cowgill, M.G.; Milian, L.W.

    1995-10-01

    Lead has been used extensively at Brookhaven National Laboratory (BNL) for radiation shielding in numerous reactor, accelerator and other research programs. A large inventory of excess lead (estimated at 410,000 kg) in many shapes and sizes is currently being stored. Due to it's toxicity, lead and soluble lead compounds are considered hazardous waste by the Environmental Protection Agency. Through use at BNL, some of the lead has become radioactive, either by contamination of the surface or through activation by neutrons or deuterons. This study was conducted at BNL's Environmental and Waste Technology Center for the BNL Safety and Environmental Protection Division to evaluate feasibility of various treatment options for excess lead currently being stored. The objectives of this effort included investigating potential treatment methods by conducting a review of the literature, developing a means of screening lead waste to determine the radioactive characteristics, examining the feasibility of chemical and physical decontamination technologies, and demonstrating BNL polyethylene macro-encapsulation as a means of treating hazardous or mixed waste lead for disposal. A review and evaluation of the literature indicated that a number of physical and chemical methods are available for decontamination of lead. Many of these techniques have been applied for this purpose with varying degrees of success. Methods that apply mechanical techniques are more appropriate for lead bricks and sheet which contain large smooth surfaces amenable to physical abrasion. Lead wool, turnings, and small irregularly shaped pieces would be treated more effectively by chemical decontamination techniques. Either dry abrasion or wet chemical methods result in production of a secondary mixed waste stream that requires treatment prior to disposal

  19. Colorado Learning Disabilities Research Center.

    Science.gov (United States)

    DeFries, J. C.; And Others

    1997-01-01

    Results obtained from the center's six research projects are reviewed, including research on psychometric assessment of twins with reading disabilities, reading and language processes, attention deficit-hyperactivity disorder and executive functions, linkage analysis and physical mapping, computer-based remediation of reading disabilities, and…

  20. Search for free quarks produced in ultra-relativistic collisions at BNL [Brookhaven National Laboratory] and CERN [European Organization for Nuclear Research

    International Nuclear Information System (INIS)

    Matis, H.S.; Pugh, H.G.; Alba, G.P.; Bland, R.W.; Calloway, D.H.; Dickson, S.; Hodges, C.L.; Palmer, T.L.; Stricker, D.A.; Johnson, R.T.

    1990-07-01

    A high intensity experiment was performed to search for free quarks at BNL and CERN using ultra-relativistic beams. The experiment was designed to trap quarks in a Hg target or liquid Ar tank. No free quark candidate was found. Limits from 10 -7 to 10 -10 quarks per incident ion are reported. 7 refs., 2 figs., 2 tabs

  1. Engineer Research and Development Center's Materials Testing Center (MTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Engineer Research and Development Center's Materials Testing Center (MTC) is committed to quality testing and inspection services that are delivered on time and...

  2. Introduction | Center for Cancer Research

    Science.gov (United States)

    Introduction In order to meet increasing demands from both NIH intramural and extramural communities for access to a small angle X-ray scattering (SAXS) resource, the Center for Cancer Research (CCR) under the leadership of Jeffrey Strathern and Bob Wiltrout established a partnership user program (PUP) with the Argonne National Laboratory Photon Source in October 2008.

  3. BNL ATF II beamlines design

    Energy Technology Data Exchange (ETDEWEB)

    Fedurin, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jing, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratakis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Swinson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, will be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.

  4. Research Associate | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.

  5. NASA Airline Operations Research Center

    Science.gov (United States)

    Mogford, Richard H.

    2016-01-01

    This is a PowerPoint presentation NASA airline operations center (AOC) research. It includes information on using IBM Watson in the AOC. It also reviews a dispatcher decision support tool call the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. It should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations with the same title.

  6. The new BNL polarized negative ion source

    International Nuclear Information System (INIS)

    Hershcovitch, A.I.; Alessi, J.G.; DeVito, B.; Kponou, A.E.

    1991-01-01

    A new ground state source of negative hydrogen ions with polarized nuclei (rvec H - ) is being developed at BNL. Extensive developmental research has been aimed at improving each element of (rvec H - ) production: cold H degrees beam, spin selection and focusing magnets, and ionizer. These elements have recently been integrated into a source. A first test with the accommodator nozzle cooled only to liquid nitrogen temperatures resulted in 5 μA of H - . Tests at liquid helium temperatures are now beginning. 7 refs., 1 fig

  7. NDE research at NASA Langley Research Center

    International Nuclear Information System (INIS)

    Heyman, J.S.

    1989-01-01

    The Nondestructive Measurement Science Branch at NASA Langley is the Agency's lead Center for NDE research. The focus of the laboratory is to improve the science base for NDE, evolve a more quantitative, interpretable technology to insure safety and reliability, and transfer that technology to the commercial sector. To address the broad needs of the Agency, the program has developed expertise in many areas, some of which are in ultrasonics, nonlinear acoustics, nano and microstructure characterization, thermal NDE, x-ray tomography, optical fiber sensors, magnetic probing, process monitoring sensors, and image/signal processing. The authors laboratory has recently dedicated its new 20,000 square foot research facility bringing the lab space to 30,000 square feet. The new facility includes a high bay for the x-ray CAT scanner, a revolutionary new concept in materials measurement. The CAT scanner is called QUEST, for quantitative experimental stress tomography lab. This system combines for the first time a microfocus x-ray source and detector with a fatigue load frame. Three dimensional imaging of density/geometry of the tested sample is thus possible during tension/compression loading. This system provides the first 3-D view of crack initiation, crack growth, phase transformation, bonded surface failure, creep-all with a density sensitivity of 0.1% and a resolution of about 25 microns (detectability of about 1 micron)

  8. BNL heavy ion fusion program

    International Nuclear Information System (INIS)

    Maschke, A.W.

    1978-01-01

    A principal attraction of heavy ion fusion is that existing accelerator technology and theory are sufficiently advanced to allow one to commence the design of a machine capable of igniting thermonuclear explosions. There are, however, a number of features which are not found in existing accelerators built for other purposes. The main thrust of the BNL Heavy Ion Fusion program has been to explore these features. Longitudinal beam bunching, very low velocity acceleration, and space charge neutralization are briefly discussed

  9. Recommendations of the NNCSC-BNL study

    International Nuclear Information System (INIS)

    1976-01-01

    In 1975 the National Neutron Cross Section Center (NNCSC) at BNL was asked to carry out a study of the nuclear structure and charged-particle reaction data compilation and evaluation efforts in the U. S. with a view toward establishing at NNCSC responsibility for a fully coordinated effort involving measurers, compilers, evaluators, and users whose activities would result in the creation and maintenance of a master file for nuclear structure and charged-particle reaction data. A critique of this study was made by the Ad Hoc Panel on Basic Nuclear Data Compilations; this critique is presented here. The Panel recommended the establishment of a standing panel to monitor and advise on the implementation of the proposed new organizational arrangement for carrying out basic data compilations

  10. National Rehabilitation Hospital Assistive Technology Research Center

    Science.gov (United States)

    1995-10-01

    Shoulder-Arm Orthoses Several years ago, the Rehabilitation Engineering Research Center (RERC) on Rehabilitation Robotics in Delaware1 identified a... exoskeletal applications for persons with disabilities. 2. Create a center of expertise in rehabilitation technology transfer that benefits persons with...AD COOPERATIVE AGREEMENT NUMBER: DAMD17-94-V-4036 TITLE: National Rehabilitation Hospital Assistive Technology- Research Center PRINCIPAL

  11. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    De Vega, H.J.; Boyanovsky, D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  12. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    DE VEGA,H.J.; BOYANOVSKY,D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  13. Proceedings of RIKEN BNL Research Center Workshop entitled Hydrodynamics in Heavy Ion Collisions and QCD Equation of State (Volume 88)

    Energy Technology Data Exchange (ETDEWEB)

    Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.

    2008-04-21

    The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.

  14. Proceedings of RIKEN BNL research center workshop, equilibrium and non-equilibrium aspects of hot, dense QCD, Vol. 28

    International Nuclear Information System (INIS)

    De Vega, H.J.; Boyanovsky, D.

    2000-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation ∼2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision

  15. NASA's engineering research centers and interdisciplinary education

    Science.gov (United States)

    Johnston, Gordon I.

    1990-01-01

    A new program of interactive education between NASA and the academic community aims to improve research and education, provide long-term, stable funding, and support cross-disciplinary and multi-disciplinary research. The mission of NASA's Office of Aeronautics, Exploration and Technology (OAET) is discussed and it is pointed out that the OAET conducts about 10 percent of its total R&D program at U.S. universities. Other NASA university-based programs are listed including the Office of Commercial Programs Centers for the Commercial Development of Space (CCDS) and the National Space Grant program. The importance of university space engineering centers and the selection of the nine current centers are discussed. A detailed composite description is provided of the University Space Engineering Research Centers. Other specialized centers are described such as the Center for Space Construction, the Mars Mission Research Center, and the Center for Intelligent Robotic Systems for Space Exploration. Approaches to educational outreach are discussed.

  16. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  17. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  18. Accelerator Center for Energy Research (ACER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Accelerator Center for Energy Research (ACER) exploits radiation chemistry techniques to study chemical reactions (and other phenomena) by subjecting samples to...

  19. Light ion program at BNL

    International Nuclear Information System (INIS)

    Foelsche, H.; Barton, D.S.; Thieberger, P.

    1986-08-01

    At Brookhaven National Laboratory (BNL) two existing facilities, the Tandem Van de Graaff machines and the AGS have been joined by a beam transfer line, and modified to permit acceleration of light ions (up to sulfur) to energies of 14.6 GeV/amu. Light ions supplied by a pulsed ion source are accelerated by the Tandem to an energy of about 7 to 8 MeV/amu, and are transferred directly into the AGS in the fully stripped state. In the AGS an auxiliary rf system has been added to accelerate through the low velocity region from about 7 to about 200 MeV/amu, at which point the previously existing AGS RF system takes over to complete the acceleration cycle to full energy, as it normally does for protons. Standard resonant slow extraction delivers the beam to the existing experimental beam facilities. This is the first phase of a long range program to provide facilities for relativistic heavy ion experiments with fixed targets and ultimately with colliding beams at BNL. The design objectives for this project and preliminary results obtained during the commissioning of the light ion program are described in this paper. Plans for a future second phase, a booster accelerator to permit heavy ion acceleration in the AGS, and of the third phase, a proposed Relativistic Heavy Ion Collider (RHIC) are briefly mentioned as well

  20. Information on the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Reuter, H.H.

    1980-01-01

    A short overview is given about the origins of Karlsruhe Nuclear Research Center. The historical development of the different companies operating the Center is shown. Because the original task assigned to the Center was the construction and testing of the first German reactor exclusively built by German companies, a detailed description of this reactor and the changes made afterwards is presented. Next, today's organizational structure of the Center is outlined and the development of the Center's financing since its foundation is shown. A short overview about the structure of employees from the Center's beginning up to now is also included as well as a short description of today's main activities. (orig.)

  1. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  2. Ames Research Center Research and Technology 2000

    Science.gov (United States)

    2002-01-01

    This report highlights the challenging work accomplished during fiscal year 2000 by Ames research scientists,engineers, and technologists. It discusses research and technologies that enable the Information Age, that expand the frontiers of knowledge for aeronautics and space, and that help to maintain U.S. leadership in aeronautics and space research and technology development. The accomplishments are grouped into four categories based on four of NASA's Strategic Enterprises: Aerospace Technology, Space Science, Biological and Physical Research, and Earth Science. The primary purpose of this report is to communicate knowledge-to inform our stakeholders, customer, and partners, and the people of the United States about the scope and diversity of Ames' mission,the nature of Ames' research and technolog) activities,and the stimulating challenges ahead. The accomplishments cited illustrate the contributions that Ames is willing to improve the quality of life for our citizens and the economic position of the United States in the world marketplace.

  3. Nuclear research center transformation experience

    International Nuclear Information System (INIS)

    Diaz, J. L.; Jimenez, J. M.

    2001-01-01

    As consequence of the changes in the energy polities of each countries in the 80th. many of the Nuclear Research Centres suffered a transformation (more of less deep) in other Research and Development Centres with a wider spectrum that the exclusively nuclear one. This year is the 50 anniversary of the Spanish Centre of Nuclear Research-Junta de Energia Nuclear.The JEN the same as other suffered a deep renovation to become the CIEMAT Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (Research Centre for Energy, Environment and Technology). This paper is focussed on the evolution of JEN to CIEMAT besides analysing the reach of this re-foundation considering the political reasons and technical aspect that justified it and the laws in those it is based on. (Author)

  4. Activity report of Computing Research Center

    Energy Technology Data Exchange (ETDEWEB)

    1997-07-01

    On April 1997, National Laboratory for High Energy Physics (KEK), Institute of Nuclear Study, University of Tokyo (INS), and Meson Science Laboratory, Faculty of Science, University of Tokyo began to work newly as High Energy Accelerator Research Organization after reconstructing and converting their systems, under aiming at further development of a wide field of accelerator science using a high energy accelerator. In this Research Organization, Applied Research Laboratory is composed of four Centers to execute assistance of research actions common to one of the Research Organization and their relating research and development (R and D) by integrating the present four centers and their relating sections in Tanashi. What is expected for the assistance of research actions is not only its general assistance but also its preparation and R and D of a system required for promotion and future plan of the research. Computer technology is essential to development of the research and can communize for various researches in the Research Organization. On response to such expectation, new Computing Research Center is required for promoting its duty by coworking and cooperating with every researchers at a range from R and D on data analysis of various experiments to computation physics acting under driving powerful computer capacity such as supercomputer and so forth. Here were described on report of works and present state of Data Processing Center of KEK at the first chapter and of the computer room of INS at the second chapter and on future problems for the Computing Research Center. (G.K.)

  5. Center for Information Systems Research Research Briefings 2002

    OpenAIRE

    ROSS, JEANNE W.

    2003-01-01

    This paper is comprised of research briefings from the MIT Sloan School of Management's Center for Information Systems Research (CISR). CISR's mission is to perform practical empirical research on how firms generate business value from IT.

  6. Center for Computing Research Summer Research Proceedings 2015.

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Andrew Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-18

    The Center for Computing Research (CCR) at Sandia National Laboratories organizes a summer student program each summer, in coordination with the Computer Science Research Institute (CSRI) and Cyber Engineering Research Institute (CERI).

  7. Senior Computational Scientist | Center for Cancer Research

    Science.gov (United States)

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),

  8. Research Associate | Center for Cancer Research

    Science.gov (United States)

    The Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNLCR) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology or human genetics. As part of the BSP, the Microbiome and Genetics Core (the Core) characterizes microbiomes by next-generation sequencing to determine their composition and variation, as influenced by immune, genetic, and host health factors. The Core provides support across a spectrum of processes, from nucleic acid isolation through bioinformatics and statistical analysis. KEY ROLES/RESPONSIBILITIES The Research Associate II will provide support in the areas of automated isolation, preparation, PCR and sequencing of DNA on next generation platforms (Illumina MiSeq and NextSeq). An opportunity exists to join the Core’s team of highly trained experimentalists and bioinformaticians working to characterize microbiome samples. The following represent requirements of the position: A minimum of five (5) years related of biomedical experience. Experience with high-throughput nucleic acid (DNA/RNA) extraction. Experience in performing PCR amplification (including quantitative real-time PCR). Experience or familiarity with robotic liquid handling protocols (especially on the Eppendorf epMotion 5073 or 5075 platforms). Experience in operating and maintaining benchtop Illumina sequencers (MiSeq and NextSeq). Ability to evaluate experimental quality and to troubleshoot molecular biology protocols. Experience with sample tracking, inventory management and biobanking. Ability to operate and communicate effectively in a team-oriented work environment.

  9. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  10. THE CENTER FOR MILITARY BIOMECHANICS RESEARCH

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Military Biomechanics Research is a 7,500 ft2 dedicated laboratory outfitted with state-of-the-art equipment for 3-D analysis of movement, measurement...

  11. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  12. National Center on Sleep Disorders Research

    Science.gov (United States)

    ... Resources Register for Updates The National Center on Sleep Disorders Research (NCSDR) Located within the National Heart, Lung, ... 60 percent have a chronic disorder. Each year, sleep disorders, sleep deprivation, and sleepiness add an estimated $15. ...

  13. Center for Drug Evaluation and Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Drug Evaluation and Research(CDER) performs an essential public health task by making sure that safe and effective drugs are available to improve the...

  14. CCR Magazines | Center for Cancer Research

    Science.gov (United States)

    The Center for Cancer Research (CCR) has two magazines, MILESTONES and LANDMARKS, that highlight our annual advances and top contributions to the understanding, detection, treatment and prevention of cancer over the years.

  15. Research Centers: Ecstasies & Agonies [in HRD].

    Science.gov (United States)

    1995

    These four papers are from a symposium facilitated by Gene Roth on research centers at the 1995 Academy of Human Resource Development (HRD) conference. "Research: The Thin Blue Line between Rigor and Reality" (Michael Leimbach) discusses the need for HRD research to increase its speed and rigor and help organizations focus on capability…

  16. THE FUTURE OF SPIN PHYSICS AT BNL

    International Nuclear Information System (INIS)

    ARONSON, S.; DESHPANDE, A.

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) at BNL is the world's only polarized proton-proton collider. Collisions at center-of-mass energies up to 500 GeV and beam polarizations approaching 70% (longitudinal or transverse) are provided to two experiments, STAR and PHENIX, at luminosities (ge) 10 32 /cm 2 /sec. Transverse polarized beam has also been provided to the BRAHMS experiment. Measurements that bear on the important question of the spin content of the nucleon are beginning to appear. Over the next 10 years, as the performance of polarized proton running at RHIC is further developed, the Spin Physics program at RHIC will provide definitive measurements of the contributions to the proton's spin of the gluon, the sea quarks and the orbital motion of the partons in the proton's wave function. We plan to extend the reach of our study of the role of spin in QCD with the development of ''eRHIC'', which will provide polarized e-p collisions to a new detector

  17. The Future Of Spin Physics At BNL

    International Nuclear Information System (INIS)

    Aronson, Samuel; Deshpande, Abhay

    2007-01-01

    The Relativistic Heavy Ion Collider (RHIC) at BNL is the world's only polarized proton-proton collider. Collisions at center-of-mass energies up to 500 GeV and beam polarizations approaching 70% (longitudinal or transverse) are provided to two experiments, STAR and PHENIX, at luminosities ≥ 1032/cm2/sec. Transverse polarized beam has also been provided to the BRAHMS experiment. Measurements that bear on the important question of the spin content of the nucleon are beginning to appear. Over the next 10 years, as the performance of polarized proton running at RHIC is farmer developed, the Spin Physics program at RHIC will provide definitive measurements of the contributions to the proton's spin of the gluon, the sea quarks and the orbital motion of the partons in the proton's wave function. We plan to extend the reach of our study of the role of spin in QCD with the development of 'eRHIC', which will provide polarized e-p collisions to a new detector

  18. BNL Direct Wind Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  19. Karlsruhe nuclear research center. Main activities

    International Nuclear Information System (INIS)

    The article reports on problems of securing the fuel supply for nuclear power generation, on reprocessing and ultimate storage of radioactive material, on the safety of nuclear facilities, on new technologies and basic research, and on the infrastructure of the Karlsruhe nuclear research center, as well as finance and administration. (HK) [de

  20. CCR Interns | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Interns (CRI) Summer Program was inaugurated in 2004 to provide an open door for students looking for an initial training opportunity. The goal is to enhance diversity within the CCR (Center for Cancer Research) training program and we have placed 338 students from 2004 to 2017, in labs and branches across the division.  The CCR and the Center for Cancer Training’s Office of Training and Education provide stipend support, some Service & Supply funds, and travel support for those students who meet the financial eligibility criteria (

  1. Synthesis centers as critical research infrastructure

    Science.gov (United States)

    Baron, Jill S.; Specht, Alison; Garnier, Eric; Bishop, Pamela; Campbell, C. Andrew; Davis, Frank W.; Fady, Bruno; Field, Dawn; Gross, Louis J.; Guru, Siddeswara M.; Halpern, Benjamin S; Hampton, Stephanie E.; Leavitt, Peter R.; Meagher, Thomas R.; Ometto, Jean; Parker, John N.; Price, Richard; Rawson, Casey H.; Rodrigo, Allen; Sheble, Laura A.; Winter, Marten

    2017-01-01

    investment to maximize benefits to science and society is justified. In particular, we argue that synthesis centers represent community infrastructure more akin to research vessels than to term-funded centers of science and technology (e.g., NSF Science and Technology Centers). Through our experience running synthesis centers and, in some cases, developing postfederal funding models, we offer our perspective on the purpose and value of synthesis centers. We present case studies of different outcomes of transition plans and argue for a fundamental shift in the conception of synthesis science and the strategic funding of these centers by government funding agencies.

  2. Managing a Modern University Research Center.

    Science.gov (United States)

    Veres, John G., III

    1988-01-01

    The university research center of the future will function best to serve the rapidly changing public and private demand for services with a highly trained core staff, adequately funded and equipped, whose morale and quality of work performance is a prime consideration. (MSE)

  3. Role Strain in University Research Centers

    Science.gov (United States)

    Boardman, Craig; Bozeman, Barry

    2007-01-01

    One way in which university faculty members' professional lives have become more complex with the advent of contemporary university research centers is that many faculty have taken on additional roles. The authors' concern in this article is to determine the extent to which role strain is experienced by university faculty members who are…

  4. The Strategic Electrochemical Research Center in Denmark

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels

    2011-01-01

    A 6-year strategic electrochemistry research center (SERC) in fundamental and applied aspects of electrochemical cells with a main emphasis on solid oxide cells was started in Denmark on January 1st, 2007 in cooperation with other Danish and Swedish Universities. Furthermore, 8 Danish companies...... are presented. ©2011 COPYRIGHT ECS - The Electrochemical Society...

  5. Staff Clinician | Center for Cancer Research

    Science.gov (United States)

    The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) is seeking staff clinicians to provide high-quality patient care for individuals with primary central nervous system (CNS) malignancies.  The NOB is comprised of a multidisciplinary team of physicians, healthcare providers, and scientists who

  6. Lewis Research Center R and D Facilities

    Science.gov (United States)

    1991-01-01

    The NASA Lewis Research Center (LeRC) defines and develops advanced technology for high priority national needs. The work of the Center is directed toward new propulsion, power, and communications technologies for application to aeronautics and space, so that U.S. leadership in these areas is ensured. The end product is knowledge, usually in a report, that is made fully available to potential users--the aircraft engine industry, the energy industry, the automotive industry, the space industry, and other NASA centers. In addition to offices and laboratories for almost every kind of physical research in such fields as fluid mechanics, physics, materials, fuels, combustion, thermodynamics, lubrication, heat transfer, and electronics, LeRC has a variety of engineering test cells for experiments with components such as compressors, pumps, conductors, turbines, nozzles, and controls. A number of large facilities can simulate the operating environment for a complete system: altitude chambers for aircraft engines; large supersonic wind tunnels for advanced airframes and propulsion systems; space simulation chambers for electric rockets or spacecraft; and a 420-foot-deep zero-gravity facility for microgravity experiments. Some problems are amenable to detection and solution only in the complete system and at essentially full scale. By combining basic research in pertinent disciplines and generic technologies with applied research on components and complete systems, LeRC has become one of the most productive centers in its field in the world. This brochure describes a number of the facilities that provide LeRC with its exceptional capabilities.

  7. AHPCRC - Army High Performance Computing Research Center

    Science.gov (United States)

    2010-01-01

    computing. Of particular interest is the ability of a distrib- uted jamming network (DJN) to jam signals in all or part of a sensor or communications net...and reasoning, assistive technologies. FRIEDRICH (FRITZ) PRINZ Finmeccanica Professor of Engineering, Robert Bosch Chair, Department of Engineering...High Performance Computing Research Center www.ahpcrc.org BARBARA BRYAN AHPCRC Research and Outreach Manager, HPTi (650) 604-3732 bbryan@hpti.com Ms

  8. Nuclear Research Center IRT reactor dynamics calculation

    International Nuclear Information System (INIS)

    Aleman Fernandez, J.R.

    1990-01-01

    The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs

  9. Interaction Modeling at PROS Research Center

    OpenAIRE

    Panach , José ,; Aquino , Nathalie; PASTOR , Oscar

    2011-01-01

    Part 1: Long and Short Papers; International audience; This paper describes how the PROS Research Center deals with interaction in the context of a model-driven approach for the development of information systems. Interaction is specified in a conceptual model together with the structure and behavior of the system. Major achievements and current research challenges of PROS in the field of interaction modeling are presented.

  10. Scientific activities 1980 Nuclear Research Center ''Democritos''

    International Nuclear Information System (INIS)

    1982-01-01

    The scientific activities and achievements of the Nuclear Research Center Democritos for the year 1980 are presented in the form of a list of 76 projects giving title, objectives, responsible of each project, developed activities and the pertaining lists of publications. The 16 chapters of this work cover the activities of the main Divisions of the Democritos NRC: Electronics, Biology, Physics, Chemistry, Health Physics, Reactor, Scientific Directorate, Radioisotopes, Environmental Radioactivity, Soil Science, Computer Center, Uranium Exploration, Medical Service, Technological Applications, Radioimmunoassay and Training. (N.C.)

  11. Review of BNL heavy ion physics

    International Nuclear Information System (INIS)

    Miake, Yasuo.

    1990-01-01

    With an intent to search for a new state of matter, a relativistic heavy ion program was started in 1986 at BNL. Several interesting features have been reported from BNL-AGS heavy ion experiments, among which are: the enhanced K + /π + ratio and the larger left-angle m t right-angle for K + and proton. Comparisons between ∼pp, pA and SiA collisions are discussed for m t and dn/dy distributions. 33 refs., 9 figs., 1 tab

  12. Data Curation Education in Research Centers (DCERC)

    Science.gov (United States)

    Marlino, M. R.; Mayernik, M. S.; Kelly, K.; Allard, S.; Tenopir, C.; Palmer, C.; Varvel, V. E., Jr.

    2012-12-01

    Digital data both enable and constrain scientific research. Scientists are enabled by digital data to develop new research methods, utilize new data sources, and investigate new topics, but they also face new data collection, management, and preservation burdens. The current data workforce consists primarily of scientists who receive little formal training in data management and data managers who are typically educated through on-the-job training. The Data Curation Education in Research Centers (DCERC) program is investigating a new model for educating data professionals to contribute to scientific research. DCERC is a collaboration between the University of Illinois at Urbana-Champaign Graduate School of Library and Information Science, the University of Tennessee School of Information Sciences, and the National Center for Atmospheric Research. The program is organized around a foundations course in data curation and provides field experiences in research and data centers for both master's and doctoral students. This presentation will outline the aims and the structure of the DCERC program and discuss results and lessons learned from the first set of summer internships in 2012. Four masters students participated and worked with both data mentors and science mentors, gaining first hand experiences in the issues, methods, and challenges of scientific data curation. They engaged in a diverse set of topics, including climate model metadata, observational data management workflows, and data cleaning, documentation, and ingest processes within a data archive. The students learned current data management practices and challenges while developing expertise and conducting research. They also made important contributions to NCAR data and science teams by evaluating data management workflows and processes, preparing data sets to be archived, and developing recommendations for particular data management activities. The master's student interns will return in summer of 2013

  13. 70 Years of Aeropropulsion Research at NASA Glenn Research Center

    Science.gov (United States)

    Reddy, Dhanireddy R.

    2013-01-01

    This paper presents a brief overview of air-breathing propulsion research conducted at the NASA Glenn Research Center (GRC) over the past 70 years. It includes a historical perspective of the center and its various stages of propulsion research in response to the countrys different periods of crises and growth opportunities. GRCs research and technology development covered a broad spectrum, from a short-term focus on improving the energy efficiency of aircraft engines to advancing the frontier technologies of high-speed aviation in the supersonic and hypersonic speed regimes. This paper highlights major research programs, showing their impact on industry and aircraft propulsion, and briefly discusses current research programs and future aeropropulsion technology trends in related areas

  14. Molecular Science Research Center 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  15. RCOP: Research Center for Optical Physics

    Science.gov (United States)

    Tabibi, Bagher M. (Principal Investigator)

    1996-01-01

    During the five years since its inception, Research Center for Optical Physics (RCOP) has excelled in the goals stated in the original proposal: 1) training of the scientists and engineers needed for the twenty-first century with special emphasis on underrepresented citizens and 2) research and technological development in areas of relevance to NASA. In the category of research training, there have been 16 Bachelors degrees and 9 Masters degrees awarded to African American students working in RCOP during the last five years. RCOP has also provided research experience to undergraduate and high school students through a number of outreach programs held during the summer and the academic year. RCOP has also been instrumental in the development of the Ph.D. program in physics which is in its fourth year at Hampton. There are currently over 40 graduate students in the program and 9 African American graduate students, working in RCOP, that have satisfied all of the requirements for Ph.D. candidancy and are working on their dissertation research. At least three of these students will be awarded their doctoral degrees during 1997. RCOP has also excelled in research and technological development. During the first five years of existence, RCOP researchers have generated well over $3 M in research funding that directly supports the Center. Close ties with NASA Langley and NASA Lewis have been established, and collaborations with NASA scientists, URC's and other universities as well as with industry have been developed. This success is evidenced by the rate of publishing research results in refereed journals, which now exceeds that of the goals in the original proposal (approx. 2 publications per faculty per year). Also, two patents have been awarded to RCOP scientists.

  16. Autoconditioning system for BNL negative ion sources

    International Nuclear Information System (INIS)

    Larson, R.A.

    1979-01-01

    The autoconditioning system at BNL is being used to condition negative ion sources now under development. A minicomputer with appropriate interface hardware is employed to implement simple algorithims, slowly increasing the operating point of the source. This paper gives a brief description of the hardware and the software system

  17. 2013 BNL Site Environmental Report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Ratel, K.; Remien, J.; Pohlot, P.; Williams, J.; Green, T.; Paquette, P.; Dorsch, W.; Welty, T.; Burke, J.

    2014-10-01

    A summary of Brookhaven National Laboratory’s (BNL) Site Environmental Report, meant to inform the public, regulators, employees, and other stakeholders of the Laboratory’s environmental performance in the lab’s surrounding area during the calendar year. The review is comprised of multiple volumes relevant to environmental data/environmental management performance and groundwater status report.

  18. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  19. SCIENTIFIC PRESENTATION. 7TH MEETING OF THE MANAGEMENT STEERING COMMITTEE OF THE RIKEN BNL COLLABORATION.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.D.

    2001-02-13

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho,'' (RIKEN) The Institute of Physical and Chemical Research, of Japan. The Center is dedicated to the study of strong interactions, including hard QCD/spin physics, lattice QCD and RHIC (Relativistic Heavy Ion Collider) physics through nurturing of a new generation of young physicists. The Director of RBRC is Professor T. D. Lee. The first years were dedicated to the establishment of a theory group. This has essentially been completed consisting of Fellows, Postdocs, and RHIC Physics/University Fellows, with an active group of consultants. The center also organizes an extensive series of workshops on specific topics in strong interactions with an accompanying series of published proceedings. In addition, a 0.6 teraflop parallel processor computer has been constructed and operational since August 1998. It was awarded the Supercomputer 1998 Gordon Bell Prize for price performance. An active experimental group centered around the spin physics program at RHIC has subsequently also been established at RBRC. It presently consists of five Fellows, one Postdoc and several scientific collaborators with more appointments being expected in the near future. Members and participants of RBRC on occasion will develop articles such as this one, in the nature of a status report or a general review.

  20. SCIENTIFIC PRESENTATION. 7TH MEETING OF THE MANAGEMENT STEERING COMMITTEE OF THE RIKEN BNL COLLABORATION.

    Energy Technology Data Exchange (ETDEWEB)

    LEE,T.D.

    2001-02-13

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho,'' (RIKEN) The Institute of Physical and Chemical Research, of Japan. The Center is dedicated to the study of strong 'interactions, including hard QCD/spin physics, lattice QCD and RHIC (Relativistic Heavy Ion Collider) physics through nurturing of a new generation of young physicists. The Director of RBRC is Professor T. D. Lee. The first years were dedicated to the establishment of a theory group. This has essentially been completed consisting of Fellows, Postdocs, and RHIC Physics/University Fellows, with an active group of consultants. The center also organizes an extensive series of workshops on specific topics in strong interactions with an accompanying series of published proceedings. In addition, a 0.6 teraflop parallel processor computer has been constructed and operational since August 1998. It was awarded the Supercomputer 1998 Gordon Bell Prize for price performance. An active experimental group centered around the spin physics program at RHIC has subsequently also been established at RBRC. It presently consists of five Fellows, one Postdoc and several scientific collaborators with more appointments being expected in the near future. Members and participants of RBRC on occasion will develop articles such as this one, in the nature of a status report or a general review.

  1. Scientific presentation. 7th meeting of the management steering committee of the RIKEN BNL Collaboration

    International Nuclear Information System (INIS)

    Lee, T.D.

    2001-01-01

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho,'' (RIKEN) The Institute of Physical and Chemical Research, of Japan. The Center is dedicated to the study of strong interactions, including hard QCD/spin physics, lattice QCD and RHIC (Relativistic Heavy Ion Collider) physics through nurturing of a new generation of young physicists. The Director of RBRC is Professor T. D. Lee. The first years were dedicated to the establishment of a theory group. This has essentially been completed consisting of Fellows, Postdocs, and RHIC Physics/University Fellows, with an active group of consultants. The center also organizes an extensive series of workshops on specific topics in strong interactions with an accompanying series of published proceedings. In addition, a 0.6 teraflop parallel processor computer has been constructed and operational since August 1998. It was awarded the Supercomputer 1998 Gordon Bell Prize for price performance. An active experimental group centered around the spin physics program at RHIC has subsequently also been established at RBRC. It presently consists of five Fellows, one Postdoc and several scientific collaborators with more appointments being expected in the near future. Members and participants of RBRC on occasion will develop articles such as this one, in the nature of a status report or a general review

  2. Electron Microscopist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives. The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR). The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and genetics. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR). CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES/RESPONSIBILITIES - THIS POSITION IS CONTINGENT UPON FUNDING APPROVAL The Electron Microscopist will: Operate ultramicrotomes (Leica) and other instrumentation related to the preparation of embedded samples for EM (TEM and SEM) Operate TEM microscopes, (specifically Hitachi, FEI T20 and FEI T12) as well as SEM microscopes (Hitachi); task will include loading samples, screening, and performing data collection for a variety of samples: from cells to proteins Manage maintenance for the TEM and SEM microscopes Provide technical advice to investigators on sample preparation and data collection

  3. BNL AGS - a context for kaon factories

    International Nuclear Information System (INIS)

    Littenberg, L.S.

    1983-05-01

    Figure 1 shows the Brookhaven site with the AGS-CBA complex highlighted. In this photograph the AGS is dwarfed by CBA and indeed during the past few years future plans for particle physics at BNL have been dominated by this enormous project. However, very recently interest in future physics use of the AGS has undergone a strong revival. Indeed, since the beginning of this year, two projects for augmenting the AGS have been proposed. Such projects could keep the AGS viable as a research machine for many years to come. In general such schemes will also improve the performance and increase the versatility of the CBA, and so are doubly valuable. It should be kept in mind that in spite of the fact the AGS has been perhaps the most fruitful machine in the history of high energy physics, its full capacities have never been exploited. Even without improvements at least one generation of rare K decay experiments beyond those currently launched seems feasible. Beyond that a major effort at any of the experiments discussed above could take it to the point where it would be limited by intrinsic physics background. To pursue a full program of physics at this level one would want to increase the intensity of the AGS as described. A ten-fold increase in K flux would remove such experiments from the category of all-out technological assaults and render them manageable by reasonably small groups of physicists. In addition, certain other, cleaner experiments, e.g., K/sub L/ 0 → e + e - or e + e - π 0 , could be pushed to limits unobtainable at the present AGS. The increased flux would also be welcomed by the neutrino and hypernuclear physics programs. Even experiments which do not at present require higher fluxes would benefit through the availability of purer beams and cleaner conditions

  4. Flow Cytometry Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) of the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of cancer and cancer cells. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Technician will be responsible for: Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Monitoring lab supply levels and order lab supplies, perform various record keeping responsibilities Assist in the training of scientific end users on the use of flow cytometry in their research, as well as how to operate and troubleshoot the bench-top analyzer instruments Experience with sterile technique and tissue culture

  5. Radiation protection at the Cadarache research center

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    This article recalls the French law about radiation protection and its evolution due to the implementation of the 2013/59-EURATOM directive that separates the missions of counsel from the more operative missions of the person appointed as 'competent in radiation protection'. The organisation of the radiation protection of the Cadarache research center is presented. The issue of sub-contracting and the respect of an adequate standard of radioprotection is detailed since 2 facilities operated by AREVA are being dismantled on the site. (A.C.)

  6. Atomic, Nuclear and Molecular Research Center CICANUM

    International Nuclear Information System (INIS)

    Loria Meneses, Luis Guillermo

    2011-01-01

    CICANUM has a Gamma Spectroscopy Laboratory, has been the laboratory official, appointed by the Ministerio de Agricultura in Costa Rica to analyze export products (for human consumption and animal), also, to determine radioactive contamination. The Laboratory has four systems using germanium detectors and canberra technology, including software Genie 2000 to establish the activity of cesium, iodine and natural gamma emitters in solid or liquid samples for food products, sediments and rocks. This Laboratory belongs to the Universidad de Costa Rica which has different institutes and research centers

  7. NASA Langley Research Center tethered balloon systems

    Science.gov (United States)

    Owens, Thomas L.; Storey, Richard W.; Youngbluth, Otto

    1987-01-01

    The NASA Langley Research Center tethered balloon system operations are covered in this report for the period of 1979 through 1983. Meteorological data, ozone concentrations, and other data were obtained from in situ measurements. The large tethered balloon had a lifting capability of 30 kilograms to 2500 meters. The report includes descriptions of the various components of the balloon systems such as the balloons, the sensors, the electronics, and the hardware. Several photographs of the system are included as well as a list of projects including the types of data gathered.

  8. Statistical Analysis of Research Data | Center for Cancer Research

    Science.gov (United States)

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. The Statistical Analysis of Research Data (SARD) course will be held on April 5-6, 2018 from 9 a.m.-5 p.m. at the National Institutes of Health's Natcher Conference Center, Balcony C on the Bethesda Campus. SARD is designed to provide an overview on the general principles of statistical analysis of research data.  The first day will feature univariate data analysis, including descriptive statistics, probability distributions, one- and two-sample inferential statistics.

  9. Heavy ion program at BNL: AGS, RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Barton, D.S.

    1987-01-01

    With the recent commissioning of fixed target, heavy ion physics at the AGS, Brookhaven National Laboratory (BNL) has embarked on a long range program in support of relativistic heavy ion research. Acceleration of low mass heavy ions (up to sulfur) to an energy of about 14.5 GeV/nucleon is possible with the direct connection of the BNL Tandem Van de Graaff and AGS accelerators. When completed, the new booster accelerator will provide heavy ions over the full mass range for injection and subsequent acceleration in the AGS. BNL is now engaged in an active R and D program directed toward the proposed Relativistic Heavy Ion Collider (RHIC). The results of the first operation of the low mass heavy ion program will be reviewed, and future expectations discussed. The expected performance for the heavy ion operation of the booster will be described and finally, the current status and outlook for the RHIC facility will be presented

  10. Nuclear Criticality Experimental Research Center (NCERC) Overview

    Energy Technology Data Exchange (ETDEWEB)

    Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Grove, Travis Justin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes, David Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sanchez, Rene Gerardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activities that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.

  11. Current research and development at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Kuesters, H.

    1982-01-01

    The Nuclear Research Center Karlsruhe (KfK) is funded to 90% by the Federal Republic of Germany and to 10% by the State of Baden-Wuerttemberg. Since its foundation in 1956 the main objective of the Center is research and development (R and D) in the aera of the nuclear technology and about 2/3 of the research capacity is now devoted to this field. Since 1960 a major activity of KfK is R and D work for the design of fast breeder reactors, including material research, physics, and safety investigations; a prototype of 300 MWe is under construction now in the lower Rhine Valley. For enrichment of 235 U fissile material KfK developed the separation nozzle process; its technical application is realized within an international contract between the Federal Republic of Germany and Brazil. Within the frame of the European Programme on fusion technology KfK develops and tests superconducting magnets for toroidal fusion systems; a smaller activity deals with research on inertial confinement fusion. A broad research programme is carried through for safety investigations of nuclear installations, especially for PWRs; this activity is supplemented by research and development in the field of nuclear materials' safeguards. Development of fast reactors has to initiate research for the reprocessing of spent fuel and waste disposal. In the pilot plant WAK spent fuel from LKWs is reprocessed; research especially tries e.g. to improve the PUREX-process by electrochemical means, vitrification of high active waste is another main activity. First studies are being performed now to clarify the necessary development for reprocessing fast reactor fuel. About 1/3 of the research capacity of KfK deals with fundamental research in nuclear physics, solid state physics, biology and studies on the impact of technology on environment. Promising new technologies as e.g. the replacement of gasoline by hydrogen cells as vehicle propulsion are investigated. (orig.)

  12. Research Center Renaming Will Honor Senator Domenici

    Science.gov (United States)

    2008-05-01

    New Mexico Tech and the National Radio Astronomy Observatory (NRAO) will rename the observatory's research center on the New Mexico Tech campus to honor retiring U.S. Senator Pete V. Domenici in a ceremony on May 30. The building that serves as the scientific, technical, and administrative center for the Very Large Array (VLA) and Very Long Baseline Array (VLBA) radio telescopes will be named the "Pete V. Domenici Science Operations Center." The building previously was known simply as the "Array Operations Center." Sen. Pete V. Domenici Sen. Pete V. Domenici "The new name recognizes the strong and effective support for science that has been a hallmark of Senator Domenici's long career in public service," said Dr. Fred Lo, NRAO Director. New Mexico Tech President Daniel H. Lopez said Sen. Domenici has always been a supporter of science and research in Socorro and throughout the state. "He's been a statesman for New Mexico, the nation -- and without exaggeration -- for the world," Lopez said. "Anyone with that track record deserves this recognition." Van Romero, Tech vice president of research and economic development, has served as the university's main lobbyist in Washington, D.C., for more than a decade. He said Sen. Domenici has always been receptive to new ideas and willing to take risks. "Over the years, Sen. Domenici has always had time to listen to our needs and goals," Romero said. "He has served as a champion of New Mexico Tech's causes and we owe him a debt of gratitude for all his efforts over the decades." Originally dedicated in 1988, the center houses offices and laboratories that support VLA and VLBA operations. The center also supports work on the VLA modernization project and on the international Atacama Large Millimeter/submillimeter Array (ALMA) project. Work on ALMA at the Socorro center and at the ALMA Test Facility at the VLA site west of Socorro has focused on developing and testing equipment to be deployed at the ALMA site in Chile's Atacama

  13. Physics at BNL mini-kaon

    International Nuclear Information System (INIS)

    Littenberg, L.

    1995-01-01

    The BNL AGS is currently producing about 3μA of 24 GeV protons with ∼ 40% duty factor in slow extracted beam running. Proposals for further upgrading the accelerator are under discussion. These can produce intensities of 5.4-20μA, with duty factors ranging up to nearly 100%. Such improvements provide a range of new opportunities for K and other experiments. I discuss a few such opportunities

  14. PHENIX Spinfest School 2009 at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Foster,S.P.; Foster,S.; Seidl, R.; Goto, Y.; Okada, K.

    2009-08-07

    Since 2005, the PHENIX Spin Physics Working Group has set aside several weeks each summer for the purposes of training and integrating recent members of the working group as well as coordinating and making rapid progress on support tasks and data analysis. One week is dedicated to more formal didactic lectures by outside speakers. The location has so far alternated between BNL and the RIKEN campus in Wako, Japan, with support provided by RBRC and LANL.

  15. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  16. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  17. Patient Care Coordinator | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  18. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  19. Superconducting microwave electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  20. Superconducting Microwave Electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    1991-01-01

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  1. Molecular Science Research Center, 1991 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  2. Mississippi State University Sustainable Energy Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W. Glenn [Mississippi State Univ., Mississippi State, MS (United States)

    2014-09-26

    The Sustainable Energy Research Center (SERC) project at Mississippi State University included all phases of biofuel production from feedstock development, to conversion to liquid transportation fuels, to engine testing of the fuels. The feedstocks work focused on non-food based crops and yielded an increased understanding of many significant Southeastern feedstocks. an emphasis was placed on energy grasses that could supplement the primary feedstock, wood. Two energy grasses, giant miscanthus and switchgrass, were developed that had increased yields per acre. Each of these grasses was patented and licensed to companies for commercialization. The fuels work focused on three different technologies that each led to a gasoline, diesel, or jet fuel product. The three technologies were microbial oil, pyrolysis oil, and syngas-to liquid-hydrocarbons

  3. Developmental Scientist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  4. Together with Research Centers and Universities

    Directory of Open Access Journals (Sweden)

    Nuno Domingos Garrido

    2016-10-01

    Full Text Available The Journal Motricidade has always been walking in parallel with the scientific communities. We found that the affiliation of most authors has, nearly always, a University (Uni or a Research Center (RC. In fact it is almost impossible to conduct research outside these two universes. In this sense, Uni and RC feed the most, if not all, of scientific journals worldwide. By this I mean that is in the interest of Motricidade to be associated with high-quality RC and Uni equally recognized. With regard to RC, Motricidade will publish this year a supplement of the International Congress of Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD. This RC has conducted research in a variety of areas within the Sport Sciences and Health and always with high recognition and associated publications. It was not by chance that this RC was evaluated with ‘very good’ by the Portuguese Foundation for Science and Technology (FCT panel and has been granted funding. This Congress, which takes place every two years, targets to converge research and high level practices within these three areas: Sports, Health and Human Development. The 2016 CIDESD edition is dedicated to "Exercise and Health, Sports and Human Development" and will be held at the University of Évora, between 11 and 12 November of 2016. The readers can check the program in the following link http://gdoc.uevora.pt/450120 and get more information in the Congress Site available at http://www.cidesd2016.uevora.pt/. With regard to Uni, Motricidade signed a cooperation protocol with the University of Beira Interior (UBI in May of 2016, involving the development and dissemination of scientific knowledge in Sports Sciences, Psychology, Human Development and Health. At the present, UBI hosts more than 6,000 students spread across five faculties - Arts & Letters, Sciences, Health Sciences, Humanities and Social Sciences and Engineering. When looking at the rankings, for instance

  5. BNL ENVIRONMENTAL MONITORING PLAN TRIENNIAL UPDATE, JANUARY 2003.

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY

    2003-01-01

    Brookhaven National Laboratory (BNL) is a multi-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy (DOE) and is located on a 5,265-acre site in Suffolk County, Long Island, New York. BNL has a comprehensive Environmental Management System (EMS) in place, which meets the requirements of the International Organization for Standardization 14001 EMS Standard, as described in the BNL EMS Manual. BNL's extensive environmental monitoring program is one component of the EMS, and the BNL Environmental Monitoring Plan (EMP) describes this program in detail. The data derived from systematically monitoring the various environmental media on site enable BNL to make informed decisions concerning the protection of human health and the environment and to be responsive to community concerns.

  6. Louisiana Transportation Research Center : Annual report, 2016-2017

    Science.gov (United States)

    2017-10-11

    This publication is a report of the transportation research, technology transfer, education, and training activities of the Louisiana Transportation Research Center for July 1, 2016 - June 30, 2017. The center is sponsored jointly by the Louisiana De...

  7. SCIENTIFIC PRESENTATIONS of the 11. MEETING OF THE MANAGEMENT STEERING COMMITTEE OF THE RIKEN BNL COLLABORATION (RBRC SCIENTIFIC ARTICLE, VOLUME 11)

    International Nuclear Information System (INIS)

    Samios, N.P.

    2005-01-01

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkyusho,'' (RIKEN) The Institute of Physical and Chemical Research, of Japan. The Center is dedicated to the study of strong interactions, including hard QCD/spin physics, lattice QCD and RHIC (Relativistic Heavy Ion Collider) physics through nurturing of a new generation of young physicists. The agreement was extended in 2002 for another five year period. This 11th steering group meeting consisted of a series of reports on current activities and future perspectives. Presentation titles and authors included: 'RBRC operations and accomplishments' by Nicholas P. Samios, 'Theoretical physics at RIKEN-BNL Center: strong interactions and QCD' by Larry McLerran, 'RBRC experimental group and Wako base', by Hideto En'yo, 'The QCDOC project overview and status' by Norman H. Christ, 'RHIC spin physics' by Gerry Bunce, 'RHIC heavy ion progam' by Yasuyuki Akiba, 'RIKEN's current status and future plans' by Samuel Aronson, 'Procedure for proposing renewal of the collaboration agreement in 2007' by Chiharu Shimoyamada, and 'New direction of RPRC beyond JFY 2007' by Nicholas P. Samios

  8. Langley Research Center Strategic Plan for Education

    Science.gov (United States)

    Proctor, Sandra B.

    1994-01-01

    Research assignment centered on the preparation of final draft of the NASA Langley Strategic Plan for Education. Primary research activity consisted of data collection, through interviews with LaRC Office of Education and NASA Headquarters staff, university administrators and faculty, and school administrators / teachers; and documentary analysis. Pre-college and university programs were critically reviewed to assure effectiveness, support of NASA and Langley's mission and goals; National Education Goals; and educational reform strategies. In addition to these mandates, pre-college programs were reviewed to address present and future LaRC activities for teacher enhancement and preparation. University programs were reviewed with emphasis on student support and recruitment; faculty development and enhancement; and LaRC's role in promoting the utilization of educational technologies and distance learning. The LaRC Strategic Plan for Education will enable the Office of Education to provide a focused and well planned continuum of education programs for students, teachers and faculty. It will serve to direct and focus present activities and programs while simultaneously offering the flexibility to address new and emerging directions based on changing national, state, and agency trends.

  9. Center for Ecotoxicological Research of Montenegro

    International Nuclear Information System (INIS)

    Vucinic, Z.

    2006-01-01

    PI Center for Ecotoxicological Research of Montenegro (CETI) is founded 1996's in accordance with Government policy, for the purpose to: Unite the problems of protecting the environment in one institution, Organize the monitoring of the all segments of environment (air, waters soils, waste, ionizing and non-ionizing radiation, noise measurements etc.), Organize control of human and animal food and toxicological analysis of all kind of samples, forensic analyses etc. To concentrate the expensive instrumental equipment and human resources in one institution. December 1996 - CETI founded by decision of Montenegrin government 1997-CETI starting with acquisition of equipment and education of the staff March of 1998 - Officially starting with the job and realization with Program's September 2004 - Took the ISO 9001:2000 Certificate and Accreditation under ISO/IEC 17025 in November 2004 Organisation Scheme of CETI: Laboratory For Ecotoxicological Research And Radiation Protection I. Department For Laboratory Diagnostic And Monitoring II. Department For Radiation Protection And Monitoring Sector For Administration Department For Economy Department For Administration Total number of Employs is 63 of permanent staff

  10. Overview of Stirling Technology Research at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.

    2016-01-01

    Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.

  11. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  12. BWR plant analyzer development at BNL

    International Nuclear Information System (INIS)

    Cheng, H.S.; Wulff, W.; Mallen, A.N.; Lekach, S.V.; Stritar, A.; Cerbone, R.J.

    1985-01-01

    Advanced technology for high-speed interactive nuclear power plant simulations is of great value for timely resolution of safety issues, for plant monitoring, and for computer-aided emergency responses to an accident. Presented is the methodology employed at BNL to develop a BWR plant analyzer capable of simulating severe plant transients at much faster than real-time process speeds. Five modeling principles are established and a criterion is given for selecting numerical procedures and efficient computers to achieve the very high simulation speeds. Typical results are shown to demonstrate the modeling fidelity of the BWR plant analyzer

  13. Cooperative research with CHECIR (CHErnobyl Center for International Research)

    International Nuclear Information System (INIS)

    Nagaoka, T.; Saito, K.; Sakamoto, R.; Tsutsumi, M.; Moriuchi, S.

    1994-01-01

    The Chernobyl Center for International Research (CHECIR) has been established under an agreement among IAEA. Russia, Byelorussia and Ukraine in order to implement various studies on the reactor facilities and on the environment near and around the reactor. JAERI started discussions with a view to join the idea on the research project of study on assessment and analysis of environmental consequences in contaminated area. On June, 1992, JAERI and CHECIR concluded an agreement on the Implementation of Research at the CHECIR. Under the agreement, JAERI has started 'Study on Assessment and Analysis of Environmental Radiological Consequences and Verification of an Assessment System'. This project is scheduled to last until 1996. This study consists of following two subjects. Subject-1: Study on Measurements and Evaluation of Environmental External Exposure after Nuclear Accident. Subject-2: Study on the Validation of Assessment Models in an Environmental Consequence Assessment Methodology for Nuclear Accidents. Subject-3: Study on Migration of Radionuclides Released into Rivers adjacent to the Chernobyl Nuclear Power Plant (planned to start from FY1994). In this workshop, research activity will be introduced with actually measured data. (J.P.N.)

  14. Armstrong Flight Research Center Research Technology and Engineering 2017

    Science.gov (United States)

    Voracek, David F. (Editor)

    2018-01-01

    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.

  15. University of Kentucky Center for Applied Energy Research

    Science.gov (United States)

    University of Kentucky Center for Applied Energy Research Search Help Research Our Expertise University of Kentucky Center for Applied Energy Research | An Equal Opportunity University All Rights Remediation Power Generation CAER TechFacts CAER Factsheets CAER Affiliations Research Contacts Publications

  16. Center for Biologics Evaluation and Research (CBER)

    Data.gov (United States)

    Federal Laboratory Consortium — CBER is the Center within FDA that regulates biological products for human use under applicable federal laws, including the Public Health Service Act and the Federal...

  17. Fisher Center for Alzheimer's Research Foundation

    Science.gov (United States)

    ... Hear Kent Karosen, President and CEO of the Fisher Center, describe his new book and the power ... Signs of Alzheimer's Clinical Stages of Alzheimer’s About Fisher About Us Board of Trustees Financials Terms of ...

  18. Center Independent Research & Developments: JSC IRAD Program

    Data.gov (United States)

    National Aeronautics and Space Administration — JSC provides and applies its preeminent capabilities in science and technology to develop, operate, and integrate human exploration missions.  The center...

  19. The status of shielding research at Tajoura research center

    International Nuclear Information System (INIS)

    El-Bakkoush, F.A.

    2005-01-01

    This paper gives a description to the shielding research activities which have been carried-out at the radiation shielding group ,Tajoura Research Center. This includes the design of different types of concrete shields made from local aggregates which have suitable radiation attenuation properties. These include, Ordinary Concrete(with density p = 2.3 ton/m3) heavy weight concrete (with density p =3.6 ton/m3) and heat resistant concrete with aggregates having bound- in water. Investigation have been carried -out by measuring the neutron and gamma-rays spectra which have been transmitted through barriers having different thickness. These were performed using a collimated beam of reactor neutrons and gamma-ray transmitted from the horizontal channel no 1 of Tajoura-Research reactor with 10 MW Max ape rating power. The transmitted fast neutron and gamma spectra were measured by neutron-gamma spectrometer employing NE-213 liquid organic scintillater. Discrimination of against undesired pulses of neutrons or gamma-ray was achieved by a pulse shape discrimination method based on differences in the shape of the decay part of the emitted pulses. The obtained results are presented in the form of displayed neutron and gamma spectra measured behind different thickness of the investigated concrete shield. These spectra were used to derive the macroscopic cross section for at different energy for material under investigation

  20. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  1. Breast Cancer Translational Research Center of Excellence

    Science.gov (United States)

    2015-09-01

    CBCP) Breast Center is the Army-recognized and Military-recognized specialty referral center for t r i - se rv ice active duty personnel from around...development of customized treatment options in patients with HER2+ breast cancer. Objective 1 Evaluate differences in the molecular profiles of...2014CBCP & CCBB Analysis of Errors & Corrections 11/7/2014Customer Satisfaction Results Analysis 1/7/2015Audit of signed-out tissue samples in -80 freezer

  2. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  3. Wave Energy Research, Testing and Demonstration Center

    Energy Technology Data Exchange (ETDEWEB)

    Batten, Belinda [Oregon State Univ., Corvallis, OR (United States)

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  4. RIKEN WINTER SCHOOL: STRUCTURE OF HADRONS - INTRODUCTION TO QCD HARD PROCESSES. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, DECEMBER 9-12, 1998

    International Nuclear Information System (INIS)

    Saito, N.

    1999-01-01

    In this lecture I give a pedagogical introduction to the Perturbative QCD to understand the short-distance dynamics of the strong interaction. Starting with fundamental concepts such as the color degree of freedom of QCD, non-abelian gauge field theory, renormalization group equation etc., I explain a basic idea of the perturbative QCD and apply this idea to the e + e - processes and the structure functions. The notion of mass singularity and the necessity of its factorization is discussed in some detail

  5. Juelich Research Center. Annual report 1991

    International Nuclear Information System (INIS)

    1991-10-01

    The Research Centre Juelich (KFA) as one of the thirteen national research centres in the Federal Republic of Germany is probably unique in that it concentrates equally on four essentials for mankind - energy, health and environment, materials and matter as well as information. These basic requirements are reflected by the four priority programmes characterizing research at the KFA in the nineties. The research priorities are: Properties of Matter and Material Research; Basic Research on Information Technology; Health, Environment, Biotechnology; Energy Research and Technology; Nuclear Fusion; Basic Nuclear Research; Interdisciplinary Analyses and Methods. (orig./HSCH) [de

  6. Bastyr/UW Oncomycology Translational Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — Research Area: FungiProgram: Partnerships for CAM Clinical Translational ResearchDescription:Trametes versicolor is an immunologically active medicinal mushroom that...

  7. Earth Radiation Budget Research at the NASA Langley Research Center

    Science.gov (United States)

    Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.

    2014-01-01

    In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications

  8. Physician Assistant | Center for Cancer Research

    Science.gov (United States)

    counseling within the boundaries of his/her specialty area of education and clinical preparation (pediatrics, adults, urologic, surgical, etc.). Review assigned patient resident reports and carry and answer the resident pager. Provide coverage for the post-call resident’s patients, while working closely with the Inpatient/Fellowship staff.  Support in-patient and out-patient care of subjects enrolled in experimental protocols and clinical trials. Work as a member of a multidisciplinary clinical team to provide comprehensive care to patients in a research environment. Write prescriptions. Explain the care management/discharge plan to all members of the covering team (inpatient NPs, attendings) at signout. This position is located in Bethesda, Maryland in support of the Center for Cancer Research (CCR).

  9. Quality Control Specialist | Center for Cancer Research

    Science.gov (United States)

    Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID),

  10. Multi-Institution Research Centers: Planning and Management Challenges

    Science.gov (United States)

    Spooner, Catherine; Lavey, Lisa; Mukuka, Chilandu; Eames-Brown, Rosslyn

    2016-01-01

    Funding multi-institution centers of research excellence (CREs) has become a common means of supporting collaborative partnerships to address specific research topics. However, there is little guidance for those planning or managing a multi-institution CRE, which faces specific challenges not faced by single-institution research centers. We…

  11. Naval Health Research Center 1985 Annual Report

    Science.gov (United States)

    1985-01-01

    strengthening programs for the entire crew. Aerobic programs for select populations (e.g., overweight personnel), however, were found on 20% of the...Institute, Lima Detachment, Peru (Command) 25-26 UCOR R. Kallal, CUP W. J. Lambert, & M. Nave, Naval Data Services Center, Bethesda, Maryland (Dr

  12. Veterinary Oncologist | Center for Cancer Research

    Science.gov (United States)

    The NCI is implementing a program intended to connect and closely coordinate the Division of Cancer Treatment and Diagnosis’ (DCTD’s) immunotherapeutics and other drug development activities with the translational oriented clinical trials of the Center for Cancer Research’s (CCR’s) Comparative Oncology Program (COP), especially the treatment of dogs with natural occurring

  13. NASA Langley Research Center outreach in astronautical education

    Science.gov (United States)

    Duberg, J. E.

    1976-01-01

    The Langley Research Center has traditionally maintained an active relationship with the academic community, especially at the graduate level, to promote the Center's research program and to make graduate education available to its staff. Two new institutes at the Center - the Joint Institute for Acoustics and Flight Sciences, and the Institute for Computer Applications - are discussed. Both provide for research activity at the Center by university faculties. The American Society of Engineering Education Summer Faculty Fellowship Program and the NASA-NRC Postdoctoral Resident Research Associateship Program are also discussed.

  14. University of Washington Center for Child Environmental Health Risks Research

    Data.gov (United States)

    Federal Laboratory Consortium — The theme of the University of Washington based Center for Child Environmental Health Risks Research (CHC) is understanding the biochemical, molecular and exposure...

  15. Statistical Tutorial | Center for Cancer Research

    Science.gov (United States)

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data.  ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018.  The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean

  16. Nuclear Data Parameter Adjustment BNL-INL

    International Nuclear Information System (INIS)

    Palmiotti, G.; Hoblit, S.; Herman, M.; Nobre, G.P.A.; Palumbo, A.; Hiruta, H.; Salvatores, M.

    2013-01-01

    This presentation reports on the consistent adjustment of nuclear data parameters performed within a BNL-INL collaboration. The main advantage compared to the classical adjustment of multigroup constants is to provide final nuclear data constrained by the nuclear reaction theory and consistent with both differential and integral measurements. The feasibility of a single-isotope assimilation was tested on a few priority materials ( 23 Na, 56 Fe, 105 Pd, 235,238 U, 239 Pu) using a selection of clean integral experiments. The multi-isotope assimilation is under study for the Big-3 ( 235,238 U, 239 Pu). This work shows that a consistent assimilation is feasible, but there are pitfalls to avoid (e.g. non-linearity, cross section fluctuations) and prerequisites (e.g. realistic covariances, good prior, realistic weighting of differential and integral experiments). Finally, only all experimental information combined with the state of the art modelling may provide a 'right' answer

  17. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  18. The source development lab linac at BNL

    International Nuclear Information System (INIS)

    Graves, W.S.; Johnson, E.D.

    1996-12-01

    A 210 MeV SLAC-type electron linac is currently under construction at BNL as part of the Source Development Laboratory. A 1.6 cell RF photoinjector is employed as the high brightness electron source which is excited by a frequency tripled Titanium:Sapphire laser. This linac will be used for several source development projects including a short bunch storage ring, and a series of FEL experiments based on the 10 m long NISUS undulator. The FEL will be operated as either a SASE or seeded beam device using the Ti:Sapp laser. For the seeded beam experiments; direct amplification, harmonic generation, and chirped pulse amplification modes will be studied, spanning an output wavelength range from 900 nm down to 100 nm. This paper presents the project's design parameters and results of recent modeling using the PARMELA and MAD simulation codes

  19. Antineutron physics at BNL and beyond

    International Nuclear Information System (INIS)

    Lowenstein, D; Chu, C.; Hungerford, E.

    1985-01-01

    The history of antineutron counter experiments below 1 GeV/c is rather short. Several measurements of the charge exchange total and differential cross-sections have been reported. In addition there have been a few low statistics attempts to measure the (anti np transmission and annihilation cross-sections. In 1981 at BNL, AGS Experiment 767 was proposed to simultaneously measure both the annihilation and the transmission cross-sections for anti np). The data were taken during the winter and spring of 1984 and very preliminary results were reported at Durham in July 1984. The results presented here represent a significantly more complete data analysis but some sources of systematic error are still under investigation, and as such only relative cross-sections will be quoted which should still be regarded as preliminary to some degree

  20. U.S. DAIRY FORAGE RESEARCH CENTER

    Data.gov (United States)

    Federal Laboratory Consortium — Vision: Leading the world in integrated dairy forage systems research. Mission: Providing dairy industry solutions for food security, environmental sustainability,...

  1. University of Maryland Energy Research Center |

    Science.gov (United States)

    breakthroughs into commercial, clean energy solutions. The Clark School Celebrates Women's History Month The Clark School is featuring our female engineering faculty members throughout March. UMD Researchers

  2. U.S. Dairy Forage Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — Vision: Leading the world in integrated dairy forage systems research. Mission: Providing dairy industry solutions for food security, environmental sustainability,...

  3. Fusion Research Center, theory program. Progress report

    International Nuclear Information System (INIS)

    1982-01-01

    The Texas FRC theory program is directed primarily toward understanding the initiation, heating, and confinement of tokamak plasmas. It supports and complements the experimental programs on the TEXT and PRETEXT devices, as well as providing information generally applicable to the national tokamak program. A significant fraction of the Center's work has been carried out in collaboration with, or as a part of, the program of the Institute for Fusion Studies (IFS). During the past twelve months, 14 FRC theory reports and 12 IFS reports with partial FRC support have been issued

  4. Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  5. Communications Specialist | Center for Cancer Research

    Science.gov (United States)

    Be part of our mission to support research against cancer. We have an exciting opportunity for a talented communicator to join our team and be part of the effort to find cures for cancer. We are looking for a creative, team-oriented communications professional, with strong writing skills to publicize our research advances, employment and training opportunities and clinical

  6. Emergency response training with the BNL plant analyzer

    International Nuclear Information System (INIS)

    Cheng, H.S.; Guppy, J.G.; Mallen, A.N.; Wulff, W.

    1987-01-01

    Presented is the experience in the use of the BNL Plant Analyzer for NRC emergency response training to simulated accidents in a BWR. The unique features of the BNL Plant Analyzer that are important for the emergency response training are summarized. A closed-loop simulation of all the key systems of a power plant in question was found essential to the realism of the emergency drills conducted at NRC. The faster than real-time simulation speeds afforded by the BNL Plant Analyzer have demonstrated its usefulness for the timely conduct of the emergency response training

  7. NASA Lewis Research Center's materials and structures division

    International Nuclear Information System (INIS)

    Weymueller, C.R.

    1976-01-01

    Research activities at the NASA Lewis Research Center on materials and structures are discussed. Programs are noted on powder metallurgy superalloys, eutectic alloys, dispersion strengthened alloys and composite materials. Discussions are included on materials applications, coatings, fracture mechanics, and fatigue

  8. Annual report of the Management Research Center

    International Nuclear Information System (INIS)

    1987-01-01

    Research on the management of new forms of automation; industrial management; the definition of a new product range; economic management; personnel management; and management of cultural enterprises is presented [fr

  9. Center for Cold Spray Research and Development

    Data.gov (United States)

    Federal Laboratory Consortium — This is the only DoD facility capable of cold spray research and development, production, and field-repair. It features three stationary cold spray systems used for...

  10. Team Members | Center for Cancer Research

    Science.gov (United States)

    Our Team Members The Foregut Team includes experts in the diagnosis and treatment of the diseases listed below. Our clinical experience and active research offers patients the highest quality care in the setting of groundbreaking clinical trials.

  11. A National Coordinating Center for Trauma Research

    Science.gov (United States)

    2016-10-01

    subcommittee. Several existing platforms have been reviewed in-depth with online demonstrations (such as Research Electronic Data Capture (REDCap), FITBIR...to maximize its ability to advertise the existence of data, promote re-use and assist in data management. It is interesting to note that: Most...just as ethics forms are normal for many now. We present two scenarios here: one when a grant starts, and the researcher is prompted to finish and

  12. Breast Cancer Translational Research Center of Excellence

    Science.gov (United States)

    2017-11-01

    FACS, COL MC USA CONTRACTING ORGANIZATION: Henry M. Jackson Foundation for the Advancement of Military Medicine 6720-A Rockledge Drive Bethesda...reported to other officials or ethically requires action, e.g., child or spouse abuse ii. When will you destroy the research source documents, data file...requires to be reported to other officials or ethically requires action, e.g., child or spouse abuse When will you destroy the research source documents

  13. The National Center for Atmospheric Research (NCAR) Research Data Archive: a Data Education Center

    Science.gov (United States)

    Peng, G. S.; Schuster, D.

    2015-12-01

    The National Center for Atmospheric Research (NCAR) Research Data Archive (RDA), rda.ucar.edu, is not just another data center or data archive. It is a data education center. We not only serve data, we TEACH data. Weather and climate data is the original "Big Data" dataset and lessons learned while playing with weather data are applicable to a wide range of data investigations. Erroneous data assumptions are the Achilles heel of Big Data. It doesn't matter how much data you crunch if the data is not what you think it is. Each dataset archived at the RDA is assigned to a data specialist (DS) who curates the data. If a user has a question not answered in the dataset information web pages, they can call or email a skilled DS for further clarification. The RDA's diverse staff—with academic training in meteorology, oceanography, engineering (electrical, civil, ocean and database), mathematics, physics, chemistry and information science—means we likely have someone who "speaks your language." Data discovery is another difficult Big Data problem; one can only solve problems with data if one can find the right data. Metadata, both machine and human-generated, underpin the RDA data search tools. Users can quickly find datasets by name or dataset ID number. They can also perform a faceted search that successively narrows the options by user requirements or simply kick off an indexed search with a few words. Weather data formats can be difficult to read for non-expert users; it's usually packed in binary formats requiring specialized software and parameter names use specialized vocabularies. DSs create detailed information pages for each dataset and maintain lists of helpful software, documentation and links of information around the web. We further grow the level of sophistication of the users with tips, tutorials and data stories on the RDA Blog, http://ncarrda.blogspot.com/. How-to video tutorials are also posted on the NCAR Computational and Information Systems

  14. Proton Therapy Research and Treatment Center

    Energy Technology Data Exchange (ETDEWEB)

    Goodnight, J.E. Jr. (University of California Davis Medical Center, Sacramento, CA (United States). Cancer Center); Alonso, J.R. (Lawrence Berkeley Lab., CA (United States))

    1992-05-01

    This Grant proposal outlines the steps that will be undertaken to bring the UC Davis Proton Therapy Research and Treatment, known locally as the Proton Therapy Facility (PTF), through its design and construction phases. This application concentrates on the design phase of the PTF project.

  15. Animal Resource Program | Center for Cancer Research

    Science.gov (United States)

    CCR Animal Resource Program The CCR Animal Resource Program plans, develops, and coordinates laboratory animal resources for CCR’s research programs. We also provide training, imaging, and technology development in support of moving basic discoveries to the clinic. The ARP Manager:

  16. Writing Essentials | Center for Cancer Research

    Science.gov (United States)

    To effectively communicate research results, the manuscript should be carefully structured to tell a compelling story. As a rule, the introduction should bring the reader from a broad understanding of the topic to the specific question being addressed. In contrast, the discussion should transition the reader from the specific results to their broader implications.

  17. Animal Resource Program | Center for Cancer Research

    Science.gov (United States)

    CCR Animal Resource Program The CCR Animal Resource Program plans, develops, and coordinates laboratory animal resources for CCR’s research programs. We also provide training, imaging, and technology development in support of moving basic discoveries to the clinic. The ARP Office:

  18. The prevention research centers' managing epilepsy well network.

    Science.gov (United States)

    DiIorio, Colleen K; Bamps, Yvan A; Edwards, Ariele L; Escoffery, Cam; Thompson, Nancy J; Begley, Charles E; Shegog, Ross; Clark, Noreen M; Selwa, Linda; Stoll, Shelley C; Fraser, Robert T; Ciechanowski, Paul; Johnson, Erica K; Kobau, Rosemarie; Price, Patricia H

    2010-11-01

    The Managing Epilepsy Well (MEW) Network was created in 2007 by the Centers for Disease Control and Prevention's (CDC) Prevention Research Centers and Epilepsy Program to promote epilepsy self-management research and to improve the quality of life for people with epilepsy. MEW Network membership comprises four collaborating centers (Emory University, University of Texas Health Science Center at Houston, University of Michigan, and University of Washington), representatives from CDC, affiliate members, and community stakeholders. This article describes the MEW Network's background, mission statement, research agenda, and structure. Exploratory and intervention studies conducted by individual collaborating centers are described, as are Network collaborative projects, including a multisite depression prevention intervention and the development of a standard measure of epilepsy self-management. Communication strategies and examples of research translation programs are discussed. The conclusion outlines the Network's role in the future development and dissemination of evidence-based epilepsy self-management programs. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. A Community - Centered Astronomy Research Program

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady

    2017-06-01

    The Boyce Research Initiatives and Education Foundation (BRIEF) is providing semester-long, hands-on, astronomy research experiences for students of all ages that results in their publishing peer-reviewed papers. The course in astronomy and double star research has evolved from a face-to-face learning experience with two instructors to an online - hybrid course that simultaneously supports classroom instruction at a variety of schools in the San Diego area. Currently, there are over 65 students enrolled in three community colleges, seven high schools, and one university as well as individual adult learners. Instructional experience, courseware, and supporting systems were developed and refined through experience gained in classroom settings from 2014 through 2016. Topics of instruction include Kepler's Laws, basic astrometry, properties of light, CCD imaging, use of filters for varying stellar spectral types, and how to perform research, scientific writing, and proposal preparation. Volunteer instructors were trained by taking the course and producing their own research papers. An expanded program was launched in the fall semester of 2016. Twelve papers from seven schools were produced; eight have been accepted for publication by the Journal of Double Observations (JDSO) and the remainder are in peer review. Three additional papers have been accepted by the JDSO and two more are in process papers. Three college professors and five advanced amateur astronomers are now qualified volunteer instructors. Supporting tools are provided by a BRIEF server and other online services. The server-based tools range from Microsoft Office and planetarium software to top-notch imaging programs and computational software for data reduction for each student team. Observations are performed by robotic telescopes worldwide supported by BRIEF. With this success, student demand has increased significantly. Many of the graduates of the first semester course wanted to expand their

  20. Electron Microscopy-Data Analysis Specialist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for

  1. Radionuclide production and radiopharmaceutical chemistry with BNL cyclotrons

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Wolf, A.P.

    1985-01-01

    The Brookhaven National Laboratory (BNL) radiopharmaceutical chemistry program focuses on production and utilization of radionuclides having a half-life of > 2 hr. However, a major portion of the BNL program is devoted to short-lived radionuclides, such as 11 C and 18 F. Activities encompassed in the program are classified into seven areas: cyclotron parameters, radiochemistry, design and rapid synthesis of radiopharmaceuticals and labeled compounds, radiotracer evaluation in animals, studies in humans, technology transfer, and several other areas

  2. Postdoctoral Fellow | Center for Cancer Research

    Science.gov (United States)

    Highly motivated postdoctoral fellows sought to work on tumor immunology with a strong background in biology preferentially cellular immunology. The tumor immunology group in the laboratory is exploring mechanisms of improving vaccines and immunotherapy for cancer, especially by discovering new principles to enhance and steer T cell immune responses. The group is focusing on negative immunoregulatory mechanisms used for immune evasion by cancer cells. The postdoctoral fellow will work on a project to understand the negative regulatory mechanisms of tumor immunity especially the mechanisms initiated by NKT cells. Group members also have an opportunity to gain knowledge of HIV/mucosal immunology by interacting with the HIV research group in the lab.

  3. Research & Technology Report Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  4. Molecular Science Research Center annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  5. Bolivia. The new nuclear research center in El Alto

    International Nuclear Information System (INIS)

    Nogarin, Mauro

    2016-01-01

    Research reactors in Latin America have become a priority in public policy in the last decade. Bolivia wants to become the 8th country to implement peaceful nuclear technology in this area with the new Center for Research and Development in the Nuclear Technology. The Center will be the most advanced in Latin America. It will provide for a wide use of radiation technologies in agriculture, medicine, and industry. After several negotiations Bolivia and the Russian Federation signed the Intergovernmental Agreement on cooperation in the peaceful use of atomic energy and the construction of the Nuclear Research and Technology Center.

  6. Bolivia. The new nuclear research center in El Alto

    Energy Technology Data Exchange (ETDEWEB)

    Nogarin, Mauro

    2016-05-15

    Research reactors in Latin America have become a priority in public policy in the last decade. Bolivia wants to become the 8th country to implement peaceful nuclear technology in this area with the new Center for Research and Development in the Nuclear Technology. The Center will be the most advanced in Latin America. It will provide for a wide use of radiation technologies in agriculture, medicine, and industry. After several negotiations Bolivia and the Russian Federation signed the Intergovernmental Agreement on cooperation in the peaceful use of atomic energy and the construction of the Nuclear Research and Technology Center.

  7. Grand Canyon Monitoring and Research Center

    Science.gov (United States)

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  8. Postdoctoral Fellow | Center for Cancer Research

    Science.gov (United States)

    Dr. St. Croix’s laboratory at the Mouse Cancer Genetics Program (MCGP), National Cancer Institute, USA has an open postdoctoral position. We seek a highly motivated, creative and bright individual to participate in a collaborative project that involves the targeting of tumor-associated stroma using T-cells engineered to express chimeric antigen receptors (CARs). The laboratory focuses on the characterization and exploitation of molecules associated with tumor angiogenesis. The successful candidate would be involved in developing, producing and characterizing new therapeutic antibodies and CARs that recognize cancer cells or its associated stroma, and preclinical testing of these agents using mouse tumor models. The tumor angiogenesis lab is located at the National Cancer Institute in Frederick with access to state-of-the-art facilities for antibody engineering, genomic analysis, pathology, and small animal imaging, among others. Detailed information about Dr. St. Croix’s research and publications can be accessed at https://ccr.cancer.gov/Mouse-Cancer-Genetics-Program/brad-st-croix.

  9. Karlsruhe Nuclear Research Center. Research and development program 1991

    International Nuclear Information System (INIS)

    1990-01-01

    The R and D activities of the KfK are classified in 8 main research activities: 1) project nuclear fusion; 2) project pollutant mitigation in the environment; 3) solid state and materials research; 4) nuclear and elementary particle physics; 5) microtechnics e.g. X-ray lithography; 6) materials handling; 7) project nuclear safety research; 8) radioactive waste management. (orig.) [de

  10. Performances of BNL high-intensity synchrotrons

    International Nuclear Information System (INIS)

    Weng, W.T.

    1998-03-01

    The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 x 10 13 ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 x 10 13 ppp surpassing the design goal of 1.5 x 10 13 ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented

  11. The BNL toroidal volume H- source

    International Nuclear Information System (INIS)

    Alessi, J.G.; Prelec, K.

    1991-01-01

    The BNL toroidal volume H - ion source, in pulsed operation is now producing up to 35 mA with an electron to H - ratio of less than 5, and a ratio of less than 3 for currents up to 20 mA. This improvement came about by increasing the strength of the conical filter field. The source has also been operated steady state at low arc currents, where up to 6 mA of H - was extracted. The electron to H - ratio is 2--3 times larger for dc operation. For dc currents up to 5 mA, the arc power efficiency was 5 mA/kW. Pulsed performance with Ta and W filaments were very similar, except for the large gas pumping observed with the Ta filament. In dc operation, the Ta filament performed somewhat better than W. Extraction from 7 apertures having a total area of 1 cm 2 produced the same results as a single 1 cm 2 aperture. 5 refs., 4 figs

  12. Physical Measurement Profile at Gilgel Gibe Field Research Center ...

    African Journals Online (AJOL)

    Physical Measurement Profile at Gilgel Gibe Field Research Center, ... hip circumference in under 35 years and body mass index in under 45 year age groups were ... Comparison with findings in other parts of the world showed that Ethiopians ...

  13. Small UAS Test Area at NASA's Dryden Flight Research Center

    Science.gov (United States)

    Bauer, Jeffrey T.

    2008-01-01

    This viewgraph presentation reviews the areas that Dryden Flight Research Center has set up for testing small Unmanned Aerial Systems (UAS). It also reviews the requirements and process to use an area for UAS test.

  14. San Joaquin Valley Aerosol Health Effects Research Center (SAHERC)

    Data.gov (United States)

    Federal Laboratory Consortium — At the San Joaquin Valley Aerosol Health Effects Center, located at the University of California-Davis, researchers will investigate the properties of particles that...

  15. Center for Urban Environmental Research and Education (CUERE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Urban Environmental Research and Education (CUERE) at UMBC was created in 2001 with initial support from the U.S. Environmental Protection Agency and...

  16. Translational Partnership Development Lead | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Frederick National Laboratory for Cancer Research (FNLCR) is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc on behalf of the National Cancer Institute (NCI). The staff of FNLCR support the NCI’s mission in the fight against cancer and HIV/AIDS. Currently we are seeking a Translational Partnership

  17. The Creation and Role of the USDA Biomass Research Centers

    Science.gov (United States)

    William F. Anderson; Jeffery Steiner; Randy Raper; Ken Vogel; Terry Coffelt; Brenton Sharratt; Bob Rummer; Robert L. Deal; Alan Rudie

    2011-01-01

    The Five USDA Biomass Research Centers were created to facilitate coordinated research to enhance the establishment of a sustainable feedstock production for bio-based renewable energy in the United States. Scientists and staff of the Agricultural Research Service (ARS) and Forest Service (FS) within USDA collaborate with other federal agencies, universities and...

  18. Karlsruhe Nuclear Research Center. Research and development program 1992

    International Nuclear Information System (INIS)

    1991-01-01

    The KfK R and D activities are classified by ten point-of-main-effort projects: 1) low-pollution/low-waste methods, 2) environmental energy and mass transfers, 3) nuclear fusion, 4) nuclear saftey research, 5) radioactive waste management, 6) superconduction, 7) microtechnics, 8) materials handling, 9) materials and interfaces, 10) basic physical research. (orig.) [de

  19. Karlsruhe Nuclear Research Center. Research and development programme 1988

    International Nuclear Information System (INIS)

    1987-01-01

    A general survey of planned activities and developmental trends of the nuclear research centre is followed by a more detailed account of projects and goals. The various institutes and laboratories are presented together with their specific task schedules. (UA) [de

  20. Karlsruhe Nuclear Research Center. Research and development programme 1989

    International Nuclear Information System (INIS)

    1988-01-01

    The R and D activities of the KfK are classified in 10 main research activities: 1) Project fast breeder; 2) separation nozzle method; 3) project nuclear fusion; 4) project reprocessing and waste processing; 5) ultimate storage; 6) environment and safety; 7) solid-state and materials research; 8) nuclear and elementary particle physics; 9) microtechnics e.g. X-ray lithography; 10) materials handling. (HP) [de

  1. Northwest Hazardous Waste Research, Development, and Demonstration Center: Program Plan

    International Nuclear Information System (INIS)

    1988-02-01

    The Northwest Hazardous Waste Research, Development, and Demonstration Center was created as part of an ongoing federal effort to provide technologies and methods that protect human health and welfare and environment from hazardous wastes. The Center was established by the Superfund Amendments and Reauthorization Act (SARA) to develop and adapt innovative technologies and methods for assessing the impacts of and remediating inactive hazardous and radioactive mixed-waste sites. The Superfund legislation authorized $10 million for Pacific Northwest Laboratory to establish and operate the Center over a 5-year period. Under this legislation, Congress authorized $10 million each to support research, development, and demonstration (RD and D) on hazardous and radioactive mixed-waste problems in Idaho, Montana, Oregon, and Washington, including the Hanford Site. In 1987, the Center initiated its RD and D activities and prepared this Program Plan that presents the framework within which the Center will carry out its mission. Section 1.0 describes the Center, its mission, objectives, organization, and relationship to other programs. Section 2.0 describes the Center's RD and D strategy and contains the RD and D objectives, priorities, and process to be used to select specific projects. Section 3.0 contains the Center's FY 1988 operating plan and describes the specific RD and D projects to be carried out and their budgets and schedules. 9 refs., 18 figs., 5 tabs

  2. Technologies and experimental approaches in the NIH Botanical Research Centers

    Science.gov (United States)

    Barnes, Stephen; Birt, Diane F; Cassileth, Barrie R; Cefalu, William T; Chilton, Floyd H; Farnsworth, Norman R; Raskin, Ilya; van Breemen, Richard B; Weaver, Connie M

    2009-01-01

    There are many similarities between research on combinatorial chemistry and natural products and research on dietary supplements and botanicals in the NIH Botanical Research Centers. The technologies in the centers are similar to those used by other NIH-sponsored investigators. All centers rigorously examine the authenticity of botanical dietary supplements and determine the composition and concentrations of the phytochemicals therein, most often by liquid chromatography–mass spectrometry. Several of the centers specialize in fractionation and high-throughput evaluation to identify the individual bioactive agent or a combination of agents. Some centers are using DNA microarray analyses to determine the effects of botanicals on gene transcription with the goal of uncovering the important biochemical pathways they regulate. Other centers focus on bioavailability and uptake, distribution, metabolism, and excretion of the phytochemicals as for all xenobiotics. Because phytochemicals are often complex molecules, synthesis of isotopically labeled forms is carried out by plant cells in culture, followed by careful fractionation. These labeled phytochemicals allow the use of accelerator mass spectrometry to trace the tissue distribution of 14C-labeled proanthocyanidins in animal models of disease. State-of-the-art proteomics and mass spectrometry are also used to identify proteins in selected tissues whose expression and posttranslational modification are influenced by botanicals and dietary supplements. In summary, the skills needed to carry out botanical centers’ research are extensive and may exceed those practiced by most NIH investigators. PMID:18258642

  3. Pursuing Personal Passion: Learner-Centered Research Mentoring.

    Science.gov (United States)

    Phillips, William R

    2018-01-01

    New researchers often face difficulty finding and focusing research questions. I describe a new tool for research mentoring, the Pursuing Personal Passion (P3) interview, and a systematic approach to help learners organize their curiosity and develop researchable questions aligned with their personal and professional priorities. The learner-centered P3 research interview parallels the patient-centered clinical interview. This paper reviews experience with 27 research mentees over the years 2009 to 2016, using the P3 approach to identify their initial research topics, classify their underlying passions and track the evolution into their final research questions. These researchers usually identified one of three personal passions that provided lenses to focus their research: problem, person, or process. Initial research topics focused on: problem (24%, 6), person (48%, 12) and process (28%, 7). Final research questions evolved into: problem (20%, 5), person (32%, 8) and process (48%, 12). Identification of the underlying passion can lead researchers who start with one general topic to develop it into very different research questions. Using this P3 approach, mentors can help new researchers focus their interests into researchable questions, successful studies, and organized programs of scholarship.

  4. NASA Space Engineering Research Center for VLSI systems design

    Science.gov (United States)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  5. Moving from Damage-Centered Research through Unsettling Reflexivity

    Science.gov (United States)

    Calderon, Dolores

    2016-01-01

    The author revisits autoethnographic work in order to examine how she unwittingly incorporated damage-centered (Tuck 2009) research approaches that reproduce settler colonial understandings of marginalized communities. The paper examines the reproduction of settler colonial knowledge in ethnographic research by unearthing the inherent surveillance…

  6. Staff Scientist - RNA Bioinformatics | Center for Cancer Research

    Science.gov (United States)

    The newly established RNA Biology Laboratory (RBL) at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting a Staff Scientist with strong expertise in RNA bioinformatics to join the Intramural Research Program’s mission of high impact, high reward science. The RBL is the equivalent of an

  7. Bibliography of Lewis Research Center Technical Publications announced in 1991

    Science.gov (United States)

    1992-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific engineering work performed and managed by the Lewis Research Center in 1991. All the publications were announced in the 1991 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  8. Interdisciplinary research center devoted to molecular environmental science opens

    Science.gov (United States)

    Vaughan, David J.

    In October, a new research center opened at the University of Manchester in the United Kingdom. The center is the product of over a decade of ground-breaking interdisciplinary research in the Earth and related biological and chemical sciences at the university The center also responds to the British governments policy of investing in research infrastructure at key universities.The Williamson Research Centre, the first of its kind in Britain and among the first worldwide, is devoted to the emerging field of molecular environmental science. This field also aims to bring about a revolution in understanding of our environment. Though it may be a less violent revolution than some, perhaps, its potential is high for developments that could affect us all.

  9. Spacecraft Fire Safety Research at NASA Glenn Research Center

    Science.gov (United States)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  10. The role of architectural research centers in addressing climate change

    Directory of Open Access Journals (Sweden)

    John Carmody

    2012-10-01

    Full Text Available ABSTRACT: It is clear that an urgent, major transformation needs to happen in the design of the built environment to respond to impending climate change and other environmental degradation. This paper will explain the potential role of architectural research centers in this transformation and provide examples from the Center for Sustainable Building Research (CSBR at the University of Minnesota. A research center can become a regional hub to coordinate and disseminate critical information. CSBR is leading the establishment of Architecture 2030 standards in Minnesota, assisting local governments in writing green building policy, providing design assistance to local government, developing tools to assist design decision making, providing technical assistance to the affordable housing community inMinnesota, and establishing a regional case study database that includes actual performance information. CSBR is creating a publicly accessible, credible knowledge base on new approaches, technologies and actual performance outcomes. Research centers such as CSBR can be a critical component of the necessary feedback loop often lacking in the building industry. A research center can also fill major gaps in providing in depth professional education as well as be a catalyst for demonstration projects and public education.

  11. Qualitative Methods in Patient-Centered Outcomes Research.

    Science.gov (United States)

    Vandermause, Roxanne; Barg, Frances K; Esmail, Laura; Edmundson, Lauren; Girard, Samantha; Perfetti, A Ross

    2017-02-01

    The Patient-Centered Outcomes Research Institute (PCORI), created to fund research guided by patients, caregivers, and the broader health care community, offers a new research venue. Many (41 of 50) first funded projects involved qualitative research methods. This study was completed to examine the current state of the science of qualitative methodologies used in PCORI-funded research. Principal investigators participated in phenomenological interviews to learn (a) how do researchers using qualitative methods experience seeking funding for, implementing and disseminating their work; and (b) how may qualitative methods advance the quality and relevance of evidence for patients? Results showed the experience of doing qualitative research in the current research climate as "Being a bona fide qualitative researcher: Staying true to research aims while negotiating challenges," with overlapping patterns: (a) researching the elemental, (b) expecting surprise, and (c) pushing boundaries. The nature of qualitative work today was explicitly described and is rendered in this article.

  12. Establishing a national research center on day care

    DEFF Research Database (Denmark)

    Ellegaard, Tomas

    The paper presents and discusses the current formation of a national research center on ECEC. The center is currently being established. It is partly funded by the Danish union of early childhood and youth educators. It is based on cooperation between a number of Danish universities and this nati...... current new public management policies. However there is also more conflicting issues that emerge in this enterprise – especially on interests, practice relevance and knowledge paradigms....

  13. CUBED: South Dakota 2010 Research Center For Dusel Experiments

    International Nuclear Information System (INIS)

    Keller, Christina; Alton, Drew; Bai Xinhau; Durben, Dan; Heise, Jaret; Hong Haiping; Howard, Stan; Jiang Chaoyang; Keeter, Kara; McTaggart, Robert; Medlin, Dana; Mei Dongming; Petukhov, Andre; Rauber, Joel; Roggenthen, Bill; Spaans, Jason; Sun Yongchen; Szczerbinska, Barbara; Thomas, Keenan; Zehfus, Michael

    2010-01-01

    With the selection of the Homestake Mine in western South Dakota by the National Science Foundation (NSF) as the site for a national Deep Underground Science and Engineering Laboratory (DUSEL), the state of South Dakota has sought ways to engage its faculty and students in activities planned for DUSEL. One such effort is the creation of a 2010 Research Center focused on ultra-low background experiments or a Center for Ultra-low Background Experiments at DUSEL (CUBED). The goals of this center include to 1) bring together the current South Dakota faculty so that one may begin to develop a critical mass of expertise necessary for South Dakota's full participation in large-scale collaborations planned for DUSEL; 2) to increase the number of research faculty and other research personnel in South Dakota to complement and supplement existing expertise in nuclear physics and materials sciences; 3) to be competitive in pursuit of external funding through the creation of a center which focuses on areas of interest to experiments planned for DUSEL such as an underground crystal growth lab, a low background counting facility, a purification/depletion facility for noble liquids, and an electroforming copper facility underground; and 4) to train and educate graduate and undergraduate students as a way to develop the scientific workforce of the state. We will provide an update on the activities of the center and describe in more detail the scientific foci of the center.

  14. 76 FR 37085 - Applications for New Awards; Rehabilitation Engineering Research Centers (RERCs)

    Science.gov (United States)

    2011-06-24

    ... DEPARTMENT OF EDUCATION Applications for New Awards; Rehabilitation Engineering Research Centers...)--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research... (Rehabilitation Act). Rehabilitation Engineering Research Centers Program (RERCs) The purpose of the RERC program...

  15. Spectrum from the Proposed BNL Very Long Baseline Neutrino Facility

    CERN Document Server

    Kahn, S A

    2005-01-01

    This paper calculates the neutrino flux that would be seen at the far detector location from the proposed BNL Very Long Baseline Neutrino Facility. The far detector is assumed to be located at an underground facility in South Dakota 2540 km from BNL. The neutrino beam facility uses a 1 MW upgraded AGS to provide an intense proton beam on the target and a magnetic horn to focus the secondary pion beam. The paper will examine the sensitivity of the neutrino flux at the far detector to the positioning of the horn and target so as to establish alignment tolerances for the neutrino system.

  16. Energy Frontier Research Centers: Impact Report, January 2017

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-01-31

    Since its inception in 2009, the U. S. Department of Energy’s Energy Frontier Research Center (EFRC) program has become an important research modality in the Department’s portfolio, enabling high impact research that addresses key scientific challenges for energy technologies. Funded by the Office of Science’s Basic Energy Sciences program, the EFRCs are located across the United States and are led by universities, national laboratories, and private research institutions. These multi-investigator, multidisciplinary centers bring together world-class teams of researchers, often from multiple institutions, to tackle the toughest scientific challenges preventing advances in energy technologies. The EFRCs’ fundamental scientific advances are having a significant impact that is being translated to industry. In 2009 five-year awards were made to 46 EFRCs, including 16 that were fully funded by the American Recovery and Reinvestment Act (ARRA). An open recompetition of the program in 2014 resulted in fouryear awards to 32 centers, 22 of which are renewals of existing EFRCs and 10 of which are new EFRCs. In 2016, DOE added four new centers to accelerate the scientific breakthroughs needed to support the Department’s environmental management and nuclear cleanup mission, bringing the total number of active EFRCs to 36. The impact reports in this document describe some of the many scientific accomplishments and greater impacts of the class of 2009 – 2018 EFRCs and early outcomes from a few of the class of 2014 – 2018 EFRCs.

  17. Twenty-fifth anniversary of the Juelich Nuclear Research Center

    International Nuclear Information System (INIS)

    Haefele, W.

    1982-01-01

    On December 10, 1981, KFA Juelich celebrated its 25th year of existence; on December 11, 1956, the land parliament of North Rhine Westphalia had decided in favour of the erection of a joint nuclear research facility of the land of North Rhine Westphalia. In contrast to other nuclear research centers, the Juelich centre was to develop and operate large-scale research equipment and infrastructure for joint use by the universities of the land. This cooperation has remained an important characteristic in spite of the independent scientific work of KFA institutes, Federal government majorities, and changes in research fields and tasks. KFA does fundamental research in nuclear and plasma physics, solid state research, medicine, life sciences, and environmental research; other activities are R + D tasks for the HTR reactor and its specific applications as well as energy research in general. (orig.) [de

  18. Center for modeling of turbulence and transition: Research briefs, 1995

    Science.gov (United States)

    1995-10-01

    This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from July 1993 to July 1995. It also constitutes a progress report to the Institute of Computational Mechanics in Propulsion located at the Ohio Aerospace Institute and the Lewis Research Center. CMOTT has been in existence for about four years. In the first three years, its main activities were to develop and validate turbulence and combustion models for propulsion systems, in an effort to remove the deficiencies of existing models. Three workshops on computational turbulence modeling were held at LeRC (1991, 1993, 1994). At present, CMOTT is integrating the CMOTT developed/improved models into CFD tools which can be used by the propulsion systems community. This activity has resulted in an increased collaboration with the Lewis CFD researchers.

  19. List of scientific publications, Nuclear Research Center Karlsruhe 1984

    International Nuclear Information System (INIS)

    1985-04-01

    The report abstracted contains a list of works published in 1984. Papers not in print yet are listed separately. Patent entries take account of all patent rights granted or published in 1984, i.e. patents or patent specifications. The list of publications is classified by institutes. The project category lists but the respective reports and studies carried out and published by members of the project staff concerned. Also listed are publications related to research and development projects of the 'product engineering project' (PFT/Projekt 'Fertigungstechnik'). With different companies and institutes cooperating, PFT is sponsored by Nuclear Research Center Karlsruhe GmbH. The latter is also responsible for printing above publications. Moreover the list contains the publications of a branch of the Bundesforschungsanstalt fuer Ernaehrung which is located on the KfK-premises. The final chapter of the list summarizes publications dealing with guest-experiments and research at Nuclear Research Center Karlsruhe. (orig./PW) [de

  20. A Program of Research and Education in Astronautics at the NASA Langley Research Center

    Science.gov (United States)

    Tolson, Robert H.

    2000-01-01

    The objectives of the Program were to conduct research at the NASA Langley Research Center in the area of astronautics and to provide a comprehensive education program at the Center leading to advanced degrees in Astronautics. We believe that the program has successfully met the objectives and has been of significant benefit to NASA LaRC, the GWU and the nation.

  1. Scientist, Single Cell Analysis Facility | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR).  The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR).  CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES AND RESPONSIBILITIES We are seeking a highly motivated Scientist II to join the newly established Single Cell Analysis Facility (SCAF) of the Center for Cancer Research (CCR) at NCI. The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. The Scientist: Will interact with close to 200 laboratories within the CCR to design and carry out single cell experiments for cancer research Will work on single cell isolation/preparation from various tissues and cells and related NexGen sequencing library preparation Is expected to author publications in peer reviewed scientific journals

  2. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    International Nuclear Information System (INIS)

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described

  3. Scholarly Citadel in Chicago: The Center for Research Libraries.

    Science.gov (United States)

    Boylan, Ray

    1979-01-01

    The Center provides access to infrequently used research materials in three interrelated ways: (1) it provides a deposit library for such materials from the collections of member libraries; (2) it acquires such materials at members' shared expense and for their common use; and (3) it provides rapid access to its collection materials. (Author/JD)

  4. Re:Centering Adult Education Research: Whose World Is First?

    Science.gov (United States)

    Hall, Budd L.

    1993-01-01

    The discourse of adult education research needs to be reframed to place at the center the issues and concerns of the majority of the world's people who live in poverty, ill health, and insecurity and at the margins the concerns of the rich and powerful. (SK)

  5. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  6. ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER

    Science.gov (United States)

    This report summarizes work conducted at the National Aeronautics and Space Administration's Langley Research Center (NASA-LaRC) in Hampton, VA, under the U.S. Environmental Protection Agency’s (EPA) Waste Reduction Evaluations at Federal Sites (WREAFS) Program. Support for...

  7. The Amistad Research Center: Documenting the African American Experience.

    Science.gov (United States)

    Chepesiuk, Ron

    1993-01-01

    Describes the Amistad Research Center housed at Tulane University which is a repository of primary documents on African-American history. Topics addressed include the development and growth of the collection; inclusion of the American Missionary Association archives; sources of support; civil rights; and collecting for the future. (LRW)

  8. Does Every Research Library Need a Digital Humanities Center?

    Science.gov (United States)

    Schaffner, Jennifer; Erway, Ricky

    2014-01-01

    The digital humanities (DH) are attracting considerable attention and funding at the same time that this nascent field is striving for an identity. Some research libraries are making significant investments by creating digital humanities centers. However, questions about whether such investments are warranted persist across the cultural heritage…

  9. Bituminization of radioactive wastes at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Hild, W.; Kluger, W.; Krause, H.

    1976-05-01

    A summary is given of the main operational experience gained at the Nuclear Research Center Karlsruhe in 4 years operation of the bituminization plant for evaporator concentrates from low- and medium level wastes. At the same time some of the essential results are compiled that have been obtained in the R + D activities on bituminization. (orig.) [de

  10. Research Centers & Consortia | College of Engineering & Applied Science

    Science.gov (United States)

    Academics Admission Student Life Research Schools & Colleges Libraries Athletics Centers & ; Applied Science Powerful Ideas. Proven Results. Search for: Go This site All UWM Search Site Menu Skip to content Academics Undergraduate Programs Majors Minors Integrated Bachelor/Master Degree Applied Computing

  11. Scientific and technical information output of the Langley Research Center

    Science.gov (United States)

    1984-01-01

    Scientific and technical information that the Langley Research Center produced during the calendar year 1983 is compiled. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

  12. Nuclear research center looks for 4000 pressure-cookers

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The CEA/Valduc research center has recently made a strange bid for the purchase of 4000 stainless steel pressure-cookers. In fact pressure-cookers are economical containers perfectly fitted for keeping radioactive materials. About 10.000 pressure-cookers have been bought in the last 50 years by CEA/Valduc. (A.C.)

  13. Meharry-Johns Hopkins Center for Prostate Cancer Research

    Science.gov (United States)

    2015-11-01

    formerly at the Institute for Health, Social, and Community Research (IHSCR) Center for Survey Research ( CSR ) at Shaw University in Raleigh, NC...survey will be conducted at CSR which is now located at Johns Hopkins Bloomberg School of Public Health (JHBSPH) located in Raleigh, NC. The Sons...the strategy to contact sons for whom she had no address or phone number. It was hoped that the father will notify the son to contact the study

  14. The materials processing research base of the Materials Processing Center

    Science.gov (United States)

    Latanision, R. M.

    1986-01-01

    An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.

  15. Bibliography of Lewis Research Center technical publications announced in 1990

    Science.gov (United States)

    1991-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1990. All the publications were announced in the 1990 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  16. Bibliography of Lewis Research Center technical publications announced in 1992

    Science.gov (United States)

    1993-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1992. All the publications were announced in the 1992 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  17. Bibliography of Lewis Research Center technical publications announced in 1993

    Science.gov (United States)

    1994-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  18. Bibliography of Lewis Research Center technical publications announced in 1989

    Science.gov (United States)

    1990-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1989. All the publications were announced in the 1989 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  19. Implementing multidisciplinary research center infrastructure - A trendsetting example: SUNUM

    OpenAIRE

    Birkan, Burak; Özgüz, Volkan Hüsnü; Ozguz, Volkan Husnu

    2014-01-01

    Sabanci University Nanotechnology Research and Application Center (SUNUM) became operational in January 2012. SUNUM is a trendsetting example of a green and flexible research facility that is a test bed for the cost-effective operation of a Centralized Demand-Controlled Ventilation (CDCV) system, a state-of-the-art cleanroom, and world-class high technology equipment. The total investment in the facility was US$35 million.

  20. Lepton accelerators and radiation sources: R and D investment at BNL

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Fernow, R.; Gallardo, J.; Hart, M.; Hastings, J.; Johnson, E.; Krinsky, S.; Palmer, R.; Yu, L.H.

    1997-03-01

    Brookhaven National Laboratory (BNL) has shown its determination to remain at the forefront of accelerator based science through its continued investment in long range accelerator R and D. The laboratory has a broad program in accelerator technology development including projects such as high T c magnets at RHIC, Siberian Snakes at the AGS, brightness upgrades on the NSLS storage ring, and spallation source R and D in several departments. This report focuses on a segment of the overall program: the lepton accelerator and coherent radiation source R and D at the laboratory. These efforts are aimed at (1) development of high brightness electron beams, (2) novel acceleration techniques, (3) seeded Free Electron Laser (FEL) development, and (4) R and D for a muon collider. To pursue these objectives, BNL ha over the past decade introduced new organizational arrangements. The BNL Center for Accelerator Physics (CAP) is an interdepartmental unit dedicated to promoting R and D which, cannot be readily conducted within the programs of operating facilities. The Accelerator Test Facility (ATF) is managed by CAP and NSLS as a user facility dedicated to accelerator and beam physics problems of interest to both the High Energy Physics and Basic Energy Sciences programs of the DOE. Capitalizing on these efforts, the Source Development Laboratory (SDL) was established by the NSLS to facilitate coordinated development of sources and experiments to produce and utilize coherent sub-picosecond synchrotron radiation. This White Paper describes the programs being pursued at CAP, ATF and SDL aimed at advancing basic knowledge of lepton accelerators and picosecond radiation sources

  1. Operational experience with the BNL magnetron H- source

    International Nuclear Information System (INIS)

    Witkover, R.L.

    1983-01-01

    A magnetron H - source with a grooved cathode has been in operation at the BNL Linac for over 18 months. The source has run at 5 pps with a 600 μsec pulse width for periods as long as 5 months. Its development and performance will be discussed

  2. Alpha waste management at the Valduc Research Center

    International Nuclear Information System (INIS)

    Jouan, A.; Cartier, R.; Durec, J.P.; Flament, T.

    1995-01-01

    Operation of the reprocessing facilities at the Valduc Research Center of the French Atomic Energy Commission (CEA) generates waste with a variety of characteristics. The waste compatible with surface storage requirements is transferred to the French Radioactive Waste Management Agency (ANDRA); rest is reprocessed under a program which enables storage in compliance with the requirements of permits issued by safety Authorities. The waste reprocessing program provides for the construction of an incinerator capable of handling nearly all of the combustible waste generated by the Center and vitrification facility for treating liquid waste generated by the plutonium handling plant. (authors)

  3. Waste management at the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Hoehlein, G.; Lins, W.

    1982-01-01

    In the Karlsruhe Nuclear Research Center the responsibility for waste management is concentrated in the Decontamination Department which serves to collect and transport all liquid waste and solid material from central areas in the center for further waste treatment, clean radioactive equipment for repair and re-use or for recycling of material, remove from the liquid effluents any radioactive and chemical pollutants as specified in legislation on the protection of waters, convert radioactive wastes into mechanically and chemically stable forms allowing them to be transported into a repository. (orig./RW)

  4. Applied wind energy research at the National Wind Technology Center

    International Nuclear Information System (INIS)

    Robinson, M.C.; Tu, P.

    1997-01-01

    Applied research activities currently being undertaken at the National Wind Technology Center, part of the National Renewable Energy Laboratory, in the United States, are divided into several technical disciplines. An integrated multi-disciplinary approach is urged for the future in order to evaluate advanced turbine designs. The risk associated with any new turbine development program can thus be mitigated through the provision of the advanced technology, analysis tools and innovative designs available at the Center, and wind power can be promoted as a viable renewable energy alternative. (UK)

  5. SWOT analysis in Sina Trauma and Surgery Research Center.

    Science.gov (United States)

    Salamati, Payman; ashraf Eghbali, Ali; Zarghampour, Manijeh

    2014-01-01

    The present study was conducted with the aim of identifying and evaluating the internal and external factors, affecting the Sina Trauma and Surgery Research Center, affiliated to Tehran University of Medical Sciences and propose some of related strategies to senior managers. We used a combined quantitative and qualitative methodology. Our study population consisted of personnel (18 individuals) at Sina Trauma and Surgery Research Center. Data-collection tools were the group discussions and the questionnaires. Data were analyzed with descriptive statistics and SWOT (Strength, Weakness, Opportunities and Threats) analysis. 18 individuals participated in sessions, consisting of 8 women (44.4%) and 10 men (55.6%). The final scores were 2.45 for internal factors (strength-weakness) and 2.17 for external factors (opportunities-threats). In this study, we proposed 36 strategies (10 weakness-threat strategies, 10 weakness-opportunity strategies, 7 strength-threat strategies, and 9 strength-opportunity strategies). The current status of Sina Trauma and Surgery Research Center is threatened weak. We recommend the center to implement the proposed strategies.

  6. Nuclear Research Center Karlsruhe, Central Safety Department. Annual report 1992

    International Nuclear Information System (INIS)

    Koelzer, W.

    1993-05-01

    The Central Safety Department is responsible for handling all problems of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: Physical and chemical behavior of trace elements in the environment, biophysics of multicellular systems, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurement and personnel dosimetry. This report gives details of the different duties, indicates the results of 1992 routine tasks and reports about results of investigations and developments of the working groups of the Department. The reader is referred to the English translation of Chapter 1 describing the duties and organization of the Central Safety Department. (orig.) [de

  7. Project 'European Research Center for Air Pollution Abatement Measures'

    International Nuclear Information System (INIS)

    1985-04-01

    During the 5-7th of March 1985 the first status report of the project 'European Research Center for Air Pollution Control Measures' took place in the Nuclear Research Center, Karlsruhe. Progress reports on the following topics assessment and analysis of the impacts of airborne pollutants on forest trees; distinction from other potential causes of recent forest dieback, research into atmospheric dispersion, conversion and deposition of airborne pollutants, development and optimization of industrial-technical processes to reduce or avoid emissions and providing instruments and making recommendations to the industrial and political sectors were presented. This volume is a collection of the work reported there. 42 papers were entered separately. (orig./MG) [de

  8. Karlsruhe Nuclear Research Center, Central Safety Department. Annual report 1993

    International Nuclear Information System (INIS)

    Koelzer, W.

    1994-04-01

    The Central Safety Department is responsible for handling all tasks of radiation protection, safety and security of the institutes and departments of the Karlsruhe Nuclear Research Center, for waste water activity measurements and environmental monitoring of the whole area of the Center, and for research and development work mainly focusing on nuclear safety and radiation protection measures. The research and development work concentrates on the following aspects: behavior of trace elements in the environment and decontamination of soil, behavior of tritium in the air/soil-plant system, improvement in radiation protection measurements and personnel dosimetry. This report gives details of the different duties, indicates the results of 1993 routine tasks and reports about results of investigations and developments of the working groups of the Department. (orig.) [de

  9. Double Star Research: A Student-Centered Community of Practice

    Science.gov (United States)

    Johnson, Jolyon

    2016-06-01

    Project and team-based pedagogies are increasingly augmenting lecture-style science classrooms. Occasionally, university professors will invite students to tangentially partcipate in their research. Since 2006, Dr. Russ Genet has led an astronomy research seminar for community college and high school students that allows participants to work closely with a melange of professional and advanced amatuer researchers. The vast majority of topics have centered on measuring the position angles and searations of double stars which can be readily published in the Journal of Double Star Observations. In the intervening years, a collaborative community of practice (Wenger, 1998) formed with the students as lead researchers on their projects with the guidance of experienced astronomers and educators. The students who join the research seminar are often well prepared for further STEM education in college and career. Today, the research seminar involves multile schools in multiple states with a volunteer educator acting as an assistant instructor at each location. These assistant instructors interface with remote observatories, ensure progress is made, and recruit students. The key deliverables from each student team include a published research paper and a public presentation online or in-person. Citing a published paper on scholarship and college applications gives students' educational carreers a boost. Recently the Journal of Double Star Observations published its first special issue of exlusively student-centered research.

  10. Decommissioning Operations at the Cadarache Nuclear Research Center

    International Nuclear Information System (INIS)

    Gouhier, E.

    2008-01-01

    Among the different activities of the CEA research center of Cadarache, located in the south of France, one of the most important involves decommissioning. As old facilities close, decommissioning activity increases. This presentation will give an overview of the existing organization and the different ongoing decommissioning and cleanup operations on the site. We shall also present some of the new facilities under construction the purpose of which is to replace the decommissioned ones. Cadarache research center was created on October 14, 1959. Today, the activities of the research center are shared out among several technological R and D platforms, essentially devoted to nuclear energy (fission and fusion) Acting as a support to these R and D activities, the center of Cadarache has a platform of services which groups the auxiliary services required by the nuclear facilities and those necessary to the management of nuclear materials, waste, nuclear facility releases and decommissioning. Many old facilities have shut down in recent years (replaced by new facilities) and a whole decommissioning program is now underway involving the dismantling of nuclear reactors (Rapsodie, Harmonie), processing facilities (ATUE uranium treatment facility, LECA UO 2 facility) as well as waste treatment and storage facilities (INB37, INB 56. In conclusion: other dismantling and cleanup operations that are now underway in Cadarache include the following: - Waste treatment and storage facilities, - Historical VLLW and HLW storage facility, - Fissile material storage building, - Historical spent fuel storage facility. Thanks to the project organization: - Costs and risks on these projects can be reduced. - Engineers and technicians can easily move from one project to another. In some cases, when a new facility is under construction for the purpose of replacing a decommissioned one, some of the project team can integrate the new facility as members of the operation team. Today

  11. Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory development activities. 2: Langley Research Center activities

    Science.gov (United States)

    Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.

    1983-01-01

    The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.

  12. Patient-centered prioritization of bladder cancer research.

    Science.gov (United States)

    Smith, Angela B; Chisolm, Stephanie; Deal, Allison; Spangler, Alejandra; Quale, Diane Z; Bangs, Rick; Jones, J Michael; Gore, John L

    2018-05-04

    Patient-centered research requires the meaningful involvement of patients and caregivers throughout the research process. The objective of this study was to create a process for sustainable engagement for research prioritization within oncology. From December 2014 to 2016, a network of engaged patients for research prioritization was created in partnership with the Bladder Cancer Advocacy Network (BCAN): the BCAN Patient Survey Network (PSN). The PSN leveraged an online bladder cancer community with additional recruitment through print advertisements and social media campaigns. Prioritized research questions were developed through a modified Delphi process and were iterated through multidisciplinary working groups and a repeat survey. In year 1 of the PSN, 354 patients and caregivers responded to the research prioritization survey; the number of responses increased to 1034 in year 2. The majority of respondents had non-muscle-invasive bladder cancer (NMIBC), and the mean time since diagnosis was 5 years. Stakeholder-identified questions for noninvasive, invasive, and metastatic disease were prioritized by the PSN. Free-text questions were sorted with thematic mapping. Several questions submitted by respondents were among the prioritized research questions. A final prioritized list of research questions was disseminated to various funding agencies, and a highly ranked NMIBC research question was included as a priority area in the 2017 Patient-Centered Outcomes Research Institute announcement of pragmatic trial funding. Patient engagement is needed to identify high-priority research questions in oncology. The BCAN PSN provides a successful example of an engagement infrastructure for annual research prioritization in bladder cancer. The creation of an engagement network sets the groundwork for additional phases of engagement, including design, conduct, and dissemination. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  13. 50 Years of the Radiological Research Accelerator Facility (RARAF)

    OpenAIRE

    Marino, Stephen A.

    2017-01-01

    The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were d...

  14. Public relations activities of the Karlsruhe Nuclear Research Center - a national research center contributes to opinion forming

    International Nuclear Information System (INIS)

    Koerting, K.

    1988-01-01

    At the Karlsruhe Nuclear Research Center, the Public Relations Department directly reports to the Chief Executive Officer. The head of the Public Relation Department acts as spokesman of the center in the public, which requires him to be fully informed of the work of all units and of the policy goals of the executive board. The key tools used by the Public Relations Department are KfK-Hausmitteilungen, accident information, the scientific journal KfK-Nachrichten, press releases, exhibitions, fairs, guided tours, and nuclear energy information staff. (DG)

  15. New York can be our nation's center for Alzheimer's research.

    Science.gov (United States)

    Vann, Allan S

    2014-09-01

    More than 5 million people in this country have Alzheimer's disease, and more than 300,000 of those with Alzheimer's live in New York. By 2025, it is estimated that there will be 350,000 residents living with Alzheimer's in New York. Congressman Steve Israel and New York Assemblyman Charles Lavine issued a joint proposal in June, 2013 suggesting that New York become this country's center for Alzheimer's research. Obviously, they would both like to see increased federal funding, but they also know that we cannot count on that happening. So Israel and Lavine have proposed a $3 billion state bonding initiative to secure sufficient funding to tackle this disease. It would be similar to the bonding initiatives that have made California and Texas this nation's centers for stem cell and cancer research. The bond would provide a dedicated funding stream to support research to find effective means to treat, cure, and eventually prevent Alzheimer's, and fund programs to help people currently dealing with Alzheimer's and their caregivers. New York already has some of the major "ingredients" to make an Alzheimer's bond initiative a success, including 3 of our nation's 29 Alzheimer's Disease Research Centers and some of the finest research facilities in the nation for genetic and neuroscience research. One can only imagine the synergy of having these world class institutions working on cooperative grants and projects with sufficient funding to attract even more world class researchers and scientists to New York to find ways to prevent, treat, and cure Alzheimer's. © The Author(s) 2014.

  16. 34 CFR 350.34 - Which Rehabilitation Engineering Research Centers must have an advisory committee?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Which Rehabilitation Engineering Research Centers must... Engineering Research Centers Does the Secretary Assist? § 350.34 Which Rehabilitation Engineering Research Centers must have an advisory committee? A Rehabilitation Engineering Research Center conducting research...

  17. Using curriculum vitae to compare some impacts of NSF research grants with research center funding

    OpenAIRE

    Monica Gaughan; Barry Bozeman

    2002-01-01

    While traditional grants remain central in US federal support of academic scientists and engineers, the role of multidisciplinary NSF Centers is growing. Little is known about how funding through these Centers affects scientific output or (as is an NSF aim) increases academic collaboration with industry. This paper tests the use of CVs to examine how Center funding affects researchers' publication rates and their obtaining industry grants. Copyright , Beech Tree Publishing.

  18. Tennessee Valley Authority National Fertilizer and Environmental Research Center

    International Nuclear Information System (INIS)

    Gautney, J.

    1991-01-01

    The National Fertilizer and Environmental Research Center (NFERC) is a unique part of the Tennessee Valley Authority (TVA), a government agency created by an Act of Congress in 1933. The Center, located in Muscle Shoals, Alabama, is a national laboratory for research, development, education and commercialization for fertilizers and related agricultural chemicals including their economic and environmentally safe use, renewable fuel and chemical technologies, alternatives for solving environmental/waste problems, and technologies which support national defense- NFERC projects in the pesticide waste minimization/treatment/disposal areas include ''Model Site Demonstrations and Site Assessments,'' ''Development of Waste Treatment and Site Remediation Technologies for Fertilizer/Agrichemical Dealers,'' ''Development of a Dealer Information/Education Program,'' and ''Constructed Wetlands.''

  19. The NIH-NIAID Filariasis Research Reagent Resource Center.

    Directory of Open Access Journals (Sweden)

    Michelle L Michalski

    2011-11-01

    Full Text Available Filarial worms cause a variety of tropical diseases in humans; however, they are difficult to study because they have complex life cycles that require arthropod intermediate hosts and mammalian definitive hosts. Research efforts in industrialized countries are further complicated by the fact that some filarial nematodes that cause disease in humans are restricted in host specificity to humans alone. This potentially makes the commitment to research difficult, expensive, and restrictive. Over 40 years ago, the United States National Institutes of Health-National Institute of Allergy and Infectious Diseases (NIH-NIAID established a resource from which investigators could obtain various filarial parasite species and life cycle stages without having to expend the effort and funds necessary to maintain the entire life cycles in their own laboratories. This centralized resource (The Filariasis Research Reagent Resource Center, or FR3 translated into cost savings to both NIH-NIAID and to principal investigators by freeing up personnel costs on grants and allowing investigators to divert more funds to targeted research goals. Many investigators, especially those new to the field of tropical medicine, are unaware of the scope of materials and support provided by the FR3. This review is intended to provide a short history of the contract, brief descriptions of the fiilarial species and molecular resources provided, and an estimate of the impact the resource has had on the research community, and describes some new additions and potential benefits the resource center might have for the ever-changing research interests of investigators.

  20. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  1. Development of laser technology in Research Center of Laser Fusion

    International Nuclear Information System (INIS)

    Zheng Wanguo; Deng Ying; Zhou Wei

    2013-01-01

    This paper reviews the progress in the construction of SG-Ⅲ laser facility, integrated Testbed and XG-Ⅲ laser facility and that in the upgrade of the prototype of SG-Ⅲ, and the development in assembling and installing technology, and the achievements in maintaining cleanliness project and metrology in Laser Fusion Research Center, China Academy of Engineering Physics in China in 2012. (authors)

  2. List of scientific publications of Nuclear Research Center Karlsruhe 1983

    International Nuclear Information System (INIS)

    1984-04-01

    This report contains the titles of the publications edited in the year 1983. The scientific and technical-scientific publications of the Nuclear Research Center Karlsruhe are printed as books, as original contributions in scientific or technical specialists' journals, as scripts for habilitation, thesis, scripts for diploma, as patents, as KfK-Reports (KfK=Kernforschungszentrum Karlsruhe) and are being presented as lectures on scientific meetings. No further separate abstracts of this list of publications were prepared. (orig./HBR) [de

  3. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  4. NASA Glenn Research Center Experience with "LENR Phenomenon"

    Science.gov (United States)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  5. NASA Glenn Research Center Experience with LENR Phenomenon

    Science.gov (United States)

    Wrbanek, Susan Y.; Fralick, Gustave C.; Wrbanek, John D.; Niedra, Janis M.

    2012-01-01

    Since 1989 NASA Glenn Research Center (GRC) has performed some small-scale limited experiments that show evidence of effects claimed by some to be evidence of Low Energy Nuclear Reactions (LENR). The research at GRC has involved observations and work on measurement techniques for observing the temperature effects in reactions of isotopes of hydrogen with palladium hydrides. The various experiments performed involved loading Pd with gaseous H2 and D2, and exposing Pd thin films to multi-bubble sonoluminescence in regular and deuterated water. An overview of these experiments and their results will be presented.

  6. A future perspective on technological obsolescenceat NASA, Langley Research Center

    Science.gov (United States)

    Mcintyre, Robert M.

    1990-01-01

    The present research effort was the first phase of a study to forecast whether technological obsolescence will be a problem for the engineers, scientists, and technicians at NASA Langley Research Center (LaRC). There were four goals of the research: to review the literature on technological obsolescence; to determine through interviews of division chiefs and branch heads Langley's perspective on future technological obsolescence; to begin making contacts with outside industries to find out how they view the possibility of technological obsolescence; and to make preliminary recommendations for dealing with the problem. A complete description of the findings of this research can be reviewed in a technical report in preparation. The following are a small subset of the key findings of the study: NASA's centers and divisions vary in their missions and because of this, in their capability to control obsolescence; research-oriented organizations within NASA are believed by respondents to keep up to date more than the project-oriented organizations; asked what are the signs of a professional's technological obsolescence, respondents had a variety of responses; top performing scientists were viewed as continuous learners, keeping up to date by a variety of means; when asked what incentives were available to aerospace technologists for keeping up to data, respondents specified a number of ideas; respondents identified many obstacles to professionals' keeping up to date in the future; and most respondents expressed some concern for the future of the professionals at NASA vis a vis the issue of professional obsolescence.

  7. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D.B.

    2002-02-28

    The Environmental Sciences Division at Oak Ridge National Laboratory has established a Field Research Center (FRC) to support the Natural and Accelerated Bioremediation Research (NABIR) Program on the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee for the DOE Headquarters Office of Biological and Environmental Research within the Office of Science.

  8. Genomics:GTL Bioenergy Research Centers White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

    2006-08-01

    In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new

  9. Federal Research: Opportunities Exist to Improve the Management and Oversight of Federally Funded Research and Development Centers

    National Research Council Canada - National Science Library

    Woods, William; Mittal, Anu; Neumann, John; Williams, Cheryl; Candon, Sharron; Sterling, Suzanne; Wade, Jacqueline; Zwanzig, Peter

    2008-01-01

    .... FFRDCs -- including laboratories, studies and analyses centers, and systems engineering centers -- conduct research in military space programs, nanotechnology, microelectronics, nuclear warfare...

  10. Applied Physics Research at the Idaho Accelerator Center

    International Nuclear Information System (INIS)

    Date, D. S.; Hunt, A. W.; Chouffani, K.; Wells, D. P.

    2011-01-01

    The Idaho Accelerator Center, founded in 1996 and based at Idaho State University, supports research, education, and high technology economic development in the United States. The research center currently has eight electron linear accelerators ranging in energy from 6 to 44 MeV with the latter linear accelerator capable of picosecond pulses, a 2 MeV positive-ion Van de Graaff, a 4 MV Nec tandem Pelletron, and a pulsed-power 8 k A, 10 MeV electron induction accelerator. Current research emphases include, accelerator physics research, accelerator based medical isotope production, active interrogation techniques for homeland security and nuclear nonproliferation applications, non destructive testing and materials science studies in support of industry as well as the development of advanced nuclear fuels, pure and applied radio-biology, and medical physics. This talk will highlight three of these areas including the production of the isotopes 99 Tc and 67 Cu for medical diagnostics and therapy, as well as two new technologies currently under development for nuclear safeguards and homeland security - namely laser Compton scattering and the polarized photofission of actinides

  11. The Wetland and Aquatic Research Center strategic science plan

    Science.gov (United States)

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  12. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    Science.gov (United States)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  13. Overview of research in progress at the Center of Excellence

    Science.gov (United States)

    Wandell, Brian A.

    1993-01-01

    The Center of Excellence (COE) was created nine years ago to facilitate active collaboration between the scientists at Ames Research Center and the Stanford Psychology Department. Significant interchange of ideas and personnel continues between Stanford and participating groups at NASA-Ames; the COE serves its function well. This progress report is organized into sections divided by project. Each section contains a list of investigators, a background statement, progress report, and a proposal for work during the coming year. The projects are: Algorithms for development and calibration of visual systems, Visually optimized image compression, Evaluation of advanced piloting displays, Spectral representations of color, Perception of motion in man and machine, Automation and decision making, and Motion information used for navigation and control.

  14. Current NDT activities at Cekmece Nuclear Research and Training Center

    International Nuclear Information System (INIS)

    Ekinci, S.

    2004-01-01

    Nondestructive testing (NDT) activities at Cekmece Nuclear Research and Training Center (CNAEM) has been initiated in the Industrial Application Department of the Center which was established in 1976 as the Radioisotope Applications Group for Industry. The Department started its first NDT activity with industrial radiography. The NDT activities have been developed by the support of various national (State Planning Organization (DPT)) and international (IAEA and UNDP) projects. Today, there are five basic NDT techniques (radiography, ultrasonic, magnetic particle, liquid penetrant and eddy current) used in the Industrial Application Department. The Department arranges routinely NDT qualification courses according to ISO 9712 and TS EN 473 standards for level 1 and 2 for Turkish Industry. It also carries out national DPT and IAEA Technical Co-operation projects and gives NDT services in the laboratory and in the field. Digital radiography and digital ultrasonic techniques are being used in advanced NDT applications. This paper describes the NDT activities of CNAEM. (author)

  15. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    International Nuclear Information System (INIS)

    Allen, Todd R.

    2011-01-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  16. Quality assurance of PTS thermal hydraulic calculations at BNL

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Pu, J.; Jo, J.; Saha, P.

    1983-01-01

    Rapid cooling of the reactor pressure vessel at high pressure has a potential of challenging the vessel integrity. This phenomenon is called overcooling or Pressurized Thermal Shock (PTS). The Nuclear Regulatory Commission (NRC) has selected three plants representing three types of PWRs in use for detailed PTS study. Oconee-1 (B and W), Calvert Cliffs (C.E.), and H.B. Robinson (Westinghouse). The Brookhaven National Laboratory (BNL) has been requested by NRC to review and compare the input decks developed at LANL and INEL, and to compare and explain the differences between the common calculations performed at these two laboratories. However, for the transients that will be computed by only one laboratory, a consistency check will be performed. So far only Oconee-1 calculations have been reviewed at BNL, and the results are presented here

  17. Technical report from Radioactive Waste Management Funding and Research Center

    International Nuclear Information System (INIS)

    2007-10-01

    As the only one Japanese organization specialized in radioactive waste, RWMC (Radioactive Waste Management Funding and Research Center) has been conducting the two major roles; R and D and the fund administration for radioactive waste management. The focus of its studies includes land disposal of LLW (Low-level radioactive wastes) and it has gradually extended to research on management and disposal techniques for high-level (HLW) and TRU wastes and studies on securing and managing the funds required for disposal of these wastes. The present document is the yearly progress report of 2006 and the main activities and research results are included on spent fuel disposal techniques including radon diffusion and emanation problem, performance studies on underground facilities for radioactive waste disposal and its management, technical assessment for geological environment, remote control techniques, artificial barrier systems proposed and its monitoring systems, and TRU disposals. (S. Ohno)

  18. Applied Computational Fluid Dynamics at NASA Ames Research Center

    Science.gov (United States)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  19. MedAustron - Ion-Beam Therapy and Research Center

    International Nuclear Information System (INIS)

    Schreiner, Thomas; Seemann, Rolf

    2015-01-01

    MedAustron is a synchrotron-based light-ion beam therapy center for cancer treatment as well as for clinical and non-clinical research, currently in the commissioning phase in Wiener Neustadt, Austria. Recently, the first proton beam was transported successfully to one of the four irradiation rooms. Whilst the choice of basic machine parameters was driven by medical requirements, i.e. 60 MeV protons and 120 MeV/A to 400 MeV/A carbon ions, the accelerator complex design was also optimized to offer flexibility for research operation. The potential of the synchrotron is being exploited to increase the maximum proton energy far beyond the medical needs to up to 800 MeV, for experimental physics applications, mainly in the areas of proton scattering and detector research. The accelerator layout allows for the installation of up to four ion source-spectrometer units, to provide various ion types besides the clinical used protons and carbon ions. Besides experimental physics, the two main non-clinical research disciplines are medical radiation physics and radiation biology. To decouple research and medical operation, a dedicated irradiation room for non-clinical research was included providing the installation of different experiments. In addition, several labs have been equipped with appropriate devices for preparing and analyzing radio-biological samples. This presentation gives a status overview over the whole project and highlights the non-clinical research opportunities at MedAustron. (Author)

  20. Relativistic heavy ion experiments at BNL-AGS

    International Nuclear Information System (INIS)

    Miake, Yasuo

    1992-01-01

    Relativistic heavy ion program at BNL started in 1986. Already a few experiments have achieved their first goals. Several interesting features reported among which are: The black nuclear transparency, the enhanced K + /π + ratio and the larger t > for K + and proton in central Si+Au collisions. Comparisons of m t and dn/dy distributions between pp, pA and AA are discussed together with various model calculations. (orig.)

  1. The Austrian Research Centers activities in energy risks

    International Nuclear Information System (INIS)

    Sdouz, Gert

    1998-01-01

    Among the institutions involved in energy analyses in Austria the risk context is being treated by three different entities: the Energy Consumption Agency, internationally known as EVA, the Federal Environmental Protection Agency, or Urnweltbundesarnt assessing mainly the environmental risks involved and the Austrian Research Centers, working on safety and risk evaluation. The Austrian Research Center Seibersdorf draws form its proficiency in Reactor Safety and Fusion Research, two fields of experience it has been involved in since its foundation, for some 40 years now. Nuclear energy is not well accepted by the Austrian population. Therefore in our country only energy systems with advanced safety level might be accepted in the far future. This means that the development of methods to compare risks is an important task. The characteristics of energy systems featuring advanced safety levels are: A very low hazard potential and a focus on deterministic safety instead of probabilistic safety, meaning to rely on inherently safe physics concepts, confirmed by probabilistic safety evaluation results. This can be achieved by adequate design of fusion reactors, advanced fission reactors and all different renewable sources of energy

  2. The technical support organization at BNL is twenty years old

    International Nuclear Information System (INIS)

    Indusi, J.P.

    1988-01-01

    The Technical Support Organization was established by the Atomic Energy Commission in January 1968 at Brookhaven National Laboratory (BNL). The original idea came from a small group of scientists at BNL. The group included Willy Higinbotham, Herb Kouts, Frank Miles, Richard Dodson, and Gerhardt Friedlander. The AEC endorsed the idea of a technical support group to provide technical assistance to AEC's Office of Safeguards and Materials Management and they sent requests for expressions of interest throughout the complex. For a number of reasons, to be discussed in the paper, the Technical Support Organization was established at BNL. An early project was the Conceptual Design for Safeguarding Nuclear Material which formed the first logical and systematic description of the integration of several elements into a safeguards system for protecting nuclear materials. Many other projects were undertaken over the years. TSO today provides technical assistance to the DOE Office of Safeguards and Secuirty, the Office of Classification and Technology Policy, and the Office of Security Evaluations. Technical support to the IAEA is provided under the Program of Technical Assistance to Agency Safeguards (POTAS). Recently, TSO began a program of technical assistance to the Air Force Weapons Laboratory in the area of nuclear systems security

  3. Final priority; National Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers. Final priority.

    Science.gov (United States)

    2013-06-14

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority for a Rehabilitation Engineering Research Center (RERC) on Universal Interfaces and Information Technology Access under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). The Assistant Secretary may use this priority for a competition in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend to use this priority to improve outcomes for individuals with disabilities.

  4. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  5. Telecommuting (Work-At-Home) at NASA Lewis Research Center

    Science.gov (United States)

    Srinidhi, Saragur M.

    1994-01-01

    This report presents a study in evaluating the viability of providing a work-at-home (telecommuting) program for Lewis Research Center's corporate employees using Integrated Services Digital Network (ISDN). Case studies have been presented for a range of applications from casual data access to interactive access. The network performance of telemedia applications were studied against future requirements for such level of remote connectivity. Many of the popular ISDN devices were characterized for network and service functionality. A set of recommendations to develop a telecommuting policy have been proposed.

  6. Surface modification and characterization Collaborative Research Center at ORNL

    International Nuclear Information System (INIS)

    1986-01-01

    The Surface Modification and Characterization Collaborative Research Center (SMAC/CRC) is a unique facility for the alteration and characterization of the near-surface properties of materials. The SMAC/CRC facility is equipped with particle accelerators and high-powered lasers which can be used to improve the physical, electrical, and/or chemical properties of solids and to create unique new materials not possible to obtain with conventional ''equilibrium'' processing techniques. Surface modification is achieved using such techniques as ion implantation doping, ion beam mixing, laser mixing, ion deposition, and laser annealing

  7. Collaborative Mission Design at NASA Langley Research Center

    Science.gov (United States)

    Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.

    2005-01-01

    NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.

  8. Continuing training program in radiation protection in biological research centers

    International Nuclear Information System (INIS)

    Escudero, R.; Hidalgo, R.M.; Usera, F.; Macias, M.T.; Mirpuri, E.; Perez, J.; Sanchez, A.

    2008-01-01

    The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel The use of ionizing radiation in biological research has many specific characteristics. A great variety of radioisotopic techniques involve unsealed radioactive sources, and their use not only carries a risk of irradiation, but also a significant risk of contamination. Moreover, a high proportion of researchers are in training and the labor mobility rate is therefore high. Furthermore, most newly incorporated personnel have little or no previous training in radiological protection, since most academic qualifications do not include training in this discipline. In a biological research center, in addition to personnel whose work is directly associated with the radioactive facility (scientific-technical personnel, operators, supervisors), there are also groups of support personnel maintenance and instrumentation workers, cleaners, administrative personnel, etc. who are associated with the radioactive facility indirectly. These workers are affected by the work in the radioactive facility to varying degrees, and they therefore also require information and training in radiological protection tailored to their level of interaction with the installation. The aim of this study was to design a

  9. Development and Testing of the Glenn Research Center Visitor's Center Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed, installed, and tested a 12 kW DC grid-tied photovoltaic (PV) power system at the GRC Visitor s Center. This system utilizes a unique ballast type roof mount for installing the photovoltaic panels on the roof of the Visitor s Center with no alterations or penetrations to the roof. The PV system has generated in excess of 15000 kWh since operation commenced in August 2008. The PV system is providing power to the GRC grid for use by all. Operation of the GRC Visitor s Center PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provides valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the GRC Visitor s Center PV system, additional PV power system expansion at GRC is under consideration. The GRC Visitor s Center grid-tied PV power system was successfully designed and developed which served to validate the basic principles

  10. The Role of Computers in Research and Development at Langley Research Center

    Science.gov (United States)

    Wieseman, Carol D. (Compiler)

    1994-01-01

    This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics.

  11. A RESEARCH REPORT ON OPERATIONAL PLANS FOR DEVELOPING REGIONAL EDUCATIONAL MEDIA RESEARCH CENTERS.

    Science.gov (United States)

    CARPENTER, C.R.; AND OTHERS

    THE NEED AND FEASIBILITY OF ESTABLISHING A NUMBER OF "REGIONAL EDUCATIONAL MEDIA RESEARCH CENTERS WITH A PROGRAMMATIC ORIENTATION" WERE INVESTIGATED. A PLANNING GROUP WAS ESTABLISHED TO SERVE AS A STEERING COMMITTEE. CONFERENCES IN WHICH GROUPS IN RESEARCH AND EDUCATION IN WIDELY DISTRIBUTED REGIONS OF THE COUNTRY PARTICIPATED WERE HELD…

  12. Pinon-juniper management research at Corona Range and Livestock Research Center in Central New Mexico

    Science.gov (United States)

    Andres Cibils; Mark Petersen; Shad Cox; Michael Rubio

    2008-01-01

    Description: New Mexico State University's Corona Range and Livestock Research Center (CRLRC) is located in a pinon-juniper (PJ)/grassland ecotone in the southern Basin and Range Province in south central New Mexico. A number of research projects conducted at this facility revolve around soil, plant, livestock, and wildlife responses to PJ woodland management. The...

  13. 1998 researchers' conference proceedings, Amarillo College Business and Industry Center

    International Nuclear Information System (INIS)

    1998-01-01

    The first Strategic Arms Reduction Treaties (START 1 and 2) signed by the US and the Soviet Union call for a reduction in strategic nuclear warheads to about one-third of 1990 levels and a complete elimination of land-based, multiple-warhead missiles. As a consequence of dismantling nuclear warheads, a significant portion of the inventory of nuclear materials that were formerly parts of deployed weapon systems was designated to be handled and/or stored at the Pantex Plant near Amarillo, Texas. To facilitate research integration between the national laboratories and the universities, the Center has divided its technical activities into seven focus areas. For Nuclear and Other Materials Studies, the focus areas are Materials Science, Plutonium Processing and handling, Nuclear Materials Storage, and analytical Development. The Environment, Safety and Health focus areas are Environmental Restoration and Protection, Safety and Health, and Waste Management. Research projects within each area are presented

  14. Two Micron Laser Technology Advancements at NASA Langley Research Center

    Science.gov (United States)

    Singh, Upendra N.

    2010-01-01

    An Independent Laser Review Panel set up to examine NASA s space-based lidar missions and the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. Based on the review, a multiyear Laser Risk Reduction Program (LRRP) was initiated by NASA in 2002 to develop technologies that ensure the successful development of the broad range of lidar missions envisioned by NASA. This presentation will provide an overview of the development of pulsed 2-micron solid-state laser technologies at NASA Langley Research Center for enabling space-based measurement of wind and carbon dioxide.

  15. Joint development utility and university and utility and research center

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Roberto del Giudice R.; Valgas, Helio Moreira [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    1994-12-31

    This paper shows the background acquired by CEMIG in dealing with projects associated with R and D (Research and Development), carried out as a result of the establishment of contracts or governants with universities and research center for direct application on the solution of problems related to the operation of the system, within the scope of electrical operation planning. The various aspects of a project of this nature such as legal questions, characterization of a contract or a covenant, main developments and new opportunity areas should be covered. Finally the subject shall be dealt with under the Total Quality approach, involving the proposition of control items associated to the process and goals to be reached. (author) 7 refs., 2 figs.

  16. The Rise of Federally Funded Research and Development Centers

    Energy Technology Data Exchange (ETDEWEB)

    DALE,BRUCE C.; MOY,TIMOTHY D.

    2000-09-01

    Federally funded research and development centers (FFRDCS) area unique class of research and development (R and D) facilities that share aspects of private and public ownership. Some FFRDCS have been praised as national treasures, but FFRDCS have also been the focus of much criticism through the years. This paper traces the history of FFRDCS through four periods: (1) the World War II era, which saw the birth of federal R and D centers that would eventually become FFRDCS; (2) the early Cold War period, which exhibited a proliferation of FFRDCS despite their unclear legislative status and growing tension with an increasingly capable and assertive defense industry, (3) there-evaluation and retrenchment of FFRDCS in the 1960s and early 1970s, which resulted in a dramatic decline in the number of FFRDCS; and (4) the definition and codification of the FFRDC entity in the late 1970s and 1980s, when Congress and the executive branch worked together to formalize regulations to control FFRDCS. The paper concludes with observations on the status of FFRDCS at the end of the twentieth century.

  17. Dryden Flight Research Center Critical Chain Project Management Implementation

    Science.gov (United States)

    Hines, Dennis O.

    2012-01-01

    In Fiscal Year 2011 Dryden Flight Research Center (DFRC) implemented a new project management system called Critical Chain Project Management (CCPM). Recent NASA audits have found that the Dryden workforce is strained under increasing project demand and that multi-tasking has been carried to a whole new level at Dryden. It is very common to have an individual work on 10 different projects during a single pay period. Employee surveys taken at Dryden have identified work/life balance as the number one issue concerning employees. Further feedback from the employees indicated that project planning is the area needing the most improvement. In addition, employees have been encouraged to become more innovative, improve job skills, and seek ways to improve overall job efficiency. In order to deal with these challenges, DFRC management decided to adopt the CCPM system that is specifically designed to operate in a resource constrained multi-project environment. This paper will discuss in detail the rationale behind the selection of CCPM and the goals that will be achieved through this implementation. The paper will show how DFRC is tailoring the CCPM system to the flight research environment as well as laying out the implementation strategy. Results of the ongoing implementation will be discussed as well as change management challenges and organizational cultural changes. Finally this paper will present some recommendations on how this system could be used by selected NASA projects or centers.

  18. Status of the RHIC and BNL/CERN heavy ion programs

    International Nuclear Information System (INIS)

    Ozaki, S.

    1993-01-01

    With the gold beam operation at the Brookhaven AGS started in 1992, and with the lead beam operation at the CERN SPS planned for 1994--1995, investigation of high nucleon density states through high energy heavy ion collisions is becoming a reality. In addition, the Relativistic Heavy Ion Collider (RHIC) at BNL, which is dedicated to the study of ultra-high energy heavy ion collisions, is under construction with a target completion date in 1997. There also is a plan to run the proposed CERN LHC for a few months a year for the heavy ion program. These colliders should provide opportunities to extend our knowledge of nuclear matter to the extraordinary states of extreme high temperature and high density, thus opening the way to the creation and study of quark-gluon plasma. The lattice gauge calculation based on the theory of strong interactions (QCD) predicts that, at such states, quarks and gluons are deconfined from individual nucleons and form a hot plasma. In this paper, the status of heavy ion stationary target programs at the BNL AGS and the CERN SPS, the progress of RHIC construction, and heavy ion research potential at LHC will be presented. The status of the CERN LHC will be covered elsewhere in these Proceedings

  19. The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    Science.gov (United States)

    Lai, Steven H.-Y.

    1992-01-01

    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval.

  20. Translational Partnership Development Lead | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Frederick National Laboratory for Cancer Research (FNLCR) is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc on behalf of the National Cancer Institute (NCI). The staff of FNLCR support the NCI’s mission in the fight against cancer and HIV/AIDS. Currently we are seeking a Translational Partnership Development Lead (TPDL) who will work closely with the Office of Translational Resources (OTR) within the Office of the Director (OD) of NCI’s Center for Cancer Research (CCR) to facilitate the successful translation of CCR’s basic and preclinical research advances into new therapeutics and diagnostics. The TPDL with be strategically aligned within FNLCR’s Partnership Development Office (PDO), to maximally leverage the critical mass of expertise available within the PDO. CCR comprises the basic and clinical components of the NCI’s Intramural Research Program (IRP) and consists of ~230 basic and clinical Investigators located at either the NIH main campus in Bethesda or the NCI-Frederick campus. CCR Investigators are focused primarily on cancer and HIV/AIDS, with special emphasis on the most challenging and important high-risk/high-reward problems driving the fields. (See https://ccr.cancer.gov for a full delineation of CCR Investigators and their research activities.) The process of developing research findings into new clinical applications is high risk, complex, variable, and requires multiple areas of expertise seldom available within the confines of a single Investigator’s laboratory. To accelerate this process, OTR serves as a unifying force within CCR for all aspects of translational activities required to achieve success and maintain timely progress. A key aspect of OTR’s function is to develop and strengthen essential communications and collaborations within NIH, with extramural partners and with industry to bring together experts in chemistry, human subjects research

  1. Twenty-fifth anniversary of the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Harde, R.

    1981-01-01

    The Karlsruhe Nuclear Research Center was founded on July 19, 1956. The initial company, in which the Federal Republic of Germany held a 30% interest, the State of Baden-Wuerttemberg 20%, and German industry 50%, was founded mainly for the purposes of building and operating a German-designed research reactor. In 1959, the Gesellschaft fuer Kernforschung mbH was founded for execution of the research and development activities, in which the Federal Republic of Germany held 75%, the State of Baden-Wuerttemberg 25% of the shares. The two companies were merged in 1963, after industry had donated its holdings in the initial company to the new company. In 1972, the financial holdings of the Federal Government were raised to 90%. On January 1, 1978, the company was named Kernforschungszentrum Karlsruhe GmbH (KfK). Over the past 25 years, KfK has received approx. DM 7 billion out of public funds. Important milestones in the development of nuclear technology in the Federal Republic contributed by KfK include the development of the fast breeder line and responsibility for construction of the first German fast breeder reactor, KNK; development of reprocessing technologies and responsibility for construction of the first German reprocessing plant, WAK; development of a uranium enrichment technique (separation nozzle method); important contributions to reactor safety, fusion research, and training in nuclear technology. (orig.) [de

  2. The BNL Accelerator Test Facility control system

    International Nuclear Information System (INIS)

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package

  3. Comparative analysis of the CRDA using BNL-TWIGL and RAMONA-3B

    International Nuclear Information System (INIS)

    Neogy, P.; Carew, J.F.

    1983-06-01

    A comparative analysis of the BWR control rod drop accident (CRDA) using BNL-TWIGL and RAMONA-3B has been performed as part of the BNL/NRC evaluation of methods currently used to analyze BWR CRDA events. A principal objective of this analysis was to test the two-dimensional neutronics model used in BNL-TWIGL aganist the full three-dimensional model in RAMONA-3B. Additionally, the results of analyzing the identical transient with the two codes were expected to help evaluate other approximate models used, such as the coarse mesh nodal neutronics scheme in RAMONA-3B and the equilibrium bulk boiling model in BNL-TWIGL

  4. Nurse Practitioner/Physician Assistant | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  5. Multi-Vehicle Cooperative Control Research at the NASA Armstrong Flight Research Center, 2000-2014

    Science.gov (United States)

    Hanson, Curt

    2014-01-01

    A brief introductory overview of multi-vehicle cooperative control research conducted at the NASA Armstrong Flight Research Center from 2000 - 2014. Both flight research projects and paper studies are included. Since 2000, AFRC has been almost continuously pursuing research in the areas of formation flight for drag reduction and automated cooperative trajectories. An overview of results is given, including flight experiments done on the FA-18 and with the C-17. Other multi-vehicle cooperative research is discussed, including small UAV swarming projects and automated aerial refueling.

  6. A research on the enhancement of research management efficiency for the division of research, Korea cancer center hospital

    International Nuclear Information System (INIS)

    Lee, S. W.; Ma, K. H.; Kim, J. R.; Lee, D. C.; Lee, J. H.

    1999-06-01

    The research activities of Korea Cancer Center Hospital have increased for the past a few years just in proportion to the increase of research budget, but the assisting manpower of the office of research management has never been increased and the indications are that the internal and external circumstances will not allow the recruitment for a fairly long time. It has, therefore, become inevitable to enhance the work efficiency of the office by analyzing the administrative research assistance system, finding out problems and inefficiency factors, and suggesting possible answers to them. The office of research management and international cooperation has conducted this research to suggest possible ways to facilitate the administrative support for the research activities of Korea Cancer Center Hospital By analyzing the change of research budget, organization of the division of research and administrative support, manpower, and the administrative research supporting system of other institutes, we suggested possible ways to enhance the work efficiency for administrative research support and developed a relative database program. The research report will serve as a data for the organization of research support division when the Radiation Medicine Research Center is established. The database program has already been used for research budget management

  7. Reorganizing the General Clinical Research Center to improve the clinical and translational research enterprise.

    Science.gov (United States)

    Allen, David; Ripley, Elizabeth; Coe, Antoinette; Clore, John

    2013-12-01

    In 2010, Virginia Commonwealth University (VCU) was granted a Clinical and Translational Science Award which prompted reorganization and expansion of their clinical research infrastructure. A case study approach is used to describe the implementation of a business and cost recovery model for clinical and translational research and the transformation of VCU's General Clinical Research Center and Clinical Trials Office to a combined Clinical Research Services entity. We outline the use of a Plan, Do, Study, Act cycle that facilitated a thoughtful transition process, which included the identification of required changes and cost recovery processes for implementation. Through this process, the VCU Center for Clinical and Translational Research improved efficiency, increased revenue recovered, reduced costs, and brought a high level of fiscal responsibility through financial reporting.

  8. Building research infrastructure in community health centers: a Community Health Applied Research Network (CHARN) report.

    Science.gov (United States)

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E

    2013-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and "matchmaking" between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings.

  9. Information center as a link between basic and applied research

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1976-01-01

    The National Neutron Cross Section Center (NNCSC) concerns itself with neutron physics information of a basic and applied nature. Computerized files of bibliography to the neutron physics literature, and of experimental and evaluated neutron data are maintained. The NNCSC coordinates a national effort, the Cross Section Evaluation Working Group (CSEWG) with participants from government, private, and academic institutions, to establish a computerized reference data base Evaluated Nuclear Data File (ENDF/B) for national programs. The ENDF/B is useful to basic research because it contains recommended values based on the best available measurements and is often used as reference data for normalization and analysis of experiments. For applied use the reference data are extended through nuclear model calculations or nuclear systematics to include all data of interest with standardized processing codes facilitating the use of ENDF/B in certain types of computations. Initially the main application of ENDF/B was power reactor and shield design and only neutron data were evaluated but due to the fact that for many applications both neutron and nonneutron data are required, ENDF/B has been extended in scope to include radioactive decay data and radiation spectra for the burnup and after decay heat of fission products and photon interaction data for gamma ray transport calculations. Cooperation with other centers takes place both nationally and internationally

  10. Langley Research Center Utility Risk from Future Climate Change

    Science.gov (United States)

    De Young, Russell J.; Ganoe, Rene

    2015-01-01

    The successful operation of NASA Langley Research Center (LaRC) depends on services provided by several public utility companies. These include Newport News Waterworks, Dominion Virginia Power, Virginia Natural Gas and Hampton Roads Sanitation District. LaRC's plan to respond to future climate change should take into account how these companies plan to avoid interruption of services while minimizing cost to the customers. This report summarizes our findings from publicly available documents on how each company plans to respond. This will form the basis for future planning for the Center. Our preliminary findings show that flooding and severe storms could interrupt service from the Waterworks and Sanitation District but the potential is low due to plans in place to address climate change on their system. Virginia Natural Gas supplies energy to produce steam but most current steam comes from the Hampton trash burning plant, thus interruption risk is low. Dominion Virginia Power does not address climate change impacts on their system in their public reports. The potential interruption risk is considered to be medium. The Hampton Roads Sanitation District is projecting a major upgrade of their system to mitigate clean water inflow and infiltration. This will reduce infiltration and avoid overloading the pump stations and treatment plants.

  11. Operating The Central Process Systems At Glenn Research Center

    Science.gov (United States)

    Weiler, Carly P.

    2004-01-01

    As a research facility, the Glenn Research Center (GRC) trusts and expects all the systems, controlling their facilities to run properly and efficiently in order for their research and operations to occur proficiently and on time. While there are many systems necessary for the operations at GRC, one of those most vital systems is the Central Process Systems (CPS). The CPS controls operations used by GRC's wind tunnels, propulsion systems lab, engine components research lab, and compressor, turbine and combustor test cells. Used widely throughout the lab, it operates equipment such as exhausters, chillers, cooling towers, compressors, dehydrators, and other such equipment. Through parameters such as pressure, temperature, speed, flow, etc., it performs its primary operations on the major systems of Electrical Dispatch (ED), Central Air Dispatch (CAD), Central Air Equipment Building (CAEB), and Engine Research Building (ERB). In order for the CPS to continue its operations at Glenn, a new contract must be awarded. Consequently, one of my primary responsibilities was assisting the Source Evaluation Board (SEB) with the process of awarding the recertification contract of the CPS. The job of the SEB was to evaluate the proposals of the contract bidders and then to present their findings to the Source Selecting Official (SSO). Before the evaluations began, the Center Director established the level of the competition. For this contract, the competition was limited to those companies classified as a small, disadvantaged business. After an industry briefing that explained to qualified companies the CPS and type of work required, each of the interested companies then submitted proposals addressing three components: Mission Suitability, Cost, and Past Performance. These proposals were based off the Statement of Work (SOW) written by the SEB. After companies submitted their proposals, the SEB reviewed all three components and then presented their results to the SSO. While the

  12. Karlsruhe Nuclear Research Center. Progress report on research and development work in 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This summary of R and D work is the scientific annual report to be prepared by the research center in compliance with its statutes. The material is arranged by items of main activities, as given in the overall R and D programme set up for the research center. The various reports prepared by the individual institutes and principal departments are presented under their relevant subject headings. The annual report is intended to demonstrate the progress achieved in the tasks and activities assigned by the R and D programme of the research center, by referring to the purposes and goals stated in the programme, showing the joint or separate efforts and achievements of the institutes. Details and results of activities are found in the scientific-technical publications given in the bibliographical survey, and in the internal primary surveys. The main activities of the research center include the following: Fast Breeder Project (PSB), Nuclear Fusion Project (PKF), Separation Nozzle Project (TDV), and Reprocessing and Waste Treatment Project (PWA), Ultimate Disposal of Radioactive Waste (ELA), Environment and Safety (U and S), Solids and Materials (FM), Nuclear and Particle Physics (KTP), Microtechniques (MT), Materials Handling (HT), Other Research Activities (SF). Organisational aspects and institutes and the list of publications conclude the report. (orig./HK) [de

  13. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  14. An example of a United States Nuclear Research Center

    International Nuclear Information System (INIS)

    Bhattacharyya, S. K.

    1999-01-01

    Under the likely scenario in which public support for nuclear energy remains low and fossil fuels continue to be abundant and cheap, government supported nuclear research centers must adapt their missions to ensure that they tackle problems of current significance. It will be critical to be multidisciplinary, to generate economic value, and to apply nuclear competencies to current problems. Addressing problems in nuclear safety, D and D, nuclear waste management, nonproliferation, isotope production are a few examples of current needs in the nuclear arena. Argonne's original mission, to develop nuclear reactor technology, was a critical need for the U.S. in 1946. It would be wise to recognize that this mission was a special instance of a more general one--to apply unique human and physical capital to long term, high risk technology development in response to society's needs. International collaboration will enhance the collective chances for success as the world moves into the 21st century

  15. New research resources at the Bloomington Drosophila Stock Center.

    Science.gov (United States)

    Cook, Kevin R; Parks, Annette L; Jacobus, Luke M; Kaufman, Thomas C; Matthews, Kathleen A

    2010-01-01

    The Bloomington Drosophila Stock Center (BDSC) is a primary source of Drosophila stocks for researchers all over the world. It houses over 27,000 unique fly lines and distributed over 160,000 samples of these stocks this past year. This report provides a brief overview of significant recent events at the BDSC with a focus on new stock sets acquired in the past year, including stocks for phiC31 transformation, RNAi knockdown of gene expression, and SNP and quantitative trait loci discovery. We also describe additions to sets of insertions and molecularly defined chromosomal deficiencies, the creation of a new Deficiency Kit, and planned additions of X chromosome duplication sets.

  16. Quality management system of Saraykoy Nuclear Research and Training center

    International Nuclear Information System (INIS)

    Gurellier, R.; Akchay, S.; Zararsiz, S.

    2014-01-01

    Full text : Technical competence and national/international acceptance of independency of laboratories is ensured by going through accreditations. It provides decreasing the risk of a slowdown in international trade due to unnecessary repetition of testing and analyses. It also eliminates the cost of additional experiments and analyses. Saraykoy Nuclear Research and Training Center (SANAEM) has performed intensive studies to establish an effective and well-functioning QMS (Quality Management System) by full accordance with the requirements of ISO/IEC 17025, since the begining of 2006. Laboratories, especially serving to public health studies and important trade duties require urgent accreditation. In this regard, SANAEM has established a quality management system and performed accreditation studies

  17. Distance Learning With NASA Lewis Research Center's Learning Technologies Project

    Science.gov (United States)

    Petersen, Ruth

    1998-01-01

    The NASA Lewis Research Center's Learning Technologies Project (LTP) has responded to requests from local school district technology coordinators to provide content for videoconferencing workshops. Over the past year we have offered three teacher professional development workshops that showcase NASA Lewis-developed educational products and NASA educational Internet sites. In order to determine the direction of our involvement with distance learning, the LTP staff conducted a survey of 500 U.S. schools. We received responses from 72 schools that either currently use distance learning or will be using distance learning in 98-99 school year. The results of the survey are summarized in the article. In addition, the article provides information on distance learners, distance learning technologies, and the NASA Lewis LTP videoconferencing workshops. The LTP staff will continue to offer teacher development workshops through videoconferencing during the 98-99 school year. We hope to add workshops on new educational products as they are developed at NASA Lewis.

  18. Quality in research centers; Calidad en centros de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Colin Orozco, Leticia [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    In order to be able to survive and to have successful in the globalized market, all the organizations must make an effort in learning and understanding the language of the international trade, of the standards that govern it and the technical specifications that are handled for the quality assurance of products and services. In this paper the importance that the implementation of standards ISO-9000 in the research centers has, is presented. [Spanish] Para poder sobrevivir y tener exito en el mercado globalizado todas las organizaciones tienen que esforzarse en el aprendizaje y comprension del lenguaje del comercio internacional, de las normas que lo rigen y de las especificaciones tecnicas que se manejan para asegurar la calidad de los productos y servicios. En este articulo se presenta la importancia que tiene la implantacion de las normas ISO-9000 en los centros de investigacion.

  19. Sustainability indicators to nuclear research centers in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A., E-mail: symonfonseca@yahoo.com.br, E-mail: vmfj@cdtn.br, E-mail: aab@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  20. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds [Univ. of California, Los Angeles, CA (United States). Materials Science and Engineering Dept.

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  1. Sustainability indicators to nuclear research centers in Brazil

    International Nuclear Information System (INIS)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A.

    2015-01-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  2. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  3. Ongkharak Nuclear Research Center-the role of the consultant

    International Nuclear Information System (INIS)

    Jacobi, A.; De Haller, L.

    1998-01-01

    The Ongkharak Nuclear Research Center Project is known to have started on 26 June 1997. At that date the Contract for the turnkey delivery of the three nuclear facilities, the Reactor Island [RI] , Isotope Production Facility [IPF] and the Waste Processing and Storage Facilities [WPSF], was signed by the Office of the Atomic Energy for Peace [OAEP] with General Atomics [GA]. The involvement of Atomic Consultant - Electrowatt Engineering Ltd. (EWE) - already started more than 2 years earlier than the official start of this ambitious project. Since mid 1995 EWE has been serving in a variety of functions and has been requested to perform numerous tasks in support of OAEP. By acting in the function of the Consultant, EWE was aiming firstly to help the project to proceed as quickly as possible. Secondly EWE was overseeing constantly that the quality of the Center, once finished, will meet the present state of the art, will be licensable in Thailand (or elsewhere) and will be internationally recognised as a safe, reliable and modern research and production installation. The role of EWE covers a multitude of engineering disciplines, such as architecture; civil, mechanical, nuclear, I and C and electrical engineering; nuclear and reactor physics; chemistry and radiopharmacy; economy and price estimation. Besides, EWE has to use its skills in conducting and/or supervising large projects, e.g., by appropriate scheduling, QA surveys, licensing support, document control, etc. Furthermore, EWE is actively involved in know-how transfer to Thai engineers and scientists by working in close co-operation with OAEP's project personnel and - if required - by giving special training courses. This paper presents some highlights as well as routine activities performed by EWE so far in the Project

  4. Combined Neutron Center for European Research and Technology

    International Nuclear Information System (INIS)

    Lagniel, Jean-Michel

    2002-01-01

    High-power proton linacs are needed as driver for several applications, namely transmutation of nuclear waste using Accelerator Driven Systems (ADS), spallation neutron sources (ESS in Europe) and other fields of basic and applied research (next generation of radioactive ion beam facilities, neutrino factories, muon colliders, irradiation facilities for material testing...). The possible synergies among these projects will be pointed out and the feasibility study of high-power proton linac used as driver of a multi-user facility (CONCERT) will be presented. There was excellent scientific, technical and economic reasons to study a Combined Neutron Center for European Research and Technology (CONCERT) based on a high-power proton accelerator. Such an installation would serve condensed matter studies by spallation neutron scattering, a technological irradiation tool and R and D facility for an hybrid reactor demonstrator, a radioactive ion beam facility for nuclear physics, R and D developments for a muon/neutrino facility. The installation could therefore constitute a European center of excellence in the field of neutronics where a large number of scientific and technical executives could be trained. The CONCERT Project Team has performed the feasibility study of such a multi-user facility with: - a review of the beam needs for the different applications, - an analyze of their compatibility, - the definition of the scope of a site-independent project, - a selection of the most appropriate options regarding scientific, technical, financial, organizational and administrative aspects, - an estimation of the costs for construction, operation and the needs in manpower. The conceptual design report [17] is sufficiently detailed to minimize contingencies on those parts of the project having a large potential impact in terms of performances, costs or delays. (author)

  5. Research Problems in Data Curation: Outcomes from the Data Curation Education in Research Centers Program

    Science.gov (United States)

    Palmer, C. L.; Mayernik, M. S.; Weber, N.; Baker, K. S.; Kelly, K.; Marlino, M. R.; Thompson, C. A.

    2013-12-01

    The need for data curation is being recognized in numerous institutional settings as national research funding agencies extend data archiving mandates to cover more types of research grants. Data curation, however, is not only a practical challenge. It presents many conceptual and theoretical challenges that must be investigated to design appropriate technical systems, social practices and institutions, policies, and services. This presentation reports on outcomes from an investigation of research problems in data curation conducted as part of the Data Curation Education in Research Centers (DCERC) program. DCERC is developing a new model for educating data professionals to contribute to scientific research. The program is organized around foundational courses and field experiences in research and data centers for both master's and doctoral students. The initiative is led by the Graduate School of Library and Information Science at the University of Illinois at Urbana-Champaign, in collaboration with the School of Information Sciences at the University of Tennessee, and library and data professionals at the National Center for Atmospheric Research (NCAR). At the doctoral level DCERC is educating future faculty and researchers in data curation and establishing a research agenda to advance the field. The doctoral seminar, Research Problems in Data Curation, was developed and taught in 2012 by the DCERC principal investigator and two doctoral fellows at the University of Illinois. It was designed to define the problem space of data curation, examine relevant concepts and theories related to both technical and social perspectives, and articulate research questions that are either unexplored or under theorized in the current literature. There was a particular emphasis on the Earth and environmental sciences, with guest speakers brought in from NCAR, National Snow and Ice Data Center (NSIDC), and Rensselaer Polytechnic Institute. Through the assignments, students

  6. BNL ACCELERATOR-BASED RADIOBIOLOGY FACILITIES

    International Nuclear Information System (INIS)

    LOWENSTEIN, D.I.

    2000-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40--3,000 MeV/nucleon with maximum beam intensities of 10 10 to 10 11 ions per pulse. The BAF Project is described and the future AGS and BAF operation plans are presented

  7. Final priority; National Institute on Disability and Rehabilitation Research--Rehabilitation Engineering Research Centers. Final priority.

    Science.gov (United States)

    2014-07-09

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce a priority for a Rehabilitation Engineering Research Center (RERC) on Improving the Accessibility, Usability, and Performance of Technology for Individuals who are Deaf or Hard of Hearing. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to focus research attention on an area of national need. We intend the priority to contribute to improving the accessibility, usability, and performance of technology for individuals who are deaf or hard of hearing.

  8. A research plan based on high intensity proton accelerator Neutron Science Research Center

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1997-01-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  9. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  10. Applied high-speed imaging for the icing research program at NASA Lewis Research Center

    Science.gov (United States)

    Slater, Howard; Owens, Jay; Shin, Jaiwon

    1992-01-01

    The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.

  11. Innovation in Flight: Research of the NASA Langley Research Center on Revolutionary Advanced Concepts for Aeronautics

    Science.gov (United States)

    Chambers, Joseph R.

    2005-01-01

    The goal of this publication is to provide an overview of the topic of revolutionary research in aeronautics at Langley, including many examples of research efforts that offer significant potential benefits, but have not yet been applied. The discussion also includes an overview of how innovation and creativity is stimulated within the Center, and a perspective on the future of innovation. The documentation of this topic, especially the scope and experiences of the example research activities covered, is intended to provide background information for future researchers.

  12. Assessment team report on flight-critical systems research at NASA Langley Research Center

    Science.gov (United States)

    Siewiorek, Daniel P. (Compiler); Dunham, Janet R. (Compiler)

    1989-01-01

    The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development.

  13. Researchers studying alternative to bladder removal for bladder cancer patients | Center for Cancer Research

    Science.gov (United States)

    A new phase I clinical trial conducted by researchers at the Center for Cancer Research (CCR) is evaluating the safety and tolerability, or the degree to which any side effects can be tolerated by patients, of a two-drug combination as a potential alternative to bladder removal for bladder cancer patients. The trial targets patients with non-muscle invasive bladder cancer (NMIBC) whose cancers have stopped responding to traditional therapies. Read more...

  14. Reducing Losses from Wind-Related Natural Perils: Research at the IBHS Research Center

    OpenAIRE

    Standohar-Alfano, Christine D.; Estes, Heather; Johnston, Tim; Morrison, Murray J.; Brown-Giammanco, Tanya M.

    2017-01-01

    The capabilities of the Insurance Institute for Business & Home Safety (IBHS) Research Center full-scale test chamber are described in detail. This research facility allows complete full-scale structures to be tested. Testing at full-scale allows vulnerabilities of structures to be evaluated with fewer assumptions than was previously possible. Testing buildings under realistic elevated wind speeds has the potential to isolate important factors that influence the performance of components, pot...

  15. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS

    International Nuclear Information System (INIS)

    PARKER, B.; ESCALLIER, J.

    2005-01-01

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper

  16. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Naeem A. [Jefferson Lab., Newport News, VA (United States); Daly, Edward F. [Jefferson Lab., Newport News, VA (United States); Clemens, William A. [Jefferson Lab., Newport News, VA (United States); McIntyre, Gary T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Qiong [Brookhaven National Lab. (BNL), Upton, NY (United States); Seberg, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, Steve [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-01

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  17. Fast ferrite tuner for the BNL synchrotron light source

    International Nuclear Information System (INIS)

    Pivit, E.; Hanna, S.M.; Keane, J.

    1991-01-01

    A new type of ferrite tuner has been tested at the BNL. The ferrite tuner uses garnet slabs partially filling a stripline. One of the important features of the tuner is that the ferrite is perpendicularly biased for operation above FMR, thus reducing the magnetic losses. A unique design was adopted to achieve the efficient cooling. The principle of operation of the tuner as well as our preliminary results on tuning a 52 MHz cavity are reported. Optimized conditions under which we demonstrated linear tunability of 80 KHz are described. The tuner's losses and its effect on higher-order modes in the cavity are discussed. 2 refs., 8 figs

  18. Rebootless Linux Kernel Patching with Ksplice Uptrack at BNL

    International Nuclear Information System (INIS)

    Hollowell, Christopher; Pryor, James; Smith, Jason

    2012-01-01

    Ksplice/Oracle Uptrack is a software tool and update subscription service which allows system administrators to apply security and bug fix patches to the Linux kernel running on servers/workstations without rebooting them. The RHIC/ATLAS Computing Facility (RACF) at Brookhaven National Laboratory (BNL) has deployed Uptrack on nearly 2,000 hosts running Scientific Linux and Red Hat Enterprise Linux. The use of this software has minimized downtime, and increased our security posture. In this paper, we provide an overview of Ksplice's rebootless kernel patch creation/insertion mechanism, and our experiences with Uptrack.

  19. Critical Appraisal of Translational Research Models for Suitability in Performance Assessment of Cancer Centers

    NARCIS (Netherlands)

    Rajan, Abinaya; Sullivan, Richard; Bakker, Suzanne; van Harten, Willem H.

    2012-01-01

    Background. Translational research is a complex cumulative process that takes time. However, the operating environment for cancer centers engaged in translational research is now financially insecure. Centers are challenged to improve results and reduce time from discovery to practice innovations.

  20. Naturalistic Cognition: A Research Paradigm for Human-Centered Design

    Directory of Open Access Journals (Sweden)

    Peter Storkerson

    2010-01-01

    Full Text Available Naturalistic thinking and knowing, the tacit, experiential, and intuitive reasoning of everyday interaction, have long been regarded as inferior to formal reason and labeled primitive, fallible, subjective, superstitious, and in some cases ineffable. But, naturalistic thinking is more rational and definable than it appears. It is also relevant to design. Inquiry into the mechanisms of naturalistic thinking and knowledge can bring its resources into focus and enable designers to create better, human-centered designs for use in real-world settings. This article makes a case for the explicit, formal study of implicit, naturalistic thinking within the fields of design. It develops a framework for defining and studying naturalistic thinking and knowledge, for integrating them into design research and practice, and for developing a more integrated, consistent theory of knowledge in design. It will (a outline historical definitions of knowledge, attitudes toward formal and naturalistic thinking, and the difficulties presented by the co-presence of formal and naturalistic thinking in design, (b define and contrast formal and naturalistic thinking as two distinct human cognitive systems, (c demonstrate the importance of naturalistic cognition in formal thinking and real-world judgment, (d demonstrate methods for researching naturalistic thinking that can be of use in design, and (e briefly discuss the impact on design theory of admitting naturalistic thinking as valid, systematic, and knowable.

  1. Introduction of hot cell facility in research center Rez - Poster

    International Nuclear Information System (INIS)

    Petrickova, A.; Srba, O.; Miklos, M.; Svoboda, P.

    2015-01-01

    This poster presents the hot cell facility which is being constructed as part of the SUSEN project at the Rez research center (Czech Republic). Within this project a new complex of 10 hot cells and one semi-hot cell will be built. There will be 8 gamma hot cells and 2 alpha hot cells. In each hot cell a hermetic, removable box made of stainless steel will home different type of devices. The hot cells and semi hot cell will be equipped with devices for processing samples (cutting, welding, drilling, machining) as well as equipment for testing (sample preparation area, stress testing machine, fatigue machine, electromechanical creep machine, high frequency resonance pulsator...) and equipment for studying material microstructure (nano-indenter with nano-scratch tester and scanning electron microscope). An autoclave with water loop, installed in a cell will allow mechanical testing in control environment of water, pressure and temperature. A scheme shows the equipment of each cell. This hot laboratory will be able to cover all the process to study radioactive materials: receiving the material, the preparation of the samples, mechanical testing and microstructure observation. Our hot cells will be close to the research nuclear reactor LVR-15 and new irradiation facility (high irradiation by cobalt source) is planned to be built within the SUSEN project

  2. Fostering Social Determinants of Health Transdisciplinary Research: The Collaborative Research Center for American Indian Health

    Directory of Open Access Journals (Sweden)

    Amy J. Elliott

    2015-12-01

    Full Text Available The Collaborative Research Center for American Indian Health (CRCAIH was established in September 2012 as a unifying structure to bring together tribal communities and health researchers across South Dakota, North Dakota and Minnesota to address American Indian/Alaska Native (AI/AN health disparities. CRCAIH is based on the core values of transdisciplinary research, sustainability and tribal sovereignty. All CRCAIH resources and activities revolve around the central aim of assisting tribes with establishing and advancing their own research infrastructures and agendas, as well as increasing AI/AN health research. CRCAIH is comprised of three divisions (administrative; community engagement and innovation; research projects, three technical cores (culture, science and bioethics; regulatory knowledge; and methodology, six tribal partners and supports numerous multi-year and one-year pilot research projects. Under the ultimate goal of improving health for AI/AN, this paper describes the overarching vision and structure of CRCAIH, highlighting lessons learned in the first three years.

  3. Final priorities; National Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers. Final priorities.

    Science.gov (United States)

    2013-06-11

    The Assistant Secretary for Special Education and Rehabilitative Services announces priorities under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce priorities for a Rehabilitation Engineering Research Center (RERC) on Rehabilitation Strategies, Techniques, and Interventions (Priority 1), Information and Communication Technologies Access (Priority 2), Individual Mobility and Manipulation (Priority 3), and Physical Access and Transportation (Priority 4). The Assistant Secretary may use one or more of these priorities for competitions in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend these priorities to improve community living and participation, health and function, and employment outcomes of individuals with disabilities.

  4. Building Climate Resilience at NASA Ames Research Center

    Science.gov (United States)

    Iraci, L. T.; Mueller, C.; Podolske, J. R.; Milesi, C.

    2016-12-01

    NASA Ames Research Center, located at the southern end of the San Francisco Bay (SFB) estuary, has identified three primary vulnerabilities to changes in climate. The Ames Climate Adaptation Science Investigator (CASI) workgroup has studied each of these challenges to operations and the potential exposure of infrastructure and employees to an increased frequency of hazards. Sea level rise inundation scenarios for the SFB Area generally refer to projected scenarios in mean sea level rather than changes in extreme tides that could occur during future storm conditions. In the summer of 2014, high resolution 3-D mapping of the low-lying portion of Ames was performed. Those data are integrated with improved sea level inundation scenarios to identify the buildings, basements and drainage systems potentially affected. We will also identify the impacts of sea level and storm surge effects on transportation to and from the Center. This information will help Center management develop future master plans. Climate change will also lead to changes in temperature, storm frequency and intensity. These changes have potential impacts on localized floods and ecosystems, as well as on electricity and water availability. Over the coming decades, these changes will be imposed on top of ongoing land use and land cover changes, especially those deriving from continued urbanization and increase in impervious surface areas. These coupled changes have the potential to create a series of cascading impacts on ecosystems, including changes in primary productivity and disturbance of hydrological properties and increased flood risk. The majority of the electricity used at Ames is supplied by hydroelectric dams, which will be influenced by reductions in precipitation or changes in the timing or phase of precipitation which reduces snow pack. Coupled with increased demand for summertime air conditioning and other cooling needs, NASA Ames is at risk for electricity shortfalls. To assess the

  5. The National Extreme Events Data and Research Center (NEED)

    Science.gov (United States)

    Gulledge, J.; Kaiser, D. P.; Wilbanks, T. J.; Boden, T.; Devarakonda, R.

    2014-12-01

    The Climate Change Science Institute at Oak Ridge National Laboratory (ORNL) is establishing the National Extreme Events Data and Research Center (NEED), with the goal of transforming how the United States studies and prepares for extreme weather events in the context of a changing climate. NEED will encourage the myriad, distributed extreme events research communities to move toward the adoption of common practices and will develop a new database compiling global historical data on weather- and climate-related extreme events (e.g., heat waves, droughts, hurricanes, etc.) and related information about impacts, costs, recovery, and available research. Currently, extreme event information is not easy to access and is largely incompatible and inconsistent across web sites. NEED's database development will take into account differences in time frames, spatial scales, treatments of uncertainty, and other parameters and variables, and leverage informatics tools developed at ORNL (i.e., the Metadata Editor [1] and Mercury [2]) to generate standardized, robust documentation for each database along with a web-searchable catalog. In addition, NEED will facilitate convergence on commonly accepted definitions and standards for extreme events data and will enable integrated analyses of coupled threats, such as hurricanes/sea-level rise/flooding and droughts/wildfires. Our goal and vision is that NEED will become the premiere integrated resource for the general study of extreme events. References: [1] Devarakonda, Ranjeet, et al. "OME: Tool for generating and managing metadata to handle BigData." Big Data (Big Data), 2014 IEEE International Conference on. IEEE, 2014. [2] Devarakonda, Ranjeet, et al. "Mercury: reusable metadata management, data discovery and access system." Earth Science Informatics 3.1-2 (2010): 87-94.

  6. Joint Center for Satellite Data Assimilation Overview and Research Activities

    Science.gov (United States)

    Auligne, T.

    2017-12-01

    In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.

  7. Test results of BNL built 40-mm aperture, 17-m-long SSC collider dipole magnets

    International Nuclear Information System (INIS)

    Kuzminski, J.; Bush, T.; Coombes, R.; Devred, A.; DiMarco, J.; Goodzeit, C.; Puglisi, M.; Radusewicz, P.; Sanger, P.; Schermer, R.; Tompkins, J.C.; Wolf, Z.; Yu, Y.; Zheng, H.; Ogitsu, T.; Anerella, M.; Cottingham, J.; Ganetis, G.; Garber, M.; Gosh, A.; Greene, A.; Gupta, R.; Herrera, J.; Kahn, S.; Kelly, E.; Morgan, G.; Muratore, J.; Prodell, A.; Rehak, M.; Rohrer, E.P.; Sampson, W.; Shutt, R.; Thompson, P.; Wanderer, P.; Willen, E.; Bleadon, M.; Hanft, R.; Kuchnir, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peterson, T.; Strait, J.; Royet, J.; Scanlan, R.; Taylor, C.

    1991-06-01

    Eleven 17 m long, 40 mm aperture SSC R ampersand D superconducting collider dipole magnets, built at BNL, have been extensively tested at BNL and Fermilab during 1990--91. Quench performance of these magnets and details of their mechanical behavior are presented. 7 refs., 5 figs

  8. A new apparatus at hyper irradiation research facility at the Atomic Research Center, University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Hiromi; Iwai, Takeo; Narui, Makoto; Omata, Takao [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology

    1996-12-01

    In the hyper irradiation research facility at the Atomic Research Center, the University of Tokyo, following apparatuses were newly installed for accelerator relating apparatus on 1995 fiscal year; (1) Hyper ion microbeam analysis apparatus, (2) Fourier conversion infrared microscopy, (3) Pico second two-dimensional fluorescence measuring apparatus, (4) Femto second wave-length reversible pulse laser radiation apparatus, and others. In addition to double irradiation, pulse beam irradiation experiment and so forth characteristic in conventional hyper irradiation research apparatus, upgrading of material irradiation experiments using these new apparatuses are intended. (G.K.)

  9. A new apparatus at hyper irradiation research facility at the Atomic Research Center, University of Tokyo

    International Nuclear Information System (INIS)

    Shibata, Hiromi; Iwai, Takeo; Narui, Makoto; Omata, Takao

    1996-01-01

    In the hyper irradiation research facility at the Atomic Research Center, the University of Tokyo, following apparatuses were newly installed for accelerator relating apparatus on 1995 fiscal year; 1) Hyper ion microbeam analysis apparatus, 2) Fourier conversion infrared microscopy, 3) Pico second two-dimensional fluorescence measuring apparatus, 4) Femto second wave-length reversible pulse laser radiation apparatus, and others. In addition to double irradiation, pulse beam irradiation experiment and so forth characteristic in conventional hyper irradiation research apparatus, upgrading of material irradiation experiments using these new apparatuses are intended. (G.K.)

  10. The joint center for energy storage research: A new paradigm for battery research and development

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA and University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607 (United States)

    2015-03-30

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

  11. The joint center for energy storage research: A new paradigm for battery research and development

    International Nuclear Information System (INIS)

    Crabtree, George

    2015-01-01

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments

  12. Research Summaries: The 11th Biennial Rivkin Center Ovarian Cancer Research Symposium.

    Science.gov (United States)

    Armstrong, Deborah K

    2017-11-01

    In September 2016, the 11th biennial ovarian cancer research symposium was presented by the Rivkin Center for Ovarian Cancer and the American Association for Cancer Research. The 2016 symposium focused on 4 broad areas of research: Mechanisms of Initiation and Progression of Ovarian Cancer, Tumor Microenvironment and Models of Ovarian Cancer, Detection and Prevention of Ovarian Cancer, and Novel Therapeutics for Ovarian Cancer. The presentations and abstracts from each of these areas are reviewed in this supplement to the International Journal of Gynecologic Oncology.

  13. Scientific and technical photography at NASA Langley Research Center

    Science.gov (United States)

    Davidhazy, Andrew

    1994-12-01

    As part of my assignment connected with the Scientific and Technical Photography & Lab (STPL) at the NASA Langley Research Center I conducted a series of interviews and observed the day to day operations of the STPL with the ultimate objective of becoming exposed first hand to a scientific and technical photo/imaging department for which my school prepares its graduates. I was also asked to share my observations with the staff in order that these comments and observations might assist the STPL to better serve its customers. Meetings with several individuals responsible for various wind tunnels and with a group that provides photo-optical instrumentation services at the Center gave me an overview of the services provided by the Lab and possible areas for development. In summary form these are some of the observations that resulted from the interviews and daily contact with the STPL facility. (1) The STPL is perceived as a valuable and almost indispensable service group within the organization. This comment was invariably made by everyone. Everyone also seemed to support the idea that the STPL continue to provide its current level of service and quality. (2) The STPL generally is not perceived to be a highly technically oriented group but rather as a provider of high quality photographic illustration and documentation services. In spite of the importance and high marks assigned to the STPL there are several observations that merit consideration and evaluation for possible inclusion into the STPL's scope of expertise and future operating practices. (1) While the care and concern for artistic rendition of subjects is seen as laudable and sometimes valuable, the time that this often requires is seen as interfering with keeping the tunnels operating at maximum productivity. Tunnel managers would like to shorten down-time due to photography, have services available during evening hours and on short notice. It may be of interest to the STPL that tunnel managers are

  14. On-going research projects at Ankara Nuclear Research Center in Agriculture and Animal Science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  15. On-going research projects at Ankara Nuclear research center in agriculture and animal science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text:The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  16. NASA Ames Research Center 60 MW Power Supply Modernization

    Science.gov (United States)

    Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)

    2001-01-01

    The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.

  17. Incineration of radioactive wastes at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, W; Hempelmann, W; Krause, H

    1976-06-01

    In 1971 a large incineration plant started operation in the Nuclear Research Center Karlsruhe. This plant is serving for routine incineration of up to 100 kg of combustible radioactive solids or 40 l of contaminated organic liquids and oils per hour. A dry off-gas cleaning system has been developed for this installation in which the fumes are cleaned by ceramic filter candles. After passing the filtering system and cooling, the off-gas is discharged directly through a stack. The activity concentration in the off-gas is measured by a continuous monitoring system. The ashes arising from the incineration are mixed with cement grout and filled into 200 l-drums. By this way approximately one drum of fixed ashes results from 100 drums of combustible wastes. During the first four years of operation, more than 4,000 m/sup 3/ of combustible solids and about 60 m/sup 3/ organic solvents have been incinerated in the plant. The operating experiences are presented.

  18. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    Science.gov (United States)

    Oriti, Salvatore, M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.

  19. Hypopharyngeal carcinoma: King Faisal Specialist Hospital and Research Center experience

    International Nuclear Information System (INIS)

    Mahasin, Z.; Khan, B.

    1996-01-01

    From 1975 to 1985, 202 patients with hypopharyngeal cancer were seen at King Faisal Specialist Hospital and Research Center (KFSHRC). The endoscopic investigation showed that 28.3% of these patients had postcricoid carcinoma; 19.85% had pyriform fossa carcinoma and 52.9% had involvement of both sites. The pathological diagnosis of all cases was squamous cell carcinoma type. The majority of the patients (62.98%) had T4 lesions, which showed a late presentation to KFSHRC. Information related to survival was available for a smaller number of patients to many lost-to-follow-up cases. The overall median survival time was 8.5 months (1-110 months). The survival rate for each site was calculated, as well as the staging of the disease and treatment modality used. It appeared that pyriform fossa (median 21 months) had the best survival rate. In addition the earlier the lesion was detected and the more aggressive the treatment applied, the better the survival rate. Fifty percent of the patients receiving radiation therapy and surgery had a five year survival arte. Factors other than smoking and/on drinking should be looked for in our community as predisposing to this disease in our population. (author)

  20. Two new research melters at the Savannah River Technology Center

    International Nuclear Information System (INIS)

    Gordon, J.R.; Coughlin, J.T.; Minichan, R.L.; Zamecnik, J.R.

    2000-01-01

    The Savannah River Technology Center (SRTC) is a US Department of Energy (DOE) complex leader in the development of vitrification technology. To maintain and expand this SRTC core technology, two new melter systems are currently under construction in SRTC. This paper discusses the development of these two new systems, which will be used to support current as well as future vitrification programs in the DOE complex. The first of these is the new minimelter, which is a joule-heated glass melter intended for experimental melting studies with nonradioactive glass waste forms. Testing will include surrogates of Defense Waste processing Facility (DWPF) high-level wastes. To support the DWPF testing, the new minimelter was scaled to the DWPF melter based on melt surface area. This new minimelter will replace an existing system and provide a platform for the research and development necessary to support the SRTC vitrification core technology mission. The second new melter is the British Nuclear Fuels, Inc., research melter system (BNFL melter), which is a scaled version of the BNFL low-activity-waste (LAW) melter proposed for vitrification of LAW at Hanford. It is designed to process a relatively large amount of actual radiative Hanford tank waste and to gather data on the composition of off-gases that will be generated by the LAW melter. Both the minimelter and BNFL melter systems consist of five primary subsystems: melter vessel, off-gas treatment, feed, power supply, and instrumentation and controls. The configuration and design of these subsystems are tailored to match the current system requirements and provide the flexibility to support future DOE vitrification programs. This paper presents a detailed discussion of the unique design challenges represented by these two new melter systems

  1. Cancer Research Center Indiana University School of Medicine

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The Department of Energy (DOE) proposes to authorize the Indiana School of Medicine to proceed with the detailed design, construction and equipping of the proposed Cancer Research Center (CRC). A grant was executed with the University on April 21, 1992. A four-story building with basement would be constructed on the proposed site over a 24-month period. The proposed project would bring together, in one building, three existing hematology/oncology basic research programs, with improved cost-effectiveness through the sharing of common resources. The proposed site is currently covered with asphaltic pavement and is used as a campus parking lot. The surrounding area is developed campus, characterized by buildings, walkways, with minimal lawns and plantings. The proposed site has no history of prior structures and no evidence of potential sources of prior contamination of the soil. Environmental impacts of construction would be limited to minor increases in traffic, and the typical noises associated with standard building construction. The proposed CRC project operation would involve the use radionuclides and various hazardous materials in conducting clinical studies. Storage, removal and disposal of hazardous wastes would be managed under existing University programs that comply with federal and state requirements. Radiological safety programs would be governed by Nuclear Regulatory Commission (NRC) license and applicable Environmental Protection Agency (EPA) regulations. There are no other NEPA reviews currently active which are in relationship to this proposed site. The proposed project is part of a Medical Campus master plan and is consistent with applicable local zoning and land use requirements.

  2. Cancer Research Center Indiana University School of Medicine

    International Nuclear Information System (INIS)

    1994-08-01

    The Department of Energy (DOE) proposes to authorize the Indiana School of Medicine to proceed with the detailed design, construction and equipping of the proposed Cancer Research Center (CRC). A grant was executed with the University on April 21, 1992. A four-story building with basement would be constructed on the proposed site over a 24-month period. The proposed project would bring together, in one building, three existing hematology/oncology basic research programs, with improved cost-effectiveness through the sharing of common resources. The proposed site is currently covered with asphaltic pavement and is used as a campus parking lot. The surrounding area is developed campus, characterized by buildings, walkways, with minimal lawns and plantings. The proposed site has no history of prior structures and no evidence of potential sources of prior contamination of the soil. Environmental impacts of construction would be limited to minor increases in traffic, and the typical noises associated with standard building construction. The proposed CRC project operation would involve the use radionuclides and various hazardous materials in conducting clinical studies. Storage, removal and disposal of hazardous wastes would be managed under existing University programs that comply with federal and state requirements. Radiological safety programs would be governed by Nuclear Regulatory Commission (NRC) license and applicable Environmental Protection Agency (EPA) regulations. There are no other NEPA reviews currently active which are in relationship to this proposed site. The proposed project is part of a Medical Campus master plan and is consistent with applicable local zoning and land use requirements

  3. Managing environmental enhancement plans for individual research projects at a national primate research center.

    Science.gov (United States)

    Thom, Jinhee P; Crockett, Carolyn M

    2008-05-01

    We describe a method for managing environmental enhancement plans for individual research projects at a national primate research center where most monkeys are assigned to active research projects. The Psychological Well-being Program (PWB) at the University of Washington National Primate Research Center developed an Environmental Enhancement Plan form (EEPL) that allows PWB to quantify and track changes in enrichment allowances over time while ensuring that each animal is provided with as much enrichment as possible without compromising research. Very few projects involve restrictions on toys or perches. Some projects have restrictions on food treats and foraging, primarily involving the provision of these enrichments by research staff instead of husbandry staff. Restrictions are not considered exemptions unless they entirely prohibit an element of the University of Washington Environmental Enhancement Plan (UW EE Plan). All exemptions must be formally reviewed and approved by the institutional animal care and use committee. Most exemptions from elements of the UW EE Plan involve social housing. Between 2004 and 2006, the percentage of projects with no social contact restrictions increased by 1%, but those prohibiting any tactile social contact declined by 7%, and projects permitting tactile social contact during part of the study increased by 9%. The EEPL form has facilitated informing investigators about the enrichment their monkeys will receive if no restrictions or exemptions are requested and approved. The EEPL form also greatly enhances PWB's ability to coordinate the specific enrichment requirements of a project.

  4. BNL NONLINEAR PRE TEST SEISMIC ANALYSIS FOR THE NUPEC ULTIMATE STRENGTH PIPING TEST PROGRAM

    International Nuclear Information System (INIS)

    DEGRASSI, G.; HOFMAYER, C.; MURPHY, C.; SUZUKI, K.; NAMITA, Y.

    2003-01-01

    The Nuclear Power Engineering Corporation (NUPEC) of Japan has been conducting a multi-year research program to investigate the behavior of nuclear power plant piping systems under large seismic loads. The objectives of the program are: to develop a better understanding of the elasto-plastic response and ultimate strength of nuclear piping; to ascertain the seismic safety margin of current piping design codes; and to assess new piping code allowable stress rules. Under this program, NUPEC has performed a large-scale seismic proving test of a representative nuclear power plant piping system. In support of the proving test, a series of materials tests, static and dynamic piping component tests, and seismic tests of simplified piping systems have also been performed. As part of collaborative efforts between the United States and Japan on seismic issues, the US Nuclear Regulatory Commission (USNRC) and its contractor, the Brookhaven National Laboratory (BNL), are participating in this research program by performing pre-test and post-test analyses, and by evaluating the significance of the program results with regard to safety margins. This paper describes BNL's pre-test analysis to predict the elasto-plastic response for one of NUPEC's simplified piping system seismic tests. The capability to simulate the anticipated ratcheting response of the system was of particular interest. Analyses were performed using classical bilinear and multilinear kinematic hardening models as well as a nonlinear kinematic hardening model. Comparisons of analysis results for each plasticity model against test results for a static cycling elbow component test and for a simplified piping system seismic test are presented in the paper

  5. On-going research projects at Ankara Nuclear Research Center in agriculture and animal science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    The projects in progress conducted by the Center comprise nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going main projects involving several sub-projects with the above subjects were summarized for possible future collaborations. (author)

  6. Selected Research and Development Topics on Aerospace Communications at NASA Glenn Research Center

    Science.gov (United States)

    Miranda, Felix A.; Romanofsky, Robert R.; Nessel, James A.

    2014-01-01

    This presentation discusses some of the efforts on communications RD that have been performed or are currently underway at NASA Glenn Research Center. The primary purpose of this presentation is to outline some RD topics to serve as talking points for a Technical Interchange Meeting with the Ohio State University. The meeting is scheduled to take place at The ElectroScience Laboratory of the Ohio State University on February 24, 2014.

  7. Applied Analytical Combustion/emissions Research at the NASA Lewis Research Center - a Progress Report

    Science.gov (United States)

    Deur, J. M.; Kundu, K. P.; Nguyen, H. L.

    1992-01-01

    Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time.

  8. Applied analytical combustion/emissions research at the NASA Lewis Research Center

    Science.gov (United States)

    Deur, J. M.; Kundu, K. P.; Nguyen, H. L.

    1992-01-01

    Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time.

  9. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  10. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  11. Scientific and technical photography at NASA Langley Research Center

    Science.gov (United States)

    Davidhazy, Andrew

    1994-01-01

    As part of my assignment connected with the Scientific and Technical Photography & Lab (STPL) at the NASA Langley Research Center I conducted a series of interviews and observed the day to day operations of the STPL with the ultimate objective of becoming exposed first hand to a scientific and technical photo/imaging department for which my school prepares its graduates. I was also asked to share my observations with the staff in order that these comments and observations might assist the STPL to better serve its customers. Meetings with several individuals responsible for various wind tunnels and with a group that provides photo-optical instrumentation services at the Center gave me an overview of the services provided by the Lab and possible areas for development. In summary form these are some of the observations that resulted from the interviews and daily contact with the STPL facility. (1) The STPL is perceived as a valuable and almost indispensable service group within the organization. This comment was invariably made by everyone. Everyone also seemed to support the idea that the STPL continue to provide its current level of service and quality. (2) The STPL generally is not perceived to be a highly technically oriented group but rather as a provider of high quality photographic illustration and documentation services. In spite of the importance and high marks assigned to the STPL there are several observations that merit consideration and evaluation for possible inclusion into the STPL's scope of expertise and future operating practices. (1) While the care and concern for artistic rendition of subjects is seen as laudable and sometimes valuable, the time that this often requires is seen as interfering with keeping the tunnels operating at maximum productivity. Tunnel managers would like to shorten down-time due to photography, have services available during evening hours and on short notice. It may be of interest to the STPL that tunnel managers are

  12. A Survey of Knowledge Management Research & Development at NASA Ames Research Center

    Science.gov (United States)

    Keller, Richard M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This chapter catalogs knowledge management research and development activities at NASA Ames Research Center as of April 2002. A general categorization scheme for knowledge management systems is first introduced. This categorization scheme divides knowledge management capabilities into five broad categories: knowledge capture, knowledge preservation, knowledge augmentation, knowledge dissemination, and knowledge infrastructure. Each of nearly 30 knowledge management systems developed at Ames is then classified according to this system. Finally, a capsule description of each system is presented along with information on deployment status, funding sources, contact information, and both published and internet-based references.

  13. Fiber optic transmission system delivered to Fusion Research Center of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Hayashida, Mutsuo; Hiramoto, Kiyoshi; Yamazaki, Kunihiro

    1983-01-01

    In general there are many electromagnetically induced noises in the premises of factories, power plants and substations. Under such electrically bad environments, for the computer data transmission that needs high speed processing and high reliability, the optical fiber cable is superion to the coaxial cable or the flat-type cable in aspects of the inductionlessness and a wide bandwidth. Showa Electric Wire and Cable Co., Ltd. has delivered and installed a computer data transmission system consisting of optical modems and optical fiber cables for connecting every experiment building in the premises of Fusion Research Center of Japan Atomic Energy Research Institute. This paper describes the outline of this system. (author)

  14. Successes of Small Business Innovation Research at NASA Glenn Research Center

    Science.gov (United States)

    Kim, Walter S.; Bitler, Dean W.; Prok, George M.; Metzger, Marie E.; Dreibelbis, Cindy L.; Ganss, Meghan

    2002-01-01

    This booklet of success stories highlights the NASA Glenn Research Center's accomplishments and successes by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs. These success stories are the results of selecting projects that support NASA missions and also have high commercialization potential. Each success story describes the innovation accomplished, commercialization of the technology, and further applications and usages. This booklet emphasizes the integration and incorporation of technologies into NASA missions and other government projects. The company name and the NASA contact person are identified to encourage further usage and application of the SBIR developed technologies and also to promote further commercialization of these products.

  15. Small Radioisotope Power System Testing at NASA Glenn Research Center

    Science.gov (United States)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  16. HEASARC - The High Energy Astrophysics Science Archive Research Center

    Science.gov (United States)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  17. The Begun Center for Violence Prevention Research and Education at Case Western Reserve University

    Science.gov (United States)

    Flannery, Daniel J.; Singer, Mark I.

    2015-01-01

    Established in the year 2000, the Begun Center for Violence Prevention Research and Education is a multidisciplinary center located at a school of social work that engages in collaborative, community-based research and evaluation that spans multiple systems and disciplines. The Center currently occupies 4,200 sq. ft. with multiple offices and…

  18. Refractory Research Group - U.S. DOE, Albany Research Center [Institution Profile

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, James P.

    2004-09-01

    The refractory research group at the Albany Research Center (ARC) has a long history of conducting materials research within the U.S. Bureau of Mines, and more recently, within the U.S. Dept. of Energy. When under the U.S. Bureau of Mines, research was driven by national needs to develop substitute materials and to conserve raw materials. This mission was accomplished by improving refractory material properties and/or by recycling refractories using critical and strategic materials. Currently, as a U.S. Dept of Energy Fossil Energy field site, research is driven primarily by the need to assist DOE in meeting its vision to develop economically and environmentally viable technologies for the production of electricity from fossil fuels. Research at ARC impacts this vision by: • Providing information on the performance characteristics of materials being specified for the current generation of power systems; • Developing cost-effective, high performance materials for inclusion in the next generation of fossil power systems; and • Solving environmental emission and waste problems related to fossil energy systems. A brief history of past refractory research within the U.S. Bureau of Mines, the current refractory research at ARC, and the equipment and capabilities used to conduct refractory research at ARC will be discussed.

  19. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    Science.gov (United States)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  20. Teams and teamwork at NASA Langley Research Center

    Science.gov (United States)

    Dickinson, Terry L.

    1994-01-01

    The recent reorganization and shift to managing total quality at the NASA Langley Research Center (LaRC) has placed an increasing emphasis on teams and teamwork in accomplishing day-to-day work activities and long-term projects. The purpose of this research was to review the nature of teams and teamwork at LaRC. Models of team performance and teamwork guided the gathering of information. Current and former team members served as participants; their collective experience reflected membership in over 200 teams at LaRC. The participants responded to a survey of open-ended questions which assessed various aspects of teams and teamwork. The participants also met in a workshop to clarify and elaborate on their responses. The work accomplished by the teams ranged from high-level managerial decision making (e.g., developing plans for LaRC reorganization) to creating scientific proposals (e.g., describing spaceflight projects to be designed, sold, and built). Teams typically had nine members who remained together for six months. Member turnover was around 20 percent; this turnover was attributed to heavy loads of other work assignments and little formal recognition and reward for team membership. Team members usually shared a common and valued goal, but there was not a clear standard (except delivery of a document) for knowing when the goal was achieved. However, members viewed their teams as successful. A major factor in team success was the setting of explicit a priori rules for communication. Task interdependencies between members were not complex (e.g., sharing of meeting notes and ideas about issues), except between members of scientific teams (i.e., reliance on the expertise of others). Thus, coordination of activities usually involved scheduling and attendance of team meetings. The team leader was designated by the team's sponsor. This leader usually shared power and responsibilities with other members, such that team members established their own operating

  1. Program budget 1992 of the Karlsruhe Nuclear Research Center. As of November 19, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    In the future, the research program of the Nuclear Research Center in Karlsruhe will concentrate on three areas, which are of the same status over the medium term: Environmental research, energy research and micro system technology and fundamental research. The central infrastructure, the financial planning and the assignment of research and development projects of the Nuclear Research Center are presented in tables. (orig./HP) [de

  2. Tumor Biology and Immunology | Center for Cancer Research

    Science.gov (United States)

    Tumor Biology and Immunology The Comparative Brain Tumor Consortium is collaborating with National Center for Advanced Translational Sciences to complete whole exome sequencing on canine meningioma samples. Results will be published and made publicly available.

  3. TRANSPORTATION RESEARCH CONTRIBUTIONS TO SOCIETY BY UNIVERSITY TRANSPORTATION CENTERS

    Directory of Open Access Journals (Sweden)

    Robert C. JOHNS

    2003-01-01

    Full Text Available This paper discusses the importance of knowledge in the global economy and reviews the process in which knowledge is applied to develop innovations. It confirms the importance of innovation as a key factor for success in today's competitive environment. The paper discusses the contributions a university can make to the innovation process in the field of transportation, and offers a vision of how a university center can enhance and facilitate these contributions. It then describes the efforts of one center, including three examples of innovations facilitated by the center in traffic detection, regional planning, and pavement management. The paper concludes with suggestions that would strengthen the societal contributions of university transportation centers.

  4. 76 FR 64355 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Science.gov (United States)

    2011-10-18

    ... Microbiology and the Division of Personalized Nutrition and Medicine will update the SAB on the major research... of the findings on the public health. The Center representatives from the Center for Veterinary...

  5. Experimental results from the BNL TestEBIS

    International Nuclear Information System (INIS)

    Beebe, E.; Alessi, J.; Hershcovitch, A.; Kponou, A.; Pikin, A.; Prelec, K.; Stein, P.; Schmieder, R.W.

    1997-01-01

    At Brookhaven National Laboratory, an Electron Beam Ion Source (EBIS) is operational and has produced charge states such as N 7+ , Ar 16+ , and Xe 26+ using neutral gas injection. Ions such as Na 7+ and Tl 41+ have been produced using external ion injection. The BNL EBIS effort is directed at reaching intensities of interest to RHIC, approximately 3 x 10 9 particles/pulse which will require EBIS electron beams on the order of 10A. Pulsed electron beams up to 1.14 A have been produced using a 3mm LaB 6 cathode. Ion yields corresponding to 50% of the maximum trap capacity for electron beams up to 0.5A have been obtained. The goal for the TestEBIS is to produce a uranium ion charge state distribution peaks at U 45+ with 50% of the trap capacity for a 1A electron beam

  6. Beam Diagnostics for the BNL Energy Recovery Linac Test Facility

    International Nuclear Information System (INIS)

    Cameron, Peter; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Michael; Connolly, Roger; Dawson, William; Degen, Chris; DellaPenna, Al; Gassner, David; Kesselman, Martin; Kewish, Jorg; Litvinenko, Vladimir; Mead, Joseph; Oerter, Brian; Russo, Tom; Vetter, Kurt; Yakimenko, Vitaly

    2004-01-01

    An Energy Recovery Linac (ERL) test facility is presently under construction at BNL. The goals of this test facility are first to demonstrate stable intense CW electron beam with parameters typical for the RHIC e-cooling project (and potentially for eRHIC), second to test novel elements of the ERL (high current CW photo-cathode, superconducting RF cavity with HOM dampers, and feedback systems), and finally to test lattice dependence of stability criteria. Planned diagnostics include position monitors, loss monitors, transverse profile monitors (both optical and wires), scrapers/halo monitors, a high resolution differential current monitor, phase monitors, an energy spread monitor, and a fast transverse monitor (for beam break-up studies and the energy feedback system). We discuss diagnostics challenges that are unique to this project, and present preliminary system specifications. In addition, we include a brief discussion of the timing system

  7. Beam instrumentation for the BNL Heavy Ion Transfer Line

    International Nuclear Information System (INIS)

    Witkover, R.L.; Buxton, W.; Castillo, V.; Feigenbaum, I.; Lazos, A.; Li, Z.G.; Smith, G.; Stoehr, R.

    1987-01-01

    The Heavy Ion Transfer Line (HITL) was constructed to transport beams from the BNL Tandem Van de Graaff (TVDG) to be injected into the AGS. Because the beam line is approximately 2000 feet long and the particle rigidity is so low, 20 beam monitor boxes were placed along the line. The intensity ranges from 1 to 100 nanoAmps for the dc trace beam used for line set-up, to over 100 μA for the pulsed beam to be injected into the AGS. Profiles are measured using multiwire arrays (HARPS) while Faraday cups and beam transformers monitor the intensity. The electronics stations are operated through 3 Instrumentation Controllers networked to Apollo workstations in the TVDG and AGS control rooms. Details of the detectors and electronics designs and performance will be given

  8. Summary of BNL studies regarding commercial mixed waste

    International Nuclear Information System (INIS)

    Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.; Piciulo, P.L.

    1986-09-01

    Based on BNL's study it was concluded that there are low-level radioactive wastes (LLWs) which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November 1985, no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA permitted site. Currently generators of liquid scintillation wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes may also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed waste unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. While management options for handling potential mixed wastes are available, there is limited regulatory guidance for generators. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concerns can, at the same time, address stabilization and volume reduction concerns of NRC. 6 refs., 1 tab

  9. 48 CFR 1335.017 - Federal funded research and development centers.

    Science.gov (United States)

    2010-10-01

    ... OF COMMERCE SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 1335.017 Federal funded research and development centers. ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Federal funded research...

  10. Progress report of Cekmece Nuclear Research and Training Center for 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Presented are the research works carried out in 1981 in Energy, Radiological Safety, Radioisotope, Application of Nuclear Techniques and Basic Research of Cekmece Nuclear Research and Training Center. (author)

  11. Modeling and Analysis of Multidiscipline Research Teams at NASA Langley Research Center: A Systems Thinking Approach

    Science.gov (United States)

    Waszak, Martin R.; Barthelemy, Jean-Francois; Jones, Kenneth M.; Silcox, Richard J.; Silva, Walter A.; Nowaczyk, Ronald H.

    1998-01-01

    Multidisciplinary analysis and design is inherently a team activity due to the variety of required expertise and knowledge. As a team activity, multidisciplinary research cannot escape the issues that affect all teams. The level of technical diversity required to perform multidisciplinary analysis and design makes the teaming aspects even more important. A study was conducted at the NASA Langley Research Center to develop a model of multidiscipline teams that can be used to help understand their dynamics and identify key factors that influence their effectiveness. The study sought to apply the elements of systems thinking to better understand the factors, both generic and Langley-specific, that influence the effectiveness of multidiscipline teams. The model of multidiscipline research teams developed during this study has been valuable in identifying means to enhance team effectiveness, recognize and avoid problem behaviors, and provide guidance for forming and coordinating multidiscipline teams.

  12. Overview of Dynamics Integration Research (DIR) program at Langley Research Center

    Science.gov (United States)

    Sliwa, Steven M.; Abel, Irving

    1989-01-01

    Research goals and objectives for an ongoing activity at Langley Research Center (LaRC) are described. The activity is aimed principally at dynamics optimization for aircraft. The effort involves active participation by the Flight Systems, Structures, and Electronics directorates at LaRC. The Functional Integration Technology (FIT) team has been pursuing related goals since 1985. A prime goal has been the integration and optimization of vehicle dynamics through collaboration at the basic principles or equation level. Some significant technical progress has been accomplished since then and is reflected here. An augmentation for this activity, Dynamics Integration Research (DIR), has been proposed to NASA Headquarters and is being considered for funding in FY 1990 or FY 1991.

  13. Primary Care Research in the Patient-Centered Outcomes Research Institute's Portfolio.

    Science.gov (United States)

    Selby, Joe V; Slutsky, Jean R

    2016-04-01

    In their article in this issue, Mazur and colleagues analyze the characteristics of early recipients of funding from the Patient-Centered Outcomes Research Institute (PCORI). Mazur and colleagues note correctly that PCORI has a unique purpose and mission and suggest that it should therefore have a distinct portfolio of researchers and departments when compared with other funders such as the National Institutes of Health (NIH). Responding on behalf of PCORI, the authors of this Commentary agree with the characterization of PCORI's mission as distinct from that of NIH and others. They agree too that data found on PCORI's Web site demonstrate that PCORI's portfolio of researchers and departments is more diverse and more heavily populated with clinician researchers, as would be expected. The authors take issue with Mazur and colleagues' suggestion that because half of clinical visits occur within primary care settings, half of PCORI's funded research should be based in primary care departments. PCORI's portfolio reflects what patients and others tell PCORI are the critical questions. Many of these do, in fact, occur with more complex conditions in specialty care. The authors question whether the research of primary care departments is too narrowly focused and whether it sufficiently considers study of these complex conditions. Research on more complex conditions including heart failure, coronary artery disease, and multiple comorbid conditions could be highly valuable when approached from the primary care perspective, where many of the comparative effectiveness questions first arise.

  14. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-31

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for his laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.

  15. High power electromagnetic propulsion research at the NASA Glenn Research Center

    International Nuclear Information System (INIS)

    LaPointe, Michael R.; Sankovic, John M.

    2000-01-01

    Interest in megawatt-class electromagnetic propulsion has been rekindled to support newly proposed high power orbit transfer and deep space mission applications. Electromagnetic thrusters can effectively process megawatts of power to provide a range of specific impulse values to meet diverse in-space propulsion requirements. Potential applications include orbit raising for the proposed multi-megawatt Space Solar Power Satellite and other large commercial and military space platforms, lunar and interplanetary cargo missions in support of the NASA Human Exploration and Development of Space strategic enterprise, robotic deep space exploration missions, and near-term interstellar precursor missions. As NASA's lead center for electric propulsion, the Glenn Research Center is developing a number of high power electromagnetic propulsion technologies to support these future mission applications. Program activities include research on MW-class magnetoplasmadynamic thrusters, high power pulsed inductive thrusters, and innovative electrodeless plasma thruster concepts. Program goals are highlighted, the status of each research area is discussed, and plans are outlined for the continued development of efficient, robust high power electromagnetic thrusters

  16. Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center

    Science.gov (United States)

    Heyward, Ann O.; Kankam, Mark D.

    2004-01-01

    During the summer of 2004, a 10-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA-ASEE Summer Faculty Fellowship Program that operated for 38 years at Glenn. The objectives of CFP parallel those of its companion, viz., (1) to further the professional knowledge of qualified engineering and science faculty,(2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants institutions, and (4) to contribute to the research objectives of Glenn. However, CFP, unlike the NASA program, permits faculty to be in residence for more than two summers and does not limit participation to United States citizens. Selected fellows spend 10 weeks at Glenn working on research problems in collaboration with NASA colleagues and participating in related activities of the NASA-ASEE program. This year's program began officially on June 1, 2004 and continued through August 7, 2004. Several fellows had program dates that differed from the official dates because university schedules vary and because some of the summer research projects warranted a time extension beyond the 10 weeks for satisfactory completion of the work. The stipend paid to the fellows was $1200 per week and a relocation allowance of $1000 was paid to those living outside a 50-mile radius of the Center. In post-program surveys from this and previous years, the faculty cited numerous instances where participation in the program has led to new courses, new research projects, new laboratory experiments, and grants from NASA to continue the work initiated during the summer. Many of the fellows mentioned amplifying material, both in

  17. General aviation internal combustion engine research programs at NASA-Lewis Research Center

    Science.gov (United States)

    Willis, E. A.

    1978-01-01

    An update is presented of non-turbine general aviation engine programs underway at the NASA-Lewis Research Center in Cleveland, Ohio. The program encompasses conventional, lightweight diesel and rotary engines. Its three major thrusts are: (a) reduced SFC's; (b) improved fuels tolerance; and (c) reducing emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to late 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.

  18. High-performance data centers: A research roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Stein, Jay

    2004-03-30

    This report was developed for the California Energy Commission to document industry input and LBNL research into research topics appropriate for public interest support. Industry experts identified research topics and along with LBNL findings, helped to prioritize the technical areas for future public interest research.

  19. Manufacturing/Cell Therapy Specialist | Center for Cancer Research

    Science.gov (United States)

    Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID),

  20. German Federal Ministry for Research: 1995 expenditures on energy research and national research centers

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The draft departmental budget No. 30 covering the portfolio of the Federal Minister for Research and Technology (BMFT) within the 1995 federal budget features total expenditures of DM 9470 million. DM 78 (68) million has been earmarked for reactor safety and general technical safety. The sums earmarked for risk sharing in the nuclear field by the Federal Government are DM 236.5 (205.0) million. This adds up to DM 314.5 (296.0) million. (orig.)

  1. 75 FR 59720 - Methodology Committee of the Patient-Centered Outcomes Research Institute (PCORI)

    Science.gov (United States)

    2010-09-28

    ... GOVERNMENT ACCOUNTABILITY OFFICE Methodology Committee of the Patient-Centered Outcomes Research... responsibility for appointing not more than 15 members to a Methodology Committee of the Patient- Centered Outcomes Research Institute. In addition, the Directors of the Agency for Healthcare Research and Quality...

  2. 34 CFR 350.33 - What cooperation requirements must a Rehabilitation Engineering Research Center meet?

    Science.gov (United States)

    2010-07-01

    ... Rehabilitation Engineering Research Center meet? A Rehabilitation Engineering Research Center— (a) Shall... 34 Education 2 2010-07-01 2010-07-01 false What cooperation requirements must a Rehabilitation Engineering Research Center meet? 350.33 Section 350.33 Education Regulations of the Offices of the Department...

  3. 34 CFR 350.30 - What requirements must a Rehabilitation Engineering Research Center meet?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What requirements must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.30 What requirements must a Rehabilitation Engineering Research...

  4. 34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering Research...

  5. 34 CFR 350.1 - What is the Disability and Rehabilitation Research Projects and Centers Program?

    Science.gov (United States)

    2010-07-01

    ...) Rehabilitation Engineering Research Centers. (Authority: Sec. 204; 29 U.S.C. 762) ... 34 Education 2 2010-07-01 2010-07-01 false What is the Disability and Rehabilitation Research... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM General § 350.1 What is the Disability...

  6. NASA LANGLEY RESEARCH CENTER AND THE TIDEWATER INTERAGENCY POLLUTION PREVENTION PROGRAM

    Science.gov (United States)

    National Aeronautics and Space Administration (NASA)'s Langley Research Center (LaRC) is an 807-acre research center devoted to aeronautics and space research. aRC has initiated a broad-based pollution prevention program guided by a Pollution Prevention Program Plan and implement...

  7. 48 CFR 235.017 - Federally Funded Research and Development Centers.

    Science.gov (United States)

    2010-10-01

    ... DEVELOPMENT CONTRACTING 235.017 Federally Funded Research and Development Centers. (a) Policy. (2) No DoD... Funded Research and Development Center (FFRDC) if a member of its board of directors or trustees... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Federally Funded Research...

  8. Proposed Development of NASA Glenn Research Center's Aeronautical Network Research Simulator

    Science.gov (United States)

    Nguyen, Thanh C.; Kerczewski, Robert J.; Wargo, Chris A.; Kocin, Michael J.; Garcia, Manuel L.

    2004-01-01

    Accurate knowledge and understanding of data link traffic loads that will have an impact on the underlying communications infrastructure within the National Airspace System (NAS) is of paramount importance for planning, development and fielding of future airborne and ground-based communications systems. Attempting to better understand this impact, NASA Glenn Research Center (GRC), through its contractor Computer Networks & Software, Inc. (CNS, Inc.), has developed an emulation and test facility known as the Virtual Aircraft and Controller (VAC) to study data link interactions and the capacity of the NAS to support Controller Pilot Data Link Communications (CPDLC) traffic. The drawback of the current VAC test bed is that it does not allow the test personnel and researchers to present a real world RF environment to a complex airborne or ground system. Fortunately, the United States Air Force and Navy Avionics Test Commands, through its contractor ViaSat, Inc., have developed the Joint Communications Simulator (JCS) to provide communications band test and simulation capability for the RF spectrum through 18 GHz including Communications, Navigation, and Identification and Surveillance functions. In this paper, we are proposing the development of a new and robust test bed that will leverage on the existing NASA GRC's VAC and the Air Force and Navy Commands JCS systems capabilities and functionalities. The proposed NASA Glenn Research Center's Aeronautical Networks Research Simulator (ANRS) will combine current Air Traffic Control applications and physical RF stimulation into an integrated system capable of emulating data transmission behaviors including propagation delay, physical protocol delay, transmission failure and channel interference. The ANRS will provide a simulation/stimulation tool and test bed environment that allow the researcher to predict the performance of various aeronautical network protocol standards and their associated waveforms under varying

  9. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  10. German Federal Ministry for Research: 1994 expenditures on energy research and national research centers

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The draft departmental budget No. 30 covering the portfolio of the Federal Minister for Research and Technology (BMFT) within the 1994 federal budget features total expenditures of DM 9470 million (as against 9600 million in 1993). DM 68.0 (90.3) million has been earmarked for reactor safety and general technical safety. The sums earmarked for spent fuel and waste management R and D and investments are DM 23.0 (35.8) million; for risk sharing in the nuclear field by the Federal Government, DM 210.0 (191.6) million. This adds up to DM 310.0 (317.7) million. (orig./HP) [de

  11. An Overview of the Antenna Measurement Facilities at the NASA Glenn Research Center

    Science.gov (United States)

    Lambert, Kevin M.; Anzic, Godfrey; Zakrajsek, Robert J.; Zaman, Afroz J.

    2002-10-01

    For the past twenty years, the NASA Glenn Research Center (formerly Lewis Research Center) in Cleveland, Ohio, has developed and maintained facilities for the evaluation of antennas. This effort has been in support of the work being done at the center in the research and development of space communication systems. The wide variety of antennas that have been considered for these systems resulted in a need for several types of antenna ranges at the Glenn Research Center. Four ranges, which are part of the Microwave Systems Laboratory, are the responsibility of the staff of the Applied RF Technology Branch. A general description of these ranges is provided in this paper.

  12. Final priority; National Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Projects and Centers Program--Rehabilitation Engineering Research Centers. Final priority.

    Science.gov (United States)

    2013-06-19

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority for a Rehabilitation Engineering Research Center (RERC) on Technologies to Support Successful Aging with Disability under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). The Assistant Secretary may use this priority for a competition in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend to use this priority to improve outcomes for individuals with disabilities.

  13. Overview of CMC (Ceramic Matrix Composite) Research at the NASA Glenn Research Center

    Science.gov (United States)

    Kiser, J. Douglas; Grady, Joseph E.; Bhatt, Ramakrishna T.; Wiesner, Valerie L.; Zhu, Dongming

    2016-01-01

    In support of NASAs Aeronautics Research Mission, the Glenn Research Center has developed and assessed various constituents for a high temperature (2700F) SiCSiC CMC system for turbine engine applications. Combinations of highly creep-resistant SiC fibers, advanced 3D weaves, durable environmental barrier coatings (EBCs), and a 2700F-capable hybrid SiC matrix are being developed evaluated. The resulting improvements in CMC mechanical properties and durability will be summarized. The development and validation of models for predicting the effects of the environment on the durability of CMCs and EBCs and other operating-environment challenges including the effect of CMAS (calcium magnesium aluminosilicate) degradation of EBCs will be discussed. Progress toward the development of CMC joining technology for 2400F joint applications will also be reviewed.

  14. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge Tennessee

    International Nuclear Information System (INIS)

    Watson, David; Jardine, Philip; Gu, Baohua; Parker, Jack; Brandt, Craig; Holladay, Susan; Wolfe, Amy; Bogle, Mary Anna; Lowe, Kenneth; Hyder, Kirk

    2006-01-01

    The Field Research Center (FRC) in Oak Ridge (Fig. 1), Tennessee supports the U.S. Department of Energy's (DOE's) Environmental Remediation Sciences Program (ERSP) goal of understanding the complex physical, chemical, and biological properties of contaminated sites for new solutions to environmental remediation and long-term stewardship. In particular, the FRC provides the opportunity for researchers to conduct studies that promote the understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of existing remediation options, and the development of improved remediation strategies. It offers a series of contaminated sites around the former S-3 Waste Disposal Ponds and uncontaminated sites in which investigators and students conduct field research or collect samples for laboratory analysis. FRC research also spurs the development of new and improved characterization and monitoring tools. Site specific knowledge gained from research conducted at the FRC also provides the DOE-Oak Ridge Office of Environmental Management (EM) the critical scientific knowledge needed to make cleanup decisions for the S-3 Ponds and other sites on the Oak Ridge Reservation (ORR)

  15. German Federal Ministry for Research and Technology: 1990 expenditures on energy research and national research centers

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The draft departmental budget No. 30 covering the portfolio of the Federal Minister for Research and Technology (BMFT) within the 1990 federal budget features total expenditures of DM 7855.2 million (as against 7645.4 million in the previous year). DM 112 (119) million has been earmarked for the funding of reactor development. In addition DM 105 (104) million has been planned for reactor safety and general technical safety, DM 2.5 (2.5) million for funding nuclear fuel supply (including uranium enrichment). The sums earmarked for nuclear spent fuel and waste management R and D are DM 43 (55.9) million; for investments, DM 26 (38.1) million, and risk sharing in the nuclear field by the Federal Government, DM 20 (20) million. This adds up to DM 308.5 million, which is 14.2% less than the 1989 target figure of DM 359.5 million. (orig.) [de

  16. R&D Characteristics and Organizational Structure: Case Studies of University-Industry Research Centers

    Science.gov (United States)

    Hart, Maureen McArthur

    2013-01-01

    Within the past few decades, university-industry research centers have been developed in large numbers and emphasized as a valuable policy tool for innovation. Yet little is known about the heterogeneity of organizational structure within these centers, which has implications regarding policy for and management of these centers. This dissertation…

  17. Neuro-Oncology Branch Appointment - what happens at the clinical center | Center for Cancer Research

    Science.gov (United States)

    What Happens When I Get To The Clinical Center at NIH? 1. Visit the Admissions Department Registering is the first step to being evaluated by the Brain Tumor Clinic. Visit Admissions to get registered as a patient. They will ask you for your contact information and provide you with a patient identification number. 2. Proceed to the NOB Clinic Proceed to the Brain Tumor Clinic on the 13th floor.

  18. Network Science Center Research Teams Visit to Addis Ababa, Ethiopia

    Science.gov (United States)

    2012-08-01

    Network Science Center, West Point www.netscience.usma.edu 845.938.0804 Corporation as a gift from the Government of China, and consists of a 2,500...first glimpse into what became a common thread throughout the trip: the presence of a gap between microfinance and large corporate investments in the...cutting out other middlemen and increasing their own profits. Some even sell directly to major coffee names (such as Starbucks ). In our discussion it

  19. Mini- and microprocessors and FASTBUS in the experimental program at BNL

    International Nuclear Information System (INIS)

    Leipuner, L.B.

    1981-01-01

    The use of small processors in the experimental program at Brookhaven will be reviewed. FASTBUS, a new data acquisition system, as developed at BNL will also be reviewed. New directions that are planned in these areas will be discussed. (orig.)

  20. Mini- and micro-processors and FASTBUS in the experimental program at BNL

    International Nuclear Information System (INIS)

    Leipuner, L.B.

    1981-01-01

    The use of small processors in the experimental program at Brookhaven is reviewed. FASTBUS, a new data acquisition system, as developed at BNL is also reviewed. New directions that are planned in these areas are discussed

  1. Hitrex 1: an interim report on experimental and analytical work on BNL's zero power HTR

    Energy Technology Data Exchange (ETDEWEB)

    Beynon, A J; Kitching, S J; Lewis, T A; Waterson, R H

    1972-06-15

    This report presents interim experimental and theoretical results for the BNL Hitrex reactor. Reactivity effects and thermal and fast reaction rate distributions have been measured. Preliminary analysis has been performed, and some initial comparisons between theory and experiments made. (auth)

  2. Integration of Transients in Axisymmetrical Cavities for Accelerators: Formulation and applications to BNL Photocathode Gun

    International Nuclear Information System (INIS)

    Parsa, Z.; Serafini, L.

    1992-04-01

    This note provides a sketch of the formalism used for the Integration of Transients in Axisymmetrical Cavities for Accelerators, (ITACA). Application to study the BNL Photocathode Gun via the code ITACA is also included

  3. BNL workshop on rare K decays and CP violation, August 25-27, 1988

    International Nuclear Information System (INIS)

    1988-10-01

    This report contains viewgraphs on the following topics: rare and forbidden K decays; CP violation in the K system; the status of current experiments at BNL, CERN, FNAL, and KEK; and future experiments and facilities

  4. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    Science.gov (United States)

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  5. Center for Transportation Research | The University of Tennessee, Knoxville

    Science.gov (United States)

    IRIS WEB ACCOUNTS PASSWORDS Libraries UNIVERSITY LIBRARIES AGRICULTURE & VET MED LAW MEDICAL MUSIC transportation research, service, and training needs of state and local government, business, and industry in

  6. Kaposi's Sarcoma-Associated Herpesvirus | Center for Cancer Research

    Science.gov (United States)

    The discovery of KSHV in 1994 was a historical landmark in tumor virology and human cancer research. KSHV's subsequent identification as a cause of Kaposi sarcoma and its association with primary effusion lymphoma and multicentric Castleman disease soon attracted the attention of hundreds of research laboratories and motivated thousands of virologists and oncologists to switch

  7. Senior Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  8. Present status and future plans of the National Atomic Research Center of Malaysia

    International Nuclear Information System (INIS)

    Rashid, N.K.

    1980-01-01

    The Malaysian Atomic Research Center (PUSPATI) was established in 1972 and operates under the Ministry of Science, Technology and the Environment. It is the first research center of this kind in Malaysia. Some of the objectives of this center are: operation and maintenance of the research reactor; research and development in reactor science and technology; production of short-lived radioisotopes for use in medicine, agriculture and industry; coordination of the utilization of the reactor and its experimental facilities among the various research institutes and universities; training in nuclear radiation field; personnel monitoring and environmental surveillance

  9. Research showcase, winter 2014 : reducing traffic noise impacts, university transportation centers, advanced prismatic sheeting.

    Science.gov (United States)

    2014-01-01

    This issue of Research Showcase features articles on two successful research efforts, one on quiet : pavements and the other on the bene ts of prismatic sign sheeting, and an article on university : transportation center participation in Florida.

  10. 77 FR 33729 - Disability and Rehabilitation Research Projects and Centers Program-National Data and Statistical...

    Science.gov (United States)

    2012-06-07

    ... inclusion and integration of individuals with disabilities into society, and promote the employment... DEPARTMENT OF EDUCATION Disability and Rehabilitation Research Projects and Centers Program.... Final priority; National Institute on Disability and Rehabilitation Research (NIDRR)--Disability and...

  11. 2015 NIEHS/EPA Children's Environmental Health and Disease Prevention Research Centers Annual Meeting

    Science.gov (United States)

    The meeting will feature the researchers and senior scientists from the Children's Centers, the PEHSUs, scientists from federal agencies and others through interdisciplinary presentations and discussions that explore connections between research findings,

  12. The San Diego Center for Patient Safety: Creating a Research, Education, and Community Consortium

    National Research Council Canada - National Science Library

    Pratt, Nancy; Vo, Kelly; Ganiats, Theodore G; Weinger, Matthew B

    2005-01-01

    In response to the Agency for Healthcare Research and Quality's Developmental Centers of Education and Research in Patient Safety grant program, a group of clinicians and academicians proposed the San...

  13. Training and technical assistance to enhance capacity building between prevention research centers and their partners.

    Science.gov (United States)

    Spadaro, Antonia J; Grunbaum, Jo Anne; Dawkins, Nicola U; Wright, Demia S; Rubel, Stephanie K; Green, Diane C; Simoes, Eduardo J

    2011-05-01

    The Centers for Disease Control and Prevention has administered the Prevention Research Centers Program since 1986. We quantified the number and reach of training programs across all centers, determined whether the centers' outcomes varied by characteristics of the academic institution, and explored potential benefits of training and technical assistance for academic researchers and community partners. We characterized how these activities enhanced capacity building within Prevention Research Centers and the community. The program office collected quantitative information on training across all 33 centers via its Internet-based system from April through December 2007. Qualitative data were collected from April through May 2007. We selected 9 centers each for 2 separate, semistructured, telephone interviews, 1 on training and 1 on technical assistance. Across 24 centers, 4,777 people were trained in 99 training programs in fiscal year 2007 (October 1, 2006-September 30, 2007). Nearly 30% of people trained were community members or agency representatives. Training and technical assistance activities provided opportunities to enhance community partners' capacity in areas such as conducting needs assessments and writing grants and to improve the centers' capacity for cultural competency. Both qualitative and quantitative data demonstrated that training and technical assistance activities can foster capacity building and provide a reciprocal venue to support researchers' and the community's research interests. Future evaluation could assess community and public health partners' perception of centers' training programs and technical assistance.

  14. Innovative Educational Aerospace Research at the Northeast High School Space Research Center

    Science.gov (United States)

    Luyet, Audra; Matarazzo, Anthony; Folta, David

    1997-01-01

    Northeast High Magnet School of Philadelphia, Pennsylvania is a proud sponsor of the Space Research Center (SPARC). SPARC, a model program of the Medical, Engineering, and Aerospace Magnet school, provides talented students the capability to successfully exercise full simulations of NASA manned missions. These simulations included low-Earth Shuttle missions and Apollo lunar missions in the past, and will focus on a planetary mission to Mars this year. At the end of each scholastic year, a simulated mission, lasting between one and eight days, is performed involving 75 students as specialists in seven teams The groups are comprised of Flight Management, Spacecraft Communications (SatCom), Computer Networking, Spacecraft Design and Engineering, Electronics, Rocketry, Robotics, and Medical teams in either the mission operations center or onboard the spacecraft. Software development activities are also required in support of these simulations The objective of this paper is to present the accomplishments, technology innovations, interactions, and an overview of SPARC with an emphasis on how the program's educational activities parallel NASA mission support and how this education is preparing student for the space frontier.

  15. Research reports of the National Environmental Research Center-Las Vegas, January--December 1974

    International Nuclear Information System (INIS)

    1975-01-01

    This bibliography lists reports of the National Environmental Research Center's work in five categories. Reports published in the EPA Series, listed in Section I, are available through the National Technical Information Service (NTIS) or from the Superintendent of Documents at the U.S. Government Printing Office. Those published in the NERC-LV Series, Section II, are reports of work performed for the AEC and are available through the NTIS or from the Oak Ridge Technical Information Center in Oak Ridge, Tennessee. Reports published as articles in professional journals or in proceedings of scientific and technical meetings can usually be seen in most major libraries, particularly those associated with universities. Reprints of journal articles and hard copies of papers presented at scientific and technical meetings can sometimes be obtained from the author as long as his supply lasts. Section V lists reports in a Working Paper Series for EPA's National Eutrophication Survey. These are available from the NTIS. The NERC-LV does not maintain its own mailing list for distribution of published reports. (auth)

  16. 75 FR 57967 - Science Advisory Board to the National Center for Toxicological Research Notice of Meeting

    Science.gov (United States)

    2010-09-23

    ...] Science Advisory Board to the National Center for Toxicological Research Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for Toxicological Research (NCTR). General Function of the Committee: To provide advice and recommendations to the...

  17. 77 FR 57569 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Science.gov (United States)

    2012-09-18

    ...] Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting AGENCY: Food... closed to the public. Name of Committee: Science Advisory Board (SAB) to the National Center for Toxicological Research (NCTR). General Function of the Committee: To provide advice and recommendations to the...

  18. 48 CFR 970.3501 - Federally funded research and development centers.

    Science.gov (United States)

    2010-10-01

    ... Development Contracting 970.3501 Federally funded research and development centers. ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Federally funded research and development centers. 970.3501 Section 970.3501 Federal Acquisition Regulations System DEPARTMENT...

  19. Renata Adler Memorial Research Center for Child Welfare and Protection, Tel-Aviv University

    Science.gov (United States)

    Ronen, Tammie

    2011-01-01

    The Renata Adler Memorial Research Center for Child Welfare and Protection operates within the Bob Shapell School of Social Work at Tel-Aviv University in Israel. The main aims of this research center are to facilitate study and knowledge about the welfare of children experiencing abuse or neglect or children at risk and to link such knowledge to…

  20. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    Science.gov (United States)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  1. 76 FR 71045 - Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and...

    Science.gov (United States)

    2011-11-16

    ...] Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and Information... period for the notice on its report of scientific and medical literature and information concerning the... ``Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and Information...

  2. Proceeding of the Seminar of Research Result of Multipurpose Reactor Center Year of 1997/1998

    International Nuclear Information System (INIS)

    Jujuratisbela, U.

    1998-08-01

    The proceeding contained papers presented in seminar on research results of Multipurpose Reactor Center year 1997/1998 held on June 9-10, 1998 in Serpong, Indonesia. These papers are the significant result of research activities conducted in the Multipurpose Reactor Center, National Atomic Energy Agency during fiscal year of 1997/1998. There are 37 article which have separated index. (ID)

  3. [Tissue repositories for research at Sheba Medical Center(SMC].

    Science.gov (United States)

    Cohen, Yehudit; Barshack, Iris; Onn, Amir

    2013-06-01

    Cancer is the number one cause of death in both genders. Breakthroughs in the understanding of cancer biology, the identification of prognostic factors, and the development of new treatments are increasingly dependent on access to human cancer tissues with linked clinicopathological data. Access to human tumor samples and a large investment in translational research are needed to advance this research. The SMC tissue repositories provide researchers with biological materials, which are essential tools for cancer research. SMC tissue repositories for research aim to collect, document and preserve human biospecimens from patients with cancerous diseases. This is in order to provide the highest quality and well annotated biological biospecimens, used as essential tools to achieve the growing demands of scientific research needs. Such repositories are partners in acceLerating biomedical research and medical product development through clinical resources, in order to apply best options to the patients. Following Institutional Review Board approval and signing an Informed Consent Form, the tumor and tumor-free specimens are coLLected by a designated pathologist at the operating room only when there is a sufficient amount of the tumor, in excess of the routine needs. Blood samples are collected prior to the procedure. Other types of specimens collected include ascites fluid, pleural effusion, tissues for Optimal Cutting Temperature [OCT] and primary culture etc. Demographic, clinical, pathologicaL, and follow-up data are collected in a designated database. SMC has already established several organ or disease-specific tissue repositories within different departments. The foundation of tissue repositories requires the concentrated effort of a multidisciplinary team composed of paramedical, medical and scientific professionals. Research projects using these specimens facilitate the development of 'targeted therapy', accelerate basic research aimed at clarifying molecular

  4. AHPCRC (Army High Performance Computing Research Center) Bulletin. Volume 1, Issue 2

    Science.gov (United States)

    2011-01-01

    area and the researchers working on these projects. Also inside: news from the AHPCRC consortium partners at Morgan State University and the NASA ...Computing Research Center is provided by the supercomputing and research facilities at Stanford University and at the NASA Ames Research Center at...atomic and molecular level, he said. He noted that “every general would like to have” a Star Trek -like holodeck, where holographic avatars could

  5. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    Science.gov (United States)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  6. Status of integrated multidisciplinary rotorcraft optimization research at the Langley Research Center

    Science.gov (United States)

    Mantay, Wayne R.; Adelman, Howard M.

    1990-01-01

    This paper describes a joint NASA/Army research activity at the Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for important interactions among the disciplines. The activity is being guided by a Steering Committee made up of key NASA and Army researchers and managers. The paper describes the optimization formulation in terms of the objective function, design variables, and constraints. The analysis aspects are discussed, and the interdisciplinary interactions are defined in terms of the information that must be transferred among disciplinary analyses as well as the trade-offs between disciplines in determining the details of the design. At this writing, some significant progress has been made. Results given in the paper represent accomplishments in rotor aerodynamic performance optimization for minimum horsepower, rotor dynamic optimization for vibration reduction, approximate analysis of frequencies and mode shapes, rotor structural optimization for minimum weight, and integrated aerodynamic load/dynamics optimization for minimum vibration and weight.

  7. Results of the Community Health Applied Research Network (CHARN) National Research Capacity Survey of Community Health Centers.

    Science.gov (United States)

    Song, Hui; Li, Vivian; Gillespie, Suzanne; Laws, Reesa; Massimino, Stefan; Nelson, Christine; Singal, Robbie; Wagaw, Fikirte; Jester, Michelle; Weir, Rosy Chang

    2015-01-01

    The mission of the Community Health Applied Research Network (CHARN) is to build capacity to carry out Patient-Centered Outcomes Research at community health centers (CHCs), with the ultimate goal to improve health care for vulnerable populations. The CHARN Needs Assessment Staff Survey investigates CHCs' involvement in research, as well as their need for research training and resources. Results will be used to guide future training. The survey was developed and implemented in partnership with CHARN CHCs. Data were collected across CHARN CHCs. Data analysis and reports were conducted by the CHARN data coordinating center (DCC). Survey results highlighted gaps in staff research training, and these gaps varied by staff role. There is considerable variation in research involvement, partnerships, and focus both within and across CHCs. Development of training programs to increase research capacity should be tailored to address the specific needs and roles of staff involved in research.

  8. Supporting Informed Decision Making - Center for Research Strategy

    Science.gov (United States)

    CRS conducts portfolio analyses and collects data on scientific topics, funding mechanisms, and investigator characteristics to help NCI leadership make data-driven decisions about the scientific research enterprise.

  9. Annual report of the Management Research Center, 1985

    International Nuclear Information System (INIS)

    1986-01-01

    Research on the management of new forms of automation; industrial management; the definition of a new product range; economic management; personnel management; and management of cultural enterprises is presented [fr

  10. Research Tools and Materials | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Research Tools can be found in TTC's Available Technologies and in scientific publications. They are freely available to non-profits and universities through a Material Transfer Agreement (or other appropriate mechanism), and available via licensing to companies.

  11. NASA Armstrong Flight Research Center Dynamics and Controls Branch

    Science.gov (United States)

    Jacobson, Steve

    2015-01-01

    NASA Armstrong continues its legacy of exciting work in the area of Dynamics and Control of advanced vehicle concepts. This presentation describes Armstrongs research in control of flexible structures, peak seeking control and adaptive control in the Spring of 2015.

  12. Activities report 1991-1992: Nuclear Research Center of Strasbourg

    International Nuclear Information System (INIS)

    1993-01-01

    This activities report of the Nuclear Research Centre of Strasbourg for the years 1991 and 1992, presents nine research axis: theoretical physics, mechanisms of reactions and nuclear structure, extreme forms of nuclei, exotic nuclei, hot and dense nuclear matter, ultra-relativistic heavy ions, physics of LEP (European Large Electron-Positron storage ring) at 'DELPHI', chemistry and physics of radiations, physics and applications of semi-conductors

  13. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  14. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett

    2005-01-01

    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  15. Development of BNL Heat Transfer Facility 1: flashing experiments

    International Nuclear Information System (INIS)

    Leonhardt, W.J.; Klein, J.H.; Zimmer, G.A.; Abuaf, N.; Jones, O.C. Jr.

    1979-01-01

    A major area of interest to reactor safety technology is the prediction of actual vapor generation rates under conditions of thermal nonequilibrium as would be encountered during a loss-of-coolant accident (LOCA) in a light water reactor. In support of the development of advanced codes dealing with LOCA induced flashing, analytical models of the nonequilibrium vapor generation processes of interest have been formulated, and an experimental facility has been constructed to provide data to verify these models. This facility is known as BNL Heat Transfer Facility. The experimental facility consists of a flow loop, test section and the data acquisition and analysis system. The main portion of the flow loop is constructed from three inch nominal (7.6 cm) stainless steel pipe. High purity water is circulated through the loop using a centrifugal pump rated 1500 l/min at 600 kPa. Very close and stable control of all loop parameters is required since flashing is sensitive to very small changes in such parameters as flow rate, subcooling, and pressure

  16. Neutron capture cross section standards for BNL-325

    International Nuclear Information System (INIS)

    Holden, N.E.

    1980-01-01

    The most common cross section standards for capture reactions in the thermal neutron energy region are gold, cobalt, and manganese. In preparation for the fourth edition of BNL-325, data on the thermal cross section and resonance integral were evaluated for these three standards. For gold, only measurements below the Bragg scattering cutoff were used and extrapolated to a neutron velocity of 2200 meters/second. A non 1/v correction due to the 4.9 eV resonance was made. The resonance integral is based on Jirlow's integral measurement and Tellier's parameters. The resonance integrals for cobalt and manganese are based solely on integral measurements because the capture widths of the first major resonance either vary by 20% in various measurements (cobalt), or have never been measured (manganese). Recommended thermal cross sections and resonance integrals are respectively gold: 98.65/plus or minus/0.9 barns, 1550/plus or minus/28 barns; cobalt: 37.18/plus or minus/0.06 barns, 74.2/plus or minus/2.0 barns and manganese: 13.3/plus or minus/0.2 barns, and 14.0/plus or minus/0.3 barns. 72 refs

  17. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; State Univ. of New York, Stony Brook, NY

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0 2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year

  18. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; State Univ. of New York, Stony Brook, NY

    1991-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO 2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs

  19. BNL neutral beam development group. Progress report FY 1980

    International Nuclear Information System (INIS)

    Prelec, K.; Sluyters, T.

    1981-01-01

    The objective of the BNL Neutral Beam Program is to develop a 250 keV neutral beam system suitable for heating and other experiments in toroidal or mirror plasma devices. The system is based on acceleration and neutralization of negative hydrogen ions produced in and directly extracted from a source. The objective of source studies is to develop a module delivering 10 A of negative ion currents, with pulse lengths ranging from several seconds duration up to a steady-state operation. The extracted current density should be several hundred mA/cm 2 , and the source should operate with power and gas efficiencies acceptable from the beam line point of view. The objective of beam extraction and transport studies is to design a system matching the 10 A source module to the acceleration stage. The 250 keV acceleration studies cover several options, including a d.c. close-coupled system, a large aperture d.c. system matched to the source by a bending magnet, a multiaperture d.c. system following a multiaperture strong focusing transport line, and a MEQALAC structure

  20. Implementation of a virtual link between power system testbeds at Marshall Spaceflight Center and Lewis Research Center

    Science.gov (United States)

    Doreswamy, Rajiv

    1990-01-01

    The Marshall Space Flight Center (MSFC) owns and operates a space station module power management and distribution (SSM-PMAD) testbed. This system, managed by expert systems, is used to analyze and develop power system automation techniques for Space Station Freedom. The Lewis Research Center (LeRC), Cleveland, Ohio, has developed and implemented a space station electrical power system (EPS) testbed. This system and its power management controller are representative of the overall Space Station Freedom power system. A virtual link is being implemented between the testbeds at MSFC and LeRC. This link would enable configuration of SSM-PMAD as a load center for the EPS testbed at LeRC. This connection will add to the versatility of both systems, and provide an environment of enhanced realism for operation of both testbeds.