WorldWideScience

Sample records for bnl ags rhic

  1. Highlights from BNL-RHIC

    CERN Document Server

    Tannenbaum, M J

    2012-01-01

    Recent highlights from Brookhaven National Laboratory and the Relativistic Heavy Ion Collider (RHIC) are reviewed and discussed. Topics include: Discovery of the strongly interacting Quark Gluon Plasma (sQGP) in 2005; RHIC machine operation in 2011 as well as latest achievements from the superconducting Magnet Division and the National Synchrotron Light Source II project. Highlights from QGP physics at RHIC include: comparison of new measurements of charged multiplicity in A+A collisions by ALICE at the LHC to previous RHIC measurements; Observation of the anti-alpha particle by the STAR experiment; Collective Flow, including the Triangular Flow discovery and the latest results on v3; the RHIC beam energy scan in search of the QCD critical point. The pioneering use at RHIC of hard-scattering as a probe of the sQGP will also be reviewed and the latest results presented including: jet-quenching via suppression of high pT particles and two particle correlations; new results on fragmentation functions using gamma...

  2. Highlights from BNL and RHIC 2015

    CERN Document Server

    Tannenbaum, M J

    2016-01-01

    Highlights of news from Brookhaven National Laboratory (BNL) and results from the Relativistic Heavy Ion Collider (RHIC) in the period July 2014-June 2015 are presented. The news this year was mostly very positive. The major event at BNL was the startup and dedication of the new NSLS II, "the World's brightest Synchrotron Light Source". The operation of RHIC was outstanding with a polarized p+p run at $\\sqrt{s}=200$ GeV with integrated luminosity that exceeded the sum of all previous p+p integrated luminosity at this $\\sqrt{s}$. For the first time at RHIC asymmetric p+Au and p+Al runs were made but the p+Al run caused damage in the PHENIX forward detectors from quenches that were inadequately shielded for this first p+A run. This was also the 10th anniversary of the 2005 announcement of the Perfect Liquid Quark Gluon Plasma at RHIC and a review is presented of the discoveries leading to this claim. A new result on net-charge fluctuations (with no particle identification) from PHENIX based on previous scans ov...

  3. Highlights from BNL and RHIC 2014

    CERN Document Server

    Tannenbaum, M J

    2015-01-01

    Highlights of news from Brookhaven National Laboratory (BNL) and results from the Relativistic Heavy Ion Collider (RHIC) in the period July 2013-June 2014 are presented. It was a busy year for news, most notably a U. S. Government shutdown for 16 days beginning October 1, 2013 due to the lack of an approved budget for FY2014. Even with this unusual government activity, the $\\sqrt{s_{NN}}=200$ GeV Au+Au Run14 at RHIC was the best ever with integrated luminosity exceeding the sum of all previous runs. Additionally there was a brief He$^3$+Au run to continue the study of collective flow in small systems which was reinforced by new results presented on identified particle flow in d+Au. The other scientific highlights are also mostly concerned with ``soft (low $p_T$)'' physics complemented by the first preliminary results of reconstructed jets from hard-scattered partons in Au+Au collisions at RHIC . The measurements of transverse energy ($E_T$) spectra in p-p, d+Au and Au+Au collisions, which demonstrated last ye...

  4. Heavy Ion results from RHIC-BNL

    Directory of Open Access Journals (Sweden)

    Esumi Shinlchi

    2013-05-01

    Full Text Available Recent results from heavy ion collision experiments from RHIC at BNL are presented and discussed in terms of Quark Gluon Plasm properties, such as partonic collectivity and partonic energy loss. The experimental results with direct photons and heavy quarks have given important additional insights of the plasma on top of what has been known with light hadrons. Higher order event anisotropies and the related results have provided the geometrical, temporal and dynamical information of the plasma. The beam energy dependence of the various measurements could reveal the structure of QCD phase diagram and possibly the critical point in the diagram, where the properties of phase transition are expected to change drastically.

  5. Highlights from BNL-RHIC-2012

    CERN Document Server

    Tannenbaum, M J

    2013-01-01

    Recent highlights from Brookhaven National Laboratory and the Relativistic Heavy Ion Collider (RHIC) are reviewed and discussed in the context of the discovery of the strongly interacting Quark Gluon Plasma (sQGP) at RHIC in 2005 as confirmed by results from the CERN-LHC Pb+Pb program. Outstanding RHIC machine operation in 2012 with 3-dimensional stochastic cooling and a new EBIS ion source enabled measurements with Cu+Au, U+U, for which multiplicity distributions are shown, as well as with polarized p-p collisions. Differences of the physics and goals of p-p versus A+A are discussed leading to a review of RHIC results on pi0 suppression in Au+Au collisions and comparison to LHC Pb+Pb results in the same range 5 30 GeV. Improved measurements of direct photon production and correlation with charged particles at RHIC are shown, including the absence of a low pT (thermal) photon enhancement in d+Au collisions. Attempts to understand the apparent equality of the energy loss of light and heavy quarks in the QGP by...

  6. Proceedings of RIKEN BNL Research Center workwhop on RHIC spin

    Energy Technology Data Exchange (ETDEWEB)

    SOFFER,J.

    1999-10-06

    This RHIC Spin Workshop is the 1999 annual meeting of the RHIC Spin Collaboration, and the second to be hosted at Brookhaven and sponsored by the RIKEN BNL Research Center. The previous meetings were at Brookhaven (1998), Marseille (1996), MIT in 1995, Argonne 1994, Tucson in 1991, and the Polarized Collider Workshop at Penn State in 1990. As noted last year, the Center provides a home for combined work on spin by theorists, experimenters, and accelerator physicists. This proceedings, as last year, is a compilation of 1 page summaries and 5 selected transparencies for each speaker. It is designed to be available soon after the workshop is completed. Speakers are welcome to include web or other references for additional material. The RHIC spin program and RHIC are rapidly becoming reality. RHIC has completed its first commissioning run, as described here by Steve Peggs. The first Siberian Snake for spin has been completed and is being installed in RHIC. A new polarized source from KEK and Triumf with over 1 milliampere of polarized H{sup minus} is being installed, described by Anatoli Zelenski. They have had a successful test of a new polarimeter for RHIC, described by Kazu Kurita and Haixin Huang. Spin commissioning is expected next spring (2000), and the first physics run for spin is anticipated for spring 2001. The purpose of the workshop is to get everyone together about once per year and discuss goals of the spin program, progress, problems, and new ideas. They also have many separate regular forums on spin. There are spin discussion sessions every Tuesday, now organized by Naohito Saito and Werner Vogelsang. The spin discussion schedule and copies of presentations are posted on http://riksg01.rhic.bnl.gov/rsc. Speakers and other spinners are encouraged to come to BNL and to lead a discussion on your favorite idea. They also have regular polarimeter and snake meetings on alternate Thursdays, led by Bill McGahern, the lead engineer for the accelerator spin

  7. RHIC FY15 pp Run RHIC and AGS polarization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Adams, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-20

    The polarization information is important for the spin physics program in Relativistic Heavy Ion Collider (RHIC). There are discrepancies between AGS and RHIC polarization measurements. First, the face value of AGS polarization is higher than RHIC ones in general. Second, the measured polarization profile (described by the profile ratio R) is stronger in AGS than in RHIC. This note analyzes the polarization data from FY15 pp run period. The results show that the differences between AGS and RHIC polarization measurements are reasonable, but the R value difference is puzzling. The difference between blue and yellow ring is worth of spin simulation to explain.

  8. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, VOLUME 39, RHIC SPIN COLLABORATION MEETING, VII.

    Energy Technology Data Exchange (ETDEWEB)

    FOX, B.

    2002-04-22

    In the first meeting of this series (which took place at BNL on February 22, 2002), we focused on the upgrades which are expected to be completed prior to the end of this year and thus available for the next run. The two main items are the Spin Rotators in RHIC and the CNI polarimeter for the AGS. In addition, because of the progress on technical issues related to the design of partial snake in the AGS, we also had a presentation on this topic. And, finally, in keeping with a tradition of having some theoretical presentations to accompany the experimental and machine presentations, we had presentations on single spin transverse asymmetries in proton-proton reactions and Coulomb-Nuclear Interference analyzing powers in proton-carbon elastic scattering.

  9. Injection and acceleration of Au31+ in the BNL AGS.

    Energy Technology Data Exchange (ETDEWEB)

    Fischer,W.; Ahrens, L.; Brown, K.; Gardner, C.; Glenn, W.; Huang, H.; Mapes, M.; Smart, L.; Thieberger, P.; Tsoupas, N.; Zhang, S.Y.; Zeno, K.; Omet, C.; Spiller, P.

    2008-06-23

    Injection and acceleration of ions in a lower charge state reduces space charge effects, and, if further elcctron stripping is needed, may allow elimination of a stripping stage and the associated beam losses. The former is of interest to the accelerators in the GSI FAIR complex, the latter for BNL RHIC collider operation at energies lower than the current injection energy. Lower charge state ions, however, have a higher likelihood of electron stripping which can lead to dynamic pressures rises and subsequent beam losses. We report on experiments in the AGS where Au{sup 31+} ions were injected and accelerated instead of the normally used Au{sup 77+} ions. Beam intensities and the average pressure in the AGS ring are recorded, and compared with calculations for dynamic pressures and beam losses. The experimental results will be used to benchmark the StrahlSim dynamic vacuum code and will be incorporated in the GSI FAIR SIS100 design.

  10. Proceedings of RIKEN BNL Research Center Workshop: Progress in High-pT Physics at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bazilevsky, A.; Bland, L.; Vogelsang, W.

    2010-03-17

    This volume archives the presentations at the RIKEN BNL Research Center workshop 'Progress in High-PT Physics at RHIC', held at BNL in March 2010. Much has been learned from high-p{sub T} physics after 10 years of RHIC operations for heavy-ion collisions, polarized proton collisions and d+Au collisions. The workshop focused on recent progress in these areas by both theory and experiment. The first morning saw review talks on the theory of RHIC high-p{sub T} physics by G. Sterman and J. Soffer, and on the experimental results by M. Tannenbaum. One of the most exciting recent results from the RHIC spin program is the first observation of W bosons and their associated single-spin asymmetry. The new preliminary data were reported on the first day of our workshop, along with a theoretical perspective. There also were detailed discussions on the global analysis of polarized parton distributions, including the knowledge on gluon polarization and the impact of the W-data. The main topic of the second workshop day were single-transverse spin asymmetries and their analysis in terms of transverse-momentum dependent parton distributions. There is currently much interest in a future Drell-Yan program at RHIC, thanks to the exciting physics opportunities this would offer. This was addressed in some of the talks. There also were presentations on the latest results on transverse-spin physics from HERMES and BELLE. On the final day of the workshop, the focus shifted toward forward and small-x physics at RHIC, which has become a cornerstone of the whole RHIC program. Exciting new data were presented and discussed in terms of their possible implications for our understanding of strong color-field phenomena in QCD. In the afternoon, there were discussions of nuclear parton distributions and jet observables, among them fragmentation. The workshop was concluded with outlooks toward the near-term (LHC, JLab) and longer-term (EIC) future. The workshop has been a great success

  11. SynapSense Wireless Environmental Monitoring System of the RHIC & ATLAS Computing Facility at BNL

    Science.gov (United States)

    Casella, K.; Garcia, E.; Hogue, R.; Hollowell, C.; Strecker-Kellogg, W.; Wong, A.; Zaytsev, A.

    2014-06-01

    RHIC & ATLAS Computing Facility (RACF) at BNL is a 15000 sq. ft. facility hosting the IT equipment of the BNL ATLAS WLCG Tier-1 site, offline farms for the STAR and PHENIX experiments operating at the Relativistic Heavy Ion Collider (RHIC), the BNL Cloud installation, various Open Science Grid (OSG) resources, and many other small physics research oriented IT installations. The facility originated in 1990 and grew steadily up to the present configuration with 4 physically isolated IT areas with the maximum rack capacity of about 1000 racks and the total peak power consumption of 1.5 MW. In June 2012 a project was initiated with the primary goal to replace several environmental monitoring systems deployed earlier within RACF with a single commercial hardware and software solution by SynapSense Corporation based on wireless sensor groups and proprietary SynapSense™ MapSense™ software that offers a unified solution for monitoring the temperature and humidity within the rack/CRAC units as well as pressure distribution underneath the raised floor across the entire facility. The deployment was completed successfully in 2013. The new system also supports a set of additional features such as capacity planning based on measurements of total heat load, power consumption monitoring and control, CRAC unit power consumption optimization based on feedback from the temperature measurements and overall power usage efficiency estimations that are not currently implemented within RACF but may be deployed in the future.

  12. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, VOLUME 37, RHIC SPIN COLLABORATION MEETING VI (PART 2).

    Energy Technology Data Exchange (ETDEWEB)

    BLAND, L.; SAITO, N.

    2001-11-15

    The second part of the sixth RHIC Spin Collaboration (RSC) meeting was held on November 15, 2001 at Brookhaven National Laboratory. Previous meetings have elaborated on the new generation of proton spin-structure studies (e.g. gluon polarization and flavor separation of q and {bar q} polarizations via real W{sup {+-}} production) enabled by studying polarized proton collisions at energies and momentum transfers where perturbative QCD models are expected to be applicable. The focus of this meeting was on many of the experimental issues that must be resolved to achieve these physics goals. This summary is written with the benefit of hindsight following the completion of the first-ever run of a polarized proton collider. This first run can be considered as a successfully completed milestone of the RHIC Spin Collaboration. Other milestones remain important. Long term machine items were identified in Waldo Mackay's talk, the most important being the completion of the spin rotator magnets that will be installed in 2002 to allow the flexible orientation of the proton beam polarization at the PHENM and STAR experiments. At the meeting Waldo discussed a stronger partial snake magnet for the AGS as a means of producing highly polarized proton beams to inject into RHIC. Developments subsequent to this meeting suggest that a superconducting helical dipole magnet may be feasible for the AGS, and is likely to be needed to achieve the 70% beam polarization in RHIC. Longer term items were also presented, including potential increases in luminosity by the addition of electron cooling to RHIC and the possibility of increasing the collision energy by {approx}20% by replacement of the DX magnets. These items could be considered for a second generation of RHIC spin experiments. The other topics covered at the meeting were related to polarimetry and to the absolute calibration of the proton beam polarization in RHIC. These topics were divided into short- and long-term solutions to

  13. eRHIC Design Study: An Electron-Ion Collider at BNL

    CERN Document Server

    Aschenauer, E C; Bazilevsky, A; Boyle, K; Belomestnykh, S; Ben-Zvi, I; Brooks, S; Brutus, C; Burton, T; Fazio, S; Fedotov, A; Gassner, D; Hao, Y; Jing, Y; Kayran, D; Kiselev, A; Lamont, M A C; Lee, J -H; Litvinenko, V N; Liu, C; Ludlam, T; Mahler, G; McIntyre, G; Meng, W; Meot, F; Miller, T; Minty, M; Parker, B; Pinayev, I; Ptitsyn, V; Roser, T; Stratmann, M; Sichtermann, E; Skaritka, J; Tchoubar, O; Thieberger, P; Toll, T; Trbojevic, D; Tsoupas, N; Tuozzolo, J; Ullrich, T; Wang, E; Wang, G; Wu, Q; Xu, W; Zheng, L

    2014-01-01

    This document presents BNL's plan for an electron-ion collider, eRHIC, a major new research tool that builds on the existing RHIC facility to advance the long-term vision for Nuclear Physics to discover and understand the emergent phenomena of Quantum Chromodynamics (QCD), the fundamental theory of the strong interaction that binds the atomic nucleus. We describe the scientific requirements for such a facility, following up on the community wide 2012 white paper, "Electron-Ion Collider: the Next QCD Frontier", and present a design concept that incorporates new, innovative accelerator techniques to provide a cost-effective upgrade of RHIC with polarized electron beams colliding with the full array of RHIC hadron beams. The new facility will deliver electron-nucleon luminosity of $\\sim10^{33} cm^{-2}sec^{-1}$ for collisions of 15.9 GeV polarized electrons on either 250 GeV polarized protons or 100 GeV/u heavy ion beams. The facility will also be capable of providing an electron beam energy of 21.2 GeV, at reduc...

  14. PROCEEDINGS FROM RIKEN-BNL RESEARCH CENTER WORKSHOP: PARITY-VIOLATING SPIN ASYMMETRIES AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    VOGELSANG,W.; PERDEKAMP, M.; SURROW, B.

    2007-04-26

    The RHIC spin program is now fully underway. Several runs have been successfully completed and are producing exciting first results. Luminosity and polarization have improved remarkably and promising advances toward the higher RHIC energy of {radical}s = 500 GeV have been made. At this energy in particular, it will become possible to perform measurements of parity-violating spin asymmetries. Parity violation occurs in weak interactions, and in combination with the unique polarization capabilities at RHIC fascinating new opportunities arise. In particular, parity-violating single- and double-spin asymmetries give new insights into nucleon structure by allowing probes of up and down sea and anti-quark polarizations. Such measurements at RHIC are a DOE performance milestone for the year 2013 and are also supported by a very large effort from RIKEN. With transverse polarization, charged-current interactions may be sensitive to the Sivers effect. Parity-violating effects at RHIC have been proposed even as probes of physics beyond the Standard Model. With the era of measurements of parity-violating spin asymmetries at RHIC now rapidly approaching, we had proposed a small workshop that would bring together the main experts in both theory and experiment. We are very happy that this worked out. The whole workshop contained 17 formal talks, both experiment (10) and theory (7), and many fruitful discussions. The physics motivations for, the planned measurements were reviewed first. The RHIC machine prospects regarding polarized 500 GeV running were discussed, as well as the plans by the RHIC experiments for the vital upgrades of their detectors needed for the W physics program. We also had several talks on the topic of ''semi-inclusive deep-inelastic scattering'', which provides different access to related physics observables. On the theory side, new calculations were presented, for example in terms of QCD all-order resummations of perturbation theory

  15. A combined model for pseudorapidity distributions in Cu-Cu collisions at BNL-RHIC energies

    CERN Document Server

    Jiang, Zhjin; Huang, Yan

    2016-01-01

    The charged particles produced in nucleus-nucleus collisions come from leading particles and those frozen out from the hot and dense matter created in collisions. The leading particles are conventionally supposed having Gaussian rapidity distributions normalized to the number of participants. The hot and dense matter is assumed to expand according to the unified hydrodynamics, a hydro model which unifies the features of Landau and Hwa-Bjorken model, and freeze out into charged particles from a space-like hypersurface with a proper time of Tau_FO . The rapidity distribution of this part of charged particles can be derived out analytically. The combined contribution from both leading particles and unified hydrodynamics is then compared against the experimental data performed by BNL-RHIC-PHOBOS Collaboration in different centrality Cu-Cu collisions at sqrt(s_NN)=200 and 62.4 GeV, respectively. The model predictions are in well consistent with experimental measurements.

  16. The new BNL AGS phase, radial and synchronization loops

    Energy Technology Data Exchange (ETDEWEB)

    Onillon, E.; Brennan, J.M.

    1996-07-01

    The AGS and the RHIC must be synchronized before bunch-to-bucket transfer of the beam. A feedback loop has been designed and an improvement has been made to the AGS phase and radial loops. In both cases, the design uses a state variable representation to achieve greater stability and smaller errors. The state variables are beam phase, frequency and radius , the integral of the difference between the radius and its reference and the phase deviation of the bunch from the synchronous phase. Furthermore, the feedback gains are programmed as a function of the beam parameters to keep the same loop performances through the acceleration cycle.

  17. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN COLLABORATION MEETINGS XII AND XIII, SEPTEMBER 16, 2002, OCTOBER 22, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,B.

    2003-03-06

    Since its inception, the RHIC Spin Collaboration (RSC) has held semi-regular meetings each year to discuss the physics possibilities and the operational details of the program. Having collected our first data sample of polarized proton-proton collisions in Run02 of RHIC, we are now in the process of examining the performance of both the accelerator and the experiments. During the PAC meeting on August 29, 2002, the beam use proposal with a four week, polarized proton physics run was approved as part of the plan for Run-03. So, we meet at BNL on September 16, 2002 to discuss the concrete plans for this proton-proton run.

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER, RHIC SPIN COLLABORATION MEETING VI, VOLUME 36.

    Energy Technology Data Exchange (ETDEWEB)

    BLAND,L.; SAITO,N.

    2001-10-10

    The sixth meeting of the RHIC Spin Collaboration (RSC) took place on October 1, 2001 at Brookhaven National Laboratory. RHIC is now in its second year of operation for physics production and the first polarized proton collision run at {radical}s=200 GeV is expected to start in eight weeks. The RSC has developed a plan for this coming run through two previous meetings, RHIC Spin Physics III (August 3, 2000) and IV (October 13-14, 2000). We requested the following: two weeks of polarized proton studies in AGS, three weeks of polarized collider commissioning, and five weeks of polarized proton physics run. As a result, we have obtained all we asked and the above plans are implemented in the current operation schedule. The focus of the present meeting was to bring all involved in the RHIC Spin activities up-to-date on the progress of machine development, theory issues, and experimental issues. This meeting was right after the Program Advisory Committee (PAC) meeting and it started with the comments on the PAC discussion by Gerry Bunce, who was informed about the PAC deliberations by Tom Kirk. The PAC was fully supportive to complete the proposed spin program within the currently available budget for RHIC run 2 operations. Gerry further explained the expected luminosity to be {integral} Ldt = 0.5 pb{sup -1} per week, reflecting the current machine status. The introductory session also had a talk from Werner Vogelsang that reviewed the progress in perturbative QCD theory focused on spin effects.

  19. The RHIC polarized source upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski, A.; Atoian, G.; Davydenko, V.; Ivanov, A.; Kolmogorov, A.; Ritter, J.; Steski, D.; Zubets, V.

    2010-09-27

    The RHIC polarized H{sup -} ion source is being upgraded to higher intensity (5-10 mA) and polarization for use in the RHIC polarization physics program at enhanced luminosity RHIC operation. The higher beam peak intensity will allow reduction of the transverse beam emittance at injection to AGS to reduce polarization losses in AGS. There is also a planned RHIC luminosity upgrade by using the electron beam lens to compensate the beam-beam interaction at collision points. This upgrade is also essential for future BNL plans for a high-luminosity electron - proton (ion) Collider eRHIC.

  20. Results from the experiment E895 at the BNL AGS

    CERN Document Server

    Rai, G; Alexander, J; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D A; Chance, J L; Chung, P; Cole, B; Crowe, K; Das, A; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A S; Hjort, E L; Huo, L; Justice, M; Kaplan, M; Keane, D; Kintner, J; Klay, J; Krofcheck, D; Lacey, R; Lisa, M A; Liu, H; Liu, Y M; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D L; Panitkin, S Y; Pinkenburg, C H; Porile, N T; Ritter, H G; Romero, J L; Scharenberg, R P; Schröder, L S; Srivastava, B K; Stone, N T B; Symons, T J M; Wang, S; Wells, R; Whitfield, J; Wienold, T; Witt, R; Wood, L; Yang, X; Zhang, W; Zhang, Y

    1999-01-01

    We present some of the latest results from the E895 experiment conducted at the BNL AGS accelerator. Au+Au collisions were recorded by the EOS Time Projection Chamber (TPC) at beam energies of 2, 4, 6, and 8 A GeV. The TPC detector permitted the reconstruction of individual collision events with almost 4 pi acceptance and good particle identification. This capability allowed E895 to study global observables and two particle correlations with respect to symmetries of the event. Flow excitation functions are examined and discussed in the context of the Nuclear Equation of State.

  1. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN PHYSICS V, VOLUME 32, FEBRUARY 21, 2001.

    Energy Technology Data Exchange (ETDEWEB)

    BUNCE,G.; SAITO,N.; VIGDOR,S.; ROSER,T.; SPINKA,H.; ENYO,H.; BLAND,L.C.; GURYN,W.

    2001-02-21

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD and RHIC physics through the nurturing of a new generation of young physicists. During the fast year, the Center had only a Theory Group. In the second year, an Experimental Group was also established at the Center. At present, there are seven Fellows and nine post dots in these two groups. During the third year, we started a new Tenure Track Strong Interaction Theory RHIC Physics Fellow Program, with six positions in the academic year 1999-2000; this program will increase to include eleven theorists in the next academic year, and, in the year after, also be extended to experimental physics. In addition, the Center has an active workshop program on strong interaction physics, about ten workshops a year, with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. The construction of a 0.6 teraflop parallel processor, which was begun at the Center on February 19, 1998, was completed on August 28, 1998.

  2. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 72, RHIC SPIN COLLABORATION MEETINGS XXXI, XXXII, XXXIII.

    Energy Technology Data Exchange (ETDEWEB)

    OGAWA, A.

    2005-04-11

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan. The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has both a theory and experimental component. At present the theoretical group has 4 Fellows and 3 Research Associates as well as 11 RHIC Physics/University Fellows (academic year 2003-2004). To date there are approximately 30 graduates from the program of which 13 have attained tenure positions at major institutions worldwide. The experimental group is smaller and has 2 Fellows and 3 RHIC Physics/University Fellows and 3 Research Associates, and historically 6 individuals have attained permanent positions. Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These appointments are joint positions of RBRC and RIKEN and include the following positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young Researchers, who are mentored by senior RBRC Scientists. A number of RIKEN Jr. Research Associates and Visiting Scientists also contribute to the physics program at the Center. RBRC has an active workshop program on strong interaction physics with each workshop focused on a specific physics problem. Each workshop speaker is encouraged to select a few of the most important transparencies from his or her presentation, accompanied by a page of explanation. This material is collected at the end of the workshop by the organizer to form proceedings, which can therefore be available within a short time. To date there are seventy-two proceeding volumes available. The construction of a 0.6 teraflops parallel processor, dedicated to lattice QCD, begun at the Center on February 19, 1998, was completed on August

  3. Status of Proton Polarization in Rhic and AGS

    Science.gov (United States)

    Mackay, W. W.; Bai, M.; Huang, H.; Ahrens, L.; Alekseev, I. G.; Bravar, A.; Brown, K.; Bunce, G.; Calaga, R.; Courant, E. D.; Drees, A.; Fischer, W.; Gardner, C.; Glenn, J. W.; Gupta, R.; Igo, G.; Iriso, U.; Jinnouchi, O.; Kurita, K.; Luccio, A. U.; Luo, Y.; Makdisi, Y.; Marr, G.; Montag, C.; Nass, A.; Okada, H.; Okamura, M.; Pilat, F.; Ptitsyn, V.; Roser, T.; Saito, N.; Satogata, T.; Spinka, H.; Stephenson, E. J.; Svirida, D. N.; Takano, J.; Tepikian, S.; Tomas, R.; Tsoupas, N.; Underwood, D.; Whitten, C.; Wood, J.; Zeijts, J. Van; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2005-08-01

    The Relativistic Heavy Ion Collider (RHIC) has collided protons with both transverse and longitudinal polarization at a centre-of-mass energy of 200 GeV. Future running will extend this to 500 GeV. This paper describes the methods used to accelerate and manipulate polarized proton beams in RHIC and its injectors. Special techniques include the use of a partial Siberian snake and an AC dipole in the AGS. In RHIC we use superconducting helical Siberian snakes for acceleration, and eight superconducting helical rotators for independent control of polarization directions at two interaction regions. The present status and future plans for the polarized proton program will be reviewed.

  4. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 57, HIGH PT PHYSICS AT RHIC, DECEMBER 2-6, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kretzer, Stefan; Venugopalan, Raju; Vogelsang, Werner

    2004-02-18

    The AuAu, dAu, and pp collision modes of the RHIC collider at BNL have led to the publication of exciting high p{perpendicular} particle production data. There have also been two physics runs with polarized protons, and preliminary results on the double-spin asymmetry for pion production had been presented very recently. The ontological questions behind these measurements are fascinating: Did RHIC collisions create a Quark-Gluon-Plasma phase and did they verify the Color Glass Condensate as the high energy limit of QCD? Will the Spin Crisis finally be resolved in terms of gluon polarization and what new surprises are we yet to meet for Transverse Spin? Phenomena related to sub-microscopic questions as important as these call for interpretations that are footed in solid theory. At large p{perpendicular}, perturbative concepts are legitimately expected to provide useful approaches. The corresponding hard parton dynamics are, in several ways, key to unraveling the initial or final state and collisional phase of hard scattering events in vacuum as well as in hot or cold nuclear matter. Before the advent of RHIC data, a RIKEN-BNL workshop had been held at BNL in March 1999 on ''Hard Parton Physics in High Energy Nuclear Collisions''. The 2003 workshop on ''High p{perpendicular} Physics at RHIC'' was a logical continuation of this previous workshop. It gave the opportunity to revisit the 1999 expectations in the light of what has been found in the meantime and, at the same time, to critically discuss the underlying theoretical concepts. We brought together theorists who have done seminal work on the foundations of parton phenomenology in field theory, with theorists and experimentalists who are presently working on RHIC phenomenology. The participants were both from a high-energy physics and nuclear physics background and it remains only to be said here that this chemistry worked perfectly and the workshop was a great success.

  5. eRHIC, the BNL design for a future Electron-Ion Collider

    Science.gov (United States)

    Roser, Thomas

    2016-03-01

    With the addition of a 20 GeV polarized electron accelerator to the existing Brookhaven Relativistic Heavy Ion Collider (RHIC), the world's only high energy heavy ion and polarized proton collider, a future eRHIC facility will be able to produce polarized electron-nucleon collisions at center-of-mass energies of up to 145 GeV and cover the whole science case as outlined in the Electron-Ion Collider White Paper and endorsed by the 2015 Nuclear Physics Long Range Plan with high luminosity. The presentation will describe the eRHIC design concepts and recent efforts to reduce the technical risks of the project.

  6. Transverse impedance measurement in RHIC and the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Biancacci, Nicolo [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-05-12

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.

  7. SPIN TRANSPORT FROM AGS TO RHIC WTIH TWO PARTIAL SNAKES IN AGS.

    Energy Technology Data Exchange (ETDEWEB)

    MACKAY, W.W.; LUCCIO, A.U.; TSOUPAS, N.; TAKANO, J.

    2006-06-23

    The stable spin direction in the RHIC rings is vertical. With one or two partial helical Siberian snakes in the AGS, the stable spin direction at extraction is not vertical. Interleaved vertical and horizontal bends in the transport line between AGS and the RHIC rings also tend to tip the spin away from the vertical. In order to maximize polarization in RHIC, we examined several options to improve the matching of the stable spin direction during beam transfer from the AGS to each of the RHIC rings. While the matching is not perfect, the most economical method appears to be a lowering of the injection energy by one unit of G{gamma} from 46.5 to 45.5.

  8. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    Energy Technology Data Exchange (ETDEWEB)

    Karsch, F.; Kojo, T.; Mukherjee, S.; Stephanov, M.; Xu, N.

    2011-10-27

    Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that at zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical

  9. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED "ODDERON SEARCHES AT RHIC" (VOLUME 76)

    Energy Technology Data Exchange (ETDEWEB)

    ORGANIZERS: GURYN, W.; KOVCHEGOV, Y.; VOGELSANG, W.; TRUEMAN, L.

    2005-10-25

    The Odderon, a charge-conjugation-odd partner of the Pomeron, has been a puzzle ever since its introduction in 1973. The Pomeron describes a colorless exchange with vacuum quantum numbers in the t-channel of hadronic scattering at high energies. The concept was originally formulated for the non-perturbative regime of Quantum Chromodynamics (QCD). In perturbation theory, the simplest picture of the Poineron is that of a two-gluon exchange process, whereas an Odderon can be thought of as an exchange of three gluons. Both the Pomeron and the Odderon are expected in QCD. However, while there exists plenty of experimental data that could be successfully described by Pomeron exchanges (for example in electron-proton and hadron-hadron scattering at high energies), no experimental sign of the Odderon has been observed. One of the very few hints so far is the difference in the diffractive minima of elastic proton-proton and proton-antiproton scattering measured at the ISR. The Odderon has recently received renewed attention by QCD researchers, mainly for the following two reasons. First of all, RHIC has entered the scene, offering exciting unique new opportunities for Odderon searches. RHIC provides collisions of nuclei at center-of-mass energies far exceeding those at all previous experiments. RHIC also provides collisions of protons of the highest center-of-mass energy, and in the interval, which has not been explored previously in p {bar p} collisions. In addition, it also has the unique feature of polarization for the proton beams, promising to become a crucial tool in Odderon searches. Indeed, theorists have proposed possible signatures of the Odderon in some spin asymmetries measurable at RHIC. Qualitatively unique signals should be seen in these observables if the Odderon coupling is large. Secondly, the Odderon has recently been shown to naturally emerge from the Color Glass Condensate (CGC), a theory for the high-energy asymptotics of QCD. It has been argued that

  10. Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.

    Science.gov (United States)

    Miller, J; Zeitlin, C

    2016-06-01

    Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven.

  11. Open charm meson production at BNL RHIC within $k_{t}$-factorization approach and revision of their semileptonic decays

    CERN Document Server

    Maciula, Rafal; Luszczak, Marta

    2015-01-01

    We discuss inclusive production of open charm mesons in proton-proton scattering at the BNL RHIC. The calculation is performed in the framework of $k_t$-factorization approach which effectively includes higher-order pQCD corrections. Different models of unintegrated gluon distributions (UGDF) from the literature are used. We focus on UGDF models favoured by the LHC data and on a new up-to-date parametrizations based on the HERA collider DIS high-precision data. Results of the $k_t$-factorization approach are compared to next-to-leading order collinear predictions. The hadronization of heavy quarks is done by means of fragmentation function technique. The theoretical transverse momentum distributions of charmed mesons are compared with recent experimental data of the STAR collaboration at $\\sqrt{s} = 200$ and $500$ GeV. Theoretical uncertainties related to the choice of renormalization and factorization scales as well as due to the quark mass are discussed. Very good description of the measured integrated cros...

  12. Polarized proton collider at RHIC

    Science.gov (United States)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S. Y.; Luccio, A.; MacKay, W. W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A. N.

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998 [2]), reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to s=500 GeV.

  13. RELATIVISTIC HEAVY ION PHYSICS : RESULTS FROM AGS TO RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    STEINBERG,P.

    2002-06-20

    High-energy collisions of heavy ions provide a means to study QCD in a regime of high parton density, and may provide insight into its phme structure. Results from the four experiments at RHIC (BRAHMS, PHENIX, PHOBOS and STAR) are presented, and placed in context with the lower energy data from the AGS and SPS accelerators. The focus is on the insights these measurements provide into the time history of the collision process. Taken together, the data point to the creation of a deconfined state of matter that forms quickly, expands rapidly and freezes out suddenly. With the new RHIC data, systematic data now exists for heavy ion collisions as a function of {radical}s over several orders of magnitude and as a function of impact parameter. These data test the interplay between hard and soft processes in a large-volume system where nucleons are struck multiple times. The data is consistent with creating a deconfined state (jet quenching) that forms quickly (saturation models), expands rapidly (radial and elliptic flow) and freezes out suddenly (single freezeout and blast wave fits). There are also intriguing connections with particle production in elementary systems, which point to the role of the energy available for particle production on the features of the final state. Many in this field are optimistic that the careful understanding of this experimental data may lead t o the theoretical breakthroughs that will connect these complex systems to the fundamental lattice predict ions.

  14. SETUP AND PERFORMANCE OF THE RHIC INJECTOR ACCELERATORS FOR THE 2005 RUN WITH COPPER IONS.

    Energy Technology Data Exchange (ETDEWEB)

    AHRENS, L.; ALESSI, J.; GARDNER, C.J.

    2005-05-16

    Copper ions for the 2005 run [1] of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of these accelerators with copper are reviewed in this paper.

  15. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, RHIC SPIN COLLABORATION MEETINGS VIII, IX, X, XI, APRIL 12, MAY, 22, JUNE 17, JULY 29, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,B.

    2003-03-06

    Since its inception, the RHIC Spin Collaboration (RSC) has held semi-regular meetings each year to discuss the physics possibilities and the operational details of the program. Having collected our first data sample of polarized proton-proton collisions in Run02 of RHIC, we are now in the process of examining the performance of both the accelerator and the experiments. From this evaluation, we not only aim to formulate a consensus plan for polarized proton-proton during Run03 of RHIC but also to look more forward into the future to ensure the success of the spin program. In the second meeting of this series (which took place at BNL on April 12, 2002), we focused on Run02 polarization issues. This meeting opened with a presentation by Thomas Roser about his reflections on the outcome from the RHIC retreat during which the Run02 performance was evaluated. Of particular importance, Thomas pointed out that, with the expected beam time and his estimates for machine-tuning requirements, the experiments should limit their beam requests to two or three programs.

  16. The feature study on the π and proton rapidity distributions at AGS, SPS and RHIC

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The features of nuclear stopping power and multi-hadron production systematically are studied by making an analysis of rapidity distributions of pion and proton at AGS, SPS and RHIC in this work. It is found that nuclear stopping power increases linearly with project rapidity yp at AGS and SPS, but that is not liner at RHIC. It is argued that the average rapidity loss is saturated at central rapidity region at RHIC. For pion distribution, it is found that the phase space of pion distribution distributes uniformly in the longitudinal direction,and a linear relationship of <βγ >L with log s is given at AGS and SPS. Non-uniform flow model may explain the features of the distribution at AGS and SPS, but may not ex- plain those of at RHIC.

  17. The feature study on the π and proton rapidity distributions at AGS, SPS and RHIC

    Institute of Scientific and Technical Information of China (English)

    FENG ShengQin; YUAN XianBao

    2009-01-01

    The features of nuclear stopping power and multi-hadron production systematically are studied by making an analysis of rapidity distributions of pion and proton at AGS, SPS and RHIC in this work. It is found that nuclear stopping power increases linearly with project rapidity yp at AGS and SPS, but that is not liner at RHIC. It is argued that the average rapidity loss is saturated at central rapidity region at RHIC. For pion distribution, it is found that the phase space of pion distribution distributes uniformly in the longitudinal direction, and a linear relationship of L with log√s is given at AGS and SPS. Non-uniform flow model may explain the features of the distribution at AGS and SPS, but may not explain those of at RHIC.

  18. Longitudinal emittance measurements in the Booster and AGS during the 2014 RHIC gold run

    Energy Technology Data Exchange (ETDEWEB)

    Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-18

    This note describes longitudinal emittance measurements that were made in the Booster and AGS during the 2014 RHIC Gold run. It also contains an overview of the longitudinal aspects of their setup during this run. Each bunch intended for RHIC is composed of beam from 4 Booster cycles, and there are two of them per AGS cycle. For each of the 8 Booster cycles required to produce the 2 bunches in the AGS, a beam pulse from EVIS is injected into the Booster and captured in four h=4 buckets. Then those bunches are accelerated to a porch where they are merged into 2 bunches and then into 1 bunch.

  19. FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..

  20. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON SPIN PHYSICS AT RHIC IN YEAR-1 AND BEYOND.

    Energy Technology Data Exchange (ETDEWEB)

    BLAND, L.; BOER, D.; SAITO, N.; VOGELSANG, W.

    2001-05-14

    The much anticipated RHIC spin physics program will commence this fall when the first physics run with colliding beams of polarized protons is expected. More specifically, the planned year-1 RHIC-Spin measurements are (1) the double-spin asymmetry A{sub LL}{sup {pi}} in production of pions by collisions of longitudinally polarized protons (in order to obtain first information on the proton's spin-dependent gluon density, {Delta}g); (2) the transverse single-spin asymmetry A{sub N}{sup {pi}} for pion production. These two reactions provided part of the motivation for our workshop. On the first day there were informative talks on the specific plans of STAR (by Rakness) and PHENIX (by Goto) for the polarized run of Year-1. Some of the theoretical questions related to the double-spin asymmetry A{sub LL}{sup {pi}} were discussed on the first day by Vogelsang and Kretzer, which centered mostly around the questions of how well the unpolarized fragmentation functions are known, the need for next-to-leading order calculations, and on how sensitive the asymmetry is to the possible {Delta}g distributions. Vetterli presented HERMES measurements of fragmentation functions, which overlap in Q{sup 2} with the future lower-p{sub T} measurements at RHIC.

  1. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON BARYON DYNAMICS AT RHIC, MARCH 28-30, 2002, BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    GYULASSY,M.; KHARZEEV,D.; XU,N.

    2002-03-28

    One of the striking observations at RHIC is the large valence baryon rapidity density observed at mid rapidity in central Au+Au at 130 A GeV. There are about twice as many valence protons at mid-rapidity than predicted based on extrapolation from p+p collisions. Even more striking PHENIX observed that the high pt spectrum is dominated by baryons and anti-baryons. The STAR measured event anisotropy parameter v2 for lambdas are as high as charged particles at pt {approx} 2.5 GeV/c. These are completely unexpected based on conventional pQCD parton fragmentation phenomenology. One exciting possibility is that these observables reveal the topological gluon field origin of baryon number transport referred to as baryon junctions. Another is that hydrodynamics may apply up to high pt in A+A. There is no consensus on what are the correct mechanisms for producing baryons and hyperons at high pt and large rapidity shifts and the new RHIC data provide a strong motivation to hold a meeting focusing on this class of observables. The possible role of junctions in forming CP violating domain walls and novel nuclear bucky-ball configurations would also be discussed. In this workshop, we focused on all measured baryon distributions at RHIC energies and related theoretical considerations. To facilitate the discussions, results of heavy ion collisions at lower beam energies, results from p+A /p+p/e+e collisions were included. Some suggestions for future measurements have been made at the workshop.

  2. FY2014 Parameters for Gold Ions in Booster, AGS, and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-07-30

    The nominal parameters for gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are worked out using various formulas to derive mass, kinetic parameters, RF parameters, ring parameters, etc.. The ''standard setup'', ''medium-energy'', and ''low-energy'' parameters are summarized in separate sections.

  3. High density matter in AGS, SPS and RHIC collisions: Proceedings. Volume 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This 1-day workshop focused on phenomenological models regarding the specific question of the maximum energy density achievable in collisions at AGS, SPS and RHIC. The idea was to have 30-minute (or less) presentations of each model--but not the model as a whole, rather then that strongly narrowed to the above physics question. The key topics addressed were: (1) to estimate the energy density in heavy-ion collisions within a model, and to discuss its physical implications; (2) to suggest experimental observables that may confirm the correctness of a model approach--with respect to the energy density estimate; (3) to compare with existing data from AGS and SPS heavy-ion collisions, and to give predictions for the future RHIC experiments. G. Ogilvie started up the workshop with a critical summary of experimental manifestations of high-density matter at the AGS, and gave a personal outlook on RHIC physics. R. Mattiello talked about his newly developed hadron cascade model for applications to AGS and SPS collisions. Next, D. Kharzeev gave a nice introduction of the Glauber approach to high-energy collisions and illustrated the predictive power of this approach in nucleus-nucleus collisions at the SPS. It followed S. Vance with a presentation of the baryon-junction model to explain the observed baryon stopping phenomenon in collisions of heavy nuclei. S. Bass continued with a broad perspective of the UrQMD model, and provided insight into the details of the microscopic dynamical features of nuclear collisions at high energy. J. Sandweiss and J. Kapusta addressed the interesting aspect of photon production in peripherical nuclear collisions due to intense electromagnetic bremstrahlung by the highly charged, fast moving ions. Finally, H. Sorge closed up the one-day workshop with a presentation of his recent work with the RQMD model. This report consists of a summary and vugraphs of the presentations.

  4. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON RHIC SPIN PHYSICS III AND IV, POLARIZED PARTONS AT HIGH Q2 REGION, AUGUST 3, 2000 AT BNL, OCTOBER 14, 2000 AT KYOTO UNIVERSITY.

    Energy Technology Data Exchange (ETDEWEB)

    BUNCE, G.; VIGDOR, S.

    2001-03-15

    International workshop on II Polarized Partons at High Q2 region 11 was held at the Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan on October 13-14, 2000, as a satellite of the international conference ''SPIN 2000'' (Osaka, Japan, October 16-21,2000). This workshop was supported by RIKEN (The Institute of Physical and Chemical Research) and by Yukawa Institute. The scientific program was focused on the upcoming polarized collider RHIC. The workshop was also an annual meeting of RHIC Spin Collaboration (RSC). The number of participants was 55, including 28 foreign visitors and 8 foreign-resident Japanese participants, reflecting the international nature of the RHIC spin program. At the workshop there were 25 oral presentations in four sessions, (1) RHIC Spin Commissioning, (2) Polarized Partons, Present and Future, (3) New Ideas on Polarization Phenomena, (4) Strategy for the Coming Spin Running. In (1) the successful polarized proton commissioning and the readiness of the accelerator for the physics program impressed us. In (2) and (3) active discussions were made on the new structure function to be firstly measured at RHIC, and several new theoretical ideas were presented. In session (4) we have established a plan for the beam time requirement toward the first collision of polarized protons. These proceedings include the transparencies presented at the workshop. The discussion on ''Strategy for the Coming Spin Running'' was summarized by the chairman of the session, S. Vigdor and G. Bunce.

  5. STATUS AND RECENT PERFORMANCE OF THE ACCELERATORS THAT SERVE AS GOLD INJECTOR FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    AHRENS,L.; ALESSI,J.; VAN ASSELT,W.; BENJAMIN,J.; BLASKIEWICZ,M.; BRENNAN,J.M.; BROWN,K.A.; CARLSON,C.; DELONG,J.; GARDNER,C.J.; GLENN,J.W.; HAYES,T.; ROSER,T.; SMITH,K.S.; STESKI,D.; TSOUPAS,N.; ZENO,K.; ZHANG,S.Y.

    2001-06-18

    The recent successful commissioning and operation [1] of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) requires the injection of gold ions of specified energy and intensity with longitudinal and transverse emittances small enough to meet the luminosity requirements of the collider. Ion beams with the desired characteristics are provided by a series of three accelerators, the Tandem, Booster and AGS. The current status and recent performance of these accelerators are reviewed in this paper.

  6. 演化过程主导的流体力学模型与Cu-Cu在BNL-RHIC能量碰撞中带电粒子的赝快度分布%Evolution-dominated Hydrodynamic Model and the Pseudorapidity Distributions of the Charged Particles Pro duced in Cu-Cu Collisions at BNL-RHIC Energies

    Institute of Scientific and Technical Information of China (English)

    姜志进; 王杰; 张海丽; 马可

    2014-01-01

    The charged particles resulting in high energy heavy ion collisions consist of two parts: One is from the hot and dense matter produced in collisions. The other is the leading particles. We suppose that the hot and dense matter expands and freezes out into the charged particles according to the evolution-dominated hydrodynamics, and the leading particles are from participants with approximately the same energy. On the basis of this assumption, we get the pseudorapidity distributions of the charged particles produced in high energy heavy ion collisions, and make a comparison with the experimental data presented by PHOBOS Collaboration at BNL-RHIC in Cu-Cu collisions at√sNN=62.4 and 200 GeV. The theoretical predictions are in good accordance with experimental measurements.%高能重离子碰撞产生的带电粒子由两部分组成:一部分来源于碰撞产生的高温高密度物质,另一部分是带头粒子。假设高温高密度物质按照由演化过程主导的流体力学的规律膨胀并冻析为带电粒子,带头粒子来源于参与者且具有大致相同的能量。基于该假设,得到了高能重离子碰撞带电粒子的赝快度分布,并与BNL-RHIC上的PHOBOS合作组在√sNN=62.4与200 GeV的Cu-Cu碰撞中给出的实验结果相比较,理论与实验测量符合得很好。

  7. Recent results of high-energy spin phenomena of gluons and sea-quarks in polarized proton-proton collisions at RHIC at BNL

    CERN Document Server

    Surrow, Bernd

    2013-01-01

    The STAR experiment at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory is carrying out a spin physics program in high-energy polarized proton collisions at $\\sqrt{s}=200\\,$GeV and $\\sqrt{s}=500\\,$GeV to gain a deeper insight into the spin structure and dynamics of the proton. One of the main objectives of the spin physics program at RHIC is the precise determination of the polarized gluon distribution function. The STAR detector is well suited for the reconstruction of various final states involving jets, $\\pi^{0}$, $\\pi^{\\pm}$, e$^{\\pm}$ and $\\gamma$, which allows to measure several different processes. Recent results suggest a gluon spin contribution to the proton spin at the same level as the quark spin contribution itself. The production of $W$ bosons in polarized p+p collisions at $\\sqrt{s}=500\\,$GeV opens a new era in the study of the spin-flavor structure of the proton. $W^{-(+)}$ bosons are produced in $\\bar{u}+d\\;(\\bar{d}+u)$ collisions and can be detected through their leptonic...

  8. PHYSICS OF POLARITY AT RHIC-VOLUME 10.

    Energy Technology Data Exchange (ETDEWEB)

    IMAI,K.; FIELDS,D.

    1998-08-04

    The RBRC Workshop on Physics of Polarimetry at RHIC was held from Aug 4 to 7, 1998 at BNL. The primary motive of the workshop is (1) to discuss the RHIC polarimeter using the elastic proton-carbon scattering at Coulomb-nuclear interference region (p-C CNI polarimeter) in detail and write a proposal for the test experiment a t the AGS, (2) to discuss the related physics, (3) and to discuss other options for the RHIC polarimetry. The idea of the p-C CNI polarimeter was proposed last year as a simple, inexpensive and efficient polarimeter for RHIC. In order to establish this polarimeter, we have decided to carry out a test experiment by using a polarized beam at the AGS. We have made a draft of the proposal during the workshop. For the p-C CNI polarimeter, a telescope detector using both the micro-channel plate (MCP) and the SSD was proposed to detect low energy recoil carbon ions, based on the test measurements at IUCF and Kyoto, where the carbon ions as low as 200 keV were successfully detected. The kinetic energy of carbon ion is measured with the SSD, and the velocity is measured by TOF between the two detectors and between the accelerator rf pulse and the two detectors. Counting rates for the background and true events were estimated. With the proposed polarimeter, one can expect to measure the beam polarization at the AGS and RHIC at an accuracy of 10% within a reasonable time period. We will test this detector system at Kyoto as soon as possible and install it in the AGS ring for the test measurement of A{sub N} during E880 which is scheduled early in the next year.

  9. Spin physics at RHIC: Present and future

    Indian Academy of Sciences (India)

    Abhay Deshpande

    2003-11-01

    In 2001–2002 the relativistic heavy-ion collider (RHIC) at the Brookhaven National Laboratory (BNL) was first commissioned for polarized proton collisions. Polarized protons were injected into the RHIC, accelerated to 100 GeV, stored and the two beams were made to collide in four interaction regions. I will review the progress made by the RHIC spin program, followed by the physics goals for the next few years. After that I will present a brief overview of a proposal to build a high intensity polarized electron/positron beam facility at BNL which would enable deep inelastic scattering (DIS) experiments to be pursued at BNL by its collisions with the RHIC hadron beams.

  10. NGSPN @ BNL

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, S. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bachner, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gomera, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-10-05

    Brookhaven National Laboratory’s (BNL’s) Nonproliferation and National Security Department hosted the Next Generation Safeguards Professional Network (NGSPN) at BNL September 6-9, 2016. Thirteen representatives from seven Department of Energy National Laboratories, including two from BNL, participated in the four-day meeting. The NGSPN meeting was sponsored by the Office of International Nuclear Safeguards (NA-241) of the National Nuclear Security Administration, which provided funding for BNL’s development and conduct of the meeting program and the participant’s labor and travel. NGSPN meetings were previously held at Savannah River National Laboratory, Oak Ridge National Laboratory, Idaho National Laboratory, Sandia National Laboratories, and Los Alamos National Laboratory. The purpose of NGSPN is to provide a forum for early-career international safeguards practitioners to network with their peers, to meet international safeguards experts from other institutions and to learn about organizations other than their employers who contribute to international safeguards.

  11. BNL future plans

    Energy Technology Data Exchange (ETDEWEB)

    Littenberg, L.

    1998-01-01

    In 1999, after almost 40 years of independent existence, the Brookhaven Alternating Gradient Synchrotron (AGS) is scheduled to be pressed into service as an injector to the Relativistic Heavy Ion Collider (RHIC). Although at first sight this seems like the end of an era, in actuality, it represents a very attractive new opportunity. For the AGS is actually needed by RHIC for only a few hours per day. The balance of the time it is available for extracted proton beam work at a very small incremental cost. This represents the reverse of the current situation in which the nuclear physics program gets access to the AGS (for fixed target heavy ion experiments) at incremental cost, while the base cost of maintaining the accelerator is borne by the high energy physics program. Retaining the AGS for particle physics work would broaden the US HEP program considerably, allowing continued exploitation of the world`s most intense source of medium energy protons. High energy possibilities include incisive probes of Standard Model and non-SM CP-violation, and of low energy manifestations of supersymmetry.

  12. EPS-AG Sacherer Prize: Beam Optics Developments for SPS, RHIC, LHC, CLIC and ATF2

    CERN Document Server

    Tomas, R

    2011-01-01

    Highlights of linear and nonlinear optics studies are presented from various accelerators. At the LHC, optics correction is of critical importance to guarantee safe beam operation. Preparation for LHC opticsmeasurements and corrections has been a major activity during the last decade. In particular, SPS and RHIC have served as excellent research and development machines to test new techniques and instrumentation, such as the measurement of resonance driving terms with and without AC dipoles. Together with a meticulous field quality specification, a careful installation strategy and an elaborate magnet model, these efforts have paid off in the LHC, where a record low beta-beating for hadron colliders below 10% has been achieved. Looking further into the future, the performance of the Final Focus System (FFS) is of critical importance for a future linear collider like CLIC, since it determines the IP beam spot sizes. The large chromatic aberrations required the development of novel non-linear optimization metho...

  13. Proceedings of the third workshop on experiments and detectors for a relativistic heavy ion collider (RHIC)

    Energy Technology Data Exchange (ETDEWEB)

    Shivakumar, B.; Vincent, P.

    1988-01-01

    This report contains papers on the following topics: the RHIC Project; summary of the working group on calorimetry; J//Psi/ measurements in heavy ion collisions at CERN; QCD jets at RHIC; tracking and particle identification; a 4..pi.. tracking spectrometer for RHIC; Bose-Einstein measurements at RHIC in light of new data; summary of working group on read-out electronics; data acquisition for RHIC; summary of the working group on detector simulation; B-physics at RHIC; and CP violation revisited at BNL, B-physics at RHIC.

  14. Studies of Strangeness Production in proton-Nucleus Collision: preliminary results from E910 at BNL-AGS

    Science.gov (United States)

    Yang, Xihong

    1996-10-01

    Strange particle production has been viewed as an interesting probe of Heavy-Ion physics because it has the signature of QGP formation. Using the EOS TPC and downstream drift chambers for tracking and using TOF and Cerenkov counters for particle identification, experiment E910 provides a facility with large acceptance and high resolution for exclusive measurements of proton-nucleus collisions at AGS energy. Production of Λ in both 12.5 GeV/c and 18 GeV/c p+A (A = Au, Cu) from '96 run data has been analyzed. The initial reconstruction results of the Λ invariant mass distribution shows a mass resolution of 2.5MeV/c^2. The Λ yield for different beam energies and target masses has been analyzed and compared with the p+p data and E859 data. The transverse mass and rapidity distributions are also discussed here.

  15. BNl 703 MHz superconducting RF cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, B.; Altinbas, Z.; Burrill, A.; Ben-Zvi, I.; Gassner, D.; Hahn, H.; Hammons, L.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Laloudakis, N.; Lederle, D.; Litvinenko, V.; McIntyre, G.; Pate, D.; Phillips, D.; Schultheiss, C.; Seda,T.; Than, R.; Xu, W.; Zaltsman, A.; Schultheiss, T.

    2011-03-28

    The BNL 5-cell, 703 MHz superconducting accelerating cavity has been installed in the high-current ERL experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q{sub 0} of 1e10. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.

  16. The Future Of Spin Physics At BNL

    Science.gov (United States)

    Aronson, Samuel; Deshpande, Abhay

    2007-06-01

    The Relativistic Heavy Ion Collider (RHIC) at BNL is the world's only polarized proton-proton collider. Collisions at center-of-mass energies up to 500 GeV and beam polarizations approaching 70% (longitudinal or transverse) are provided to two experiments, STAR and PHENIX, at luminosities ⩾ 1032/cm2/sec. Transverse polarized beam has also been provided to the BRAHMS experiment. Measurements that bear on the important question of the spin content of the nucleon are beginning to appear. Over the next 10 years, as the performance of polarized proton running at RHIC is farmer developed, the Spin Physics program at RHIC will provide definitive measurements of the contributions to the proton's spin of the gluon, the sea quarks and the orbital motion of the partons in the proton's wave function. We plan to extend the reach of our study of the role of spin in QCD with the development of "eRHIC," which will provide polarized e-p collisions to a new detector.

  17. Workshop on the RHIC performance

    Energy Technology Data Exchange (ETDEWEB)

    Khiari, F.; Milutinovic, J.; Ratti, A.; Rhoades-Brown, M.J. (eds.)

    1988-07-01

    The most recent conceptual design manual for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven was published in May 1986 (BNL 51932). The purpose of this workshop was to review the design specifications in this RHIC reference manual, and to discuss in detail possible improvements in machine performance by addressing four main areas. These areas are beam-beam interactions, stochastic cooling, rf and bunch instabilities. The contents of this proceedings are as follows. Following an overview of the workshop, in which the motivation and goals are discussed in detail, transcripts of the first day talks are given. Many of these transcripts are copies of the original transparencies presented at the meeting. The following four sections contain contributed papers, that resulted from discussions at the workshop within each of the four working groups. In addition, there is a group summary for each of the four working groups at the beginning of each section. Finally, a list of participants is given.

  18. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP: VOLUME 61 RIKEN-TODAI MINI-WORKSHOP ON ''TOPICS IN HADRON PHYSICS AT RHIC''. VOLUME 61

    Energy Technology Data Exchange (ETDEWEB)

    EN' YO,H.HAMAGAKI,H.HATSUDAT.WATANABA,Y.YAZAKI,K.

    2004-05-26

    The RIKEN-TODAI Mini-Workshop on ''Topics in Hadron Physics at RHIC'' was held on March 23rd and 24th, 2064 at the Nishina Memorial Hall of RIKEN, Wako, Saitama, Japan, sponsored by RIKEN (Institute of Physical and Chemical Research) and TODAI (University of Tokyo). The workshop was planned when we learned that two distinguished theorists in hadron physics, Professors L. McLerran and S.H. Lee, would be visiting TODAI and/or RIKEN during the week of March 22-26. We asked them to give key talks at the beginning of the workshop and attend the sessions consisting of talks by young theorists in RIKEN, TODAI and other institutes in Japan and they kindly agreed on both. Considering the JPS meeting scheduled from March 27 through 30, we decided to have a.one-and-half-a-day workshop on March 23 and 24. The purpose of the workshop was to offer young researchers an opportunity to learn the forefront of hadron physics as well as to discuss their own works with the distinguished theorists.

  19. Excitation function of squared speed-of-sound extracted from (net-)proton rapidity spectra in Au-Au and Pb-Pb collisions over an energy range from AGS to RHIC

    CERN Document Server

    Gao, Li-Na; Sun, Yan; Sun, Zhu; Lacey, Roy A

    2016-01-01

    Experimental results of the rapidity distributions of protons and net-protons (protons minus antiprotons) emitted in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions, measured by a few collaborations at the alternating gradient synchrotron (AGS), super proton synchrotron (SPS), and relativistic heavy ion collider (RHIC), are described by a revised Landau hydrodynamic model. The values of squared speed-of-sound parameter $c^2_s$ are then extracted from the rapidity distribution widths of (net-)protons. The excitation function of $c^2_s$ of the interacting system in Au-Au and Pb-Pb collisions over an energy range from AGS to RHIC is obtained to show a local minimum or softest point in the equation of state (EoS) at the center-of-mass energy per nucleon pair $\\sqrt{s_{NN}}=8.8$ GeV which confirms our previous result.

  20. Polarized proton parameters for the 2015 PP-on-Au setup in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-25

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Au stores.

  1. Polarized proton parameters for the 2015 PP-on-Aluminum setup in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-02

    Values are given for RHIC circumference shifts due to snakes for various situations. Relevant parameters are tabulated for polarized protons (PP) in the booster and in AGS and RHIC for PP-on-Aluminum stores.

  2. RHIC physics

    CERN Document Server

    Pajares, C

    1999-01-01

    A brief review of the hadronic phase transitions is presented by emphasizing the physical ideas and the main signatures of the transition in relation to the most significant results of the SPS experiments and the description of the RHIC experiments. (77 refs).

  3. The RHIC status update

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, S. [Brookhaven National Lab., Upton, NY (United States)

    1995-07-15

    The construction of the Relativistic Heavy Ion Collider (RHIC) began in 1991, with the completion date originally scheduled for 1997. Significant reduction of the funding levels in FY 1993 and 1994, and the funding level cap for FY 1995 and later years caused a 19-month stretchout of the construction period to the second quarter of FY 1999, and an increase of the total estimated cost (TEC) to $475 M. The Project, therefore, is now at the halfway mark of the construction period with actual cost and schedule performance tracking close to the DOE-approved baseline. Construction funding through FY 1994 reached close to 60% of the TEC. Incidentally, if one adds the current value of preexisting facilities which will be incorporated into RHIC, such as the injection system (Tandem Van de Graaff - the Booster - the AGS), the esixting 3.8 km tunnel, the 24 kW helium refrigerator, etc., the total value of the RHIC facility, when completed, will reach one billion dollars, if not more. The accelerator lattice design was finalized in 1992 after an intensive study was made to optimize the collider design for performance, operational flexibility, and value engineering. The civil construciton, including the collider enclosure, magnet access ports to the ring tunnel, and six service buildings for accelerator power supplies and cryogenic control boxes was completed.

  4. First test of BNL electron beam ion source with high current density electron beam

    Science.gov (United States)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  5. Is there a role for fixed target heavy ion physics beyond RHIC startup?

    Energy Technology Data Exchange (ETDEWEB)

    Sandweiss, J. [Yale Univ., New Haven, CT (United States)

    1995-07-15

    The interesting and important physics opportunities provided by AGS and CERN fixed target facilities will be far from exhausted by the time of RHIC turn on. Given the need for the AGS to provide heavy ion beams for injection into RHIC, the cost effectiveness of fixed target experimentation with AGS beams will be high. Examples of the physics are given.

  6. BNL 56 MHz HOM damper prototype fabrication at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Huque, N.; McIntyre, G.; Daly, E. F.; Clemens, W.; Wu, Q.; Seberg, S.; Bellavia, S.

    2015-05-03

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider’s (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  7. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Naeem A. [Jefferson Lab., Newport News, VA (United States); Daly, Edward F. [Jefferson Lab., Newport News, VA (United States); Clemens, William A. [Jefferson Lab., Newport News, VA (United States); McIntyre, Gary T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Qiong [Brookhaven National Lab. (BNL), Upton, NY (United States); Seberg, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, Steve [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-01

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  8. Nuclear Stopping:. Paving the way from Rhic to Lhc

    Science.gov (United States)

    Dalsgaard, Hans Hjersing

    Nuclear stopping has been measured at a range of different energies in heavy ion experiments. In this contribution proton data from the BRAHMS experiment at RHIC running at √ {SNN} = 62.4\\ GeV are presented. Furthermore data from AGS, SPS and RHIC are used to estimate the stopping, energy loss and multiplicity at LHC.

  9. Helical spin rotators and snakes for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsin, V.I.; Shatunov, Yu.M. [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation); Peggs, S. [Brookhaven National Lab., Upton, NY (United States)

    1995-05-01

    The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180{degree} around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented.

  10. Design study of a normal conducting helical snake for AGS

    CERN Document Server

    Takano, Junpei; Okamura, Masahiro; Roser, Thomas; MacKay, William W; Luccio, Alfredo U; Takano, Koji

    2004-01-01

    A new normal conducting snake magnet is being fabricated for the Alternate Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). In the Relativistic Heavy Ion Collider (RHIC) project, a superconducting type helical dipole magnets had been developed and it performed successfully in high-energy polarized proton acceleration. The new AGS helical snake has the same basic magnetic structure but is more complicated. To achieve no beam shift and no beam deflection in one magnetic device, helical pitches and rotating angles were carefully calculated. Compared to a superconducting magnet, a normal warm magnet must have a large cross- sectional area of conductors which make it difficult to design a magnet with large helical pitch. We developed a modified window frame structure to accommodate the large number of conductors. Its three dimensional magnetic field was simulated by using OPERA3D/TOSCA. 3 Refs.

  11. The Strongly Interacting Quark Gluon Plasma at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Tserruya Itzhak

    2014-04-01

    Full Text Available The study of heavy-ion collisions has currently unprecedented opportunities with two first class facilities, the Relativistic Heavy Ion Collider (RHIC at BNL and the Large Hadron Collider (LHC at CERN, and five large experiments ALICE, ATLAS, CMS, PHENIX and STAR producing a wealth of high quality data. Selected results recently obtained are presented on the study of flow, energy loss and direct photons.

  12. Cooling Scheme for BNL-Built LHC Magnets

    CERN Document Server

    Ostojic, R; Van Weelderen, R; Willen, E H; Wu, K C

    1999-01-01

    Brookhaven National Laboratory (BNL) will provide four types of magnets, identified as D1, D2, D3 and D4, for the Insertion Regions of the Large Hadron Collider (LHC) as part of an international collaboration. These magnets utilize the dipole coil design of the Relativistic Heavy Ion Collider (RHIC) at BNL, for performance, reliability and cost reasons. The magnet cold mass and cryostat have been designed to ensure that these magnets meet all performance requirements in the LHC sloped tunnel using its cryogenic distribution system. D1 is a RHIC arc dipole magnet. D2 and D4 are 2-in-1 magnets, two coils in one cold mass, in a cryostat. D3 is a 1-in-1 magnet, one coil in one cold mass, with two cold masses side by side in a cryostat. D1 and D4 will be cooled by helium II at 1.9 K using a bayonet heat exchanger similar to the main cooling system of LHC. D2 and D3 will be cooled by liquid helium at 4.5 K using a Two-Feed scheme. A detailed description of the cooling scheme for these magnets, their cryostats, spec...

  13. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOLUME 64)

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.; KRETZER,S.; TEANEY,D.; VENUGOPALAN,R.; VOGELSANG,W.

    2004-09-28

    We are presently in a very exciting and important phase of the RHIC era. A huge body of data. has been gathered in heavy-ion collisions that provides very convincing evidence for the formation of a quark. gluon plasma in central collisions. Recently, studies of nuclear modification factors in forward dAu collisions have shown tantalizing signatures that may be understood most naturally in terms of a, universal form of matter controlling the high energy limit of strong interactions, the Color Glass Condensate. Finally, important advances have also been made in spin physics, where first measurements of single-transverse and double-longitudinal spin asymmetries have been presented, marking a qualitatively new era in this field. The wealth of the new experimental data called for a workshop in which theorists took stock and reviewed in depth what has been achieved, in order to give guidance as to what avenues should be taken from here. This was the idea behind the workshop ''Theory Summer Program on RHIC Physics''. We decided to invite a fairly small number of participants--some world leaders in their field, others only at the beginning of their careers, but all actively involved in RHIC physics. Each one of them stayed over an extended period of time from two to six weeks. Such long-terms stays led to particularly fruitful interactions and collaborations with many members of the BNL theory groups, as well as with experimentalists at BNL. They also were most beneficial for achieving the main goal of this workshop, namely to perform detailed studies.

  14. Development of NEG Coating for RHIC Experimental Beamtubes

    CERN Document Server

    Weiss, Daniel; Hseuh Hsiao Chaun; Todd, Robert J

    2005-01-01

    As RHIC beam intensity increases beyond original scope, pressure rises in some regions have been observed. The luminosity limiting pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam induced desorption. Non-Evaporable Getter (NEG) coated beampipes have been proven effective to suppress pressure rise in synchrotron radiation facilities. Standard beampipes have been NEG coated by a vendor and added to many RHIC UHV regions. BNL is developing a cylindrical magnetron sputtering system to NEG coat special beryllium beampipes installed in RHIC experimental regions. It features a hollow, liquid cooled cathode producing power density of 500W/m and deposition rate of 5000 Angstrom/hr on 7.5cm OD beampipe. The cathode, a titanium tube partially covered with zirconium and vanadium ribbons, is oriented for horizontal coating of 4m long chambers. Ribbons and magnets are arranged to provide uniform sputtering distribution and deposited NEG composition. Vacuum performance of NE...

  15. The RHIC polarized H- ion source

    Science.gov (United States)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H- ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H- ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  16. FPC conditioning cart at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.; Ben-Zvi, I.; Altinbas, F.Z.; Belomestnykh, S.; Burrill, A.; Cole, M.; Deonarine, J.; Jamilkowski, J.; Kayran, D.; Laloudakis, N.; Masi Jr, L.; McIntyre, G.; Pate, D.; Philips, D.; Seda, T.; Steszyn, A.; Tallerico, T.; Todd, R.; Weiss, D.; White, G.; Zaltsman, A.

    2011-03-28

    The 703 MHz superconducting gun for the BNL Energy Recovery Linac (ERL) prototype has two fundamental power couplers (FPCs), and each of them will deliver up to 500 kW of CW RF power. In order to prepare the couplers for high power RF service and process multipacting, the FPCs should be conditioned prior to installation into the gun cryomodule. A conditioning cart based test stand, which includes a vacuum pumping system, controllable bake-out system, diagnostics, interlocks and data log system has been designed, constructed and commissioned by collaboration of BNL and AES. This paper presents FPC conditioning cart systems and the conditioning process.

  17. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  18. High-intensity polarized H-(proton), deuteron and 3He++ion source development at BNL.

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski,A.

    2008-06-23

    New techniques for the production of polarized electron, H{sup -} (proton), D (D+) and {sup 3}H{sup ++} ion beams are discussed. Feasibility studies of these techniques are in progress at BNL. An Optically Pumped Polarized H{sup -} Ion Source (OPPIS) delivers beam for polarization studies in RHIC. The polarized deuteron beam will be required for the deuteron Electron Dipole Moment (EDM) experiment, and the {sup 3}H{sup ++} ion beam is a part of the experimental program for the future eRHIC (Electron Ion) collider.

  19. Longitudinal impedance of RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, J. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  20. TUNE FEEDBACK AT RHIC

    Energy Technology Data Exchange (ETDEWEB)

    CAMERON,P.; CERNIGLIA,P.; CONNOLLY,R.; CUPOLO,J.; DAWSON,W.C.; DEGEN,C.; DELLAPENNA,A.; DELONG,J.; DREES,A.; HUHN,A.; KESSELMAN,M.; MARUSIC,A.; OERTER,B.; MEAD,J.; SCHULTHEISS,C.; SIKORA,R.; VAN ZEIJTS,J.

    2001-06-18

    Preliminary phase-locked loop betatron tune measurement results were obtained during RHIC 2000 with a resonant Beam Position Monitor. These results suggested the possibility of incorporating PLL tune measurement into a tune feedback system for RHIC 2001. Tune feedback is useful in a superconducting accelerator, where the machine cycle time is long and inefficient acceleration due to resonance crossing is not comfortably tolerated. This is particularly true with the higher beam intensities planned for RHIC 2001. We present descriptions of a PLL tune measurement system implemented in the DSP/FPGA environment of a RHIC BPM electronics module and the feedback system into which the measurement is incorporated to regulate tune. In addition, we present results from the commissioning of this system during RHIC 2001.

  1. ERL-BASED LEPTON-HADRON COLLIDERS: eRHIC AND LHeC

    CERN Document Server

    Zimmermann, F

    2013-01-01

    Two hadron-ERL colliders are being proposed. The Large Hadron electron Collider (LHeC) plans to collide the high-energy protons and heavy ions in the Large Hadron Collider (LHC) at CERN with 60-GeV polarized electrons or positrons. The baseline scheme for this facility adds to the LHC a separate recirculating superconducting (SC) lepton linac with energy recovery, delivering a lepton current of 6.4mA. The electron-hadron collider project eRHIC aims to collide polarized (and unpolarized) electrons with a current of 50 (220) mA and energies in the range 5–30 GeV with a variety of hadron beams— heavy ions as well as polarized light ions— stored in the existing Relativistic Heavy Ion Collider (RHIC) at BNL. The eRHIC electron beam will be generated in an energy recovery linac (ERL) installed inside the RHIC tunnel.

  2. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    Energy Technology Data Exchange (ETDEWEB)

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  3. BNL Activities in Advanced Neutron Source Development: Past and Present

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  4. Baryon stopping and saturation physics at RHIC and LHC

    CERN Document Server

    Mehtar-Tani, Yacine

    2009-01-01

    We investigate baryon transport in relativistic heavy-ion collisions at energies reached at the CERN Super Proton Synchrotron, BNL Relativistic Heavy-Ion Collider (RHIC), and CERN LHC in the model of saturation. An analytical scaling law is derived within the color glass condensate framework based on small-coupling QCD. Transverse momentum spectra, net-baryon rapidity distributions and their energy, mass and centrality dependences are well described. In a comparison with RHIC data in Au + Au collisions at sqrt (s_NN) = 62.4 GeV and 200 GeV, the gradual approach to the gluon saturation regime is investigated, and limits for the saturation-scale exponent are determined. Predictions for net-baryon rapidity spectra and the mean rapidity loss in central Pb + Pb collisions at LHC energies of sqrt (s_NN) = 5.52 TeV are made.

  5. First test of BNL electron beam ion source with high current density electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard [CERN, CH-1211 Geneva 23 (Switzerland)

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  6. Gluon saturation and pseudo-rapidity distributions of charged hadrons at RHIC energy regions

    Institute of Scientific and Technical Information of China (English)

    WEI Xin-Bing; FENG Sheng-Qin

    2012-01-01

    We modified the gluon saturation model by rescaling the momentum fraction according to saturation momentum and introduced Cooper-Frye hydrodynamic evolution to systematically study the pseudorapidity distributions of final charged hadrons at different energies and different centralities for Au-Au collisions in relativistic heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC).The features of both gluon saturation and hydrodynamic evolution at different energies and different centralities for Au-Au collisions are investigated in this paper.

  7. Progress on Test EBIS and the Design of an EBIS-Based RHIC Preinjector

    CERN Document Server

    Alessi, James; Gould, Omar; Kponou, Ahovi; Lockey, Robert; Pikin, Alexander I; Prelec, Krsto; Raparia, Deepak; Ritter, John; Snydstrup, Louis

    2005-01-01

    Following the successful development of the Test EBIS at BNL,* we now have a design for an EBIS-based heavy ion preinjector which would serve as an alternative to the Tandem Van de Graaffs in providing beams for RHIC and the NASA Space Radiation Laboratory. This baseline design includes an EBIS producing mA-level currents of heavy ions (ex. Au 32+) in ~ 10-20

  8. Opportunities for Polarized He-3 in RHIC and EIC

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer E.; Deshpande, A.; Fischer, W.; Derbenev, S.; Milner, R.; Roser, T.; Zelenski, A.

    2011-10-01

    The workshop on opportunities for polarized He-3 in RHIC and EIC was targeted at finding practical ways of implementing and using polarized He-3 beams. Polarized He-3 beams will provide the unique opportunity for first measurements, i.e, to a full quark flavor separation measuring single spin asymmetries for p{sup +}, p{sup -} and p{sup 0} in hadron-hadron collisions. In electron ion collisions the combination of data recorded with polarized electron proton/He-3 beams allows to determine the quark flavor separated helicity and transverse momentum distributions. The workshop had sessions on polarized He-3 sources, the physics of colliding polarized He-3 beams, polarimetry, and beam acceleration in the AGS Booster, AGS, RHIC, and ELIC. The material presented at the workshop will allow making plans for the implementation of polarized He-3 beams in RHIC.

  9. Loss maps of RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Robert-Demolaize,G.

    2007-10-01

    State-of-the-art tracking tools were recently developed at CERN to study the cleaning efficiency of the Large Hadron Collider (LHC) collimation system [1]. These tools are fully transportable, meaning that any accelerator lattice that includes a collimation system can be simulated. Each of the two Relativistic Heavy Ion Collider (RHIC) [2] beam lines features a multi-stage collimation system, therefore dedicated datasets from RHIC operations with proton beams can be used to benchmark the tracking codes and assess the accuracy of the predicted hot spots along the LHC.

  10. RHIC prefire protection masks

    Energy Technology Data Exchange (ETDEWEB)

    Drees, A.; Biscardi, C.; Curcio, T.; Gassner, D.; DeSanto, L.; Fu, W.; Liaw, C. J.; Montag, C.; Thieberger, P.; Yip, K.

    2015-01-07

    The protection of the RHIC experimental detectors from damage due to beam hitting close upstream elements in cases of abort kicker prefires requires some dedicated precautionary measures with two general options: to bring the beam close to a limiting aperture (i.e. the beam pipe wall), as far upstream of the detector components as possible or, alternatively, to bring a limiting aperture close to the circulating beam. Spontaneous and random prefires of abort kicker modules (Pulse Forming Network, PFN) have a history as long as RHIC is being operated. The abort system consist of 5 kickers in per ring, each of them equipped with its own dedicated PFN.

  11. ELECTRON ACCELERATION FOR E-RHIC WITH THE NON-SCALING FFAG.

    Energy Technology Data Exchange (ETDEWEB)

    TRBOJEVIC,D.BALSKIEWICZ,M.COURANT,E.D.ET AL.

    2004-07-05

    A non-scaling FFAG lattice design to accelerate electrons from 3.2 to 10 GeV is described. This is one of possible solutions for the future electron-ion collider (eRHIC) at Relativistic Heavy Ion Collier (RHIC) at Brookhaven National Laboratory (BNL). The e-RHIC proposal requires acceleration of the low emittance electrons up to energy of 10 GeV. To reduce a high cost of the full energy super-conducting linear accelerator an alternative approach with the FFAG is considered. The report describes the 1277 meters circumference non-scaling FFAG ring. The Courant-Snyder functions, orbit offsets, momentum compaction, and path length dependences on momentum during acceleration are presented.

  12. The Cornell-BNL FFAG-ERL Test Accelerator: White Paper

    CERN Document Server

    Bazarov, Ivan; Dunham, Bruce; Hoffstaetter, Georg; Mayes, Christopher; Patterson, Ritchie; Sagan, David; Ben-Zvi, Ilan; Berg, Scott; Blaskiewicz, Michael; Brooks, Stephen; Brown, Kevin; Fischer, Wolfram; Hao, Yue; Meng, Wuzheng; Méot, François; Minty, Michiko; Peggs, Stephen; Ptitsin, Vadim; Roser, Thomas; Thieberger, Peter; Trbojevic, Dejan; Tsoupas, Nick

    2015-01-01

    The Cornell-BNL FFAG-ERL Test Accelerator (C$\\beta$) will comprise the first ever Energy Recovery Linac (ERL) based on a Fixed Field Alternating Gradient (FFAG) lattice. In particular, we plan to use a Non Scaling FFAG (NS-FFAG) lattice that is very compact and thus space- and cost- effective, enabling multiple passes of the electron beam in a single recirculation beam line, using the superconducting RF (SRF) linac multiple times. The FFAG-ERL moves the cost optimized linac and recirculation lattice to a dramatically better optimum. The prime accelerator science motivation for C$\\beta$ is proving that the FFAG-ERL concept works. This is an important milestone for the Brookhaven National Laboratory (BNL) plans to build a major Nuclear Physics facility, eRHIC, based on producing 21 GeV electron beams to collide with the RHIC ion beams. A consequence of the C$\\beta$ work would be the availability of significantly better, cost-effective, compact CW high-brightness electron beams for a plethora of scientific inves...

  13. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP FUTURE TRANSVERSITY MEASUREMENTS (VOLUME 29).

    Energy Technology Data Exchange (ETDEWEB)

    Boer, D.; Grosse Perdekamp, M.

    2001-01-02

    The RIKEN-BNL Research Center workshop on ''Future Transversity Measurements'' was held at BNL from September 18-20, 2000. The main goal of the workshop was to explore future measurements of transversity distributions. This issue is of importance to the RHIC experiments, which will study polarized proton-proton collisions with great precision. One of the workshop's goals was to enhance interactions between the DIS community at HERA and the spin community at RHIC in this field. The workshop has been well received by the participants; the number of 69 registered participants demonstrates broad interest in the workshop's topics. The program contained 35 talks and there was ample time for lively discussions. The program covered all recent work in the field and in addition some very elucidating educational talks were given. At the workshop the present status of the field was discussed and it has succeeded in stimulating new experimental and theoretical studies (e.g. model calculations for interference fragmentation functions (IFF), IFF analysis at DELPHI). It also functioned to focus attention on the open questions that need to be resolved for near future experiments. In general, the conclusions were optimistic, i.e. measuring the transversity functions seems to be possible, although some new experimental hurdles will have to be taken.

  14. Beam Loss Estimates and Control for the BNL Neutrino Facility

    CERN Document Server

    Weng, Wu-Tsung; Raparia, Deepak; Tsoupas, Nicholaos; Wei, Jie; Yung Lee, Yong; Zhang, S Y

    2005-01-01

    BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW for a very long baseline neutrino oscillation experiment. This increase in beam power is mainly due to the faster repetition rate of the AGS by a new 1.5 GeV superconductiong linac as injector, replacing the existing booster. The requirement for low beam loss is very important both to protect the beam component, and to make the hands-on maintenance possible. In this report, the design considerations for achieving high intensity and low loss will be presented. We start by specifying the beam loss limit at every physical process followed by the proper design and parameters for realising the required goals. The process considered in this paper include the emittance growth in the linac, the H-

  15. Beam injection into RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  16. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.; Yuan, F.

    2011-08-02

    Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty years ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the

  17. Why is the null HBT result at RHIC so interesting?

    CERN Document Server

    Gyulassy, M

    2003-01-01

    Pion interferometry (HBT of A+A) data have posed a thorn in the theoretical interpretation of AA collisions at RHIC (sq root s = 130 AGeV). How can R sub o sub u sub t approx R sub s sub i sub d sub e approx R sub l sub o sub n sub g and remain so between AGS and RHIC? Where is the QGP Stall? Can elephants hide along the x sub 0 sup + dimension? We rummage old hydrodynamic scenarios and uncover some previously ignored NULL solutions. (author)

  18. Measurement of the analyzing power of proton-carbon elastic scattering in the CNI region at RHIC

    CERN Document Server

    Jinnouchi, O; Bravar, A; Bunce, G; Dhawan, S; Huang, H; Igo, G; Kanavets, V P; Kurita, K; Okada, H; Saitô, N; Spinka, H; Svirida, D N; Wood, J

    2005-01-01

    The single transverse spin asymmetry, A_N, of the p-carbon elastic scattering process in the Coulomb Nuclear Interference (CNI) region was measured using an ultra thin carbon target and polarized proton beam in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). In 2004, data were collected to calibrate the p-carbon process at two RHIC energies (24 GeV, 100 GeV). A_N was obtained as a function of momentum transfer -t. The results were fit with theoretical models which allow us to assess the contribution from a hadronic spin flip amplitude.

  19. Synchrotron Radiation in eRHIC Interaction Region

    CERN Document Server

    Beebe-Wang, Joanne; Montag, Christoph; Rondeau, Daniel J; Surrow, Bernd

    2005-01-01

    The eRHIC currently under study at BNL consists of an electron storage ring added to the existing RHIC complex. The interaction region of this facility has to provide the required low-beta focusing while accommodating the synchrotron radiation generated by beam separation close to the interaction point. In the current design, the synchrotron radiation caused by 10GeV electrons bent by low-beta triplet magnets will be guided through the interaction region and dumped 5m downstream. However, it is unavoidable to stop a fraction of the photons at the septum where the electron and ion vacuum system are separated. In order to protect the septum and minimize the backward scattering of the synchrotron radiation, an absorber and collimation system will be employed. In this paper, we first present the overview of the current design of the eRHIC interaction region with special emphasis on the synchrotron radiation. Then the initial design of the absorber and collimation system, including their geometrical and physical p...

  20. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  1. Proceedings of RIKEN BNL Research Center Workshop: The Physics of W and Z Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, S.; Okada, K.; Patwa, A.; Qiu, J.; Surrow, B.

    2010-06-24

    A two-day workshop on 'The Physics of Wand Z Bosons' Was held at the RIKEN BNL Research Center at Brookhaven National Laboratory on June 24-25, 2010. With the recent release of the first measurement of W bosons in proton-proton collisions at RHIC and the first observation of W events at the LHC, the workshop was a timely opportunity to bring together experts from both the high energy particle and nuclear physics communities to share their ideas and expertise on the physics of Wand Z bosons, with the aim of fully exploring the potential of the W/Z physics programs at RHIC and the LHC. The focus was on the production and measurement of W/Z bosons in both polarized and unpolarized proton-proton collisions, and the role of W/Z production in probing the parton flavor and helicity structure of the colliding proton and in the search for new physics. There were lively discussions about the potential and future prospects of W/Z programs at RHIC, Tevatron, and the LHC.

  2. SCIENTIFIC PRESENTATION. 7TH MEETING OF THE MANAGEMENT STEERING COMMITTEE OF THE RIKEN BNL COLLABORATION.

    Energy Technology Data Exchange (ETDEWEB)

    LEE,T.D.

    2001-02-13

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho,'' (RIKEN) The Institute of Physical and Chemical Research, of Japan. The Center is dedicated to the study of strong 'interactions, including hard QCD/spin physics, lattice QCD and RHIC (Relativistic Heavy Ion Collider) physics through nurturing of a new generation of young physicists. The Director of RBRC is Professor T. D. Lee. The first years were dedicated to the establishment of a theory group. This has essentially been completed consisting of Fellows, Postdocs, and RHIC Physics/University Fellows, with an active group of consultants. The center also organizes an extensive series of workshops on specific topics in strong interactions with an accompanying series of published proceedings. In addition, a 0.6 teraflop parallel processor computer has been constructed and operational since August 1998. It was awarded the Supercomputer 1998 Gordon Bell Prize for price performance. An active experimental group centered around the spin physics program at RHIC has subsequently also been established at RBRC. It presently consists of five Fellows, one Postdoc and several scientific collaborators with more appointments being expected in the near future. Members and participants of RBRC on occasion will develop articles such as this one, in the nature of a status report or a general review.

  3. SCIENTIFIC PRESENTATION. 7TH MEETING OF THE MANAGEMENT STEERING COMMITTEE OF THE RIKEN BNL COLLABORATION.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.D.

    2001-02-13

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkysho,'' (RIKEN) The Institute of Physical and Chemical Research, of Japan. The Center is dedicated to the study of strong interactions, including hard QCD/spin physics, lattice QCD and RHIC (Relativistic Heavy Ion Collider) physics through nurturing of a new generation of young physicists. The Director of RBRC is Professor T. D. Lee. The first years were dedicated to the establishment of a theory group. This has essentially been completed consisting of Fellows, Postdocs, and RHIC Physics/University Fellows, with an active group of consultants. The center also organizes an extensive series of workshops on specific topics in strong interactions with an accompanying series of published proceedings. In addition, a 0.6 teraflop parallel processor computer has been constructed and operational since August 1998. It was awarded the Supercomputer 1998 Gordon Bell Prize for price performance. An active experimental group centered around the spin physics program at RHIC has subsequently also been established at RBRC. It presently consists of five Fellows, one Postdoc and several scientific collaborators with more appointments being expected in the near future. Members and participants of RBRC on occasion will develop articles such as this one, in the nature of a status report or a general review.

  4. BNL ATF II beamlines design

    Energy Technology Data Exchange (ETDEWEB)

    Fedurin, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jing, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratakis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Swinson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, will be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.

  5. RHIC PLANS TOWARDS HIGHER LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide luminosity over a wide range of beam energies and species, including heavy ions, polarized protons, and tric beam collisions. In the first seven years of operation there has been a rapid increase in the achieved peak and average luminosity, substantially exceeding design values. Work is presently underway to achieve the Enhanced Design parameters. Planned major upgrades include the Electron Beam Ion Source (EBIS), RHIC-11, and construction of an electron-ion collider (eRHIC). We review the expected RHIC upgrade performance. Electron cooling and its impact on the luminosity both for heavy ions and protons are discussed in detail.

  6. RHIC physics overview

    CERN Document Server

    Ruan, Lijuan

    2010-01-01

    The results from data taken during the last several years at the Relativistic Heavy-Ion Collider (RHIC) will be reviewed in the paper. Several selected topics that further our understanding of constituent quark scaling, jet quenching and color screening effect of heavy quarkonia in the hot dense medium will be presented. Detector upgrades will further probe the properties of Quark Gluon Plasma. Future measurements with upgraded detectors will be presented. The discovery perspectives from future measurements will also be discussed.

  7. Electromagnetic Signals at RHIC

    CERN Document Server

    Turbide, S; Turbide, Simon; Gale, Charles

    2006-01-01

    We calculate the direct photon yield in central and mid-peripheral Au+Au collisions at the Relativistic Heavy-Ion Collider (RHIC). The processes involving the propagation of jets have been convolved with a leading order treatment of jet energy loss in the medium and a one dimensional hydrodynamic expansion. The quark-gluon plasma (QGP) contribution turns out to be important, especially the in-medium conversion of a jet into a photon, for successfully describing recent photon measurements.

  8. High-energy high-luminosity electron-ion collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Ben-Zvi, I.; Hammons, L.; Hao, Y.; Webb, S.; et al

    2011-08-09

    design of the high-luminosity eRHIC. In it, electrons from the polarized pre-injector will be accelerated to their top energy by passing six times through two SRF linacs. After colliding with the hadron beam in up to three detectors, the e-beam will be decelerated by the same linacs and dumped. The six-pass magnetic system with small-gap magnets will be installed from the start. We will stage the electron energy from 5 GeV to 30 GeV stepwise by increasing the lengths of the SRF linacs. We discuss details of eRHIC's layout in Section 3. We considered several IR designs for eRHIC. The latest one, with a 10 mrad crossing angle and {beta}* = 5 cm, takes advantage of newly commissioned Nb{sub 3}Sn quadrupoles. Section 4 details the eRHIC lattice and the IR layout. The current eRHIC design focuses on electron-hadron collisions. If justified by the EIC physics, we will add a 30 GeV polarized positron ring with full energy injection from eRHIC ERL. This addition to the eRHIC facility provide for positron-hadron collisions, but at a significantly lower luminosity than those attainable in the electron-hadron mode. As a novel high-luminosity EIC, eRHIC faces many technical challenges, such as generating 50 mA of polarized electron current. eRHIC also will employ coherent electron cooling (CeC) for the hadron beams. Staff at BNL, JLab, and MIT is pursuing vigorously an R&D program for resolving addressing these obstacles. In collaboration with Jlab, BNL plans experimentally to demonstrate CeC at the RHIC. We discuss the structure and the status of the eRHIC R&D in Section 5.

  9. Perturbative QCD as a probe of hadron structure: Volume 2. Proceedings of RIKEN BNL Research Center workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The workshop brought together about thirty invited participants from around the world, and an almost equal number of Brookhaven users and staff, to discuss recent developments and future prospects for hadronic strong interaction studies at high energy, particularly relating to the RHIC project at Brookhaven. RIKEN and Brookhaven have long traditions in and commitments to the study of the strong interactions, and the advent of the RHIC collider will open new opportunities both for relativistic heavy ion and polarized proton-proton studies. Activities at the RIKEN BNL Research Center are intended to focus on physics opportunities stimulated by this new facility. Thus, one of the purposes of the center is to provide a forum where workers in the field can gather to share and develop their ideas in a stimulating environment. The purpose of the workshop was both to delineate theoretical problems and stimulate collaborations to address them. The workshop focused primarily, but not exclusively, on spin and small-x physics.

  10. EVENT GENERATOR FOR RHIC SPIN PHYSICS-VOLUME 11

    Energy Technology Data Exchange (ETDEWEB)

    SAITO,N.; SCHAEFER,A.

    1998-12-01

    This volume contains the report of the RIKEN BNL Research Center workshop on ''Event Generator for RHIC Spin Physics'' held on September 21-23, 1998 at Brookhaven National Laboratory. A major objective of the workshop was to establish a firm collaboration to develop suitable event generators for the spin physics program at RHIC. With the completion of the Relativistic Heavy Ion Collider (RHIC) as a polarized collider a completely new domain of high-energy spin physics will be opened. The planned studies address the spin structure of the nucleon, tests of the standard model, and transverse spin effects in initial and final states. RHIC offers the unique opportunity to pursue these studies because of its high and variable energy, 50 {le} {radical}s {le} 500 GeV, high polarization, 70%, and high luminosity, 2 x 10{sup 32} cm{sup -2} sec{sup -1} or more at 500 GeV. To maximize the output from the spin program at RHIC, the understanding of both experimental and theoretical systematic errors is crucial. It will require full-fledged event generators, to simulate the processes of interest in great detail. The history of event generators shows that their development and improvement are ongoing processes taking place in parallel to the physics analysis by various experimental groups. The number of processes included in the generators has been increasing and the precision of their predictions has been being improved continuously. Our workshop aims at getting this process well under way for the spin physics program at RHIC, based on the fist development in this direction, SPHINX. The scope of the work includes: (1) update of the currently existing event generator by including the most recent parton parameterizations as a library and reflecting recent progress made for spin-independent generators, (2) implementation of new processes, especially parity violating effects in high energy pp collisions, (3) test of the currently available event generator by

  11. Fast Automated Decoupling at RHIC

    CERN Document Server

    Beebe-Wang, Joanne

    2005-01-01

    Coupling correction is essential for the operational performance of RHIC. The independence of the transverse degrees of freedom makes diagnostics and tune control easier, and it is advantageous to operate an accelerator close to the coupling resonance to minimize nearby nonlinear sidebands. An automated decoupling application has been developed at RHIC for coupling correction during routine operations. The application decouples RHIC globally by minimizing the tune separation through finding the optimal settings of two orthogonal skew quadrupole families. The program provides options of automatic, semi-automatic and manual decoupling operations. It accesses tune information from all RHIC tune measurement systems: the PLL (Phase Lock Loop), the high frequency Schottky system, and the tune meter. It also supplies tune and skew quadrupole scans, finding the minimum tune separation, display the real time results and interface with the RHIC control system. We summarize the capabilities of the decoupling application...

  12. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOLUME 55) COLLECTIVE FLOW AND QGP PROPERTIES.

    Energy Technology Data Exchange (ETDEWEB)

    BASS,S.ESUMI,S.HEINZ,U.KOLB,P.SHURYAK,E.XU,N.

    2003-11-17

    The first three years of RHIC physics, with Au/Au collisions induced at 65, 130 and 200 GeV per nucleon pair, produced dramatic results, particularly with respect to collective observables such as transverse flow and anisotropies in transverse momentum spectra. It has become clear that the data show very strong rescattering at very early times of the reaction, strong enough in fact to be described by the hydrodynamic limit. Therefore, with today's experiments, we are able to investigate the equation of state of hot quark gluon matter, discuss its thermodynamic properties and relate them to experimental observables. At this workshop we came together to discuss our latest efforts both in the theoretical description of heavy ion collisions as well as most recent experimental results that ultimately allow us to extract information on the properties of RHIC matter. About 50 participants registered for the workshop, but many more dropped in from the offices at BNL. The workshop lasted for three days, of which each day was assigned a special topic on which the talks focused. On the first day we dealt with the more general question what the strong collective phenomena observed in RHIC collisions tell us about the properties and the dynamics of RHIC matter. The second day covered all different aspects of momentum anisotropies, and interesting new experimental results were presented for the first time. On the third day, we focused on the late fireball dynamics and the breakdown of the assumption of thermalization. New experimental observables were discussed, which will deliver more information of how the expanding fireball breaks up, once the frequent interaction ceases.

  13. RHIC electron lenses upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Altinbas, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Binello, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Costanzo, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Miller, T. A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Pikin, A. I. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Shrey, T. C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tan, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  14. Calirimeter/absorber optimization for a RHIC dimuon experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, S.H.; Murtagh, M.J.; Starks, M. [Brookhaven National Lab., Upton, NY (United States); Liu, X.T.; Petitt, G.A.; Zhang, Z. [Georgia State Univ., Atlanta (United States); Ewell, L.A.; Hill, J.C.; Wohn, F.K. [Iowa State Univ., Ames (United States); Costales, J.B.; Namboodiri, M.N., Sangster, T.C.; Thomas, J.H. [Lawrence Livermore National Lab., CA (United States); Gavron, A.; Waters, L. [Los Alamos National Lab., NM (United States); Kehoe, W.L.; Steadman, S.G. [Massachusetts Institute of Technology, Cambridge (United States); Awes, T.C.; Obenshain, F.E.; Saini, S.; Young, G.R. [Oak Ridge National Lab., TN (United States); Chang, J.; Fung, S.Y.; Kang, J.H. [Univ. of California, Riverside, CA (United States); Kreke, J.; He, Xiaochun, Sorensen, S.P. [Univ. of Tennessee, Knoxville (United States); Cornell, E.C.; Maguire, C.F. [Vanderbilt Univ., Nashville, TN (United States)

    1991-12-31

    The RD-10 R&D effort on calorimeter/absorber optimization for a RHIC experiment had an extended run in 1991 using the A2 test beam at the AGS. Measurements were made of the leakage of particles behind various model hadron calorimeters. Behavior of the calorimeter/absorber as a muon-identifier was studied. First comparisons of results from test measurements to calculated results using the GHEISHA code were made

  15. Long baseline neutrino oscillation experiment at the AGS. Physics design report

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, D.; Carroll, A.; Chiang, I. [Brookhaven National Lab., Long Island, NY (United States); E889 Collaboration

    1995-04-01

    The authors present a design for a multi-detector long baseline neutrino oscillation experiment at the BNL AGS. It has been approved by the BNL-HENP-PAC as AGS Experiment 889. The experiment will search for oscillations in the {nu}{sub {mu}}, disappearance channel and the {nu}{sub {mu}} {leftrightarrow} {nu}{sub e} appearance channel by means of four identical neutrino detectors located 1, 3, 24, and 68km from the AGS neutrino source. Observed depletion of the {nu}{sub {mu}} flux (via quasi-elastic muon neutrino events, {nu}{sub {mu}}n {yields} {mu}{sup {minus}}p) in the far detectors not attended by an observed proportional increase of the {nu}{sub e} flux (via quasi-elastic electron neutrino events, {nu}{sub e}n {yields} e{sup {minus}}p) in those detectors will be prima facie evidence for the oscillation channel {nu}{sub {mu}} {leftrightarrow} {nu}{sub {tau}}. The experiment is directed toward exploration of the region of the neutrino oscillation parameters {Delta}m{sup 2} and sin{sup 2}2{theta}, suggested by the Kamiokande and IMB deep underground detectors but it will also explore a region more than two orders of magnitude larger than that of previous accelerator experiments. The experiment will run in a mode new to BNL. It will receive the fast extracted proton beam on the neutrino target approximately 20 hours per day when the AGS is not filling RHIC. A key aspect of the experimental design involves placing the detectors 1.5 degrees off the center line of the neutrino beam, which has the important advantage that the central value of the neutrino energy ({approx} 1 GeV) and the beam spectral shape are, to a good approximation, the same in all four detectors. The proposed detectors are massive, imaging, water Cherenkov detectors similar in large part to the Kamiokande and IMB detectors. The design has profited from their decade-long experience, and from the detector designs of the forthcoming SNO and SuperKamiokande detectors.

  16. Performance on the low charge state laser ion source in BNL

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M.; Alessi, J.; Beebe, E.; Costanzo, M.; DeSanto, L.; Jamilkowski, J.; Kanesue, T.; Lambiase, R.; Lehn, D.; Liaw, C. J.; McCafferty, D.; Morris, J.; Olsen, R.; Pikin, A.; Raparia, D.; Steszyn, A.; Ikeda, S.

    2015-09-07

    On March 2014, a Laser Ion Source (LIS) was commissioned which delivers high-brightness, low-charge-state heavy ions for the hadron accelerator complex in Brookhaven National Laboratory (BNL). Since then, the LIS has provided many heavy ion species successfully. The low-charge-state (mostly singly charged) beams are injected to the Electron Beam Ion Source (EBIS), where ions are then highly ionized to fit to the following accelerator’s Q/M acceptance, like Au32+. Recently we upgraded the LIS to be able to provide two different beams into EBIS on a pulse-to-pulse basis. Now the LIS is simultaneously providing beams for both the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL).

  17. 2013 BNL Site Environmental Report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Ratel, K.; Remien, J.; Pohlot, P.; Williams, J.; Green, T.; Paquette, P.; Dorsch, W.; Welty, T.; Burke, J.

    2014-10-01

    A summary of Brookhaven National Laboratory’s (BNL) Site Environmental Report, meant to inform the public, regulators, employees, and other stakeholders of the Laboratory’s environmental performance in the lab’s surrounding area during the calendar year. The review is comprised of multiple volumes relevant to environmental data/environmental management performance and groundwater status report.

  18. The RHIC gold rush

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, T. [Department of Physics, North Carolina State University (United States)

    2003-06-01

    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  19. The RHIC gold rush

    CERN Document Server

    Schäfer, T

    2003-01-01

    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  20. An overview of Booster and AGS polarized proton operation during Run 15

    Energy Technology Data Exchange (ETDEWEB)

    Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-20

    This note is an overview of the Booster and AGS for the 2015 Polarized Proton RHIC run from an operations perspective. There are some notable differences between this and previous runs. In particular, the polarized source intensity was expected to be, and was, higher this year than in previous RHIC runs. The hope was to make use of this higher input intensity by allowing the beam to be scraped down more in the Booster to provide a brighter and smaller beam for the AGS and RHIC. The RHIC intensity requirements were also higher this run than in previous runs, which caused additional challenges because the AGS polarization and emittance are normally intensity dependent.

  1. A new detector at RHIC, sPHENIX goals and status

    Science.gov (United States)

    Reed, Rosi; sPHENIX Collaboration

    2017-01-01

    The study of heavy-ion collisions, which can create a new form matter, a nearly ideal strongly interacting fluid where quarks and gluons are no longer confined into nucleons, called Quark Gluon Plasma (QGP), is on the frontier of QCD studies. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab (BNL) has had a long and successful program of QGP study since 2000, with many upgrades that have increased the delivered luminosity considerably in the last decade. The sPHENIX proposal is for a second generation experiment at RHIC, which will take advantage of the increased luminosity, and allow measurements of jets, jet correlations and Upsilons (ϒs), with a kinematic reach that will overlap with measurements made at the Large Hadron Collider (LHC). Complementary measurements at RHIC and at the LHC probe the QGP at different temperatures and densities, which are necessary to determine the temperature dependence of transport coefficients of the QGP. The sPHENIX detector will have large acceptance electromagnetic and hadronic calorimetry, as well as precision tracking, and high rate capability which are necessary for precision jet and ϒ observables. The experiment will enable a program of systematic measurements at RHIC, with a detector capable of acquiring a large sample of events in p+p, p+A, and A+A collisions. This proceedings outlines the key measurements enabled by the new detector, and status of the project itself.

  2. ALL-FERRITE RHIC INJECTION KICKER

    Energy Technology Data Exchange (ETDEWEB)

    HAHN,H.; FISCHER,W.; PTITSYN,V.I.; TUOZZOLO,J.E.

    2001-06-18

    Ion beams are transferred from the AGS into RHIC in boxcar fashion as single bunches. The nominal design assumes 60 bunches per ring but increasing the number of bunches to gain luminosity is possible, thereby requiring injection kickers with a shorter rise time. The original injection system consists of traveling-wave dielectric loaded kicker magnets and a Blumlein pulser with a rise time adequate for the present operation. Voltage breakdown in the dielectric kickers suggested the use of all-ferrite magnets. In order to minimize the conversion cost, the design of the all-ferrite kicker uses the same components as the dielectric loaded units. The all-ferrite kickers showed in bench measured good breakdown properties and a current rise time of < 50 ns. A prototype kicker has been installed in the blue ring and was tested with beam. Beam measurements indicate suitability of all-ferrite kicker magnets for upgraded operation.

  3. NEUTRINO SUPER BEAM FACILITY FOR A LONG BASELINE EXPERIMENT FROM BNL TO HOMESTAKE.

    Energy Technology Data Exchange (ETDEWEB)

    KAHN,S.

    2002-10-21

    An upgrade to the BNL Alternate Gradient Synchrotron (AGS) could produce a very intense proton source at a relatively low cost. Such a proton beam could be used to generate a conventional neutrino beam with a significant flux at large distances from the laboratory. This provides the possibility of a very long baseline neutrino experiment at the Homestake mine. The construction of this facility would allow a program of experiments to study many of the aspects of neutrino oscillations including CP violations. This study examines a 1 MW proton source at BNL and a large 1 megaton detector positioned at the Homestake Mine as the ultimate goal of a staged program to study neutrino oscillations.

  4. PHENIX Spinfest School 2009 at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Foster,S.P.; Foster,S.; Seidl, R.; Goto, Y.; Okada, K.

    2009-08-07

    Since 2005, the PHENIX Spin Physics Working Group has set aside several weeks each summer for the purposes of training and integrating recent members of the working group as well as coordinating and making rapid progress on support tasks and data analysis. One week is dedicated to more formal didactic lectures by outside speakers. The location has so far alternated between BNL and the RIKEN campus in Wako, Japan, with support provided by RBRC and LANL.

  5. Performance of the RHIC Injection Line Instrumentation Systems

    Science.gov (United States)

    Shea, T. J.; Witkover, R. L.; Cameron, P.; Connolly, R.; Ryan, W. A.; Smith, G.; Zitvogel, E.

    1997-05-01

    The beam injection line from the Alternating Gradient Synchrotron (AGS) to the Relativistic Heavy Ion Collider (RHIC) transports proton and heavy ion bunches. This line and the RHIC first sextant currently contain thefollowing complement of beam instrumentation: stripline position monitors, ionization loss monitors, video profile monitors, and commercial current transformers. Over several years, these systems have been designed and bench tested to assure a desired performance level. The design criteria will be briefly reviewed. Then, using data from laboratory tests and the recent single pass beam tests, desired performance and attained performance will be compared. Finally, experience from the beam based tests will be applied to the design criteria for the future collider ring instrumentation.

  6. Stochastic cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  7. What hath RHIC wrought?

    CERN Document Server

    Brown, G E; Rho, M; Rho, Mannque

    2006-01-01

    The new form of matter found just above Tc by RHIC is made up of tightly bound quark-antiquark pairs, essentially 32 chirally restored (zero-mass) mesons pi, sigma, rho and a1. Taking the results of lattice gauge simulations (LGS) for the color Coulomb potential from the work of the Bielefeld group and feeding this into a relativistic two-body code, after modifying the heavy-quark lattice results so as to include the velocity-velocity interaction, all ground-state eigenvalues of the 32 mesons go to zero at Tc just as they do from below Tc as dictated by Brown-Rho scaling. This produces the rapid rise in entropy up to Tc found in LGS calculations. As the scale 4 pi f_pi ~ 1 GeV for chiral symmetry breaking is replaced at Tc by the zero mass of the chirally restored meson, the QCD Coulomb coupling moves far toward the infrared, producing an effective coupling of g ~ 8 just above Tc. Exactly how the dynamics work can be understood from the behavior of the hard and soft glue.

  8. Configuration Manual Polarized Proton Collider at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S. Y.; Luccio, A.; MacKay, W. W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Svirida, D.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A.

    2006-01-01

    In this report we present our design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. We provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.

  9. CONFIGURATION MANUAL POLARIZED PROTON COLLIDER AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    ROSER,T.; MACKAY,W.W.; ALEKSEEV,I.; BAI,M.; BROWN,K.; BUNCE,G.; CAMERON,P.; COURANT,E.; ET AL.

    2001-03-01

    In this report, the authors present their design to accelerate and store polarized protons in RHIC, with the level of polarization, luminosity, and control of systematic errors required by the approved RHIC spin physics program. They provide an overview of the physics to be studied using RHIC with polarized proton beams, and a brief description of the accelerator systems required for the project.

  10. RESEARCH PLAN FOR SPIN PHYSICS AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    AIDALA, C.; BUNCE, G.; ET AL.

    2005-02-01

    In this report we present the research plan for the RHIC spin program. The report covers (1) the science of the RHIC spin program in a world-wide context; (2) the collider performance requirements for the RHIC spin program; (3) the detector upgrades required, including timelines; (4) time evolution of the spin program.

  11. BNL ENVIRONMENTAL MONITORING PLAN TRIENNIAL UPDATE, JANUARY 2003.

    Energy Technology Data Exchange (ETDEWEB)

    BROOKHAVEN NATIONAL LABORATORY

    2003-01-01

    Brookhaven National Laboratory (BNL) is a multi-program national laboratory operated by Brookhaven Science Associates for the U.S. Department of Energy (DOE) and is located on a 5,265-acre site in Suffolk County, Long Island, New York. BNL has a comprehensive Environmental Management System (EMS) in place, which meets the requirements of the International Organization for Standardization 14001 EMS Standard, as described in the BNL EMS Manual. BNL's extensive environmental monitoring program is one component of the EMS, and the BNL Environmental Monitoring Plan (EMP) describes this program in detail. The data derived from systematically monitoring the various environmental media on site enable BNL to make informed decisions concerning the protection of human health and the environment and to be responsive to community concerns.

  12. An EBIS-based heavy ion injector for the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Kponou, A.; Alessi, J.; Beebe, E.; Brennan, J.M.; Hershcovitch, A.; Prelec, K.; Raparia, D.

    1994-09-01

    An electron beam ion source (EBIS), followed by a heavy ion RFQ and superconducting linac, can be considered as a heavy ion injector for high energy accelerators, such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. A test EBIS, on long term loan from Sandia National Laboratory, is presently being commissioned at BNL. Experiments on this source will be used in evaluating the parameters for an EBIS-based RHIC injector. Some results of this commissioning, as well as the conceptual designs of the RFQ and linac, are presented.

  13. High density matter at RHIC

    Indian Academy of Sciences (India)

    Thomas S Ullrich

    2004-02-01

    QCD predicts a phase transition between hadronic matter and a quark-gluon plasma at high energy density. The relativistic heavy ion collider (RHIC) at Brookhaven National Laboratory is a new facility dedicated to the experimental study of matter under extreme conditions. Already the first round of experimental results at RHIC indicated that the conditions to create a new state of matter are indeed reached in the collisions of heavy nuclei. Studies of particle spectra and their correlations at low transverse momenta provide evidence of strong pressure gradients in the highly interacting dense medium and hint that we observe a system in thermal equilibrium. Recent runs with high statistics allow us to explore the regime of hard-scattering processes where the suppression of hadrons at large transverse momentum, and quenching of di-jets are observed thus providing further evidence for extreme high density matter created in collisions at RHIC.

  14. Target and orbit feedback simulations of a muSR beamline at BNL

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, W. W. [Residence, 25 Rhododendron Circle, Asheville, NC (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. The use of the AGS complex at BNL has been explored for a muSR facility previously. Here we report simulations of a beamline with a target inside a solenoidal field, and of an orbit feed-back system with single muon beam positioning monitors based on technology available today

  15. SCHOTTKY MEASUREMENTS DURING RHIC 2000.

    Energy Technology Data Exchange (ETDEWEB)

    CAMERON,P.; CUPOLO,J.; DEGEN,C.; HAMMONS,L.; KESSELMAN,M.; LEE,R.; MEYER,A.; SIKORA,R.

    2001-06-18

    The 2GHz Schottky system was a powerful diagnostic during RHIC 2000 commissioning. A continuous monitor without beam excitation, it provided betatron tune, chromaticity, momentum spread relative emittance, and synchrotron tune. It was particularly useful during transition studies. In addition, a BPM was resonated at 230MHz for Schottky measurements.

  16. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Samios, Nicholas P.

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan. (LEW)

  17. Novel deflecting cavity design for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q.; Belomestnykh, S.; Ben-Zvi, I.

    2011-07-25

    To prevent significant loss of the luminosity due to large crossing angle in the future ERL based Electron Ion Collider at BNL (eRHIC), there is a demand for crab cavities. In this article, we will present a novel design of the deflecting/crabbing 181 MHz superconducting RF cavity that will fulfil the requirements of eRHIC. The quarter-wave resonator structure of the new cavity possesses many advantages, such as compact size, high R{sub t}/Q, the absence of the same order mode and lower order mode, and easy higher order mode damping. We will present the properties and characteristics of the new cavity in detail. As the accelerator systems grow in complexity, developing compact and efficient deflecting cavities is of great interest. Such cavities will benefit situations where the beam line space is limited. The future linac-ring type electron-ion collider requires implementation of a crab-crossing scheme for both beams at the interaction region. The ion beam has a long bunches and high rigidity. Therefore, it requires a low frequency, large kicking angle deflector. The frequency of the deflecting mode for the current collider design is 181 MHz, and the deflecting angle is {approx}5 mrad for each beam. At such low frequency, the previous designs of the crab cavities will have very large dimensions, and also will be confronted by typical problems of damping the Lower Order Mode (LOM), the Same Order Mode (SOM), and as usual, the Higher Order Modes (HOM). In this paper we describe how one can use the concept of a quarter-wave (QW) resonator for a deflecting/crabbing cavity, and use its fundamental mode to deflect the beam. The simplicity of the cavity geometry and the large separation between its fundamental mode and the first HOM make it very attractive.

  18. Proceedings of RIKEN BNL Research Center Workshop: Thermal Photons and Dileptons in Heavy-Ion Collisions. Volume 119

    Energy Technology Data Exchange (ETDEWEB)

    David, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Rapp, R. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Ruan, L. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Yee, H-U. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2014-09-11

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The primary theme for this workshop related to sharing the latest experimental and theoretical developments in area of low transverse momentum (pT) dielectron and photons. All the presentations given at the workshop are included in this proceedings, primarily as PowerPoint presentations.

  19. Monolithic readout circuits for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, P.; Harder, J. [Brookhaven National Laboratory, Upton, NY (United States)

    1991-12-31

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology.

  20. High intensity protons in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Montag, C.; Ahrens, L.; Blaskiewicz, M.; Brennan, J. M.; Drees, K. A.; Fischer, W.; Huang, H.; Minty, M.; Robert-Demolaize, G.; Thieberger, P.; Yip, K.

    2012-01-05

    During the 2012 summer shutdown a pair of electron lenses will be installed in RHIC, allowing the beam-beam parameter to be increased by roughly 50 percent. To realize the corresponding luminosity increase bunch intensities have to be increased by 50 percent, to 2.5 {center_dot} 10{sup 11} protons per bunch. We list the various RHIC subsystems that are most affected by this increase, and propose beam studies to ensure their readiness. The proton luminosity in RHIC is presently limited by the beam-beam effect. To overcome this limitation, electron lenses will be installed in IR10. With the help of these devices, the headon beam-beam kick experienced during proton-proton collisions will be partially compensated, allowing for a larger beam-beam tuneshift at these collision points, and therefore increasing the luminosity. This will be accomplished by increasing the proton bunch intensity from the presently achieved 1.65 {center_dot} 10{sup 11} protons per bunch in 109 bunches per beam to 2.5 {center_dot} 10{sup 11}, thus roughly doubling the luminosity. In a further upgrade we aim for bunch intensities up to 3 {center_dot} 10{sup 11} protons per bunch. With RHIC originally being designed for a bunch intensity of 1 {center_dot} 10{sup 11} protons per bunch in 56 bunches, this six-fold increase in the total beam intensity by far exceeds the design parameters of the machine, and therefore potentially of its subsystems. In this note, we present a list of major subsystems that are of potential concern regarding this intensity upgrade, show their demonstrated performance at present intensities, and propose measures and beam experiments to study their readiness for the projected future intensities.

  1. VIBRATION MEASUREMENTS IN A RHIC QUADRUPOLE AT CRYOGENIC TEMPERATURES.

    Energy Technology Data Exchange (ETDEWEB)

    JAIN, A.; AYDIN, S.; HE, P.; ANERELLA, M.; GANETIS, G.; HARRISON, M.; PARKER, B.; PLATE, S.

    2005-10-17

    One of the concerns in using compact superconducting magnets in the final focus region of the ILC is the influence of the cryogen flow on the vibration characteristics. As a first step towards characterizing such motion at nanometer levels, a project was undertaken at BNL to measure the vibrations in a spare RHIC quadrupole under cryogenic conditions. Given the constraints of cryogenic operation, and limited space available, it was decided to use a dual head laser Doppler vibrometer for this work. The performance of the laser vibrometer was tested in a series of room temperature tests and compared with results from Mark L4 geophones. The laser system was then used to measure the vibration of the cold mass of the quadrupole with respect to the outside warm enclosure. These measurements were carried out both with and without the flow of cold helium through the magnet. The results indicate only a minor increase in motion in the horizontal direction (where the cold mass is relatively free to move).

  2. Proposal for Reduction of Transverse Emittance of BNL 200 MeV Linac

    CERN Document Server

    Alessi, J; Raparia, D; Weng, W T

    2004-01-01

    BNL plans to upgrade the AGS proton beam from the current 0.14 MW to higher than 1.0 MW and beyond for such a neutrino facility which consists of two major subsystems. First is a 1.2 GeV super-conducting linac (SCL) to replace the booster as injector for the AGS. Second is the performance upgrade for the AGS itself for the higher intensity and repetition rate. For high intensity proton accelerators, such as the upgraded AGS, there are very stringent limitations on uncontrolled beam losses. A direct effect of linac beam emittance is the halo/tail generation in the circulating beam. Studies show the estimated halo/tail generation in the beam for present normalized RMS emittance of linac beam is unacceptable. To reduce the transverse emittance of 200 MeV linac, the existing radio frequency quadrupole linac (RFQ) has to be relocated closer to drift tube linac (DTL) tank 1 to meet emittance requirement for the AGS injection with low loss. This paper will present the various options of matching between RFQ and DTL,...

  3. Proceedings of RIKEN BNL Research Center Workshop: The Approach to Equilibrium in Strongly Interacting Matter. Volume 118

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Venugopalan, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berges, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaizot, J. -P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gelis, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-04-09

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory*. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The purpose of this Workshop is to critically review the recent progress on the theory and phenomenology of early time dynamics in relativistic heavy ion collisions from RHIC to LHC energies, to examine the various approaches on thermalization and existing issues, and to formulate new research efforts for the future. Topics slated to be covered include Experimental evidence for equilibration/isotropization, comparison of various approaches, dependence on the initial conditions and couplings, and turbulent cascades and Bose-Einstein condensation.

  4. Elastic proton-proton scattering at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  5. Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD project. Proceedings of RIKEN BNL Research Center workshop: Volume 13

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-16

    A workshop was held at the RIKEN-BNL Research Center on October 16, 1998, as part of the first anniversary celebration for the center. This meeting brought together the physicists from RIKEN-BNL, BNL and Columbia who are using the QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer at the RIKEN-BNL Research Center for studies of QCD. Many of the talks in the workshop were devoted to domain wall fermions, a discretization of the continuum description of fermions which preserves the global symmetries of the continuum, even at finite lattice spacing. This formulation has been the subject of analytic investigation for some time and has reached the stage where large-scale simulations in QCD seem very promising. With the computational power available from the QCDSP computers, scientists are looking forward to an exciting time for numerical simulations of QCD.

  6. Review: BNL graphite blanket design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J.A.; Powell, J.R.

    1976-03-01

    A review of the Brookhaven National Laboratory (BNL) minimum activity graphite blanket designs is made. Three designs are identified and discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a thick graphite screen (typically 30 cm or greater, depending on type as well as application-experimental power reactor or commercial reactor). Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy. This energy is then either radiated to a secondary blanket with coolant tubes, as in types A and B, or is removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the structural material of the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude by the graphite screen, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma, whatever the degree of radiation damage.

  7. BNL ALARA Center: ALARA Notes, No. 9

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Xie, J.W.; Beckman, M.C. [eds.] [and others

    1994-02-01

    This issue of the Brookhaven National Laboratory`s Alara Notes includes the agenda for the Third International Workshop on ALARA and specific instructions on the use of the on-line fax-on-demand service provided by BNL. Other topics included in this issue are: (1) A discussion of low-level discharges from Canadian nuclear plants, (2) Safety issues at French nuclear plants, (3) Acoustic emission as a means of leak detection, (4) Replacement of steam generators at Doel-3, Beaznau, and North Anna-1, (5) Remote handling equipment at Bruce, (6) EPRI`s low level waste program, (7) Radiation protection during concrete repairs at Savannah River, (8) Reactor vessel stud removal/repair at Comanche Peak-1, (9) Rework of reactor coolant pump motors, (10) Restoration of service water at North Anna-1 and -2, (11) Steam generator tubing problems at Mihama-1, (12) Full system decontamination at Indian Point-2, (13) Chemical decontamination at Browns Ferry-2, and (14) Inspection methodolody in France and Japan.

  8. Production of Quarkonia at RHIC

    CERN Document Server

    Vertesi, Robert

    2015-01-01

    The production of different quarkonium states provides unique insight to the hot and cold nuclear matter effects in the strongly interacting medium that is formed in high energy heavy ion collisions. While LHC explores the energy frontier, RHIC has a broad physics program to explore the nuclear modification at different energies in a wide range of systems. Some of the most interesting recent results on $J/\\psi$ and $\\Upsilon$ production in p+p, d+Au and A+A collisions from PHENIX and STAR are summarized in this work.

  9. Unruh gamma radiation at RHIC?

    CERN Document Server

    Biro, T S; Schram, Z

    2011-01-01

    Varying the proposition that acceleration itself would simulate a thermal environment, we investigate the semiclassical photon radiation as a possible telemetric thermometer of accelerated charges. Based on the classical Jackson formula we obtain the equivalent photon intensity spectrum stemming from a constantly accelerated charge and demonstrate its resemblances to a thermal distribution for high transverse momenta. The inverse transverse slope differs from the famous Unruh temperature: it is larger by a factor of pi. We compare the resulting direct photon spectrum with experimental data for AuAu collisions at RHIC and speculate about further, analytically solvable acceleration histories.

  10. Analysing the Nature of the Rapidity-Spectra at RHIC and Some Other Energies

    CERN Document Server

    Sau, Goutam; Ghosh, A C Das; Bhattacharya, A; Bhattacharya, S

    2009-01-01

    On the basis of the Grand Combinational Model (GCM) outlined and somewhat detailed in the text, we have attempted to capture here the several interesting assorted characteristics of the rapidity-spectra of the major varieties of secondaries produced in diverse nuclear reactions at various energies, though the main thrust of our work lies on addressing the data-trends from RHIC-BNL experiments. Obviously the core of the present approach is purely phenomenological. Still, the method and the model address the features of the data modestly well. And the method appears to have the rich potentiality, if the systematic sets of data for rapidity-studies at gradually increasing energies were available.

  11. A description of the pseudorapidity distributions in heavy ion collisions at RHIC and LHC energies

    CERN Document Server

    Jiang, Z J; Zhang, H L; Deng, H P

    2015-01-01

    The charged particles produced in nucleus-nucleus collisions are classified into two parts,One is from the hot and dense matter created in collisions. The other is from leading particles. The hot and dense matter is assumed to expand and generate particles according to BJP hydrodynamics, a theory put forward by A. Bialas, R. A. Janik and R. Peschanski. The leading particles are argued to possess a Gaussian rapidity distribution with the normalization constant equaling the number of participants. A comparison is made between the theoretical results and the experimental measurements performed by BRAHMS and PHOBOS Collaboration at BNL-RHIC in Au-Au and Cu-Cu collisions at sqrt(s_NN)=200 GeV and by ALICE Collaboration at CERN-LHC in Pb-Pb collisions at sqrt(s_NN) =2.76 TeV. The theoretical results are well consistent with experimental data.

  12. A description of the pseudorapidity distributions in heavy ion collisions at RHIC and LHC energies

    Science.gov (United States)

    Jiang, Z. J.; Zhang, Y.; Zhang, H. L.; Deng, H. P.

    2015-09-01

    The charged particles produced in nucleus-nucleus collisions are classified into two parts: One is from the hot and dense matter created in collisions. The other is from leading particles. The hot and dense matter is assumed to expand and generate particles according to BJP hydrodynamics, a theory put forward by A. Bialas, R.A. Janik and R. Peschanski. The leading particles are argued to possess a Gaussian rapidity distribution with the normalization constant equaling the number of participants. A comparison is made between the theoretical results and the experimental measurements performed by BRAHMS and PHOBOS Collaborations at BNL-RHIC in Au-Au and Cu-Cu collisions at √{sNN} = 200 GeV and by ALICE Collaboration at CERN-LHC in Pb-Pb collisions at √{sNN} = 2.76 TeV. The theoretical results are well consistent with experimental data.

  13. Multiple Partial Siberian Snakes in the AGS

    Science.gov (United States)

    Takano, J.; Ahrens, L. A.; Bai, M.; Brown, K.; Courant, E. D.; Gardner, C. J.; Glenn, J. W.; Hattori, T.; Huang, H.; Lin, F.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Roser, T.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.

    2007-06-01

    Polarized protons are accelerated up to 24.3 GeV in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). To accelerate the beam with preserving the polarization, two different types of helical dipole partial Siberian snake have been installed to the AGS. One is a superconducting magnet (Cold Snake, CSNK), and the other is a normal conducting one (Warm Snake, WSNK). With these snake magnets, the polarization at the AGS extraction achieved 65%. However, the AGS has spin mismatches at the injection and extraction. This description shows calculated results to have better spin matching with using two or three snakes.

  14. PHENIX EXPERIMENT AT RHIC: DECADAL PLAN 2004-2013

    Energy Technology Data Exchange (ETDEWEB)

    ZAJC,W.ET. AL.

    2003-11-30

    program is achievable using the present capabilities of PHENIX experimental apparatus, but the physics reach is considerably extended and the program made even more compelling by a proposed set of upgrades which include: (1) An aerogel and time-of-flight system to provide complete {pi}/K/p separation for momenta up to 10 GeV/c. (2) A vertex detector to detect displaced vertices from the decay of mesons containing charm or bottom quarks. (3) A hadron-blind detector to detect and track electrons near the vertex. (4) A micro-TPC to extend the range of PHENIX tracking in azimuth and pseudo-rapidity. (5) A forward detector upgrade for an improved muon trigger to preserve sensitivity at the highest projected RHIC luminosities. (6) A forward calorimeter to provide photon+jet studies over a wide kinematic range. The success of the proposed program is contingent upon several factors external to PHENIX. Implementation of the upgrades is predicated on the availability of R&D funds to develop the required detector technologies on a timely, and in some cases urgent, basis. The necessity for such funding, and the physics merit of the proposed PHENIX program, has been endorsed in the first meeting of BNL's Detector Advisory Committee in December, 2002. Progress towards the physics goals depends in an essential way on the development of the design values for RHIC luminosity, polarization and availability. An analysis based on the guidance from the Collider Accelerator Department indicates that moderate increases in the yearly running time lead to very considerable increases in progress toward the enunciated goals. Efficient access to the rarest probes in the proposed program is achieved via the order-of-magnitude increase in luminosity provided by RHIC-II.

  15. Target and orbit feedback simulations of a muSR beam line at BNL

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-28

    Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ+ should be about 40 kHz/mm2. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss the desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.

  16. GLOBAL DECOUPLING ON THE RHIC RAMP.

    Energy Technology Data Exchange (ETDEWEB)

    LUO, Y.; CAMERON, P.; DELLA PENNA, A.; FISCHER, W.; ET AL.

    2005-05-16

    The global betatron decoupling on the ramp is an important issue for the operation of the Relativistic Heavy Ion Collider (RHIC), especially in the RHIC polarized proton (pp) run. To avoid the major betatron and spin resonances on the ramp, the betatron tunes are constrained. And the rms value of the vertical closed orbit should be smaller than 0.5mm. Both require the global coupling on the ramp to be well corrected. Several ramp decoupling schemes were found and tested at RHIC, like N-turn map decoupling, three-ramp correction, coupling amplitude modulation, and coupling phase modulation. In this article, the principles of these methods are shortly reviewed and compared. Among them, coupling angle modulation is a robust and fast one. It has been applied to the global decoupling in the routine RHIC operation.

  17. Experts dismiss doomsday scenarios for RHIC

    CERN Multimedia

    Levi, B G

    2000-01-01

    A panel of particle physicists examining the possibility that operation of RHIC could generate blackholes or 'strangelets' which would consume ordinary matter, have declared that such scenarios are 'firmly excluded' (1 p).

  18. Summary of the RHIC Retreat 2007

    Energy Technology Data Exchange (ETDEWEB)

    Pilat,F.; Gardner, C.; Montag, C.; Roser, T.

    2008-08-01

    The RHIC Retreat 2007 took place on July 16-17 2007 at the Foxwoods Resort in CT, about 3 weeks after the end of the RHIC Run-7. The goal of the Retreat is traditionally to plan the upcoming run in the light of the results from the previous one, by providing a snapshot of the present understanding of the machine and a forum for free and frank discussion. A particular attention was paid to the challenge of increasing the time at store, and the related issue of system reliability. An interesting Session covered all new developments aimed to improve the machine performance and luminosity. In Section 2 we summarize the results from Run-7 for RHIC and the injectors and discuss the present objectives of the RHIC program and performance. Sections 3-6 are summaries of the Retreat sessions focused on preparation for deuteron gold and polarized protons, respectively, machine availability and new developments.

  19. BNL ACCELERATOR-BASED RADIOBIOLOGY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    LOWENSTEIN,D.I.

    2000-05-28

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40--3,000 MeV/nucleon with maximum beam intensities of 10{sup 10} to 10{sup 11} ions per pulse. The BAF Project is described and the future AGS and BAF operation plans are presented.

  20. ANALYSIS OF ELECTRON CLOUD AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    IRISO,U.; BLASKIEWICZ,M.; CAMERON,P.; DREES,A.; FISCHER,W.; ET AL.

    2004-07-05

    Pressure rises with high intense beams are among the main luminosity limitations at RHIC. Observations during the latest runs show beam induced electron multipacting as one of the causes for these pressure rises. Experimental studies are carried out at RHIC using devoted instrumentation to understand the mechanism leading to electron clouds. In the following, we report the experimental electron cloud data and the analyzed results using computer simulation codes.

  1. Results from STAR experiment at RHIC

    Indian Academy of Sciences (India)

    Bedangadas Mohanty; STAR Collaboration

    2006-11-01

    We present some of the important experimental results from nucleus–nucleus collision studies carried out by the STAR experiment at Relativistic Heavy Ion Collider (RHIC). The results suggests that central Au+Au collisions at RHIC has produced a dense and rapidly thermalizing matter with initial energy densities above the critical values predicted by lattice QCD for establishment of a quark-gluon plasma (QGP).

  2. A luminosity model of RHIC gold runs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Y.

    2011-11-01

    In this note, we present a luminosity model for RHIC gold runs. The model is applied to the physics fills in 2007 run without cooling, and with the longitudinal cooling applied to one beam only. Having good comparison, the model is used to project a fill with the longitudinal cooling applied to both beams. Further development and possible applications of the model are discussed. To maximize the integrated luminosity, usually the higher beam intensity, smaller longitudinal and transverse emittance, and smaller {beta} are the directions to work on. In past 10 years, the RHIC gold runs have demonstrated a path toward this goal. Most recently, a successful commissioning of the bunched beam stochastic cooling, both longitudinal and transverse, has offered a chance of further RHIC luminosity improvement. With so many factors involved, a luminosity model would be useful to identify and project gains in the machine development. In this article, a preliminary model is proposed. In Section 2, several secondary factors, which are not yet included in the model, are identified based on the RHIC operation condition and experience in current runs. In Section 3, the RHIC beam store parameters used in the model are listed, and validated. In Section 4, the factors included in the model are discussed, and the luminosity model is presented. In Section 5, typical RHIC gold fills without cooling, and with partial cooling are used for comparison with the model. Then a projection of fills with more coolings is shown. In Section 6, further development of the model is discussed.

  3. First large scale application of novel Si stripixel detector in real large experiment: Si VTX in PHENIX upgrade at RHIC

    Institute of Scientific and Technical Information of China (English)

    LI Zheng; H. ENYO; Y. GOTO; J. TOJO; Y. AKIBA; R. NOUICER; A. L. DESHPANDE; K. BOYLE; V. CIANCIOLO

    2006-01-01

    2D position sensitive,single-sided Si stripixel detector was selected as the one of the two main components of the Si vertex tracker (Si SVX) in the upgraded PHENIX detector at RHIC (relativistic heavy ion collider) in Brookhaven National Laboratory (BNL). This is the first large scale application of the novel Si stripixel detector in a real large experiment after many years of research and development at BNL. The first and second prototype fabrication runs of the SVX stripixel detectors were carried out successfully in BNL's Si detector development and processing Lab. The processing of these stripixel detectors is similar to that for the standard single-sided strip detectors: one-sided processing,single implant for the pixel (strip) electrodes,etc. The only additional processing step is the double metal process,a technology that is simple and well matured by many Si detector processing industries and labs,including BNL. The laser and beam tests on those prototype detectors show the 2D position sensitivity and good position resolution in both X and U coordinates (about 25 μm for 80 μm pitch). For the mass production of 400 sensors needed for the Si SVX,the processing technology has been successfully transferred to the industrial: Hamamatsu Photonics (HPK). HPK has produced a pre-production run of stripixel sensors with the full PHENIX SVX specification on 150 mm diameter wafers. The laser tests on these pre-production wafers show good signal to noise ratio (about 20:1).

  4. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP (VOLUME 70)

    Energy Technology Data Exchange (ETDEWEB)

    JACAK, B.; SHURYAK, E.; HALLMAN, T.; BASS, S.; DAVIDSON, R.

    2005-01-14

    The Relativistic Heavy Ion Collider (RHIC) was commissioned for heavy ion collisions and for polarized pp collisions in 2001. All principal components of the accelerator chain were operational by the 2003 RHIC run. Approximately 50 papers on RHIC experimental results have been published in refereed journals to date. This is a testament to the vast amount of exciting new information and the unprecedented analysis and publication rate from RHIC. A number of signals of creation of matter at extreme energy density, and of new physics in that matter, have been observed. The RHIC community has been heavily engaged in discussion about these signals, and about the appropriate level of proof for Quark Gluon Plasma discovery at the RHIC. In fact, such discussions were the subject of an earlier RBRC Workshop. One of the striking results from heavy ion collisions at RHIC is that the quark gluon plasma accessible appears to be strongly coupled. The properties of strongly coupled plasmas are of intense interest in the traditional Plasma Physics community, who have been developing tools to study such matter theoretically and experimentally. Despite the fact that one plasma interacts electromagnetically and the other through the strong interaction, there is tremendous commonality in the intellectual approach and even the theoretical and experimental tools. It is important to broaden the discussion of Quark Gluon Plasma discovery beyond possible signals of deconfinement to also encompass signals of plasma phenomena in heavy ion collisions. Thus it is imperative establish more direct contact among Nuclear, Plasma and Atomic physicists to share techniques and ideas. RHIC physicists will benefit from familiarity with typical plasma diagnostics and theoretical methods to study strongly coupled plasmas. Plasma and Atomic physicists may fmd new techniques parallel to the multi-particle correlations used in RHIC data analysis, and theoretical tools to study high energy density matter

  5. Medium energy heavy ion operations at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Drees, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.M.C.; Blaskiewicz, M.; Brown, K.A.; Brennan, M.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D' Ottavio, T.; Fischer, W.; Fu, W.; Gassner, D.; Harvey, M.; Hayes, T.; Huang, H.; Hulsart, R.; Ingrassia, P.; Kling, N.; Lafky, M.; Laster, J.; Lee, R.C.; Litvinenko, V.; Luo, Y.; MacKay, W.W.; Marr, G.; Mapes. M.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.S.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; van Kuik, B.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. The medium energy AuAu run covered two beam energies, both above the RHIC injection energy of 9.8 GeV but well below the standard store energy of 100 GeV (see table 1). The low energy and full energy runs with heavy ions in FY10 are summarized in [1] and [2]. Stochastic Cooling ([3]) was only used for 100 GeV beams and not used in the medium energy run. The efficiency of the transition from 100 GeV operation to 31.2 GeV and then to 19.5 GeV was remarkable. Setup took 32 h and 19 h respectively for the two energy settings. The time in store, defined to be the percentage of time RHIC provides beams in physics conditions versus calendar time, was approximately 52% for the entire FY10 heavy ion run. In both medium energy runs it was well above this average, 68% for 31.5 GeV and 82% for 19.5 GeV. For both energies RHIC was filled with 111 bunches with 1.2 10{sup 9} and 1.3 10{sup 9} ions per bunch respectively.

  6. The superconducting inflector for the BNL g-2 experiment

    NARCIS (Netherlands)

    Yamamoto, A; Makida, Y; Tanaka, K; Krieman, F; Roberts, BL; Brown, HN; Bunce, G; Danby, GT; G-Perdekamp, M; Hseuh, H; Jia, L.; Lee, YY; Mapes, M; Meng, W; Morse, W; Pai, C; Prigl, R; Sampson, W; Sandberg, J; Suenaga, M; Tallerico, T; Toldo, F; Woodle, K; Green, MA; Itoh, I.; Otsuka, H.; Saito, Y; Ozawa, T; Tachiya, Y; Tanaka, H; Grossmann, A; Jungmann, K; Putlitz, GZ; Deng, H; Dhawan, S; Hughes, Robert E; Kawall, D; Pretz, J; Redin, S; Sichtermann, E; Steinmetz, A

    2002-01-01

    The muon g-2 experiment at Brookhaven National Laboratory (BNL) has the goal of determining the muon anomalous magnetic moment, a(mu) (= (g-2)/2), to the very high precision of 0.35 parts per million and thus requires a storage ring magnet with great stability and homogeneity. A super-ferric storage

  7. Data Model of the BNL Archive and Dissemination System

    Energy Technology Data Exchange (ETDEWEB)

    Heller, J; Osterer, L

    1977-02-01

    The Data Model, i.e., the information content of the data base as it is viewed by the users, of the BNL Archive and Dissemination System is presented. The syntax of the data model is stated in BNF form, and the semantic meaning is discussed. Examples of the use of the data model are given. 3 figs.

  8. Proceedings of RIKEN BNL Research Center Workshop: Understanding QGP through Spectral Functions and Euclidean Correlators (Volume 89)

    Energy Technology Data Exchange (ETDEWEB)

    Mocsy,A.; Petreczky, P.

    2008-06-27

    In the past two decades, one of the most important goals of the nuclear physics community has been the production and characterization of the new state of matter--Quark-Gluon Plasma (QGP). Understanding how properties of hadrons change in medium, particularly, the bound state of a very heavy quark and its antiquark, known as quarkonium, as well as determining the transport coefficients is crucial for identifying the properties of QGP and for the understanding of the experimental data from RHIC. On April 23rd, more than sixty physicists from twenty-seven institutions gathered for this three-day topical workshop held at BNL to discuss how to understand the properties of the new state of matter obtained in ultra-relativistic heavy ion collisions (particularly at RHIC-BNL) through spectral functions. In-medium properties of the different particle species and the transport properties of the medium are encoded in spectral functions. The former could yield important signatures of deconfinement and chiral symmetry restoration at high temperatures and densities, while the later are crucial for the understanding of the dynamics of ultra-relativistic heavy ion collisions. Participants at the workshop are experts in various areas of spectral function studies. The workshop encouraged direct exchange of scientific information among experts, as well as between the younger and the more established scientists. The workshops success is evident from the coherent picture that developed of the current understanding of transport properties and in-medium particle properties, illustrated in the current proceedings. The following pages show calculations of meson spectral functions in lattice QCD, as well as implications of these for quarkonia melting/survival in the quark gluon plasma; Lattice calculations of the transport coefficients (shear and bulk viscosities, electric conductivity); Calculation of spectral functions and transport coefficients in field theories using weak coupling

  9. Strangeness in STAR at RHIC

    CERN Document Server

    ,

    2016-01-01

    We present the recent results of strangeness production at the mid-rapidity in Au + Au collisions at RHIC, from $\\sqrt{s_{\\rm NN}}$ = 7.7 to 200 GeV. The $v_2$ of multi-strange baryon $\\Omega$ and $\\phi$ mesons are similar to that of pions and protons in the intermediate $p_T$ range (2 - 5 GeV/$c$) in $\\sqrt{s_{\\rm NN}}$ = 200 GeV Au + Au collisions, indicating that the major part of collective flow has been built up at partonic stage. The breaking of mass ordering between $\\phi$ mesons and protons in the low $p_T$ range ($<$ 1 GeV/$c$) is consistent with a picture that $\\phi$ mesons are less sensitive to later hadronic interaction. The nuclear modification factor $R_{\\rm CP}$ and baryon to meson ratio change dramatically when the collision energy is lower than 19.6 GeV. It suggests a possible change of medium property of the system compared to those from high energies.

  10. RHIC BPM System Modifications and Performance

    CERN Document Server

    Satogata, Todd; Cameron, Peter; Cerniglia, Phil; Cupolo, John; Curcio, Anthony J; Dawson, William C; Degen, Christopher; Gullotta, Justin; Mead, Joe; Michnoff, Robert; Russo, Thomas; Sikora, Robert

    2005-01-01

    The RHIC beam position monitor (BPM) system provides independent average orbit and turn-by-turn (TBT) position measurements. In each ring, there are 162 measurement locations per plane (horizontal and vertical) for a total of 648 BPM planes in the RHIC machine. During 2003 and 2004 shutdowns, BPM processing electronics were moved from the RHIC tunnel to controls alcoves to reduce radiation impact, and the analog signal paths of several dozen modules were modified to eliminate gain-switching relays and improve signal stability. This paper presents results of improved system performance, including stability for interaction region and sextupole beam-based alignment efforts. We also summarize performance of improved million-turn TBT acquisition channels for nonlinear dynamics and echo studies.

  11. A prototype ionization profile monitor for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Cameron, P.; Ryan, W. [and others

    1997-07-01

    Transverse beam profiles in the Relativistic Heavy-Ion Collider (RHIC) will be measured with ionization profile monitors (IPM`s). Each IPM collects and measures the distribution of electrons in the beamline resulting from residual gas ionization during bunch passage. The electrons are swept transversely from the beamline and collected on strip anodes oriented parallel to the beam axis. At each bunch passage the charge pulses are amplified, integrated, and digitized for display as a profile histogram. A prototype detector was tested in the injection line during the RHIC Sextant Test. This paper describes the detector and gives results from the beam tests.

  12. The Odderon at RHIC and LHC

    OpenAIRE

    Nicolescu, Basarab

    2007-01-01

    The Odderon remains an elusive object, 33 years after its invention. The Odderon is now a fundamental object in QCD and CGC and it has to be found experimentally if QCD and CGC are right. In the present talk, we show how to find it at RHIC and LHC. The most spectacular signature of the Odderon is the predicted difference between the differential cross-sections for proton-proton and antiproton-proton at high s and moderate t. This experiment can be done by using the STAR detector at RHIC and b...

  13. Insertion of helical Siberian snakes in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A.; Pilat, F.

    1995-05-01

    Spin rotators and Siberian snakes for RHIC can be built using 4 helical magnets obtained, by twisting, from the cosine dipoles. The authors found that the fringe fields are important. In the calculations they have used a plausible model for the fringe. However, only magnetic measurements on the prototypes presently being built will allow a final optimization. The linear coupling at injection, {Delta}Q{sub min} < 10{sup {minus}2}, is well within the range of the RHIC decoupling system. At storage, the coupling introduced by the devices ({Delta}Q{sub min} < 10{sup {minus}4}) is negligible.

  14. Summary of the RHIC Retreat 2008

    Energy Technology Data Exchange (ETDEWEB)

    Pilat,F.; Brennan, M.; Brown, K.; Fischer, W.; Montag, C.

    2008-08-01

    The main goal of the RHIC Retreat is to review last run's performance and prepare for the next. As always though we also discussed the longer term goals and plans for the facility to put the work in perspective and in the right priority. A straw-man plan for the facility was prepared for the DOE that assumes 30 cryoweek and running 2 species per year. The plan outlines RHIC operations for 2008-2012 and integrates well accelerator and detector upgrades to optimize the physics output with high luminosities. The plans includes guidance from the PAC and has been reviewed by DOE.

  15. Understanding the Characteristics of Multiple Production of Light Hadrons in Cu+Cu Interactions at Various RHIC Energies

    CERN Document Server

    Guptaroy, P; Biswas, S K; Bhattacharya, S

    2009-01-01

    Experiments involving copper-copper collisions at the RHIC-BNL (USA) at energies $\\sqrt{s_{NN}}$ = 22.5, 62 and 200 GeV have produced a vast amount of high-precision data which are to be analysed in the light of various competing models in the domain of multiparicle production scenario. We have chosen to analyse here the measured data on the $p_T$ -spectra of various light and non-strange secondaries at various energies mentioned above, some of their very important ratio-behaviours at the various centralities of the collisions and the nuclear modification factors $R_{AA}$ and $R_{CP}$ in the light of a version of the Sequential Chain Model (SCM). The agreements between the measured data and model-based results are generally found to be modestly satisfactory.

  16. Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, A.; Fukushima, K.; Kharzeev, D.; Warringa, H.; Voloshin, S.

    2010-04-26

    This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and

  17. MULTIPLE SINGLE BUNCH EXTRACTION TO THE AGS SWITCHYARD.

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,K.A.; AHRENS,L.; GASSNER,D.; GLENN,J.W.; ROSER,T.; SMITH,G.; TSOUPAS,N.; VAN ASSELT,W.; ZENO,K.

    2001-06-18

    In this report we will describe the multiple single bunch extraction system as utilized to deliver beams to the Brookhaven's Alternating Gradient Synchrotron (AGS) switchyard area. We will describe modifications of the AGS switchyard, necessary to allow it to accept bunched beam, and results of the first commissioning of this system. The AGS Switchyard has for many years been used to simultaneously deliver (unbunched) resonant extracted beam to a set of fixed target experiments. In order to accommodate new fixed target experiments which require bunched beams, a method of sending the bunched beams to the AGS Switchyard was required. In addition, by using the AGS switchyard instead of the upstream section of the Brookhaven's Relativistic Heavy Ion Collider (RHIC) injection line the accelerators can be reconfigured quickly and efficiently for filling RHIC. We will present results of the commissioning of this system, which was done in January 2001.

  18. ELECTRON COOLING AND ELECTRON-ION COLLIDERS AT BNL.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2007-10-03

    Superconducting Energy Recovery Linacs (ERL) have significant potential uses in various fields, including High Energy Physics and Nuclear Physics. Brookhaven National Laboratory (BNL) is pursuing some of the potential applications in this area and the technology issues that are associated with these applications. The work addressed in this paper is carried out at BNL towards applications in electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for these applications are the generation of high currents of polarized or high-brightness unpolarized electrons, high-charge per bunch and high-current. One must address the associated issue of High-Order Modes generation and damping. Superconducting ERLs have great advantages for these applications as will be outlined in the text.

  19. A FLYING WIRE SYSTEM IN THE AGS.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG,H.; BUXTON,W.; MAHLER,G.; MARUSIC,A.; ROSER,T.; SMITH,G.; SYPHERS,M.; WILLIAMS,N.; WITKOVER,R.

    1999-03-29

    As the AGS prepares to serve as the injector for RHIC, monitoring and control of the beam transverse emittance become a major and important topic. Before the installation of the flying wire system, the emittance was measured with ionization profile monitors in the AGS, which require correction for space charge effects. It is desirable to have a second means of measuring profile that is less depend on intensity. A flying wire system has been installed in the AGS recently to perform this task. This paper discusses the hardware and software setup and the capabilities of the system.

  20. Polarized proton beam for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  1. BEAM SCRUBBING FOR RHIC POLARIZED PROTON RUN.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,S.Y.FISCHER,W.HUANG,H.ROSER,T.

    2004-07-05

    One of the intensity limiting factor of RHIC polarized proton beam is the electron cloud induced pressure rise. A beam scrubbing study shows that with a reasonable period of time of running high intensity 112-bunch proton beam, the pressure rise can be reduced, allowing higher beam intensity.

  2. First Polarized Proton Collisions at RHIC

    Science.gov (United States)

    Roser, T.; Ahrens, L.; Alessi, J.; Bai, M.; Beebe-Wang, J.; Brennan, J. M.; Brown, K. A.; Bunce, G.; Cameron, P.; Courant, E. D.; Drees, A.; Fischer, W.; Fliller, R.; Glenn, W.; Huang, H.; Luccio, A. U.; MacKay, W. W.; Makdisi, Y.; Montag, C.; Pilat, F.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; van Zeijts, J.; Zelenski, A.; Zeno, K.; Deshpande, A.; Kurita, K.; Krueger, K.; Spinka, H.; Underwood, D.; Syphers, M.; Alekseev, I.; Svirida, D.; Ranjbar, V.; Tojo, J.; Jinnouchi, O.; Okamura, M.; Saito, N.

    2003-05-01

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180° about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV.

  3. Heavy-flavour meson production at RHIC

    NARCIS (Netherlands)

    Mischke, A.

    2010-01-01

    Collisions of heavy atomic nuclei at very high beam energies allow to create and study hot QCD matter under laboratory-controlled conditions. Measurements at the SPS and RHIC facilities have yielded compelling evidence for the formation of this novel state of matter, the so-called Quark-Gluon Plasma

  4. Hybrid helical snakes and rotators for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1995-06-13

    The spin rotators and Siberian snakes presently envisaged for RHIC utilize helical dipole magnets. The snakes and the rotators each consist of four helices, each with a full twist (360{degrees}) of the field. Here we investigate an alternate layout, namely combinations of helical and pure bending magnet, and show that this may have advantages.

  5. Linear and chromatic optics measurements at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Aiba, M.; Calaga, R.; Aiba, M.; Tomas, R.; Vanbavinkove, G.

    2010-05-23

    Measurements of chromatic beta-beating were carried out for the first time in the RHIC accelerator during Run 2009. The analysis package developed for the LHC was used to extract the off-momentum optics for injection and top energy. Results from the beam experiments and compassion to the optics model are presented. The primary goal of the RHIC experiments were execute an on-line measurement of the optics using the tools developed for the LHC. Turn-by-turn BPM trajectories (typically 1000 turns) acquired immediately after an external dipole kick are numerically analyzed to determine the optical parameters at the location of the beam position monitors (BPMs). For chromatic optics, a similar analysis, but on a beam with finite momentum offset(s). Each optical measurement typically is calculated from multiple data sets to capture statistical variations and ensure reproducibility. The procedure of measurement and analysis is detailed in ref [1, 2]. Two dedicated experiments were performed at RHIC with protons during Run 2009. The first at injection energy and optics and the other at 250 GeV and squeezed optics. The basic RHIC parameters relevant for the two experiments are listed in Table 1.

  6. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS.

    Energy Technology Data Exchange (ETDEWEB)

    PARKER, B.; ESCALLIER, J.

    2005-05-16

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper.

  7. SUCCESSFUL BUNCHED BEAM STOCHASTIC COOLING IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BRENNAN, J.M.; BLASKIEWICZ, M.; SEVERINO, F.

    2006-06-23

    We report on a successful test of bunch-beam stochastic cooling in RHIC at 100 GeV. The cooling system is designed for heavy ions but was tested in the recent RHIC run which operated only with polarized protons. To make an analog of the ion beam a special bunch was prepared with very low intensity. This bunch had {approx}1.5 x 10{sup 9} protons, while the other 100 bunches contained {approx}1.2 x 10{sup 11} protons each. With this bunch a cooling time on the order 1 hour was observed through shortening of the bunch length and increase in the peak bunch current, together with a narrowing of the spectral line width of the Scottky power at 4 GHz. The low level signal processing electronics and the isolated-frequency kicker cavities are described.

  8. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  9. The Odderon at RHIC and LHC

    CERN Document Server

    Nicolescu, Basarab

    2007-01-01

    The Odderon remains an elusive object, 33 years after its invention. The Odderon is now a fundamental object in QCD and CGC and it has to be found experimentally if QCD and CGC are right. In the present talk, we show how to find it at RHIC and LHC. The most spectacular signature of the Odderon is the predicted difference between the differential cross-sections for proton-proton and antiproton-proton at high s and moderate t. This experiment can be done by using the STAR detector at RHIC and by combining these future data with the already present UA4/2 data. The Odderon could also be found by ATLAS experiment at LHC by performing a high-precision measurement of the real part of the hadron elastic scattering amplitude at small t.

  10. Charm and beauty production at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kabana, Sonia [Laboratoire de Physique Subatomique et des Technologies Associees (SUBATECH), Ecole des Mines, 4 rue Alfred Kastler, 44307 Nantes (France)

    2011-01-15

    We review selected highlights on charm and beauty production at RHIC from p+p, d+Au and A+A collisions at {radical}(s{sub NN})=200GeV, and compare them to model calculations. We focus on two particular issues, jet quenching and quarkonia. Anomalous energy loss (jet quenching) of quarks passing through the dense and hot matter built in heavy ion collisions is one of the outstanding discoveries made at RHIC. This phenomenon allows for an estimate of the initial gluon density. Furthermore, color screening of hidden charm and beauty states is a key signature of the QCD phase transition, allowing an estimate of the initial temperature. We present results on the flavour dependence of jet quenching. Heavy flavour production in A+A as compared to p+p collisions will be discussed for open and hidden charm.

  11. Observations of Snake Resonance in RHIC

    CERN Document Server

    Bai, Mei; Lee, Shyh-Yuan; Lin, Fanglei; MacKay, William; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven

    2005-01-01

    Siberian snakes now become essential in the polarized proton acceleration. With proper configuration of Siberian snakes, the spin precession tune of the beam becomes $\\frac{1}{2}$ which avoids all the spin depolarizing resonance. However, the enhancement of the perturbations on the spin motion can still occur when the betatron tune is near some low order fractional numbers, called snake resonances, and the beam can be depolarized when passing through the resonance. The snake resonances have been confirmed in the spin tracking calculations, and observed in RHIC with polarized proton beam. Equipped with two full Siberian snakes in each ring, RHIC provides us a perfect facility for snake resonance studies. This paper presents latest experimental results. New insights are also discussed.

  12. Conceptual design of a quadrupole magnet for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  13. ANALYSIS OF AVAILABILITY AND RELIABILITY IN RHIC OPERATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    PILAT, F.; INGRASSIA, P.; MICHNOFF, R.

    2006-06-26

    RHIC has been successfully operated for 5 years as a collider for different species, ranging from heavy ions including gold and copper, to polarized protons. We present a critical analysis of reliability data for RHIC that not only identifies the principal factors limiting availability but also evaluates critical choices at design times and assess their impact on present machine performance. RHIC availability data are typical when compared to similar high-energy colliders. The critical analysis of operations data is the basis for studies and plans to improve RHIC machine availability beyond the 50-60% typical of high-energy colliders.

  14. EVENT DRIVEN AUTOMATIC STATE MODIFICATION OF BNL'S BOOSTER FOR NASA SPACE RADIATION LABORATORY SOLAR PARTICLE SIMULATOR.

    Energy Technology Data Exchange (ETDEWEB)

    BROWN, D.; BINELLO, S.; HARVEY, M.; MORRIS, J.; RUSEK, A.; TSOUPAS, N.

    2005-05-16

    The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. NASA is interested in reproducing the energy spectrum from a solar flare in the space environment for a single ion species. To do this we have built and tested a set of software tools which allow the state of the Booster and the NSRL beam line to be changed automatically. In this report we will describe the system and present results of beam tests.

  15. Measurements of phi meson production in relativistic heavy-ion collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    STAR Coll

    2009-06-16

    We present results for the measurement of {phi} meson production via its charged kaon decay channel {phi} {yields} K{sup +}K{sup -} in Au + Au collisions at {radical}s{sub NN} = 62.4, 130, and 200 GeV, and in p + p and d + Au collisions at {radical}s{sub NN} = 200 GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity (|y| < 0.5) {phi} meson transverse momentum (p{sub T}) spectra in central Au + Au collisions are found to be well described by a single exponential distribution. On the other hand, the p{sub T} spectra from p + p, d + Au and peripheral Au + Au collisions show power-law tails at intermediate and high p{sub T} and are described better by Levy distributions. The constant {phi}/K{sup -} yield ratio vs beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for {phi} production at RHIC. The {Omega}/{phi} yield ratio as a function of p{sub T} is consistent with a model based on the recombination of thermal s quarks up to p{sub T} {approx} 4 GeV/c, but disagrees at higher transverse momenta. The measured nuclear modification factor, R{sub dAu}, for the {phi} meson increases above unity at intermediate p{sub T}, similar to that for pions and protons, while R{sub AA} is suppressed due to the energy loss effect in central Au + Au collisions. Number of constituent quark scaling of both R{sub cp} and v{sub 2} for the {phi} meson with respect to other hadrons in Au + Au collisions at {radical}s{sub NN} = 200 GeV at intermediate p{sub T} is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate p{sub T} region at RHIC.

  16. eRHIC ERL modeling in Zgoubi

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jing, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    This Note discusses on-going work regarding the modeling of eRHIC ERL in the ray-tracing code Zgoubi. The various pieces of the recirculator puzzle, their optical properties and their assemblage into an operational input data file in are addressed. The Note reports in particular on preparatory stages toward extensive end-to-end 6D polarized electron bunch transport simulations, which yield methods, as well a series of preliminary qualitative outcomes, discussed as well.

  17. New Results from Spin Physics at RHIC

    Science.gov (United States)

    Fatemi, Renee

    2009-05-01

    The sign and magnitude of the gluon spin contribution (δG) to the spin of the proton has been a topic of intense interest and speculation since inclusive deep inelastic scattering experiments found the total quark spin contribution to be surprisingly small. Starting in 2002, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab has provided access to longitudinally and transversely polarized proton collisions. Both PHENIX and STAR, the two largest collaborations at RHIC, have used this data to complete a series of inclusive hadron and jet double spin asymmetry (ALL) measurements. The mid-rapidity 0̂ and jet results, now included in a global analysis of existing world data, are shown to provide significant constraints on δG within their range of kinematic sensitivity. Recent inclusive pion and jet ALL measurements will be presented. Plans to measure ALL in correlation channels, for example di-jets and photon-jets, and parity violating asymmetries for identified W^+/- in future longitudinal proton runs will be discussed. In addition to a successful δG program, the RHIC-Spin community is actively contributing to the new and rapidly expanding frontier within nucleon structure studies of transverse spin measurements. Quantum Chromodynamics predicts an extremely small (mq√s) spin asymmetry for leading hadron production in the reaction p^p->h+X. Contrary to expectations, transverse single-spin asymmetries (SSA) of up to 30% were discovered in forward particle production more than three decades ago, and surprisingly, asymmetries of the same magnitude have been found to persist at current RHIC center-of-mass energies. The most recent forward 0̂ and η SSA from STAR and PHENIX, as well as charged hadron measurements from the BRAHMS collaboration, will be discussed and compared with theoretical predictions.

  18. A five-watt G-M/J-T refrigerator for LHe target at BNL

    Science.gov (United States)

    Jia, L. X.; Wang, L.; Addessi, L.; Miglionico, G.; Martin, D.; Leskowicz, J.; McNeill, M.; Yatauro, B.; Tallerico, T.

    2002-05-01

    A five-watts G-M/J-T refrigerator was built and installed for the high-energy physics research at Brookhaven National Laboratory in 2001. A liquid helium target of 8.25 liters was required for an experiment in the proton beam line at the Alternating Gradient Synchrotron (AGS) of BNL. The large radiation heat load towards the target requires a five-watts refrigerator at 4.2 K to support a liquid helium flask of 0.2 meter in diameter and 0.3 meter in length, which is made of Mylar film of 0.35 mm in thickness. The liquid helium flask is thermally exposed to the vacuum windows that are also made of 0.35 mm thickness Mylar film at room temperature. The refrigerator uses a two-stage Gifford-McMahon cryocooler for precooling the Joule-Thomson circuit that consists of five Linde-type heat exchangers. A mass flow rate of 0.8˜1.0 grams per second at 17.7 atm is applied to the refrigerator cold box. The two-phase helium flows between the liquid target and liquid/gas separator by means of a thermosyphon. This paper presents the system design as well as the test results including the control of the thermal oscillation.

  19. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  20. QCD and Heavy Ions RHIC Overview

    CERN Document Server

    Granier de Cassagnac, Raphael

    2010-01-01

    Nowadays, the most violent heavy ion collisions available to experimental study occur at the Relativistic Heavy Ion Collider (RHIC) of the Brookhaven National Laboratory. There, gold ions collide at psNN = 200 GeV. The early and most striking RHIC results were summarised in 2005 by its four experiments, BRAHMS, PHENIX, PHOBOS and STAR, in their so-called white papers [1, 2, 3, 4] that will be largely referenced thereafter. Beyond and after this, a wealth of data has been collected and analysed, providing additional information about the properties of the matter created at RHIC. It is categorically impossible to give a comprehensive review of these results in a 20 minutes talk or a 7 pages report. Here, I have made a selection of some of the most striking or intriguing signatures: jet quenching in Section 2, quarkonia suppressions in Section 3 and thermal photons in Section 4. A slightly longer and older version of this review can be found in [5]. Some updates are given here, as well as emphasis on new probes ...

  1. Strongly interacting matter at RHIC: experimental highlights

    CERN Document Server

    Okorokov, V A

    2014-01-01

    Recent experimental results obtained at the Relativistic Heavy-Ion Collider (RHIC) will be discussed. Investigations of different nucleus-nucleus collisions in recent years focus on two main tasks, namely, the detailed study of sQGP properties and the exploration of the QCD phase diagram. Results at top RHIC energy provide important information about event shapes as well as transport and thermodynamic properties of the hot medium for various flavors. Heavy-ion collisions are a unique tool for the study of topological properties of theory. Experimental results obtained for discrete QCD symmetries at finite temperatures are discussed. These results confirm indirectly the topologically non-trivial structure of the QCD vacuum. Most results obtained during phase-I of the RHIC beam energy scan (BES) program show smooth behavior vs initial energy. However, certain results suggest the transition in the domain of dominance of hadronic degrees of freedom at center-of-mass energies between 10-20 GeV. Future developments...

  2. Acceleration of polarized protons in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Tsoupas, N.; Ahrens, L.; Bai, M.; Brown, K.; Courant, E.; Glenn, J.W.; Huang, H.; Luccio, A.; MacKay, W.W.; Roser, T.; Schoefer, V.; Zeno, K.

    2010-02-25

    The high energy (s{sup 1/2} = 500 GeV) polarized proton beam experiments performed in RHIC, require high polarization of the proton beam. With the AGS used as the pre-injector to RHIC, one of the main tasks is to preserve the polarization of the proton beam, during the beam acceleration in the AGS. The polarization preservation is accomplished by the two partial helical magnets [1,2,3,4,5,6,7] which have been installed in AGS, and help overcome the imperfection and the intrinsic spin resonances which occur during the acceleration of protons. This elimination of the intrinsic resonances is accomplished by placing the vertical tune Q{sub y} at a value close to 8.98, within the spin-tune stop-band created by the snake. At this near integer tune the perturbations caused by the partial helical magnets is large resulting in large beta and dispersion waves. To mitigate the adverse effect of the partial helices on the optics of the AGS, we have introduced compensation quads[2] in the AGS. In this paper we present the beam optics of the AGS which ameliorates this effect of the partial helices.

  3. Heavy flavor in heavy-ion collisions at RHIC and RHIC II

    Energy Technology Data Exchange (ETDEWEB)

    Frawley, A D; Ullrich, T; Vogt, R

    2008-03-30

    In the initial years of operation, experiments at the Relativistic Heavy Ion Collider (RHIC) have identified a new form of matter formed in nuclei-nuclei collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time, has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about twice the critical temperature predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a 'perfect liquid' that appears to flow with a near-zero viscosity to entropy ratio--lower than any previously observed fluid and perhaps close to a universal lower bound. However, a fundamental understanding of the medium seen in heavy-ion collisions at RHIC does not yet exist. The most important scientific challenge for the field in the next decade is the quantitative exploration of the new state of nuclear matter. That will require new data that will, in turn, require enhanced capabilities of the RHIC detectors and accelerator. In this report we discuss the scientific opportunities for an upgraded RHIC facility --RHIC II--in conjunction with improved capabilities of the two large RHIC detectors, PHENIX and STAR. We focus solely on heavy flavor probes. Their production rates are calculable using the well-established techniques of perturbative QCD and their sizable interactions with the hot QCD medium provide unique and sensitive measurements of its crucial properties making them one of the key diagnostic tools available to us.

  4. DOE/NORA/BNL oil heat research agenda development

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.J. [Brookhaven National Lab., Upton, NY (United States); Batey, J. [Energy Research Center, Easton, CT (United States)

    1996-07-01

    The National Oilheat Research Alliance (NORA) has been formed and is currently working to establish a Congressionally approved oilheat check-off program to provide funding for research, education, training, safety, and marketing to benefit the US oilheat industry. NORA will be presenting this program to the Congress for its consideration and approval in the coming year. It will follow the same path as the National Propane Gas Association which is currently working on obtaining Congressional approval of a propane check off program that has already attracted over 120 cosponsors in the House of representatives. An effort to define the basis of a joint US Department of Energy (DOE) and Oilheat industry (marketers) program for future oilheat equipment research and development will be conducted during FY-1996. At the request of NORA representatives BNL will coordinate the development of a research agenda addressing three categories of activities, research appropriate for DOE support only, research appropriate for NORA support only, and research appropriate for co-funding by both organizations. This will also serve to update a prior oil-fueled research plan developed for DOE ten years ago which has been the road map for DOE`s very successful Oil Heat R&D program at BNL.

  5. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Quarkonium Production in Elementary and Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dumitru, A.; Lourenco, C.; Petreczky, P.; Qiu, J., Ruan, L.

    2011-08-03

    Understanding the structure of the hadron is of fundamental importance in subatomic physics. Production of heavy quarkonia is arguably one of the most fascinating subjects in strong interaction physics. It offers unique perspectives into the formation of QCD bound states. Heavy quarkonia are among the most studied particles both theoretically and experimentally. They have been, and continue to be, the focus of measurements in all high energy colliders around the world. Because of their distinct multiple mass scales, heavy quarkonia were suggested as a probe of the hot quark-gluon matter produced in heavy-ion collisions; and their production has been one of the main subjects of the experimental heavy-ion programs at the SPS and RHIC. However, since the discovery of J/psi at Brookhaven National Laboratory and SLAC National Accelerator Laboratory over 36 years ago, theorists still have not been able to fully understand the production mechanism of heavy quarkonia, although major progresses have been made in recent years. With this in mind, a two-week program on quarkonium production was organized at BNL on June 6-17, 2011. Many new experimental data from LHC and from RHIC were presented during the program, including results from the LHC heavy ion run. To analyze and correctly interpret these measurements, and in order to quantify properties of the hot matter produced in heavy-ion collisions, it is necessary to improve our theoretical understanding of quarkonium production. Therefore, a wide range of theoretical aspects on the production mechanism in the vacuum as well as in cold nuclear and hot quark-gluon medium were discussed during the program from the controlled calculations in QCD and its effective theories such as NRQCD to various models, and to the first principle lattice calculation. The scientific program was divided into three major scientific parts: basic production mechanism for heavy quarkonium in vacuum or in high energy elementary collisions; the

  6. Experimental effects of orbit on polarization loss in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar V.; Bai, M.; Huang, H.; Marusic, A.; Ptitsyn, V.; Minty, M.

    2012-05-20

    We are performing several experiments during the RHIC ramp to better understand the impact of orbit errors on the polarization at our current working point. These will be conducted by exciting specified orbit harmonics during the final two large intrinsic resonance crossing in RHIC during the 250 GeV polarized proton ramp. The resultant polarization response will then be measured.

  7. Ring imaging Cherenkov detector of PHENIX experiment at RHIC

    CERN Document Server

    Akiba, Y; Burward-Hoy, J; Chappell, R; Crook, D; Ebisu, K; Emery, M S; Ferriera, J; Frawley, A D; Hamagaki, H; Hara, H; Hayano, R S; Hemmick, T K; Hibino, M; Hutter, R; Kennedy, M; Kikuchi, J; Matsumoto, T; Moscone, C G; Nagasaka, Y; Nishimura, S; Oyama, K; Sakaguchi, T; Salomone, S; Shigaki, K; Tanaka, Y; Walker, J W; Wintenberg, A L; Young, G R

    1999-01-01

    The RICH detector of the PHENIX experiment at RHIC is currently under construction. Its main function is to identity electron tracks in a very high particle density, about 1000 charged particles per unit rapidity, expected in the most violent collisions at RHIC. The design and construction status of the detector and its expected performance are described.

  8. Measurements of strangeness production in the STAR experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, W.K. [Wayne State Univ., Detroit, MI (United States)

    1995-07-15

    Simulations of the ability of the STAR (Solenoidal Tracker at RHIC) detector to measure strangeness production in central Au+Au collisions at RHIC are presented. Emphasis is placed on the reconstruction of short lived particles using a high resolution inner tracker. The prospects for performing neutral kaon interferometry are discussed. Simulation results for measurements of strange and multi-strange baryons are presented.

  9. RHIC spin physics: Proceedings. Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This proceedings compiles one-page summaries and five transparencies for each talk, with the intention that the speaker should include a web location for additional information in the summary. Also, email addresses are given with the participant list. The order follows the agenda: gluon, polarimetry, accelerator, W production and quark/antiquark polarization, parity violation searches, transversity, single transverse spin, small angle elastic scattering, and the final talk on ep collisions at RHIC. The authors begin the Proceedings with the full set of transparencies from Bob Jaffe`s colloquium on spin, by popular request.

  10. A LOW NOISE RF SOURCE FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    HAYES,T.

    2004-07-05

    The Relativistic Heavy Ion Collider (RHIC) requires a low noise rf source to ensure that beam lifetime during a store is not limited by the rf system. The beam is particularly sensitive to noise from power line harmonics. Additionally, the rf source must be flexible enough to handle the frequency jump required for rebucketing (transferring bunches from the acceleration to the storage rf systems). This paper will describe the design of a Direct Digital Synthesizer (DDS) based system that provides both the noise performance and the flexibility required.

  11. RHIC operation with asymmetric collisions in 2015

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Aschenauer, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Atoian, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Connolly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ottavio, T. D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Drees, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Laster, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Makdisi, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marr, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morris, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nayak, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nemesure, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Poblaguev, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schmidke, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shrey, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Steski, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); White, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yip, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, S. Y. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-08-07

    To study low-x shadowing/saturation physics as well as other nuclear effects [1], [2], proton-gold (p-Au, for 5 weeks) and proton-Aluminum (p-Al, for 2 weeks) collisions were provided for experiments in 2015 at the Relativistic Heavy Ion Collider (RHIC), with polarized proton beam in the Blue ring and Au/Al beam in the Yellow ring. The special features of the asymmetric run in 2015 will be introduced. The operation experience will be reviewed as well in the report.

  12. Construction progress of the RHIC electron lenses

    Energy Technology Data Exchange (ETDEWEB)

    Fischer W.; Altinbas, Z.; Anerella, M.; Beebe, E.; et al

    2012-05-20

    In polarized proton operation the RHIC performance is limited by the head-on beam-beam effect. To overcome this limitation two electron lenses are under construction. We give an overview of the construction progress. Guns, collectors and the warm electron beam transport solenoids with their power supplies have been constructed. The superconducting solenoids that guide the electron beam during the interaction with the proton beam are near completion. A test stand has been set up to verify the performance of the gun, collector and some of the instrumentation. The infrastructure is being prepared for installation, and simulations continue to optimize the performance.

  13. ACCELERATION OF POLARIZED PROTONS IN THE AGS WITH TWO HELICAL PARTIAL SNAKES.

    Energy Technology Data Exchange (ETDEWEB)

    HUANG,H.; AHRENS,L.; BAI,M.; ET AL.

    2005-05-16

    The RHIC spin program requires 2 x 10{sup 11} proton/bunch with 70% polarization. As the injector to RHIC, AGS is the bottleneck for preserving polarization: there is no space for a full snake to overcome numerous depolarizing resonances. An ac dipole and a partial snake have been used to preserve beam polarization in the past few years. Two helical snakes have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate all depolarizing resonances encountered during acceleration. This paper presents the setup and preliminary results.

  14. Field testing the prototype BNL fan-atomized oil burner

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, R.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  15. PHYSICS OF THE 1 TERAFLOP RIKEN-BNL-COLUMBIA QCD PROJECT.

    Energy Technology Data Exchange (ETDEWEB)

    MAWHINNEY,R.

    1998-10-16

    A workshop was held at the RIKEN-BNL Research Center on the afternoon of October 16, 1998, as part of the first anniversary ceremony for the center. Titled ''Workshop on Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project'', this meeting brought together the physicists from RIKEN-BNL, BNL and Columbia who are using the QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer at the RIKEN-BNL Research Center for studies of QCD. In addition, Akira Ukawa, a leader of the CP-PACS project at the University of Tsukuba in Japan, attended and gave a talk on the Aoki phase. There were also others in attendance who were interested in more general properties of the QCDSP computer. The QCDSP computer and lattice QCD had been presented during the morning ceremony by Shigemi Ohta of KEK and the RIKEN-BNL Research Center. This was followed by a tour of the QCDSP machine room and a formal unveiling of the computer to the attendees of the anniversary ceremony and the press. The rapid completion of construction of the QCDSP computer was made possible through many factors: (1) the existence of a complete design and working hardware at Columbia when the RIKEN-BNL center was being set up, (2) strong support for the project from RIKEN and the center and (3) aggressive involvement of members of the Computing and Communications Division at BNL. With this powerful new resource, the members of the RIKEN-BNL-Columbia, QCD project are looking forward to advances in our understanding of QCD.

  16. PHYSICS OF THE 1 TERAFLOP RIKEN-BNL-COLUMBIA QCD PROJECT.

    Energy Technology Data Exchange (ETDEWEB)

    MAWHINNEY,R.

    1998-10-16

    A workshop was held at the RIKEN-BNL Research Center on the afternoon of October 16, i 998, as part of the first anniversary ceremony for the center. Titled ''Workshop on Physics of the 1 Teraflop RIKEN-BNL-Columbia QCD Project'', this meeting brought together the physicists from RIKEN-BNL, BNL and Columbia who are using the QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer at the RIKEN-BNL Research Center for studies of QCD. In addition, Akira Ukawa, a leader of the CP-PACS project at the University of Tsukuba in Japan, attended and gave a talk on the Aoki phase. There were also others in attendance who were interested in more general properties of the QCDSP computer. The QCDSP computer and lattice QCD had been presented during the morning ceremony by Shigemi Ohta of KEK and the RIKEN-BNL Research Center. This was followed by a tour of the QCDSP machine room and a formal unveiling of the computer to the attendees of the anniversary ceremony and the press. The rapid completion of construction of the QCDSP computer was made possible through many factors: (1) the existence of a complete design and working hardware at Columbia when the RIKEN-BNL center was being set up, (2) strong support for the project from RIKEN and the center and (3) aggressive involvement of members of the Computing and Communications Division at BNL. With this powerful new resource, the members of the RIKEN-BNL-Columbia, QCD project are looking forward to advances in our understanding of QCD.

  17. First results from RHIC-PHENIX

    Indian Academy of Sciences (India)

    Tarun Kanti Ghosh; K Adcox; S S Adler; N Ajitanand; Y Akiba; J Alexander; L Aphecetche; Y Arai; S H Aronson; R Averbeck; T C Awes; K N Barish; P D Barnes; J Barrette; B Bassalleck; S Bathe; V Baublis; A Bazilevsky; S Belikov; F G Bellaiche; S T Belyaev; M J Bennett; Y Berdnikov; S Botelho; M L Brooks; D S Brown; N Bruner; D Bucher; H Buesching; V Bumazhnov; G Bunce; J Burward-Hoy; S Butsyk; T A Carey; P Chand; J Chang; W C Chang; L L Chavez; S Chernichenko; C Y Chi; J Chiba; M Chiu; R K Choudhury; T Christ; T Chujo; M S Chung; P Chung; V Cianciolo; B A Cole; D G D’Enterria; G David; H Delagrange; A Denisov; A Deshpande; E J Desmond; O Dietzsch; B V Dinesh; A Drees; A Durum; D Dutta; K Ebisu; Y V Efremenko; K El Chenawi; H En’yo; S Esumi; L Ewell; T Ferdousi; D E Fields; S L Fokin; Z Fraenkel; A Franz; A D Frawley; S-Y Fung; S Garpman; T K Ghosh; A Glenn; A L Godoi; Y Goto; S V Greene; M Grosse Perdekamp; S K Gupta; W Guryn; H-Å Gustafsson; J S Haggerty; H Hamagaki; A G Hansen; H Hara; E P Hartouni; R Hayano; N Hayashi; X He; T K Hemmick; J Heuser; J C Hill; D S Ho; K Homma; B Hong; A Hoover; T Ichihara; K Imai; M S Ippolitov; M Ishihara; B V Jacak; W Y Jang; J Jia; B M Johnson; S C Johnson; K S Joo; S Kametani; J H Kang; M Kann; S S Kapoor; S Kelly; B Khachaturov; A Khanzadeev; J Kikuchi; D J Kim; H J Kim; S Y Kim; Y G Kim; W W Kinnison; E Kistenev; A Kiyomichi; C Klein-Boesing; S Klinksiek; L Kochenda; D Kochetkov; V Kochetkov; D Koehler; T Kohama; A Kozlov; P J Kroon; K Kurita; M J Kweon; Y Kwon; G S Kyle; R Lacey; J G Lajoie; J Lauret; A Lebedev; D M Lee; M J Leitch; X H Li; Z Li; D J Lim; M X Liu; X Liu; Z Liu; C F Maguire; J Mahon; Y I Makdisi; V I Manko; Y Mao; S K Mark; S Markacs; G Martinez; M D Marx; A Masaike; F Matathias; T Matsumoto; P L McGaughey; E Melnikov; M Merschmeier; F Messer; M Messer; Y Miake; T E Miller; A Milov; S Mioduszewski; R E Mischke; G C Mishra; J T Mitchell; A K Mohanty; D P Morrison; J M Moss; F Mühlbacher; M Muniruzzaman; J Murata; S Nagamiya; Y Nagasaka; J L Nagle; Y Nakada; B K Nandi; J Newby; L Nikkinen; P Nilsson; S Nishimura; A S Nyanin; J Nystrand; E O’Brien; C A Ogilvie; H Ohnishi; I D Ojha; M Ono; V Onuchin; A Oskarsson; L Österman; I Otterlund; K Oyama; L Paffrath; A P T Palounek; V S Pantuev; V Papavassiliou; S F Pate; T Peitzmann; A N Petridis; C Pinkenburg; R P Pisani; P Pitukhin; F Plasil; M Pollack; K Pope; M L Purschke; I Ravinovich; K F Read; K Reygers; V Riabov; Y Riabov; M Rosati; A A Rose; S S Ryu; N Saito; A Sakaguchi; T Sakaguchi; H Sako; T Sakuma; V Samsonov; T C Sangster; R Santo; H D Sato; S Sato; S Sawada; B R Schlei; Y Schutz; V Semenov; R Seto; T K Shea; I Shein; T-A Shibata; K Shigaki; T Shiina; Y H Shin; I G Sibiriak; D Silvermyr; K S Sim; J Simon-Gillo; C P Singh; V Singh; M Sivertz; A Soldatov; R A Soltz; S Sorensen; P W Stankus; N Starinsky; P Steinberg; E Stenlund; A Ster; S P Stoll; M Sugioka; T Sugitate; J P Sullivan; Y Sumi; Z Sun; M Suzuki; E M Takagui; A Taketani; M Tamai; K H Tanaka; Y Tanaka; E Taniguchi; M J Tannenbaum; J Thomas; J H Thomas; T L Thomas; W Tian; J Tojo; H Torii; R S Towell; I Tserruya; H Tsuruoka; A A Tsvetkov; S K Tuli; H Tydesjö; N Tyurin; T Ushiroda; H W van Hecke; C Velissaris; J Velkovska; M Velkovsky; A A Vinogradov; M A Volkov; A Vorobyov; E Vznuzdaev; H Wang; Y Watanabe; S N White; C Witzig; F K Wohn; C L Woody; W Xie; K Yagi; S Yokkaichi; G R Young; I E Yushmanov; W A Zajc; Z Zhang; S Zhou

    2001-08-01

    The PHENIX experiment consists of a large detector system located at the newly commissioned relativistic heavy ion collider (RHIC) at the Brookhaven National Laboratory. The primary goal of the PHENIX experiment is to look for signatures of the QCD prediction of a deconfined high-energy-density phase of nuclear matter quark gluon plasma. PHENIX started data taking for Au+Au collisions at $\\sqrt{s_{NN}} = 130$ GeV in June 2000. The signals from the beam-beam counter (BBC) and zero degree calorimeter (ZDC) are used to determine the centrality of the collision. A Glauber model reproduces the ZDC spectrum reasonably well to determine the participants in a collision. Charged particle multiplicity distribution from the first PHENIX paper is compared with the other RHIC experiment and the CERN, SPS results. Transverse momentum of photons are measured in the electro-magnetic calorimeter (EMCal) and preliminary results are presented. Particle identification is made by a time of flight (TOF) detector and the results show clear separation of the charged hadrons from each other.

  18. Upgrade scenario for the RHIC collimation system

    Energy Technology Data Exchange (ETDEWEB)

    Robert-Demolaize, G.; Drees, A.

    2012-01-19

    The RHIC collimation system is used to reduce background levels in both STAR and PHENIX detectors. With a push for higher luminosity in the near future, it becomes critical to check if and how the level of performance of the collimators can be improved. The following reviews a proposal for additional collimators placed further downstream of the current system and designed to intercept the tertiary halo coming out of the IR8 insertion before it can reach the triplet quadrupoles in either STAR or PHENIX. Simulations have been peformed to quantify the efficiency of additional collimator jaws in RHIC. Each figure presented in this article clearly shows that the additional mask collimators provide the expected reduction in losses around the machine, and especially to the incoming triplet to the STAR experiment (IP6), for the Yellow beam as much as for the Blue beam. Looking at compiled statistics for all three working point cases studied, proton losses around the machine are reduced by roughly one order of magnitude: at most a factor 30 for magnet losses, and at most a factor 40 for losses in spaces between magnets.

  19. Dilepton production from RHIC to the LHC

    Directory of Open Access Journals (Sweden)

    Dahms Torsten

    2015-01-01

    Full Text Available The goal of ultrarelativistic heavy-ion collisions at RHIC and the LHC is to study the properties of the quark-gluon plasma (QGP, a phase of matter with partonic degrees of freedom. Electromagnetic radiation, in form of photons or lepton pairs, is a penetrating probe that allows the investigation of the full time evolution and dynamics of the produced matter as it does not undergo strong interaction in the final state. The dilepton spectrum is extremely rich in physics sources: Thermal black-body radiation is of particular interest as it carries information about the QGP temperature. Modifications of the spectral functions of light vector mesons are linked to the potential restoration of chiral symmetry in the QGP phase. Correlated lepton pairs from semi-leptonic charm and beauty decays provide additional information about the heavy-quark energy loss. Finally, the suppression of quarkonia in the QGP give access to an independent temperature measurement. In this proceedings, dilepton results from RHIC are reviewed and the status as well as prospects of low-mass dilepton measurements at the LHC are given.

  20. First results from RHIC-PHENIX

    CERN Document Server

    Ghosh, T K; Adler, S S; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S V; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Yu A; Botelho, S S; Brooks, M L; Brown, D S; Bruner, N L; Bucher, D; Büsching, H; Bunce, G M; Burward-Hoy, J M; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S K; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; Dávid, G; Delagrange, H; Denisov, A; Deshpande, A A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A A; Dutta, D; Ebisu, K; Efremenko, Yu V; Chenawi, K E; En-Yo, H; Esumi, S C; Ewell, L A; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Zeev; Franz, A; Frawley, A D; Fung, S Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse-Perdekamp, M; Gupta, S K; Guryn, W; Gustafsson, Hans Åke; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Havano, R; Hayashi, N; He, X; Hemmick, T K; Heuser, J M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B A; Khanzadeev, A V; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E P; Kiyomichi, A; Klein-Bösing, C; Klinksiek, S A; Kochenda, L M; Kochetkov, D; Kochetkov, V; Köhler, D; Kohama, T; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R A; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu, Z; Maguire, C F; Mahon, J; Makdisi, Y I; Man'ko, V I; Mao, Y; Mark, S K; Markacs, S; Martínez, G; Marx, M D; Massaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E A; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Muhlbacher, F; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P O; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V A; Oskarsson, A; Österman, L; Otterlund, I; Oyama, K; Paffrath, L; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, Thomas; Petridis, A N; Pinkenburg, C H; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M E; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saitô, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T A; Shigaki, K; Shiina, T; Shin, Y H; Sibiryak, Yu; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sørensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H A; Towell, R S; Tserruya, Itzhak; Tsuruoke, H; Tsvetkov, A A; Tuli, S K; Tydesjo, H; Tyurin, N; Ushiroda, T; van Hecke, H; Velissaris, C; Velkovska, J; Velkovsky, M; Vingradov, A A; Volkov, M A; Vorobyov, A A; Vznuzdaev, E A; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S

    2001-01-01

    The PHENIX experiment consists of a large detector system located at the newly commissioned Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory. The primary goal of the PHENIX experiment is to look for signatures of the QCD prediction of a deconfined high-energy-density phase of nuclear matter and the quark gluon plasma. PHENIX started taking data for Au+Au collisions at square root (s/sub NN/)=130 GeV in June 2000. The signals from the beam-beam counter (BBC) and zero degree calorimeter (ZDC) are used to determine the centrality of the collision. A Glauber model reproduces the ZDC spectrum reasonably well to determine the participants in a collision. The charged particle multiplicity distribution from the first PHENIX paper is compared with the other RHIC experiment and the CERN and SPS results. Transverse momentum of photons are measured in the electro-magnetic calorimeter (EMCal) and preliminary results an presented. Particle identification is made by a time-of-flight (TOF) detecto...

  1. High luminosity electron-hadron collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  2. A number of upgrades on RHIC power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drozd, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Nolan, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Orsatti, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Heppener, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Di Lieto, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schultheiss, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Zapasek, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Sandberg, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This year marks the 15th run for the Relativistic Heavy Ion Collider (RHIC). Operation of a reliable superconducting magnet power supply system is a key factor of an accelerator’s performance. Over the past 15 years, the RHIC power supply group has made many improvements to increase the machine availability and reduce failures. During these past 15 years of operating RHIC a lot of problems have been solved or addressed. In this paper some of the essential upgrades/improvements are discussed.

  3. IBS simulation with different RF configurations in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-11-07

    It is a crucial task to understand the beam emittance growth during RHIC cycle and the underlying causes. One would benefit not just for the current operation of RHIC, also for the design of eRHIC. This report focuses on the Intra-Beam Scattering (IBS) contribution to the emittance growth of the proton beam with two different configurations of RF system. The answers to these questions will be given in the end of the report; can IBS explain the emittance growth all alone? What’s the difference of IBS growth rates for different RF configurations?

  4. Search for quark compositeness with polarized beams at RHIC

    CERN Document Server

    Virey, J M

    1996-01-01

    Around 1999, thanks to the RHIC Spin Collaboration (RSC), the Relativistic Heavy Ion Collider (RHIC) will be used as a polarized proton-proton collider. A new handed interaction between quark subconstituents, which could explain the excess of large E_T jet found by the CDF collaboration, could be at the origin of some small parity violating effects in one-jet inclusive production. Using spin asymmetries it is possible, at RHIC, to disentangle this new effect from the Standard Model prediction due to QCD-ElectroWeak interferences.

  5. RHIC POWER SUPPLIES - LESSONS LEARNED FROM THE 1999 - 2001 RHIC RUNS.

    Energy Technology Data Exchange (ETDEWEB)

    BRUNO,D.ENG,W.GANETIS,G.LAMBIASE,R.F.LOUIE,W.SANDBERG,J.SCHULTHEISS,C.

    2003-05-12

    The Relativistic Heavy Ion Collider (RHIC) was commissioned in 1999 and 2000. The two RHIC rings require a total of 933 power supplies (PSs) to supply currents to highly inductive superconducting magnets. These units function as 4 main PSs, 237 insertion region (02) PSs, 24 sextupole PSs, 24 Gamma-T PSs, 8 snake PSs, 16 spin rotator PSs, and 620 correction PSs. PS reliability in this type of machine is of utmost importance because the IR PSs are nested within other IR PSs, and these are all nested within the main PSs. This means if any main or IR PS trips off due to a PS fault or quench indication, then all the IR and main PSs in that ring must follow. When this happens, the Quench Protection Assemblies (QPA's) for each unit disconnects the PSs from the circuit and absorb the stored energy in the magnets. Commissioning these power supplies and QPA's was and still is a learning experience. A summary of the major problems encountered during these first three RHIC runs will be presented along with solutions.

  6. Collective global dynamics in Au+Au collisions at the BNL AGS

    Science.gov (United States)

    Bravina, L.; Csernai, L. P.; Lévai, P.; Strottman, D.

    1994-10-01

    Signatures of collective effects are studied in the quark gluon string model and in the fluid dynamical model for Au+Au collisions at 11.6A GeV/c. In the fluid dynamical model the dependence of observables on the quark-gluon plasma (QGP) formation in the equation of state is pointed out although the maximal total amount of pure QGP formed is only about 8 fm3 in these reactions. In contrast to the baryon rapidity distribution, the in-plane transverse flow and especially the squeeze-out effect are particularly sensitive to the EOS. In the QGSM the lifetime and extent of baryon density in strings are studied. The QGSM picture is very similar to the one obtained in the fluid dynamical model with a pure hadronic EOS.

  7. ERL Based Electron-Ion Collider eRHIC

    CERN Document Server

    Litvinenko, Vladimir N; Bai, Mei; Beebe-Wang, Joanne; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Joseph M; Calaga, Rama; Chang, Xiangyun; Deshpande, Abhay A; Farkhondeh, Manouchehr; Fedotov, Alexei V; Fischer, Wolfram; Kayran, Dmitry; Kewisch, Jorg; MacKay, William W; Montag, Christoph; Parker, Brett; Peggs, Steve; Ptitsyn, Vadim; Roser, Thomas; Ruggiero, Alessandro; Satogata, Todd; Surrow, Bernd; Tepikian, Steven; Trbojevic, Dejan; Yakimenko, Vitaly; Zhang, S Y

    2005-01-01

    We present the designs of a future polarized electron-hadron collider, eRHIC* based on a high current super-conducting energy-recovery linac (ERL) with energy of electrons up to 20 GeV. We plan to operate eRHIC in both dedicated (electron-hadrons only) and parallel(with the main hadron-hadron collisions) modes. The eRHIC has very large tunability range of c.m. energies while maintaining very high luminosity up to 1034 cm-2 s-1 per nucleon. Two of the most attractive features of this scheme are full spin transparency of the ERL at all operational energies and the capability to support up to four interaction points. We present two main layouts of the eRHIC, the expected beam and luminosity parameter, and discuss the potential limitation of its performance.

  8. Lattice design for the ERL electron ion collider in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D.; Beebe-Wang, J.; Tsoupas, N.; Chang, X.; Kayran, D.; Ptitsyn, V.; Litvinenko, V.; Hao, Y.; Parker, B.; Pozdeyev, E.

    2010-05-23

    We present electron ion collider lattice design for the Relativistic Heavy Ion Collider (eRHIC) where the electrons have multi-passes through recirculating linacs (ERL) and arcs placed in the existing RHIC tunnel. The present RHIC interaction regions (IR's), where the electron ion collisions will occur, are modified to allow for the large luminosity. Staging of eRHIC will bring the electron energy from 4 up to 20 (30) GeV as the superconducting cavities are built and installed sequentially. The synchrotron radiation from electrons at the IR is reduced as they arrive straight to the collision while ions and protons come with 10 mrad crossing angle using the crab cavities.

  9. Physics at Relativistic Heavy Ion Collider (RHIC)

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E.V.

    1990-08-01

    This introductory talk contains a brief discussion of future experiments at RHIC related to physics of superdense matter. In particular, we consider the relation between space-time picture of the collision and spectra of the observed secondaries. We discuss where one should look for QGP signals and for possible manifestation of the phase transition. We pay more attention to a rather new topic: hadron modification in the gas phase, which is interesting by itself as a collective phenomenon, and also as a precursor indicating what happens with hadrons near the phase transition. We briefly review current understanding of the photon physics, dilepton production, charm and strangeness and J/{psi} suppression. At the end we try to classify all possible experiments. 47 refs., 3 figs.

  10. Hadronization via coalescence at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Minissale V.

    2016-01-01

    Full Text Available An hadronization model that includes coalescence and fragmentation is used in this work to obtain predictions at both RHIC and LHC energy for light and strange hadrons transverse momentum spectra (π, p, k, Λ and baryon to meson ratios (p/π, Λ/k in a wide range of pT. This is accomplished without changing coalescence parameters. The ratios p/π and Λ/K shows the right behaviour except for some lack of baryon yield in a limited pT range around 6 GeV. This would indicate that the AKK fragmentation functions is too flat at pT < 8 GeV.

  11. Code generation of RHIC accelerator device objects

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, R.H.; Hoff, L.; Clifford, T.

    1995-12-01

    A RHIC Accelerator Device Object is an abstraction which provides a software view of a collection of collider control points known as parameters. A grammar has been defined which allows these parameters, along with code describing methods for acquiring and modifying them, to be specified efficiently in compact definition files. These definition files are processed to produce C++ source code. This source code is compiled to produce an object file which can be loaded into a front end computer. Each loaded object serves as an Accelerator Device Object class definition. The collider will be controlled by applications which set and get the parameters in instances of these classes using a suite of interface routines. Significant features of the grammar are described with details about the generated C++ code.

  12. Polarization simulations in the RHIC run 15 lattice

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    RHIC polarized proton Run 15 uses a new acceleration ramp optics, compared to RHIC Run 13 and earlier runs, in relation with electron-lens beam-beam compensation developments. The new optics induces different strengths in the depolarizing snake resonance sequence, from injection to top energy. As a consequence, polarization transport along the new ramp has been investigated, based on spin tracking simulations. Sample results are reported and discussed.

  13. MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS.

    Energy Technology Data Exchange (ETDEWEB)

    CARDONA,J.; PEGGS,S.; PILAT,R.; PTITSYN,V.

    2004-07-05

    The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model.

  14. Tracking studies in eRHIC energy-recovery recirculator

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-13

    Beam and polarization tracking studies in eRHIC energy recovery electron recirculator are presented, based on a very preliminary design of the FFAG lattice. These simulations provide examples of some of the beam and spin optics aspects of the linear FFAG lattice concept and its application in eRHIC, they provide code benchmarking for synchrotron radiation and spin diffusion in addition, and pave the way towards end-to-end 6-D(phasespace)+3D(spin) tracking simulations.

  15. First Results from the DUV-FEL Upgrade at BNL

    CERN Document Server

    Wang, Xijie; Murphy, James; Pinayev, Igor; Rakowsky, George; Rose, James; Shaftan, Timur; Sheehy, Brian; Skaritka, John; Wu, Zilu; Yu Li Hua

    2005-01-01

    The DUV-FEL at BNL is the world’s only facility dedicated to laser-seeded FEL R&D and its applications. Tremendous progress was made in both HGHG FEL and its applications in the last couple years.*,** In response to the requests of many users to study chemical science at the facility, the DUV-FEL linac was upgraded from 200 to 300 MeV to enable the HGHG FEL to produce 100 uJ pulses of 100 nm light. This will establish the DUV FEL as a premier user facility for ultraviolet radiation and enable state-of-the-art gas phase photochemistry research. The upgraded facility will also make possible key R&D experiments such as higher harmonic HGHG (n>5) that would lay the groundwork for future X-ray FEL based on HGHG. The upgraded HGHG FEL will operate at the 4th harmonic with the seed laser at either 800 nm or 400nm. The increase of the electron beam energy will be accomplished by installing a 5th linac cavity and two 45 MW klystrons. New HGHG modulator and dispersion sections vacuum chambers w...

  16. The BNL fan-atomized burner system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Celebi, Y. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    Brookhaven National Laboratory (BNL) has a continuing interest in the development of advanced oil burners which can provide new capabilities not currently available with pressure atomized, retention head burners. Specifically program goals include: the ability to operate at firing rates as low as 0.25 gph; the ability to operate with very low excess air levels for high steady state efficiency and to minimize formation of sulfuric acid and iron sulfate fouling; low emissions of smoke, CO, and NO{sub x} even at very low excess air levels; and the potential for modulation - either staged firing or continuous modulation. In addition any such advanced burner must have production costs which would be sufficiently attractive to allow commercialization. The primary motivation for all work sponsored by the US DOE is, of course, improved efficiency. With existing boiler and furnace models this can be achieved through down-firing and low excess air operation. Also, with low excess air operation fouling and efficiency degradation due to iron-sulfate scale formation are reduced.

  17. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (Brookhaven National Lab., Upton, NY (United States) State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics)

    1991-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs.

  18. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics

    1992-09-01

    The Accelerator Test Facility (ATF) at BNL is a users` facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF`s experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  19. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (Brookhaven National Lab., Upton, NY (United States) State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics)

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  20. Proceedings of the symposium on RHIC detector R&D

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi, Y.; Stevens, A.J. [eds.

    1991-12-31

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; The Vertex Detector for the Lepton/Photon Collaboration; Simulations of Silicon Vertex Tracker for STAR Experiment at RHIC; Calorimeter/Absorber Optimization for a RHIC Dimuon Experiment (RD-10 Project); Applications of the LAHET simulation Code to Relativistic Heavy Ion Detectors; Highly Segmented, High Resolution Time-of-Flight System; Research and Development on a Sub 100 Picosecond Time-of-Flight System Based on Silicon Avalance Diodes; Behavior of TPC`s in a High Particle Flux Environment; Generic R&D on Undoped Cesium Iodide and Lead Fluoride; and A Transition Radiation Detector for RHIC Featuring Accurate Tracking and dE/dx Particle Identification. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  1. Modelling of the AGS using Zgoubi - Status

    Energy Technology Data Exchange (ETDEWEB)

    Meot F.; Ahrens, L.; Dutheil, Y.; Glenn, J.; Huang, H.; Roser, T.; Schoefer, V.; Tsoupas, N.

    2012-05-20

    This paper summarizes the progress achieved so far, and discusses various outcomes, regarding the development of a model of the Alternating Gradient Synchrotron at the RHIC collider. The model, based on stepwise ray-tracing methods, includes beam and polarization dynamics. This is an on-going work, and a follow-on of code developments and particle and spin dynamics simulations that have been subject to earlier publications at IPAC and PAC [1, 2, 3]. A companion paper [4] gives additional informations, regarding the use of the measured magnetic field maps of the AGS main magnets.

  2. Fulfilling the RHIC mission with sPHENIX

    Science.gov (United States)

    Connors, Megan

    2016-08-01

    RHIC has made groundbreaking contributions to the understanding of QCD under extreme conditions with the discovery of the quark gluon plasma (QGP) as a perfect fluid and first observations of energy loss. It continues to play a crucial role in understanding and quantifying the properties of the QGP as well as mapping out the QCD phase diagram. However, detailed questions concerning partonic energy loss in the QGP remain. There is a need to build a new detector at RHIC to measure important rare probes of the QGP. A new detector will benefit from advances in reconstructing jets in heavy ion collisions and the increased luminosity achievable with RHIC. Constraining models at RHIC and LHC energies are crucial for extracting the temperature dependence of transport properties of the QGP. To measure newly developed observables made at the LHC with high precision at RHIC, a detector with full azimuthal coverage and spanning a pseudorapidity range between -1.1 and 1.1, known as sPHENIX, has been proposed. The capabilities of the new detector will allow for a full understanding of jet energy loss and upsilon suppression. The goals for sPHENIX and route to achieving these goals along with the current status of the detector will be presented on behalf of the new collaboration.

  3. Particle Production at RHIC and LHC Energies

    CERN Document Server

    Tawfik, A; Shalaby, A G

    2012-01-01

    The production of different particle species is recently measured in $Pb-Pb$ collisions by the ALICE experiment at $\\sqrt{s}=7 $TeV. This motivates the use of various bosons and baryons measured at lower center-of-mass energies in comparing their ratios to the hadron resonance (HRG) gas model and PYTHIA event generator. It is found that the particle-to-antiparticle ratios are perfectly reproduce by means of HRG and PYTHIA at RHIC and LHC energies. The kaon-to-pion and proton-to-pion ratios are entirely overestimated by the HRG model. The PYTHIA event generator obviously underestimates the kaon-to-pion ratio and simultaneously reproduces the proton-to-pion ratio, almost perfectly, especially at LHC energy. While matter-to-antimatter and non-strange abundances are partly in line with predictions from the HRG model, it is found in the ALICE experiment that the measured baryon ratios are suppressed by a factor of $\\sim1.5$. The strange abundances are overestimated in the HRG model.

  4. Transverse and longitudinal dynamics at RHIC

    Science.gov (United States)

    Staszel, P.; BRAHMS Collaboration

    2008-04-01

    We review results obtained by the BRAHMS experiment at the Relativistic Heavy Ion Collider (RHIC) for the systems of Au+Au and p+p colliding at \\rootsnn{200} and at \\rootsnn{62.4} . Rapidity-dependent \\barp/\\pi^- and K±/π± ratios within 0 < y < 3 for Au+Au at \\rootsnn{200} are found to be enhanced in nucleus-nucleus collisions as compared to p+p collisions. The particle ratios are discussed in terms of their system size and rapidity dependence. From comparison of RAA for different systems and energies it is found that RAA increases with decreasing collision energy, decreasing system size and when going toward more peripheral collisions. However, RAA shows only a very weak dependence on rapidity (for 0 < y < 3.2), both for pions and protons. The \\barp/p ratio for p+p collisions at \\roots{200} is below 0.1 at high pT (≈4 GeV/c) and y ≈ 3. Such a strong asymmetry in p and \\barp production cannot be described within next-to-leading order perturbative QCD utilizing any known sets of FFs. At the same rapidity but lower energy (\\roots{62.4}) the charge asymmetry is stronger by an order of magnitude for both protons and kaons.

  5. PHOBOS at RHIC: Some global observations

    Indian Academy of Sciences (India)

    Alan S Carroll; B B Back; M D Baker; D S Barton; R R Betts; M Ballintijn; A A Bickley; R Bindel; A Budzanowski; W Busza; A Carroll; M P Decowski; E García; N George; K Gulbrandsen; S Gushue; C Halliwell; J Hamblen; G A Heintzelman; C Henderson; D J Hofman; R S Hollis; R Hoyłyński; B Holzman; A Iordanova; E Johnson; J L Kane; J Katzy; N Khan; W Kucewicz; P Kulinich; C M Kuo; W T Lin; S Manly; D McLeod; J Michałowski; A C Mignerey; R Nouicer; A Olszewski; R Pak; I C Park; H Pernegger; C Reed; L P Remsberg; M Reuter; C Roland; G Roland; L Rosenberg; J Sagerer; P Sarin; P Sawicki; W Skulski; S G Steadman; P Steinberg; G S F Stephans; M Stodulski; A Sukhanov; J-L Tang; R Teng; A Trzupek; C Vale; G J van Nieuwenhuizen; R Verdier; B Wadsworth; F L H Wolfs; B Wosiek; K Woźniak; A H Wuosmaa; B Wysłouch; For the PHOBOS Collaboration

    2003-11-01

    Particle production in Au+Au collisions has been measured in the PHOBOS experiment at RHIC for a range of collision energies for a large span of pseudorapidities, || < 5.4. Three empirical observations have emerged from this data set which require theoretical examination. First, there is clear evidence of limiting fragmentation. Namely, particle production in central Au+Au collisions, when expressed as d/d' (' ≡ -beam), becomes energy independent at high energy for a broad region of ' around '=0. This energy-independent region grows with energy, allowing only a limited region (if any) of longitudinal boost-invariance. Second, there is a striking similarity between particle production in +- and Au + Au collisions (scaled by the number of participating nucleon pairs). Both the total number of produced particles and the longitudinal distribution of produced particles are approximately the same in +- and in scaled Au + Au. This observation was not predicted and has not been explained. Finally, particle production has been found to scale approximately with the number of participating nucleon pairs for $\\langle N_{\\text{part}}\\rangle > 65$. This scaling occurs both for the total multiplicity and for high T particles (3 < T < 4.5 GeV/c).

  6. Opportunities for Drell-Yan Physics at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E.; Bland, L.; Crawford, H.; Goto, Y.; Eyser, O.; Kang, Z.; Vossen, A.

    2011-05-24

    Drell-Yan (DY) physics gives the unique opportunity to study the parton structure of nucleons in an experimentally and theoretically clean way. With the availability of polarized proton-proton collisions and asymmetric d+Au collisions at the Relativistic Heavy Ion Collider (RHIC), we have the basic (and unique in the world) tools to address several fundamental questions in QCD, including the expected gluon saturation at low partonic momenta and the universality of transverse momentum dependent parton distribution functions. A Drell-Yan program at RHIC is tied closely to the core physics questions of a possible future electron-ion collider, eRHIC. The more than 80 participants of this workshop focused on recent progress in these areas by both theory and experiment, trying to address imminent questions for the near and mid-term future.

  7. Ion optics of RHIC electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Kuznetsov, G. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  8. The eRHIC Ring-Ring Collider Design

    CERN Document Server

    Wang, Fuhua; Beebe-Wang, Joanne; Deshpande, Abhay A; Farkhondeh, Manouchehr; Franklin, Wilbur; Graves, William; Litvinenko, Vladimir N; MacKay, William W; Milner, Richard; Montag, Christoph; Ozaki, Satoshi; Parker, Brett; Peggs, Steve; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven; Trbojevic, Dejan; Tschalär, C; Wang, Dong; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The eRHIC ring-ring collider is the main design option of the future lepton-ion collider at Brookhaven National Laboratory. We report the revisions of the ring-ring collider design features to the baseline design presented in the eRHIC Zeroth Design Report (ZDR). These revisions have been made during the past year. They include changes of the interaction region which are required from the modifications in the design of the main detector. They also include changes in the lepton storage ring for high current operations as a result of better understandings of beam-beam interaction effects. The updated collider luminosity and beam parameters also take into account a more accurate picture of current and future operational aspects of RHIC.

  9. First results from RHIC What are they telling us?

    CERN Document Server

    Nagle, J L

    2001-01-01

    The Relativistic Heavy Ion Collider (RHIC) facility at Brookhaven National Laboratory is the first accelerator specifically constructed for the study of very hot and dense nuclear matter. At sufficiently high temperature, nuclear matter is expected to undergo a phase transition to a quark-gluon plasma. It is the specific goal of the field to study the nature of this plasma and understand the phase transitions between different states. The RHIC accelerator along with four experiments BRAHMS, PHENIX, PHOBOS, and STAR were commissioned last year with first collisions occurring in June 2000. Presented here are the first results from low luminosity beam in Run I. They are a glimpse of the wealth of physics to be extracted from the RHIC program over the next several years.

  10. Red Hat Enterprise Virtualization - KVM-based infrastructure services at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Cortijo, D.

    2011-06-14

    Over the past 18 months, BNL has moved a large percentage of its Linux-based servers and services into a Red Hat Enterprise Virtualization (RHEV) environment. This presentation will address our approach to virtualization, critical decision points, and a discussion of our implementation. Specific topics will include an overview of hardware and software requirements, networking, and storage; discussion of the decision of Red Hat solution over competing products (VMWare, Xen, etc); details on some of the features of RHEV - both current and on their roadmap; Review of performance and reliability gains since deployment completion; path forward for RHEV at BNL and caveats and potential problems.

  11. Pion-nucleus total cross-section data from LAMPF and BNL. [Neutron and proton radii

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.D.

    1976-01-01

    New measurements of pion-nucleus total cross sections were made at LAMPF and BNL. The results from LAMPF include measurement of the difference of the rms neutron and proton radii of /sup 48/Ca to be 0.08 +- 0.02 and that of /sup 18/O to be 0.19 +- 0.02. The BNL measurements provide a new phenomenology on the downshift and spreading of the (3-3) resonance in nuclei from the first data on heavy nuclei. A new technique for handling the Coulomb effects in total cross section measurements is discussed.

  12. Simulations of silicon vertex tracker for star experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)

    1991-12-31

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  13. From RHIC to LHC: A relativistic diffusion approach

    CERN Document Server

    Kuiper, R; Kuiper, Rolf; Wolschin, Georg

    2007-01-01

    We investigate the energy dependence of stopping and hadron production in high-energy heavy-ion collisions based on a three-sources Relativistic Diffusion Model. The transport coefficients are extrapolated from Au + Au and Cu + Cu at RHIC energies (sqrt{s_NN)=19.6 - 200 GeV) to Pb + Pb at LHC energies sqrt{s_NN)= 5.52 TeV. Rapidity distributions for net protons, and pseudorapidity spectra for produced charged particles in central collisions are compared to data at RHIC energies, and discussed for several extrapolations to LHC energies.

  14. Surface Emission of Quark Gluon Plasma at RHIC and LHC

    Institute of Scientific and Technical Information of China (English)

    XIANG Wen-Chang; WAN Ren-Zhuo; ZHOU Dai-Cui

    2008-01-01

    Within the framework of a factorization model, we study the behaviour of nuclear modification factor in Au-Au collisions at RHIC and Pb-Pb collisions at LHC. We find that the nuclear modification factor is inversely proportional to the radius of the quark-gluon plasma and is dominated by the surface emission of hard jets. We predict the nuclear modification factor RLHCAA~0.15 in central Pb-Pb collisions at LHC. The study shows that the factorization model can be used to describe the centrality dependence of nuclear modification factor of the high transverse momentum particles produced in heavy ion collisions at both RHIC and LHC.

  15. Study of orbit correction for eRHIC FFAG design

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The unique feature of the orbits in the eRHIC Fixed Field Alternating Gradient (FFAG) design is that multiple accelerating and decelerating bunches pass through the same magnets with different horizontal offsets. Therefore, it is critical for the eRHIC FFAG to correct multiple orbits in the same vacuum pipe for better spin transmission and alignment of colliding beams. In this report, the effects on orbits from multiple error sources will be studied. The orbit correction method will be described and results will be presented.

  16. More on the RHIC fireball and dual black holes

    OpenAIRE

    Nastase, Horatiu

    2006-01-01

    We revisit the issue of the RHIC ``fireball'' as a dual black hole, and explain some of the details. We discuss the nature of the (black hole) information paradox as a purely field theory (gauge theory) phenomenon and how the paradox can be formulated in exactly the same way for the RHIC fireball and a black hole. We stress the differences between the black holes produced in the gravity dual and the equilibrium situation of the Witten construction for finite temperature AdS-CFT. We analyze th...

  17. PROCEEDINGS OF THE RIKEN BNL RESEARCH CENTER WORKSHOP ON LARGE SCALE COMPUTATIONS IN NUCLEAR PHYSICS USING THE QCDOC, SEPTEMBER 26 - 28, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    AOKI,Y.; BALTZ,A.; CREUTZ,M.; GYULASSY,M.; OHTA,S.

    2002-09-26

    The massively parallel computer QCDOC (QCD On a Chip) of the RIKEN BNL Research Center (RI3RC) will provide ten-teraflop peak performance for lattice gauge calculations. Lattice groups from both Columbia University and RBRC, along with assistance from IBM, jointly handled the design of the QCDOC. RIKEN has provided $5 million in funding to complete the machine in 2003. Some fraction of this computer (perhaps as much as 10%) might be made available for large-scale computations in areas of theoretical nuclear physics other than lattice gauge theory. The purpose of this workshop was to investigate the feasibility and possibility of using a supercomputer such as the QCDOC for lattice, general nuclear theory, and other calculations. The lattice applications to nuclear physics that can be investigated with the QCDOC are varied: for example, the light hadron spectrum, finite temperature QCD, and kaon ({Delta}I = 1/2 and CP violation), and nucleon (the structure of the proton) matrix elements, to name a few. There are also other topics in theoretical nuclear physics that are currently limited by computer resources. Among these are ab initio calculations of nuclear structure for light nuclei (e.g. up to {approx}A = 8 nuclei), nuclear shell model calculations, nuclear hydrodynamics, heavy ion cascade and other transport calculations for RHIC, and nuclear astrophysics topics such as exploding supernovae. The physics topics were quite varied, ranging from simulations of stellar collapse by Douglas Swesty to detailed shell model calculations by David Dean, Takaharu Otsuka, and Noritaka Shimizu. Going outside traditional nuclear physics, James Davenport discussed molecular dynamics simulations and Shailesh Chandrasekharan presented a class of algorithms for simulating a wide variety of femionic problems. Four speakers addressed various aspects of theory and computational modeling for relativistic heavy ion reactions at RHIC. Scott Pratt and Steffen Bass gave general overviews of

  18. Color screening scenario for quarkonia suppression in a quasiparticle model compared with data obtained from experiments at the CERN SPS, BNL RHIC, and CERN LHC

    Science.gov (United States)

    Srivastava, P. K.; Mishra, M.; Singh, C. P.

    2013-03-01

    We present a modified color screening model for J/ψ suppression in the quark-gluon plasma (QGP) using the quasiparticle model (QPM) as the equation of state (EOS). Other theoretical ingredients incorporated in the model are feed-down from higher resonances, namely, χc, and ψ', dilated formation time for quarkonia, and viscous effects of the QGP medium. By assuming further that the QGP is expanding with Bjorken's hydrodynamical expansion, the present model is used to analyze the centrality dependence of the J/ψ suppression in the mid-rapidity region and compare it with the data obtained from Super Proton Synchrotron, Relativistic Heavy Ion Collider, and Large Hadron Collider experiments. We find that the centrality dependence of the data for the survival probability at all energies is well reproduced by our model. We further compare our model predictions with the results obtained from the bag model EOS for QGP which has usually been used earlier in all such calculations.

  19. A model of polarized-beam AGS in the ray-tracing code Zgoubi

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ahrens, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Glenn, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-07-12

    A model of the Alternating Gradient Synchrotron, based on the AGS snapramps, has been developed in the stepwise ray-tracing code Zgoubi. It has been used over the past 5 years in a number of accelerator studies aimed at enhancing RHIC proton beam polarization. It is also used to study and optimize proton and Helion beam polarization in view of future RHIC and eRHIC programs. The AGS model in Zgoubi is operational on-line via three different applications, ’ZgoubiFromSnaprampCmd’, ’AgsZgoubiModel’ and ’AgsModelViewer’, with the latter two essentially interfaces to the former which is the actual model ’engine’. All three commands are available from the controls system application launcher in the AGS ’StartUp’ menu, or from eponymous commands on shell terminals. Main aspects of the model and of its operation are presented in this technical note, brief excerpts from various studies performed so far are given for illustration, means and methods entering in ZgoubiFromSnaprampCmd are developed further in appendix.

  20. QUARKONIUM PRODUCTION IN RELATIVISTIC NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 12

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    1999-04-20

    The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.

  1. Measurement of HOMs in the RHIC RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Abreu,N.P.; Choi, E. M.

    2009-01-07

    The authors present results of Higher Order Modes (HOMs) measurements in the RHIC accelerating (28 MHz system) and storage (197 MHz system) cavities. The power of the excited HOMs deposited into the HOM damper is measured and compared with an analytical calculation of the HOMs power. The quality factors (Q) are also measured and compared to previous measurements.

  2. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI, I.

    2005-09-18

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R&D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC.

  3. STAR results from the first year at RHIC

    Indian Academy of Sciences (India)

    Helen Caines

    2003-04-01

    An overview of the latest results from the STAR experiment at RHIC is presented. Preliminary measurements of , , , and Ξ, plus their respective anti-particles at t < 2 GeV/c, where the majority of particle production occurs, allow us to probe the soft processes whilst the harder perturbative regime can be accessed by studying particle spectra and yields at higher momenta.

  4. Numerical optimization of Siberian snakes and spin rotators for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A.U.

    1995-12-31

    The structure of the four Siberian Snakes and eight Spin Rotators being designed for RHIC is discussed. These devices consist each of four helical dipoles. Results of orbit and spin tracking through the magnets are presented. 14 refs., 8 figs., 4 tabs.

  5. Feasibility Studies of Exclusive Diffractive Bremsstrahlung Measurement at RHIC Energies

    OpenAIRE

    Chwastowski, Janusz; Cyz, Antoni; Fulek, Łukasz; Kycia, Radosław; Pawlik, Bogdan; Sikora, Rafał; Turnau, Jacek

    2015-01-01

    Feasibility studies of an observation of the exclusive diffractive bremsstrahlung at RHIC at $\\sqrt{s} = 200$~GeV and at $\\sqrt{s} = 500$~GeV are reported. A simplified approach to the photon and the scattered proton energy reconstruction is used. Influence of possible backgrounds is discussed.

  6. Concept and architecture of the RHIC LLRF upgrade platform

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.S.; Hayes, T.; Severino, F.

    2011-03-28

    The goal of the RHIC LLRF upgrade has been the development of a stand alone, generic, high performance, modular LLRF control platform, which can be configured to replace existing systems and serve as a common platform for all new RF systems. The platform is also designed to integrate seamlessly into a distributed network based controls infrastructure, be easy to deploy, and to be useful in a variety of digital signal processing and data acquisition roles. Reuse of hardware, software and firmware has been emphasized to minimize development effort and maximize commonality of system components. System interconnection, synchronization and scaling are facilitated by a deterministic, high speed serial timing and data link, while standard intra and inter chassis communications utilize high speed, non-deterministic protocol based serial links. System hardware configuration is modular and flexible, based on a combination of a main carrier board which can host up to six custom or commercial daughter modules as required to implement desired functionality. This paper will provide an overview of the platform concept, architecture, features and benefits. The RHIC LLRF Upgrade Platform has been developed with the goal of providing a flexible, modular and scalable architecture which will support our current applications and satisfy new ones for the foreseeable future. The platform has been recently commissioned at both RHIC and the RHIC EBIS injector. To date the platform has demonstrated its versatility and utility, meeting the design goals as originally defined.

  7. A hardware overview of the RHIC LLRF platform

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, T.; Smith, K.S.

    2011-03-28

    The RHIC Low Level RF (LLRF) platform is a flexible, modular system designed around a carrier board with six XMC daughter sites. The carrier board features a Xilinx FPGA with an embedded, hard core Power PC that is remotely reconfigurable. It serves as a front end computer (FEC) that interfaces with the RHIC control system. The carrier provides high speed serial data paths to each daughter site and between daughter sites as well as four generic external fiber optic links. It also distributes low noise clocks and serial data links to all daughter sites and monitors temperature, voltage and current. To date, two XMC cards have been designed: a four channel high speed ADC and a four channel high speed DAC. The new LLRF hardware was used to replace the old RHIC LLRF system for the 2009 run. For the 2010 run, the RHIC RF system operation was dramatically changed with the introduction of accelerating both beams in a new, common cavity instead of each ring having independent cavities. The flexibility of the new system was beneficial in allowing the low level system to be adapted to support this new configuration. This hardware was also used in 2009 to provide LLRF for the newly commissioned Electron Beam Ion Source.

  8. BNL Building 650 lead decontamination and treatment feasibility study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.D.; Cowgill, M.G.; Milian, L.W. [and others

    1995-10-01

    Lead has been used extensively at Brookhaven National Laboratory (BNL) for radiation shielding in numerous reactor, accelerator and other research programs. A large inventory of excess lead (estimated at 410,000 kg) in many shapes and sizes is currently being stored. Due to it`s toxicity, lead and soluble lead compounds are considered hazardous waste by the Environmental Protection Agency. Through use at BNL, some of the lead has become radioactive, either by contamination of the surface or through activation by neutrons or deuterons. This study was conducted at BNL`s Environmental and Waste Technology Center for the BNL Safety and Environmental Protection Division to evaluate feasibility of various treatment options for excess lead currently being stored. The objectives of this effort included investigating potential treatment methods by conducting a review of the literature, developing a means of screening lead waste to determine the radioactive characteristics, examining the feasibility of chemical and physical decontamination technologies, and demonstrating BNL polyethylene macro-encapsulation as a means of treating hazardous or mixed waste lead for disposal. A review and evaluation of the literature indicated that a number of physical and chemical methods are available for decontamination of lead. Many of these techniques have been applied for this purpose with varying degrees of success. Methods that apply mechanical techniques are more appropriate for lead bricks and sheet which contain large smooth surfaces amenable to physical abrasion. Lead wool, turnings, and small irregularly shaped pieces would be treated more effectively by chemical decontamination techniques. Either dry abrasion or wet chemical methods result in production of a secondary mixed waste stream that requires treatment prior to disposal.

  9. OVERVIEW ON BNL ASSESSMENT OF SEISMIC ANALYSIS METHODS FOR DEEPLY EMBEDDED NPP STRUCTURES.

    Energy Technology Data Exchange (ETDEWEB)

    XU,J.; COSTANTINO, C.; HOFMAYER, C.; GRAVES, H.

    2007-04-01

    A study was performed by Brookhaven National Laboratory (BNL) under the sponsorship of the U. S. Nuclear Regulatory Commission (USNRC), to determine the applicability of established soil-structure interaction analysis methods and computer programs to deeply embedded and/or buried (DEB) nuclear power plant (NPP) structures. This paper provides an overview of the BNL study including a description and discussions of analyses performed to assess relative performance of various SSI analysis methods typically applied to NPP structures, as well as the importance of interface modeling for DEB structures. There are four main elements contained in the BNL study: (1) Review and evaluation of existing seismic design practice, (2) Assessment of simplified vs. detailed methods for SSI in-structure response spectrum analysis of DEB structures, (3) Assessment of methods for computing seismic induced earth pressures on DEB structures, and (4) Development of the criteria for benchmark problems which could be used for validating computer programs for computing seismic responses of DEB NPP structures. The BNL study concluded that the equivalent linear SSI methods, including both simplified and detailed approaches, can be extended to DEB structures and produce acceptable SSI response calculations, provided that the SSI response induced by the ground motion is very much within the linear regime or the non-linear effect is not anticipated to control the SSI response parameters. The BNL study also revealed that the response calculation is sensitive to the modeling assumptions made for the soil/structure interface and application of a particular material model for the soil.

  10. RHIC-spin program for the next several years

    Science.gov (United States)

    Okada, Kensuke

    2009-10-01

    It has been almost a decade since RHIC provided the first polarized proton proton collision. The performance is improving towards the design luminosity and polarization. With the applicability of the factorized perturbative QCD (pQCD) and gluons in a leading order process, RHIC is a unique place to access to the gluon spin in the proton. In the first stage, PHENIX and STAR measured the double helicity asymmetries of inclusive channels. The data excluded the large gluon polarization scenario and prefers rather small polarization in the range of Bjorken-x presently measured. The next step is to study the x dependence. One way is to fix the kinematics, and the other is to change the collision energy to enlarge the x-coverage. The inclusion of data with lower collision energy than the nominal RHIC energy (√s=200GeV) might be an option if the range where the factorized pQCD can be applied is extended. The field of transverse spin physics is rapidly growing. PHENIX and STAR spent a half of their beam time taking data with transverse beam polarization. BRAHMS used its great capability of particle ID and its broad rapidity coverage to measure single spin asymmetries. At this stage, it is important to collect many experimental evidences in wide range of kinematics and channels. For this purpose, STAR recently extended their forward acceptance. With the full energy (√s=500GeV), W boson has a reasonable production rate. Thanks to its parity violating process, it provides a unique way to separate the flavor spin components with the high scale of Q^2 (˜6400GeV^2) and no fragmentation involved. In 2009, RHIC provided the first 500GeV polarized collisions successfully. Experiments demonstrated the feasibility of this program. In this talk, I will give a short summary of what we have learned from the past RHIC runs and prospects for the near future measurements.

  11. Beam energy dependence of two-proton correlations at the AGS

    CERN Document Server

    Panitkin, S Y; Alexander, J; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D; Chance, J; Chung, J; Cole, B; Crowe, K M; Das, A; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A; Hjort, E; Huo, L; Justice, M; Kaplan, M; Keane, D; Kintner, J C; Klay, J L; Krofcheck, D; Lacey, R A; Lisa, M A; Liu, H; Liu, Y; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D; Pinkenburg, C H; Porile, N T; Rai, G; Ritter, H G; Romero, J; Scharenberg, R P; Schröder, L; Srivastava, B; Stone, N; Symons, T J M; Wang, S; Whitfield, J; Wienold, T; Witt, R; Wood, L; Yang, X; Zhang, W; Zhang, Y

    1999-01-01

    First measurements of the beam energy dependence of the two proton correlation function in central Au+Au collisions are performed by the E895 Collaboration at the BNL AGS. No significant changes with beam energy were observed. The imaging technique of Brown-Danielewicz is used in order to extract information about the space-time content of the proton source at freeze-out. Extracted source functions show peculiar enhancement at low relative separation.

  12. Multipacting simulation and test results of BNL 704 MHz SRF gun

    Energy Technology Data Exchange (ETDEWEB)

    Xu W.; Belomestnykh, S.; Ben-Zvi, I.; Cullen, C. et al

    2012-05-20

    The BNL 704MHz SRF gun has a grooved choke joint to support the photo-cathode. Due to the distortion of grooves at the choke joint during the BCP for the choke joint, several multipacting barriers showed up when it was tested with Nb cathode stalk at JLab. We built a setup to use the spare large grain SRF cavity to test and condition the multipacting at BNL with various power sources up to 50kW. The test is carried out in three stages: testing the cavity performance without cathode, testing the cavity with the Nb cathode stalk that was used at Jlab, and testing the cavity with a copper cathode stalk that is based on the design for the SRF gun. This paper summarizes the results of multipacting simulation, and presents the large grain cavity test setup and the test results.

  13. PRODEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP : HIGH PERFORMANCE COMPUTING WITH QCDOC AND BLUEGENE.

    Energy Technology Data Exchange (ETDEWEB)

    CHRIST,N.; DAVENPORT,J.; DENG,Y.; GARA,A.; GLIMM,J.; MAWHINNEY,R.; MCFADDEN,E.; PESKIN,A.; PULLEYBLANK,W.

    2003-03-11

    Staff of Brookhaven National Laboratory, Columbia University, IBM and the RIKEN BNL Research Center organized a one-day workshop held on February 28, 2003 at Brookhaven to promote the following goals: (1) To explore areas other than QCD applications where the QCDOC and BlueGene/L machines can be applied to good advantage, (2) To identify areas where collaboration among the sponsoring institutions can be fruitful, and (3) To expose scientists to the emerging software architecture. This workshop grew out of an informal visit last fall by BNL staff to the IBM Thomas J. Watson Research Center that resulted in a continuing dialog among participants on issues common to these two related supercomputers. The workshop was divided into three sessions, addressing the hardware and software status of each system, prospective applications, and future directions.

  14. STATUS OF HIGH TEMPERATURE SUPERCONDUCTOR MAGNET R AND D AT BNL.

    Energy Technology Data Exchange (ETDEWEB)

    GUPTA,R.; ANERELLA,M.; COZZOLINO,J.; ESCALLIER,J.; GANETIS,G.; GHOSH,A.; ET AL.

    2004-01-22

    We report the status and test results of the High Temperature Superconductor (HTS) cable and magnet R&D at Brookhaven National Laboratory (BNL). If successful, this will enhance the performance and reduce the cost of operation of magnets that must absorb a large amount of energy. The need for developing this technology has been seen in a number of high field magnet applications for high energy colliders, and a medium field application in the proposed Rare Isotope Accelerator (RIA). The likelihood of the future use of HTS is improving because of the availability of longer and more uniform length tapes and cables and because of the ongoing construction and test experience at BNL and elsewhere. The design of a super-ferric quadrupole, that must survive the very high radiation environment of RIA, and operate at 20-40 K, is also presented.

  15. Upgrade of RHIC Vacuum Systems for High Luminosity Operation

    CERN Document Server

    Hseuh Hsiao Chaun; Smart, Loralie; Todd, Robert J; Weiss, Daniel

    2005-01-01

    With increasing ion beam intensity during recent RHIC operations, pressure rises of several decades were observed at most room temperature sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping, anti-grazing ridges and beam tube solenoids have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and interlock were enhanced to reduce premature beam aborts. Preliminary measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed...

  16. Absolute beam emittance measurements at RHIC using ionization profile monitors

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Connolly, R [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Summers, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  17. Optimization of the Phase Advance Between RHIC Interaction Points

    CERN Document Server

    Tomas, Rogelio

    2005-01-01

    We consider the scenario of having two identical Interaction Points (IPs) in the Relativistic Heavy Ion Collider (RHIC). The strengths of beam-beam resonances strongly depend on the phase advance between these two IPs and therefore certain phase advances could improve beam lifetime and luminosity. We compute the dynamic aperture as function of the phase advance between these IPs to find the optimum settings. The beam-beam interaction is treated in the weak-strong approximation and a complete non-linear model of the lattice is used. For the current RHIC proton working point (0.69,0.685) the design lattice is found to have the optimum phase advance. However this is not the case for other working points.

  18. Matter in extremis: Ultrarelativistic nuclear collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Peter; Wang, Xin-Nian

    2004-08-20

    We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at {radical}s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state.

  19. Helical Dipole Magnets for Polarized Protons in RHIC

    Science.gov (United States)

    Syphers, M.; Courant, E.; Fischer, W.; Luccio, A.; Mariam, F.; Peggs, S.; Pilat, F.; Roser, T.; Tepikian, S.; Tsoupas, N.; Willen, E.; Katayama, T.; Hatanaka, K.; Kawaguchi, T.; Okamura, M.; Tominaka, T.; Wu, H.; Ptitsin, V.; Shatunov, Y.

    1997-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) will be able to support experiments using polarized proton beams. Siberian Snakes are used to maintain polarization in this high energy superconducting collider. To make efficient use of available space while taking advantage of high field superconducting magnets, 4 Tesla helical dipole magnets will be used. These magnets generate a central dipole field in which the field direction rotates through 360^circ about the longitudinal axis over the length of the device. An arrangement of four such magnets can produce the desired change in the spin direction while keeping the proton orbit outside of the ``Snake'' unaltered. Similar magnet arrangements will be used to produce longitudinal polarization at the two major interaction points in RHIC. The basic requirements and layout of these magnets are described, as well as tolerances on field quality and integrated field strengths. First results of tests of prototype helical magnets will be discussed.

  20. Polarized Proton Collisions at 205GeV at RHIC

    Science.gov (United States)

    Bai, M.; Roser, T.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; Beebe-Wang, J.; Blaskiewicz, M.; Bravar, A.; Brennan, J. M.; Bruno, D.; Bunce, G.; Courant, E.; Drees, A.; Fischer, W.; Gardner, C.; Gill, R.; Glenn, J.; Haeberli, W.; Huang, H.; Jinnouchi, O.; Kewisch, J.; Luccio, A.; Luo, Y.; Nakagawa, I.; Okada, H.; Pilat, F.; Mackay, W. W.; Makdisi, Y.; Montag, C.; Ptitsyn, V.; Satogata, T.; Stephenson, E.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Wise, T.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2006-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) has been providing collisions of polarized protons at a beam energy of 100 GeV since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the intrinsic spin resonances beyond 100 GeV are about a factor of 2 stronger than those below 100 GeV making it important to examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were first accelerated to the record energy of 205 GeV in RHIC with a significant polarization measured at top energy in 2005. This Letter presents the results and discusses the sensitivity of the polarization survival to orbit distortions.

  1. How can the Odderon be detected at RHIC and LHC

    CERN Document Server

    Avila, R; Nicolescu, B; Avila, Regina; Gauron, Pierre; Nicolescu, Basarab

    2007-01-01

    The Odderon remains an elusive object, 33 years after its invention. The Odderon is now a fundamental object in QCD and CGC and it has to be found experimentally if QCD and CGC are right. In the present paper, we show how to find it at RHIC and LHC. The most spectacular signature of the Odderon is the predicted difference between the differential cross-sections for proton-proton and antiproton-proton at high s and moderate t. The experiment can be done by using the STAR detector at RHIC and by combining these future data with the already present UA4/2 data. The Odderon could also be found by ATLAS exeperiment at LHC by performing a high-precision measurement of the real part of the hadron elastic scattering amplitude at small t.

  2. Ultra-peripheral Collisions at RHIC: An Experimental Overview

    CERN Document Server

    Klein, Spencer R

    2015-01-01

    Ultra-peripheral collisions (UPCs) of ions allow us to study photonuclear and two-photon interactions at energies above those available at fixed target accelerators. For heavy ions, the couplings are large enough so that multi-photon interactions are possible, and higher order corrections are expected to be significant. In this writeup, I present some recent UPC results from the Relativistic Heavy Ion Collider (RHIC), and discuss some future prospects. I also draw parallels between UPC data and that expected at an electron-ion collider (EIC), and show how UPCs are a useful lead-in to EIC physics. This writeup is based on a talk at "Initial State 2014," (IS2014), with a focus on the newest results. One important result is that comparison of the RHIC (and LHC) results on coherent $\\rho^0$ photoproduction show evidence for nuclear suppression, compared to a calculating based on $\\gamma p$ cross-sections.

  3. z-scaling in heavy ion collisions at the RHIC

    Science.gov (United States)

    Tokarev, M. V.

    2007-09-01

    Experimental data on transverse particle spectra obtained by the STAR, PHENIX, PHOBOS, and BRAHMS collaborations at the RHIC are analyzed in the framework of the generalized concept of z-scaling. It was developed for analysis of inclusive particle production in proton-(anti)proton collisions at high p T and high multiplicities. The general scheme of the approach based on the physical principles of self-similarity, locality, and fractality is reviewed. Independence of the scaling function ψ( z) from energy, multiplicity, and atomic weight for h ±, π ±,0, K {/S 0}, and Λ hadrons produced in Au-Au and Cu-Cu collisions at √ s = 130 and 200 GeV is discussed. Based on z-scaling, the multiplicity dependence of pion transverse spectra up to p T = 25 GeV/ c in Au-Au collisions at √ s = 200 GeV for experiments at the RHIC is predicted.

  4. Electromagnetic radiation from nuclear collisions at RHIC energies

    CERN Document Server

    Turbide, Simon; Frodermann, Evan; Heinz, Ulrich

    2008-01-01

    The hot and dense strongly interacting matter created in collisions of heavy nuclei at RHIC energies is modeled with relativistic hydrodynamics, and the spectra of real and virtual photons produced at mid-rapidity in these events are calculated. Several different sources are considered, and their relative importance is compared. Specifically, we include jet fragmentation, jet-plasma interactions, the emission of radiation from the thermal medium and from primordial hard collisions. Our calculations consistently take into account jet energy loss, as evaluated in the AMY formalism. We obtain results for the spectra, the nuclear modification factor (R_AA), and the azimuthal anisotropy (v_2) that agree with the photon measurements performed by the PHENIX collaboration at RHIC.

  5. Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. P. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Giangrande, S. E. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Bartholomew, M. J. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-04-01

    The Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) [http://www.arm.gov/campaigns/osc2013rwpcf] campaign was scheduled to take place from 15 July 2013 through 15 July 2015 (or until shipped for the next U.S. Department of Energy Atmospheric Radiation Measurement [ARM] Climate Research Facility first Mobile Facility [AMF1] deployment). The campaign involved the deployment of the AMF1 Scintec 915 MHz Radar Wind Profiler (RWP) at BNL, in conjunction with several other ARM, BNL and National Weather Service (NWS) instruments. The two main scientific foci of the campaign were: 1) To provide profiles of the horizontal wind to be used to test and validate short-term cloud advection forecasts for solar-energy applications and 2) to provide vertical profiling capabilities for the study of dynamics (i.e., vertical velocity) and hydrometeors in winter storms. This campaign was a serendipitous opportunity that arose following the deployment of the RWP at the Two-Column Aerosol Project (TCAP) campaign in Cape Cod, Massachusetts and restriction from participation in the Green Ocean Amazon 2014/15 (GoAmazon 2014/15) campaign due to radio-frequency allocation restriction for international deployments. The RWP arrived at BNL in the fall of 2013, but deployment was delayed until fall of 2014 as work/safety planning and site preparation were completed. The RWP further encountered multiple electrical failures, which eventually required several shipments of instrument power supplies and the final amplifier to the vendor to complete repairs. Data collection began in late January 2015. The operational modes of the RWP were changed such that in addition to collecting traditional profiles of the horizontal wind, a vertically pointing mode was also included for the purpose of precipitation sensing and estimation of vertical velocities. The RWP operated well until the end of the campaign in July 2015 and collected observations for more than 20 precipitation

  6. BNL program in support of LWR degraded-core accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ginsberg, T.; Greene, G.A.

    1982-01-01

    Two major sources of loading on dry watr reactor containments are steam generatin from core debris water thermal interactions and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described in this paper. 8 figures.

  7. Benchmarking of collimation tracking using RHIC beam loss data.

    Energy Technology Data Exchange (ETDEWEB)

    Robert-Demolaize,G.; Drees, A.

    2008-06-23

    State-of-the-art tracking tools were recently developed at CERN to study the cleaning efficiency of the Large Hadron Collider (LHC) collimation system. In order to estimate the prediction accuracy of these tools, benchmarking studies can be performed using actual beam loss measurements from a machine that already uses a similar multistage collimation system. This paper reviews the main results from benchmarking studies performed with specific data collected from operations at the Relativistic Heavy Ion Collider (RHIC).

  8. Monolithic circuit development for RHIC at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Alley, G.T.; Britton, C.L. Jr.; Kennedy, E.J.; Newport, D.F.; Wintenberg, A.L.; Young, G.R. [Oak Ridge National Laboratory, TN (United States)

    1991-12-31

    The work performed for RHIC at Oak Ridge National Laboratory during FY 91 is presented in this paper. The work includes preamplifier, analog memory, and analog-digital converter development for Dimuon Pad Readout, and evaluation and development of preamplifier-shapers for silicon strip readout. The approaches for implementation are considered as well as measured data for the various circuits that have been developed.

  9. Has the QCD critical point been observed at RHIC?

    CERN Document Server

    Antoniou, N G; Diakonos, F K

    2016-01-01

    The experimental search for the location of the QCD critical point in the phase diagram is of primary importance. In a recent publication it is claimed that measurements at RHIC lead not only to the location of the critical point ($\\mu_{cep}=95$ MeV, $T_{cep}=165$ MeV) but also to the verification of its universality class ($3d$ Ising system) by extracting the values of the critical exponents ($\\gamma=1.2$, $\

  10. Simulations of Gaussian electron guns for RHIC electron lens

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-02-28

    Simulations of two versions of the electron gun for RHIC electron lens are presented. The electron guns have to generate an electron beam with Gaussian radial profile of the electron beam density. To achieve the Gaussian electron emission profile on the cathode we used a combination of the gun electrodes and shaping of the cathode surface. Dependence of electron gun performance parameters on the geometry of electrodes and the margins for electrodes positioning are presented.

  11. An alternative model of jet suppression at RHIC energies

    OpenAIRE

    Lietava, Roman; Pisut, Jan; Pisutova, Neva; Tomasik, Boris

    2003-01-01

    We propose a simple Glauber-type mechanism for suppression of jet production up to transverse momenta of about 10 GeV/c at RHIC. For processes in this kinematic region, the formation time is smaller than the interval between two successive hard partonic collisions and the subsequent collision influences the jet production. Number of jets then roughly scales with the number of participants. Proportionality to the number of binary collisions is recovered for very high transverse momenta. The mo...

  12. Frequency choice of eRHIC SRF linac

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-05

    eRHIC is a FFAG lattice based multipass ERL [1]. The eRHIC SRF linac has been decided to change from 422 MHz 5-cell cavity to 647 MHz 5-cell cavity. There are several considerations affecting the frequency choice for a high current multipass-ERL: the beam structure, bunch length, energy spread, beam-break-up (BBU) threshold, SRF loss considerations. Beyond the physics considerations, cost and complexity or risk is an important consideration for the frequency choice, especially when we are designing a machine to be built in a few years. Although there are some benefits of using a 422 MHz cavity for eRHIC ERL, however, there are some very critical drawbacks, including lack of facilities to fabricate a 422 MHz 5-cell cavity, very few facilities to process such a cavity and no existing facility to test the cavity anywhere. As the cavity size is big and its weight is large, it is difficult to handle it during fabrication, processing and testing and no one has experience in this area. As the cavity size is large, the cryomodule becomes big as well. All of these considerations drive the risk of building eRHIC ERL with 422 MHz cavities to a very high level. Therefore, a decision was made to change the frequency of main linac to be 647 MHz 5-cell cavities. This note will compare these two linacs: 422MHz 5-cell cavity linac and 647Mz 5-cell cavity SRF linac, from both practical point of view and physics point of view.

  13. ACCELERATING AND COLLIDING POLARIZED PROTONS IN RHIC WITH SIBERIAN SNAKES.

    Energy Technology Data Exchange (ETDEWEB)

    ROSER,T.; AHRENS,L.; ALESSI,J.; BAI,M.; BEEBE - WANG,J.; BRENNAN,J.M.; BROWN,K.A.; BUNCE,G.; CAMERON,P.; COURANT,E.D.; DREES,A.; FISCHER,W.; ET AL

    2002-06-02

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180{sup o} about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV. We report on our experiences during commissioning and operation of collider with polarized protons.

  14. RHIC susceptibility to variations in systematic magnetic harmonic errors

    Energy Technology Data Exchange (ETDEWEB)

    Dell, G.F.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Wei, J.

    1994-08-01

    Results of a study to determine the sensitivity of tune to uncertainties of the systematic magnetic harmonic errors in the 8 cm dipoles of RHIC are reported. Tolerances specified to the manufacturer for tooling and fabrication can result in systematic harmonics different from the expected values. Limits on the range of systematic harmonics have been established from magnet calculations, and the impact on tune from such harmonics has been established.

  15. Modeling the Hydrodynamical Properties of the QGP at RHIC

    Science.gov (United States)

    Garishvili, Irakli; Soltz, Ron; Pratt, Scott; Cheng, Micael; Glenn, Andrew; Newby, Jason; Linden-Levy, Loren; Abelev, Betty

    2010-11-01

    Comparisons of the RHIC data to various theoretical models suggest that the evolution of the QGP, a state of matter believed to be created in early stages of heavy ion collisions at RHIC, is qualitatively well described by hydrodynamics. However, the key properties of the QGP, such as initial temperature, Tinit, and the ratio of shear viscosity to entropy density of matter, η/s, are not precisely known. To constrain these properties we have developed a multi-stage hydrodynamics/hadron cascade model of heavy ion collisions which incorporates Glauber initial state conditions, pre-equilibrium flow, the UVH2+1 viscous hydro model, Cooper-Frye freezeout, and the UrQMD hadronic cascade model. To test the sensitivity of the observables to the equation of state (EoS), we use several different EoS in the hydrodynamic evolution, including those derived from the hadron resonance gas model and lattice QCD. This framework has an ability to predict key QGP observables, such as, elliptic flow, spectra, and HBT radii for various particle species. For each set of model's input parameters (Tinit, η/s and initial flow) we perform a simultaneous comparison to spectra, elliptic flow, and HBT measured at RHIC. Based on this analysis the determinations of Tinit and η/s will be presented.

  16. Initial-state bremsstrahlung versus final-state hydrodynamic sources of azimuthal harmonics in p+A at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gyulassy, M. [MTA WIGNER Research Centre for Physics, RMI, Budapest (Hungary); Department of Physics, Columbia University, New York, NY 10027 (United States); Levai, P. [MTA WIGNER Research Centre for Physics, RMI, Budapest (Hungary); Vitev, I. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Biró, T.S. [MTA WIGNER Research Centre for Physics, RMI, Budapest (Hungary)

    2014-11-15

    Recent p{sub T}<2 GeV azimuthal correlation data from the Beam Energy Scan (BES) and d+Au runs at RHIC/BNL and, especially, the surprising similarity of 2ℓ=2,4,⋯-particle cummulant azimuthal n=2,3,4,5 harmonics, v{sub n}{2ℓ}(p{sub T}), in p+Pb and Pb+Pb at LHC have challenged the uniqueness of local equilibrium “perfect fluid” interpretations of those data. We report results derived in [1] on azimuthal harmonics arising from non-equilibrium initial-state non-abelian “wave interference” effects predicted by perturbative QCD gluon bremsstrahlung and sourced by Color Scintillation Arrays (CSA) of color antennas. CSA are naturally identified with multiple projectile and target beam jets produced in inelastic p+A reactions. We find a remarkable similarity between azimuthal harmonics sourced by initial state CSA and those predicted with final state perfect fluid models of high energy p+A reactions. The question of which mechanism dominates in p+A and A+A remains open at this time.

  17. Initial-State Bremsstrahlung versus Final-State Hydrodynamic Sources of Azimuthal Harmonics in p+A at RHIC and LHC

    CERN Document Server

    Gyulassy, Miklos; Vitev, Ivan; Biro, Tamas S

    2014-01-01

    Recent pT<2~GeV azimuthal correlation data from the Beam Energy Scan (BES) and D+Au runs at RHIC/BNL and, especially, the surprising similarity of azimuthal $v_n\\{2m\\}(p_T)$ ``transeverse flow'' harmonics in $p+Pb$ and $Pb+Pb$ at LHC have challenged the uniqueness of local equilibrium ``perfect fluid'' interpretations of those data. We report results at QM14 on azimuthal harmonics associated with initial-state non-abelian ``wave interference'' effects predicted by perturbative QCD gluon bremsstrahlung and sourced by Color Scintillation Arrays (CSA) of color antennas. CSA are naturally identified with multiple projectile and target beam jets produced in inelastic p+A reactions. We find a remarkable similarity between azimuthal harmonics sourced by initial state CSA and those predicted with final state perfect fluid models of high energy p+A reactions. The question of which mechanism dominates in $p+A$ and $A+A$ remains open at this time.

  18. Experimental Overview of the Search for Chiral Effects at RHIC

    Science.gov (United States)

    Wang, Gang

    2017-01-01

    In high-energy heavy-ion collisions, various novel transport phenomena in local chiral domains result from the interplay of quantum anomalies with magnetic field and vorticity, and could survive the expansion of the fireball and be detected in experiments. Among these phenomena are the chiral magnetic effect, the chiral vortical effect and the chiral magnetic wave, the experimental searches for which have aroused extensive interest. This review will describe the current status of experimental studies at Relativistic Heavy Ion Collider at BNL, and outline the future work in experiment needed to eliminate the existing uncertainties in the interpretation of the data.

  19. On the image of AGS 3He2+ + $\\vec{n}$0 in the blue

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-01

    This note addresses the transport of Helion spin $\\vec{n}$0 vector, from its periodic orientation in the AGS to RHIC Blue ring injection kicker, via the AGS extraction system and the AtR line. The goal is to investigate optimal injection energy into RHIC, in the matter of Helion spin matching, in the hypothesis of equal warm and cold snake strengths in the AGS. The study uses recently computed OPERA 3-D field maps of the AGS cold snake, including possibility of independent solenoid and helix settings (as discussed in Tech. Note C-A/AP/485), together with the machinery of the AGS and AtR models developed in the stepwise ray-tracing code Zgoubi. Computing tools and methods employed are discussed as well, in order to facilitate possible further checks or investigations. They are however similar to those used in an earlier study regarding the image in RHIC Blue and Yellow of AGS $\\vec{n}$0 via the AtR in the case of proton beam (Tech. Note C-A/AP/502), which can be referred to for additional details.

  20. MANIFESTATION OF THE COLOR GLASS CONDENSATE IN PARTICLE PRODUCTION AT RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    TUCHIN,K.

    2004-07-26

    In this paper we discuss the experimental signatures of the new form of nuclear matter--the Color Glass Condensate (CGC) in particle production at RHIC. We show that predictions for particle production in p(d)A and AA collisions derived from these properties are in agreement with data collected at RHIC.

  1. THE BNL ASTD FIELD LAB - NEAR - REAL - TIME CHARACTERIZATION OF BNL STOCKPILED SOILS TO ACCELERATE COMPLETION OF THE EM CHEMICAL HOLES PROJECT.

    Energy Technology Data Exchange (ETDEWEB)

    BOWERMAN,B.S.; ADAMS,J.W.; HEISER,J.; KALB,P.D.; LOCKWOOD,A.

    2003-04-01

    As of October 2001, approximately 7,000 yd{sup 3} of stockpiled soil remained at Brookhaven National Laboratory (BNL) after the remediation of the BNL Chemical/Animal/Glass Pits disposal area. The soils were originally contaminated with radioactive materials and heavy metals, depending on what materials had been interred in the pits, and how the pits were excavated. During the 1997 removal action, the more hazardous/radioactive materials were segregated, along with, chemical liquids and solids, animal carcasses, intact gas cylinders, and a large quantity of metal and glass debris. Nearly all of these materials have been disposed of. In order to ensure that all debris was removed and to characterize the large quantity of heterogeneous soil, BNL initiated an extended sorting, segregation, and characterization project directed at the remaining soil stockpiles. The project was co-funded by the Department of Energy Environmental Management Office (DOE EM) through the BNL Environmental Restoration program and through the DOE EM Office of Science and Technology Accelerated Site Technology Deployment (ASTD) program. The focus was to remove any non-conforming items, and to assure that mercury and radioactive contaminant levels were within acceptable limits for disposal as low-level radioactive waste. Soils with mercury concentrations above allowable levels would be separated for disposal as mixed waste. Sorting and segregation were conducted simultaneously. Large stockpiles (ranging from 150 to 1,200 yd{sup 3}) were subdivided into manageable 20 yd{sup 3} units after powered vibratory screening. The 1/2-inch screen removed almost all non-conforming items (plus some gravel). Non-conforming items were separated for further characterization. Soil that passed through the screen was also visually inspected before being moved to a 20 yd{sup 3} ''subpile.'' Eight samples from each subpile were collected after establishing a grid of four quadrants: north, east

  2. Elliptic flow at SPS and RHIC from kinetic transport to hydrodynamics

    CERN Document Server

    Kolb, P F; Heinz, Ulrich W; Heiselberg, H

    2001-01-01

    Anisotropic transverse flow is studied in Pb+Pb and Au+Au collisions at SPS and RHIC energies. The centrality and transverse momentum dependence at midrapidity of the elliptic flow coefficient v_2 is calculated in the hydrodynamic and low density limits. Hydrodynamics is found to agree well with the RHIC data for semicentral collisions up to transverse momenta of 1-1.5 GeV/c, but it considerably overestimates the measured elliptic flow at SPS energies. The low density limit LDL is inconsistent with the measured magnitude of v_2 at RHIC energies and with the shape of its p_t-dependence at both RHIC and SPS energies. The success of the hydrodynamic model points to very rapid thermalization in Au+Au collisions at RHIC and provides a serious challenge for kinetic approaches based on classical scattering of on-shell particles.

  3. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted turned by 180-degrees and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  4. Photon multiplicity measurements: From SPS to RHIC and LHC

    Indian Academy of Sciences (India)

    Bedangadas Mohanty

    2003-04-01

    Results from the photon multiplicity measurements using a fine granularity pre-shower photon multiplicity detector (PMD) at CERN SPS are discussed. These include study of pseudorapidity distributions of photons, scaling of photon multiplicity with number of participating nucleons, centrality dependence of $\\langle p_{T}\\rangle$ of photons, event-by-event fluctuations in photon multiplicity and localised charged-neutral fluctuations. Basic features of the PMD to be used in STAR experiment at RHIC and in ALICE experiment at LHC are also discussed.

  5. Universal QGP Hadronization Conditions at RHIC and LHC

    CERN Document Server

    Rafelski, Johann

    2014-01-01

    We address the principles governing QGP hadronization and particle production in relativistic heavy-ion collisions. We argue that chemical non-equilibrium is required and show that once this condition is assumed a very good description of hadron production in collider RHIC and at LHC heavy ion experiments follows. We present results of our analysis as a function of centrality. Comparing most extreme experimental conditions we show that only the reaction volume and degree of strangeness phase space saturation change. We determine the universal QGP fireball hadronization conditions.

  6. Baryon Resonances in the STAR Experiment at RHIC

    Directory of Open Access Journals (Sweden)

    Witt Richard

    2015-01-01

    Full Text Available We present measurements of mass, width, and yields of the Δ(1232++, Σ(1385 and Λ(1520 from p + p, d+Au, and Au+Au collisions at √sNN = 200 GeV in the STAR experiment at Brookhaven National Laboratory’s Relativistic Heavy-Ion Collider (RHIC. These measurements are discussed in the context of re-scattering and regeneration. We also discuss preliminary measurements of the Ξ(1530 and possibilities for upcoming measurements based on recently collected data.

  7. Universal QGP Hadronization Conditions at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Rafelski Johann

    2014-01-01

    Full Text Available We address the principles governing QGP hadronization and particle production in relativistic heavy-ion collisions. We argue that chemical non-equilibrium is required and show that once this condition is assumed a very good description of hadron production in collider RHIC and LHC heavy ion experiments follows. We present results of our analysis as a function of centrality. Comparing most extreme experimental conditions we show that only the reaction volume and degree of strangeness phase space saturation change. We determine the universal QGP fireball hadronization conditions.

  8. Heavy-flavor observables at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Nahrgang, Marlene [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); Aichelin, Jörg [SUBATECH, UMR 6457, Université de Nantes, Ecole des Mines de Nantes, IN2P3/CNRS, 4 rue Alfred Kastler, 44307 Nantes cedex 3 (France); Bass, Steffen [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); Gossiaux, Pol Bernard; Werner, Klaus [SUBATECH, UMR 6457, Université de Nantes, Ecole des Mines de Nantes, IN2P3/CNRS, 4 rue Alfred Kastler, 44307 Nantes cedex 3 (France)

    2014-11-15

    We investigate the charm-quark propagation in the QGP media produced in ultrarelativistic heavy-ion collisions at RHIC and the LHC. Purely collisional and radiative processes lead to a significant suppression of final D-meson spectra at high transverse momentum and a finite flow of heavy quarks inside the fluid dynamical evolution of the light partons. The D-meson nuclear modification factor and the elliptic flow are studied at two collision energies. We further propose to measure the triangular flow of D mesons, which we find to be nonzero in non-central collisions.

  9. Identified Particle Correlations at RHIC: Medium Interactions & Modified Fragmentation

    CERN Document Server

    Sickles, Anne

    2007-01-01

    Azimuthal angle two particle correlations have been shown to be a powerful probe for extracting novel features of jet induced correlations produced in Au+Au collisions at RHIC. At intermediate $p_T$, 2-5GeV/c, the jets have been shown to be significantly modified in both their particle composition and their angular distribution compared to p+p collisions. Two-particle angular correlations with identified particles provide sensitive probes of both the interactions between hard scattered partons and the medium. The systematics of these correlations are essential to understanding the physics of intermediate $p_T$ in heavy ion collisions.

  10. Simultaneous global coupling and vertical dispersion correction in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu C.; Luo, Y.; Marusic, A.; Minty, M.

    2012-05-20

    Residual vertical dispersion on the order of +/-0.2 m (peak to peak) has been measured at store energies for both polarized protons and heavy ion beams in RHIC. The hypothesis is that this may have impact on the polarization transmission efficiency during the energy ramp, the polarization lifetime at store and, for heavy ions, the dynamic aperture. An algorithm to correct global coupling and dispersion simultaneously using existing skew quadrupoles was developed. Measured coupling and dispersion functions acquired before and after correction are presented.

  11. Design and test of the RHIC CMD10 abort kicker

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pai, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sandberg, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    In recent RHIC operational runs, planned and unplanned pre-fire triggered beam aborts have been observed that resulted in quenches of SC main ring magnets, indicating a weakened magnet kick strength due to beam-induced ferrite heating. An improvement program was initiated to reduce the longitudinal coupling impedance with changes to the ferrite material and the eddy-current strip geometry. Results of the impedance measurements and of magnet heating tests with CMD10 ferrite up to 190°C are reported. All 10 abort kickers in the tunnel have been modified and were provided with a cooling system for the RUN 15.

  12. Hydrodynamic analysis of heavy ion collisions at RHIC

    CERN Document Server

    Hirano, Tetsufumi

    2008-01-01

    Current status of dynamical modeling of relativistic heavy ion collisions and hydrodynamic description of the quark gluon plasma is reported. We find the hadronic rescattering effect plays an important role in interpretation of mass splitting pattern in the differential elliptic flow data observed at RHIC. To demonstrate this, we predict the elliptic flow parameter for phi mesons to directly observe the flow just after hadronisation. We also discuss recent applications of outputs from hydrodynamic calculations to J/psi suppression, thermal photon radiation and heavy quark diffusion.

  13. QCD hard scattering results from PHENIX at RHIC

    CERN Document Server

    D'Enterria, D G

    2004-01-01

    Data on hadron production at high transverse momentum ($p_T>$ 2 GeV/$c$) in p+p, d+Au, and Au+Au collisions at $\\sqrt{s_{NN}$ = 200 GeV from the PHENIX experiment at RHIC are reviewed. The single inclusive spectrum of light hadrons produced in central Au+Au reactions shows significant differences compared to p+p and d+Au collisions, and provides interesting information on the properties of the underlying QCD medium present in heavy-ion reactions at collider energies.

  14. Measurement and Optimization of Local Coupling from RHIC BPM Data

    CERN Document Server

    Calaga, Rama; Bai, Mei; Fischer, Wolfram; Franchi, Andrea; Tomas, Rogelio

    2005-01-01

    Global coupling in RHIC is routinely corrected by using three skew quadrupole families to minimize the tune split. In this paper we aim to re-optimize the coupling at top energy by minimizing resonance driving terms and the C-matrix in two steps: 1. Find the best configuration of the three skew quadrupole families and 2. Identify locations with coupling sources by inspection of the driving terms and the C-matrix around the ring. The measurements of resonance terms and C-matrix are presented.

  15. US-Japan collaboration in the construction of the BNL superconducting muon storage ring and inflector

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Hiromi; Yamamoto, Akira [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2003-03-01

    The US-Japan collaboration in the contraction of a BNL muon storage ring for the g-2 experiment (E821) is described from the viewpoint of Japanese collaborators. Japan has contributed in the production of the pole pieces made of a vacuum-melted Ultra-Low Carbon Steel, Al-stabilized Nb/Ti superconductors for the superferric storage ring dipole coils, including technology transfer, and the development of a sophisticated superconducting inflector for muon injection. All of above items seem to be essential techniques to pursue accurate and detailed muon g-2 experiments. Recent experimental results are also mentioned in the latter part of this report. (author)

  16. Design and Data Model of the BNL Archive and Dissemination System

    Energy Technology Data Exchange (ETDEWEB)

    Heller, J.; Osterer, L.

    1977-03-01

    The BNL Archive and Dissemination (BNLAD) System was designed to operate on a homogeneous distributed data base in a computer network. Its primary function is to present a uniform logical and physical view of already existing sequential files of data, so that these files can be accessed at any node of a computer network where the BNLAD System is operable. The architecture of the system, based on a subset of PL/I (the host language), is presented. The Data Model, i.e. the information content of the data base as it is viewed by the users, of the BNLAD System is discussed by means of examples. 7 figs.

  17. Prospects for measuring K{sup +} {r_arrow} {pi}{sup +} {nu}{bar {nu}} and K{sub L}{sup 0} {r_arrow} {pi}{sup 0} {nu}{bar {nu}} at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Bryman, D.A.; Littenberg, L.

    2000-09-18

    Rare kaon decay experiments underway or planned for the BNL AGS will yield new and independent determinations of V*{sub ts}V{sub td}. A measurement of B(K{sub L}{sup 0} {r_arrow} {pi}{sup 0} {nu}{bar {nu}}) allows a determination of the imaginary part of this quantity, which is the fundamental CP-violating parameter of the Standard Model, in a uniquely clean manner. Since the measurement of B(K{sup +} {r_arrow} {pi}{sup +} {nu}{bar {nu}}) determines {vert_bar}V*{sub ts}V{sub td}, a complete derivation of the unitarity triangle is facilitated. These results can be compared to high precision data expected to come from the B sector in a number of ways, allowing for unique tests of new physics.

  18. Elliptic Flow in Heavy-Ion Collisions from AGS to RHIC

    CERN Document Server

    Ivanov, Yu B

    2014-01-01

    The integrated elliptic flow of charged particles, $v_2$(charged), and that of identified hadrons from Au+Au collisions are computed in a wide range of incident energies 2.7 GeV $\\le \\sqrt{s_{NN}}\\le$ 39 GeV. The simulations are performed within a three-fluid model employing three different equations of state (EoS's): a purely hadronic EoS and two versions of EoS involving the deconfinement transition--the first-order phase transition and a smooth crossover one. The present simulations demonstrate that $v_2$(charged) is insensitive to the EoS. All considered scenarios equally well reproduce recent STAR data on $v_2$(charged) for mid-central Au+Au collisions and properly describe its change of sign at the incident energy decrease below $\\sqrt{s_{NN}}\\approx$ 3.5 GeV. This good reproduction of $v_2$(charged) indicates that the viscosity is small even at low incident energies. The predicted integrated elliptic flow of various species exhibits a stronger dependence on the EoS. A noticeable sensitivity to the EoS ...

  19. Localized control of the orbit in the RHIC insertions

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, S.

    1992-08-01

    It is proposed here that, for RHIC92 insertions, we remove the corrector from Ql and the beam position monitor (BPM) from Q2 in order to alleviate difficulties associated with the physical layout of the quadrupole triplet (Ql-Q2-Q3). Furthermore, it is suggested that there should be both (horizontal and vertical) types of BPMs at each end of the free space between Q3 and Q4 and between Q7 and Q8 so that one can measure the direction of the closed orbit. With this model, a localized control of the beam position and angle at the interaction point (IP) with either four or six correctors has been investigated. Similarly, a control of the orbit within an insertion for minimizing the orbit displacements at seven (or eight) BPM locations with nine (or ten) correctors in each transverse direction has been studied. Examples are given for the beta at IP = 2m, 10m, 20m, and 200m. It is shown that the design value of the integrated field strength of 0.3 T-m for each corrector should be sufficient for the tasks considered here except for some cases with extreme parameter values. At the same time, it is emphasized that the overall correction of the closed orbit for the entire ring (arcs and insertions) should be re-examined for RHIC92 lattice with the proposed arrangement of correctors and BPMS.

  20. RHIC and LHC jet suppression in non-central collisions

    Directory of Open Access Journals (Sweden)

    Magdalena Djordjevic

    2014-10-01

    Full Text Available Understanding properties of QCD matter created in ultra-relativistic heavy-ion collisions is a major goal of RHIC and LHC experiments. An excellent tool to study these properties is high-momentum hadron suppression of light and heavy flavor observables. Utilizing this tool requires accurate suppression predictions for different experiments, probes and experimental conditions, and their unbiased comparison with experimental data. With this goal, we here extend our dynamical energy loss formalism towards generating predictions for non-central collisions; the formalism takes into account both radiative and collisional energy loss, dynamical (as opposed to static scattering centers, finite magnetic mass, running coupling and uses no free parameters in comparison with experimental data. Specifically, we here generate predictions for all available centrality ranges, for both LHC and RHIC experiments, and for four different probes (charged hadrons, neutral pions, D mesons and non-prompt J/ψ. We obtain good agreement with all available non-central data, and also generate predictions for suppression measurements that will soon become available. Finally, we discuss implications of the obtained good agreement with experimental data with different medium models that are currently considered.

  1. Central Exclusive Production in the STAR Experiment at RHIC

    CERN Document Server

    Sikora, Rafal

    2016-01-01

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) performs studies of diffractive processes with the focus on the exclusive production of particles in central range of rapidity. In 2015 STAR collected 18 pb$^{-1}$ of data in polarized proton+proton collisions at $\\sqrt{s}$=200 GeV to measure Central Exclusive Production (CEP) process $pp\\to pXp$ through Double Pomeron Exchange (DPE) mechanism. The intact protons moving inside the RHIC beampipe after the collision were measured in silicon strip detectors (SSD), which were placed in the Roman Pot vessels. This enables full control over interaction kinematics and verification of the exclusivity of the reaction by measuring the total (missing) transverse momenta of all final state particles: the central diffractive system in the Time Projection Chamber (TPC) and the forward protons in the Roman Pots. With the use of ionization energy loss in the TPC, d$E$/d$x$, it was possible to discriminate various production channels in $pp\\to pXp$ reaction. Th...

  2. Access to the energy system network simulator (ESNS), via remote computer terminals. [BNL CDC 7600/6600 computer facility

    Energy Technology Data Exchange (ETDEWEB)

    Reisman, A W

    1976-08-15

    The Energy System Network Simulator (ESNS) flow model is installed on the Brookhaven National Laboratory (BNL) CDC 7600/6600 computer facility for access by off-site users. The method of access available to outside users is through a system called CDC-INTERCOM, which allows communication between the BNL machines and remote teletype terminals. This write-up gives a brief description of INTERCOM for users unfamiliar with this system and a step-by-step guide to using INTERCOM in order to access ESNS.

  3. CHALLENGES ENCOUNTERED DURING THE PROCESSING OF THE BNL ERL 5 CELL ACCELERATING CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    BURRILL,A.

    2007-06-25

    One of the key components for the Energy Recovery Linac being built by the Electron cooling group in the Collider Accelerator Department is the 5 cell accelerating cavity which is designed to accelerate 2 MeV electrons from the gun up to 15-20 MeV, allow them to make one pass through the ring and then decelerate them back down to 2 MeV prior to sending them to the dump. This cavity was designed by BNL and fabricated by AES in Medford, NY. Following fabrication it was sent to Thomas Jefferson Lab in VA for chemical processing, testing and assembly into a string assembly suitable for shipment back to BNL for integration into the ERL. The steps involved in this processing sequence will be reviewed and the deviations from processing of similar SRF cavities will be discussed. The lessons learned from this process are documented to help future projects where the scope is different from that normally encountered.

  4. The effects of betatron phase advances on beam-beam and its compensation in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Fischer, W.; Gu, X.; Tepikian, S.; Trbojevic, D.

    2011-03-28

    In this article we perform simulation studies to investigate the effects of betatron phase advances between the beam-beam interaction points on half-integer resonance driving term, second order chromaticty and dynamic aperture in RHIC. The betatron phase advances are adjusted with artificial matrices inserted in the middle of arcs. The lattices for the 2011 RHIC polarized proton (p-p) run and 2010 RHIC Au-Au runs are used in this study. We also scan the betatron phase advances between IP8 and the electron lens for the proposed Blue ring lattice with head-on beam-beam compensation.

  5. New result on K{sup +} {r_arrow} {pi}{sup +} {nu}{bar {nu}} from BNL E787

    Energy Technology Data Exchange (ETDEWEB)

    REDLINGER,G.

    1999-06-21

    E787 at BNL has reported evidence for the rare decay K{sup +} {r_arrow} {pi}{sup +}{nu}{bar {nu}}, based on the observation of one candidate event. In this paper, we present the result of analyzing a new dataset of comparable sensitivity to the published result.

  6. A silicon multiplicity detector system for an experiment on the interaction of antiprotons with nuclei at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Clement, J.M.; Empl, A.; Mutchler, G.S.; Toshkov, S. (Rice Univ., Houston, TX (United States). Bonner Nuclear Labs.); Eiseman, S.E.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C. (Brookhaven National Lab., Upton, NY (United States)); Chan, C.S.; Kramer, M.A.; Lindenbaum, S.J. (City Coll., New York, NY (Unit

    1991-01-01

    A Large Angle Multiplicity Detector (LAMD) system has been developed and used at the BNL experiment E854: Antiproton Nucleus Interactions. This system performed well with an energetic antiproton beam. Charged particle multiplicity distributions from pbar annihilations were measured. We discuss the design and performance of the LAMD system in this paper. 6 refs., 10 figs.

  7. A silicon multiplicity detector system for an experiment on the interaction of antiprotons with nuclei at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Clement, J.M.; Empl, A.; Mutchler, G.S.; Toshkov, S. [Rice Univ., Houston, TX (United States). Bonner Nuclear Labs.; Eiseman, S.E.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C. [Brookhaven National Lab., Upton, NY (United States); Chan, C.S.; Kramer, M.A.; Lindenbaum, S.J. [City Coll., New York, NY (United States); Hallman, T.J.; Madansky, L. [Johns Hopkins Univ., Baltimore, MD (United States); Peaslee, D.C. [Maryland Univ., College Park, MD (United States)

    1991-12-31

    A Large Angle Multiplicity Detector (LAMD) system has been developed and used at the BNL experiment E854: Antiproton Nucleus Interactions. This system performed well with an energetic antiproton beam. Charged particle multiplicity distributions from pbar annihilations were measured. We discuss the design and performance of the LAMD system in this paper. 6 refs., 10 figs.

  8. A silicon multiplicity detector system for an experiment on the interaction of antiprotons with nuclei at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S.; Bonner, B.E.; Buchanan, J.A.; Clement, J.M.; Empl, A.; Mutchler, G.S.; Toshkov, S. (Rice Univ., Houston, TX (United States). Bonner Nuclear Labs.); Eiseman, S.E.; Etkin, A.; Foley, K.J. (Brookhaven National Lab., Upton, NY (United States))

    1992-08-01

    A Large Angle Multiplicity Detector (LAMD) system has been developed and used at the BNL experiment E854: Antiproton Nucleus Interactions. This system performed well with an energetic antiproton beam. Charged particle multiplicity distributions from [bar p] annihilations were measured. The authors discuss the design and performance of the LAMD system in this paper.

  9. The electromagnetic calorimeter for the solenoidal tracker at RHIC. A Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Beddo, M.E.; Bielick, E.; Dawson, J.W. [Argonne National Lab., IL (United States)] [and others; The STAR EMC Collaboration

    1993-09-22

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding.

  10. Simulations to study the static polarization limit for RHIC lattice with the Polymorphic Tracking Code

    CERN Document Server

    Duan, Zhe

    2015-01-01

    We report a study of spin dynamics based on simulations with the Polymorphic Tracking Code (PTC), exploring the dependence of the static polarization limit on various beam parameters and lattice settings for a practical RHIC lattice.

  11. Weakness or Strength in the Golden Years of RHIC and LHC?

    CERN Document Server

    Horowitz, W A

    2012-01-01

    Recent LHC data suggest that perturbative QCD provides a qualitatively consistent picture of jet quenching. Constrained to RHIC pi0 suppression, zero parameter WHDG energy loss predictions agree quantitatively with the charged hadron v2 and D meson RAA measured at LHC and qualitatively with the charged hadron RAA. On the other hand, RHIC-constrained LHC predictions from fully strongly-coupled AdS/CFT qualitatively oversuppress D mesons compared to data; light meson predictions are on less firm theoretical ground but also suggest oversuppression. More detailed data from heavy, especially B, mesons will continue to help clarify our picture of the physics of the quark-gluon plasma. Since the approach of pQCD predictions to LHC data occurs at momenta >~ 15 GeV/c, a robust consistency check between pQCD and both RHIC and LHC data requires RHIC jet measurements.

  12. Operation experience of p-Carbon polarimeter in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alekseev, I. G. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Atoian, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bazilevsky, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Eyser, O. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kalinkin, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kewisch, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Makdisi, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nemesure, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Poblaguev, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schmidke, W. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Svirida, D. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Steski, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Webb, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zelenski, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tip, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The spin physics program in Relativistic Heavy Ion Collider (RHIC) requires fast polarimeter to monitor the polarization evolution on the ramp and during stores. Over past decade, the polarimeter has evolved greatly to improve its performance. These include dual chamber design, monitoring camera, Si detector selection (and orientation), target quality control, and target frame modification. The preamp boards have been modified to deal with the high rate problem, too. The ultra thin carbon target lifetime is a concern. Simulations have been carried out on the target interaction with beam. Modification has also been done on the frame design. Extra caution has been put on RF shielding to deal with the pickup noises from the nearby stochastic cooling kickers. This paper summarizes the recent operation performance of this delicate device.

  13. The first operation of 56 MHz SRF cavity in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); DeSanto, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Goldberg, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seberg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A 56 MHz superconducting RF cavity has been designed, fabricated and installed in the Relativistic Heavy Ion Collider (RHIC). The cavity operates at 4.4 K with a “quiet helium source” to isolate the cavity from environmental acoustic noise. The cavity is a beam driven quarter wave resonator. It is detuned and damped during injection and acceleration cycles and is brought to operation only at store energy. For a first test operation, the cavity voltage was stabilized at 300 kV with full beam current. Within both Au + Au and asymmetrical Au + He3 collisions, luminosity improvement was detected from direct measurement, and the hourglass effect was reduced. One higher order mode (HOM) coupler was installed on the cavity. We report in this paper on our measurement of a broadband HOM spectrum excited by the Au beam.

  14. Physics with the collider detectors at RHIC and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.; Hallman, T. [eds.

    1995-07-15

    On January 8, 1995, over 180 participants gathered to hear the QM95 preconference workshop on `Physics with the Collider Detectors at RHIC and the LHC`. The goal was to bring together the experimentalists from a wide community of hadron and heavy ion collider detector collaborations. The speakers were encouraged to present the current status of their detectors, with all the blemishes, and the audience was encouraged to share their successes and failures in approaching similar detector design issues. The presentations were excellent and the discussions were lively and stimulating. The editors hope that the reader will find these proceedings to be equally stimulating. Separate abstracts have been submitted to the energy database from articles in this report.

  15. Parton Rescatterings in Large-x Nuclear Suppression at RHIC

    CERN Document Server

    Nemchik, J

    2008-01-01

    We demonstrate that strong suppression of the relative production rate (d+Au)/(p+p) of inclusive high-pT hadrons at forward rapidities observed at RHIC is due to parton multiple rescatterings in nuclear matter. The light-cone dipole approach-based calculations are in a good agreement with BRAHMS and STAR data. They also indicate a significant nuclear suppression at midrapidities with a weak onset of the coherence effects. This prediction is supported by the preliminary d+Au data from the PHENIX Collaboration. Moreover, since similar suppression pattern is also expected to show up at lower energies where effects of parton saturation are not expected, we are able to exclude from the interpretation of observed phenomena models based on the Color Glass Condensate.

  16. Proton to pion ratio at RHIC from dynamical quark recombination

    CERN Document Server

    Ayala, Alejandro; Paic, Guy; Toledo-Sanchez, Genaro

    2008-01-01

    We propose an scenario to study, from a dynamical point of view, the thermal recombination of quarks in the midsts of a relativistic heavy-ion collision. We coin the term dynamical quark recombination to refer to the process of quark-antiquark and three-quark clustering, to form mesons and baryons, respectively, as a function of energy density. Using the string-flip model we show that the probabilities to form such clusters differ. We apply these ideas to the calculation of the proton and pion spectra in a Bjorken-like scenario that incorporates the evolution of these probabilities with proper time and compute the proton to pion ratio, comparing to recent RHIC data at the highest energy. We show that for a standard choice of parameters, this ratio reaches one, though the maximum is very sensitive to the initial evolution proper time.

  17. Timelike Compton Scattering from JLAB to RHIC and LHC energies

    CERN Document Server

    Pire, B; Wagner, J

    2012-01-01

    Timelike Compton scattering (TCS) i.e. the exclusive photoproduction of a lepton pair with large invariant mass nicely complements the already successful experimental study of deeply virtual Compton scattering (DVCS). The same Generalized Parton Distributions enter both amplitudes, which offer a promissing way to access the quark and gluon nucleon structure. We review recent progress in this domain, emphasizing the fact that analyticity and factorization properties dictate the relation of the NLO corrections to TCS to those of DVCS. We also stress that data on TCS at high energy should be available soon thanks to the proposed experimental program at JLab at 12 GeV, and that, before the future high energy electron ion colliders become reality, the study of ultraperipheral collisions at the RHIC and LHC may open a window on quark and gluon GPDs at very small skewness. .

  18. Status of head-on beam-beam compensation in RHIC

    CERN Document Server

    Fischer, W; Anerella, M; Blaskiewicz, M; Bruno, D; Costanzo, M; Dawson, W C; Gassner, D M; Gu, X; Gupta, R C; Hamdi, K; Hock, J; Hoff, L T; Hulsart, R; Jain, A K; Lambiase, R; Luo, Y; Mapes, M; Marone, A; Michnoff, R; Miller, T A; Minty, M; Montag, C; Muratore, J; Nemesure, S; Phillips, D; Pikin, A I; Plate, S R; Rosas, P; Snydstrup, L; Tan, Y; Theisen, C; Thieberger, P; Tuozzolo, J; Wanderer, P; White, S M; Zhang, W

    2014-01-01

    In polarized proton operation, the performance of the Relativistic Heavy Ion Collider (RHIC) is limited by the head-on beam-beam effect. To overcome this limitation, two electron lenses are under commissioning. We give an overview of head-on beam-beam compensation in general and in the specific design for RHIC, which is based on electron lenses. The status of installation and commissioning are presented along with plans for the future.

  19. Charged multiplicities and $J/\\psi$ suppression at SPS and RHIC energies

    CERN Document Server

    Capella, A

    2001-01-01

    Charged multiplicities in nucleus--nucleus collisions are calculated in the Dual Parton Model taking into account shadowing corrections. Its dependence on the number of collisions and participants is analyzed and found in agreement with experiment at SPS and RHIC energies. Using these results, we compute the $J/\\psi$ suppression at SPS as a function of the transverse energy and of the energy of the zero degree calorimeter. Predictions for RHIC are presented.

  20. STATUS OF THE RESEARCH AND DEVELOPMENT TOWARDS ELECTRON COOLING OF RHIC

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.; OZAKI, T.; YOSHIDA, T.; NANKAWA, T.; KOZAI, N.; SAKAMOTO, F.; SUZUKI, Y.

    2007-06-25

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed calculations were made of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. The electron beam accelerator will be a superconducting Energy Recovery Linac (ERL). An intensive experimental R&D program engages the various elements of the accelerator, as described by 24 contributions to the 2007 PAC.

  1. Optics correction for the multi-pass FFAG ERL machine eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Gradient errors in the multi-pass Fixed Field Alternating Gradient (FFAG) Energy Recovery Linac (ERL) machine, eRHIC, distort the beam orbit and therefore cause emittance increase. The localization and correction of gradient errors are essential for an effective orbit correction and emittance preservation. In this report, the methodology and simulation of optics correction for the multi-pass FFAG ERL machine eRHIC will be presented.

  2. Beam dynamics and expected RHIC performance with 56MHz RF upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov,A.V.; Ben-Zvi, I.

    2009-05-04

    An upgrade of the RHIC storage RF system with a superconducting 56 MHz cavity was recently proposed. This upgrade will provide a significant increase in the acceptance of the RHIC 197 MHz storage RF bucket. This paper summarizes simulations of beam evolution due to intra-beam scattering (IBS) for beam parameters expected with the 56 MHz SRF cavity upgrade. Expected luminosity improvements are shown for Au ions at 100 GeV/nucleon and protons at 250 GeV.

  3. Highlights from Heavy Ion Collisions at RHIC and the Acoustics of the Little Bangs

    CERN Document Server

    Sorensen, Paul

    2012-01-01

    At the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, heavy nuclei are collided at high energies to create matter that is hot enough and dense enough to dissolve hadrons into a quark-gluon-plasma (QGP). In this lecture, dedicated to the memory of Aditya Sambamurti, I present an introduction to heavy-ion collisions and highlights from the first decade of RHIC results.

  4. Numerical studies of Siberian snakes and spin rotators for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A.

    1995-04-17

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180{degrees} apart and with their axis of spin precession at 90{degrees} to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis.

  5. Optimization of AGS Polarized Proton Operation with the Warm Helical Snake

    CERN Document Server

    Takano, Junpei; Bai, Mei; Brown, Kevin A; Gardner, Chris J; Glenn, Joseph; Hattori, Toshiyuki; Huang, Haixin; Luccio, Alfredo U; MacKay, William W; Okamura, Masahiro; Roser, Thomas; Tepikian, Steven; Tsoupas, Nicholaos

    2005-01-01

    A normal conducting helical dipole partial Siberian snake (Warm Snake) has been installed in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) for overcoming all of imperfection depolarizing resonances and reducing the transverse coupling resonances caused by the solenoidal Siberian snake which had been operated in AGS before the last polarized run. The polarized proton beam has been accelerated successfully with the warm snake and the polarization at extraction of the AGS was increased to 50% as opposed to 40% with the solenoidal snake. The magnetic field and beam trajectory in the warm snake was calculated by using the OPERA-3D/TOSCA software. We present optimization of the warm snake with beam during RUN5.

  6. Parameters Optimization for a Novel Vacuum Laser Acceleration Test at BNL-ATF

    CERN Document Server

    Shao, Lei; Zhou, Feng

    2005-01-01

    This paper presents a new VLA theory model which has revealed that the injection electrons with low energy and small incident angle relative to the laser beam are captured and significantly accelerated in a strong laser field. For the further step for verifying the novel-VLA mechanics, we propose to use the BNL-ATF Terawatt CO2 laser and a high-brightness electron beam to carry out a proof-of-principle beam experiment. Experiment setup including the laser injection optics and electron extraction system and beam diagnostics is presented. Extensive optimized simulation results with ATF practical parameters are also presented, which shows that even when the laser intensity is not very high, the net energy gain still can be seen obviously. This could be prospect for a new revolution of vacuum laser acceleration.

  7. NRC-BNL Benchmark Program on Evaluation of Methods for Seismic Analysis of Coupled Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chokshi, N.; DeGrassi, G.; Xu, J.

    1999-03-24

    A NRC-BNL benchmark program for evaluation of state-of-the-art analysis methods and computer programs for seismic analysis of coupled structures with non-classical damping is described. The program includes a series of benchmarking problems designed to investigate various aspects of complexities, applications and limitations associated with methods for analysis of non-classically damped structures. Discussions are provided on the benchmarking process, benchmark structural models, and the evaluation approach, as well as benchmarking ground rules. It is expected that the findings and insights, as well as recommendations from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving licensing applications of these alternate methods to coupled systems.

  8. NRC-BNL BENCHMARK PROGRAM ON EVALUATION OF METHODS FOR SEISMIC ANALYSIS OF COUPLED SYSTEMS.

    Energy Technology Data Exchange (ETDEWEB)

    XU,J.

    1999-08-15

    A NRC-BNL benchmark program for evaluation of state-of-the-art analysis methods and computer programs for seismic analysis of coupled structures with non-classical damping is described. The program includes a series of benchmarking problems designed to investigate various aspects of complexities, applications and limitations associated with methods for analysis of non-classically damped structures. Discussions are provided on the benchmarking process, benchmark structural models, and the evaluation approach, as well as benchmarking ground rules. It is expected that the findings and insights, as well as recommendations from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving licensing applications of these alternate methods to coupled systems.

  9. Studies of material properties under irradiation at BNL Linear Isotope Producer (BLIP)

    CERN Document Server

    Simos, N; Ludewig, H; Mokhov, N; Hurh, P; Misek, J

    2012-01-01

    Effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been under study using the Brookhaven National Laboratory's (BNL) 200 MeV Linac. The primary objectives of the study that includes a wide array of materials and alloys ranging between low and high-Z are to (a) observe changes in physio-mechanical properties which are important in maintaining high-power target functionality, (b) identify possible limits of proton flux or fluence above which certain material seize to maintain integrity, (c) study the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) correlate radiation damage effects of different species such as energetic protons and neutrons on materials by utilizing reactor and particle accelerator experience data. These objectives are specifically being addressed in the latest material irradiation study linked to the Long Baseline Neutrino Experiment (LBNE). Observations on irradiation effects on m...

  10. Energy Scaling of Spin Tune due to RHIC Snakes

    Energy Technology Data Exchange (ETDEWEB)

    MacKay,W.W.

    2009-01-02

    For a ring like RHIC with two full Siberian snakes on opposite sides of the ring, the spin tune for a flat orbit will be 1/2 if the snake rotation axes are perpendicular, {Delta}{phi} = {phi}{sub 9}-{phi}{sub 3} = {pi}/2. Here {phi}{sup 9} and {phi}{sub 3} are respectively the direction of the rotation axes of the 9 o'clock and 3 o'clock snakes relative to the design trajectory as shown in Figure 1. If the two snakes are slightly detuned by the same amount such that the rotation axes are no longer perpendicular, then the deviation of the closed-orbit spin tune {nu}{sub 0} from 1/2 is given by {Delta}{nu}{sub 0} {approx_equal} ({Delta}{mu}){sup 2}/4{pi} cosG{gamma}{pi} - 2{Delta}{phi}/{pi} {approx_equal} 2{Delta}{phi}/180{sup o} with G{gamma} at a half integer, and where {Delta}{mu} is the deviation of snake rotation angle from 180{sup o}. It should be noted that there is a sign ambiguity in {Delta}{mu}{sub 0} since a spin tune of 0.495 is also a spin tune of 0.505, depending on the direction taken along the stable spin axis. In order to understand the effect of energy scaling on the snake axis direction, I have integrated the trajectory and spin rotation through a model of a RHIC snake (bi9-snk7) and found the energy (U) dependence of the snake axis angle {phi}{sub 9} and rotation angle {mu} as shown. A {approx_equal} p{sup -2} scaling of errors is typical in helical snakes. To first order, the orbit excursion drops as p{sup -1} and the spin precessions about transverse fields increase as {gamma} giving an approximate cancellation with energy, so we do not expect much change during the field ramp. The next order term which comes in is primarily proportional to p{sup -2}; although naively one might expect a slight effect inversely proportional to the velocity since {gamma}/p {proportional_to} c/{nu} {approx_equal} 1 + 1/2{gamma}{sup 2}.

  11. Hadron spectroscopy with the crystal ball at the AGS

    Science.gov (United States)

    Tippens, B.

    1998-05-01

    The recent installation of the Crystal Ball (CB) on the C6 beamline at the AGS marks the beginning of a new diverse program in hadron spectroscopy at BNL. Some of its goals are to improve the determination of the masses, widths and decay modes of several baryon resonances, to search for possible exotic states such as pentaquarks and hybrids, to determine the η-n scattering length, and to measure photoproduction of K- mesons from Λ and Σ hyperons using the technique of detailed balance. In the spring of 1997, we conducted a two week engineering run and a two week data run looking at all neutral final states from π-p interactions. A description of the experimental setup and performance of the detector is given along with some preliminary results from π-p→ηn.

  12. AGS-2000: Experiments for the 21. Century. Proceedings of the workshop held at Brookhaven National Laboratory, May 13--17, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Littenberg, L. [ed.] [Brookhaven National Lab., Upton, NY (United States); Sandweiss, J. [ed.] [Yale Univ., New Haven, CT (United States)

    1996-10-01

    The AGS has a vital and interesting potential for new research. The reasons for this are a fortunate concomitance of the energy chosen for the AGS and the steady stream of technological advances which have both increased the intensity and flexibility of the AGS beams, and the capability of detectors to use these new beam parameters. The physics potentials of the future AGS program can be roughly divided into three broad areas. (1) fundamental elementary particle studies (based on rare kaon decays, rare muon processes and searches for new particles); (2) non-perturbative QCD; and (3) heavy ion physics. The overriding considerations for the operation of the AGS in the next decade must, of course, be the interest and potential of the scientific program. However, once that has been established, there are other aspects of the AGS program which deserve mention. Although experiments at the AGS are of increasing sophistication, they are smaller, less expensive, and more quickly executed than experiments at newer, larger facilities. Finally, the authors note that since the AGS must be maintained as a viable accelerator to serve as an injector to RHIC, the cost of an AGS fixed target experiment need be only the incremental cost of the experiment itself along with some modest additional operating costs. This means that AGS fixed target experiments are substantially cheaper than they would have been before the RHIC era. The remainder of this document contains brief summaries of the experiments considered by the working groups in the AGS-2000 Workshop. These summaries expand on points discussed here.

  13. Overview and analysis of the 2016 Gold Run in the Booster and AGS

    Energy Technology Data Exchange (ETDEWEB)

    Zeno, K. [Brookhaven National Laboratory (BNL), Upton, NY (United States). Alternating Gradient Synchrotron

    2016-09-16

    Run 16 differed from preceding Au runs in that during most of it a 12:6:2 merge was employed in the AGS instead of an 8:4:2 merge. This was done to provide higher bunch intensities for RHIC. Since the approach to providing higher bunch intensities is, and has been, to merge more Booster bunches of the same intensity into one final bunch, detailing the longitudinal aspects of this setup seems quite relevant. So, aside from providing an overview of the Au portion of Run 16, this note also contains a series of emittance measurements in the Booster and AGS. Comparisons of these to similar measurements in previous runs are also made in hopes of gaining a better understanding of what factors contribute to the emittance of a bunch at AGS extraction. The note also tries to provide some context in which to understand the various merge schemes and describes a potential 8 to 1 type merge.

  14. Performance of microstrip gas chambers in BNL-E885: a search for LAMBDA LAMBDA-hypernuclei

    CERN Document Server

    Landry, M; Davis, C A; Faszer, W; Gan, L; Lee, L; Page, S A; Ramsay, W D; Salomon, M; Oers, W T H

    1999-01-01

    The performance of MicroStrip Gas Chambers (MSGC) in BNL Experiment 885, a search for LAMBDA LAMBDA-hypernuclei, is detailed. Chambers with an active area of 80x50 mm sup 2 were instrumented and operated as a vertex detector in the experiment. Furthermore, two distinct types of microstrip prints were utilized in these chambers. Prints manufactured with Integrated Circuit (IC) photolithographic technology have fine tolerances and thin minimum trace widths, but can suffer from a high rate of defects per print and are more costly. Prints constructed with Printed Circuit (PC) photolithographic technology have coarser tolerances but relatively few defects per print, and are extremely cost-effective. Results of bench and beam tests of both IC and PC based MSGCs are presented and their performance in BNL-E885 is discussed. E885 marks the first use of PC based MSGCs in an experiment.

  15. Beam-Beam Effects in the Ring-Ring Version of eRHIC

    CERN Document Server

    Shi, Jack; Wang, Dong; Wang, Fuhua

    2005-01-01

    The eRHIC is a proposed electron ring at the RHIC that will provide collisions between a polarized 5-10 GeV electron beam and an ion beam from one of the RHIC rings. In order to achieve proposed high luminosity, large bunch current and small beta-functions at the IP has to be employed. Such measures result in large beam-beam parameters, 0.029 and 0.08 for the electron beam and 0.0065 and 0.0033 for the proton beam in the horizontal and vertical plane, respectively, in the current ZDR design. The beam-beam effect especially the coherent beam-beam effect is therefore one of important issues to the eRHIC. Moreover, the proposed configuration of unequal circumferences of the electron and proton rings could further enhance the coherent beam-beam effect. The beam-beam effect of eRHIC has therefore been studied with a self-consistent beam-beam simulation by using the particle-in-cell method. Beam-beam limits of the electron and proton beam were examined as thresholds of the onset of coherent beam-beam instability. F...

  16. ERL with non-scaling fixed field alternating gradient lattice for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The proposed eRHIC electron-hadron collider uses a "non-scaling FFAG" (NS-FFAG) lattice to recirculate 16 turns of different energy through just two beam lines located in the RHIC tunnel. This paper presents lattices for these two FFAGs that are optimized for low magnet field and to minimize total synchrotron radiation across the energy range. The higher number of recirculations in the FFAG allows a shorter linac (1.322GeV) to be used, drastically reducing cost, while still achieving a 21.2 GeV maximum energy to collide with one of the existing RHIC hadron rings at up to 250GeV. eRHIC uses many cost-saving measures in addition to the FFAG: the linac operates in energy recovery mode, so the beams also decelerate via the same FFAG loops and energy is recovered from the interacted beam. All magnets will be constructed from NdFeB permanent magnet material, meaning chillers and large magnet power supplies are not needed. This paper also describes a small prototype ERL-FFAG accelerator that will test all of these technologies in combination to reduce technical risk for eRHIC.

  17. RHIC PERFORMANCE DURING THE FY10 200 GeV Au+Au HEAVY ION RUN

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.; Bruno, D.; Carlson, C.; Connolly, R.; de Maria, R.; D’Ottavio, T.; Drees, A.; Fischer, W.; Fu, W.; Gardner, C.; Gassner, D.; Glenn, J.W.; Hao, Y.; Harvey, M.; Hayes, T.; Hoff, L.; Huang, H.; Laster, J.; Lee, R.; Litvinenko, V.; Luo, Y.; MacKay, W.; Marr, G.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Oerter, B.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Russo, T.; Sampson, P.; Sandberg, J.; Satogata, T.; Severino, F.; Schoefer, V.; Schultheiss, C.; Smith, K.; Steski, D.; Tepikian, S.; Theisen, C.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2010-05-23

    Since the last successful RHIC Au+Au run in 2007 (Run-7), the RHIC experiments have made numerous detector improvements and upgrades. In order to benefit from the enhanced detector capabilities and to increase the yield of rare events in the acquired heavy ion data a significant increase in luminosity is essential. In Run-7 RHIC achieved an average store luminosity of = 12 x 10{sup 26} cm{sup -2} s{sup -1} by operating with 103 bunches (out of 111 possible), and by squeezing to {beta}* = 0.85 m. This year, Run-10, we achieved = 20 x 10{sup 26} cm{sup -2} s{sup -1}, which put us an order of magnitude above the RHIC design luminosity. To reach these luminosity levels we decreased {beta}* to 0.75 m, operated with 111 bunches per ring, and reduced longitudinal and transverse emittances by means of bunched-beam stochastic cooling. In addition we introduced a lattice to suppress intra-beam scattering (IBS) in both RHIC rings, upgraded the RF control system, and separated transition crossing times in the two rings. We present an overview of the changes and the results of Run-10 performance.

  18. Silicon Vertex Tracker for PHENIX Upgrade at RHIC: Capabilities and Detector Technology

    CERN Document Server

    Nouicer, Rachid

    2008-01-01

    From the wealth of data obtained from the first three years of RHIC operation, the four RHIC experiments, BRAHMS, PHENIX, PHOBOS and STAR, have concluded that a high density partonic matter is formed at central Au+Au collisions at \\sqrt{s_{NN}} = 200 GeV. The research focus now shifts from initial discovery to a detailed exploration of partonic matter. Particles carrying heavy flavor, i.e. charm or beauty quarks, are powerful tool for study the properties of the hot and dense medium created in high-energy nuclear collisions at RHIC. They also allow to probe the spin structure of the proton in a new and precise way. An upgrade of RHIC (RHIC-II) is intended for the second half of the decade, with a luminosity increase to about 20-40 times the design value of 8 x 10^26 cm^-2 s^-1 for Au+Au, and 2 x 10^32 cm^-2 s^-1 for polarized proton beams. The PHENIX collaboration plans to upgrade its experiment to exploit with an enhanced detector new physics then in reach. For this purpose, we are constructing the Silicon V...

  19. Estimation of Stopped Protons at RHIC BES Energies

    CERN Document Server

    Thakur, Dhananjaya; Garg, Prakhar; Sahoo, Raghunath

    2016-01-01

    The recent net-proton fluctuation results of the STAR experiment from beam energy scan (BES) program at RHIC have drawn much attention to explore the QCD critical point and the nature of deconfinement phase transition. There have been many speculations that the non-monotonic behaviour around 19.6 GeV in STAR results may be due to the existence of QCD critical point. However, the experimentally measured proton distributions contain protons from heavy resonance decays, from baryon stopping and from the production processes. Further, these proton distributions are used to estimate the net-proton number fluctuations as it is difficult to disentangle the protons from the above sources. Assuming that any criticality in the system could affect the particle production, in order to study the dynamical fluctuations at different center of mass energies, it will be interesting to devise a method which accounts for the produced baryons i.e. the protons here. In the present work we present a method to estimate the number o...

  20. Conceptual design report for the Solenoidal Tracker at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    The STAR Collaboration

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it`s experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  1. Quantifying the sQGP - Heavy Ion Collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Richard [Univ. of California, Riverside, CA (United States)

    2014-12-01

    This is the closeout for DE-FG02-86ER40271 entitled Quantifying the sQGP - Heavy Ion Collisions at the RHIC. Two major things were accomplished. The first, is the physics planning, design, approval, construction, and commissioning of the MPC-EX. The MPC-EX is an electromagnetic calorimeter covering a rapidity of 3<|eta|<4, which was added to the PHENIX detector. Its primary aim is to measure low-x gluons, in order to understand the suppression seen in a variety of signatures, such as the J/Psi. A candidate to explain this phenomena is the Color Glass Condensate (CGC) A second task was to look at collisions of asymmetric species, in particularly Cu+Au. The signature was the suppression of J/Psi mesons at forward and backward rapidity, where a stronger suppression was seen in the copper going direction. While the blue of the suppression is due to hot nuclear matter effects (e.g. screening) the increase in suppression on the Au side was consistent with cold nuclear matter effects seen in d+Au collisions. A major candidate for the explanation of this phenomena is the aforementioned CGC. Finally the work on sPHENIX, particularly an extension to the forward region, called fsPHENIX is described.

  2. A Reaction Plane Detector for PHENIX at RHIC

    CERN Document Server

    Richardson, E; Anderson, N; Bickley, A A; Chujo, T; Cole, B A; Esumi, S; Haggerty, J S; Hanks, J; Hemmick, T K; Hutchison, M; Ikeda, Y; Inaba, M; Jia, J; Lynch, D; Miake, Y; Mignerey, A C; Niida, T; O'Brien, E; Pak, R; Shimomura, M; Stankus, P W; Todoroki, T; Watanabe, K; Wei, R; Xie, W; Zajc, W A; Zhang, C

    2010-01-01

    A plastic scintillator paddle detector with embedded fiber light guides and photomultiplier tube readout, referred to as the Reaction Plane Detector (RXNP), was designed and installed in the PHENIX experiment prior to the 2007 run of the Relativistic Heavy Ion Collider (RHIC). The RXNP's design is optimized to accurately measure the reaction plane (RP) angle of heavy-ion collisions, where, for mid-central $\\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions, it achieved a $2^{nd}$ harmonic RP resolution of $\\sim$0.75, which is a factor of $\\sim$2 greater than PHENIX's previous capabilities. This improvement was accomplished by locating the RXNP in the central region of the PHENIX experiment, where, due to its large coverage in pseudorapidity ($1.0<|\\eta|<2.8$) and $\\phi$ (2$\\pi$), it is exposed to the high particle multiplicities needed for an accurate RP measurement. To enhance the observed signal, a 2-cm Pb converter is located between the nominal collision region and the scintillator paddles, allowing neutral ...

  3. Multiple scattering and $p_t$-broadening at RHIC energies

    CERN Document Server

    Papp, G; Fái, G; Lévai, Peter; Zhang, Y

    2002-01-01

    In ultrarelativistic heavy-ion collisions, in the 2 GeV$RHIC energies ($\\sqrt{s}=$130 AGeV), the slope of the calculated spectra is reminiscent of that of fluid-dynamical descriptions, but lacks any thermal ori...

  4. First results froim the PHOBOS experiment at RHIC

    CERN Document Server

    Roland, G; Baker, M D; Barton, D S; Betts, R R; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Decowski, M P; García, E; George, N; Gulbrandsen, K H; Gushue, S; Halliwell, C; Hamblen, J; Heintzelman, G A; Henderson, C; Holynski, R; Hofman, D J; Holzman, B; Johnson, E; Kane, J L; Katzy, J M; Khan, N; Kucewicz, W; Kulinich, P A; Lin, W T; Manly, S L; McLeod, D; Michalowski, J; Mignerey, A C; Mülmenstädt, J; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L J; Sarin, P; Sawicki, P; Skulski, W; Steadman, S G; Stephans, G S F; Steinberg, P; Stodulski, M; Sukhanov, A; Tang, J L; Teng, R; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Verdier, R; Wadsworth, B; Wolfs, F L H; Wosiek, B; Wozniak, K; Wuosmaa, A H; Byslouch, B

    2002-01-01

    During the first run of RHIC, the PHOBOS experiment recorded Au+Au collisions at square root (S/sub NN/) of 56 GeV and 130 GeV. These data have allowed us-to study. the, energy and centrality dependence of particle production, the anisotropy of the final state azimuthal distribution and particle-ratios at mid-rapidity. Our results show a non-trivial evolution of particle densities with both centrality and collision energy reaching significantly higher values per participating nucleon than at lower energies or in nucleon-nucleon collisions. At square root (S/sub NN/)=130 GeV we observe 4100+or-100 (stat.)+or-400(stat.) charged particles with \\eta 0.06, beyond the value predicted in hadronic cascade models, indicates a closer approach to local thermal equilibration than at lower collision energies. The data on particle ratios show that at square root (S/sub NN/)=130 GeV a significant fraction of the incoming baryon number is still shifted towards mid-rapidity. Nevertheless, the resulting baryochemical potential...

  5. Centrality Dependent Studies of Identified Particle Spectra at RHIC

    Science.gov (United States)

    Bekele, Selemon

    2008-10-01

    We present preliminary results from the BRAHMS experiment on identified particle spectra and ratios at y ˜0 and y ˜3 as a function of centrality for 200 GeV/NN Cu+Cu collisions. By comparing the Cu+Cu data with earlier results for the Au+Au and d+Au systems, it is possible to study how the heavy-ion reaction dynamics for a given number of participants depends on the overall system size. Particle yields, , and particle ratios are studied as a function of the number of participants. Transverse momentum distributions provide information on the final stages of the collision evolution at kinetic freeze-out. The kinetic freeze-out parameters of the Cu+Cu system are studied as a function of centrality by a simultaneous blast-wave model fit to the pion, kaon and (anti)proton spectra. The Cu+Cu results will be compared to other collision systems at RHIC to unravel the dependence on system size.

  6. RHIC Performance with Polarized Protons in Run-6

    Science.gov (United States)

    Ptitsyn, V.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Bravar, S.; Brown, K. A.; Brennan, J. M.; Bruno, D.; Bunce, G.; Calaga, R.; Cameron, P.; Connolly, R.; DeLong, J.; D'Ottavio, T.; Drees, A.; Fedotov, A.; Fischer, W.; Ganetis, G.; Hahn, H.; Hayes, T.; Hseuh, H.-C.; Huang, H.; Ingrassia, P.; Kayran, D.; Kewisch, J.; Lee, R.; Litvinenko, V. N.; Luo, Y.; MacKay, W. W.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Michnoff, R.; Montag, C.; Morris, J.; Pilat, F.; Pile, P.; Roser, T.; Russo, T.; Sandberg, J.; Satogata, T.; Schultheiss, C.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zeno, K.; Zelenski, A.; Zhang, S. Y.

    2007-06-01

    The RHIC polarized proton run (Run-6) in 2006 started on February 1 and continued for 21 weeks. The Run-6 included the machine operation at different beam energies and with different orientation of beam polarization at the collision points. The machine operation at 100GeV and 31.2 GeV provided physics data of polarized proton collisions to the STAR, PHENIX and BRAHMS experiments. Record levels of the luminosity (up to 3.5ṡ1031 cm-2 s-1 peak) and proton beam polarization (up to 65%) were achieved during the 100GeV operation. The beam polarization was preserved during the acceleration by using Siberian Snakes, based on helical magnets. The polarization orientation at STAR and PHENIX experiments was controlled with helical spin rotators. During different stages of the run the physics data were provided with longitudinal, vertical and horizontal orientations of the beam polarization at the collision points. Total luminosity integrals of 45 pb-1 at 100 GeV and 0.35 pb-1 at 31.2 GeV were delivered to the experiments.

  7. Future of the beam energy scan program at RHIC

    Directory of Open Access Journals (Sweden)

    Odyniec Grazyna

    2015-01-01

    Full Text Available The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy, suggest that the highest potential for discovery of the QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.

  8. Measuring The Electric-dipole Moment Of The Muon At Bnl E821

    CERN Document Server

    Giron, S O

    2004-01-01

    The muon g − 2 experiment at Brookhaven National Lab (BNL E821) improved the measurement of anomalous magnetic moment of the muon (aμ = g-22 ) by an order of magnitude over the previous measurement made by the CERN collaboration. The experiment used segmented detectors in order to also improve the measurement of the muon electric-dipole moment (EDM) by an order of magnitude. There are several methods available for making such an EDM measurement. Three methods were studied for their sensitivities to an EDM and to systematic biases. The g2geant Monte Carlo program was used to generate over 200 million simulated events so that the studies were not limited by statistical uncertainties. Each method was also used to analyze the 1999 E821 data set which contains 20 million events. It was found that one method had the least susceptibility to systematic biases with the greatest resolution of the effects of an EDM, and could best discriminate between the effects of a true EDM and those of systematic ...

  9. The Upgrade of the DUV-FEL Facility at the BNL

    CERN Document Server

    Wang, Xijie; Murphy, James; Rakowsky, George; Rose, James; Sheehy, Brian; Shen, Yuzhen; Skaritka, John; Wu, Zilu; Yu Li Hua

    2004-01-01

    The DUV-FEL at BNL, is the world's only facility dedicated to laser-seeded FEL R&D and its applications. The HGHG at the DUV-FEL reached saturation at 266 nm with 800 nm seeding [1] in 2002. Since then, the first chemical science experiment ? ion pair imaging, was successfully completed [2].The DUV-FEL linac is being upgraded from 200 to 300 MeV to enable the HGHG FEL to produce 100 μJ pulses of 100 nm light. This will establish the DUV FEL as a premier user facility for XUV radiation. The upgraded facility will also enable several critical R&Ds for a future X-ray FEL based on HGHG, such as cascaded HGHG and higher harmonic HGHG (n>5). The upgraded HGHG will operate at the 4th harmonic with the seed laser at 400nm. The increase of the electron beam energy will be accomplished by installing a 5th linac cavity and two 45 MW klystrons. New modulator and dispersion sections vacuum chambers will be manufactured to accommodate new matching optics and 8th harmonic HGHG. The status of the DUV-FEL upgra...

  10. Proceedings of RIKEN BNL Research Center Workshop, Volume 91, RBRC Scientific Review Committee Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Samios,N.P.

    2008-11-17

    The ninth evaluation of the RIKEN BNL Research Center (RBRC) took place on Nov. 17-18, 2008, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Dr. Wit Busza (Chair), Dr. Miklos Gyulassy, Dr. Akira Masaike, Dr. Richard Milner, Dr. Alfred Mueller, and Dr. Akira Ukawa. We are pleased that Dr. Yasushige Yano, the Director of the Nishina Institute of RIKEN, Japan participated in this meeting both in informing the committee of the activities of the Nishina Institute and the role of RBRC and as an observer of this review. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on his/her research efforts. This encompassed three major areas of investigation, theoretical, experimental and computational physics. In addition the committee met privately with the fellows and postdocs to ascertain their opinions and concerns. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  11. Distribution and ecotoxicity of chlorotriazines in the Scheldt Estuary (B-Nl)

    Energy Technology Data Exchange (ETDEWEB)

    Noppe, Herlinde [Ghent University, Faculty of Veterinary Medicine, Research group of Veterinary Public Health and Zoonoses, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820 Merelbeke (Belgium)]. E-mail: hubert.debrabander@ugent.be; Ghekiere, An [Ghent University, Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology, J. Plateaustraat 22, B-9000 Ghent (Belgium); Verslycke, Tim [Woods Hole Oceanographic Institution, Biology Department, MS32, Woods Hole, MA 02543 (United States); Wulf, Eric de [Flemish Environment Agency, Laboratory for Analysis of Organic Micropollutants, Krijgslaan 281-S2, B-9000 Ghent (Belgium); Verheyden, Karolien [Ghent University, Faculty of Veterinary Medicine, Research group of Veterinary Public Health and Zoonoses, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820 Merelbeke (Belgium); Monteyne, Els [Management Unit of the North Sea Mathematical Models, 3e and 23e Linieregimentsplein, B-8400 Ostend (Belgium); Polfliet, Karen [Ghent University, Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology, J. Plateaustraat 22, B-9000 Ghent (Belgium); Caeter, Peter van [Flemish Environment Agency, Laboratory for Analysis of Organic Micropollutants, Krijgslaan 281-S2, B-9000 Ghent (Belgium); Janssen, Colin R. [Ghent University, Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology, J. Plateaustraat 22, B-9000 Ghent (Belgium); Brabander, Hubert F. de [Ghent University, Faculty of Veterinary Medicine, Research group of Veterinary Public Health and Zoonoses, Laboratory of Chemical Analysis, Salisburylaan 133, B-9820 Merelbeke (Belgium)]. E-mail: herlinde.noppe@ugent.be

    2007-06-15

    As part of the Endis-Risks project, the current study describes the occurrence of the chlorotriazine pesticides atrazine, simazine and terbutylazine in water, sediment and suspended matter in the Scheldt estuary (B-Nl) from 2002 to 2005 (3 samplings a year, 8 sampling points). Atrazine was found at the highest concentrations, varying from 10 to 736 ng/l in water and from 5 up to 10 ng/g in suspended matter. Simazine and terbutylazine were detected at lower concentrations. Traces of the targeted pesticides were also detected in sediments, but these were below the limit of quantification. As part of an ecotoxicological assessment, we studied the potential effect of atrazine on molting of Neomysis integer (Crustacea:Mysidacea), a resident invertebrate of the Scheldt Estuary and a proposed test organism for the evaluation of endocrine disruption. Following chronic exposure ({approx}3 weeks), atrazine did not significantly affect mysid molting at environmentally relevant concentrations (up to 1 {mu}g/l). - The water of the Scheldt estuary and its associated suspended solids are contaminated with chlorotriazines at concentrations that do not affect mysid molting.

  12. Explore the possibility of accelerating polarized He-3 beam in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bai M.; Courant, E.; Fischer, W.; Ptitsyn, V.; Roser, T.

    2012-05-20

    As the world's first high energy polarized proton collider, RHIC has made significant progresses in measuring the proton spin structure in the past decade. In order to have better understanding of the contribution of up quarks and down quarks to the proton spin structure, collisions of high energy polarized neutron beams are required. Polarized He-3 beams offer an effectiveway to provide polarized neutron beams. In this paper, we present studies of accelerating polarized He-3 in RHIC with the current dual snake configuration. Possibilities of adding two more pairs of snakes for accelerating polarized He-3 were explored. Results of six snake configuration in RHIC are also reported in the paper.

  13. Optimization of dynamic aperture for hadron lattices in eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Yichao [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, Vladimir [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, Dejan [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The potential upgrade of the Relativistic Heavy Ion Collider (RHIC) to an electron ion collider (eRHIC) involves numerous extensive changes to the existing collider complex. The expected very high luminosity is planned to be achieved at eRHIC with the help of squeezing the beta function of the hadron ring at the IP to a few cm, causing a large rise of the natural chromaticities and thus bringing with it challenges for the beam long term stability (Dynamic aperture). We present our effort to expand the DA by carefully tuning the nonlinear magnets thus controlling the size of the footprints in tune space and all lower order resonance driving terms. We show a reasonably large DA through particle tracking over millions of turns of beam revolution.

  14. Status of the R&D Towards Electron Cooling of RHIC

    Energy Technology Data Exchange (ETDEWEB)

    A. Favale; D. Holmes; J.J. Sredniawski; Hans Bluem; M.D. Cole; J. Rathke; T. Schultheiss; A.M.M. Todd; V.V. Parkhomchuk; V.B. Reva; J. Alduino; D.S. Barton; Dana Richard Beavis; I. Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; Andrew Burrill; Rama Calaga; P. Cameron; X. Chang; K.A. Drees; A.V. Fedotov; W. Fischer; G. Ganetis; D.M. Gassner; J.G. Grimes; Hartmut Hahn; L.R. Hammons; A. Hershcovitch; H.C. Hseuh; D. Kayran; J. Kewisch; R.F. Lambiase; D.L. Lederle; Vladimir Litvinenko; C. Longo; W.W. MacKay; G.J. Mahler; G.T. McIntyre; W. Meng; B. Oerter; C. Pai; George Parzen; D. Pate; D. Phillips; S.R. Plate; Eduard Pozdeyev; Triveni Rao; J. Reich; Thomas Roser; A.G. Ruggiero; T. Russo; C. Schultheiss; Z. Segalov; J. Smedley; K. Smith; T. Tallerico; S. Tepikian; R. Than; R.J. Todd; Dejan Trbojevic; J.E. Tuozzolo; P. Wanderer; G. WANG; D. Weiss; Q. Wu; Kin Yip; A. Zaltsman; A. Burov; S. Nagaitsev; L.R. Prost; A.O. Sidorin; A.V. Smirnov; Yaroslav Derbenev; Peter Kneisel; John Mammosser; H. Phillips; Joseph Preble; Charles Reece; Robert Rimmer; Jeffrey Saunders; Mircea Stirbet; Haipeng Wang; A.V. Aleksandrov; D.L. Douglas; Y.W. Kang; D.T. Abell; G.I. Bell; David L. Bruhwiler; R. Busby; John R. Cary; D.A. Dimitrov; P. Messmer; Vahid Houston Ranjbar; D.S. Smithe; A.V. Sobol; P. Stoltz

    2007-08-01

    The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

  15. Initial temperature of the strongly interacting Quark Gluon Plasma created at RHIC

    CERN Document Server

    Csanad, Mate

    2011-01-01

    A 1+3 dimensional solution of relativistic hydrodynamics is analyzed in this paper. Momentum distribution and other observables are calculated from the solution and compared to hadronic measurements from the Relativistic Heavy Ion Collider (RHIC). The solution is compatible with the data, but only the freeze-out point of the evolution is determined. Many equation of states and initial states (initial temperatures) are valid with the same freeze-out distribution, thus the same hadronic observables. The observable that would distinguish between these initial temperatures is momentum distribution of photons, as photons are created throughout the evolution of the fireball created in RHIC collisions. The PHENIX experiment at RHIC measures such data via low invariant mass e+e- pairs. Average temperature from this data is T=221+-23+-18 MeV, while a model calculation with initial temperature 370 MeV agree with the data.

  16. A high performance DAC /DDS daughter module for the RHIC LLRF platform

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, T.; Harvey, M.; Narayan, G.; Severino, F.; Smith, K.S.; Yuan, S.

    2011-03-28

    The RHIC LLRF upgrade is a flexible, modular system. Output signals are generated by a custom designed XMC card with 4 high speed digital to analog (DAC) converters interfaced to a high performance field programmable gate array (FPGA). This paper discusses the hardware details of the XMC DAC board as well as the implementation of a low noise rf synthesizer with digital IQ modulation. This synthesizer also provides injection phase cogging and frequency hop rebucketing capabilities. A new modular RHIC LLRF system was recently designed and commissioned based on custom designed XMC cards. As part of that effort a high speed, four channel DAC board was designed. The board uses Maxim MAX5891 16 bit DACs with a maximum update rate of 600 Msps. Since this module is intended to be used for many different systems throughout the Collider Accelerator complex, it was designed to be as generic as possible. One major application of this DAC card is to implement digital synthesizers to provide drive signals to the various cavities at RHIC. Since RHIC is a storage ring with stores that typically last many hours, extremely low RF noise is a critical requirement. Synchrotron frequencies at RHIC range from a few hertz to several hundred hertz depending on the species and point in the acceleration cycle so close in phase noise is a major concern. The RHIC LLRF system uses the Update Link, a deterministic, high speed data link that broadcasts the revolution frequency and the synchronous phase angle. The digital synthesizers use this data to generate a properly phased analog drive signal. The synthesizers must also provide smooth phase shifts for cogging and support frequency shift rebucketing. One additional feature implemented in the FPGA is a digital waveform generator (WFG) that generates I and Q data pairs based on a user selected amplitude and phase profile as a function of time.

  17. OVERCOMING DEPOLARIZING RESONANCES IN THE AGS WITH TWO HELICAL PARTIAL SNAKES

    Energy Technology Data Exchange (ETDEWEB)

    HUANG,H.; AHRENS, L.; BAI, M.; BROWN, K.A.; GARDNER, C.J.; ET AL.

    2007-06-25

    Dual partial snake scheme has provided polarized proton beams with 1.5 x 10{sup 11} intensity and 65% polarization for the Relativistic Heavy Ion Collider (RHIC) spin program. To overcome the residual polarization loss due to horizontal resonances in the Brookhaven Alternating Gradient Synchrotron (AGS), a new string of quadrupoles have been added. The horizontal tune can then be set in the spin tune gap generated by the two partial snakes, such that horizontal resonances can also be avoided. This paper presents the accelerator setup and preliminary results.

  18. What RHIC experiments and theory tell us about properties of quark-gluon plasma?

    Science.gov (United States)

    Shuryak, Edward

    2005-03-01

    This brief review summarizes the main experimental discoveries made at RHIC and then discusses their implications. The robust collective flow phenomena are well described by ideal hydrodynamics, with the equation of state (EoS) predicted by lattice simulations. However the transport properties turned out to be unexpected, with rescattering cross section one-to-two orders of magnitude larger than expected from perturbative QCD. These and other theoretical developments indicate that quark-gluon plasma (QGP) produced at RHIC, and probably in a wider temperature region TEoS, viscosity and jet quenching.

  19. Optics measurement and correction during acceleration with beta-squeeze in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    In the past, beam optics correction at RHIC has only taken place at injection and at final energy, with interpolation of corrections partially into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats that, if corrected, could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoiding the high-order multipole fields sampled by particles within the bunch. We recently demonstrated successful beam optics corrections during acceleration at RHIC. We verified conclusively the superior control of the beam realized via these corrections

  20. Research and development of RHIC injection kicker upgrade with nano second FID pulse generator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang W.; Sandberg, J.; Hahn, H.; Fischer, W.; Liaw, C.J.; Pai, C.; Tuozzolo, J.

    2012-05-20

    Our recent effort to test a 50 kV, 1 kA, 50 ns pulse width, 10 ns pulse rise time FID pulse generator with a 250 ft transmission cable, resistive load, and existing RHIC injection kicker magnet has produced unparalleled results. This is the very first attempt to drive a high strength fast kicker magnet with a nano second high pulsed power (50 MVA) generator for large accelerator and colliders. The technology is impressive. We report here the result and future plan of RHIC Injection kicker upgrade.

  1. Quark Gluon Plasma an Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment

    CERN Document Server

    Arsene, I; Beavis, D; Besliu, C; Budick, B; Bøggild, H; Chasman, C; Christensen, C H; Christiansen, P; Cibor, J; Debbe, R; Enger, E; Gaardhøje, J J; Germinario, M; Hansen, O; Holm, A; Holme, A K; Hagel, K; Ito, H; Jakobsen, E; Jipa, A; Jundt, F; Jordre, J I; Jorgensen, C E; Karabowicz, R; Kim, E J; Kozik, T; Larsen, T M; Lee, J H; Lee, Y K; Lindahl, S; Løvhøiden, G; Majka, Z; Makeev, A; Mikelsen, M; Murray, M J; Natowitz, J B; Neumann, B; Nielsen, B S; Ouerdane, D; Planeta, R; Rami, F; Ristea, C; Ristea, O; Röhrich, D; Samset, B H; Sandberg, D; Sanders, S J; Scheetz, R A; Staszel, P; Tveter, T S; Videbaek, F; Wada, R; Yin, Z; Zgura, I S

    2004-01-01

    We review the main results obtained by the BRAHMS collaboration on the properties of hot and dense hadronic and partonic matter produced in ultrarelativistic heavy ion collisions at RHIC. A particular focus of this paper is to discuss to what extent the results collected so far by BRAHMS, and by the other three experiments at RHIC, can be taken as evidence for the formation of a state of deconfined partonic matter, the so called quark-gluon-plasma (QGP). We also discuss evidence for a possible precursor state to the QGP, i.e. the proposed Color Glass Condensate.

  2. Measuring two-particle Bose-Einstein correlations with PHOBOS@RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Betts, R.; Barton, D.; Carroll, A. [and others

    1995-07-15

    The authors present results of a simulation of the measurement of two-particle Bose-Einstein correlations in central Au-Au collisions with the PHOBOS detector at RHIC. This measurement is expected to yield information on the relevant time and distance scales in these collisions. As the space-time scale is directly connected with the equation of state governing the evolution of the particle source, this information will be essential in understanding the physics of nucleus-nucleus collisions at RHIC energies. The authors demonstrate that the PHOBOS detector has sufficient resolution and acceptance to distinguish a variety of physics scenarios.

  3. Conceptual design report for the Solenoidal Tracker at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it's experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  4. RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20

    Energy Technology Data Exchange (ETDEWEB)

    VAN BAAL,P.; ORLAND,P.; PISARSKI,R.

    2000-06-01

    This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.

  5. Proceedings of RIKEN BNL Research Center Workshop entitled Hydrodynamics in Heavy Ion Collisions and QCD Equation of State (Volume 88)

    Energy Technology Data Exchange (ETDEWEB)

    Karsch,F.; Kharzeev, D.; Molnar, K.; Petreczky, P.; Teaney, D.

    2008-04-21

    The interpretation of relativistic heavy-ion collisions at RHIC energies with thermal concepts is largely based on the relative success of ideal (nondissipative) hydrodynamics. This approach can describe basic observables at RHIC, such as particle spectra and momentum anisotropies, fairly well. On the other hand, recent theoretical efforts indicate that dissipation can play a significant role. Ideally viscous hydrodynamic simulations would extract, if not only the equation of state, but also transport coefficients from RHIC data. There has been a lot of progress with solving relativistic viscous hydrodynamics. There are already large uncertainties in ideal hydrodynamics calculations, e.g., uncertainties associated with initial conditions, freezeout, and the simplified equations of state typically utilized. One of the most sensitive observables to the equation of state is the baryon momentum anisotropy, which is also affected by freezeout assumptions. Up-to-date results from lattice quantum chromodynamics on the transition temperature and equation of state with realistic quark masses are currently available. However, these have not yet been incorporated into the hydrodynamic calculations. Therefore, the RBRC workshop 'Hydrodynamics in Heavy Ion Collisions and QCD Equation of State' aimed at getting a better understanding of the theoretical frameworks for dissipation and near-equilibrium dynamics in heavy-ion collisions. The topics discussed during the workshop included techniques to solve the dynamical equations and examine the role of initial conditions and decoupling, as well as the role of the equation of state and transport coefficients in current simulations.

  6. Notes on dumping gold beam in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C.J.; Ahrens, L.; Thieberger, P.

    2010-08-01

    Localized losses of gold beam in the AGS during RHIC Run 8 produced vacuum leaks which required the replacement of several vacuum chambers. A review of what happened and why was given by Leif Ahrens at the Run 8 Retreat. The following notes trace the subsequent development of clean dumping of gold beam on the beam dump in the J10 straight. The novel idea of stripping Au77+ ions in order to put them directly into the upstream face of the dump was introduced by Leif Ahrens and developed by all three of us. George Mahler made the actual stripping device and Dave Gassner developed its control. Leif Ahrens successfully commissioned the device with gold beam during Run 10. The reader may find it helpful to first view the figures herein and then refer to the text for details.

  7. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED - DOMAIN WALL FERMIONS AT TEN YEARS (VOLUME 84)

    Energy Technology Data Exchange (ETDEWEB)

    BLUM,T.; SONI,A.

    2007-03-15

    The workshop was held to mark the 10th anniversary of the first numerical simulations of QCD using domain wall fermions initiated at BNL. It is very gratifying that in the intervening decade widespread use of domain wall and overlap fermions is being made. It therefore seemed appropriate at this stage for some ''communal introspection'' of the progress that has been made, hurdles that need to be overcome, and physics that can and should be done with chiral fermions. The meeting was very well attended, drawing about 60 registered participants primarily from Europe, Japan and the US. It was quite remarkable that pioneers David Kaplan, Herbert Neuberger, Rajamani Narayanan, Yigal Shamir, Sinya Aoki, and Pavlos Vranas all attended the workshop. Comparisons between domain wall and overlap formulations, with their respective advantages and limitations, were discussed at length, and a broad physics program including pion and kaon physics, the epsilon regime, nucleon structure, and topology, among others, emerged. New machines and improved algorithms have played a key role in realizing realistic dynamical fermion lattice simulations (small quark mass, large volume, and so on), so much in fact that measurements are now as costly. Consequently, ways to make the measurements more efficient were also discussed. We were very pleased to see the keen and ever growing interest in chiral fermions in our community and the significant strides our colleagues have made in bringing chiral fermions to the fore of lattice QCD calculations. Their contributions made the workshop a success, and we thank them deeply for sharing their time and ideas. Finally, we must especially acknowledge Norman Christ and Bob Mawhinney for their early and continued collaboration without which the success of domain wall fermions would not have been possible.

  8. Direct photon production in heavy-ion reactions at SPS and RHIC

    Indian Academy of Sciences (India)

    T Peitzmann

    2003-04-01

    A review on experimental results for direct photon production in heavy ion reactions is given. A brief survey of early direct photon limits from SPS experiments is presented. The first measurement of direct photons in heavy ion reactions from the WA98 collaboration is discussed and compared to theoretical calculations. An outlook on the perspective of photon measurements at RHIC is given.

  9. EVENT STRUCTURE AT RHIC FROM P-P TO AU-AU.

    Energy Technology Data Exchange (ETDEWEB)

    TRAINOR,T.A.; (FOR THE STAR COLLABORATION)

    2004-03-15

    Several correlation analysis techniques are applied to p-p and Au-Au collisions at RHIC. Strong large-momentum-scale correlations are observed which can be related to local charge and momentum conservation during hadronization and to minijet (minimum-bias parton fragment) correlations.

  10. Reliable operation of the Brookhaven EBIS for highly charged ion production for RHIC and NSRL

    Science.gov (United States)

    Beebe, E.; Alessi, J.; Binello, S.; Kanesue, T.; McCafferty, D.; Morris, J.; Okamura, M.; Pikin, A.; Ritter, J.; Schoepfer, R.

    2015-01-01

    An Electron Beam Ion Source for the Relativistic Heavy Ion Collider (RHIC EBIS) was commissioned at Brookhaven in September 2010 and since then it routinely supplies ions for RHIC and NASA Space Radiation Laboratory (NSRL) as the main source of highly charged ions from Helium to Uranium. Using three external primary ion sources for 1+ injection into the EBIS and an electrostatic injection beam line, ion species at the EBIS exit can be switched in 0.2 s. A total of 16 different ion species have been produced to date. The length and the capacity of the ion trap have been increased by 20% by extending the trap by two more drift tubes, compared with the original design. The fraction of Au32+ in the EBIS Au spectrum is approximately 12% for 70-80% electron beam neutralization and 8 pulses operation in a 5 Hertz train and 4-5 s super cycle. For single pulse per super cycle operation and 25% electron beam neutralization, the EBIS achieves the theoretical Au32+ fractional output of 18%. Long term stability has been very good with availability of the beam from RHIC EBIS during 2012 and 2014 RHIC runs approximately 99.8%.

  11. Partonic Equations of State in High-Energy Nuclear Collisions atRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nu

    2006-10-01

    The authors discuss the recent results on equation of state for partonic matter created at RHIC. Issues of partonic collectivity for multi-strange hadrons and J/{psi} from Au + Au collisions at {radical}s{sub NN} = 200 GeV are the focus of this paper.

  12. J/$\\psi$ suppression at SPS and RHIC in the comovers approach

    CERN Document Server

    Armesto-Pérez, Nestor; Ferreiro, E G; Kaidalov, A B; Sousa, D

    2002-01-01

    The NA50 collaboration data on the $J/\\psi$ suppression are compared with the results obtained in a comovers approach based on the Dual Parton Model (DPM). Predictions for the $J/\\psi$ suppression versus the charged multiplicity - measured in the rapidity region of the dimuon trigger - are given for SPS and RHIC energies.

  13. Study of luminosity leveling with crossing angle for polarized proton program at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blackler, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-01-25

    Luminosity leveling has been requested by experiments in the past and it is also foreseen in the future at RHIC. There are some options to do this, some well tested and some are potential. In this report, we present the theoretical and experimental study on leveling luminosity by crossing angle.

  14. The new conceptual design of snakes and spin rotators in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.; Courant, E.D.

    1990-01-01

    We discuss the generalized snake configurations, which offers either the advantages of shorter total snake length and smaller horizontal orbit displacement in the compact configuration or the dual functions of a snake and a 90{degree} spin rotation for the helicity state. The generalized snake is then applied to the polarized proton collision in RHIC. The possible schemes of obtaining high luminosity are discussed.

  15. High-energy high-luminosity electron-ion collider eRHIC

    CERN Document Server

    Litvinenko, Vladimir N; Belomestnykh, Sergei; Ben-Zvi, Ilan; Blaskiewicz, Michael M; Calaga, Rama; Chang, Xiangyun; Fedotov, Alexei; Gassner, David; Hammons, Lee; Hahn, Harald; Hao, Yue; He, Ping; Jackson, William; Jain, Animesh; Johnson, Elliott C; Kayran, Dmitry; Kewisch, Jrg; Luo, Yun; Mahler, George; McIntyre, Gary; Meng, Wuzheng; Minty, Michiko; Parker, Brett; Pikin, Alexander; Pozdeyev, Eduard; Ptitsyn, Vadim; Rao, Triveni; Roser, Thomas; Skaritka, John; Sheehy, Brian; Tepikian, Steven; Than, Yatming; Trbojevic, Dejan; Tsentalovich, Evgeni; Tsoupas, Nicholaos; Tuozzolo, Joseph; Wang, Gang; Webb, Stephen; Wu, Qiong; Xu, Wencan; Zelenski, Anatoly

    2011-01-01

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. A new ERL accelerator, which provide 5-30 GeV electron beam, will ensure 10^33 to 10^34 cm^-2 s^-1 level luminosity.

  16. Reliable operation of the Brookhaven EBIS for highly charged ion production for RHIC and NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, E., E-mail: beebe@bnl.gov; Alessi, J., E-mail: beebe@bnl.gov; Binello, S., E-mail: beebe@bnl.gov; Kanesue, T., E-mail: beebe@bnl.gov; McCafferty, D., E-mail: beebe@bnl.gov; Morris, J., E-mail: beebe@bnl.gov; Okamura, M., E-mail: beebe@bnl.gov; Pikin, A., E-mail: beebe@bnl.gov; Ritter, J., E-mail: beebe@bnl.gov; Schoepfer, R., E-mail: beebe@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-01-09

    An Electron Beam Ion Source for the Relativistic Heavy Ion Collider (RHIC EBIS) was commissioned at Brookhaven in September 2010 and since then it routinely supplies ions for RHIC and NASA Space Radiation Laboratory (NSRL) as the main source of highly charged ions from Helium to Uranium. Using three external primary ion sources for 1+ injection into the EBIS and an electrostatic injection beam line, ion species at the EBIS exit can be switched in 0.2 s. A total of 16 different ion species have been produced to date. The length and the capacity of the ion trap have been increased by 20% by extending the trap by two more drift tubes, compared with the original design. The fraction of Au{sup 32+} in the EBIS Au spectrum is approximately 12% for 70-80% electron beam neutralization and 8 pulses operation in a 5 Hertz train and 4-5 s super cycle. For single pulse per super cycle operation and 25% electron beam neutralization, the EBIS achieves the theoretical Au{sup 32+} fractional output of 18%. Long term stability has been very good with availability of the beam from RHIC EBIS during 2012 and 2014 RHIC runs approximately 99.8%.

  17. Heavy quark quenching from RHIC to LHC and the consequences of gluon damping

    Science.gov (United States)

    Gossiaux, P. B.; Nahrgang, M.; Bluhm, M.; Gousset, Th.; Aichelin, J.

    2013-05-01

    In this contribution to the Quark Matter 2012 conference, we study whether energy loss models established for RHIC energies to describe the quenching of heavy quarks can be applied at LHC with the same success. We also benefit from the larger pT-range accessible at this accelerator to test the impact of gluon damping on observables such as the nuclear modification factor.

  18. Heavy quark quenching from RHIC to LHC and the consequences of gluon damping

    OpenAIRE

    Gossiaux, Pol Bernard; Nahrgang, Marlene; Bluhm, Marcus; Gousset, Thierry; Aichelin, Joerg

    2012-01-01

    In this contribution to the Quark Matter 2012 conference, we study whether energy loss models established for RHIC energies to describe the quenching of heavy quarks can be applied at LHC with the same success. We also benefit from the larger $p_T$-range accessible at this accelerator to test the impact of gluon damping on observables such as the nuclear modification factor.

  19. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 77, RBRC SCIENTIFIC REVIEW COMMITTEE MEETING, OCTOBER 10-12, 2005

    Energy Technology Data Exchange (ETDEWEB)

    SAMIOS, N.P.

    2005-10-10

    The eighth evaluation of the RIKEN BNL Research Center (RBRC) took place on October 10-12, 2005, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Jean-Paul Blaizot, Professor Makoto Kobayashi, Dr. Akira Masaike, Professor Charles Young Prescott (Chair), Professor Stephen Sharpe (absent), and Professor Jack Sandweiss. We are grateful to Professor Akira Ukawa who was appointed to the SRC to cover Professor Sharpe's area of expertise. In addition to reviewing this year's program, the committee, augmented by Professor Kozi Nakai, evaluated the RBRC proposal for a five-year extension of the RIKEN BNL Collaboration MOU beyond 2007. Dr. Koji Kaya, Director of the Discovery Research Institute, RIKEN, Japan, presided over the session on the extension proposal. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on higher research efforts. In addition, a special session was held in connection with the RBRC QCDSP and QCDOC supercomputers. Professor Norman H. Christ, a collaborator from Columbia University, gave a presentation on the progress and status of the project, and Professor Frithjof Karsch of BNL presented the first physics results from QCDOC. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  20. Development of a practical training program based on BNL`s input to new NFPA Lined Masonary Chimney Venting Tables

    Energy Technology Data Exchange (ETDEWEB)

    Potter, G. [Agway Energy Products, Tully, NJ (United States)

    1997-09-01

    This paper describes how we developed a practical training program for technicians and sales personnel from the BNL studies that evolved into the Lined Chimney Venting Tables. One of the topics discussed is our search for solutions to the reoccurring problems associated with flue gas condensation on newly installed oil fired appliances. The paper will also discuss our own experiences in applying the new venting tables and working through the questions that arise when we encounter installations beyond the scope of the present tables.

  1. AGS experiments - 1994, 1995, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1997-01-01

    This report contains the following information on the Brookhaven AGS Accelerator complex: FY 1996 AGS schedule as run; FY 1997 AGS schedule (working copy); AGS beams 1997; AGS experimental area FY 1994 physics program; AGS experimental area FY 1995 physics program; AGS experimental area FY 1996 physics program; AGS experimental area FY 1997 physics program (in progress); a listing of experiments by number; two-phage summaries of each experiment begin here, also ordered by number; listing of publications of AGS experiments begins here; and listing of AGS experimenters begins here.

  2. A letter of intent for an experiment to study strong electromagnetic fields at RHIC via multiple electromagnetic processes

    Science.gov (United States)

    Fatyga, M.; Norbury, John W.

    1992-01-01

    An experimental program at the Relativistic Heavy Ion Collider (RHIC) which is designed to study nonperturbative aspects of electrodynamics is outlined. Additional possibilities for new studies of electrodynamics via multiple electromagnetic processes are also described.

  3. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, F. [Los Alamos National Labs., NM (United States)

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  4. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    DE VEGA,H.J.; BOYANOVSKY,D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  5. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    De Vega, H.J.; Boyanovsky, D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  6. Spin asymmetries in one-jet production at RHIC with polarized proton beams the effects of a hadrophilic Z

    CERN Document Server

    Taxil, P

    1996-01-01

    We show that the measurement of some parity violating asymmetry in the production of a large ET jet could reveal the presence of a new hadrophilic Z' such as the one recently introduced to interpret possible departures from the Standard Model predictions both at LEP and at CDF. Such a measurement could be perform within a few years by the RHIC Spin Collaboration (RSC) using the Relativistic Heavy Ion Collider (RHIC) as a polarized proton-proton collider.

  7. The role of Ag precipitates in Cu-12 wt% Ag

    Energy Technology Data Exchange (ETDEWEB)

    Yao, D.W.; Song, L.N. [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China); Dong, A.P.; Wang, L.T. [China Railway Construction Electrification Bureau Group Co.,Ltd., Beijing 100036 (China); Zhang, L. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Meng, L., E-mail: mengliang@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, Zheda Road No.38, Hangzhou, Zhejiang 310027 (China)

    2012-12-15

    The Cu-12 wt% Ag was prepared to investigate the role of Ag precipitates on the properties of the alloy. Two kinds of heat treatment procedures were adopted to produce different amount of Ag precipitates in the Cu-12 wt% Ag. The microstructure of Ag precipitates was systematically observed by optical microscopy and electron microscopy. The Cu-12 wt% Ag with more Ag precipitates exhibits higher strength and lower electrical conductivity. More Ag precipitates results in more phase interface and less Ag atoms dissolved in Cu matrix. By comparing the strengthening effect and electron scattering effect of phase interface and dissolved Ag atoms, it is conclude that the interface between Cu matrix and Ag precipitates could significantly block dislocation movement and enhance electron scattering in Cu-Ag alloys.

  8. Demonstration of the BNL Continuous Dual Trap Analyzer to Detect Perfluorocarbon Tracers for the Tag, Track and Location Program

    Energy Technology Data Exchange (ETDEWEB)

    Heiser,J.H.; Adams, J.; Dietz, R..; Milian, L.; Watson, T.

    2008-10-07

    The Tag, Track and Location System (TTL) Program is investigating methods of tracking an asset using perfluorocarbon tracers (PFT). The success of any TTL method requires sound detection/location instrumentation. Tracer Detection Technologies Corp (TDT), through a contract with the Office of Naval Research (ONR), is investigating different detection systems. The detections systems generally fall into two categories; proximity detectors and standoff detectors. Proximity detectors, as the name implies, need to be in close proximity (e.g., meter to 10's of meters) to the PFT source. Standoff detection searches for the PFT from a greater distance away from the source (e.g., 100's of meters to kilometers). Gas Chromatographs (GC) are generally considered a proximity detection systems, but in the case of PFTs should be considered for both proximity and standoff detection with the caveat that in standoff use the GC needs to be somewhere in the PFT plume, i.e., generally downwind of the source. With a properly sized PFT source, the right GC can afford fairly large standoff (distance from the source) distances; 100's of meters to kilometers downwind. Brookhaven National Laboratory (BNL) has such a GC system and offered to demonstrate the CDTA for TTL as a no cost addition to the TDTTTL project, of which BNL was a participant. BNL is a leading authority on the sampling, collection, release and detection of PFTs. In addition, the BNL team has extensive background in atmospheric dispersion, the application of PFTs to such studies and the development of applications utilizing PFTs such as building infiltration measurements, control room integrity determination, leak location and environmental investigations. This experience and expertise is essential in developing any PFT application were dispersion, dilution and overcoming environmental conditions and interferences are integral to success. BNL has developed sophisticated gas chromatography methods and

  9. The E-lens test bench for RHIC beam-beam compensation

    Energy Technology Data Exchange (ETDEWEB)

    Gu X.; Altinbas, F.Z.; Aronson, J.; Beebe, E. et al

    2012-05-20

    To compensate for the beam-beam effects from the proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are fabricating two electron lenses that we plan to install at RHIC IR10. Before installing the e-lenses, we are setting-up the e-lens test bench to test the electron gun, collector, GS1 coil, modulator, partial control system, some instrumentation, and the application software. Some e-lens power supplies, the electronics for current measurement will also be qualified on test bench. The test bench also was designed for measuring the properties of the cathode and the profile of the beam. In this paper, we introduce the layout and elements of the e-lens test bench; and we discuss its present status towards the end of this paper.

  10. HIGH-pT Features of z-SCALING at Rhic and Tevatron

    Science.gov (United States)

    Tokarev, M. V.; Zborovsky, I.; Dedovich, T. G.

    2008-09-01

    Experimental data on inclusive cross sections of jet, direct photon, and high-pT hadron production in pp/bar pp and AA collisions are analyzed in the framework of z-scaling. The analysis is performed with data obtained at ISR, Sbar ppS, RHIC, and Tevatron. Scaling properties of z-presentation of the inclusive spectra are verified. Physical interpretation of the variable z and the scaling function ψ(z) is discussed. We argue that general principles of self-similarity, locality, and fractality reflect the structure of the colliding objects, interaction of their constituents, and particle formation at small scales. The obtained results suggest that the z-scaling may be used as a tool for searching for new physics phenomena beyond Standard Model in hadron and nucleus collisions at high transverse momentum and high multiplicity at U70, RHIC, Tevatron, and LHC.

  11. Photoproduction at collider energies: from RHIC and HERA to the LHC

    CERN Document Server

    Baltz, A; Brodsky, S J; D'Enterria, D G; Dreyer, U; Engel, R; Frankfurt, L; Gorbunov, Y; Guzey, V; Hamilton, A; Klasen, M; Klein, S R; Kowalski, H; Levonian, S; Lourenço, C; Machado, M V T; Nachtmann, O; Nagy, Z; Nystrand, J; Piotrzkowski, K; Ramalhete, P; Savin, A; Scapparone, E; Schicker, R; Silvermyr, D; Strikman, M I; Valkárová, A; Vogt, R; Yilmaz, M; Enterria, David d'

    2007-01-01

    We present the mini-proceedings of the workshop on "Photoproduction at collider energies: from RHIC and HERA to the LHC" held at the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*, Trento) from January 15 to 19, 2007. The workshop gathered both theorists and experimentalists to discuss the current status of investigations of high-energy photon-induced processes at different colliders (HERA, RHIC, and Tevatron) as well as preparations for extension of these studies at the LHC. The main physics topics covered were: (i) small-$x$ QCD in photoproduction studies with protons and in electromagnetic (aka. ultraperipheral) nucleus-nucleus collisions, (ii) hard diffraction physics at hadron colliders, and (iii) photon-photon collisions at very high energies: electroweak and beyond the Standard Model processes. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting.

  12. Flow at the SPS and RHIC as a Quark Gluon Plasma Signature

    CERN Document Server

    Teaney, D; Shuryak, E V

    2001-01-01

    Radial and elliptic flow in non-central heavy ion collisions can constrain the effective Equation of State(EoS) of the excited nuclear matter. To this end, a model combining relativistic hydrodynamics and a hadronic transport code(RQMD [17]) is developed. For an EoS with a first order phase transition, the model reproduces both the radial and elliptic flow data at the SPS. With the EoS fixed from SPS data, we quantify predictions at RHIC where the Quark Gluon Plasma(QGP) pressure is expected to drive additional radial and elliptic flow. Currently, the strong elliptic flow observed in the first RHIC measurements does not conclusively signal this nascent QGP pressure. Additional measurements are suggested to pin down the EoS.

  13. Flow at the SPS and RHIC as a Quark-Gluon Plasma Signature

    Science.gov (United States)

    Teaney, D.; Lauret, J.; Shuryak, E. V.

    2001-05-01

    Radial and elliptic flow in noncentral heavy-ion collisions can constrain the effective equation of state (EOS) of the excited nuclear matter. To this end, a model combining relativistic hydrodynamics and a hadronic transport code [Sorge, Phys. Rev. C 52, 3291 (1995)] is developed. For an EOS with a first-order phase transition, the model reproduces both the radial and elliptic flow data at the SPS. With the EOS fixed from SPS data, we quantify predictions at RHIC where the quark-gluon plasma (QGP) pressure is expected to drive additional radial and elliptic flows. Currently, the strong elliptic flow observed in the first RHIC measurements does not conclusively signal this nascent QGP pressure.

  14. Simulations of beam-beam and beam-wire interactions in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  15. Excitation functions of parameters in Erlang distribution, Schwinger mechanism, and Tsallis statistics in RHIC BES program

    CERN Document Server

    Gao, Li-Na; Lacey, Roy A

    2016-01-01

    Experimental results of the transverse momentum distributions of phi mesons and $\\Omega$ hyperons produced in gold-gold (Au-Au) collisions with different centrality intervals, measured by the STAR Collaboration at different energies (7.7, 11.5, 19.6, 27, and 39 GeV) in the beam energy scan (BES) program at the relativistic heavy ion collider (RHIC), are approximately described by the single Erlang distribution and the two-component Schwinger mechanism. Meanwhile, the STAR experimental transverse momentum distributions of negatively charged particles, produced in Au-Au collisions at RHIC BES energies, are approximately described by the two-component Erlang distribution and the single Tsallis statistics. The excitation functions of free parameters are obtained from the fit to the experimental data. A weak softest point in the string tension in $\\Omega$ hyperon spectra is observed at 7.7 GeV.

  16. sPHENIX: The next generation heavy ion detector at RHIC

    CERN Document Server

    ,

    2016-01-01

    sPHENIX is a new collaboration and future detector project at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC). It seeks to answer fundamental questions on the nature of the quark gluon plasma (QGP), including its temperature dependence and coupling strength, by using a suite of precision jet and upsilon measurements that probe different length scales of the QGP. This will be achieved with large acceptance, $|\\eta| < 1$ and $0$-$2\\pi$ in $\\phi$, electromagentic and hadronic calorimeters and precision tracking enabled by a $1.5$ T superconducting magnet. With the increased luminosity afforded by accelerator upgrades, sPHENIX will perform high statistics measurements extending the kinematic reach at RHIC to overlap the LHC's. This overlap with the LHC will facilitate better understanding of the role of temperature, density and parton virtuality in QGP dynamics and for jet quenching in particular. This talk will focus on key future measurements and the current state of the sPHENIX proje...

  17. Strangeness production in heavy ion collisions at SPS and RHIC within two-source statistical model

    CERN Document Server

    Lu, Z D; Fuchs, C; Zabrodin, E E; Lu, Zhong-Dao; Faessler, Amand

    2002-01-01

    The experimental data on hadron yields and ratios in central Pb+Pb and Au+Au collisions at SPS and RHIC energies, respectively, are analysed within a two-source statistical model of an ideal hadron gas. These two sources represent the expanding system of colliding heavy ions, where the hot central fireball is embedded in a larger but cooler fireball. The volume of the central source increases with rising bombarding energy. Results of the two-source model fit to RHIC experimental data at midrapidity coincide with the results of the one-source thermal model fit, indicating the formation of an extended fireball, which is three times larger than the corresponding core at SPS.

  18. The ERL-based Design of Electron-Hadron Collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, Vadim [et al.

    2016-06-01

    Recent developments of the ERL-based design of future high-luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design ($L \\sim 10^{33} {\\rm cm}^2 {\\rm s}^{-1}$) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design ($L \\gt 10^{34} {\\rm cm}^{-2} {\\rm s}^{-1}$) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.

  19. Analysis of Multi-particle Production at RHIC by Two-source Statistical Model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The data of multi-particle production in s1/2 =130 AGeV Au+Au collisions (RHIC) are analyzed by two-source statistical model which was successfully applied in analyzing the data of multi-particle production in 158 AGeV Pb+Pb collisions (SPS). It is found that sources in RHIC are different from that in SPS which has a small and hot inner source surrounded by a larger and cooler outer source. The two sources in RHIC are identical. They have the same temperature, volume, particle density and other thermodynamic quantities. Besides, the results of two-source model are identical with that of single-source model (the total volume of the two sources equals the volume of single source). The

  20. Ultra-relativistic Heavy Ion Collisions at RHIC and (soon) the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Brian A. [Department of Physics, Columbia University, 538 West 120th Street, 704 Pupin Hall, MC 5255, New York, NY 10027 (United States)

    2010-07-01

    This presentation deals with three open problems in understanding initial conditions for and properties of Quark Gluon Plasma (QGP) on which LHC will provide critical insight: - the Initial conditions: Can A+A initial conditions at RHIC and/or LHC be described within the framework of saturation? - Collective evolution of QGP, hydrodynamics and QGP viscosity: Essential test of paradigm developed at RHIC at higher temperatures / particle densities - Continued dominance of strong coupling? - Jet quenching - direct probe of QGP: Full jet measurements are crucial for realization of 'jet tomography'. The ATLAS, ALICE and CMS experiments can perform the measurements required to address the above problems. They represent an extraordinary complement of experiments that broadens the scientific reach of LHC

  1. Excitation functions of parameters in Erlang distribution, Schwinger mechanism, and Tsallis statistics in RHIC BES program

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Li-Na; Liu, Fu-Hu [Shanxi University, Institute of Theoretical Physics, Shanxi (China); Lacey, Roy A. [Stony Brook University, Departments of Chemistry and Physics, Stony Brook, NY (United States)

    2016-05-15

    Experimental results of the transverse-momentum distributions of φ mesons and Ω hyperons produced in gold-gold (Au-Au) collisions with different centrality intervals, measured by the STAR Collaboration at different energies (7.7, 11.5, 19.6, 27, and 39 GeV) in the beam energy scan (BES) program at the relativistic heavy-ion collider (RHIC), are approximately described by the single Erlang distribution and the two-component Schwinger mechanism. Moreover, the STAR experimental transverse-momentum distributions of negatively charged particles, produced in Au-Au collisions at RHIC BES energies, are approximately described by the two-component Erlang distribution and the single Tsallis statistics. The excitation functions of free parameters are obtained from the fit to the experimental data. A weak softest point in the string tension in Ω hyperon spectra is observed at 7.7 GeV. (orig.)

  2. Half-length model of a Siberian Snake magnet for RHIC

    CERN Document Server

    Okamura, M; Kawaguchi, T; Katayama, T; Jain, A; Muratore, J; Morgan, G; Willen, E

    2000-01-01

    For the Relativistic Heavy Ion Collider (RHIC) Spin Project, super-conducting helical dipole magnets are being constructed. These magnets will be used in 'Siberian Snakes' and 'Spin Rotators', which manipulate spin direction of proton beams in RHIC. The dipole field in these magnets rotates 360 deg. and is required to reach a magnetic field strength of more than 4.0 T. The bore radius of the coils and the magnetic length of the magnets are 50 and 2400 mm, respectively. To ascertain the performance of these magnets, which are built using a new 'coil in a slot' technique, a half-length model has been fabricated and tested. The quench performance, field uniformity and rotation angle have been investigated. The measured values in the model magnet agreed well with field calculations. These results demonstrate the adequacy of the fabrication method adopted in the model magnet. (authors)

  3. Operations and Performance of RHIC as a Cu-Cu Collider

    CERN Document Server

    Pilat, Fulvia Caterina; Bai, Mei; Barton, Donald; Beebe-Wang, Joanne; Blaskiewicz, Michael; Brennan, Joseph M; Bruno, Donald; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Harvey, Margaret; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Lee, Roger C; Litvinenko, Vladimir N; Luo, Yun; MacKay, William W; Marr, Gregory J; Marusic, Al; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oerter, Brian; Ptitsyn, Vadim; Roser, Thomas; Russo, Thomas; Sandberg, Jon; Satogata, Todd; Schultheiss, Carl; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Zaltsman, Alex; Zeno, Keith; Zhang, S Y; Zhang, Wu

    2005-01-01

    The 5th year of RHIC operations, started in November 2004 and expected to last till June 2005, consists of a physics run with Cu-Cu collisions at 100 GeV/u followed by one with polarized protons at 100 GeV. We will address here overall performance of the RHIC complex used for the first time as a Cu-Cu collider, and compare it with previous operational experience with Au, PP and asymmetric d-Au collisions. We will also discuss operational improvements, such as a ?* squeeze to 85cm in the high luminosity interaction regions from the design value of 1m, system improvements and machine performance limitations, such as vacuum pressure rise, intra-beam scattering, and beam beam interaction.

  4. The dipole corrector magnets for the RHIC fast global orbit feedback system

    Energy Technology Data Exchange (ETDEWEB)

    Thieberger, P.; Arnold, L.; Folz, C.; Hulsart, R.; Jain, A.; Karl, R.; Mahler, G.; Meng, W.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Ptitsyn, V.; Ritter, J.; Smart, L.; Tuozzolo, J.; White, J.

    2011-03-28

    The recently completed RHIC fast global orbit feedback system uses 24 small 'window-frame' horizontal dipole correctors. Space limitations dictated a very compact design. The magnetic design and modelling of these laminated yoke magnets is described as well as the mechanical implementation, coil winding, vacuum impregnation, etc. Test procedures to determine the field quality and frequency response are described. The results of these measurements are presented and discussed. A small fringe field from each magnet, overlapping the opposite RHIC ring, is compensated by a correction winding placed on the opposite ring's magnet and connected in series with the main winding of the first one. Results from measurements of this compensation scheme are shown and discussed.

  5. The ERL-based Design of Electron-Hadron Collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, Vadim; et al.

    2016-06-01

    Recent developments of the ERL-based design of future high luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design ($L \\sim 10^{33} {\\rm cm}^2 {\\rm s}^{-1}$) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design ($L \\gt 10^{34} {\\rm cm}^{-2} {\\rm s}^{-1}$) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.

  6. Jet energy loss and bulk parton collectivity in nucleus-nucleus collisions at RHIC

    Institute of Scientific and Technical Information of China (English)

    HUANG Huan-Zhong

    2009-01-01

    Nucleus-nucleus collisions at RHIC produce high temperature and high energy density matter which exhibits paxtonic degrees of freedom. We will discuss measurements of nuclear modification factors for light hadrons and non-photonic electrons from heavy quark decays, which reflect the flavor dependence of energy loss of high momentum partons traversing the dense QCD medium. The dense QCD medium responds to energy loss of high momentum patrons in a pattern consistent with that expected from a hydrodynamic fluid. The hadronization of bulk partonic matter exhibits collectivity with effective partonic degrees of freedom. Nuclear collisions at RHIC provide an intriguing environment, where many constituent quark ingredients are readily available for possible formation of exotic particles through quark coalescence or recombinations.

  7. EXPERIMENTAL SET UP TO MEASURE COHERENT BREMSSTRAHLUNG AND BEAM PROFILES IN RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    TRBOJEVIC,D.; GASNER,D.; MACKAY,W.; MCINTYRE,G.; PEGGS,S.; TEPIKIAN,S.; SERBO,V.; KOTKIN,G.

    2002-06-03

    A proposal for an experiment to detect and measure with an array infrared detector either the infrared radiation from the beam-beam coherent bremsstrahlung or from the synchrotron light from the edge effect of large DX RHIC magnet is described. Predictions for the 100 GeV/nucleon gold and 250 GeV proton signals from both bremsstrahlung and synchtrotron radiation magnet edge effect are shown.

  8. Does parton saturation at high density explain hadron multiplicities at RHIC ?

    CERN Document Server

    Baier, R; Schiff, D; Son, D T

    2002-01-01

    We discuss the recent claim that hadron multiplicities measured at RHIC energies are directly described in terms of gluon degrees of freedom fixed from the initial conditions of central heavy ion collisions. The argument is based on the parton saturation scenario expected to be valid at high parton densities and on the assumption of conserved gluon number. Alternatively we conjecture that "bottom-up" equilibration before hadronization modifies this picture, due to nonconservation of the number of gluons.

  9. Vernier Scan Results from the First RHIC Proton Run at 250 GeV

    CERN Document Server

    Drees, Angelika

    2010-01-01

    Using the Vernier scan or Van der Meer scan technique, where one beam is swept stepwise transversely across the other while measuring the collision rate as a function of beam displacement, the transverse beam profiles, the luminosity and the effective cross section of the detector in question can be measured. This report briefly recalls the vernier scan technique and presents results from the first RHIC polarized proton run at 250GeV per beam in 2009

  10. What RHIC Experiments and Theory tell us about Properties of Quark-Gluon Plasma ?

    OpenAIRE

    Shuryak, E. V.

    2004-01-01

    This brief review summarizes the main experimental discoveries made at RHIC and then discusses their implications. The robust collective flow phenomena are well described by ideal hydrodynamics, with the Equation of State (EoS) predicted by lattice simulations. However the transport properties turned out to be unexpected, with rescattering cross section one-to-two orders of magnitude larger than expected from perturbative QCD. These and other theoretical developments indicate that Quark-Gluon...

  11. Charged Multiplicities at SPS and RHIC and consequences for $J/\\psi$ suppression

    CERN Document Server

    Capella, A

    2001-01-01

    Hadron multiplicities in nucleus--nucleus interactions are calculated in the Dual Parton Model and its dependence on the number of collisions and the number of participants is analyzed. Shadowing corrections are calculated as a function of impact parameter and the multiplicity per participant as a funtion of centrality is found to be in agreement with experiment at SPS and RHIC energies. The obtained results are used to compute the $J/\\psi$ suppression in a comover approach.

  12. Improving the J/psi Production Baseline at RHIC and the LHC

    CERN Document Server

    Vogt, R; Frawley, A D

    2012-01-01

    We assess the theoretical uncertainties on the inclusive J/psi production cross section in the Color Evaporation Model (CEM) using values for the charm quark mass, renormalization and factorization scales obtained from a fit to the charm production data. We use our new results to provide improved baseline comparison calculations at RHIC and the LHC. We also study cold matter effects on J/psi production at leading relative to next-to-leading order in the CEM within this approach.

  13. Baryonic Effect on XcJ Suppression in Au+Au Collisions at RHIC Energies

    Institute of Scientific and Technical Information of China (English)

    PENG Ru; XU Xiao-Ming; ZHOU Dai-Cui

    2004-01-01

    @@ We predict that xcJ mesons at low transverse momentum in the central rapidity region are almost dissociated by nucleons and antinucleons in hadronic matter produced in central Au+Au collisions at relativistic high-ion collider (RHIC) energies √SNN = 130 and 200 GeV. In the calculations the nucleon and antinucleon distributions in hadronic matter are results of evolution from their freeze-out distributions which well fit the experimental transverse momentum spectra of proton and antiproton.

  14. K*0(892 and ϕ(1020 resonance production at RHIC

    Directory of Open Access Journals (Sweden)

    Kumar Lokesh

    2015-01-01

    The K*0(892 and ϕ(1020 resonance production at mid-rapidity (|y| <0.5, measured in high energy (Au+Au, Cu+Cu, d+Au and p + p collisions at RHIC with the STAR experiment, reconstructed by their hadronic decay in Kπ and KK, respectively, are discussed. Mesons’ spectra, yields, mean transverse momentum 〈pT〉, nuclear modification factor, and azimuthal anisotropy are discussed as a function of centrality and collision energy.

  15. RHIC 12x150A current lead temperature controller: design and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Mi, C.; Seberg, S.; Ganetis, Hamdi, K.; Louie, W.; Heppner, G.; Jamilkowski, J.; Bruno, D.; DiLieto, A.; Sirio, C.; Tuozzolo, J.; Sandberg, J.; Unger, K.

    2011-03-28

    There are 60 12 x 150A current leads distributed in six RHIC service buildings; each lead delivers power supply current from room temperature to cryogenic temperature in RHIC. Due to the humid environment, condensation occurs frequently and ice forms quickly during operation, especially during an extensive storage period. These conditions generate warnings and alarms to which personnel must respond and establish temporary solutions to keep the machine operating. In here, we designed a temperature control system to avoid such situations. This paper discusses its design, implementation, and some results. There are six service buildings in the RHIC complex; each building has two valve boxes that transfer room-temperature current cables from the power supplies into superconducting leads, and then transport them into the RHIC tunnel. In there, the transition between the room-temperature lead into superconducting lead is critical and essential; smooth running during the physics store is crucial for the machine's continuing operation. One of the problems that often occurred previously was the icing of these current leads that could result in a potential leakage current onto ground, thereby preventing a continuous supply of physics store. Fig. 1 illustrates a typical example on a power lead. Among the modifications of the design of the valve box, we list below the new requirements for designing the temperature controller to prevent icing occurring: (1) Remotely control, monitor, and record each current lead's temperature in real time. Prevent icing or overheating of a power lead. (2) Include a temperature alarm for the high/low level threshold. In this paper we discuss the design, implementation, upgrades to, and operation of this new system.

  16. Unified Description of Charmonium Suppression in Quark-Gluon Plasma Medium at RHIC and LHC Energies

    OpenAIRE

    Singh, Captain R.; Srivastava, P. K.; Ganesh, S; Mishra, M.

    2015-01-01

    Recent experimental and theoretical studies suggest that the quarkonia suppression in a thermal QCD medium created at heavy ion collisions is a complex interplay of various physical processes. In this article we put together most of these processes in a unified way to calculate the charmonium survival probability (nuclear modification factor) at energies available at relativistic heavy ion collider (RHIC) and large hadron collider (LHC) experiments. We have included shadowing as the dominant ...

  17. Multisource thermal model to the transverse momentum spectra in pp collisions at RHIC and LHC energies

    CERN Document Server

    Li, BC; Liu, F; Wen, XJ

    2016-01-01

    In an improved multisource thermal model, we systematically investigate the transverse momentum spectra in pp collisions at high energies ranging from 62.4 GeV to 7 TeV. The results are compared with the experimental data in RHIC and LHC. Based on the collision energy dependence of the source-excitation factors, we estimate the transverse momentum spectra in pp collisions at higher energies, potential future pp colliders operating at 33 and 100 TeV.

  18. Low-mass Drift Chambers of the PHENIX central spectrometers at RHIC

    CERN Document Server

    Riabov, Y

    2002-01-01

    Beginning of regular operation of Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory opened unique possibilities for the study of nuclear matter at unprecedentedly high energies. PHENIX is one of the two large-scale experiments at RHIC, which is intended for detection and study of new state of matter--the so called quark-gluon plasma. The basic element of the PHENIX Central Tracking System is low-mass focusing Drift Chamber (DC). Distinctive features of ion-ion collisions at RHIC impose specific requirements on the DC which could not be satisfied by any structure developed earlier. DC should provide high efficiency of track reconstruction with use of 'hot' gas mixture under conditions of high charged particle densities, high collision rates and large-scale of the detector (6 m sup 3). Detailed description of the DC and its original wire structure characterized by the absence of left-right ambiguity and controlled charge collection geometry are given. Parameters of the DC during the first...

  19. What RHIC Experiments and Theory tell us about Properties of Quark-Gluon Plasma ?

    CERN Document Server

    Shuryak, E V

    2004-01-01

    This brief review summarizes the main experimental discoveries made at RHIC and then discusses their implications. The robust collective flow phenomena are well described by ideal hydrodynamics, with the Equation of State (EoS) predicted by lattice simulations. However the transport properties turned out to be unexpected, with rescattering cross section one-to-two orders of magnitude larger than expected from perturbative QCD. These and other theoretical developments indicate that Quark-Gluon Plasma (QGP) produced at RHIC, and probably in a wider temperature region $T_cRHIC domain, most them...

  20. Physics opportunities at the future eRHIC electron-ion collider

    Science.gov (United States)

    Fazio, Salvatore

    2017-03-01

    The 2015 nuclear physics long-range plan endorsed the realization of an electron-ion collider as the next large construction project in the United States. This new collider will provide definite answers to the following questions: How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? How are these quark and gluon distributions correlated with overall nucleon properties, such as spin direction? What is the role of the orbital motion of sea quarks and gluons in building up the nucleon spin? The eRHIC project is the Brookhaven National Laboratory's vision for the realization of the future electron-ion collider. eRHIC, with its high luminosity (> 1033 cm-2 s-1), wide kinematic reach in center-of-mass-energy (45 GeV to 145 GeV) since day-1 and highly polarized nucleon (P ≈ 70%) and electron (P ≈ 80%) beams provides an unprecedented opportunity to reach new frontiers in our understanding of the internal dynamic structure of nucleons. We give a brief description of the eRHIC project and highlight several key high precision measurements from the planned broad physics program at the future electron-ion collider and the expected impact on our current understanding of the spatial structure of nucleons and nuclei, and the transition from a non-saturated to a saturated state of nuclear matter.

  1. Spectra and elliptic flow of thermal photons from full overlap U+U collisions at RHIC

    CERN Document Server

    Dasgupta, Pingal; Srivastava, Dinesh K

    2016-01-01

    We calculate $p_T$ spectra and elliptic flow $v_2(p_T)$ for tip-tip and body-body configurations of full overlap uranium-uranium (U+U) collisions using a hydrodynamic model with smooth initial density distribution and compare the results with those obtained from Au+Au collisions at RHIC. Production of thermal photons is seen to be significantly larger for tip-tip collisions compared to body-body-collisions of uranium nuclei in the range $p_T >$ 2 GeV. However, a different trend is observed for $p_T <$ 1.5 GeV where, body-body collisions produce more photons. The most central Au+Au collisions at RHIC result in much lesser production of photons than the fully overlapping U+U collisions. The elliptic flow parameter calculated for body-body collisions is found to be large and comparable to the $v_2(p_T)$ for mid-central Au+Au collisions at RHIC. On the other hand, as expected, the $v_2(p_T)$ is close to zero for tip-tip collisions. The qualitative nature of the photon spectra and elliptic flow for the two diff...

  2. RHIC performance for FY2011 Au+Au heavy ion run

    Energy Technology Data Exchange (ETDEWEB)

    Marr, G.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D' Ottavio, T.; Drees, K.A.; Fedotov, A.V.; Fischer, W.; Fu, W.; Gardner, C.J.; Gassner, D.M.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Huang, H.; Ingrassia, P.F.; Jamilkowski, J.P.; Kling, N.; Lafky, M.; Laster, J.S.; Liu, C.; Luo, Y.; Mapes, M.; Marusic, A.; Mernick, K.; Michnoff, R.J.; Minty, M.G.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Polizzo, S.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Sandberg, J.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.E.; VanKuik, B.; Wang, G.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-09-04

    Following the Fiscal Year (FY) 2010 (Run-10) Relativistic Heavy Ion Collider (RHIC) Au+Au run, RHIC experiment upgrades sought to improve detector capabilities. In turn, accelerator improvements were made to improve the luminosity available to the experiments for this run (Run-11). These improvements included: a redesign of the stochastic cooling systems for improved reliability; a relocation of 'common' RF cavities to alleviate intensity limits due to beam loading; and an improved usage of feedback systems to control orbit, tune and coupling during energy ramps as well as while colliding at top energy. We present an overview of changes to the Collider and review the performance of the collider with respect to instantaneous and integrated luminosity goals. At the conclusion of the FY 2011 polarized proton run, preparations for heavy ion run proceeded on April 18, with Au+Au collisions continuing through June 28. Our standard operations at 100 GeV/nucleon beam energy was bracketed by two shorter periods of collisions at lower energies (9.8 and 13.5 GeV/nucleon), continuing a previously established program of low and medium energy runs. Table 1 summarizes our history of heavy ion operations at RHIC.

  3. Experience with low-energy gold-gold operations in RHIC during FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Montag, C.; Satogata, T.; Ahrens, L.A.; Bai, M.; Beebe-Wang, J.; Blacker, I.; et al

    2011-10-07

    During Run-10, RHIC operated at several different Au-Au collision energies, as requested mainly by the STAR collaboration in a quest to search for the critical point in the QGP phase diagram. The center-of-mass energies {radical}s{sub NN} are listed in Table 1, together with the respective start and end dates and the duration of the respective run at each energy. While STAR defines 'low energy' as anything below {radical}s{sub NN} = 39 GeV, we focus in the scope of this paper on energies below the regular RHIC injection energy of {radical}s{sub NN} {approx} 20 GeV, since this energy regime is particularly challenging for stable RHIC operations. Figures 1 and 2 show the evolution of beam intensity and luminosity during the course of the {radical}s{sub NN} = 7.7 GeV and 11.5 GeV run. In the following sections we will recapitulate the modifications during the run that led to significant performance improvements, and summarize what was learned at the various energies for possible application in future runs.

  4. Hard scattering of partons as a probe of collisions at RHIC using the STAR detector system

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B. [Brookhaven National Lab., Upton, NY (United States)

    1995-07-15

    Presented here is the current state of the author`s investigations into the use of hard probes to study pp, pA, and AA collisions at the Relativistic Heavy Ion Collider (RHIC) being built at Brookhaven National Laboratory. The overall goal of the RHIC program is the discovery and study of the Quark-Gluon Plasma (QGP), which is predicted to be formed at the high energy densities reached at RHIC in high energy AA collisions. The term {open_quotes}Hard probes{close_quotes} as used in this document includes those particles whose origin is the result of a direct hard parton scatter (i.e qq, qg, or gg). The final states of these hard parton scatters which the author proposes to study include dijets, gamma-jet coincidences, and inclusive high P{sub t} particle spectra. A brief discussion of the physics objectives is given in section 1. This is followed by an introduction to the STAR detector system in section 2, with particular details given for the proposed STAR Electromagnetic Calorimeter (EMC). The present simulation studies and results are given in section 3. The author concludes with a summary and a discussion of future plans in section 4.

  5. AGS experiments: 1993 - 1994 - 1995

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1996-04-01

    This report contains: FY 1995 AGS Schedule as Run; FY 1996-97 AGE Schedule (working copy); AGS Beams 1995; AGS Experimental Area FY 1993 Physics Program; AGS Experimental Area FY 1994 Physics Program; AGS Experimental Area FY 1995 Physics Program; AGS Experimental Area FY 1996 Physics Program (In progress); A listing of experiments by number; Two-page summaries of each experiment begin here, also ordered by number; Listing of publications of AGS experiments begins here; and Listing of AGS experimenters begins here. This is the twelfth edition.

  6. Operational tests of the BNL 24.8 kW, 3.8 K helium refrigerator

    Science.gov (United States)

    Brown, D. P.; Farah, Y.; Gibbs, R. J.; Schlafke, A. P.; Sondericker, J. H.; Wu, K. C.; Freeman, M.; Ganni, V.; Kowalski, R.; McWilliams, R.

    1985-06-01

    The BNL 24.8 kW refrigeration system is completely installed and major portions of the acceptance tests have been completed. So far, the equipment tested has performed at or above design levels. The room temperature helium compressor station has been completely tested and accepted. The two-stage oil injected screw compressor system exhibited an isothermal efficiency of 57% while delivering a helium flow in excess of 4400 g/s. Data on the performance of the make-up gas cryogenic purifier is given. The refrigerator turbomachinery, 13 expanders and three cold compressors, has been tested at room temperature for mechanical integrity and control stability. The first cooldown to operating temperature will be attempted in late August, 1985.

  7. THE AGS-BASED SUPER NEUTRINO BEAM FACILITY CONCEPTUAL DESIGN REPORT

    Energy Technology Data Exchange (ETDEWEB)

    WENG,W.T.; DIWAN,M.; RAPARIA,D.

    2004-10-08

    After more than 40 years of operation, the AGS is still at the heart of the Brookhaven hadron accelerator complex. This system of accelerators presently comprises a 200 MeV linac for the pre-acceleration of high intensity and polarized protons, two Tandem Van der Graaffs for the pre-acceleration of heavy ion beams, a versatile Booster that allows for efficient injection of all three types of beams into the AGS and, most recently, the two RHIC collider rings that produce high luminosity heavy ion and polarized proton collisions. For several years now, the AGS has held the world intensity record with more than 7 x 10{sup 13} protons accelerated in a single pulse. The requirements for the proton beam for the super neutrino beam are summarized and a schematic of the upgraded AGS is shown. Since the present number of protons per fill is already close to the required number, the upgrade is based on increasing the repetition rate and reducing beam losses (to avoid excessive shielding requirements and to maintain activation of the machine components at workable level). It is also important to preserve all the present capabilities of the AGS, in particular its role as injector to RHIC. The AGS Booster was built not only to allow the injection of any species of heavy ion into the AGS but to allow a fourfold increase of the AGS intensity. It is one-quarter the circumference of the AGS with the same aperture. However, the accumulation of four Booster loads in the AGS takes about 0.6 s, and is therefore not well suited for high average beam power operation. To minimize the injection time to about 1 ms, a 1.2 GeV linac will be used instead. This linac consists of the existing warm linac of 200 MeV and a new superconducting linac of 1.0 GeV. The multi-turn H{sup -} injection from a source of 30 mA and 720 {micro}s pulse width is sufficient to accumulate 9 x 10{sup 13} particle per pulse in the AGS[10]. The minimum ramp time of the AGS to full energy is presently 0.5 s; this must

  8. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, HADRON STRUCTURE FROM LATTICE QCD, MARCH 18 - 22, 2002, BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    BLUM, T.; BOER, D.; CREUTZ, M.; OHTA, S.; ORGINOS, K.

    2002-03-18

    The RIKEN BNL Research Center workshop on ''Hadron Structure from Lattice QCD'' was held at BNL during March 11-15, 2002. Hadron structure has been the subject of many theoretical and experimental investigations, with significant success in understanding the building blocks of matter. The nonperturbative nature of QCD, however, has always been an obstacle to deepening our understanding of hadronic physics. Lattice QCD provides the tool to overcome these difficulties and hence a link can be established between the fundamental theory of QCD and hadron phenomenology. Due to the steady progress in improving lattice calculations over the years, comparison with experimentally measured hadronic quantities has become important. In this respect the workshop was especially timely. By providing an opportunity for experts from the lattice and hadron structure communities to present their latest results, the workshop enhanced the exchange of knowledge and ideas. With a total of 32 registered participants and 26 talks, the interest of a growing community is clearly exemplified. At the workshop Schierholz and Negele presented the current status of lattice computations of hadron structure. Substantial progress has been made during recent years now that the quenched results are well under control and the first dynamical results have appeared. In both the dynamical and the quenched simulations the lattice results, extrapolated to lighter quark masses, seem to disagree with experiment. Melnitchouk presented a possible explanation (chiral logs) for this disagreement. It became clear from these discussions that lattice computations at significantly lighter quark masses need to be performed.

  9. Study of Nuclear Suppression at Large Forward Rapidities in d-Au Collisions at RHIC

    CERN Document Server

    Nemchik, J; Potashnikova, I K; Sumbera, M

    2008-01-01

    We study a strong suppression of the relative production rate (d-Au)/(p-p) for inclusive high-pT hadrons of different species at large forward rapidities (large Feynman xF). The model predictions calculated in the light-cone dipole approach are in a good agreement with the recent measurements by the BRAHMS and STAR Collaborations at the BNL Relativistic Heavy Ion Collider. We predict a similar suppression at large pT and large xF also at lower energies, where no effect of coherence is possible, which excludes an application of the models based on the Color Glass Condensate.

  10. AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).

    Energy Technology Data Exchange (ETDEWEB)

    DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

    2003-04-21

    This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also

  11. RESULTS FROM THE COMMISSIONING OF THE NSRL BEAM TRANSFER LINE AT BNL.

    Energy Technology Data Exchange (ETDEWEB)

    TSOUPAS,N.; BELLAVIA,S.; BONATI,R.; ET AL.

    2004-07-05

    The NASA SPACE RADIATION LABORATORY (NSRL) has been constructed and started operations at the Brookhaven National Laboratory in 2003. The NSRL facility will be used by NASA to perform radiation effect studies on materials and biological samples for the space program. The facility utilizes proton and heavy-ion beams of energies from 50 to 3000 MeVln which are accelerated by the AGS Booster synchrotron accelerator. To date, {sup 1}H, {sup 12}C, {sup 56}Fe, {sup 48}Ti, and {sup 197}Au ion beams of various magnetic rigidities have been extracted from the Booster, and transported by the NSRL beam transport line to the sample location which is located 100 m from the extraction point. The NSRL beam transport line has been designed to employ octupole magnetic elements which transform the normal (Gaussian) beam distribution at the location of the sample into a beam with rectangular cross section, and uniformly distributed over the sample. When using the octupole magnetic elements to obtain the uniform beam distribution on the sample, no beam-collimation is applied at any location along the NSRL beam transport line and the beam focusing on the sample is purely magnetic. The main subject of this paper will be the performance of the octupoles (third order optics) in obtaining uniform beam distributions at the target of the NSRL beam transport line.

  12. Long-Range And Head-On Beam-Beam Compensation Studies in RHIC With Lessons for the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Luo, Y.; Abreu, N.; Calaga, R.; Montag, C.; Robert-Demolaize, G.; /Brookhaven; Dorda, U.; Koutchouk, J.P.; Sterbini, G.; Zimmermann, F.; /CERN; Kim, H.J.; Sen, T.; Shiltsev, V.; Valishev, A.; /Fermilab; Qiang, J.; /LBL, Berkeley; Kabel, A.; /SLAC

    2011-11-28

    Long-range as well as head-on beam-beam effects are expected to limit the LHC performance with design parameters. They are are also important consideration for the LHC upgrades. To mitigate long-range effects, current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. Electron lenses were proposed for both RHIC and the LHC to reduce the head-on beam-beam effect. We present the experimental long-range beam-beam program at RHIC and report on head-on compensations studies based on simulations.

  13. Performances of the Si microstrip detector of the STAR experiment at RHIC; Performances du detecteur en silicium a micropistes de l'experience STAR a RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet, J

    2007-10-15

    The Silicon Strip Detector (SSD) is the fourth layer of detector using a double-sided microstrip technology of the STAR experiment at RHIC, completing STAR's inner tracking device. The goal of STAR is to study heavy ions collisions in order to probe the existence of the quark gluon plasma (QGP), a deconfined state of nuclear matter. Strangeness enhancement, such as {kappa}{sub S}{sup 0}, {lambda}, {xi} and {omega}, for particles production, has been proposed to sign the formation of QGP. Then precise measurement of secondary vertices is needed. The SSD will also permit an attempt to use the inner tracking device to measure charm and beauty with direct topological identification. It was proposed to enhance the STAR tracking capabilities by providing a better connection between reconstructed tracks in the main tracking device (TPC) and the initial vertex detector (SVT). In this thesis, we will present the intrinsic performances of the SSD and its impact on the inner tracking system performances by studying Cu-Cu collisions occurred at RHIC in 2005. We show that the SSD detector has excellent performances in terms of resolution: (945 {+-} 18) {mu}m in azimuth and (1021 {+-} 13) {mu}m along the beam axis. For the final result when SSD is associated to the SVT the resolutions are (281 {+-} 1) {mu}m and (213 {+-} 0.8) {mu}m in azimuth and along the beam axis respectively. The resolution reached by the addition of the Silicon Vertex detectors of STAR will allow the search for rare particles like charm and beauty, which have a decay-length of the order of hundred microns.

  14. Cold nuclear matter effects on the color singlet J/psi production in d-Au collisions at RHIC

    CERN Document Server

    Jiang, Zefang; Yin, Zhongbao; Shi, Yafei; Yuan, Xianbao

    2014-01-01

    We develop a Modified DKLMT model (called M-DKLMT model) to study the cold nuclear matter (CNM) effects on the color singlet J/psi production in d-Au collisions at RHIC. The cold nuclear effect has been investigated by introducing a nuclear geometric effect function f({\\xi}) and considering the nuclear geometry effect. The dependencies of nuclear modification factors (RdA) on rapidity and centrality are studied and compared to experimental data. It is found that the M-DKLMT model can well describe the experimental results at both forward- and mid-rapidity regions in collisions at RHIC.

  15. Cold Nuclear Matter effects on J/psi production at RHIC: comparing shadowing models

    Energy Technology Data Exchange (ETDEWEB)

    Ferreiro, E.G.; /Santiago de Compostela U.; Fleuret, F.; /Ecole Polytechnique; Lansberg, J.P.; /SLAC; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2009-06-19

    We present a wide study on the comparison of different shadowing models and their influence on J/{psi} production. We have taken into account the possibility of different partonic processes for the c{bar c}-pair production. We notice that the effect of shadowing corrections on J/{psi} production clearly depends on the partonic process considered. Our results are compared to the available data on dAu collisions at RHIC energies. We try different break up cross section for each of the studied shadowing models.

  16. Geometrical Scaling of Direct-Photon Production in Hadron Collisions from RHIC to the LHC

    CERN Document Server

    Klein-Bösing, Christian

    2014-01-01

    We consider pp, dAu and AuAu production of photons at RHIC energies, and PbPb collisions at LHC energy. We show that the inclusive spectrum of photons in the transverse momentum range of 1 GeV < pT <= 4 GeV satisfies geometric scaling. Geometric scaling is a property of hadronic interactions predicted by theories of gluon saturation, and expresses rates in terms of dimensionless ratios of the transverse momentum to saturation momentum. We show excellent agreement with geometric scaling with the only input being the previously measured dependence of the saturation momentum upon Bjorken x and centrality.

  17. Vorticity in the QGP liquid and hyperon polarization at the RHIC BES energies

    CERN Document Server

    Karpenko, Iu

    2016-01-01

    We calculate the polarization of $\\Lambda$ hyperons in Au-Au collisions at RHIC Beam Energy Scan range $\\sqrt{s_{\\rm NN}}=7.7, \\dots, 200$ GeV in a state-of-the-art 3+1 dimensional cascade + viscous hydro model vHLLE+UrQMD. We find that the polarization of $\\Lambda$ in the out-of-plane direction decreases substantially with collision energy. We explore the connection between the polarization signal and thermal vorticity and discuss the feed-down and hadronic rescattering effects on the mean polarization of all produced $\\Lambda$ hyperons.

  18. Jet flavor tomography of quark gluon plasmas at RHIC and LHC.

    Science.gov (United States)

    Buzzatti, Alessandro; Gyulassy, Miklos

    2012-01-13

    A new Monte Carlo model of jet quenching in nuclear collisions, CUJET1.0, is applied to predict the jet flavor dependence of the nuclear modification factor for fragments f=π,D,B,e(-) from quenched jet flavors g,u,c,b in central collisions at RHIC and LHC. The nuclear modification factors for different flavors are predicted to exhibit a novel level crossing pattern over a transverse momentum range 5

  19. Overview of results from phase I of the Beam Energy Scan program at RHIC

    Directory of Open Access Journals (Sweden)

    McDonald Daniel

    2015-01-01

    Full Text Available The first phase of the Beam Energy Scan (BES program at the Relativistic Heavy Ion Collider (RHIC was successfully completed during the years 2010, 2011 and 2014, with Au+Au collisions at center-of-mass energies (√sNN of 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV. The BES has three distinct goals: search for the turning off of the signatures of the Quark Gluon Plasma (QGP, search for the first-order phase transition, and search for the critical point. We report several interesting results that address each of these goals of the BES program.

  20. Vorticity in the QGP liquid and hyperon polarization at the RHIC BES energies

    Science.gov (United States)

    Karpenko, Iurii; Becattini, Francesco

    2017-01-01

    We calculate the polarization of hyperons in Au-Au collisions at RHIC Beam Energy Scan range = 7.7, …, 200 GeV in a state-of-the-art 3+1 dimensional cascade + viscous hydro model vHLLE+UrQMD. We find that the polarization of in the out-of-plane direction decreases substantially with collision energy. We explore the connection between the polarization signal and thermal vorticity and discuss the feed-down and hadronic rescattering effects on the mean polarization of all produced Λ hyperons.

  1. Flow at the SPS and RHIC as a Quark Gluon Plasma Signature

    OpenAIRE

    Teaney, D.; LAURET, J.; Shuryak, E. V.

    2000-01-01

    Radial and elliptic flow in non-central heavy ion collisions can constrain the effective Equation of State(EoS) of the excited nuclear matter. To this end, a model combining relativistic hydrodynamics and a hadronic transport code(RQMD [17]) is developed. For an EoS with a first order phase transition, the model reproduces both the radial and elliptic flow data at the SPS. With the EoS fixed from SPS data, we quantify predictions at RHIC where the Quark Gluon Plasma(QGP) pressure is expected ...

  2. Hydrodynamic Flow and Jet Induced Mach Shocks at RHIC and LHC

    CERN Document Server

    Stöcker, H; Rau, P; Betz, Barbara; Rau, Philip; St\\"ocker, Horst

    2007-01-01

    We discuss the present collective flow signals for the phase transition to quark-gluon plasma (QGP) and the collective flow as a barometer for the equation of state (EoS). A study of Mach shocks induced by fast partonic jets propagating through the QGP is given. We predict a significant deformation of Mach shocks in central Au+Au collisions at RHIC and LHC energies as compared to the case of jet propagation in a static medium. Results of a hydrodynamical study of jet energy loss are presented.

  3. Luminosity Increase at the Incoherent Beam-Beam Limit with Six Superbunches in RHIC

    Science.gov (United States)

    Fischer, W.; Blaskiewicz, M.

    2003-12-01

    By colliding bunches of greater length under a larger angle, the tune spread caused by the beam-beam interaction can be reduced. Assuming a constant limit for the beam-beam tune shift, the bunch intensity can then be raised. In this way, a luminosity increase is possible. We review this strategy for proton beams in RHIC, with two collisions and consider six long bunches. Barrier cavities are used to fill every accelerating bucket of the machine, except for an abort gap, and to create the superbunches bunches at store. Resonances driven by the beam-beam interaction and coherent effects are neglected in this article.

  4. Hard Probe of Soft Matter Geometry and Fluctuations from RHIC to LHC

    CERN Document Server

    Liao, Jinfeng

    2012-01-01

    We report results on event-by-event hard probe of soft matter geometry and fluctuations in heavy ion collisions. Geometric data ($v_2$ of high $p_t$ hadrons) from RHIC plus LHC clearly favors jet "monography" model with strong near-Tc enhancement of jet-medium interaction strength which also implies a less opaque medium at LHC. We also quantify the jet responses to all harmonic anisotropy $v_n$($n=1,2,3,4,5,6$) and their manifestation in hard-soft azimuthal correlations.

  5. Asymmetry of prompt photon production in p-p collisions at RHIC

    CERN Document Server

    Skoro, G P; Tokarev, M V

    1999-01-01

    The prompt photon production in p-p collisions at high energies is studied. Double-spin asymmetry of the process is calculated by using Monte Carlo code SPHINX. A possibility to discriminate the spin-dependent gluon distributions and to determine sign of Delta G is discussed. Detailed study of expected background, such as pi0 production and decay, is given. The predictions for the longitudinal asymmetry of the prompt photons and pi0-meson production in the p-p collisions at RHIC energies have been made.

  6. Decision on the number of turns in the eRHIC Nov15 design

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-12-01

    When moving from the “Jun’15” to the “Nov’15” eRHIC FFAG design, the number of accelerating passes through the linac was reduced from 16 to 12. There are an equal number of decelerating passes, so the total reduced from 32 to 24. At the same time, the linac energy was increased from 1.322GeV to 1.665GeV and the RF frequency changed from 422MHz to 647MHz. The maximum beam energy remained approximately constant, changing from 21.164GeV to exactly 20GeV.

  7. Differences in high $p_{t}$ meson production between CERN SPS and RHIC heavy ion collisions

    CERN Document Server

    Papp, G; Barnafoldi, G G; Yi Zhang; Fái, G; Papp, Gabor; Levai, Peter; Barnafoldi, Gergely G.; Zhang, Yi; Fai, George

    2001-01-01

    In this talk we present a perturbative QCD improved parton model calculation for light meson production in high energy heavy ion collisions. In order to describe the experimental data properly, one needs to augment the standard pQCD model by the transverse momentum distribution of partons ("intrinsic k/sub T/"). Proton-nucleus data indicate the presence of nuclear shadowing and multi-scattering effects. Further corrections are needed in nucleus-nucleus collisions to explain the observed reduction of the cross section. We introduce the idea of proton dissociation and compare our calculations with the SPS and RHIC experimental data. (18 refs).

  8. Phase-Space Coalescence for heavy and light quarks at RHIC

    CERN Document Server

    Greco, V

    2007-01-01

    We review the application and successes of a phase-space coalescence plus fragmentation model that has been applied for hadronization at RHIC. The physical concept is discussed together with the practical implementation. The robustness of main predictions is reviewed together with several open issues like relevance of three dimensional calculation, finite width of the wave functions, effects of quark masses, energy-entropy conservation, space-momentum correlation. Eventually the relevance of coalescence also for the study of the microscopic interaction of heavy quarks is highlighted.

  9. Study of Charmonium Production in Asymmetric Nuclear Collisions by the PHENIX Experiment at RHIC

    CERN Document Server

    ,

    2015-01-01

    The measurement of quarkonia production in relativistic heavy ion collisions provides a powerful tool for studying the properties of the hot and dense matter created in these collisions. To be really useful, however, such measurements must cover a wide range of quarkonia states and colliding species. The PHENIX experiment at RHIC has successfully measured J/psi, psi-prime, chi_c and Upsilon production in different colliding systems at various energies. In this talk I will present recent results from the PHENIX collaboration on charmonium production in d+Au, Cu+Au and U+U collisions at 200 GeV/c.

  10. Nuclear Stopping in Central Au+Au Collisions at RHIC Energies

    Directory of Open Access Journals (Sweden)

    Ying Yuan

    2014-01-01

    Full Text Available Nuclear stopping in central Au+Au collisions at relativistic heavy-ion collider (RHIC energies is studied in the framework of a cascade mode and the modified ultrarelativistic quantum molecular dynamics (UrQMD transport model. In the modified mode, the mean field potentials of both formed and “preformed” hadrons (from string fragmentation are considered. It is found that the nuclear stopping is increasingly influenced by the mean-field potentials in the projectile and target regions with the increase of the reaction energy. In the central region, the calculations of the cascade model considering the modifying factor can describe the experimental data of the PHOBOS collaboration.

  11. Identified Particle Production in d+Au and p+p collisions at RHIC

    CERN Document Server

    Hongyan Yang

    2008-01-01

    The BRAHMS experiment at RHIC has measured the transverse momentum spectra of charged pions, kaons and (anti-)protons over a wide range of rapidity in d+Au and p+p collisions at $\\sqrt{s_{NN}}=200 $GeV. The nuclear modification factor $R_{dAu}$ at forward rapidities shows a clear suppression for $\\pi^{+}$. The measured net-proton yields in p+p collisions are compared to PYTHIA and HIJING/B and seem to be better described by the latter.

  12. Identified particle production in p+p and d+Au collisions at RHIC

    Science.gov (United States)

    Yang, Hongyan; BRAHMS Collaboration

    2007-08-01

    The BRAHMS experiment at RHIC has measured the transverse momentum spectra of charged pions, kaons and (anti-)protons over a wide range of rapidity in d+Au and p+p collisions at \\sqrt{s_NN}=200 GeV. The nuclear modification factor RdAu at forward rapidity shows a clear suppression for π+. The measured net-proton yields in p+p collisions are compared to PYTHIA and HIJING/B and seem to be better described by the latter.

  13. Photon production in relativistic nuclear collisions at SPS and RHIC energies

    CERN Document Server

    Turbide, S; Rapp, R; 10.1142/S0217751X0402258X

    2004-01-01

    Chiral Lagrangians are used to compute the production rate of photons from the hadronic phase of relativistic nuclear collisions. Special attention is paid to the role of the a/sub 1/ pseudovector. Calculations that include strange meson reactions, form factors, the use of consistent vector spectral densities, the emission from a quark-gluon plasma, and primordial nucleon-nucleon collisions reproduce the photon spectra measured at the Super Proton Synchrotron (SPS). Some predictions for the Relativistic Heavy Ion Collider (RHIC) are made.

  14. A precise in situ calibration of the RHIC H-Jet polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Poblaguev, A. A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-03-05

    Two new methods of calibration of the hydrogen jet target polarimeter (H-Jet) at RHIC are discussed. First method is based on the measurement of low amplitude signal time of fast particles penetrating through detector. The second, geometry based, method employs correlation between z-coordinate of the recoil proton and its kinetic energy. Both methods can be used for in situ calibration of the H-Jet polarimeter. These two methods are compared with a traditional calibration of the H-Jet which uses α-sources.

  15. Analysis of one- and two-particle spectra at RHIC based on a hydrodynamical model

    Indian Academy of Sciences (India)

    Tetsufumi Hirano; Kenji Morita; Shin Muroya; Chiho Nonaka

    2003-05-01

    We calculate the one-particle hadronic spectra and correlation functions of pions based on a hydrodynamical model. Parameters in the model are so chosen that the one-particle spectra reproduce experimental results of $\\sqrt{s}=130$ A$\\cdot$GeV Au + Au collisions at RHIC. Based on the numerical solution, we discuss the space-time evolution of the fluid. Two-pion correlation functions are also discussed. Our numerical solution suggests the formation of the quark–gluon plasma with large volume and low net baryon density.

  16. The measurement of hadronic observables with the solenoidal tracker at RHIC (STAR)

    Energy Technology Data Exchange (ETDEWEB)

    Bellwied, R. [Wayne State Univ., Detroit, MI (United States)

    1995-07-15

    The authors describe the capabilities of the STAR detector at RHIC regarding the measurement of hadronic observables. Special emphasis will be given to the determination of event-by-event observables deduced from particle spectra for protons (p), kaons (K) and pions ({pi}). The authors show that based on the present status of the simulations STAR will be able to measure quantities such as , slope parameter, and particle ratios on an event-by-event basis. These parameters, in connection with charged particle multiplicities as a function of momentum and rapidity, may shed light on the occurance of a phase transition in ultrarelativistic heavy ion collisions.

  17. Jet-evolution in the quark-gluon plasma from RHIC to the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Domdey, S. [Institute for Theoretical Physics, University of Heidelberg (Germany); Kopeliovich, B.Z. [Institute for Theoretical Physics, University of Heidelberg (Germany); Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Instituto de Estudios Avanzados en Ciencias e Ingenieria, Centro Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso (Chile); Pirner, H.J., E-mail: pir@tphys.uni-heidelberg.d [Institute for Theoretical Physics, University of Heidelberg (Germany)

    2011-04-15

    The observed suppression of high{sub pperpendicular} hadrons allows different explanations. We discuss two possible scenarios: In scenario 1, parton energy loss from scattering in the hot medium is complemented by final state interactions in the resonance matter. Scenario 2 has an enhanced transport parameter q-hat which is fitted to RHIC data. For LHC, the two scenarios lead to very different predictions for the nuclear modification factor of hadrons. In addition, jet reconstruction allows more specific tests of the mechanisms responsible for jet quenching. We calculate the distribution of partons inside a jet and find different results for the two scenarios.

  18. Antagonistic effects of ethyl methanesulfonate and maleic hydrazide in inducing somatic mutations in the stamen hairs of Tradescantia clone BNL 4430

    OpenAIRE

    市川, 定夫

    1998-01-01

    Mutagenic interaction between ethyl methanesulfonate (EMS; a monofunctional alkylating agent) and maleic hydrazide (MH; a promutagen activated into a mutagen in plants highly likely by peroxidase) was studied in the stamen hairs of Tradescantia clone BNL 4430, a blue/pink heterozygote. Since EMS has been shown to act synergistically with X rays in inducing mutations, and mutagenic synergisms have also been observed between X rays and MH by exposing to X rays before MH treatments, EMS and MH w...

  19. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    Science.gov (United States)

    Tsoupas, N.; Huang, H.; MacKay, W. W.; Meot, F.; Roser, T.; Trbojevic, D.

    2013-04-01

    The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS) which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to accommodate the four

  20. Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light

    Science.gov (United States)

    Wang, Wan-Sheng; Du, Hong; Wang, Rui-Xia; Wen, Tao; Xu, An-Wu

    2013-03-01

    A heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst was prepared by a rational in situ ion exchange reaction between Ag3PO4 micro-cubes and Br- in aqueous solution followed by photoreduction. The photocatalytic activities of obtained photocatalysts were measured by the degradation of methyl orange (MO) and methylene blue (MB) under visible light irradiation (λ >= 400 nm). Compared to AgBr/Ag, Ag3PO4/AgBr heterocrystals and pure Ag3PO4 crystals, the heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts exhibit much higher photocatalytic activity and stability. This enhanced photocatalytic activity suggests that the synergetic effects of the heterostructured Ag3PO4/AgBr/Ag and the strong SPR of Ag NPs on the surface result in the high efficiencies of the photocatalytic activity and the improved stability. With the assistance of Ag3PO4/AgBr/Ag heterostructures, only 8 min and 12 min are taken to completely decompose MO and MB molecules under visible-light irradiation, respectively. Furthermore, the photodegradation rate does not show an obvious decrease during ten successive cycles, indicating that our heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts are extremely stable under visible-light irradiation.A heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst was prepared by a rational in situ ion exchange reaction between Ag3PO4 micro-cubes and Br- in aqueous solution followed by photoreduction. The photocatalytic activities of obtained photocatalysts were measured by the degradation of methyl orange (MO) and methylene blue (MB) under visible light irradiation (λ >= 400 nm). Compared to AgBr/Ag, Ag3PO4/AgBr heterocrystals and pure Ag3PO4 crystals, the heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts exhibit much higher photocatalytic activity and stability. This enhanced photocatalytic activity suggests that the synergetic effects of the heterostructured Ag3PO4/AgBr/Ag and the strong SPR of Ag NPs on the surface result in the high

  1. Summary of the Mini BNL/LARP/CARE-HHH Workshop on Crab Cavities for the LHC (LHC-CC08)

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi,I.; Calaga, R.; Zimmermann, F.

    2008-05-01

    The first mini-workshop on crab compensation for the LHC luminosity upgrade (LHC-CC08) was held February 24-25, 2008 at the Brookhaven National Laboratory. A total of 35 participants from 3 continents and 15 institutions from around the world participated to discuss the exciting prospect of a crab scheme for the LHC. If realized it will be the first demonstration in hadron colliders. The workshop is organized by joint collaboration of BNL, US-LARP and CARE-HHH. The enormous interest in the subject of crab cavities for the international linear collider and future light sources has resulted in a large international collaboration to exchange aspects of synergy and expertise. A central repository for this exchange of information documenting the latest design effort for LHC crab cavities is consolidated in a wiki page: https://twiki.cern.ch/twiki/bin/view/Main/LHCCrabCavities. The main goal of this workshop was to define a road-map for a prototype crab cavity to be installed in the LHC and to discuss the associated R&D and beam dynamics challenges. The diverse subject of implementing the crab scheme resulted in a scientific program with a wide range of subtopics which were divided into 8 sessions. Each session was given a list of fundamental questions to be addressed and used as a guideline to steer the discussions.

  2. Measurements of $\\phi$ meson production in relativistic heavy-ion collisions at RHIC

    CERN Document Server

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Blyth, S L; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bruna, E; Bültmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca-Sanchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; De Silva, C; Dedovich, T G; De Phillips, M; Derevshchikov, A A; Derradide Souza, R; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta-Majumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Yu; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; García-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Sen-Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krüger, K; Krus, M; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; La Pointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C H; Le Vine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mall, M I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G J; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Yu A; Pawlak, T; Peitzmann, T; Perevozchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Raniwala, R; Raniwala, S; Ray, R L; Reed, R; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sørensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; Van Leeuwen, M; Van der Molen, A M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasilev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yepes, P; Yoo, I K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2008-01-01

    We present results for the measurement of $\\phi$ meson production via its charged kaon decay channel $\\phi \\to K^+K^-$ in Au+Au collisions at $\\sqrt{s_{_{NN}}}=62.4$, 130, 200 GeV, and in p+p and d+Au collisions at $\\sqrt{s_{_{NN}}}=200$ GeV from the STAR experiment at RHIC. The mid-rapidity ($|y|<0.5$) $\\phi$ meson spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the spectra from p+p, d+Au and peripheral Au+Au collisions show power-law tails at intermediate and high transverse momenta ($p_{T}$) and are described better by Levy distributions. The constant $\\phi/K^-$ yield ratio vs. beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for $\\phi$ production at RHIC. The $\\Omega/\\phi$ yield ratio as a function of $p_{T}$ is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\\sim 4$ GeV/c, but disagree...

  3. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto [Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  4. On a possible observation of the chiral magnetic effect in the RHIC BES experiments

    CERN Document Server

    Toneev, V D; Bratkovskaya, E L; Cassing, W; Konchakovski, V P; Voloshin, S A

    2011-01-01

    In terms of the hadron-string-dynamics (HSD) approach we investigate the correlation function in the azimuthal angle $\\psi$ of charged hadrons that is expected to be sensitive to a signal of local strong parity violation. Our analysis of Au+Au collisions is based on the recent STAR data within the RHIC Beam-Energy-Scan (BES) program. The HSD model reasonably reproduces STAR data for $\\sqrt{s_{NN}}=$7.7 GeV, while there are some deviations from the experiment at the collision energy of 11.5 GeV and an increase of deviations between theory and experiment at $\\sqrt{s_{NN}}=$39 GeV. For reference, the results for $\\sqrt{s_{NN}}=$ 200 GeV are given as well. The role of the retarded electromagnetic field is discussed and a compensation effect for the action of its electric and magnetic components is pointed out. We conclude that the recent RHIC BES data at $\\sqrt{s_{NN}}=$7.7 and 11.5 GeV can be understood on the hadronic level without involving the idea of a strong parity violation; however, at $\\sqrt{s_{NN}}\\sim$...

  5. A multiplicity-vertex detector for the PHENIX experiment at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kapustinsky, J.; Boissevain, J. [Los Alamos National Lab., NM (United States); Bosze, E. [and others

    1997-06-21

    A multiplicity-vertex detector (MVD) has been designed, and is in construction for the PHENIX experiment at the relativistic heavy ion collider (RHIC). The 35 000 channel silicon detector is a two-layer barrel comprised of 112 strip detectors, and two disk-shaped endcaps comprised of 24 wedge-shaped pad detectors. The support structure of the MVD is very low mass, only 0.4% of a radiation length in the central barrel. The detector front-end electronics are a custom CMOS chip set containing preamplifier, discriminator, analog memory unit, and analog-to-digital converter. The system has pipelined acquisition, performs in simultaneous read/write mode, and is clocked by the 10 MHz beam crossing rate at RHIC. These die, together with a pair of commercial FPGAs that are used for control logic, are packaged in a multichip-module (MCM). The MCM will be fabricated in the high-density-interconnect (HDI) process. The prototype MCM design layout is described. (orig.).

  6. Open heavy flavor and quarkonia measurements in heavy-ion collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Bielcik Jaroslav

    2014-04-01

    Full Text Available The properties of the hot and dense nuclear matter produced at RHIC in heavy-ion collisions can be investigated in multiple ways by heavy flavor production. The STAR and PHENIX experiments have excellent capability to study both open heavy flavor and quarkonia. Heavy quarks are produced in early stage of the collisions and the mechanisms of their interaction with nuclear matter are not yet well understood. The open heavy flavor hadrons can be studied using electrons from their semileptonic decays or via direct reconstruction through their hadronic decay channels. The heavy quarkonia production is expected to be sequentially suppressed depending on the temperature of the produced nuclear matter. However, cold nuclear matter effects play an important role and have to be well understood. In this paper we report recent results from the RHIC heavyion program on non-photonic electrons, direct reconstruction of charm mesons, J/ψ as well as ϒ in p+p, d+Au and Au+Au collisions at √sNN = 200 GeV.

  7. Perspectives of a Midrapidity Dimuon Program at RHIC: A Novel and Compact Muon Telescope Detector

    CERN Document Server

    Ruan, L; Xu, Z; Asselta, K; Chen, H F; Christie, W; Crawford, H J; Engelage, J; Eppley, G; Li, C; Liu, J; Llope, W J; Majka, R; Nussbaum, T; Scheblein, J; Shao, M; Soja, R; Sun, Y; Tang, Z; Wang, X; Wang, Y

    2009-01-01

    We propose a large-area, cost-effective Muon Telescope Detector (MTD) for the Solenoidal Tracker at RHIC (STAR) at mid-rapidity and for the next generation of detectors at a possible electron-ion collider. We utilize Multi-gap Resistive Plate Chambers with large modules and long readout strips (Long-MRPC) in the detector design. The results from cosmic ray and beam tests show the intrinsic timing and spatial resolution for a Long-MRPC are 60-70 ps and $\\sim1$ cm, respectively. The prototype performance of such a novel muon telescope detector at STAR indicates that muon identification at the transverse momentum of a few GeV/$c$ can be achieved through the combined information of track matching with the MTD, ionization energy loss in the Time Projection Chamber, and time-of-flight measurements. A primary muon over secondary muon ratio of better than 1/3 can be achieved. This provides a promising device for future quarkonium programs and primordial dilepton measurements at RHIC. Simulations of the muon efficienc...

  8. Minijet Initial Conditions For Non-Equilibrium Parton Evolution at RHIC and LHC

    CERN Document Server

    Cooper, F; Nayak, G C

    2003-01-01

    An important ingredient for the non-equilibrium evolution of partons at RHIC and LHC is to have some physically reasonable initial conditions for the single particle phase space distribution functions for the partons. We consider several plausible parametrizations of initial conditions for the single particle distribution function f /sub i/ (x, p) and fix the parameters by matching integral f (x, p)p /sup mu / d sigma /sub mu / to the invariant momentum space semi-hard parton distributions obtained using perturbative QCD (pQCD), as well as fitting low order moments of the distribution function. We consider parametrizations of fi (x, p) with both boost invariant and boost non-invariant assumptions. We determine the initial number density, energy density and the corresponding (effective) temperature of the minijet plasma at RHIC and LHC energies. For a boost non- invariant minijet phase-space distribution function we obtain ~ 30 (140)/fm/sup 3/ as the initial number density, ~ 50(520) GeV/fm/sup 3 / as the init...

  9. Report of the eRHIC Ring-Ring Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Parker, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Willeke, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  10. {Upsilon} production in p(d)A collisions at RHIC and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ferreiro, E.G. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas y IGFAE, Santiago de Compostela (Spain); Fleuret, F. [CNRS/IN2P3, Laboratoire Leprince Ringuet, Ecole Polytechnique, Palaiseau (France); Lansberg, J.P. [CNRS/IN2P3, IPNO, Universite Paris-Sud, Orsay (France); Matagne, N. [Universite de Mons, Service de Physique Nucleaire et Subnucleaire, Mons (Belgium); Rakotozafindrabe, A. [CEA Saclay, IRFU/SPhN, Gif-sur-Yvette Cedex (France)

    2013-05-15

    We study the effect of nuclear matter in {Upsilon} production in dAu collisions at RHIC and pPb collisions at the LHC. We find that the nuclear modification factor, R{sup {Upsilon}}{sub dAu}, measured at RHIC is not satisfactorily reproduced by the conventional effects used in the literature, namely the modification of the gluon distribution in bound nucleons and an - effective - survival probability for a bound state to escape the nucleus. In particular, we argue that this probability should be close to 1 as opposed to the J/{psi} case. We note that, at backward rapidities, the unexpected suppression of R{sup {Upsilon}}{sub dAu} observed by PHENIX hints at the presence of a gluon EMC effect, analogous to the quark EMC effect - but likely stronger. Further nuclear matter effects, such as saturation and fractional energy loss, are discussed, but none of them fit in a more global picture of quarkonium production. Predictions for {Upsilon}(nS) for the forthcoming pPb run at 5 TeV at the LHC are also presented. (orig.)

  11. About AgEcon Search

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>AgEcon Search is a free,open access repository of full - text scholarly literature in agricultural and applied economics,inclu-ding working papers,conference papers,and journal articles. AgEcon Search is

  12. End-to-end 9-D polarized bunch transport in eRHIC energy-recovery recirculator, some aspects

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This paper is a brief overview of some of the numerous beam and spin dynamics investigations undertaken in the framework of the design of the FFAG based electron energy recovery re-circulator ring of the eRHIC electron-ion collider project

  13. Lattice design for the future ERL-based electron hadron colliders eRHIC and LHeC

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D.; Beebe-Wang, J.; Hao, Y.; Litvinenko, V.N.; Ptitsyn, V.; Kayran, D.; Tsoupas, N.

    2011-03-28

    We present a lattice design of a CW Electron Recovery Linacs (ERL) for future electron hadron colliders eRHIC and LHeC. In eRHIC, an six-pass ERL installed in the existing Relativistic Heavy Ion Collider (RHIC) tunnel will collide 5-30 GeV polarized electrons with RHIC's 50-250 (325) GeV polarized protons or 20-100 (130) GeV/u heavy ions. In LHeC a stand-along, 3-pass 60 GeV CW ERL will collide polarized electrons with 7 TeV protons. After collision, electron beam energy is recovered and electrons are dumped at low energy. Two superconducting linacs are located in the two straight sections in both ERLs. The multiple arcs are made of Flexible Momentum Compaction lattice (FMC) allowing adjustable momentum compaction for electrons with different energies. The multiple arcs, placed above each other, are matched to the two linac's straight sections with splitters and combiners.

  14. Chiral electric field in relativistic heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin

    2016-08-01

    It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)

  15. Double and triple-harmonic RF buckets and their use for bunch squeezing in AGS

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-08-24

    For the past several years we have merged bunches in AGS in order to achieve the desired intensity per bunch prior to injection into RHIC. The merging is done on a at porch at or above AGS injection energy. Because the merges involve the reduction of the RF harmonic number by a factor of 2 (for a 2 to 1 merge) and then a factor of 3 (for a 3 to 1 merge), one requires RF frequencies 6hfs, 3hfs, 2hfs and hfs, where fs is the revolution frequency on the porch and h = 4 is the fundamental harmonic number. The standard AGS RF cavities cannot operate at the lowest frequencies 2hfs and hfs; these are provided by two modi ed cavities. Upon completion of the merges, the bunches are sitting in harmonic h buckets. In order to be accelerated they need to be squeezed into harmonic 3h buckets. This is accomplished by producing a double-harmonic bucket in which harmonics h and 2h act in concert, and then a triple-harmonic bucket in which harmonics h, 2h, and 3h act in concert. Simulations have shown that the squeeze presents an acceptance bottleneck which limits the longitudinal emittance that can be put into the harmonic 3h bucket.

  16. AGS Booster prototype magnets

    Energy Technology Data Exchange (ETDEWEB)

    Danby, G.; Jackson, J.; Lee, Y.Y.; Phillips, R.; Brodowski, J.; Jablonski, E.; Keohane, G.; McDowell, B.; Rodger, E.

    1987-03-19

    Prototype magnets have been designed and constructed for two half cells of the AGS Booster. The lattice requires 2.4m long dipoles, each curved by 10/sup 0/. The multi-use Booster injector requires several very different standard magnet cycles, capable of instantaneous interchange using computer control from dc up to 10 Hz.

  17. AGS experiments -- 1991, 1992, 1993. Tenth edition

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.

    1994-04-01

    This report contains: (1) FY 1993 AGS schedule as run; (2) FY 1994--95 AGS schedule; (3) AGS experiments {ge} FY 1993 (as of 30 March 1994); (4) AGS beams 1993; (5) AGS experimental area FY 1991 physics program; (6) AGS experimental area FY 1992 physics program; (7) AGS experimental area FY 1993 physics program; (8) AGS experimental area FY 1994 physics program (planned); (9) a listing of experiments by number; (10) two-page summaries of each experiment; (11) listing of publications of AGS experiments; and (12) listing of AGS experiments.

  18. AGS experiments -- 1995, 1996 and 1997

    Energy Technology Data Exchange (ETDEWEB)

    Depken, J.C.; Presti, P.L.

    1997-12-01

    This report contains (1) FY 1995 AGS schedule as run; (2) FY 1996 AGS schedule as run; (3) FY 1997 AGS schedule as run; (4) FY 1998--1999 AGS schedule (proposed); (5) AGS beams 1997; (6) AGS experimental area FY 1995 physics program; (7) AGS experimental area FY 1996 physics program; (8) AGS experimental area FY 1997 physics program; (9) AGS experimental area FY 1998--1999 physics program (proposed); (10) a listing of experiments by number; (11) two-page summaries of each experiment, in order by number; and (12) listing of publications of AGS experiments.

  19. Violation of mass ordering for multi-strange hadrons at RHIC and LHC

    CERN Document Server

    Takeuchi, Shiori; Hirano, Tetsufumi; Huovinen, Pasi; Nara, Yasushi

    2016-01-01

    We study effects of the hadronic rescattering on final observables especially for multi-strange hadrons such as $\\phi$, $\\Xi$ and $\\Omega$ in high-energy heavy-ion collisions within an integrated dynamical approach. In this approach, (3+1)-dimensional ideal hydrodynamics is combined with a microscopic transport model, JAM. We simulate the collisions with or without hadronic rescatterings and compare observables between these two options so that we quantify the effects of the hadronic rescattering. We find that the mean transverse momentum and the elliptic flow parameter of multi-strange hadrons are less affected by hadronic rescattering and, as a result, the mass ordering of the $p_T$-differential elliptic flow parameter $v_2(p_T)$ is violated: At the RHIC and the LHC energies the $v_2(p_T)$ for $\\phi$-mesons is larger than that for protons in the low-$p_T$ regions.

  20. Violation of mass ordering for multi-strange hadrons at RHIC and LHC

    Science.gov (United States)

    Takeuchi, Shiori; Murase, Koichi; Hirano, Tetsufumi; Huovinen, Pasi; Nara, Yasushi

    2016-12-01

    We study effects of the hadronic rescattering on final observables especially for multi-strange hadrons such as ϕ, Ξ and Ω in high-energy heavy-ion collisions within an integrated dynamical approach. In this approach, (3+1)-dimensional ideal hydrodynamics is combined with a microscopic transport model, JAM. We simulate the collisions with or without hadronic rescatterings and compare observables between these two options so that we quantify the effects of the hadronic rescattering. We find that the mean transverse momentum and the elliptic flow parameter of multi-strange hadrons are less affected by hadronic rescattering and, as a result, the mass ordering of the pT-differential elliptic flow parameter v2 (pT) is violated: At the RHIC and the LHC energies the v2 (pT) for ϕ-mesons is larger than that for protons in the low-pT regions.