WorldWideScience

Sample records for bnfl

  1. BNFL Report Glass Formers Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

  2. BNFL Report Glass Formers Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input.

  3. The evolution of a LIMS (laboratory information management system). [Chemical analyses at BNFL

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-04-01

    Changes in the world and United Kingdom markets for nuclear fuels during the 1990s have prompted British Nuclear Fuels (BNFL) to maximise cost effectiveness in its Chemical and Metallurgical Services department. A laboratory information management system (LIMS) was introduced in order to keep records of analytical techniques and equipment up to date by coordinating various computer systems. Wherever possible automated systems have replaced traditional, labour intensive techniques. So successful has the LIMS system been, that the team now hopes to expand into expert systems. (UK).

  4. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

    2002-02-26

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme.

  5. BNFL's experience in preparing and implementing radiation protection programmes for the control of exposure to workers involved with the international transport of nuclear cargoes

    Energy Technology Data Exchange (ETDEWEB)

    Billing, D. [Spent Fuel Services, British Nuclear Fuels plc, Warrington, Cheshire (United Kingdom)

    2004-07-01

    BNFL International Transport have successfully developed appropriate Radiation Protection Programmes for their business. The business supports BNFL's worldwide Nuclear Fuel Services with key customer bases in Europe, Japan and the UK, utilising marine, rail and road modal transports. Experience in the business spans over 4 decades. The preparation of RPP's for each aspect of its operations has been made relatively straight forward in that the key elements within the internationally recognised model RPP (by WNTI) were already in place in BNFL's procedures to satisfy current National UK and International Regulations. Arrangements are supported by Management systems which comply with International Standards for Quality Assurance. Exposure to key worker groups continues to be within Category 1 (less than 1mSv/y) of the IAEA Transport Regulations TS-R-1 (ST-1 revised).

  6. Demonstration and Optimization of BNFL's Pulsed Jet Mixing and RFD Sampling Systems Using NCAW Simulant

    Energy Technology Data Exchange (ETDEWEB)

    JR Bontha; GR Golcar; N Hannigan

    2000-08-29

    The BNFL Inc. flowsheet for the pretreatment and vitrification of the Hanford High Level Tank waste includes the use of several hundred Reverse Flow Diverters (RFDs) for sampling and transferring the radioactive slurries and Pulsed Jet mixers to homogenize or suspend the tank contents. The Pulsed Jet mixing and the RFD sampling devices represent very simple and efficient methods to mix and sample slurries, respectively, using compressed air to achieve the desired operation. The equipment has no moving parts, which makes them very suitable for mixing and sampling highly radioactive wastes. However, the effectiveness of the mixing and sampling systems are yet to be demonstrated when dealing with Hanford slurries, which exhibit a wide range of physical and theological properties. This report describes the results of the testing of BNFL's Pulsed Jet mixing and RFD sampling systems in a 13-ft ID and 15-ft height dish-bottomed tank at Battelle's 336 building high-bay facility using AZ-101/102 simulants containing up to 36-wt% insoluble solids. The specific objectives of the work were to: Demonstrate the effectiveness of the Pulsed Jet mixing system to thoroughly homogenize Hanford-type slurries over a range of solids loading; Minimize/optimize air usage by changing sequencing of the Pulsed Jet mixers or by altering cycle times; and Demonstrate that the RFD sampler can obtain representative samples of the slurry up to the maximum RPP-WTP baseline concentration of 25-wt%.

  7. Merlins vs BNFL : a claim for damage to property by radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.R.; Coote, J.A. [British Nuclear Fuels plc, Sellafield, Seascale, Cumbria (United Kingdom); Shuttleworth, A.J. [British Nuclear Fuels plc, Risley, Warrington, Cheshire (United Kingdom)

    1992-07-01

    A case heard in the High Court, London in 1989 tested the provision for strict liability imposed by the Nuclear Installations Act 1965, in respect of damage caused by radioactivity emanating from a nuclear licensed site. Plaintiffs were Mr and Mrs Merlin of Mountain Ash, Ravenglass, Cumbria; defendants were British Nuclear Fuels plc, nuclear site licensees for the Sellafield reprocessing plant. Both sides agreed that house dust in the property contained about 350 Bq kg{sup -1} actinides, attributable to discharges from the Sellafield plant; assessments of consequent dose and risk to the occupants diverged considerably. The judge concluded that, since physical damage to the property had not occurred, the claim, made pursuant to the provisions of the Nuclear Installations Act 1965, must fail. Moreover, he indicated a strong preference for the defendants assessment of resulting dose and risk, at no more than about 100 {mu}Sv yr{sup -1} (effective dose equivalent) or a risk of about 10{sup -6} per year. (author)

  8. "Glass Formulation and Testing with TWRS LAW Simulants," Final Report to Duratek Inc. and BNFL Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Gan, Hao [The Catholic University of America, Washington, DC (United States); Buechele, Andrew C. [The Catholic University of America, Washington, DC (United States); Kim, C. [The Catholic University of America, Washington, DC (United States); Lai, Shan-Tao T. [The Catholic University of America, Washington, DC (United States); Del Rosario, G. [The Catholic University of America, Washington, DC (United States); Yan, Q. [The Catholic University of America, Washington, DC (United States); Kruger, Albert A. [The Catholic University of America, Washington, DC (United States)

    2015-06-22

    This report presents the results of glass formulation development with TWRS LAW simulants that was conducted at the Vitreous State Laboratory of The Catholic University of America during TWRS Phase I.

  9. Development of an integrated strategy for the disposal of solid low level waste at BNFL`s Drigg site

    Energy Technology Data Exchange (ETDEWEB)

    Higson, S.G. [British Nuclear Fuels plc, Risley (United Kingdom)

    1989-11-01

    During the past 12 months, the first phase of a major upgrading of disposal operations at Drigg has been completed. This has involved the introduction of waste containerization and orderly emplacement in open concrete vaults. A further phase over the next few years will involve the introduction of compaction of all suitable waste. While the current upgrade has clearly resulted in a major improvement in the visual impact and management control of the site, the desire to implement such an improvement on a timescale consistent with the short term need for new facilities at Drigg has not allowed sufficient time for a detailed assessment of the full implications of the proposed system. This paper describes the development of the strategy for upgrading the Drigg site, highlights improvements that have been implemented as the project has progressed and outlines major outstanding concerns, particularly in relation to long term site management, that may eventually lead to a requirement for further optimization of the overall strategy. Progress under the Drigg Technical Development Programme is reviewed with specific emphasis on the preliminary results of engineering studies aimed at defining an integrated strategy that will meet the requirements of both acceptable visual impact and long term site stability and safety.

  10. Feasibility Study for the Development of a Surface Plasmon Resonance spectroscopy-based Sensor for the BNFL-Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.B.

    2000-07-27

    The Department of Energy must treat and dispose of large volumes of radioactive waste stored in underground storage tanks at five DOE sites. Technology development has been focused on the separation and removal of various radionuclides from the supernatant contained in the Hanford waste tanks.

  11. Technical Task and Quality Assurance Plan in Support of BNFL Part B: Studies of Ion Exchange Resin Integrity under Flowsheet Extremes: Part II

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.A.

    2000-08-23

    This task will address four items related to ion exchange stability: (1) process upset evaluation of resin in contact with 1 molar sodium permanganate at 25 and 40 degrees C, (2) accelerated aging with nitric acid solution used during normal regeneration operations, (3) prolonged contacting of SuperLig 644 resin with 5 molar nitric acid at room temperature, and (4) prolonged contacting of SuperLig 644 resin with deionized water at 60 plus/minus 5 degrees C.

  12. AW-101 entrained solids - Solubility versus temperature

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta; RC Lettau; GF Piepel

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AW-101 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AW-1-1 sample using de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AW-101 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions. The work was conducted according to test plan BNFL-TP-29953-7, Rev. 0, Determination of the Solubility of LAW Entrained Solids. The test went according to plan, with no deviations from the test plan.

  13. Washing of the AW-101 entrained solids

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta

    2000-03-31

    BNFL Inc. (BNFL) is under contract with the US Department of Energy, River Protection Project (DOE-RPP) to design, construct, and operate facilities for treating wastes stored in the single-shell and double-shell tanks at the Hanford Site, Richland, Washington. The DOE-BNFL RPP contract identifies two feeds to the waste treatment plant: (1) primarily liquid low-activity waste (LAW) consisting of less than 2 wt% entrained solids and (2) high-level waste (HLW) consisting of 10 to 200 g/L solids slurry. This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AW-101 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AW-101 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching. The work was conducted according to test plan BNFL-TP-29953-9, Rev. 0, LAW Entrained Solids Water Wash and Caustic Leach Testing. The test went according to plan, with no deviations from the test plan. Based on the results of the 0.01 M NaOH washing, a decision was made by BNFL to not proceed with the caustic leaching test. The composition of the washed solids was such that caustic leaching would not result in significant reduction in the immobilized HLW volume.

  14. Office of River Protection, plan for Developing Hanford Tank Waste Processing Alternatives, Revision 1, December 15, 1999

    Energy Technology Data Exchange (ETDEWEB)

    WODRICH, D.D.

    2000-01-03

    In August 2000, The Department of Energy (DOE) must decide whether to authorize BNFL Inc. (BNFL) to construct and operate tank waste processing facilities as proposed or to take another path. This will be a multi-billion dollar commitment, requiring that the best path forward be chosen. The plan for reaching this decision is described in reference 1. The alternative evaluations in this plan are directed toward acquiring information needed for the August 2000 decision and for preparing an alternate path plan, should an acceptable agreement with BNFL not be reached. Many of the alternatives considered may still be applicable for failures that could occur after the year 2000, however, depending on the cause of later failures, others alternatives may need to be developed.

  15. M4/12 package project - development of a package for transport of new MOX fuel in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, B.R.; Porter, I.; Ashley, P. [BNFL, Warrington, Cheshire (United Kingdom)

    2004-07-01

    BNFL has a requirement to deliver new MOX fuel from the Sellafield MOX Plant (SMP) to its customers in mainland Europe. To satisfy this requirement, a transport system has been developed which complies with national and international regulations and conventions relating to the transport of Category 1 materials. Fundamental to this system is the transport package. BNFL has designed, developed, and is manufacturing a new transport package, the M4/12, This paper gives a brief overview of the overall transport system and then goes on to describe the development of the M4/12 package with particular emphasis on the novel features of the design.

  16. Tank Farm Contractor Operation and Utilization Plan [SEC 1 Thru 3

    Energy Technology Data Exchange (ETDEWEB)

    KIRKBRIDE, R.A.

    1999-05-04

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy.

  17. LLW disposal wasteform preparation in the UK: the role of high force compaction

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. F.; Fearnley, I. G. [British Nuclear Fuels Ltd., Sellafield (United Kingdom)

    1991-07-01

    British Nuclear Fuels plc (BNFL) owns and operates the principal UK solid low level radioactive waste (LLW) disposal site. The site is located at Drigg in West Cumbria some 6 km to the south east of BNFL's Sellafield reprocessing complex. Sellafield is the major UK generator of LLW, accounting for about 85% of estimated future arisings of raw (untreated, unpackaged) waste. Non-Sellafield consignors to the Drigg site include other BNFL production establishments, nuclear power stations, sites of UKAEA, Ministry of Defence facilities, hospitals, universities, radioisotope production sites and various other industrial organisations. In September 1987, BNFL announced a major upgrade of operations at the Drigg site aimed at improving management practices, the efficiency of space utilisation and enhancing the visual impact of disposal operations. During 1989 a review of plans for compaction and containerisation of Sellafield waste identified that residual voidage in ISO freight containers could be significant even after the introduction of compaction. Subsequent studies which examined a range of compaction and packaging options concluded that the preferred scheme centred on the use of high force compaction (HFC) of compactable waste, and grouting to take up readily accessible voidage in the wasteform. The paper describes the emergence of high force compaction as the preferred scheme for wasteform preparation and subsequent benefits against the background of the overall development of Low Level Waste disposal operations at Drigg.

  18. Waste Feed Delivery Strategy for Tanks 241-AN-102 and 241-AN-107

    Energy Technology Data Exchange (ETDEWEB)

    BLACKER, S.M.

    2000-04-13

    This engineering study establishes the detailed retrieval strategy, equipment requirements, and key parameters for preparing detailed process flowsheets; evaluates the technical and programmatic risks associated with processing, certifying, transferring, and delivering waste from Tanks 241-AN-102 and 241-AN-107 to BNFL; and provides a list of necessary follow-on actions so that program direction from ORP can be successfully implemented.

  19. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2A. GSFLS visit findings (appendix). Interim report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-31

    This appendix is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This appendix provides the legal/regulatory reference material, supportive of Volume 2 - GSFLS Visit Finding and Evaluations; and certain background material on British Nuclear Fuel Limited (BNFL).

  20. Radionuclides in house dust

    CERN Document Server

    Fry, F A; Green, N; Hammond, D J

    1985-01-01

    Discharges of radionuclides from the British Nuclear Fuel plc (BNFL) reprocessing plant at Sellafield in Cumbria have led to elevated concentrations radionuclides in the local environment. The major routes of exposure of the public are kept under review by the appropriate Government departments and monitoring is carried out both by the departments and by BNFL itself. Recently, there has been increasing public concern about general environmental contamination resulting from the discharges and, in particular, about possible exposure of members of the public by routes not previously investigated in detail. One such postulated route of exposure that has attracted the interest of the public, the press and Parliament arises from the presence of radionuclides within houses. In view of this obvious and widespread concern, the Board has undertaken a sampling programme in a few communities in Cumbria to assess the radiological significance of this source of exposure. From the results of our study, we conclude that, alt...

  1. Washing of the AN-107 entrained solids

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta; FV Hoopes

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AN-107 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AN-107 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching.

  2. Small Column Testing of Superlig 639 for Removal of 99Tc from Hanford Tank Waste Envelope C (Tank 241-AN-107)

    Energy Technology Data Exchange (ETDEWEB)

    DL Blanchard; DE Kurath; BM Rapko

    2000-06-28

    The current BNFL Inc. flow sheet for pretreating Hanford High-Level tank wastes includes the use of Superlig(reg.sign)639 (SL-639) in a dual column system for removing technetium-99 ({sup 99}Tc) from the aqueous fraction of the waste. This sorbent material has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. This report documents the results of testing the SL-639 sorbent with diluted waste [Na{sup +}] {approx} 5 M from Tank 241-AN-107 (an Envelope C waste, abbreviated AN-107) at Battelle Northwest Laboratories (BNW). The equilibrium behavior was assessed with batch contacts between the sorbent and the waste. Two AN-107 samples were used: (1) an archived sample from previous testing and (2) a more recent sample collected specifically for BNFL. A portion of the archive sample and all of the BNFL sample were treated to remove Sr-90 and transuranic elements (TRU). All samples had also been Cs decontaminated by ion exchange (IX), and were spiked with a technetium-95m ({sup 95m}Tc) pertechnetate tracer, {sup 95m}TcO{sub 4}{sup -}.The TcO{sub 4}{sup -} and total Tc K{sub d} values, assumed equal to the {sup 95m}Tc and {sup 99}Tc K{sub d}'s, respectively, are shown in Table S1. Values are averages of duplicates, which showed significant scatter. The total Tc K{sub d} for the BNFL sample is much lower than the TcO{sub 4}{sup -}, indicating that a large fraction of the {sup 99}Tc is not pertechnetate.

  3. Inorganic and Radiochemical Analysis of AW-101 and AN-107 ''Diluted Feed'' Materials

    Energy Technology Data Exchange (ETDEWEB)

    MW Urie; JJ Wagner; LR Greenwood; OT Farmer; SK Fiskum; RT Ratner; CZ Soderquist

    1999-11-11

    This report presents the inorganic and radiochemical analytical results for AW-101 and AN-107 diluted feed materials. The analyses were conducted in support of the BNFL Proposal No. 29952/29953 Task 2.1. The inorganic and radiochemical analysis results obtained from the diluted feed materials are used to provide initial characterization information for subsequent processing testing. Quality Assurance (QA) Plan MCS-033 provides the operational and quality control protocols for the analytical activities.

  4. Release Storage and Disposal Program Product Sampling Support

    Energy Technology Data Exchange (ETDEWEB)

    CALMUS, R.B.

    2000-07-19

    This document includes recommended capabilities and/or services to support transport, analysis, and disposition of Immobilized High-Level and Low-Activity Waste samples as requested by the US DOE-Office of River Protection (DOE-ORP) as specified in the Privatization Contract between DOE-ORP and BNFL Inc. In addition, an approved implementation path forward is presented which includes use of existing Hanford Site services to provide the required support capabilities.

  5. Modelling of the thermal behaviour of 48 inch cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, D.G.; Hayes, T.J.; Livesey, E.; Lomas, J.; Price, M. [British Nuclear Fuels plc, Risley Warrington Cheshire (United Kingdom)

    1991-12-31

    This paper describes the current state of the analytical models being developed by British Nuclear Fuels plc (BNFL) to improve the understanding of the response of Uranium Hexafluoride containers engulfed in a fire. Details are given of the modeling methods used and physical processes simulated, together with some predictions from the models. Explanations for the differences between the predictions are presented as well as an outline for future development of the models.

  6. Tank Farm Contractor Operation and Utilization Plan [SEC 1 Thru 3

    Energy Technology Data Exchange (ETDEWEB)

    KIRKBRIDE, R.A.

    2000-04-19

    This document updates the operating scenario and plans for feed delivery to BNFL Inc. of retrieval and waste from single-shell tanks, and the overall process flowsheets for Phases 1 and 2 of the River Protection Project. The plans and flowsheets are updated with the most recent guidance from ORP and tank-by-tank inventory. The results provide the technical basis for the RTP-2 planning effort. Sensitivity cases were run to evaluate the effect of changes on key parameters.

  7. Performance assessment for low-level waste disposal in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, A.B. [UK Dept. of the Environment, London (United Kingdom)

    1995-12-31

    British Nuclear Fuels plc (BNFL) operate a site for the disposal of Low Level Radioactive Waste at Drigg in West Cumbria, in North-West England. HMIP are responsible for the regulation of the site with regard to environmental discharges of radioactive materials, both operational and post-closure. This paper is concerned with post-closure matters only. Two post-closure performance assessments have been carried out for this site: one by the National Radiological Protection Board (NRPB) in 1987; and a subsequent one carried out on behalf of HMIP, completed in 1991. Currently, BNFL are preparing a Safety Case for continued operation of the Drigg site, and it expected that the core of this Case will comprise BNFL`s own analysis of post-closure performance. HMIP has developed procedures for the assessment of this Case, based upon experience of the previous Drigg assessments, and also upon the experience of similar work carried out in the assessment of Intermediate Level Waste (ILW) disposal at both deep and shallow potential sites. This paper describes the more important features of these procedures.

  8. C-104 high-level waste solids: Washing/leaching and solubility versus temperature studies

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta; DJ Bates; JP Bramson; LP Darnell; OT Farmer III; SK Fiskum; LR Greenwood; FV Hoopes; CZ Soderquist; MJ Steele; RT Steele; MW Urie; JJ Wagner

    2000-05-17

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the C-104 HLW solids. The objective of this work was to determine the composition of the C-104 solids remaining after washing with 0.01 M NaOH or leaching with 3 M NaOH. Another objective of this test was to determine the solubility of the C-104 solids as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8, Rev. 0, ``Determination of the Solubility of HLW Sludge Solids.

  9. Final Report: Pilot-scale Cross-flow Filtration Test - Envelope A + Entrained Solids

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    2000-06-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company.This filter technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. This plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  10. Final Report: Pilot-Scale X-Flow Filtration Test - Env C Plus Entrained Solids Plus Sr/TRU

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    2000-07-27

    This report discusses the results of the operation of a cross-flow filter in a pilot-scale experimental facility that was designed, built, and run by the Experimental Thermal Fluids Laboratory of the Savannah River Technology Center of the Westinghouse Savannah River Company. This filtration technology was evaluated for its inclusion in the pretreatment section of the nuclear waste stabilization plant being designed by BNFL, Inc. The plant will be built at the U.S. Department of Energy's Hanford Site as part of the River Protection Project.

  11. White paper updating conclusions of 1998 ILAW performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-05-11

    The purpose of this document is to provide a comparison of the estimated immobilized low-activity waste (LAW) disposal system performance against established performance objectives using the beat estimates for parameters and models to describe the system. The principal advances in knowledge since the last performance assessment (known as the 1998 ILAW PA [Mann 1998a]) have been in site specific information and data on the waste form performance for BNFL, Inc. relevant glass formulations. The white paper also estimates the maximum release rates for technetium and other key radionuclides and chemicals from the waste form. Finally, this white paper provides limited information on the impact of changes in waste form loading.

  12. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 2: Solid waste retrieval facilities -- Phase 1, detail design drawings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 2 provides the complete set of the Detail Design drawings along with a listing of the drawings. Once approved by WHC, these drawings will be issued and baselined for the Title 3 construction effort.

  13. Transuranium removal from Hanford high level waste simulants using sodium permanganate and calcium

    Science.gov (United States)

    Wilmarth, W. R.; Rosencrance, S. W.; Nash, C. A.; Fonduer, F. F.; DiPrete, D. P.; DiPrete, C. C.

    2000-07-01

    Plutonium and americium are present in the Hanford high level liquid waste complexant concentrate (CC) due to the presence of complexing agents including di-(2-ethylhexyl) phosphoric acid (D2EHPA), tributylphosphate (TBP), hydroxyethylene diamine triacetic acid (HEDTA), ethylene diamine tetraacetic acid (EDTA), citric acid, glycolic acid, and sodium gluconate. The transuranic concentrations approach 600 nCi/g and require processing prior to encapsulation into low activity glass. BNFL's (British Nuclear Fuels Limited's) original process was a ferric co-precipitation method based on earlier investigations by Herting and Orth, et al. Furthermore, flocculation and precipitation are widely used for clarification in municipal water treatment. Co-precipitation of Np, Am, and Pu with ferric hydroxide is also used within an analytical method for the sum of those analytes. Tests to evaluate BNFL's original precipitation process indicated the measured decontamination factors (DFs) and filter fluxes were too low. Therefore, an evaluation of alternative precipitation agents to replace ferric ion was undertaken. Agents tested included various transition metals, lanthanide elements, uranium species, calcium, strontium, and permanganate.

  14. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 3: Specifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 3 is a compilation of the construction specifications that will constitute the Title II materials and performance specifications. This volume contains CSI specifications for non-equipment related construction material type items, performance type items, and facility mechanical equipment items. Data sheets are provided, as necessary, which specify the equipment overall design parameters.

  15. Nested Fixed Depth Fluidic Sampler and At Tank Analysis System Deployment Strategy and Plan

    Energy Technology Data Exchange (ETDEWEB)

    REICH, F.R.

    2000-02-01

    Under the Hanford Site River Protection Project (RPP) privatization strategy, the U.S. Department of Energy (DOE) Office of River Protection (ORP) requires the CH2M Hill Hanford Group, Inc. (CHG) to supply tank waste to the privatization contractor, BNFL Inc. (BNFL), for separation and/or treatment and immobilization (vitrification). Three low-activity waste (LAW) specification envelopes represent the range of liquid waste types in the large, Hanford Site underground waste storage tanks. The CHG also is expected to supply high-level waste (HLW) separation and/or treatment and disposal. The HLW envelope is an aqueous slurry of insoluble suspended solids (sludge). The Phase 1 demonstration will extend over 24 years (1996 through 2019) and will be used to resolve technical uncertainties. About one-tenth of the total Hanford Site tank waste, by mass, will be processed during this period. This document provides a strategy and top-level implementation plan for demonstrating and deploying an alternative sampling technology. The alternative technology is an improvement to the current grab sampling and core sampling approaches that are planned to be used to support the RPP privatization contract. This work also includes adding the capability for some at-tank analysis to enhance the potential of this new technology to meet CHG needs. The first application is to LAW and HLW feed staging for privatization; the next is to support cross-site waste transfer from 200 West Area tanks.

  16. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

  17. Theoretical, Methodological, and Empirical Approaches to Cost Savings: A Compendium

    Energy Technology Data Exchange (ETDEWEB)

    M Weimar

    1998-12-10

    This publication summarizes and contains the original documentation for understanding why the U.S. Department of Energy's (DOE's) privatization approach provides cost savings and the different approaches that could be used in calculating cost savings for the Tank Waste Remediation System (TWRS) Phase I contract. The initial section summarizes the approaches in the different papers. The appendices are the individual source papers which have been reviewed by individuals outside of the Pacific Northwest National Laboratory and the TWRS Program. Appendix A provides a theoretical basis for and estimate of the level of savings that can be" obtained from a fixed-priced contract with performance risk maintained by the contractor. Appendix B provides the methodology for determining cost savings when comparing a fixed-priced contractor with a Management and Operations (M&O) contractor (cost-plus contractor). Appendix C summarizes the economic model used to calculate cost savings and provides hypothetical output from preliminary calculations. Appendix D provides the summary of the approach for the DOE-Richland Operations Office (RL) estimate of the M&O contractor to perform the same work as BNFL Inc. Appendix E contains information on cost growth and per metric ton of glass costs for high-level waste at two other DOE sites, West Valley and Savannah River. Appendix F addresses a risk allocation analysis of the BNFL proposal that indicates,that the current approach is still better than the alternative.

  18. Efficient heterogeneous execution of Monte Carlo shielding calculations on a Beowulf cluster.

    Science.gov (United States)

    Dewar, David; Hulse, Paul; Cooper, Andrew; Smith, Nigel

    2005-01-01

    Recent work has been done in using a high-performance 'Beowulf' cluster computer system for the efficient distribution of Monte Carlo shielding calculations. This has enabled the rapid solution of complex shielding problems at low cost and with greater modularity and scalability than traditional platforms. The work has shown that a simple approach to distributing the workload is as efficient as using more traditional techniques such as PVM (Parallel Virtual Machine). In addition, when used in an operational setting this technique is fairer with the use of resources than traditional methods, in that it does not tie up a single computing resource but instead shares the capacity with other tasks. These developments in computing technology have enabled shielding problems to be solved that would have taken an unacceptably long time to run on traditional platforms. This paper discusses the BNFL Beowulf cluster and a number of tests that have recently been run to demonstrate the efficiency of the asynchronous technique in running the MCBEND program. The BNFL Beowulf currently consists of 84 standard PCs running RedHat Linux. Current performance of the machine has been estimated to be between 40 and 100 Gflop s(-1). When the whole system is employed on one problem up to four million particles can be tracked per second. There are plans to review its size in line with future business needs.

  19. Return of vitrified wastes from France to Japan; Retour des residus vitrifies de France au Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The radioactive wastes resulting from the burnup of nuclear fuels in nuclear reactors represent 3 to 5% of the spent fuel. These wastes cannot be reused nor recycled and thus are vitrified after reprocessing. Japanese power companies have signed contracts with Cogema in France and BNFL in the UK for the reprocessing of their spent fuels. Then, the ultimate reprocessed wastes are sent back to Japan for storage. This information dossier takes stock of different questions relative to the transport of the vitrified wastes from France to Japan: why France sends back containers of vitrified wastes to Japan? What is a vitrified wastes container made of? How containers are transported? What is the regulatory frame applicable to these transports? Which safety measures are taken during transport? Which physical protection is applied? Which temporary storage facilities are used before and after transportation? How is performed the ultimate storage of wastes in Japan? Which quality and safety warranties are taken? Which emergency plans and exercises are provided? What are the applicable civil liability regimes? And what kind of information is given to the public about these transports. Some general information about energy and nuclear power worldwide, energy and environment, radioactivity, BNFL, Cogema and ORC is given in appendixes. (J.S.)

  20. The Decommissioning of the Trino Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brusa, L.; DeSantis, R.; Nurden, P. L.; Walkden, P.; Watson, B.

    2002-02-27

    Following a referendum in Italy in 1987, the four Nuclear Power Plants (NPPs) owned and operated by the state utility ENEL were closed. After closing the NPPs, ENEL selected a ''safestore'' decommissioning strategy; anticipating a safestore period of some 40-50 years. This approach was consistent with the funds collected during plant operation, and was reinforced by the lack of both a waste repository and a set of national free release limits for contaminated materials in Italy. During 1999, twin decisions were made to privatize ENEL and to transform the nuclear division into a separate subsidiary of the ENEL group. This group was renamed Sogin and during the following year, ownership of the company was transferred to the Italian Treasury. On formation, Sogin was asked by the Italian government to review the national decommissioning strategy. The objective of the review was to move from a safestore strategy to a prompt decommissioning strategy, with the target of releasing all of the nuclear sites by 2020. It was recognized that this target was conditional upon the availability of a national LLW repository together with interim stores for both spent fuel and HLW by 2009. The government also agreed that additional costs caused by the acceleration of the decommissioning program would be considered as stranded costs. These costs will be recovered by a levy on the kWh price of electricity, a process established and controlled by the Regulator of the Italian energy sector. Building on the successful collaboration to develop a prompt decommissioning strategy for the Latina Magnox reactor (1), BNFL and Sogin agreed to collaborate on an in depth study for the prompt decommissioning of the Sogin PWR at Trino. BNFL is currently decommissioning six NPPs and is at an advanced stage of planning for two further units, having completed a full and rigorous exercise to develop Baseline Decommissioning Plans (BDP's) for these stations. The BDP exercise

  1. Risk perception of nuclear energy and the effect of information

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Caroline

    2000-08-01

    Results from 4 studies are reported. A mixture of survey, experimental and quasi-experimental designs and a variety of samples (undergraduates, postgraduates and graduates of Nottingham University, visitors to Sellafield and a random national UK sample) were used to examine risk perceptions of nuclear energy. The roles of risk, benefit, preference, knowledge, control, trust, attitudes, intentions to act and personality, in relation to nuclear energy, were examined. A survey study examined and explored the above-mentioned variables. Then experimental and quasi-experimental studies were devised using a BNFL video advert, a BNFL written newspaper advert and BNFL's Sellafield Visitors' Centre (SVC), to test the effectiveness of information on these variables. Through pre-post experimental and quasi-experimental studies, it was shown that levels of knowledge could be increased through information. This increase was also seen to be sustained over time, especially when people engaged in their learning environment (reading a newspaper or going to Sellafield). Regarding levels of knowledge, passively watching a video had a significant but very small effect. Changes in attitudes were also recorded, although these were only sustained over time for the Visitors' Centre. Concerning the other variables in question, changes in perceived risk, perceived benefit and preference were also recorded for the samples, although these results either could not be attributed to the different types of information, were not sustained or were no different to observations in the control groups. Some changes were recorded for aspects of control in the advert study although none were seen in the SVC study. No changes were found in trust for any of the different types of information. The main, consistent finding, was that sustained changes were recorded for knowledge and attitudes. These were both found to be linked to many of the variables under investigation, including risk

  2. A second simulated criticality accident dosimetry experiment

    CERN Document Server

    Adams, N

    1973-01-01

    This experiment was undertaken to facilitate training in criticality dose assessment by UKAEA and BNFL establishments with potential criticality hazards. Personal dosemeters, coins, samples of hair, etc. supplied by the seven participating establishments were attached to a man-phantom filled with a solution of sodium nitrate (simulating 'body-sodium'), and exposed to a burst of radiation from the AWRE pulsed reactor VIPER. The neutron and photon doses were each several hundred rads. Participants made two sets of dose assessments. The first, made solely from the evidence of their routine dosemeters the activation of body-sodium and standard monitoring data, simulated the initial dose assessment that would be made before the circumstances of a real incident were established. The second was made when the position and orientation of the phantom relative to the reactor and the shielding (20 cm of copper) between the reactor core and the phantom were disclosed. Neutron and photon dose assessments for comparison wit...

  3. The radiation stability of ground granulated blast furnace slag/ordinary Portland cement grouts containing organic admixtures

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, J.D.; Fairhall, G.A. [British Nuclear Fuels, Sellafield (United Kingdom)

    1993-12-31

    At the British Nuclear Fuels (BNFL) Sellafield reprocessing plant in the United Kingdom, cement grouts based on ground granulated blast-furnace slag (BFS) and ordinary Portland cement (OPC) are used extensively for immobilizing radioactive wastes. These grouts have excluded organic admixtures in order to reduce process complexity and uncertainties, regarding the performance of organic admixtures with BFS/OPC grouts, particularly under irradiation. This study has investigated the effects of sulfonated melamine formaldehyde and naphthalene condensates on grout properties. The results show grout settlement and strengths increase on addition of additives, with the additives remaining largely in the pore solution. Under irradiation the additives breakdown liberating hydrogen and carbon dioxide. Strength and product dimensions are unaffected by irradiation.

  4. Safety provisions for UF{sub 6} handling in the design of a new UF{sub 6} conversion plant

    Energy Technology Data Exchange (ETDEWEB)

    Bannister, S.P. [British Nuclear Fuels plc, Preston (United Kingdom)

    1991-12-31

    British Nuclear Fuels plc (BNFL) Fuel Division is currently undertaking the final design and construction of a new UF{sub 6} conversion plant at its production site at Springfields near Preston in the north of England. The Company has gained much experience in the handling of UF{sub 6} during operation of plants on site since 1961. The major hazard occurs during the liquefication cycle and the basis of the maximum credible incident scenario adopted for safety assessment and design purposes is discussed. This paper considers the design features which have been incorporated in the new plant to counter the hazards presented by the presence of UF{sub 6} in gaseous and liquid form and explains current thinking on operational procedures in areas of potential risk such as cylinder filling. The plant emergency response philosophy and systems are described and specific design provisions which have been included to satisfy the UK regulatory bodies are outlined in some detail.

  5. Retrieval of Intermediate Level Waste at Trawsfyndd Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Wall, S.; Shaw, I.

    2002-02-25

    In 1996 RWE NUKEM Limited were awarded two contracts by BNFL Magnox Generation as part of the decommissioning programme for the Trawsfynydd power station. From the normal operations of the two Magnox reactors, intermediate level waste (ILW) had accumulated on site, this was Miscellaneous Activated Components (MAC) and Fuel Element Debris (FED). The objective of these projects is retrieval of the waste from storage vaults, monitoring, packaging and immobilization in a form suitable for on site storage in the medium term and eventual disposal to a waste repository. The projects involve the design, supply, commissioning and operation of equipment to retrieve, pack and immobilize the waste, this includes recovery from vaults in both reactor and pond locations and final decommissioning and removal of plant from site after completion of waste recovery.

  6. C-106 High-Level Waste Solids: Washing/Leaching and Solubility Versus Temperature Studies

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta; DJ Bates; PK Berry; JP Bramson; LP Darnell; OT Farmer III; LR Greenwood; FV Hoopes; RC Lettau; GF Piepel; CZ Soderquist; MJ Steele; RT Steele; MW Urie; JJ Wagner

    2000-01-26

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the Hanford tank C-106 high-level waste (HLW) solids. The objective of this work was to determine the composition of the C-106 solids remaining after washing with 0.01M NaOH or leaching with 3M NaOH. Another objective of this test was to determine the solubility of various C-106 components as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8,Rev. 0, Determination of the Solubility of HLW Sludge Solids. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

  7. Intermediate-Scale Ion Exchange Removal of Technetium from Savannah River Site Tank 44 F Supernate Solution

    Energy Technology Data Exchange (ETDEWEB)

    King, W.D.

    2000-08-23

    As part of the Hanford River Protection Project waste Treatment facility design contracted to BNFL, Inc., a sample of Savannah River Site (SRS) Tank 4 F waste solution was treated for the removal of technetium (as pertechnetate ion). Interest in treating the SRS sample for Tc removal resulted from the similarity between the Tank 44 F supernate composition and Hanford Envelope A supernate solutions. The Tank 44 F sample was available as a by-product of tests already conducted at the Savannah River Technology Center (SRTC) as part of the Alternative Salt Disposition Program for treatment of SRS wastes. Testing of the SRS sample resulted in considerable cost-savings since it was not necessary to ship a sample of Hanford supernate to SRS.

  8. Questioning nuclear waste substitution: a case study.

    Science.gov (United States)

    Marshall, Alan

    2007-03-01

    This article looks at the ethical quandaries, and their social and political context, which emerge as a result of international nuclear waste substitution. In particular it addresses the dilemmas inherent within the proposed return of nuclear waste owned by Japanese nuclear companies and currently stored in the United Kingdom. The UK company responsible for this waste, British Nuclear Fuels Limited (BNFL), wish to substitute this high volume intermediate-level Japanese-owned radioactive waste for a much lower volume of much more highly radioactive waste. Special focus is given to ethical problems that they, and the UK government, have not wished to address as they move forward with waste substitution. The conclusion is that waste substitution can only be considered an ethical practice if a set of moderating conditions are observed by all parties. These conditions are listed and, as of yet, they are not being observed.

  9. Artificial radionuclides in an intertidal sediment from northwest England

    Energy Technology Data Exchange (ETDEWEB)

    Morris, K. [Department of Chemistry, Florida State University, Tallahassee, FL (United States); Keith-Roach, M.J.; Butterworth, J.C.; Livens, L.K.; Day, J.P. [Department of Chemistry, University of Manchester, Manchester (United Kingdom); Hursthouse, A.S. [Department of Chemistry, University of Paisley, Paisley (United Kingdom); Fifield, L.K. [Department of Nuclear Physics, Australian National University, Canberra (Australia); Bardgett, R.D. [School of Biological Sciences, University of Manchester, Manchester (United Kingdom)

    1998-08-01

    An intertidal sediment core has been analysed for the principal transuranium elements present in the BNFL Sellafield radioactive waste discharges (Np, Pu, Am) and the high yield fission products {sup 99}Tc and {sup 137}Cs. Interstitial water samples were collected using porous cup samplers and early results from these analyses show that there is a pronounced seasonality in the pattern of dissolved Pu, which apparently relates to changes in dissolved Fe and Mn. More recent work has concentrated on the characterization of changes in the sediment microbial community and on the development of analytical methods for the analysis of dissolved Np, apparently the most readily mobilized of the transuranic elements, which is present at concentrations of the order of 10{sup 8} atoms/litre 22 refs.

  10. Managing plutonium in Britain. Current options[Mixed oxide nuclear fuels; Nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This is the report of a two day meeting to discuss issues arising from the reprocessing of plutonium and production of mixed oxide nuclear fuels in Britain. It was held at Charney Manor, near Oxford, on June 25 and 26, 1998, and was attended by 35 participants, including government officials, scientists, policy analysts, representatives of interested NGO's, journalists, a Member of Parliament, and visiting representatives from the US and Irish governments. The topic of managing plutonium has been a consistent thread within ORG's work, and was the subject of one of our previous reports, CDR 12. This particular seminar arose out of discussions earlier in the year between Dr. Frank Barnaby and the Rt. Hon. Michael Meacher MP, Minister for the Environment. With important decisions about the management of plutonium in Britain pending, ORG undertook to hold a seminar at which all aspects of the subject could be aired. A number of on-going events formed the background to this initiative. The first was British Nuclear Fuels' [BNFL] application to the Environment Agency to commission a mixed oxide fuel [MOX] plant at Sellafield. The second was BNFL's application to vary radioactive discharge limits at Sellafield. Thirdly, a House of Lords Select Committee was in process of taking evidence, on the disposal of radioactive waste. Fourthly, the Royal Society, in a recent report entitled Management of Separated Plutonium, recommended that 'the Government should commission a comprehensive review... of the options for the management of plutonium'. Four formal presentations were made to the meeting, on the subjects of Britain's plutonium policy, commercial prospects for plutonium use, problems of plutonium accountancy, and the danger of nuclear terrorism, by experts from outside the nuclear industry. It was hoped that the industry's viewpoint would also be heard, and BNFL were invited to present a paper, but declined on the grounds that they

  11. Testing of LWR fuel rods to support criticality safety analysis of transport accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Purcell, P.C. [BNFL International Transport, Spent Fuel Services (United Kingdom); Dallongeville, M. [COGEMA Logistics (AREVA Group) (France)

    2004-07-01

    For the transport of low enriched materials, criticality safety may be demonstrated by applying pessimistic modelling assumptions that bound any realistic case. Where Light Water Reactor (LWR) fuel is being transported, enrichment levels are usually too high to permit this approach and more realistic data is needed. This requires a method by which the response of LWR fuel under impact accident conditions can be approximated or bounded. In 2000, BNFL and COGEMA LOGISTICS jointly commenced the Fuel Integrity Project (FIP) whose objective was to develop such methods. COGEMA LOGISTICS were well advanced with a method for determining the impact response of unirradiated fuel, but required further test data before acceptance by the Transport Regulators. The joint project team extensively discussed the required inputs to the FIP, from which it was agreed that BNFL would organise new tests on both unirradiated and irradiated fuel samples and COGEMA LOGISTICS would take major responsibility for evaluating the test results. Tests on unirradiated fuel rod samples involved both dynamic and quasi-static loading on fuel samples. PWR fuel rods loaded with uranium pellets were dropped vertically from 9m onto a rigid target and this was repeated on BWR fuel rods, similar tests on empty fuel rods were also conducted. Quasi-static tests were conducted on 530 mm long PWR and BWR fuel specimens under axial loading. Tests on irradiated fuel samples were conducted on high burn-up fuel rods of both PWR and BWR types. These were believed original to the FIP project and involved applying bending loads to simply supported pressurised rod specimens. In one test the fuel rod was heated to nearly 500oC during loading, all specimens were subject to axial impact before testing. Considerable experience of fuel rod testing and new data was gained from this test programme.

  12. Spent nuclear fuel reprocessing and international law. Germany`s obligations under international law in matters of spent fuel reprocessing and the relevant contracts concluded with France and the United Kingdom; Wiederaufarbeitung und Voelkerrecht. Die voelkerrechtlichen Verpflichtungen der Bundesrepublik Deutschland gegenueber der Franzoesischen Republik und dem Vereinigten Koenigreich auf dem Gebiet der Wiederaufarbeitung

    Energy Technology Data Exchange (ETDEWEB)

    Heintschel v. Heinegg, W. [Augsburg Univ. (Germany). Juristische Fakultaet

    1999-01-01

    The review presented is an excerpt from an expert opinion written by the author in December last year, in response to changes in nuclear energy policy announced by the new German government. The reprocessing of spent nuclear fuels from German power reactors in the reprocessing facilities of France (La Hague) and the UK (Sellafield) is not only based on contracts concluded by the German electric utilities and the French COGEMA or the British BNFL, but has been agreed as well by an exchange of diplomatic notes between the French Ministry of Foreign Affairs and the German ambassador in Paris, the German Foreign Ministry and the French ambassador as well as the British ambassador in Bonn. The article therefore first examines from the angle of international law the legal obligations binding the states involved, and Germany in particular, in matters of spent fuel reprocessing contracts. The next question arising in this context and discussed by the article is that of whether and how much indemnification can be demanded by the reprocessing companies, or their governments, resp., if Germany should discontinue spent fuel resprocessing and thus might be made liable for breach of the bilateral agreements. (orig/CB) [Deutsch] Der Beitrag enthaelt eine gekuerzte Zusammenfassung eines Gutachtens, das der Verfasser im Dezember 1998 erstellte. Anlass war die Ankuendigung der neuen deutschen Regierung, die Wiederaufarbeitung abgebrannter Kernbrennstoffe bald beenden zu wollen zugunsten der Zwischenlagerung und spaeteren Entsorgung. Die Wiederaufarbeitung deutscher Brennelemente im franzoesischen La Hague und im englischen Sellafield ist Gegenstand nicht allein der Vereinbarungen zwischen den deutschen Stromversorgern und der COGEMA sowie der BNFL, sondern auch von Notenwechseln zwischen dem franzoesischen Ministerium fuer Auswaertige Angelegenheiten und dem deutschen Botschafter in Paris, dem Auswaertigen Amt und dem franzoesischen Botschafter in Bonn, sowie dem Staatssekretaer im

  13. Pretreatment status report on the identification and evaluation of alternative processes. Milestone Report No. C064

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, D.G. [Westinghouse Hanford Co., Richland, WA (United States); Brothers, A.J. [Pacific Northwest Lab., Richland, WA (United States); Beary, M.M.; Nicholson, G.A. [Science Applications International Corp., San Diego, CA (United States)

    1993-09-01

    The purpose of this report is to support the development and demonstration of a pretreatment system that will (1) destroy organic materials and ferrocyanide in tank wastes so that the wastes can be stored safely, (2) separate the high-activity and low-activity fractions, (3) remove radionuclides and remove or destroy hazardous chemicals in LLW as necessary to meet waste form feed requirements, (4) support development and demonstration of vitrification technology by providing representative feeds to the bench-scale glass melter, (5) support full-scale HLW vitrification operations, including near-term operation, by providing feed that meets specifications, and (6) design and develop pretreatment processes that accomplish the above objectives and ensure compliance with environmental regulations. This report is a presentation of candidate technologies for pretreatment of Hanford Site tank waste. Included are descriptions of studies by the Pacific Northwest Laboratory of Battelle Memorial Institute; Science Applications International Corporation, an independent consultant; BNFL, Inc. representing British technologies; Numatec, representing French technologies; and brief accounts of other relevant activities.

  14. Radial power density distribution of MOX fuel rods in the IFA-651

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Ho; Koo, Yang Hyun; Joo, Hyung Kook; Cheon, Jin Sik; Oh, Je Yong; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    Two MOX fuel rods, which were fabricated in the Paul Scherrer Institute (PSI), Switzerland in cooperation with Korea Atomic Energy Research Institute, have been irradiated in the HBWR from June, 2000 in the framework of OECD-HRP together with a reference MOX fuel rod supplied by the BNFL. Since fuel temperature, which is influenced by radial power distribution, is basic in analyzing fuel behavior, it is required to consider radial power distribution in the HBWR. A subroutine FACTOR{sub H}BWR that calculates radial power density distribution for three MOX fuel rods has been developed based on neutron physics results and DEPRESS program. The developed subroutine FACTOR{sub H}BWR gives good agreement with the physics calculation except slight under-prediction at the outer part of the pellet above the burnup of 20 MWd/kgHM. The subroutine will be incorporated into a computer code COSMOS and used to analyze the in-reactor behavior of the three MOX fuel rods during the Halden irradiation test. 24 figs., 4 tabs. (Author)

  15. Testing of CoTreat Inorganic Ion Exchange Media for the Removal of 60Co from Thorp Pond Water

    Energy Technology Data Exchange (ETDEWEB)

    Harjula, R.; Paajanen, A.; Lehto, J.; Tusa, E.; Strandring, P.

    2003-02-25

    CoTreat, a new inorganic ion exchange media, has been studied in the laboratory to support its application as a pre- coat to existing Funda filters in THORP feed pond plant (Sellafield, UK). This is a novel way of application of CoTreat, which is usually utilized in fixed-bed ion exchange columns in a granular form. The results present the effect of operating conditions (CoTreat dose, pond water chemistry) on CoTreat performance for the removal of Co-57 tracer from simulated pond water. Major findings include the strong dependence of Co-57 decontamination factor (DF) on feed activity. At the 200 Bq/L feed level, the observed DF was 10-20 but rose to 1000 and above when the feed level was increased to 20000 Bq/L. Calcium present in the feed was found to decrease the DF at concentrations higher than 1 ppm. The laboratory studies showed significantly higher DF's than what has been observed in large-scale THORP tests. This discrepancy is likely to be due to the technique used in applying the Co Treat layer to the Thorp HEFP Funda filter. Options for improving Co Treat performance (i.e. application technique) under Funda filter operating conditions are being investigated by BNFL based on this laboratory work.

  16. Fabrication of a CANFLEX-RU designed bundle for power ramp irradiation test in NRU

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Moon Sung

    2000-11-01

    The BDL-443 CANFLEX-RU bundle AKW was fabricated at Korea Atomic Energy Research Institute (KAERI) for power ramp irradiation testing in NRU reactor. The bundle was fabricated with IDR and ADU fuel pellets in adjacent elements and contains fuel pellets enriched to 1.65 wt% {sup 235}U in the outer and intermediate rings and also contains pellets enriched to 2.00 wt% {sup 235}U in the inner ring. This bundle does not have a center element to allow for insertion on a hanger bar. KAERI produced the IDR pellets with the IDR-source UO{sub 2} powder supplied by BNFL. ADU pellets were fabricated and supplied by AECL. Bundle kits (Zircaloy-4 end plates, end plugs, and sheaths with brazed appendages) manufactured at KAERI earlier in 1996 were used for the fabrication of the bundle. The CANFLEX bundle was fabricated successfully at KAERI according to the QA provisions specified in references and as per relevant KAERI drawings and technical specification. This report covers the fabrication activities performed at KAERI. Fabrication processes performed at AECL will be documented in a separate report.

  17. Phase II test plan for the evaluation of the performance of container filling systems

    Energy Technology Data Exchange (ETDEWEB)

    BOGER, R.M.

    1999-09-28

    The PHMC will provide tank wastes for final treatment by BNFL from Hanford's waste tanks. Concerns about the ability for ''grab'' sampling to provide large volumes of representative waste samples has led to the development of a nested, fixed-depth sampling system. Preferred concepts for filling sample containers that meet RCRA organic sample criteria were identified by a PHMC Decision Board. These systems will replace the needle based sampling ''T'' that is currently on the sampling system. This test plan document identifies cold tests with simulants that will demonstrate the preferred bottle filling concepts abilities to provide representative waste samples and will meet RCRA criteria. Additional tests are identified that evaluate the potential for cross-contamination between samples and the ability for the system to decontaminate surfaces which have contacted tank wastes. These tests will be performed with kaolid/water and sand/water slurry simulants in the test rig that was used by AEAT to complete Phase 1 tests in FY 1999.

  18. Development of a laboratory method to predict rapidly the availability of radiocaesium

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, D.L.; Livens, F.R.; Beresford, N.A.; Howard, B.J.; Barnett, C.L. (Institute of Terrestrial Ecology, Grange-on-Sands (United Kingdom). Merlewood Research Station); Mayes, R.W. (Macaulay Land Use Research Inst., Roslin (United Kingdom)); Segal, M.G. (Ministry of Agriculture, Fisheries and Food, London (United Kingdom))

    1992-03-01

    A simple extraction procedure has been developed to assess rapidly the probable extent of the transfer of radiocaesium into ruminant food products soon after a nuclear accident. The in vitro extractions were validated against true absorption measurements of different forms of radiocaesium in the sheep gut. Extractions were performed on a range of different radiocaesium sources. Some of these sources were artificial (ionic radiocaesium adsorbed onto bentonite, silica spheres and filter-papers) and others were environmentally contaminated (silt from the Ravenglass Estuary contaminated by effluent from British Nuclear Fuels Limited (BNFL) Sellafield, and upland grass and heather contaminated by Chernobyl fallout). Laboratory experiments concentrated primarily on the use of simple inorganic extractants in competitive ion-exchange processes. Of the reagents used, 0.1 mol dm{sup -3} stable caesium chloride solution was the most effective extractant. The proportion of radiocaesium extracted by 0.1 mol dm{sup -3} caesium chloride correlated well with measurements of true absorption. Extracting radiocaesium using 0.1 mol dm{sup -3} caesium chloride proved to be an inexpensive and rapid method of predicting the availability of radiocaesium for absorption in the ruminant gut, giving results within 24 h. Further extractions were carried out using cellulase/pepsin simulated digestions and ovine rumen fluid. Results suggested that the availability of radiocaesium from some inorganic sources may be underestimated using such techniques. (author).

  19. Development of a laboratory method to predict rapidly the availability of radiocaesium.

    Science.gov (United States)

    Singleton, D L; Livens, F R; Beresford, N A; Howard, B J; Barnett, C L; Mayes, R W; Segal, M G

    1992-03-01

    A simple extraction procedure has been developed to assess rapidly the probable extent of the transfer of radiocaesium into ruminant food products soon after a nuclear accident. The in vitro extractions were validated against true absorption measurements of different forms of radiocaesium in the sheep gut. Extractions were performed on a range of different radiocaesium sources. Some of these sources were artificial (ionic radiocaesium adsorbed onto bentonite, silica spheres and filter-papers) and others were environmentally contaminated [silt from the Ravenglass Estuary contaminated by effluent from British Nuclear Fuels Limited (BNFL) Sellafield, and upland grass and heather contaminated by Chernobyl fallout]. Laboratory experiments concentrated primarily on the use of simple inorganic extractants in competitive ion-exchange processes. Of the reagents used, 0.1 mol dm-3 stable caesium chloride solution was the most effective extractant. The proportion of radiocaesium extracted by 0.1 mol dm-3 caesium chloride correlated well with measurements of true absorption. Extracting radiocaesium using 0.1 mol dm-3 caesium chloride proved to be an inexpensive and rapid method of predicting the availability of radiocaesium for absorption in the ruminant gut, giving results within 24 h. Further extractions were carried out using cellulase/pepsin simulated digestions and ovine rumen fluid. Results suggested that the availability of radiocaesium from some inorganic sources may be underestimated using such techniques.

  20. Modelling {sup 99}Tc concentrations in Fucus vesiculosus from the north-east Irish Sea

    Energy Technology Data Exchange (ETDEWEB)

    Nawakowski, Claire; Nicholson, Michael D.; John Kershaw, Peter E-mail: p.j.kershaw@cefas.co.uk; Leonard, Kinson S

    2004-07-01

    In 1994 there were substantial increases in the quantity of {sup 99}Tc discharged into the north-east Irish Sea from BNFL Sellafield (UK), concomitant with improvements in waste treatment procedures. As a consequence, the concentration of {sup 99}Tc observed in seawater and biota samples, taken from the Irish Sea coastline, increased significantly. Elevated concentrations were also reported in Dutch, Danish, Norwegian, Swedish and Arctic waters in subsequent years. In the present study a simple numerical model was developed and applied to time-series data of {sup 99}Tc concentrations in the brown seaweed Fucus vesiculosus, collected from three UK sites in the vicinity of Sellafield (St. Bees, Heysham, Port William). The model considered site-specific scaling effects, lag times, previous discharge history and potential seasonal variation in uptake. In general, there was a good fit between predicted and observed concentrations, but the degree of uncertainty varied inversely with the frequency of sampling. We did not observe a significant seasonal variation. The modelled lag times to the three sites were consistent with transport times based on observations of the water column distribution of {sup 99}Tc. The model was applied to a variety of discharge scenarios, reflecting current discussion on the future management of {sup 99}Tc releases. Concentrations in Fucus reached asymptotic values in 3-10 years, depending on the scenario and sampling site under consideration.

  1. Modelling 99Tc concentrations in Fucus vesiculosus from the north-east Irish Sea.

    Science.gov (United States)

    Nawakowski, Claire; Nicholson, Michael D; Kershaw, Peter John; Leonard, Kinson S

    2004-01-01

    In 1994 there were substantial increases in the quantity of 99Tc discharged into the north-east Irish Sea from BNFL Sellafield (UK), concomitant with improvements in waste treatment procedures. As a consequence, the concentration of 99Tc observed in seawater and biota samples, taken from the Irish Sea coastline, increased significantly. Elevated concentrations were also reported in Dutch, Danish, Norwegian, Swedish and Arctic waters in subsequent years. In the present study a simple numerical model was developed and applied to time-series data of 99Tc concentrations in the brown seaweed Fucus vesiculosus, collected from three UK sites in the vicinity of Sellafield (St. Bees, Heysham, Port William). The model considered site-specific scaling effects, lag times, previous discharge history and potential seasonal variation in uptake. In general, there was a good fit between predicted and observed concentrations, but the degree of uncertainty varied inversely with the frequency of sampling. We did not observe a significant seasonal variation. The modelled lag times to the three sites were consistent with transport times based on observations of the water column distribution of 99Tc. The model was applied to a variety of discharge scenarios, reflecting current discussion on the future management of 99Tc releases. Concentrations in Fucus reached asymptotic values in 3-10 years, depending on the scenario and sampling site under consideration.

  2. Preliminary report of the comparison of multiple non-destructive assay techniques on LANL Plutonium Facility waste drums

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, C.; Schanfein, M.; Estep, R. [and others

    1999-03-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content. The DOE Complex faces the daunting task of measuring nuclear material with both a wide range of masses and matrices. Similarly daunting can be the selection of a non-destructive assay (NDA) technique(s) to efficiently perform the quantitative assay over the entire waste population. In fulfilling its role of a DOE Defense Programs nuclear User Facility/Technology Development Center, the Los Alamos National Laboratory Plutonium Facility recently tested three commercially built and owned, mobile nondestructive assay (NDA) systems with special nuclear materials (SNM). Two independent commercial companies financed the testing of their three mobile NDA systems at the site. Contained within a single trailer is Canberra Industries segmented gamma scanner/waste assay system (SGS/WAS) and neutron waste drum assay system (WDAS). The third system is a BNFL Instruments Inc. (formerly known as Pajarito Scientific Corporation) differential die-away imaging passive/active neutron (IPAN) counter. In an effort to increase the value of this comparison, additional NDA techniques at LANL were also used to measure these same drums. These are comprised of three tomographic gamma scanners (one mobile unit and two stationary) and one developmental differential die-away system. Although not certified standards, the authors hope that such a comparison will provide valuable data for those considering these different NDA techniques to measure their waste as well as the developers of the techniques.

  3. IMBA Expert: internal dosimetry made simple.

    Science.gov (United States)

    Birchall, A; Puncher, M; James, A C; Marsh, J W; Jarvis, N S; Peace, M S; Davis, K; King, D J

    2003-01-01

    In 1997, a collaboration between British Nuclear Fuels plc (BNFL), Westlakes Research Institute and NRPB started, with the aim of producing IMBA (Integrated Modules for Bioassay Analysis), a suite of software modules that implement the new ICRP models for estimation of intakes and doses. This was partly in response to new UK regulations, and partly due to the requirement for a unified approach in estimating intakes and doses from bioassay measurements within the UK. Over the past 5 years, the IMBA modules have been developed further, have gone through extensive quality assurance, and are now used for routine dose assessment by approved dosimetry services throughout the UK. More recently, interest in the IMBA methodology has been shown by the United States Department of Energy (USDOE), and in 2001 an ambitious project to develop a software package (IMBA Expert USDOE Edition) which would meet the requirements of all of the major USDOE sites began. Interest in IMBA Expert is now being expressed in many other countries. The aim of this paper is to outline the origin and evolution of the IMBA modules (the past); to describe the full capabilities of the current IMBA Expert system (the present) and to indicate possible future directions in terms of capabilities and availability (the future).

  4. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  5. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    Energy Technology Data Exchange (ETDEWEB)

    RT Hallen; SA Bryan; FV Hoopes

    2000-08-04

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRU removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a).

  6. Concentration and depuration of some radionuclides present in a chronically exposed population of mussels (Mytilus edulis)

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, R.J.; Stevens, H.E.; Hamilton, E.I.

    1983-03-01

    Factors are described which affect the concentration (p Ci g/sup -1/ dry wt) and loss of /sup 241/ Am, /sup 239 +240/Pu, /sup 238/Pu, /sup 144/Ce, /sup 137/Cs, /sup 134/Cs, /sup 106/Ru, /sup 95/Zr and /sup 95/Nb in an exposed population of mussels Mytilus edulis L. from Ravenglass on the Esk estuary, Cumbria, UK which receives radioeffluents from the British Nuclear Fuels Ltd. (BNFL) plant at Sellafield, some 10 km to the north. Tidal position and mussel body size have a negligible influence on the concentration of /sup 241/Am, /sup 137/Cs and /sup 106/Ru in the total soft tissue, but variation in soft tissue weight throughout the year has a considerable influence on the apparent concentration and depuration times of these radionuclides. Apart from the clearance (tsub(1/2) biol, 1 to 3 h) of sediment-associated activity from the digestive tract, the depuration rate profiles follow a single component clearance curve with a biological half-life in excess of 200 d for /sup 241/ Am, /sup 239 +240/Pu, /sup 238/Pu and /sup 144/Ce, and of 40 d for /sup 137/Cs. The clearance of /sup 106/Ru is more complex and consists of a 3 component depuration profile with biological half-lives of 6 h, 12 d and 260 d. The depuration profiles presented in this work are for chronically ingested isotopes under natural conditions; acute exposure will most likely result in different profiles, especially those derived from laboratory spiking experiments. Isotope ratio data support the hypothesis that the main route of entry into the mussel for the majority of the radionuclides studied is from the water.

  7. Measurement error in longitudinal film badge data

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, J.L

    2002-04-01

    The classical measurement error model is that of a simple linear regression with unobservable variables. Information about the covariates is available only through error-prone measurements, usually with an additive structure. Ignoring errors has been shown to result in biased regression coefficients, reduced power of hypothesis tests and increased variability of parameter estimates. Radiation is known to be a causal factor for certain types of leukaemia. This link is mainly substantiated by the Atomic Bomb Survivor study, the Ankylosing Spondylitis Patients study, and studies of various other patients irradiated for therapeutic purposes. The carcinogenic relationship is believed to be a linear or quadratic function of dose but the risk estimates differ widely for the different studies. Previous cohort studies of the Sellafield workforce have used the cumulative annual exposure data for their risk estimates. The current 1:4 matched case-control study also uses the individual worker's film badge data, the majority of which has been unavailable in computerised form. The results from the 1:4 matched (on dates of birth and employment, sex and industrial status) case-control study are compared and contrasted with those for a 1:4 nested (within the worker cohort and matched on the same factors) case-control study using annual doses. The data consist of 186 cases and 744 controls from the work forces of four BNFL sites: Springfields, Sellafield, Capenhurst and Chapelcross. Initial logistic regressions turned up some surprising contradictory results which led to a re-sampling of Sellafield mortality controls without the date of employment matching factor. It is suggested that over matching is the cause of the contradictory results. Comparisons of the two measurements of radiation exposure suggest a strongly linear relationship with non-Normal errors. A method has been developed using the technique of Regression Calibration to deal with these in a case-control study

  8. A preliminary characterisation of recovered uranium produced by MDR

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyuk Il [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Davison, J.; Marsh, G. [British Nuclear Forum, London (United Kingdom)

    1997-10-01

    The CANFLEX-RU fuel to be developed for the future should be verified if it has any major problems in RU handling techniques and related technology development. For this purpose, a preliminary R and D efforts on the RU handling characteristics were executed by joint effort with BNFL in following area. 1) preparation of RU powder by the MDR process 2) Compaction and sintering characteristics of RU powder 3) required special process for the production of CANFLEX-RU fuel 4) characterization of fission product residue composition in the RU powder 5) radiological characterization of RU powder and sintered pellets. Physical characterization of RU UO{sub 2} powder and pellet produced by the MDR process were similar with those of NU UO{sub 2} powder and pellet. The density of RU pellets, however, were higher than those of NU pellets and RU pellets showed little higher values in pore size distributions. RU contained only negligibly low concentrations of fission products and actinides. Especially, the Cs-137 content in the powder (before sintering) were undetectable and therefore would not contaminate the sintering furnace. RU pellet showed higher impurity levels, especially in the Ni content. Radioactivity on the RU powder showed about twice higher value at the surface than those of NU, but showed drastic reduction by distance and became similar at the 1 meter distance. RU pellets showed close coincidence between NU and RU at any distance. This result could be used close coincidence between NU and RU at any distance. This result could be used as a basis of the feasibility assessment on the development of CANFLEX-RU. Through basic research works on the improvement of CANFLEX-RU fabrication processes, compatibility with CANFLEX-NU fabrication process will be evaluated and analysed. (author). 4 refs.

  9. Encapsulation plant at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Anders

    2007-08-15

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate

  10. Inorganic, radioisotopic and organic analysis of 241-AP-101 tank waste

    Energy Technology Data Exchange (ETDEWEB)

    SK Fiskum; PR Bredt; JA Campbell; LR Greenwood; OT Farmer; GJ Lumetta; GM Mong; RT Ratner; CZ Soderquist; RG Swoboda; MW Urie; JJ Wagner

    2000-06-28

    contract limits (molar ratio of analyte to sodium or ratio of becquerels of analyte to moles of sodium) defined in Specification 7 for Envelope A. Except for a few cases, the characterization results met or surpassed the quality control requirements established by the governing quality assurance plan and met or surpassed the minimum reportable quantity requirements specified by BNFL.

  11. Current Status of the United Kingdom Programme for Long-Term Radioactive Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Murray, C. H.; Hooper, A. J.; Mathieson, J.

    2002-02-27

    In 1997, the UK programme for the deep disposal of radioactive waste was ''stopped dead in its tracks'' with the refusal by the Secretary of State for the Environment to allow Nirex to go ahead with its plans for an underground Rock Characterisation Facility at Sellafield in north-west England. Since that time a House of Lords' Select Committee has held an inquiry into what went wrong and what the way ahead should be. In addition, Nirex and the nuclear industry players have also been analyzing the past with a view to learning from the experience in taking things forward. In Nirex's view this is essentially an ethical issue; the waste exists and we should deal with it in this generation. Three areas need to be better addressed if a successful program of management of the nation's radioactive waste is to be achieved: the process of how policy development and implementation can be achieved; the structure of the nuclear industry and its relationship to the waste management organization; and the behavior of the players in their interaction with stakeholders. All three are underpinned by the need for transparency. In recognition that developing a policy for managing radioactive waste has to be achieved with the support of all stakeholders, the Government instigated a consultation exercise in September 2001. The initial phase of this initiative is essentially a consultation about consultation and is intended to decide on how the next stages of a six year policy development program should be addressed. In addition to this exercise, the Government is undertaking a fundamental review of the structuring of the United Kingdom Atomic Energy Authority (UKAEA) and British Nuclear Fuels plc (BNFL). They are both shareholders in Nirex and in November 2001 the Government announced the setting up of a Liabilities Management Authority (LMA) to manage the long-term nuclear liabilities that are publicly owned, particularly through those organizations

  12. Investigation of photon spectra and contributions to air kerma rates in the environment near nuclear facilities using portable germanium gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.J. [Centre for Environment, Fisheries and Aquaculture Science, Lowestoft (United Kingdom)

    2000-05-01

    Portable spectrometers based on NaI or Ge detectors are now important additions to the tools available for monitoring and assessment of radioactivity and radiation dose rates in the environment due to both natural and anthropogenic sources. The high resolution of the Ge detector is of particular use in rapidly identifying and assessing radionuclides of significance. Portable spectrometry is of importance in assessing deposited activity and contributions to air kerma rates, and the rapid availability of these results would be significant in the event of a nuclear emergency in addition to the more usual application of measuring concentrations of radionuclides in environmental samples. In the course of developing a portable germanium detector system, spectra were measured at a number of locations in the environment near nuclear establishments in the UK. These spectra are presented and analysed in this paper in terms of the radionuclide contributions and gamma air kerma rates. Particular features are highlighted. First, background contributions are characterised using an example spectrum measured at Lowestoft beach, where anthropogenic influences are low. By contrast, near the Magnox nuclear power station at Bradwell, Essex there are contributions to the spectra due to photons from {sup 16}N, {sup 41}Ar and {sup 60}Co. In the Ravenglass estuary near Sellafield, {sup 137}Cs features prominently, with smaller contributions due to other radionuclides discharged in liquid waste from Sellafield. In the Ribble estuary which is influenced by discharges from the Springfields fuel fabrication plant as well as from Sellafield, measurements were made on a houseboat at high and low tide; there was a significant difference in the contribution due to {sup 137}Cs from Sellafield. Upstream of the Springfields works, peaks in the spectrum were observed due to {sup 234}Th and {sup 234m}Pa due to discharges from the site, as well as {sup 137}Cs from BNFL Sellafield. The paper highlights

  13. Effect of forest edges on deposition of radioactive aerosols

    Science.gov (United States)

    Ould-Dada, Z.; Copplestone, D.; Toal, M.; Shaw, G.

    The possible enhancement of aerosol deposition at forest edges was investigated in a wind tunnel and in the field. The wind tunnel study was carried out using 0.82 μm mass median aerodynamic diameter uranium particles and a composite canopy of rye grass and spruce saplings. The field study was undertaken at a coniferous woodland near to BNFL Sellafield, Cumbria, UK. Two transects were set through the woodland to determine the influence of the forest edge on atmospheric deposition of radionuclides released under authorisation from the Sellafield site. Results from the wind tunnel study showed that the deposition flux of uranium particles decreased with distance downwind from the grass-tree edge towards the interior of the canopy. The deposition flux at the edge was maximal at about 4×10 -7 μg of U cm -2 s -1. This was 3 times higher than that observed over grass where a constant flux of about 1.32×10 -7 μg of U cm -2 s -1 occurred. Results from the field study showed a clear influence of the forest edge on the atmospheric deposition of 241Am and 137Cs. Activity depositions of around 4750 and 230 Bqm -2 for 137Cs and 241Am, respectively, were measured in front of the woodland. Activity deposition inside the forest edge, however, rose to levels of between 20,200 and 50,900 Bq m -2 and 1100 and 3200 Bq m -2 for 137Cs and 241Am, respectively, depending upon the transect. Similar activity concentrations were measured in the pasture to the front and behind Lady Wood. Results from these studies corroborate those obtained from various studies on air pollutants including radionuclides. This underlines the importance of deposition at the edge of forests and its contribution to the overall canopy deposition. The edge effect is therefore an important factor that should be considered in the assessment of fallout impact, whether this is to be made by either direct sampling or by modelling.

  14. The planning of decommissioning activities within nuclear facilities - Generating a Baseline Decommissioning Plan

    Energy Technology Data Exchange (ETDEWEB)

    Meek, N.C.; Ingram, S.; Page, J. [BNFL Environmental Services (United Kingdom)

    2003-07-01

    BNFL Environmental Services has developed planning tools to meet the emerging need for nuclear liabilities management and decommissioning engineering both in the UK and globally. It can provide a comprehensive baseline planning service primarily aimed at nuclear power stations and nuclear plant. The paper develops the following issues: Decommissioning planning; The baseline decommissioning plan;The process; Work package; Compiling the information; Deliverables summary; Customer Benefits; - Planning tool for nuclear liability life-cycle management; - Robust and reliable plans based upon 'real' experience; - Advanced financial planning; - Ascertaining risk; - Strategy and business planning. The following Deliverables are mentioned:1. Site Work Breakdown Structure; 2. Development of site implementation strategy from the high level decommissioning strategy; 3. An end point definition for the site; 4. Buildings, operational systems and plant surveys; 5. A schedule of condition for the site; 6. Development of technical approach for decommissioning for each work package; 7. Cost estimate to WBS level 5 for each work package; 8. Estimate of decommissioning waste arisings for each work package; 9. Preparation of complete decommissioning programme in planning software to suit client; 10. Risk modelling of work package and overall project levels; 11. Roll up of costs into an overall cost model; 12. Cash flow, waste profiling and resource profiling against the decommissioning programme; 13. Preparation and issue of Final Report. Finally The BDP process is represented by a flowchart listing the following stages: [Power Station project assigned] {yields} [Review project and conduct Characterisation review of power station] {yields} [Identify work packages] {yields} [Set up WBS to level 3] {yields} [Assign work packages] {yields} [Update WBS to level 4] {yields}[Develop cost model] {yields} [Develop logic network] {yields} [Develop risk management procedure] ] {yields

  15. Airborne remote sensing of estuarine intertidal radionuclide concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Rainey, M.P

    1999-08-01

    The ability to map industrial discharges through remote sensing provides a powerful tool in environmental monitoring. Radionuclide effluents have been discharged, under authorization, into the Irish Sea from BNFL (British Nuclear Fuels Pic.) sites at Sellafield and Springfields since 1952. The quantitative mapping of this anthropogenic radioactivity in estuarine intertidal zones is crucial for absolute interpretations of radionuclide transport. The spatial resolutions of traditional approaches e.g. point sampling and airborne gamma surveys are insufficient to support geomorphic interpretations of the fate of radionuclides in estuaries. The research presented in this thesis develops the use of airborne remote sensing to derive high-resolution synoptic data on the distribution of anthropogenic radionuclides in the intertidal areas of the Ribble Estuary, Lancashire, UK. From multidate surface sediment samples a significant relationship was identified between the Sellafield-derived {sup 137}Cs and {sup 241}Am and clay content (r{sup 2} = 0.93 and 0.84 respectively). Detailed in situ, and laboratory, reflectance (0.4-2.5{mu}m) experiments demonstrated that significant relationships exist between Airborne Thematic Mapper (ATM) simulated reflectance and intertidal sediment grain-size. The spectral influence of moisture on the reflectance characteristics of the intertidal area is also evident. This had substantial implications for the timing of airborne image acquisition. Low-tide Daedalus ATM imagery (Natural Environmental Research Council) was collected of the Ribble Estuary on May 30th 1997. Preprocessing and linear unmixing of the imagery allowed accurate sub-pixel determinations of sediment clay content distributions (r{sup 2} = 0.81). Subsequently, the established relationships between {sup 137}Cs and {sup 241}Am and sediment grain-size enabled the radionuclide activity distributions across the entire intertidal area (92 km{sup 2}) to be mapped at a geomorphic scale

  16. Radioactivity monitoring of the Irish marine environment 1998 and 1999

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T.; Long, S.; Dowdall, A. [and others

    2000-09-01

    The safety of the food chain and the protection of the environment are prime concerns of the Irish public. This report presents the results of the marine radioactivity monitoring programme carried out by the Radiological Protection Institute of Ireland (RPII) during 1998 and 1999. The primary objective of the programme is to assess the exposure of the Irish population resulting from radioactive contamination of the Irish marine environment and to estimate the risks to health from this exposure. Discharged radioactive waste from the British Nuclear Fuels plc (BNFL) reprocessing plant at Sellafield continues to be the dominant source of this contamination. In particular, the remobilization from sediments of historic discharges makes an important contribution to the levels of radioactivity in the seawater of the western Irish Sea. Approximately 300 samples of fish, shellfish, seaweed, seawater and sediment were collected in 1998 and again in 1999. Both the Marine Institute and the Department of the Marine and Natural Resources assisted the Institute with this sampling. The samples were analysed for a range of contaminating radionuclides at the Institute's radio-analytical laboratory. The results show that the radionuclide of greatest dosimetric significance continues to be caesium-137. The activity concentration of this radionuclide in the Irish marine environment has remained relatively stable since the mid 1990s but at a lower level than that observed during the previous two decades. Along the Irish coastline the highest activity concentrations observed are in the north-east. Since 1994 the commissioning and operation of new facilities at Sellafield have resulted in an increase in the discharges of technetium-99 to the Irish Sea. This has been reflected in an increase in the activity concentrations of this radionuclide at all east coast sampling sites between 1994 and 1999. However, the low radiotoxicity of technetium-99 means that it is generally of lesser

  17. PUREX/UO3 Facilities deactivation lessons learned history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1996-09-19

    Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitric acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings and were

  18. Radioactive Substances Act 1993 - annex document. To accompany the explanatory document and draft authorisation prepared by the Environment Agency to assist public consultation on the application by Devonport Royal Dockyard Limited to dispose of radioactive wastes from Devonport Royal Dockyard Plymouth

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    ions are absorbed onto resins and removed from solution. DML's policy for these metal ion radionuclides is to ''concentrate and contain'', so that as high a fraction as possible is contained within solid waste and as law a fraction as possible discharged in the liquid and aerial waste streams. Liquid waste is treated - repeatedly if necessary - until the concentration of the radionuclides is below a level at which further treatment will not yield any significant further. improvement. The solid wastes created are tent to the BNFL Drigg low level waste repository for final disposal - either directly, or after conditioning at AEA Technology's facilities at Winfrith in Dorset. Some solid wastes that initially have a higher concentration of radionuclides than would be permissible to dispose at Drigg are stored on site for a period to allow radioactive decay before final disposal. (author) (abstract truncated)