WorldWideScience

Sample records for bnct neutron irradiation

  1. Proceedings of neutron irradiation technical meeting on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  2. Proceedings of neutron irradiation technical meeting on BNCT

    International Nuclear Information System (INIS)

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  3. Improvement of neutron irradiation field of research reactors for BNCT

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    1992-01-01

    The modification of research reactors for an improvement of the irradiation field for BNCT has been investigated in comparison with the field characteristics of the 'old' configuration at the Musashi reactor. The new point of this study is that the evaluation has been done by using an arrangement including both the facility structure and a whole-body phantom, and also by considering the whole-body absorbed dose. (author)

  4. Time factor of BSH from intravenous infusion to neutron irradiation for BNCT in patients with glioblastoma

    International Nuclear Information System (INIS)

    Kageji, T.; Nagahiro, S.; Kitamura, K.; Nakagawa, Y.; Hatanaka, H.; Haritz, D.; Grochulla, F.; Haselsberger, K.; Gabel, D.

    2000-01-01

    The present report evaluates the time factor of BSH from infusion to irradiation in patients with glioblastoma as a cooperative study in Europe and Japan. For BNCT with BSH after intravenous infusion, this work confirms that the planned neutron irradiation after intravenous BSH infusion appears to be optimal around 12-19 hours after the infusion. (author)

  5. MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.

    Science.gov (United States)

    Kotiluoto, P; Auterinen, I

    2004-11-01

    A successful boron neutron capture treatment (BNCT) of a patient with multiple liver metastases has been first given in Italy, by placing the removed organ into the thermal neutron column of the Triga research reactor of the University of Pavia. In Finland, FiR 1 Triga reactor with an epithermal neutron beam well suited for BNCT has been extensively used to irradiate patients with brain tumors such as glioblastoma and recently also head and neck tumors. In this work we have studied by MCNP Monte Carlo simulations, whether it would be beneficial to treat an isolated liver with epithermal neutrons instead of thermal ones. The results show, that the epithermal field penetrates deeper into the liver and creates a build-up distribution of the boron dose. Our results strongly encourage further studying of irradiation arrangement of an isolated liver with epithermal neutron fields.

  6. Fission reactor based epithermal neutron irradiation facilities for routine clinical application in BNCT-Hatanaka memorial lecture

    International Nuclear Information System (INIS)

    Harling, Otto K.

    2009-01-01

    Based on experience gained in the recent clinical studies at MIT/Harvard, the desirable characteristics of epithermal neutron irradiation facilities for eventual routine clinical BNCT are suggested. A discussion of two approaches to using fission reactors for epithermal neutron BNCT is provided. This is followed by specific suggestions for the performance and features needed for high throughput clinical BNCT. An example of a current state-of-the-art, reactor based facility, suited for routine clinical use is discussed. Some comments are provided on the current status of reactor versus accelerator based epithermal neutron sources for BNCT. This paper concludes with a summary and a few personal observations on BNCT by the author.

  7. Evaluation of neutron irradiation fields for BNCT by using absorbed dose in a phantom

    International Nuclear Information System (INIS)

    Aizawa, O.

    1993-01-01

    In a previous paper, the author defined the open-quotes irradiation timeclose quotes as the time of irradiation in which the maximum open-quotes total background doseclose quotes becomes 2,500 RBE-cGy. In this paper, he has modified the definition a little as the time of irradiation in which the maximum open-quotes lμg/g B-10 doseclose quotes becomes 3,000 RBE-cGy, because he assumed that normal tissue contained 1μg/g B-10. Moreover, he has modified the dose criteria for BNCT as follows: The open-quotes eye doseclose quotes, open-quotes total body doseclose quotes and open-quotes except-head doseclose quotes should be less that 200, 100 and 50 RBE-cGy, respectively. He has added one more criterion for BNCT that the thermal neutron fluence at the tumor position should be over 2.5x10 12 n/cm 2 at the open-quotes irradiation timeclose quotes. The distance from the core side to the irradiation port in the open-quotes old configurationclose quotes of the Musashi reactor (TRIGA-II, 100kW) was 160 cm. He is now planning to design an eccentric core and to move the reactor core nearer to the irradiation port, distance between the core side and the irradiation port to be 140, 130 and 120cm. The other assumptions used in this paper are as follows: (1) The B-10 concentrations in tumor are 30 and/or 10μg/g. (2) The depth of the tumor is 5.0 cm to 5.5 cm from the surface. (3) The RBE values used are 1.0 for all gamma rays and 2.3 for B 10 (n,α) reaction products. (4) The RBE values for neutrons are the following three cases: the first case is using 1.6 for all neutrons; the second one is using 3.2 for non-thermal neutrons and 1.6 for thermal neutrons; the third case is using 4.8 for fast neutrons, 3.2 for faster epithermal and epithermal neutrons, and 1.6 for thermal neutrons

  8. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia

    Science.gov (United States)

    Bortolussi, S.; Protti, N.; Ferrari, M.; Postuma, I.; Fatemi, S.; Prata, M.; Ballarini, F.; Carante, M. P.; Farias, R.; González, S. J.; Marrale, M.; Gallo, S.; Bartolotta, A.; Iacoviello, G.; Nigg, D.; Altieri, S.

    2018-01-01

    University of Pavia is equipped with a TRIGA Mark II research nuclear reactor, operating at a maximum steady state power of 250 kW. It has been used for many years to support Boron Neutron Capture Therapy (BNCT) research. An irradiation facility was constructed inside the thermal column of the reactor to produce a sufficient thermal neutron flux with low epithermal and fast neutron components, and low gamma dose. In this irradiation position, the liver of two patients affected by hepatic metastases from colon carcinoma were irradiated after borated drug administration. The facility is currently used for cell cultures and small animal irradiation. Measurements campaigns have been carried out, aimed at characterizing the neutron spectrum and the gamma dose component. The neutron spectrum has been measured by means of multifoil neutron activation spectrometry and a least squares unfolding algorithm; gamma dose was measured using alanine dosimeters. Results show that in a reference position the thermal neutron flux is (1.20 ± 0.03) ×1010 cm-2 s-1 when the reactor is working at the maximum power of 250 kW, with the epithermal and fast components, respectively, 2 and 3 orders of magnitude lower than the thermal component. The ratio of the gamma dose with respect to the thermal neutron fluence is 1.2 ×10-13 Gy/(n/cm2).

  9. Boron neutron capture therapy combined with fractionated photon irradiation for glioblastoma: A recursive partitioning analysis of BNCT patients

    International Nuclear Information System (INIS)

    Nakai, K.; Yamamoto, T.; Aiyama, H.; Takada, T.; Yoshida, F.; Kageji, T.; Kumada, H.; Isobe, T.; Endo, K.; Matsuda, M.; Tsurubuchi, T.; Shibata, Y.; Takano, S.; Mizumoto, M.; Tsuboi, K.; Matsumura, A.

    2011-01-01

    Eight patients to received Boron Neutron Capture Therapy (BNCT) were selected from 33 newly diagnosed glioblastoma patients (NCT(+) group). Serial 42 glioblastoma patients (NCT(−) group) were treated without BNCT. The median OS of the NCT(+) group and NCT (−) group were 24.4 months and 14.9 months. In the high risk patients (RPA class V), the median OS of the NCT(+) group tended to be better than that of NCT(−) group. 50% of BNCT patients were RPA class V. - Highlights: ► We treated 8 patients with boron neutron capture therapy (NCT) for glioblastoma. ► We compare the overall survival between NCT including series and without NCT series. ► The median overall survival of the NCT including series was 24.4 months. ► In the high risk patients, the median OS of NCT including series tended to be better.

  10. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  11. Bystander effect-induced mutagenicity in HPRT locus of CHO cells following BNCT neutron irradiation: Characteristics of point mutations by sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kinashi, Yuko [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)], E-mail: kinashi@rri.kyoto-u.ac.jp; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)

    2009-07-15

    To investigate bystander mutagenic effects induced by alpha particles during boron neutron capture therapy (BNCT), we mixed cells that were electroporated with borocaptate sodium (BSH), which led to the accumulation of {sup 10}B inside the cells, with cells that did not contain the boron compound. BSH-containing cells were irradiated with {alpha} particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction, whereas cells without boron were only affected by the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. The frequency of mutations induced in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus was examined in Chinese hamster ovary (CHO) cells irradiated with neutrons (Kyoto University Research Reactor: 5 MW). Neutron irradiation of 1:1 mixtures of cells with and without BSH resulted in a survival fraction of 0.1, and the cells that did not contain BSH made up 99.4% of the surviving cell population. Using multiplex polymerase chain reactions (PCRs), molecular structural analysis indicated that most of the mutations induced by the bystander effect were point mutations and that the frequencies of total and partial deletions induced by the bystander effect were lower than those resulting from the {alpha} particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction or the neutron beam from the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. The types of point mutations induced by the BNCT bystander effect were analyzed by cloning and sequencing methods. These mutations were comprised of 65.5% base substitutions, 27.5% deletions, and 7.0% insertions. Sequence analysis of base substitutions showed that transversions and transitions occurred in 64.7% and 35.3% of cases, respectively. G:C{yields}T:A transversion induced by 8-oxo-guanine in DNA occurred in 5.9% of base substitution mutants in the BNCT bystander group. The characteristic mutations seen in this group, induced by BNCT {alpha} particles

  12. The status of Tsukuba BNCT trial: BPA-based boron neutron capture therapy combined with X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T., E-mail: tetsu_tsukuba@yahoo.co.jp [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)] [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Nakai, K. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Nariai, T. [Department of Neurosurgery, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo (Japan); Kumada, H.; Okumura, T.; Mizumoto, M.; Tsuboi, K. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Zaboronok, A.; Ishikawa, E.; Aiyama, H.; Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)

    2011-12-15

    The phase II trial has been prepared to assess the effectiveness of BPA (250 mg/kg)-based NCT combined with X-ray irradiation and temozolomide (75 mg/m{sup 2}) for the treatment of newly diagnosed GBM. BPA uptake is determined by {sup 18}F-BPA-PET and/or {sup 11}C-MET-PET, and a tumor with the lesion to normal ratio of 2 or more is indicated for BNCT. The maximum normal brain point dose prescribed was limited to 13.0 Gy or less. Primary end point is overall survival.

  13. An Accelerator Neutron Source for BNCT

    International Nuclear Information System (INIS)

    Blue, Thomas E.

    2006-01-01

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were (1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, (2) that the patient treatment time be reasonable, (3) that the proton current required to treat patients in reasonable times be technologically achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally (4) that the treatment be safe for the patients

  14. An Accelerator Neutron Source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  15. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-01-01

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the 10 B(n,α) 7 Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented

  16. Models for estimation of the 10B concentration after BPA-fructose complex infusion in patients during epithermal neutron irradiation in BNCT

    International Nuclear Information System (INIS)

    Ryynaenen, Paeivi M.; Kortesniemi, Mika; Coderre, Jeffrey A.; Diaz, Aidnag Z.; Hiismaeki, Pekka; Savolainen, Sauli E.

    2000-01-01

    Purpose: To create simple and reliable models for clinical practice for estimating the blood 10 B time-concentration curve after p-boronophenylalanine fructose complex (BPA-F) infusion in patients during neutron irradiation in boron neutron capture therapy (BNCT). Methods and Materials: BPA-F (290 mg BPA/kg body weight) was infused i.v. during two hours to 10 glioblastoma multiforme patients. Blood samples were collected during and after the infusion. Compartmental models and bi-exponential function fit were constructed based on the 10 B blood time-concentration curve. The constructed models were tested with data from six additional patients who received various amounts of infused BPA-F and data from one patient who received a one-hour infusion of 170 mg BPA/kg body weight. Results: The resulting open two-compartment model and bi-exponential function estimate the clearance of 10 B after 290 mg BPA/kg body weight infusion from the blood with satisfactory accuracy during the first irradiation field (1 ppm, i.e., 7%). The accuracy of the two models in predicting the clearance of 10 B during the second irradiation field are for two-compartment model 1.0 ppm (8%) and 0.2 ppm (2%) for bi-exponential function. The models predict the average blood 10 B concentration with an increasing accuracy as more data points are available during the treatment. Conclusion: By combining the two models, a robust and practical modeling tool is created for the estimation of the 10 B concentration in blood after BPA-F infusion

  17. Boron Neutron Capture Therapty (BNCT) in an Oral Precancer Model: Therapeutic Benefits and Potential Toxicity of a Double Application of BNCT with a Six-Week Interval

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Monti Hughes; Emiliano C.C. Pozzi; Elisa M. Heber; Silvia Thorp; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; Ana J. Molinari; Marcela A. Garabalino; David W. Nigg; Veronica A. Trivillin; Amanda E. Schwint

    2011-11-01

    Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10 + BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB- 10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.

  18. Clinical results of boron neutron capture therapy (BNCT) for glioblastoma

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H.

    2011-01-01

    The purpose of this study was to evaluate the clinical outcome of BSH-based intra-operative BNCT (IO-BNCT) and BSH and BPA-based non-operative BNCT (NO-BNCT). We have treated 23 glioblastoma patients with BNCT without any additional chemotherapy since 1998. The median survival time (MST) of BNCT was 19.5 months, and 2-year, 3-year and 5-year survival rates were 26.1%, 17.4% and 5.8%, respectively. This clinical result of BNCT in patients with GBM is superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment. - Highlights: ► In this study, we evaluate the clinical outcome of boron neutron capture therapy (BNCT) for malignant brain tumors. ► We have treated 23 glioblastoma (GBM) patients with BNCT without any additional chemotherapy. ► Clinical results of BNCT in patients with GBM are superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment.

  19. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    International Nuclear Information System (INIS)

    Evans, J.F.; Blue, T.E.

    1996-01-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions open-quotes How much?close quotes and open-quotes What kind?close quotes of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient open-quotes scatterer,close quotes and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h -1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs

  20. Optimization of the irradiation beam in the BNCT research facility at IEA-R1 reactor

    International Nuclear Information System (INIS)

    Castro, Vinicius Alexandre de

    2014-01-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapeutic technique for the treatment of some types of cancer whose useful energy comes from a nuclear reaction that occurs when thermal neutron impinges upon a Boron-10 atom. In Brazil there is a research facility built along the beam hole number 3 of the IEA-R1 research reactor at IPEN, which was designed to perform BNCT research experiments. For a good performance of the technique, the irradiation beam should be mostly composed of thermal neutrons with a minimum as possible gamma and above thermal neutron components. This work aims to monitor and evaluate the irradiation beam on the sample irradiation position through the use of activation detectors (activation foils) and also to propose, through simulation using the radiation transport code, MCNP, new sets of moderators and filters which shall deliver better irradiation fields at the irradiation sample position In this work, a simulation methodology, based on a MCNP card, known as wwg (weight window generation) was studied, and the neutron energy spectrum has been experimentally discriminated at 5 energy ranges by using a new set o activation foils. It also has been concluded that the BNCT research facility has the required thermal neutron flux to perform studies in the area and it has a great potential for improvement for tailoring the irradiation field. (author)

  1. Accelerator based-boron neutron capture therapy (BNCT)-clinical QA and QC

    International Nuclear Information System (INIS)

    Suzuki, Minoru; Tanaka, Hiroki; Sakurai, Yoshinori; Yong, Liu; Kashino, Genro; Kinashi, Yuko; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2009-01-01

    Alpha-particle and recoil Li atom yielded by the reaction ( 10 B, n), due to their high LET properties, efficiently and specifically kill the cancer cell that has incorporated the boron. Efficacy of this boron neutron capture therapy (BNCT) has been demonstrated mainly in the treatment of recurrent head/neck and malignant brain cancers in Kyoto University Research Reactor Institute (KUR). As the clinical trial of BNCT is to start from 2009 based on an accelerator (not on the Reactor), this paper describes the tentative outline of the standard operation procedure of BNCT for its quality assurance (QA) and quality control (QC) along the flow of its clinical practice. Personnel concerned in the practice involve the attending physician, multiple physicians in charge of BNCT, medical physicists, nurses and reactor stuff. The flow order of the actual BNCT is as follows: Pre-therapeutic evaluation mainly including informed consent and confirmation of the prescription; Therapeutic planning including setting of therapy volume, and of irradiation axes followed by meeting for stuffs' agreement, decision of irradiating field in the irradiation room leading to final decision of the axis, CT for the planning, decision of the final therapeutic plan according to Japan Atomic Energy Agency-Computational Dosimetry System (JCDS) and meeting of all related personnel for the final confirmation of therapeutic plan; and BNCT including the transport of patient to KUR, dripping of boronophenylalanine, setting up of the patient on the machine, blood sampling for pharmacokinetics, boron level measurement for decision of irradiating time, switch on/off of the accelerator, confirmation of patient's movement in the irradiated field after the neutron irradiation, blood sampling for confirmation of the boron level, and patient's leave from the room. The QA/QC check is principally to be conducted with the two-person rule. The purpose of the clinical trial is to establish the usefulness of BNCT

  2. Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats

    International Nuclear Information System (INIS)

    Trivillin, V.A.; Garabalino, M.A.; Colombo, L.L.

    2013-01-01

    Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats Introduction: Boron Neutron Capture Therapy (BNCT) is based on selective tumor uptake of boron compounds, followed by neutron irradiation. BNCT was proposed for the treatment of unresectable, diffuse lung metastases. The aim of the present study was to perform BNCT studies in an experimental model of lung metastases. Materials and Methods: 3 x 106/0.5 ml colon carcinoma cells (DHD/K12/TRb) were injected iv in syngeneic BDIX rats. Three weeks post-inoculation, rats with diffuse lung metastases were used for in vivo BNCT studies in the RA-3 Nuclear Reactor. Based on previous biodistribution studies and computational dosimetry with Monte Carlo simulation, 2 doses were prescribed, i.e. 4 Gy and 8 Gy minimum absorbed dose to tumor. The animals were assigned to 5 experimental groups (n= 4 to 8) at each dose level: T0 (euthanized pre-treatment), BPA-BNCT, Comb-BNCT (BPA+GB-10), Beam only (background dose) and Sham (same manipulation, no treatment). Boron concentration was measured in a blood sample taken pre-irradiation to verify that the value was in the range established in previous biodistribution studies. The animals were followed clinically for 2 weeks after neutron irradiation and then euthanized to assess the response of tumor and normal lung, macroscopically and histologically. To date we have evaluated the end-point weight of lung (normal lung + metastases) and % lung weight/body weight as an indicator of tumor growth. Results: The statistical analysis (ANOVA) of % lung weight/body weight showed statistically significant differences (p<0.05) between groups T0 (0.79 ± 0.38) and Sham (1.87 ± 0.91). No statistically significant differences were observed between the Beam only groups (at both dose levels) and Sham. Similar and statistically significant tumor control was induced in the groups BPA-BNCT Low dose (LD) (0.56 ± 0.11), BPA-BNCT High dose (HD) (0.80 ± 0.16), Comb-BNCT

  3. Spectrum shaping assessment of accelerator-based fusion neutron sources to be used in BNCT treatment

    Science.gov (United States)

    Cerullo, N.; Esposito, J.; Daquino, G. G.

    2004-01-01

    Monte Carlo modelling of an irradiation facility, for boron neutron capture therapy (BNCT) application, using a set of advanced type, accelerator based, 3H(d,n) 4He (D-T) fusion neutron source device is presented. Some general issues concerning the design of a proper irradiation beam shaping assembly, based on very hard energy neutron source spectrum, are reviewed. The facility here proposed, which represents an interesting solution compared to the much more investigated Li or Be based accelerator driven neutron source could fulfil all the medical and safety requirements to be used by an hospital environment.

  4. Clinical potential of boron neutron capture therapy for locally recurrent inoperable previously irradiated head and neck cancer

    International Nuclear Information System (INIS)

    Lim, Diana; Quah, Daniel SC; Leech, Michelle; Marignol, Laure

    2015-01-01

    This review compares the safety and efficacy of boron neutron capture therapy (BNCT) in the treatment of previously irradiated, inoperable locoregional recurrent HNC patients and compares BNCT against the standard treatment of platinum-based chemotherapy. Our analysis of published clinical trials highlights efficacy of BNCT associated with mild side effects. However, the use of BNCT should be explored in stratified randomised trials. - Highlights: • BNCT can prolong median overall survival. • BNCT can be associated with severe adverse effects. • BNCT may be comparable to chemotherapy-based regimens. • BNCT may be comparable to re-irradiation techniques regimens in patients with low performance status.

  5. Neutron therapy coupling brachytherapy and boron neutron capture therapy (BNCT) techniques

    International Nuclear Information System (INIS)

    Chaves, Iara Ferreira.

    1994-12-01

    In the present dissertation, neutron radiation techniques applied into organs of the human body are investigated as oncologic radiation therapy. The proposal treatment consists on connecting two distinct techniques: Boron Neutron Capture Therapy (BNCT) and irradiation by discrete sources of neutrons, through the brachytherapy conception. Biological and radio-dosimetrical aspects of the two techniques are considered. Nuclear aspects are discussed, presenting the nuclear reactions occurred in tumoral region, and describing the forms of evaluating the dose curves. Methods for estimating radiation transmission are reviewed through the solution of the neutron transport equation, Monte Carlo methodology, and simplified analytical calculation based on diffusion equation and numerical integration. The last is computational developed and presented as a quickly way to neutron transport evaluation in homogeneous medium. The computational evaluation of the doses for distinct hypothetical situations is presented, applying the coupled techniques BNTC and brachytherapy as an possible oncologic treatment. (author). 78 refs., 61 figs., 21 tabs

  6. Liquid Li based neutron source for BNCT and science application.

    Science.gov (United States)

    Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S

    2015-12-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Liquid Li based neutron source for BNCT and science application

    International Nuclear Information System (INIS)

    Horiike, H.; Murata, I.; Iida, T.; Yoshihashi, S.; Hoashi, E.; Kato, I.; Hashimoto, N.; Kuri, S.; Oshiro, S.

    2015-01-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of "7Li(p,n)"7Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. - Highlights: • Liquid lithium (Li) is a candidate material for a target of intense neutron source. • An accelerator based neutron source with p-liquid Li target for boron neutron capture therapy is under development in Osaka University, Japan. • In our system, the harmful radiation dose due to rays and fast neutrons will be suppressed very low. • The system performance are very promising as a state of art cancer treatment system. • The project is planned as a joint undertaking between industries and Osaka University.

  8. An accelerator neutron source for BNCT. Technical progress report, 1 June 1993--31 May 1994

    International Nuclear Information System (INIS)

    Blue, T.E.; Vafai, K.

    1994-02-01

    This is the progress report for the project entitled, ''An Accelerator Neutron Source for BNCT.'' The progress report is for the period from July 1, 1993 to date. The overall objective of our research project is to develop an Accelerator Epithermal Neutron Irradiation Facility (AENIF) for Boron Neutron Capture Therapy (BNCT). The AENIF consists of a 2.5 MeV high current proton accelerator, a lithium target to produce source neutrons, and a moderator/reflector assembly to obtain from the energetic source neutrons an epithermal neutron field suitable for BNCT treatments. Our project goals are to develop the non-accelerator components of the AENIF, and to specifically include in our development: (1) design, numerical simulation, and experimental verification of a target assembly which is capable of removing 75 kW of beam power; (2) re-optimization of the moderator assembly design based on in-phantom dose assessments using neutron spectra calculated in phantom and an energy-dependent neutron Relative Biological Effectiveness (RBE); (3) construction of a prototype moderator assembly and confirmation of its design by measurements; (4) design of the shielding of the accelerator and treatment rooms for an AENIF; and (5) design of a high energy beam transport system which is compatible with the shielding design and the thermal-hydraulic design

  9. Radiation Transport Simulation for Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Ziegner, M.; Blaickner, M. [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Molecular Medicine, Muthgasse 11, 1190 Wien (Austria); Ziegner, M.; Khan, R.; Boeck, H. [Vienna University of Technology, Institute of Atomic and Subatomic Physics, Stadionallee 2, 1020 Wien (Austria); Bortolussi, S.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, National Institute of Nuclear Physics (INFN) Pavia Section, Pavia (Italy); Schmitz, T.; Hampel, G. [Nuclear Chemistry, University of Mainz, Fritz Strassmann Weg 2, 55099 Mainz (Germany)

    2011-07-01

    This work is part of a larger project initiated by the University of Mainz and aiming to use the university's TRIGA reactor to develop a treatment for liver metastases based on Boron Neutron Capture Therapy (BNCT). Diffuse distribution of cancerous cells within the organ makes complete resection difficult and the vicinity to radiosensitive organs impedes external irradiation. Therefore the method of 'autotransplantation', first established at the University of Pavia, is used. The liver is taken out of the body, irradiated in the thermal column of the reactor, therewith purged of metastases and then reimplanted. A highly precise dosimetry system is to be developed by means of measurements at the University of Mainz and computational calculations at the AIT. The stochastic MCNP-5 Monte Carlo-Code, developed by Los Alamos Laboratories, is applied. To verify the calculations of the flux and the absorbed dose in matter a number of measurements are performed irradiating different phantoms and liver sections in a 20cm x 20cm beam tube, which was created by removing graphite blocks from the thermal column of the reactor. The detector material consists of L- {alpha} -alanine pellets which are thought to be the most suitable because of their good tissue equivalence, small size and their wide response range. Another experiment focuses on the determination of the relative biological effectiveness (RBE-factor) of the neutron and photon dose for liver cells. Therefore cell culture plates with the cell medium enriched with {sup 157}Gd and {sup 10}B at different concentrations are irradiated. With regard to the alanine pellets MCNP-5 calculations give stable results. Nevertheless the absorbed dose is underestimated compared to the measurements, a phenomenon already observed in previous works. The cell culture calculations showed the enormous impact of the added isotopes with high thermal neutron cross sections, especially {sup 157}Gd, on the absorbed dose

  10. Neutron field characterization in the installation for BNCT study in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Carneiro Junior, Valdeci

    2008-01-01

    This work aims to characterize the mixed neutron and gamma field, in the sample irradiation position, in a research installation for Boron Neutron Capture Therapy (BNCT), in the IPEN IEA-R1 reactor. The BNCT technique has been studied as a safe and selective option in the treatment of resistant cancerigenous tumors or considered non-curable by the conventional techniques, for example, the Glioblastoma Multiform - a brain cancerigenous tumor. Neutron flux measurements were carried out: thermal, resonance and fast, as well as neutron and gamma rays doses, in the sample position, using activation foils detectors and thermoluminescent dosimeters. For the determination of the neutron spectrum and intensity, a set of different threshold activation foils and gold foils covered and uncovered with cadmium irradiated in the installation was used, analyzed by a high Pure Germanium semiconductor detector, coupled to an electronic system suitable for gamma spectrometry. The results were processed with the SAND-BP code. The doses due to gamma and neutron rays were determined using thermoluminescent dosimeters TLD 400 and TLD 700 sensitive to gamma and TLD 600, sensitive to neutrons. The TLDs were selected and used for obtaining the calibration curves - dosimeter answer versus dose - from each of the TLD three types, which were necessary to calculate the doses due to neutron and gamma, in the sample position. The radiation field, in the sample irradiation position, was characterized flux for thermal neutrons of 1.39.10 8 ± 0,12.10 8 n/cm 2 s the doses due to thermal neutrons are three times higher than those due to gamma radiation and confirm the reproducibility and consistency of the experimental findings obtained. Considering these results, the neutron field and gamma radiation showed to be appropriated for research in BNCT. (author)

  11. A preclinical study of boron neutron capture therapy (BNCT) of spontaneous tumors in cats at RA-6 in Argentina

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.; Calzetta, Osvaldo A.; Blaumann, Hernan R.; Longhino, J.; Rao, Monica; Cantarelli, Maria de los A.

    2005-01-01

    BNCT is a binary treatment modality that combines irradiation with a thermal or epithermal neutron beam with tumor-seeking, boron containing drugs to produce selective irradiation of tumor tissue. Having demonstrated that BNCT mediated by boronophenylalanine (BPA) induced control of experimental squamous cell carcinomas (SCC) of the hamster cheek pouch mucosa with no damage to normal tissue we explored the feasibility and safety of treating spontaneous head and neck tumors, with particular focus on SCC, of terminal feline patients with low dose BPA-BNCT employing the thermal beam of RA-1. Having demonstrated partial tumor control with no radio toxic effects, the aim of the present study was to evaluate the effect of BPA-BNCT on tumor and normal tissue in 3 cases of spontaneous SCC in feline patients employing a higher neutron fluence than in the previous study. The present study was performed at RA-6 with the thermalized epithermal neutron beam. All three irradiations were successful. Except for an initial, moderate and reversible mucositis, no significant radio toxic effects were observed in terms of clinical follow-up, histological examination, biochemical analysis and assessment of autopsy material. Partial tumor control was evidenced in terms of growth inhibition and partial necrosis and improvement in the quality of life during the survival period. Optimization of the therapeutic efficacy of BNCT would require improvement in boron tumor targeting and strategies to increase in-depth dose in large tumors. (author)

  12. Radiobiology studies for the evaluation of epithermal neutron beams used for BNCT

    International Nuclear Information System (INIS)

    Green, S.; Jones, B.; Mill, A.J.

    2006-01-01

    This paper outlines our plans for a study to establish the radiobiological effectiveness of the various mixes of radiation components present in an epithermal neutron beam designed for BNCT and to incorporate these data into clinical protocols for the treatment of malignant glioma. This is a description of work which is funded and just now beginning in Birmingham so no results can be presented. Our project will involve a combination of experimental measurements carried out in Birmingham and in Boston and mathematical modelling carried out in Birmingham. Despite all the extant in-vitro and in-vivo work, there is no widely accepted method to determine biological effect by accounting for variations in beam component mix, dose rate and treatment fractionation for disparate from the various BNCT centres. The objectives of this study are: To develop a cell-based radiobiology protocol to provide essential data on safety and efficacy of beams for Boron Neutron Capture Therapy (BNCT) in advance of clinical trials. To exploit the facilities at Massachusetts Institute of Technology for variable dose-rate epithermal irradiations to validate the above protocol. To develop mathematical models of this radiobiological system that can be used to inform decisions on dose selection, fractionation schedules, BNCT use as supplementary boosts or for re-treatment of recurrent cancers. To provide fundamental data relevant to the understanding of the radiobiology of simultaneous mixed high-and low-LET radiations over a clinically relevant dose-range. (author)

  13. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  14. In vitro studies of the cellular response to boron neutron capture therapy (BNCT) in thyroid carcinoma

    International Nuclear Information System (INIS)

    Rodriguez, C; Carpano, M; Perona, M; Thorp, S; Curotto, P; Pozzi, E; Casal, M; Juvenal, G; Pisarev, M; Dagrosa, A

    2012-01-01

    Background: Previously, we have started to study the mechanisms of DNA damage and repair induced by BNCT in thyroid carcinoma some years ago. We have shown different genotoxic patterns for tumor cells irradiated with gamma rays, neutrons alone or neutrons plus different compounds, boronophenylalanine (BPA) or α, β - dihydroxyethyl)-deutero-porphyrin IX (BOPP). In the present study we analyzed the expression of Ku70, Rad51 and Rad54 components of non homologous end-joing (NHEJ) and homologous recombination repair (HRR) pathways, respectively, induced by BNCT in human cells of thyroid carcinoma. Methods: A human cell line of follicular thyroid carcinoma (WRO) in exponential growth phase was distributed into the following groups: 1) Gamma Radiation, 2) Radiation with neutrons beam (NCT), 3) Radiation with n th in presence of BPA (BNCT). A control group for each treatment was added. The cells were irradiated in the thermal column facility of the RA-3 reactor (flux= 1.10 10 n/cm 2 sec) or with a source of 60 Co. The irradiations were performed during different lapses in order to obtain a total physical dose of 3 Gy (±10%). The mRNA expressions of Ku70, Rad 51 and Rad 54 were analysed by reverse transcription-polymerase chain reaction (RT-PCR) at different times post irradiation (2, 4, 6, 24 and 48 h). DNA damage was evaluated by immunofluorescence using an antibody against the phosphorylation of histone H2AX, which indicates double strand breaks in the DNA. Results: The expression of Rad51 increased at 2 h post-irradiation and it lasted until 6 h only in the neutron and neutron + BPA groups (p<0.05). Rad54 showed an up-regulation from 2 to 24 h in both groups irradiated with the neutron beam (with and without BPA) (p<0.05). On the other hand, Ku70 mRNA did not show a modification of its expression in the irradiated groups respect to the control group. Conclusion: these results would indicate an activation of the HRR pathway in the thyroid carcinoma cells treated by

  15. Medical set-up of boron neutron capture therapy (BNCT) for malignant glioma at the Japan research reactor (JRR)-4

    International Nuclear Information System (INIS)

    Yamamoto, T.; Matsumura, A.; Nose, T.; Shibata, Y.; Nakai, K.; Sakurai, F.; Kishi, T.; Kumada, H.; Yamamoto, K.; Torii, Y.

    2001-01-01

    The University of Tsukuba project for boron neutron capture therapy (BNCT) was initiated at the Japan Atomic Energy Research Institute (JAERI) in 1992. The clinical study for BNCT began at the Japan Research Reactor (JRR)-2 of the JAERI in November 1995. By the end of 1998, a new medical irradiation facility had been installed in JRR-4 of that included a new medical treatment room and patient-monitoring area adjacent to the irradiation room. The medical treatment room was built to reflect a hospital-type operation room that includes an operating table with a carbon head frame, anesthesia apparatus with several cardiopulmonary monitors, etc. Following craniotomy in the treatment room, a patient under anesthesia is transported into the irradiation room for BNCT. The boron concentration in tissue is measured with prompt gamma ray analysis (PGA) and simultaneously by inductively coupled plasma atomic emission spectroscopy (ICP-AES) methods. For the immediate pre- and post-BNCT care, a collaborating neurosurgical department of the University of Tsukuba was prepared in the vicinity of the JAERI. The long term follow-up is done at the University of Tsukuba Hospital. Epithermal neutron beam also became available at the new JRR-4. By changing the thickness and/or the configuration of heavy water, a cadmium plate, and a graphite reflector, the JRR-4 provides a variety of neutron beams, including three typical beams (Epithermal mode and Thermal modes I and II). Intraoperative BNCT using the thermal beam is planned to study at the beginning of the clinical trial. The ongoing development of the JAERI Computational Dosimetry System (JCDS) and radiobiological studies have focused in the application of the epithermal beam for BNCT. After obtaining these basic data, we are planning to use the epithermal beam for intraoperative BNCT. (author)

  16. Comparison of the radiobiological effects of Boron neutron capture therapy (BNCT) and conventional Gamma Radiation

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Carpano, Marina; Perona, Marina; Thomasz, Lisa; Juvenal, Guillermo J.; Pisarev, Mario; Pozzi, Emiliano; Thorp, Silvia

    2009-01-01

    BNCT is an experimental radiotherapeutic modality that uses the capacity of the isotope 10 B to capture thermal neutrons leading to the production of 4 He and 7 Li, particles with high linear energy transfer (LET). The aim was to evaluate and compare in vitro the mechanisms of response to the radiation arising of BNCT and conventional gamma therapy. We measured the survival cell fraction as a function of the total physical dose and analyzed the expression of p27/Kip1 and p53 by Western blotting in cells of colon cancer (ARO81-1). Exponentially growing cells were distributed into the following groups: 1) BPA (10 ppm 10 B) + neutrons; 2) BOPP (10 ppm 10 B) + neutrons; 3) neutrons alone; 4) gamma-rays. A control group without irradiation for each treatment was added. The cells were irradiated in the thermal neutron beam of the RA-3 (flux= 7.5 10 9 n/cm 2 sec) or with 60 Co (1Gy/min) during different times in order to obtain total physical dose between 1-5 Gy (±10 %). A decrease in the survival fraction as a function of the physical dose was observed for all the treatments. We also observed that neutrons and neutrons + BOPP did not differ significantly and that BPA was the more effective compound. Protein extracts of irradiated cells (3Gy) were isolated to 24 h and 48 h post radiation exposure. The irradiation with neutrons in presence of 10 BPA or 10 BOPP produced an increase of p53 at 24 h maintain until 48 h. On the contrary, in the groups irradiated with neutrons alone or gamma the peak was observed at 48 hr. The level of expression of p27/Kip1 showed a reduction of this protein in all the groups irradiated with neutrons (neutrons alone or neutrons plus boron compound), being more marked at 24 h. These preliminary results suggest different radiobiological response for high and low let radiation. Future studies will permit establish the role of cell cycle in the tumor radio sensibility to BNCT. (author)

  17. 'Sequential' Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    International Nuclear Information System (INIS)

    Molinari, Ana J.; Pozzi, Emiliano C.C.; Hughes, Andrea Monti; Heber, Elisa M.; Garabalino, Marcela A.; Thorp, Silvia I.; Miller, Marcelo; Itoiz, Maria E.; Aromando, Romina F.; Nigg, David W.; Quintana, Jorge; Santa Cruz, Gustavo A.; Trivillin, Veronica A.; Schwint, Amanda E.

    2011-01-01

    In the present study we evaluated the therapeutic effect and/or potential radiotoxicity of the novel 'Tandem' Boron Neutron Capture Therapy (T-BNCT) for the treatment of oral cancer in the hamster cheek pouch model at RA-3 Nuclear Reactor. Two groups of animals were treated with 'Tandem BNCT', i.e. BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (T-24h-BNCT) or 48 h (T-48h-BNCT) later. A total tumor dose-matched single application of BNCT mediated by BPA and GB-10 administered jointly ((BPA + GB-10)-BNCT) was administered to an additional group of animals. At 28 days post-treatment, T-24h-BNCT and T-48h-BNCT induced, respectively, overall tumor control (OTC) of 95% and 91%, with no statistically significant differences between protocols. Tumor response for the single application of (BPA + GB-10)-BNCT was 75%, significantly lower than for T-BNCT. The T-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47% and 60% of the animals respectively. No normal tissue radiotoxicity was associated to tumor control for any of the protocols. 'Tandem' BNCT enhances tumor control in oral cancer and reduces or, at worst, does not increase, mucositis in dose-limiting precancerous tissue.

  18. “Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    Energy Technology Data Exchange (ETDEWEB)

    Ana J. Molinari; Emiliano C. C. Pozzi; Andrea Monti Hughes; Elisa M. Heber; Marcela A. Garabalino; Silvia I. Thorp; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; David W. Nigg; Jorge Quintana; Gustavo A. Santa Cruz; Veronica A. Trivillin; Amanda E. Schwint

    2011-04-01

    In the present study we evaluated the therapeutic effect and/or potential radiotoxicity of the novel “Tandem” Boron Neutron Capture Therapy (T-BNCT) for the treatment of oral cancer in the hamster cheek pouch model at RA-3 Nuclear Reactor. Two groups of animals were treated with “Tandem BNCT”, i.e. BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (T-24h-BNCT) or 48 h (T-48h-BNCT) later. A total tumor dose-matched single application of BNCT mediated by BPA and GB-10 administered jointly [(BPA + GB-10)-BNCT] was administered to an additional group of animals. At 28 days post-treatment, T-24h-BNCT and T-48h-BNCT induced, respectively, overall tumor control (OTC) of 95% and 91%, with no statistically significant differences between protocols. Tumor response for the single application of (BPA + GB-10)-BNCT was 75%, significantly lower than for T-BNCT. The T-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47% and 60% of the animals respectively. No normal tissue radiotoxicity was associated to tumor control for any of the protocols. “Tandem” BNCT enhances tumor control in oral cancer and reduces or, at worst, does not increase, mucositis in dose-limiting precancerous tissue.

  19. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility

    International Nuclear Information System (INIS)

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively. - Highlights: • Two in-core neutron detectors and three BNCT neutron beam monitors were compared. • BNCT neutron beam monitors improve the stability in neutron

  20. A new method to evaluate neutron spectra for bnct

    International Nuclear Information System (INIS)

    Martin Hernandez, Guido

    2001-01-01

    This paper deals with the development of a method to evaluate neutron spectra for BNCT. Physical dose deposition calculations for different neutron energies, ranging from thermal to fast, were performed. A matrix, containing dose for each energy and position in the beam center line was obtained. MCNP 4B and Snyder's head model were used. A simple computer code containing the matrix calculates the dose for each point in the beam center line depending on the input energy spectrum to be evaluated. The output of this program is the dose distribution in the brain and the dose gain, that is the ratio between dose to tumor and maximum dose to healthy tissue maximum

  1. Effects of secondary interactions on the dose calculation in treatments with Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Monteiro, E.

    2004-01-01

    The aimed of this work consists of evaluating the influence of the secondary contributions of dose (thermal neutrons dose, epithermal neutrons dose, fast neutrons dose and photon dose) in treatment planning with BNCT. MCNP4B Code was used to calculate RBE-Gy doses through the irradiation of the modified Snyder head head phantom.A reduction of the therapeutical gain of monoenergetic neutron beans was observed in non invasive treatments, provoked for the predominance of the fast neutron dose component in the skin, showing that the secondary contributions of dose can contribute more in the direction to raise the dose in the fabric healthy that in the tumor, thus reducing the treatment efficiency. (author)

  2. Development of a Tandem-ElectroStatic-Quadrupole accelerator facility for Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Thatar Vento, V.; Levinas, P.; Bergueiro, J.; Burlon, A.A.; Di Paolo, H.; Kesque, J.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Minsky, D.M.; Estrada, L.; Hazarabedian, A.; Johann, F.; Suarez Sandin, J.C.; Castell, W.; Davidson, J.; Davidson, M.; Repetto, M.; Obligado, M.; Nery, J.P.; Huck, H.; Igarzabal, M.; Fernandez Salares, A.

    2008-01-01

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). An ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.4-2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.20-1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is one of the technologically simplest and cheapest solutions for optimized AB-BNCT. At present there is no BNCT facility in the world with the characteristics presented in this work. For the accelerator, results on its design, construction and beam transport calculations are discussed. Taking into account the peculiarities of the expected irradiation field, the project also considers a specific study of the treatment room. This study aims at the design of the treatment room emphasizing aspects related to patient, personnel and public radiation protection; dose monitoring; patient positioning and room construction. The design considers both thermal (for the treatment of shallow tumors) and epithermal (for deep-seated tumors) neutron beams entering the room through a port connected to the accelerator via a moderation and neutron beam shaping assembly. Preliminary results of dose calculations for the treatment room design, using the MCNP program, are presented

  3. Capability of NIPAM polymer gel in recording dose from the interaction of 10B and thermal neutron in BNCT

    International Nuclear Information System (INIS)

    Khajeali, Azim; Reza Farajollahi, Ali; Kasesaz, Yaser; Khodadadi, Roghayeh; Khalili, Assef; Naseri, Alireza

    2015-01-01

    The capability of N-isopropylacrylamide (NIPAM) polymer gel to record the dose resulting from boron neutron capture reaction in BNCT was determined. In this regard, three compositions of the gel with different concentrations of 10 B were prepared and exposed to gamma radiation and thermal neutrons. Unlike irradiation with gamma rays, the boron-loaded gels irradiated by neutron exhibited sensitivity enhancement compared with the gels without 10 B. It was also found that the neutron sensitivity of the gel increased by the increase of concentration of 10 B. It can be concluded that NIPAM gel might be suitable for the measurement of the absorbed dose enhancement due to 10 B and thermal neutron reaction in BNCT. - Highlights: • Three compositions of NIPAM gel with different concentration of 10 B have been exposed by gamma and thermal neutron. • The vials containing NIPAM gel have been irradiated by an automatic system capable of providing for dose uniformity. • Suitability of NIPAM polymer gel in measuring radiation doses in BNCT has been investigated.

  4. Therapeutic efficacy and toxicity of a single and double application of boron neutron capture therapy (BNCT) in a hamster cheek pouch oral precancer model

    International Nuclear Information System (INIS)

    Monti Hughes, A; Pozzi, E C C; Thorp, S; Garabalino, M A; Farias, R O; Gonzalez, S J; Heber, E M; Itoiz, M E; Aromando, R F; Molinari, A J; Miller, M; Nigg, D W; Curotto, P; Trivillin, V A; Schwint, A E

    2012-01-01

    Tumor development from tissue with potentially malignant disorders (PMD) gives rise to second primary tumors. We previously demonstrated the partial inhibitory effect on tumor development of Boron Neutron Capture Therapy (BNCT) mediated by the boron compounds BPA (boronophenylalanine) and decahydrodecaborate (GB-10) in a hamster pouch oral precancer model. Seeking to optimize BNCT, the aim of the present study was to contribute to the knowledge of BNCT radiobiology for oral precancer and assess new BNCT protocols in terms of inhibition of tumor development and radiotoxicity. Groups of cancerized hamsters were locally exposed to single or double applications (2 weeks apart) of BPA-BNCT or (GB-10 + BPA)-BNCT at a total dose of 8Gy to tissue with PMD; to a single application of BPA-BNCT at 6Gy and to a double application (4 weeks apart) of BPA-BNCT or (BPA + GB-10)-BNCT at a total dose of 10Gy. Cancerized, sham-irradiated hamsters served as controls. Clinical status, tumor development from tissue with PMD and mucositis were followed for 8 months. The marked therapeutic efficacy of single applications of BNCT at 6 and 8Gy were associated to severe radiotoxicity. Dose fractionation into 2 applications reduced mucositis but also reduced therapeutic efficacy, depending on dose and interval between applications. A double application (4 weeks apart) of (GB-10 + BPA)-BNCT at a total dose of 10Gy rendered the best therapeutic advantage, i.e. 63% - 100% inhibition of tumor development with only slight mucositis in 67% of cases. The data reported herein show that issues such as dose levels and dose fractionation, interval between applications, and choice of boron compounds are pivotal to therapeutic advantage and must be tailored for a particular pathology and anatomic site. The present study determined treatment conditions that would contribute to optimize BNCT for precancer and that would warrant cautious assessment in a clinical scenario (author)

  5. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    Science.gov (United States)

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  6. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and

  7. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    International Nuclear Information System (INIS)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-01-01

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  8. "Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    Energy Technology Data Exchange (ETDEWEB)

    Ana J. Molinari; Andrea Monti Hughes; Elisa M. Heber; Marcela A. Garabalino; Veronica A. Trivillin; Amanda E. Schwint; Emiliano C. C. Pozzi; Maria E. Itoiz; Silvia I. Thorp; Romina F. Aromando; David W. Nigg; Jorge Quintana; Gustavo A. Santa Cruz

    2011-04-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with a thermal or epithermal neutron beam. The minor abundance stable isotope of boron, 10B, interacts with low energy (thermal) neutrons to produce high linear energy transfer (LET) a-particles and 7Li ions. These disintegration products are known to have a high relative biological effectiveness (RBE). Their short range (<10 {micro}m) would limit the damage to cells containing 10B (1,2). Thus, BNCT would target tumor tissue selectively, sparing normal tissue. Clinical trials of BNCT for the treatment of glioblastoma multiforme and/or melanoma and, more recently, head and neck tumors and liver metastases, using boronophenylalanine (BPA) or sodium mercaptoundecahydrododecaborane (BSH) as the 10B carriers, have been performed or are underway in Argentina, Japan, the US and Europe (e.g. 3-8). To date, the clinical results have shown a potential, albeit inconclusive, therapeutic advantage for this technique. Contributory translational studies have been carried out employing a variety of experimental models based on the implantation of tumor cells in normal tissue (e.g. 5).

  9. Feasibility study on the utilization of boron neutron capture therapy (BNCT) in a rat model of diffuse lung metastases

    Energy Technology Data Exchange (ETDEWEB)

    Bakeine, G.J. [Department of Clinical Medicine and Neurology, Cattinara Hospital, University of Trieste (Italy)], E-mail: jamesbakeine1@yahoo.com; Di Salvo, M. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); Bortolussi, S.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi 6, Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); Bertolotti, A.; Nano, R. [Department of Animal Biology University of Pavia, Piazza Botta, Pavia (Italy); Clerici, A.; Ferrari, C.; Zonta, C. [Department of Surgery University of Pavia, Piazza Botta, Pavia (Italy); Marchetti, A. [Scientific Research Office, Fondazione San Matteo University Policlinic, Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi 6, Pavia (Italy)

    2009-07-15

    In order for boron neutron capture therapy (BNCT) to be eligible for application in lung tumour disease, three fundamental criteria must be fulfilled: there must be selective uptake of boron in the tumour cells with respect to surrounding healthy tissue, biological effectiveness of the radiation therapy and minimal damage or collateral effects of the irradiation on the surrounding tissues. In this study, we evaluated the biological effectiveness of BNCT by in vitro irradiation of rat colon-carcinoma cells previously incubated in boron-enriched medium. One part of these cells was re-cultured in vitro while the other was inoculated via the inferior vena cava to induce pulmonary metastases in a rat model. We observed a post-irradiation in vitro cell viability of 0.05% after 8 days of cell culture. At 4 months follow-up, all animal subjects in the treatment group that received irradiated boron-containing cells were alive. No animal survived beyond 1 month in the control group that received non-treated cells (p<0.001 Kaplan-Meier). These preliminary findings strongly suggest that BNCT has a significant lethal effect on tumour cells and post irradiation surviving cells lose their malignant capabilities in vivo. This radio-therapeutic potential warrants the investigation of in vivo BNCT for lung tumour metastases.

  10. Feasibility study on the utilization of boron neutron capture therapy (BNCT) in a rat model of diffuse lung metastases

    International Nuclear Information System (INIS)

    Bakeine, G.J.; Di Salvo, M.; Bortolussi, S.; Stella, S.; Bruschi, P.; Bertolotti, A.; Nano, R.; Clerici, A.; Ferrari, C.; Zonta, C.; Marchetti, A.; Altieri, S.

    2009-01-01

    In order for boron neutron capture therapy (BNCT) to be eligible for application in lung tumour disease, three fundamental criteria must be fulfilled: there must be selective uptake of boron in the tumour cells with respect to surrounding healthy tissue, biological effectiveness of the radiation therapy and minimal damage or collateral effects of the irradiation on the surrounding tissues. In this study, we evaluated the biological effectiveness of BNCT by in vitro irradiation of rat colon-carcinoma cells previously incubated in boron-enriched medium. One part of these cells was re-cultured in vitro while the other was inoculated via the inferior vena cava to induce pulmonary metastases in a rat model. We observed a post-irradiation in vitro cell viability of 0.05% after 8 days of cell culture. At 4 months follow-up, all animal subjects in the treatment group that received irradiated boron-containing cells were alive. No animal survived beyond 1 month in the control group that received non-treated cells (p<0.001 Kaplan-Meier). These preliminary findings strongly suggest that BNCT has a significant lethal effect on tumour cells and post irradiation surviving cells lose their malignant capabilities in vivo. This radio-therapeutic potential warrants the investigation of in vivo BNCT for lung tumour metastases.

  11. Neutron field characterization in the installation for BNCT study in the IEA-R1 reactor; Caracterizacao do campo de neutrons na instalacao para estudo em BNCT no reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro Junior, Valdeci

    2008-07-01

    This work aims to characterize the mixed neutron and gamma field, in the sample irradiation position, in a research installation for Boron Neutron Capture Therapy (BNCT), in the IPEN IEA-R1 reactor. The BNCT technique has been studied as a safe and selective option in the treatment of resistant cancerigenous tumors or considered non-curable by the conventional techniques, for example, the Glioblastoma Multiform - a brain cancerigenous tumor. Neutron flux measurements were carried out: thermal, resonance and fast, as well as neutron and gamma rays doses, in the sample position, using activation foils detectors and thermoluminescent dosimeters. For the determination of the neutron spectrum and intensity, a set of different threshold activation foils and gold foils covered and uncovered with cadmium irradiated in the installation was used, analyzed by a high Pure Germanium semiconductor detector, coupled to an electronic system suitable for gamma spectrometry. The results were processed with the SAND-BP code. The doses due to gamma and neutron rays were determined using thermoluminescent dosimeters TLD 400 and TLD 700 sensitive to gamma and TLD 600, sensitive to neutrons. The TLDs were selected and used for obtaining the calibration curves - dosimeter answer versus dose - from each of the TLD three types, which were necessary to calculate the doses due to neutron and gamma, in the sample position. The radiation field, in the sample irradiation position, was characterized flux for thermal neutrons of 1.39.10{sup 8} {+-} 0,12.10{sup 8} n/cm{sup 2}s the doses due to thermal neutrons are three times higher than those due to gamma radiation and confirm the reproducibility and consistency of the experimental findings obtained. Considering these results, the neutron field and gamma radiation showed to be appropriated for research in BNCT. (author)

  12. Boron neutron capture therapy (BNCT) for high-grade gliomas of the brain: a cautionary note

    International Nuclear Information System (INIS)

    Laramore, George E.; Spence, Alexander M.

    1996-01-01

    Purpose/Objective: Boron neutron capture therapy (BNCT) is a method of treating high-grade gliomas of the brain that involves incorporating 10 B into the tumor using appropriate pharmacological agents and then irradiating the tumor with thermal or epithermal neutron beams. To date, over 120 patients have been treated in this manner by Japanese investigators using a thermal neutron beam from a nuclear reactor. Favorable reports on outcome have motivated considerable current research in BNCT. The purpose of this study is to provide an independent analysis of the Japanese data by identifying the subset of patients from the United States who received this treatment in Japan and comparing their outcomes relative to a matched cohort who received conventional therapy in various Radiation Therapy Oncology Group (RTOG) studies. Methods and Materials: The principal referral sources of patients to Japan for BNCT were identified and the names of patients sent for treatment obtained. The treating physicians in Japan were also contacted to see if additional patients from the United States had been treated. Either the patients or their next of kin were contacted, and permission was obtained to retrieve medical records including tumor pathology for central review. Prognostic variables according to an analysis of the RTOG brain tumor database by Curran et al. were determined from these records and used to construct a matched cohort of patients treated conventionally. Results: A total of 14 patients were identified who had traveled to Japan for BNCT treatment between July, 1987 and June, 1994. In the case of one patient (deceased), it was not possible to contact the next of kin. Material was obtained on the other 13 patients and review of the pathology indicated that 1 patient had a central nervous system lymphoma rather than a high-grade glioma. Survival data was analyzed for the other 12 patients on an actuarial basis, and this showed no difference compared to survival data for a

  13. Characteristics of neutron irradiation facility and dose estimation method for neutron capture therapy at Kyoto University research reactor institute

    International Nuclear Information System (INIS)

    Kobayashi, T.; Sakurai, Y.; Kanda, K.

    2001-01-01

    The neutron irradiation characteristics of the Heavy Water Neutron Irradiation Facility (HWNIF) at the Kyoto University Research Reactor Institute (KIJRRI) for boron neutron capture therapy (BNCT), is described. The present method of dose measurement and its evaluation at the KURRI, is explained. Especially, the special feature and noticeable matters were expounded for the BNCT with craniotomy, which has been applied at present only in Japan. (author)

  14. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1998-01-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by 10 B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark experiments

  15. Dosimetric analysis of BNCT - Boron Neutron Capture Therapy - coupled to 252Cf brachytherapy

    International Nuclear Information System (INIS)

    Brandao, Samia F.; Campos, Tarcisio P.R.

    2009-01-01

    The incidence of brain tumors is increasing in world population; however, the treatments employed in this type of tumor have a high rate of failure and in some cases have been considered palliative, depending on histology and staging of tumor. Its necessary to achieve the control tumor dose without the spread irradiation cause damage in the brain, affecting patient neurological function. Stereotactic radiosurgery is a technique that achieves this; nevertheless, other techniques that can be used on the brain tumor control must be developed, in order to guarantee lower dose on health surroundings tissues other techniques must be developing. The 252 Cf brachytherapy applied to brain tumors has already been suggested, showing promising results in comparison to photon source, since the active source is placed into the tumor, providing greater dose deposition, while more distant regions are spared. BNCT - Boron Neutron Capture Therapy - is another technique that is in developing to brain tumors control, showing theoretical superiority on the rules of conventional treatments, due to a selective irradiation of neoplasics cells, after the patient receives a borate compound infusion and be subjected to a epithermal neutrons beam. This work presents dosimetric studies of the coupling techniques: BNCT with 252 Cf brachytherapy, conducted through computer simulation in MCNP5 code, using a precise and well discretized voxel model of human head, which was incorporated a representative Glioblastoma Multiform tumor. The dosimetric results from MCNP5 code were exported to SISCODES program, which generated isodose curves representing absorbed dose rate in the brain. Isodose curves, neutron fluency, and dose components from BNCT and 252 Cf brachytherapy are presented in this paper. (author)

  16. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chadha, M.

    1997-01-01

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains

  17. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  18. Development of an anthropomorfic simulator for simulation and measurements of neutron dose and flux the facility for BNCT studies

    International Nuclear Information System (INIS)

    Muniz, Rafael Oliveira Rondon

    2010-01-01

    IPEN facility for researches in BNCT (Boron Neutron Capture Therapy) uses IEA-R1 reactor's irradiation channel number 3, where there is a mixed radiation field - neutrons and gamma. The researches in progress require the radiation fields, in the position of the irradiation of sample, to have in its composition maximized thermal neutrons component and minimized, fast and epithermal neutron flux and gamma radiation. This work was developed with the objective of evaluating whether the present radiation field in the facility is suitable for BNCT researches. In order to achieve this objective, a methodology for the dosimetry of thermal neutrons and gamma radiation in mixed fields of high doses, which was not available in IPEN, was implemented in the Center of Nuclear Engineering of IPEN, by using thermoluminescent dosimeters - TLDs 400, 600 and 700. For the measurements of thermal and epithermal neutron flux, activation detectors of gold were used applying the cadmium ratio technique. A cylindrical phantom composed by acrylic discs was developed and tested in the facility and the DOT 3.5. computational code was used in order to obtain theoretical values of neutron flux and the dose along phantom. In the position corresponding to about half the length of the cylinder of the phantom, the following values were obtained: thermal neutron flux (2,52 ± 0,06).10 8 n/cm 2 s, epithermal neutron flux (6,17 ± 0,26).10 7 .10 6 n/cm 2 s, absorbed dose due to thermal neutrons (4,2 ± 1,8)Gy and (10,1 ± 1,3)Gy due to gamma radiation. The obtained values show that the fluxes of thermal and epithermal neutrons flux are appropriate for studies in BNCT, however, the dose due to gamma radiation is high, indicating that the facility should be improved. (author)

  19. SERA -- An advanced treatment planning system for neutron therapy and BNCT

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wemple, C.A.; Wessol, D.E.; Wheeler, F.J.; Albright, C.; Cohen, M.; Frandsen, M.; Harkin, G.; Rossmeier, M.

    1999-01-01

    Detailed treatment planning calculations on a patient-specific basis are required for boron neutron capture therapy (BNCT). Two integrated treatment planning systems developed specifically for BNCT have been in clinical use in the United States over the past few years. The MacNCTPLAN BNCT treatment planning system is used in the clinical BNCT trials that are underway at the Massachusetts Institute of Technology. A second system, BNCT rtpe (BNCT radiation therapy planning environment), developed independently by the Idaho national Engineering and Environmental Laboratory (INEEL) in collaboration with Montana State University (MSU), is used for treatment planning in the current series of BNCT clinical trials for glioblastoma at Brookhaven National Laboratory (BNL). This latter system is also licensed for use at several other BNCT research facilities worldwide. Although the currently available BNCT planning systems have served their purpose well, they suffer from somewhat long computation times (2 to 3 CPU-hours or more per field) relative to standard photon therapy planning software. This is largely due to the need for explicit three-dimensional solutions to the relevant transport equations. The simplifying approximations that work well for photon transport computations are not generally applicable to neutron transport computations. Greater computational speeds for BNCT treatment planning must therefore generally be achieved through the application of improved numerical techniques rather than by simplification of the governing equations. Recent efforts at INEEL and MSU have been directed toward this goal. This has resulted in a new paradigm for this type of calculation and the subsequent creation of the new simulation environment for radiotherapy applications (SERA) treatment planning system for BNCT. SERA is currently in initial clinical testing in connection with the trials at BNL, and it is expected to replace the present BNCT rtpe system upon general release

  20. Boron Neutron Capture Therapy at the TRIGA Mark II of Pavia, Italy - The BNCT of the diffuse tumours

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S.; Bortolussi, S.; Stella, S.; Bruschi, P.; Gadan, M.A. [University of Pavia (Italy); INFN - National Institute for Nuclear Physics, of Pavia (Italy)

    2008-10-29

    The selectivity based on the B distribution rather than on the irradiation field makes Boron neutron Capture Therapy (BNCT) a valid option for the treatment of the disseminated tumours. As the range of the high LET particles is shorter than a cell diameter, the normal cells around the tumour are not damaged by the reactions occurring in the tumoral cells. PAVIA 2001: first treatment of multiple hepatic metastases from colon ca by BNCT and auto-transplantation technique: TAOrMINA project. The liver was extracted after BPA infusion, irradiated in the Thermal Column of the Pavia TRIGA Mark II reactor, and re-implanted in the patient. Two patients were treated, demonstrating the feasibility of the therapy and the efficacy in destroying the tumoral nodules sparing the healthy tissues. In the last years, the possibility of applying BNCT to the lung tumours using epithermal collimated neutron beams and without explanting the organ, is being explored. The principal obtained results of the BNCT research are presented, with particular emphasis on the following aspects: a) the project of a new thermal column configuration to make the thermal neutron flux more uniform inside the explanted liver, b) the Monte Carlo study by means of the MCNP code of the thermal neutron flux distribution inside a patient's thorax irradiated with epithermal neutrons, and c) the measurement of the boron concentration in tissues by (n,{alpha}) spectroscopy and neutron autoradiography. The dose distribution in the thorax are simulated using MCNP and the anthropomorphic model ADAM. To have a good thermal flux distribution inside the lung epithermal neutrons must be used, which thermalize crossing the first tissue layers. Thermal neutrons do not penetrate and the obtained uniformity is poor. In the future, the construction of a PGNAA facility using a horizontal channel of the TRIGA Mark II is planned. With this method the B concentration can be measured also in liquid samples (blood, urine) and

  1. Development of breast cancer irradiation technique for BNCT at JRR-4

    International Nuclear Information System (INIS)

    Nakamura, Takemi; Horiguchi, Hironori; Arai, Masaji; Yanagie, Hironobu

    2014-06-01

    In the Department of Research Reactor and Tandem Accelerator, developments of irradiation technique with application enlargement for breast cancer on BNCT have been performed in the second medium term plans. We compiled this report about the technological development to solve several problems with the irradiation of breast cancer in the medical irradiation facility of JRR-4. In the present study, design fabrication of a collimator for breast cancer, dose evaluation analysis by clinical model, investigation of dose enhancement at deeper region and investigation of fixing method for breast cancer irradiation were studied. By these evaluation results, we verified that the developed breast cancer irradiation technique can be applied to BNCT medical irradiation of JRR-4. These results are expected to be able to contribute to breast cancer irradiation techniques of other reactor-based BNCT and future accelerator-based BNCT. (author)

  2. Boron neutron capture therapy (BNCT) for glioblastoma multiforme (GBM), using the epithermal neutron beam at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Chadha, Manjeet; Capala, Jacek; Coderre, Jeffrey A.; Elowitz, Eric H.; Joel, Darrel D.; Hungyuan, B. Liu; Slatkin, Daniel N.; Chanana, Arjun D.

    1996-01-01

    Objective: BNCT is a binary treatment modality based on the nuclear reactions that occur when boron ( 10 B) is exposed to thermal neutrons. Preclinical studies have demonstrated the therapeutic efficacy of p-boronophenylalanine (BPA)-based BNCT. The objective of the Phase I/II trial was to evaluate BPA-fructose (BPA-F) as a boron delivery agent for GBM and to study the feasibility and safety of a single-fraction of BNCT. Materials and Methods: The trial design required i) a BPA-F biodistribution study performed at the time of craniotomy; and ii) BNCT within 4 weeks of the craniotomy. From September 94 to July 95, 10 patients with biopsy proven GBM were treated. All but 1 patient underwent a biodistribution study receiving IV BPA-F at the time of craniotomy. Multiple tissue samples and concurrent blood and urine samples were collected for evaluation of the boron concentration and clearance kinetics. For BNCT all patients received 250 mg/kgm of BPA-F (IV infusion over 2 hrs) followed by neutron irradiation. The blood 10 B concentration during irradiation was used to calculate the time of neutron exposure. The 3D treatment planning was done using the BNCT treatment planning software developed at the Idaho National Engineering Laboratory. The BNCT dose is expressed as the sum of the physical dose components corrected for both the RBE and the 10 B localization factor with the unit Gy-Eq. The photon-equivalent dose, where the thermal neutron fluence reaches a maximum, is the peak-dose equivalent. A single-fraction of BNCT was delivered prescribing 10.5 Gy-Eq (9 patients) and 13.8 Gy-Eq (1 patient) as the peak dose-equivalent to the normal brain. The peak dose rate was kept below 27 cGy-Eq/min. Results: Biodistribution data: The maximum blood 10 B concentration was observed at the end of the infusion and scaled as a linear function of the administered dose. The 10 B concentration in the scalp and in the GBM tissue was higher than in blood by 1.5 x and at least 3.5 x

  3. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT

    International Nuclear Information System (INIS)

    Monti Hughes, A.; Heber, E.M.; Pozzi, E.; Nigg, D.W.; Calzetta, O.; Blaumann, H.; Longhino, J.; Nievas, S.I.; Aromando, R.F.; Itoiz, M.E.; Trivillin, V.A.; Schwint, A.E.

    2009-01-01

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  4. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).

    Science.gov (United States)

    Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro

    2017-12-01

    The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.

  5. Biodistribution of Boron compounds in an experimental model of liver metastases for Boron Neutron Capture (BNCT) Studies

    International Nuclear Information System (INIS)

    Garabalino, Marcela A.; Monti Hughes, Andrea; Molinari, Ana J.; Heber, Elisa M.; Pozzi, Emiliano C.C.; Itoiz, Maria E.; Trivillin, Veronica A.; Schwint, Amanda E.; Nievas, Susana; Aromando, Romina F.

    2009-01-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10 B carriers in tumors followed by irradiation with thermal or epithermal neutrons. The high linear energy transfer alpha particles and recoiling 7 Li nuclei emitted during the capture of a thermal neutron by a 10 B nucleus have a short range and a high biological effectiveness. Thus, BNCT would potentially target neoplastic tissue selectively. In previous studies we demonstrated the therapeutic efficacy of different BNCT protocols in an experimental model of oral cancer. More recently we performed experimental studies in normal rat liver that evidenced the feasibility of treating liver metastases employing a novel BNCT protocol proposed by JEC based on ex-situ treatment and partial liver auto-transplant. The aim of the present study was to perform biodistribution studies with different boron compounds and different administration protocols to determine the protocols that would be therapeutically useful in 'in vivo' BNCT studies at the RA-3 Nuclear Reactor in an experimental model of liver metastases in rats. Materials and Methods. A total of 70 BDIX rats (Charles River Lab., MA, USA) were inoculated in the liver with syngeneic colon cancer cells DH/DK12/TRb (ECACC, UK) to induce the development of subcapsular metastatic nodules. 15 days post-inoculation the animals were used for biodistribution studies. A total of 11 protocols were evaluated employing the boron compounds boronophenylalanine (BPA) and GB-10 (Na 2 10 B 1 -0H 10 ), alone or combined employing different doses and administration routes. Tumor, normal tissue and blood samples were processed for boron measurement by ICP-OES. Results. Several protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue, i.e. BPA 15.5 mg 10 B/kg iv + GB-10 50 mg 10 B/kg iv; BPA 46.5 mg 10 B/kg ip; BPA 46.5 mg 10 B/kg ip

  6. Radioprotective agents to reduce BNCT (Boron Neutron Capture Therapy) induced mucositis in the hamster cheek pouch

    International Nuclear Information System (INIS)

    Monti Hughes, A.; Pozzi, E.C.C.; Thorp, S.

    2013-01-01

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of BNCT mediated by boronophenylalanine (BPA) in the hamster cheek pouch oral cancer and pre cancer model. Despite therapeutic efficacy, mucositis induced in premalignant tissue was dose limiting and favored, in some cases, tumor development. In a clinical scenario, oral mucositis limits the dose administered to head and neck tumors. Aim: Our aim was to evaluate the effect of the administration of different radioprotective agents, seeking to reduce BNCT-induced mucositis to acceptable levels in dose-limiting premalignant tissue; without compromising therapeutic effect evaluated as inhibition on tumor development in premalignant tissue; without systemic or local side effects; and without negative effects on the biodistribution of the boron compound used for treatment. Materials and methods: Cancerized hamsters with DMBA (dimethylbenzanthracene) were treated with BPA-BNCT 5 Gy total absorbed dose to premalignant tissue, at the RA-3 Nuclear Reactor, divided into different groups: 1-treated with FLUNIXIN; 2- ATORVASTATIN; 3-THALIDOMIDE; 4-HISTAMINE (two concentrations: Low -1 mg/ml- and High -5 mg/ml-); 5-JNJ7777120; 6-JNJ10191584; 7-SALINE (vehicle). Cancerized animals without any treatment (neither BNCT nor radioprotective therapy) were also analyzed. We followed the animals during one month and evaluated the percentage of animals with unacceptable/severe mucositis, clinical status and percentage of animals with new tumors post treatment. We also performed a preliminary biodistribution study of BPA + Histamine “low” concentration to evaluate the potential effect of the radioprotector on BPA biodistribution. Results: Histamine

  7. Design of experiment existing parameter physics for supporting of Boron Neutron Capture Therapy (BNCT) method a t the piercing radial beam port of Kartini research reactor

    International Nuclear Information System (INIS)

    Indry Septiana Novitasari; Yosaphat Sumardi; Widarto

    2014-01-01

    The experiment existing parameters physics for supporting of in vivo and in vitro test facility of Boron Neutron Capture Therapy (BNCT) preliminary study at the piercing radial beam port has been done. The existing experiments is needed for determining that the parameter physics is fulfill the BNCT method requirement. To realize the existing experiment have been done by design analysis, methodology, calculation method and some procedure related with radiation safety analysis and environment. Preparation for existing experiment physics such as foil detector of Gold (Au) should be irradiated for 30 minute, irradiation instrument and procedure related with the experiment for radiation safety. (author)

  8. Radiation shielding design of BNCT treatment room for D-T neutron source.

    Science.gov (United States)

    Pouryavi, Mehdi; Farhad Masoudi, S; Rahmani, Faezeh

    2015-05-01

    Recent studies have shown that D-T neutron generator can be used as a proper neutron source for Boron Neutron Capture Therapy (BNCT) of deep-seated brain tumors. In this paper, radiation shielding calculations have been conducted based on the computational method for designing a BNCT treatment room for a recent proposed D-T neutron source. By using the MCNP-4C code, the geometry of the treatment room has been designed and optimized in such a way that the equivalent dose rate out of the treatment room to be less than 0.5μSv/h for uncontrolled areas. The treatment room contains walls, monitoring window, maze and entrance door. According to the radiation protection viewpoint, dose rate results of out of the proposed room showed that using D-T neutron source for BNCT is safe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    CERN Document Server

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  10. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  11. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Chadha, M.

    1996-01-01

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT

  12. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    Science.gov (United States)

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Long-survivors of glioblatoma treated with boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H.

    2011-01-01

    The purpose of this study was to compare the radiation dose between long-survivors and non-long-survivors in patients with glioblatoma (GBM) treated with boron neutron capture therapy (BNCT). Among 23 GBM patients treated with BNCT, there were five patients who survived more than three years after diagnosis. The physical and weighted dose of the minimum gross tumor volume (GTV) of long-survivors was much higher than that of non-long survivors with significant statistical differences.

  14. Effective dose evaluation for BNCT treatment in the epithermal neutron beam at THOR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.N. [Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)] [Division of Health Physics, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Huang, C.K. [Institute of Nuclear Engineering and Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Tsai, W.C. [Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Liu, Y.H. [Nuclear Science and Technol. Develop. Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Jiang, S.H., E-mail: shjiang@mx.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)] [Institute of Nuclear Engineering and Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)

    2011-12-15

    This paper aims to evaluate the effective dose as well as equivalent doses of several organs of an adult hermaphrodite mathematical phantom according to the definition of ICRP Publication 60 for BNCT treatments of brain tumors in the epithermal neutron beam at THOR. The MCNP5 Monte Carlo code was used for the calculation of the average absorbed dose of each organ. The effective doses for a typical brain tumor treatment with a tumor treatment dose of 20 Gy-eq were evaluated to be 0.59 and 0.35 Sv for the LLAT and TOP irradiation geometries, respectively. In addition to the stochastic effect, it was found that it is also likely to produce deterministic effects, such as cataracts and depression of haematopoiesis.

  15. Physical and biological dosimetry at the RA-3 facility for small animal irradiation: preliminary BNCT studies in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Pozzi, Emiliano; Miller, Marcelo; Thorp, Silvia I.; Heber, Elisa M.; Trivillin, Veronica A.; Zarza, Leandro; Estryk, Guillermo; Schwint, Amanda E.; Nigg, David W.

    2007-01-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality based on the capture reaction that occurs between thermal neutrons and boron-10 atoms that accumulate selectively in tumor tissue, emitting high linear energy transfer (LET), short range (5-9 microns) particles (alpha y 7 Li). Thus, BNCT would potentially target tumor tissue selectively, sparing normal tissue. Herein we evaluated the feasibility of treating experimental oral mucosa tumors with BNCT at RA-3 (CAE) employing the hamster cheek pouch oral cancer model and characterized the irradiation field at the RA-3 facility. We evaluated the therapeutic effect on tumor of BNCT mediated by BPA in the hamster cheek pouch oral cancer model and the potential radio toxic effects in normal tissue. We evidenced a moderate biological response in tumor, with no radio toxic effects in normal tissue following irradiations with no shielding for the animal body. Given the sub-optimal therapeutic response, we designed and built a 6 Li 2 CO 3 shielding for the body of the animal to increase the irradiation dose to tumor, without exceeding normal tissue radio tolerance. The measured absolute magnitude of thermal neutron flux and the characterization of the beam with and without the shielding in place, suggest that the irradiation facility in the thermal column of RA-3 would afford an excellent platform to perform BNCT studies in vitro and in vivo in small experimental animals. The present findings must be confirmed and extended by performing in vivo BNCT radiobiological studies in small experimental animals, employing the shielding device for the animal body. (author) [es

  16. Logic Estimation of the Optimum Source Neutron Energy for BNCT of Brain Tumors

    International Nuclear Information System (INIS)

    Dorrah, M.A.; Gaber, F.A.; Abd Elwahab, M.A.; Kotb, M.A.; Mohammed, M.M.

    2012-01-01

    BNCT is very complicated technique; primarily due to the complexity of element composition of the brain. Moreover; numerous components contributes to the over all radiation dose both to normal brain and to tumor. Simple algebraic summation cannot be applied to these dose components, since each component should at first be weighed by its relative biological effectiveness (RBE) value. Unfortunately, there is no worldwide agreement on these RBE values. For that reason, the parameters required for accurate planning of BNCT of brain tumors located at different depths in brain remained obscure. The most important of these parameters is; the source neutron energy. Thermal neutrons were formerly employed for BNCT, but they failed to prove therapeutic efficacy. Later on; epithermal neutrons were suggested proposing that they would be enough thermalized while transporting in the brain tissues. However; debate aroused regarding the source neutrons energy appropriate for treating brain tumors located at different depths in brain. Again, the insufficient knowledge regarding the RBE values of the different dose components was a major obstacle. A new concept was adopted for estimating the optimum source neutrons energy appropriate for different circumstances of BNCT. Four postulations on the optimum source neutrons energy were worked out, almost entirely independent of the RBE values of the different dose components. Four corresponding condition on the optimum source neutrons energy were deduced. An energy escalation study was carried out investigating 65 different source neutron energies, between 0.01 eV and 13.2 MeV. MCNP4B Monte C arlo neutron transport code was utilized to study the behavior of neutrons in the brain. The deduced four conditions were applied to the results of the 65 steps of the neutron energy escalation study. A source neutron energy range of few electron volts (eV) to about 30 keV was estimated to be the most appropriate for BNCT of brain tumors located at

  17. Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: Trial using a lung metastasis model of CCS.

    Science.gov (United States)

    Andoh, Tooru; Fujimoto, Takuya; Suzuki, Minoru; Sudo, Tamotsu; Sakurai, Yoshinori; Tanaka, Hiroki; Fujita, Ikuo; Fukase, Naomasa; Moritake, Hiroshi; Sugimoto, Tohru; Sakuma, Toshiko; Sasai, Hiroshi; Kawamoto, Teruya; Kirihata, Mitsunori; Fukumori, Yoshinobu; Akisue, Toshihiro; Ono, Koji; Ichikawa, Hideki

    2015-12-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In the present study, we established a lung metastasis animal model of CCS and investigated the therapeutic effect of boron neutron capture therapy (BNCT) using p-borono-L-phenylalanine (L-BPA). Biodistribution data revealed tumor-selective accumulation of (10)B. Unlike conventional gamma-ray irradiation, BNCT significantly suppressed tumor growth without damaging normal tissues, suggesting that it may be a potential new therapeutic option to treat CCS lung metastases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Design and simulation of an optimized e-linac based neutron source for BNCT research

    International Nuclear Information System (INIS)

    Durisi, E.; Alikaniotis, K.; Borla, O.; Bragato, F.; Costa, M.; Giannini, G.; Monti, V.; Visca, L.; Vivaldo, G.; Zanini, A.

    2015-01-01

    The paper is focused on the study of a novel photo-neutron source for BNCT preclinical research based on medical electron Linacs. Previous studies by the authors already demonstrated the possibility to obtain a mixed thermal and epithermal neutron flux of the order of 10"7 cm"−"2 s"−"1. This paper investigates possible Linac’s modifications and a new photo-converter design to rise the neutron flux above 5 10"7 cm"−"2 s"−"1, also reducing the gamma contamination. - Highlights: • Proposal of a mixed thermal and epithermal (named hyperthermal) neutron source based on medical high energy electron Linac. • Photo-neutron production via Giant Dipole Resonance on high Z materials. • MCNP4B-GN simulations to design the photo-converter geometry maximizing the hyperthermal neutron flux and minimizing the fast neutron and gamma contaminations. Hyperthermal neutron field suitable for BNCT preclinical research.

  19. Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new ''B2'' configuration of the RA-6 nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Monti Hughes, Andrea; Trivillin, Veronica A.; Schwint, Amanda E. [Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Department of Radiobiology, San Martin, Province Buenos Aires (Argentina); National Research Council (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Longhino, Juan; Boggio, Esteban [Bariloche Atomic Center, CNEA, Department of Nuclear Engineering, San Carlos de Bariloche, Province Rio Negro (Argentina); Medina, Vanina A.; Martinel Lamas, Diego J. [National Research Council (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Pontifical Catholic University of Argentina (UCA), Laboratory of Tumoral Biology and Inflammation, School of Medical Sciences, Institute for Biomedical Research (BIOMED CONICET-UCA), Ciudad Autonoma de Buenos Aires (Argentina); Garabalino, Marcela A.; Heber, Elisa M.; Pozzi, Emiliano C.C. [Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Department of Radiobiology, San Martin, Province Buenos Aires (Argentina); Itoiz, Maria E. [Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Department of Radiobiology, San Martin, Province Buenos Aires (Argentina); UBA, Department of Oral Pathology, Faculty of Dentistry, Ciudad Autonoma de Buenos Aires (Argentina); Aromando, Romina F. [UBA, Department of Oral Pathology, Faculty of Dentistry, Ciudad Autonoma de Buenos Aires (Argentina); Nigg, David W. [Idaho National Laboratory, Idaho Falls (United States)

    2017-11-15

    Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new ''B2'' configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in ''B1'' experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94-96%) than in control (16%) and BO groups (9-38%), and did not differ significantly from the ''B1'' results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control. (orig.)

  20. Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new ''B2'' configuration of the RA-6 nuclear reactor

    International Nuclear Information System (INIS)

    Monti Hughes, Andrea; Trivillin, Veronica A.; Schwint, Amanda E.; Longhino, Juan; Boggio, Esteban; Medina, Vanina A.; Martinel Lamas, Diego J.; Garabalino, Marcela A.; Heber, Elisa M.; Pozzi, Emiliano C.C.; Itoiz, Maria E.; Aromando, Romina F.; Nigg, David W.

    2017-01-01

    Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new ''B2'' configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in ''B1'' experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94-96%) than in control (16%) and BO groups (9-38%), and did not differ significantly from the ''B1'' results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control. (orig.)

  1. First evaluation of the biologic effectiveness factors of boron neutron capture therapy (BNCT) in a human colon carcinoma cell line.

    Science.gov (United States)

    Dagrosa, Maria Alejandra; Crivello, Martín; Perona, Marina; Thorp, Silvia; Santa Cruz, Gustavo Alberto; Pozzi, Emiliano; Casal, Mariana; Thomasz, Lisa; Cabrini, Romulo; Kahl, Steven; Juvenal, Guillermo Juan; Pisarev, Mario Alberto

    2011-01-01

    DNA lesions produced by boron neutron capture therapy (BNCT) and those produced by gamma radiation in a colon carcinoma cell line were analyzed. We have also derived the relative biologic effectiveness factor (RBE) of the neutron beam of the RA-3- Argentine nuclear reactor, and the compound biologic effectiveness (CBE) values for p-boronophenylalanine ((10)BPA) and for 2,4-bis (α,β-dihydroxyethyl)-deutero-porphyrin IX ((10)BOPP). Exponentially growing human colon carcinoma cells (ARO81-1) were distributed into the following groups: (1) BPA (10 ppm (10)B) + neutrons, (2) BOPP (10 ppm (10)B) + neutrons, (3) neutrons alone, and (4) gamma rays ((60)Co source at 1 Gy/min dose-rate). Different irradiation times were used to obtain total absorbed doses between 0.3 and 5 Gy (±10%) (thermal neutrons flux = 7.5 10(9) n/cm(2) sec). The frequency of micronucleated binucleated cells and the number of micronuclei per micronucleated binucleated cells showed a dose-dependent increase until approximately 2 Gy. The response to gamma rays was significantly lower than the response to the other treatments (p irradiations with neutrons alone and neutrons + BOPP showed curves that did not differ significantly from, and showed less DNA damage than, irradiation with neutrons + BPA. A decrease in the surviving fraction measured by 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay as a function of the absorbed dose was observed for all the treatments. The RBE and CBE factors calculated from cytokinesis block micronucleus (CBMN) and MTT assays were, respectively, the following: beam RBE: 4.4 ± 1.1 and 2.4 ± 0.6; CBE for BOPP: 8.0 ± 2.2 and 2.0 ± 1; CBE for BPA: 19.6 ± 3.7 and 3.5 ± 1.3. BNCT and gamma irradiations showed different genotoxic patterns. To our knowledge, these values represent the first experimental ones obtained for the RA-3 in a biologic model and could be useful for future experimental studies for the application of BNCT to colon carcinoma

  2. Study of a neutron producing target via the 7Li(p,n)7Be reaction near its energy threshold for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    Burlon, Alejandro; Kreiner, Andres J.; Debray, Mario E.; Stoliar, Pablo; Kesque, Jose M.; Naab, Fabian; Ozafran, Mabel J.; Schuff, Juan; Vazquez, Monica; Caraballo, Maria E.; Valda, Alejandro; Somacal, Hector; Davidson, Miguel; Davidson, Jorge

    2000-01-01

    In the framework of Accelerator Based BNCT (AB-BNCT) the 7 Li(p,n) 7 Be reaction near its energy threshold is one of the most promising. In this work a thick LiF target irradiated with a proton beam was studied as a neutron source. The 1.88-2.0 MeV proton beam was produced by the tandem accelerator TANDAR at CNEA's facilities in Buenos Aires. A water-filled phantom, containing a boron sample was irradiated with the resulting neutron beam. The boron neutron capture reaction produces a 0.478 MeV gamma ray in 94 % of the cases. The neutron yield was monitored by detecting this gamma ray using a germanium detector with an 'anti-Compton' shield. Moreover, the thermal neutron flux was evaluated at different depths inside the phantom using bare and Cd-covered gold foils. A maximum neutron thermal flux of 1.4 x 10 8 1/(cm 2 -s-mA) was obtained at 4.2 cm from the phantom surface. (author)

  3. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Monti Hughes, A.; Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Pozzi, E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Research and Production Reactors, Ezeiza Atomic Center, CNEA, Buenos Aires (Argentina); Nigg, D.W. [Idaho National Laboratory, Idaho Falls, Idaho (United States); Calzetta, O.; Blaumann, H.; Longhino, J. [Department of Nuclear Engineering, Bariloche Atomic Center, CNEA, Rio Negro (Argentina); Nievas, S.I. [Department of Chemistry, CNEA, Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Trivillin, V.A. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina)], E-mail: schwint@cnea.gov.ar

    2009-07-15

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na{sub 2}{sup 10}B{sub 10}H{sub 10}) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  4. A neutron irradiator applied to cancer treatment

    International Nuclear Information System (INIS)

    Campos, Tarcisio P.R.; Andrade, Ana P. de

    2000-01-01

    Cancer and the way of treating it with neutron capture therapy are addressed. This paper discusses also the type of neutron facilities used to treat cancer around the world, as follow: discrete neutron sources, accelerators, and nuclear reactors. The major features of an epithermal neutron irradiation facility applied to BNCT treatment are addressed. The main goal is to give another choice of neutron irradiators to be set in a hospital. The irradiation facility embeds a set of 252 Cf neutron source coupled with a homogeneous mixture of uranium-zirconium hydride alloy containing 8.4 wt % uranium enriched to 20% U 235 . The facility delivers an epithermal neutron beam with low background of fast neutron and gamma rays. The N particle transport code (MCNP-4A) has been used during the simulation in order to achieve the desired configurations and to estimate the multiplication factor, k eff . The present facility loaded with 30 mg of 252 Cf neutron source generates an external beam with an intensity of 10 7 n/cm 2 .s on the spectrum of 4 eV to 40 KeV. The 252 Cf - facility coupled with fissile material was able to amplify the epithermal flux to 10 8 n/cm 2 .s, maintaining the figure-of-merits represented by the ratios of the fast dose and gamma dose in air per epithermal neutron flux closed to those values presented by BMRR, MITR-II and Petten Reactor. The medical irradiation facility loaded with 252 Cf- 235 U can be a choice for BNCT. (author)

  5. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    Science.gov (United States)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  6. Tumor development in field-cancerized tissue is inhibited by a double application of Boron neutron capture therapy (BNCT) without exceeding radio-tolerance

    International Nuclear Information System (INIS)

    Monti Hughes, Andrea; Heber, Elisa M.; Itoiz, Maria E.; Molinari, Ana J.; Garabalino, Marcela A.; Trivillin, Veronica A.; Schwint, Amanda E.; Aromando, Romina F.

    2009-01-01

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of a 'single' application of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-1(Na 2 10 B 10 H 10 ) or (GB-10+BPA) to treat hamster cheek pouch tumors with no normal tissue radiotoxicity. Based on these results, we developed a model of precancerous tissue in the hamster cheek pouch for long-term studies. Employing this model we evaluated the long-term potential inhibitory effect on the development of second primary tumors from precancerous tissue and eventual radiotoxicity of a single application of BNCT mediated by BPA, GB-10 or (GB-10+BPA), in the RA-6. The clinical rationale of this study was to search for a BNCT protocol that is therapeutic for tumor, not radio-toxic for the normal tissue that lies in the neutron beam path, and exerts the desired inhibitory effect on the development of second primary tumors, without exceeding the radio-tolerance of precancerous tissue, the dose limiting tissue in this case. Second primary tumors that arise in precancerous tissue (also called locoregional recurrences) are a frequent cause of therapeutic failure in head and neck tumors. Aim: Evaluate the radiotoxicity and inhibitory effect of a 'double' application of the same BNCT protocols that were proved therapeutically successful for tumor and precancerous tissue, with a long term follow up (8 months). A 'double' application of BNCT is a potentially useful strategy for the treatment of tumors, in particular the larger ones, but the cost in terms of side-effects in dose-limiting tissues might preclude its application and requires cautious evaluation. Materials and methods: We performed a double application of 1) BPA-BNCT; 2) (GB

  7. Conceptual design of 30 MeV magnet system used for BNCT epithermal neutron source

    International Nuclear Information System (INIS)

    Slamet Santosa; Taufik

    2015-01-01

    Conceptual design of 30 MeV Magnet System Used for BNCT Epithermal Neutron Source has been done based on methods of empirical model of basic equation, experiences of 13 MeV cyclotron magnet design and personal communications. In the field of health, cyclotron can be used as an epithermal neutron source for Boron Neutron Capture Therapy (BNCT). The development of cyclotron producing epithermal neutrons for BNCT has been performed at Kyoto University, of which it produces a proton beam current of 1.1 mA with energy of 30 MeV. With some experiences on 13 MeV cyclotron magnet design, to support BNCT research and development we performed the design studies of 30 MeV cyclotron magnet system, which is one of the main components of the cyclotron for deflecting proton beam into circular trajectory and serves as beam focusing. Results of this study are expected to define the parameters of particular cyclotron magnet. The scope of this study includes the study of the parameters component of the 30 MeV cyclotron and magnet initial parameters. The empirical method of basic equation model is then corroborated by a simulation using Superfish software. Based on the results, a 30 MeV cyclotron magnet for BNCT neutron source enables to be realized with the parameters of B 0 = 1.06 T, frequency RF = 64.733938 ≈ 65 MHz, the external radius of 0.73 m, the radius of the polar = 0.85 m, BH = 1.95 T and a gap hill of 4 cm. Because proton beam current that be needed for BNCT application is very large, then in the calculation it is chosen a great focusing axial νz = 0.630361 which can generate B V = 0.44 T. (author)

  8. The Idaho Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program overview

    International Nuclear Information System (INIS)

    Dorn, R.V. III; Griebenow, M.L.; Ackermann, A.L.; Miller, L.G.; Miller, D.L.; Wheeler, F.J.; Bradshaw, K.M.; Wessol, D.E.; Harker, Y.D.; Nigg, D.W.; Randolph, P.D.; Bauer, W.F.; Gavin, P.R.; Richards, T.L.

    1992-01-01

    The Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program has been funded since 1988 to evaluate brain tumor treatment using Na 2 B 12 H 11 SH (borocaptate sodium or BSH) and epithermal neutrons. The PBF/BNCT Program pursues this goal as a comprehensive, multidisciplinary, multiorganizational endeavor applying modern program management techniques. The initial focus was to: (1) establish a representative large animal model and (2) develop the generic analytical and measurement capabilities require to control treatment repeatability and determine critical treatment parameters independent of tumor type and body location. This paper will identify the PBF/BNCT Program elements and summarize the status of some of the developed capabilities

  9. An accelerator-based Boron Neutron Capture Therapy (BNCT) facility based on the 7Li(p,n)7Be

    Science.gov (United States)

    Musacchio González, Elizabeth; Martín Hernández, Guido

    2017-09-01

    BNCT (Boron Neutron Capture Therapy) is a therapeutic modality used to irradiate tumors cells previously loaded with the stable isotope 10B, with thermal or epithermal neutrons. This technique is capable of delivering a high dose to the tumor cells while the healthy surrounding tissue receive a much lower dose depending on the 10B biodistribution. In this study, therapeutic gain and tumor dose per target power, as parameters to evaluate the treatment quality, were calculated. The common neutron-producing reaction 7Li(p,n)7Be for accelerator-based BNCT, having a reaction threshold of 1880.4 keV, was considered as the primary source of neutrons. Energies near the reaction threshold for deep-seated brain tumors were employed. These calculations were performed with the Monte Carlo N-Particle (MCNP) code. A simple but effective beam shaping assembly (BSA) was calculated producing a high therapeutic gain compared to previously proposed facilities with the same nuclear reaction.

  10. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    DEFF Research Database (Denmark)

    Hampel, G.; Grunewald, C.; Schütz, C.

    2011-01-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed at Pavia (Italy) a few ...

  11. Boron neutron capture therapy (BNCT). Recent aspect, a change from thermal neutron to epithermal neutron beam and a new protocol

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu

    1999-01-01

    Since 1968, One-hundred seventy three patients with glioblastoma (n=81), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumor (n=32) were treated by boron-neutron capture therapy (BNCT) using a combination of thermal neutron and BSH in 5 reactors (HTR n=13, JRR-3 n=1, MuITR n=98, KUR n=28, JRR-2 n=33). Out of 101 patients with glioma treated by BNCT under the recent protocol, 33 (10 glioblastoma, 14 anaplastic astrocytoma, 9 low grade astrocytoma) patients lived or have lived longer than 3 years. Nine of these 33 lived or have lived longer than 10 years. According to the retrospective analysis, the important factors related to the clinical results were tumor dose radiation dose and maximum radiation dose in thermal brain cortex. The result was not satisfied as it was expected. Then, we decided to introduce mixed beams which contain thermal neutron and epithermal neutron beams. KUR was reconstructed in 1996 and developed to be available to use mixed beams. Following the shutdown of the JRR-2, JRR-4 was renewed for medical use in 1998. Both reactors have capacity to yield thermal neutron beam, epithermal neutron beam and mixed beams. The development of the neutron source lead us to make a new protocol. (author)

  12. An optimum source neutron spectrum and holder shape for extra-corporal treatment of liver cancer by BNCT

    International Nuclear Information System (INIS)

    Nievaart, Sander; Moss, Ray; Sauerwein, Wolfgang; Malago, Massimo; Kloosterman, Jan Leen; Hagen, Tim van der; Dam, Hugo van

    2006-01-01

    In extra-corporal treatment of liver cancer by BNCT, it is desired to have an as homogeneous as possible thermal neutron field throughout the organ. Previous work has shown that when using an epithermal neutron beam, the shape of the holder in which the liver is placed is the critical factor. This study develops the notion further as to what is the optimum neutron spectrum to perform such treatments. In the design calculations, when using Monte Carlo techniques, it is shown that when the expected contributions of the source neutrons in every part of the liver is calculated, a linear optimization scheme such as the Simplex method results in a mix of thermal and epithermal source neutrons to get the highest homogeneity for the thermal neutron field. This optimisation method is demonstrated in 3 holder shapes: cuboid, cylindrical and spherical with each 3 volumes of 2, 4 and 6 litres. A 10 cm thick cuboid model, irradiated from both sides gives the highest homogeneity. The spherical (rotating) holder has the lowest homogeneity but the highest contribution of every source neutron to the thermal neutrons in the liver. This can be advantageous when using a relatively small sized neutron beam with a low strength. (author)

  13. On line local measurement of thermal neutron flux on BNCT patient using SPND

    International Nuclear Information System (INIS)

    Miller, M.E.; Sztejnberg Goncalves-Carralves, M.L.; Gonzalez, S.J.

    2006-01-01

    The first on-line neutron flux measurement on a patient using a self-powered neutron detector (SPND) was assessed during the fourth clinical trial of the Boron Neutron Capture Therapy (BNCT) Project carried out at the National Atomic Energy Commission of Argentina (CNEA) and the medical center Angel H. Roffo. The SPND was specially developed and assembled for BNCT by CNEA. Its small size, 1 cm sensible length and 1.9 mm diameter, allowed performing a localized measurement. Since the treated tumors were cutaneous melanomas of nodular type, the SPND was located on the patient's skin. The patient was exposed to three different and consecutive fields and in each of them the SPND was used to measure local thermal neutron fluxes at selected dosimetric reference points. The values of the measured fluxes agreed with the ones estimated by calculation. This trial also demonstrated the usefulness of the SPND for assessing flux on-line. (author)

  14. Study on high speed lithium jet for neutron source of boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mak, Michael; Stefanica, Jiri; Dostal, Vaclav; Zhao Wei

    2012-01-01

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively. (author)

  15. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boggio, E. F.; Longhino, J. M. [Centro Atomico Bariloche, Departamento de Fisica de Reactores y Radiaciones / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina); Andres, P. A., E-mail: efboggio@cab.cnea.gov.ar [Centro Atomico Bariloche, Division Proteccion Radiologica / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina)

    2015-10-15

    BNCT is a cancerous cells selective, non-conventional radiotherapy modality to treat malignant tumors such as glioblastoma, melanoma and recurrent head and neck cancer. It consists of a two-step procedure: first, the patient is injected with a tumor localizing drug containing a non-radioactive isotope (Boron-10) with high slow neutron capture cross-section. In a second step, the patient is irradiated with neutrons, which are absorbed by the Boron-10 agent with the subsequently nuclear reaction B- 10(n,a)Li-7, thereby resulting in dose at cellular level due to the high-Let particles. The neutron fields suitable for BNCT are characterized by high neutron fluxes and low gamma dose. Determination of each component is not an easy task, especially when the volume of measurement is quite small or inaccessible for a miniature ionization chamber, for example. A method of measuring the photon and slow neutron dose(mainly by N-14 and B-10) from the glow curve (GC) analysis of a single {sup 7}LiF thermoluminescence detector is evaluated. This method was suggested by the group headed by Dr. Grazia Gambarini. The dosemeters used were TLD-600 ({sup 6}LiF:Mg,Ti with 95.6% {sup 6}Li) and TLD-700 ({sup 7}LiF:Mg,Ti with 99.9% {sup 7}LiF) from Harshaw. Photon dose measurement using the GC analysis method with TLD-700 in mixed fields requires the relation of the two main peaks of a TLD-600 GC shape obtained from an exposition to the same neutron field, and a photon calibrated GC with TLD-700. The requirements for slow neutron dose measurements are similar. In order to properly apply the GC analysis method at the Ra-6 Research Reactor BNCT facility, measurements were carried out in a standard water phantom, fully characterized on the BNCT beam by conventional techniques (activation detectors and paired ionization chambers technique). Next, the method was implemented in whole body dose monitoring of a patient undergoing a BNCT treatment, using a Bo MAb (Bottle Manikin Absorption) phantom

  16. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, G.; Grunewald, C.; Schutz, C.; Schmitz, T.; Kratz, J.V. [Nuclear Chemistry, University of Mainz, D-55099 Mainz (Germany); Brochhausen, C.; Kirkpatrick, J. [Department of Pathology, University of Mainz, D-55099 Mainz (Germany); Bortulussi, S.; Altieri, S. [Department of Nuclear and Theoretical Physics University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN) Pavia Section, Pavia (Italy); Kudejova, P. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen, D-85748 Garching (Germany); Appelman, K.; Moss, R. [Joint Research Centre (JRC) of the European Commission, NL-1755 ZG Petten (Netherlands); Bassler, N. [University of Aarhus, Norde Ringade, DK-8000, Aarhus C (Denmark); Blaickner, M.; Ziegner, M. [Molecular Medicine, Health and Environment Department, AIT Austrian Institute of Technology GmbH (Austria); Sharpe, P.; Palmans, H. [National Physical Laboratory, Teddington TW11 0LW, Middlesex (United Kingdom); Otto, G. [Department of Hepatobiliary, Pancreatic and Transplantation Surgery, University of Mainz, D-55099 Mainz (Germany)

    2011-07-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed in Pavia (Italy) a few years ago, where patients with liver metastases were treated by combining BNCT with auto-transplantation of the organ. Here, in Mainz, a preclinical trial has been started on patients suffering from liver metastases of colorectal carcinoma. In vitro experiments and the first animal tests have also been initiated to investigate radiobiological effects of radiation generated during BNCT. For both experiments and the treatment, a reliable dosimetry system is necessary. From work elsewhere, the use of alanine detectors appears to be an appropriate dosimetry technique. (author)

  17. Epithermal neutron beam for BNCT research at the Washington State University TRIGA research reactor

    International Nuclear Information System (INIS)

    Nigg, D.W.; Venhuizen, J.R.; Wheeler, F.J.; Wemple, C.A.; Tripard, G.E.; Gavin, P.R.

    2000-01-01

    A new epithermal-neutron beam facility for BNCT (Boron Neutron Capture Therapy) research and boronated agent screening in animal models is in the final stages of construction at Washington State University (WSU). A key distinguishing feature of the design is the incorporation of a new, high-efficiency, neutron moderating and filtering material, Fluental, developed by the Technical Research Centre of Finland. An additional key feature is the provision for adjustable filter-moderator thickness to systematically explore the radiobiological consequences of increasing the fast-neutron contamination above the nominal value associated with the baseline system. (author)

  18. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-01-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10 9 n/cm 2 /s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin (∼ 5 cm iron). However, this approach has an extremely low neutron yield (n/p ∼ 1.0(-6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target ∼ 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies (∼ 2.5 MeV) have a much higher yield (n/p ∼ 1.0(-4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV

  19. OPTIMIZATION OF A NEUTRON BEAM SHAPING ASSEMBLY DESIGN FOR BNCT AND ITS DOSIMETRY SIMULATION BASED ON MCNPX

    Directory of Open Access Journals (Sweden)

    I Made Ardana

    2017-10-01

    OPTIMASI DESAIN KOLIMATOR NEUTRON UNTUK SISTEM BNCT DAN UJI DOSIMETRINYA MENGGUNAKAN PROGRAM MCNPX. Telah dilakukan penelitian tentang sistem BNCT yang meliputi dua tahapan simulasi dengan menggunakan program MCNPX yaitu uji simulasi untuk optimasi desain kolimator neutron untuk sistem BNCT berbasis Siklotron 30 MeV dan uji simulasi untuk menghitung fluks neutron dan dosimetri radiasi pada kanker sarkoma jaringan lunak pada leher dan kepala. Tujuan simulasi untuk mendapatkan desain kolimator yang paling optimal dalam memoderasi fluks neutron cepat yang dihasilkan dari sistem target berilium sehingga dapat dihasilkan fluks neutron yang sesuai untuk sistem BNCT. Uji optimasi dilakukan dengan cara memvariasikan bahan dan ketebalan masing-masing komponen dalam kolimator seperi reflektor, moderator, filter neutron cepat, filter neutron thermal, filter radiasi gamma dan lubang keluaran. Desain kolimator yang diperoleh dari hasil optimasi tersusun atas moderator berbahan Al dengan ketebalan 39 cm, filter neutron cepat berbahan LiF2 setebal 8,2 cm, dan filter neutron thermal berbahan B4C setebal 0,5 cm. Untuk reflektor, filter radiasi gamma dan lubang keluaran masing-masing menggunakan bahan PbF2, Pb dan Bi. Fluks neutron epithermal yang dihasilkan dari kolimator yang didesain adalah sebesar 2,83 x 109 n/s cm-2 dan telah memenuhi seluruh parameter fluks neutron yang sesuai untuk sistem BNCT. Selanjutnya uji simulasi dosimetri pada kanker sarkoma jaringan lunak pada leher dan kepala dilakukan dengan cara memvariasikan konsentrasi senyawa boron pada model phantom leher manusia (ORNL. Selanjutnya model phantom tersebut diiradiasi dengan fluks neutron yang berasal dari kolimator yang telah didesain sebelumnya. Hasilnya, fluks neutron thermal mencapai nilai tertinggi pada kedalaman 4,8 cm di dalam model phantom leher ORNL dengan laju dosis tertinggi terletak pada area jaringan kanker. Untuk masing-masing variasi konsentrasi senyawa boron pada model phantom leher ORNL supaya

  20. An update on the clinical trial of BNCT at the BMRR

    International Nuclear Information System (INIS)

    Ma, R.; Capala, J.; Chanana, A.D.; Coderre, J.A.; Diaz, A.Z.

    1999-01-01

    Boron neutron capture therapy (BNCT) was proposed more than six decades ago. It is a binary treatment modality that requires selective delivery of a 10 B-labeled compound to a tumor and slow neutron irradiation of the tumor-bearing tissues. In order to improve the penetration of the neutron beam, an epithermal neutron beam was developed at the Brookhaven Medical Research Reactor (BMRR). This epithermal neutron beam can deliver relatively high thermal neutron fluence at depth without severe skin damage. Boronophenylalanine-fructose (BPA-F), a nontoxic boron carrier, was found to preferentially accumulate in tumor cells following intravenous infusion in patients with GBM. In preclinical BNCT studies in rats bearing 9L gliosarcoma, BPA-mediated BNCT was shown to be more efficacious than photon irradiation. In 1994, improvements in the neutron beam and in the understanding of the radiobiology of BPA-mediated BNCT led to the initiation of BNCT trials for human GBM at BMRR using BPA-F and epithermal neutrons. The primary objective of the phase I/II clinical trial of BPA-mediated BNCT at BMRR is to evaluate the safety of the BPA-F-mediated BNCT using epithermal neutrons in patients with GBM at a series of escalating BNCT doses. An incidental objective is to evaluate the therapeutic effectiveness of BNCT at each dose level. For each dose escalation group, the average brain dose (ABD) is escalated, as well as the minimum tumor dose. In summary, the BNCT procedure employed in the phase I/II clinical trial of BPA-F-mediated BNCT for GBM at BNL was found to be safe in all patients. The palliation afforded by a single session of BNCT compares favorably with palliation provided by fractionated photon therapy and adjuvant chemotherapy. If no evidence of radiation-induced brain toxicity is found in the current protocol, BNCT radiation dose will be further escalated

  1. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    Auterinen, I.; Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material Fluental TM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  2. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Camillo, M.A.P.; Tomac Junior, U.

    1990-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na 2 10 B 12 H 11 SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author) [pt

  3. An epithermal neutron source for BNCT based on an ESQ-accelerator

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Phillips, T.L.; Reginato, L.L.; Wells, R.P.

    1997-07-01

    An accelerator-based BNCT facility is under development at the Lawrence Berkeley National Laboratory. Neutrons will be produced via the 7 Li(p,n) reaction at proton energies of about 2.5 MeV with subsequent moderation and filtering for shaping epithermal neutron beams for BNCT. Moderator, filter, and shielding assemblies have been modeled using MCNP. Head-phantom dose distributions have been calculated using the treatment planning software BNCT RTPE. The simulation studies have shown that a proton beam current of ∼ 20 mA is required to deliver high quality brain treatments in about 40 minutes. The results also indicate that significantly higher doses can be delivered to deep-seated tumors in comparison to the Brookhaven Medical Research Reactor beam. An electrostatic quadrupole (ESQ) accelerator is ideally suited to provide the high beam currents desired. A novel power supply utilizing the air-coupled transformer concept is under development. It will enable the ESQ-accelerator to deliver proton beam currents exceeding 50 mA. A lithium target has been designed which consists of a thin layer of lithium on an aluminum backing. Closely spaced, narrow coolant passages cut into the aluminum allow the removal of a 50kW heat-load by convective water cooling. The system under development is suitable for hospital installation and has the potential for providing neutron beams superior to reactor sources

  4. Applications of neutron irradiation

    International Nuclear Information System (INIS)

    Ito, Yasuo

    1999-01-01

    The present state of art of applications of neutron irradiation is overviewed taking neutron activation analysis, prompt gamma-ray analysis, fission/alpha track methods, boron neutron capture therapy as examples. What is common among them is that the technologies are nearly matured for wide use by non- nuclear scientists. But the environment around research reactors is not prospective. These applications should be encouraged by incorporating in the neutron science society. (author)

  5. Design and optimization of a beam-shaping assembly (BSA) for BNCT based on a neutron generator located at CEADEN, Havana, Cuba

    International Nuclear Information System (INIS)

    Padilla Cabal, F.; Martin, G; Abrahantes, A.

    2007-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2 H(d;n) 3 He and 3 H(d;n) 4 He down to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as Fluental TM for the neutron spectrum shifting. A semispherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT. (Author)

  6. Design and optimization of a beam-shaping assembly (BSA) for BNCT based on a neutron generator located at CEADEN, Havana, Cuba

    International Nuclear Information System (INIS)

    Padilla Cabal, F.; Martin, G.; Abrahantes, A.

    2007-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2 H(d;n) 3 He and 3 H(d;n) 4 Hedown to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as Fluental TM for the neutron spectrum shifting. A semi spherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT. (Author)

  7. Feasibility of the utilization of BNCT in the fast neutron therapy beam at Fermilab

    International Nuclear Information System (INIS)

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Paul M. Jr.

    2000-01-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue

  8. Design of thermal neutron beam based on an electron linear accelerator for BNCT.

    Science.gov (United States)

    Zolfaghari, Mona; Sedaghatizadeh, Mahmood

    2016-12-01

    An electron linear accelerator (Linac) can be used for boron neutron capture therapy (BNCT) by producing thermal neutron flux. In this study, we used a Varian 2300 C/D Linac and MCNPX.2.6.0 code to simulate an electron-photoneutron source for use in BNCT. In order to decelerate the produced fast neutrons from the photoneutron source, which optimize the thermal neutron flux, a beam-shaping assembly (BSA) was simulated. After simulations, a thermal neutron flux with sharp peak at the beam exit was obtained in the order of 3.09×10 8 n/cm 2 s and 6.19×10 8 n/cm 2 s for uranium and enriched uranium (10%) as electron-photoneutron sources respectively. Also, in-phantom dose analysis indicates that the simulated thermal neutron beam can be used for treatment of shallow skin melanoma in time of about 85.4 and 43.6min for uranium and enriched uranium (10%) respectively. Copyright © 2016. Published by Elsevier Ltd.

  9. Collimator and shielding design for boron neutron capture therapy (BNCT) facility at TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    Mohd Rafi Mohd Solleh; Abdul Aziz Tajuddin; Abdul Aziz Mohamed; Eid Mahmoud Eid Abdel Munem; Mohamad Hairie Rabir; Julia Abdul Karim; Yoshiaki, Kiyanagi

    2011-01-01

    The geometry of reactor core, thermal column, collimator and shielding system for BNCT application of TRIGA MARK II Reactor were simulated with MCNP5 code. Neutron particle lethargy and dose were calculated with MCNPX code. Neutron flux in a sample located at the end of collimator after normalized to measured value (Eid Mahmoud Eid Abdel Munem, 2007) at 1 MW power was 1.06 x 10 8 n/ cm 2 / s. According to IAEA (2001) flux of 1.00 x 10 9 n/ cm 2 / s requires three hours of treatment. Few modifications were needed to get higher flux. (Author)

  10. Abscopal effect of boron neutron capture therapy (BNCT). Proof of principle in an experimental model of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trivillin, Veronica A.; Monti Hughes, Andrea; Schwint, Amanda E. [Comision Nacional de Energia Atomica (CNEA), Department of Radiobiology, B1650KNA San Martin, Provincia Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Pozzi, Emiliano C.C.; Curotto, Paula [Centro Atomico Ezeiza, Comision Nacional de Energia Atomica (CNEA), Department of Research and Production Reactors, Provincia Buenos Aires (Argentina); Colombo, Lucas L. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Instituto de Oncologia Angel H. Roffo, Ciudad Autonoma de Buenos Aires (Argentina); Thorp, Silvia I.; Farias, Ruben O. [Comision Nacional de Energia Atomica (CNEA), Department of Instrumentation and Control, Provincia Buenos Aires (Argentina); Garabalino, Marcela A. [Comision Nacional de Energia Atomica (CNEA), Department of Radiobiology, B1650KNA San Martin, Provincia Buenos Aires (Argentina); Gonzalez, Sara J. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Comision Nacional de Energia Atomica (CNEA), Department of Instrumentation and Control, Provincia Buenos Aires (Argentina); Santa Cruz, Gustavo A. [Comision Nacional de Energia Atomica (CNEA), Department of Boron Neutron Capture Therapy, Provincia Buenos Aires (Argentina); Carando, Daniel G. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Universidad de Buenos Aires, Faculty of Exact and Natural Sciences, Ciudad Autonoma de Buenos Aires (Argentina)

    2017-11-15

    The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 x 10{sup 6} DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 x 10{sup 6} DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm{sup 3}. In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm{sup 3}. The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect. (orig.)

  11. Abscopal effect of boron neutron capture therapy (BNCT). Proof of principle in an experimental model of colon cancer

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Monti Hughes, Andrea; Schwint, Amanda E.; Pozzi, Emiliano C.C.; Curotto, Paula; Colombo, Lucas L.; Thorp, Silvia I.; Farias, Ruben O.; Garabalino, Marcela A.; Gonzalez, Sara J.; Santa Cruz, Gustavo A.; Carando, Daniel G.

    2017-01-01

    The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 x 10 6 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 x 10 6 DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm 3 . In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm 3 . The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect. (orig.)

  12. {sup 124}Sb–Be photo-neutron source for BNCT: Is it possible?

    Energy Technology Data Exchange (ETDEWEB)

    Golshanian, Mohadeseh [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Department of Physics, Shahrood University, Shahrood (Iran, Islamic Republic of); Rajabi, Ali Akbar [Department of Physics, Shahrood University, Shahrood (Iran, Islamic Republic of); Kasesaz, Yaser, E-mail: ykasesaz@aeoi.org.ir [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-11-01

    In this research a computational feasibility study has been done on the use of {sup 124}SbBe photo-neutron source for Boron Neutron Capture Therapy (BNCT) using MCNPX Monte Carlo code. For this purpose, a special beam shaping assembly has been designed to provide an appropriate epithermal neutron beam suitable for BNCT. The final result shows that using 150 kCi of {sup 124}Sb, the epithermal neutron flux at the designed beam exit is 0.23×10{sup 9} (n/cm{sup 2} s). In-phantom dose analysis indicates that treatment time for a brain tumor is about 40 min which is a reasonable time. This high activity {sup 124}Sb could be achieved using three 50 kCi rods of {sup 124}Sb which can be produced in a research reactor. It is clear, that as this activity is several hundred times the activity of a typical cobalt radiotherapy source, issues related to handling, safety and security must be addressed.

  13. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    Science.gov (United States)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  14. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    Science.gov (United States)

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mock-up experiment at Birmingham University for BNCT project of Osaka University – Neutron flux measurement with gold foil

    International Nuclear Information System (INIS)

    Tamaki, S.; Sakai, M.; Yoshihashi, S.; Manabe, M.; Zushi, N.; Murata, I.; Hoashi, E.; Kato, I.; Kuri, S.; Oshiro, S.; Nagasaki, M.; Horiike, H.

    2015-01-01

    Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error. - Highlights: • Accelerator based neutron source for BNCT is being developed in Osaka University. • Mock-up experiment was carried out at Birmingham University, UK. • Neutronics performance of our assembly was evaluated from gold foil activation. • Gold foil activation was determined by using HPGe detectors. • Validity of the neutronics design code system was confirmed.

  16. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-01

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity

  17. Application of 10BSH entrapped transferrin-PEG-liposome to boron neutron-capture therapy (BNCT) for solid tumor

    International Nuclear Information System (INIS)

    Maruyama, K.; Ishida, O.; Iwatsuru, M.; Yanagie, H.; Eriguchi, M.; Kobayashi, H.

    2000-01-01

    The successful treatment of cancer by BNCT requires the selective concentration of 10 B within malignant tumor cells. Intracellular targeting ability and cytotoxic effects of 10 B entrapped TF-PEG-liposomes, in which TF is covalently linked to the distal terminal of PEG chains on the external surface of PEG-liposomes, were examined in Colon 26 tumor-bearing mice. TF-PEG-liposomes readily bound to tumor cells in vivo, and were internalized by receptor-mediated endocytosis. 10 B-PEG-liposomes and 10 B-TF-PEG-liposomes showed prolonged residence time in the circulation and low RES uptake in tumor-bearing mice, resulting in enhanced extravasation of the liposomes into the solid tumor tissue and reached high level of 10 B content in tumor. After thermal neutron irradiation of mice injected with 10 B-PEG-liposomes or 10 B-TF-PEG-liposome, tumor growth was suppressed relative to controls. These results suggest that intravenous injection of 10 B TF-PEG-liposome can increase the intracellular retention of 10 B atoms, which were introduced by receptor mediated endocytosis after binding, causing tumor growth suppression in vivo upon thermal neutron irradiation. (author)

  18. Dose estimation of the THOR BNCT treatment room

    International Nuclear Information System (INIS)

    Hsu, F.Y.; Liu, H.M.; Yu, C.C.; Huang, Y.H.; Tsai, H.N.

    2006-01-01

    BNCT beam of Tsing Hua Open-pool Reactor (THOR) was designed and constructed since 1998. A treatment room for the newly modified THOR BNCT beam was constructed for the next clinical-stage trials in 2004. Dose distribution in a patient (or a phantom) is important as irradiated with the BNCT beam. The dose distributions for different type of radiations such as neutron and photons in the treatment room are strongly becoming the index or reference of success for a BNCT facility. An ART head phantom was placed in front of the THOR BNCT beam port and was irradiated. In each section of the head phantom, numbers of small holes are inside and separated uniformly. Dual detector: TLD-600 and TLD-700 chips were placed inside these holes within the phantom to distinct doses of neutron and photon. Besides, Dual-TLD chips were latticed placed in the horizontal plane of beam central axis, in the treatment room to estimate the spatial dose distribution of neutron and photon. Gold foils were assisted in TLD dose calibrations. Neutron and photon dose distributions in phantom and spatial dose distributions in the THOR BNCT treatment room were both estimated in this work. Testing and improvement in THOR BNCT beam were continuative during these years. Results of this work could be the reference and be helpful for the further clinical trials in nearly future. (author)

  19. 9Be(d,n)10B-based neutron sources for BNCT

    International Nuclear Information System (INIS)

    Capoulat, M.E.; Herrera, M.S.; Minsky, D.M.; González, S.J.; Kreiner, A.J.

    2014-01-01

    In the frame of accelerator-based BNCT, the 9 Be(d,n) 10 B reaction was investigated as a possible source of epithermal neutrons. In order to determine the configuration in terms of bombarding energy, target thickness and Beam Shaping Assembly (BSA) design that results in the best possible beam quality, a systematic optimization study was carried out. From this study, the optimal configuration resulted in tumor doses ≥40 Gy-Eq, with a maximum value of 51 Gy-Eq at a depth of about 2.7 cm, in a 60 min treatment. The optimal configuration was considered for the treatment planning assessment of a real Glioblastoma Multiforme case. From this, the resulted dose performances were comparable to those obtained with an optimized 7 Li(p,n)-based neutron source, under identical conditions and subjected to the same clinical protocol. - Highlights: • Study of the 9 Be(d,n) 10 B reaction as a source of epithermal neutrons for BNCT. • Evaluation of the optimal configuration of target thickness, deuteron energy and BSA design. • Computational dose assessment for brain tumor treatments using the MCNP code. • Treatment planning assessment of a particular clinical Glioblastoma Multiforme case. • Dose performances were comparable to those obtained with an optimized 7 Li(p,n)-based source

  20. Neutron irradiation therapy machine

    International Nuclear Information System (INIS)

    1980-01-01

    Conventional neutron irradiation therapy machines, based on the use of cyclotrons for producing neutron beams, use a superconducting magnet for the cyclotron's magnetic field. This necessitates complex liquid He equipment and presents problems in general hospital use. If conventional magnets are used, the weight of the magnet poles considerably complicates the design of the rotating gantry. Such a therapy machine, gantry and target facilities are described in detail. The use of protons and deuterons to produce the neutron beams is compared and contrasted. (U.K.)

  1. Application of HVJ envelope system to boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Nakai, Kei; Kurooka, Masaaki; Kaneda, Yasufumi; Yamamoto, Tetsuya; Matsumura, Akira; Asano, Tomoyuki

    2006-01-01

    Boron Neutron Capture Therapy (BNCT) has been used clinically for the treatment of malignant tumors. Two drugs, p-boronophenylalanine (BPA) and sulfhydral borane (BSH), have been used as boron delivery agents. These drugs seem to be taken up preferentially in solid tumors, but it is uncertain whether therapeutic quantities of boron atoms are taken up by micro-invasive or distant tumor cells. High accumulation and high selective delivery of boron into tumor tissues are the most important requirements to achieve efficient BNCT for malignant tumor. The HVJ envelope (HVJ-E) vector system is a novel fusion-mediated gene delivery system based on inactivated hemagglutinating virus of Japan (HVJ; Sendai virus). Although we developed this vector system for gene transfer, it can also deliver proteins, synthetic oligonucleotides, and drugs. HVJ-liposome, which is liposome fused with HVJ-E, has higher boron trapping efficiency than HVJ-E alone. We report the boron delivery into cultured cells with HVJ-liposome systems. The cellular 10 B concentration after 60 min incubation with HVJ-E containing BSH was 24.9 μg/g cell pellet for BHK-21 cells (baby hamster kidney cells) and 19.4 μg/g cell pellet for SCC VII cells (murine squamous cell carcinoma). These concentrations are higher than that of 60 min incubated cells with BSH containing (100μg 10 B/ml) medium. These results indicate the HVJ-E fused with tumor cell membrane and rapidly delivered boron agents, and that the HVJ-E-mediated delivery system could be applicable to BNCT. Plans are underway to begin neutron radiation experiments in vivo and in vitro. (author)

  2. Studies for the application of Boron neutron capture therapy (BNCT) to the treatment of differentiated thyroid cancer (CDT)

    International Nuclear Information System (INIS)

    Carpano, Marina; Thomasz, Lisa; Perona, Marina; Juvenal, Guillermo J.; Pisarev, Mario; Dagrosa, Maria A.; Nievas, Susana I.; Pozzi, Emiliano; Thorp, Silvia

    2009-01-01

    Boron neutron capture therapy (BNCT) is a high linear energy transfer (LET) radiotherapy for cancer, which it is based on the nuclear reaction that occurs when boron-10 that it is a non radioactive isotope of the natural elemental boron, is irradiated with low energy thermal neutrons to produce an alpha particle and a nucleus of lithium-7. Both particles have a range smaller than the diameter of a cell causing cell tumor death without significant damage to the surrounding normal tissues. In previous studies we have shown that BNCT can be a possibility for the treatment of undifferentiated thyroid cancer (UTC). However, more than 80 % of patients with thyroid neoplasm present differentiated carcinoma (CDT). These carcinomas are treated by surgery followed by therapy with 131 I and mostly these forms are well controlled. But in some patients recurrence of the tumor is observed. BNCT can be an alternative for these patients in who the tumor lost the capacity to concentrate iodide. The aim of these studies was to evaluate the possibility of treating differentiated thyroid cancer by BNCT. Materials and Methods: The human cell lines of follicular (WRO) and papillary carcinomas (TPC-1) were grown in RPMI and modified DMEM medium respectively. Both supplemented with 10 % of SFB. The cell line of thyroid rat, FRTL-5, used as control normal, was cultured in DMEM/F12. The uptakes of 125 I and p-borophenylalanine BPA (6.93mM) were studied. The intracellular boron concentration was measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) at 2 hr post incubation. The NIH strain of male nude mice, aged 6 to 8 weeks and weighing 20 to 25 g were implanted (s.c) in the back right flank with different concentrations of tumor cells. The size of the tumors was measured with a caliper twice or three times a week and the volume was calculated according the following formulae: A 2 x B/2 (were A is the width and B is the length). To evaluate the BPA uptake, animals

  3. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    International Nuclear Information System (INIS)

    Nigg, David W.

    2012-01-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K(nido-7-CH3(CH2)15-7,8-C2B9H11) in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K(nido-7-CH3(CH2)15-7,8-C2B9H11) in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 (ae-B20H17NH3), administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  4. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg

    2012-05-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 [ae-B20H17NH3], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 {+-} 16.1 ppm at 48 h and to 43.9 {+-} 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  5. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    Science.gov (United States)

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A physical and engineering study on the irradiation techniques in neutron capture therapy aiming for wider application

    International Nuclear Information System (INIS)

    Sakurai, Y.; Ono, K.; Suzuki, M.; Katoh, I.; Miyatake, S.-I.; Yanagie, H.

    2003-01-01

    The solo-irradiation of thermal neutrons has been applied for brain cancer and malignant melanoma in the boron neutron capture therapy (BNCT) at the medical irradiation facility of Kyoto University Reactor (KUR), from the first clinical trial in 1974. In 1997, after the facility remodeling, the application of the mix-irradiation of thermal and epi-thermal neutrons was started, and the depth dose distribution for brain cancer has been improved in some degree. In 2001, the solo-irradiation of epi-thermal neutrons also started. It is specially mentioned that the application to oral cancers started at the same time. The BNCT clinical trial using epi-thermal neutron irradiation at KUR, amounts to twelve as of March 2003. The seven trials; more than a half of the total trials, are for oral cancers. From this fact, we think that the wider application to the other cancers is required for the future prosperity of BNCT. The cancers applied for BNCT in KUR at the present time, are brain cancer, melanoma and oral cancers, as mentioned above. The cancers, expected to be applied in near future, are liver cancer, pancreas cancer, lung cancer, tongue cancer, breast cancer, etc.. Any cancer is almost incurable by the other therapy including the other radiation therapy. In the wider application of BNCT to these cancers, the dose-distribution control suitable to each cancer and/or each part, is important. The introduction of multi-directional and/or multi-divisional irradiation is also needed. Here, a physical and engineering study using two-dimensional transport calculation and three-dimensional Monte-Carlo simulation for the irradiation techniques in BNCT aiming for wider application is reported

  7. Design of a BNCT facility at HANARO

    International Nuclear Information System (INIS)

    Jun, Byung Jin; Lee, Byung Chul

    1998-01-01

    Based on the feasibility study of the BNCT at HANARO, it was confirmed that only thermal BNCT is possible at the IR beam tube if appropriate filtering system be installed. Medical doctors in Korea Cancer Center Hospital agreed that the thermal BNCT facility would be worthwhile for the BNCT technology development in Korea as well as superficial cancer treatment. For the thermal BNCT to be effective, the thermal neutron flux should be high enough for patient treatment during relatively short time and also the fast neutron and gamma-ray fluxes should be as low as possible. In this point of view, the following design requirements are set up: 1) thermal neutron flux at the irradiation position should be higher than 3x10 9 n/cm 2 -sec, 2) ratio of the fast neutrons and gamma-rays to the thermal neutrons should be minimized, and 3) patient treatment should be possible without interrupt to the reactor operation. To minimize the fast neutrons and gamma-rays with the required thermal neutrons at the irradiation position, a radiation filter consisting of single crystals of silicon and bismuth at liquid nitrogen temperature is designed. For the shielding purpose around the irradiation position, polyethylene, lead, LiF, etc., are appropriately arranged around the radiation filter. A water shutter in front of the radiation filter is adopted so as to avoid interrupt to the reactor operation. At present, detail design of the radiation filter is ongoing. Cooling capabilities of the filter will be tested through a mockup experiment. Dose rate distributions around the radiation filter and a prompt gamma-ray activation analysis system for the analyses of boron content in the biological samples are under design. The construction of this facility will be started from next year if it is permitted from the regulatory body this year. Some other future works exist and are described in the paper. (author)

  8. Stability of high-speed lithium sheet jets for the neutron source in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Nakagawa, Masamichi; Takahashi, Minoru; Aritomi, Masanori; Kobayashi, Toru

    2014-01-01

    The stability of high-speed liquid lithium sheet jets was analytically studied for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to realize the thin and high-speed plane sheet jets of liquid lithium in a high-vacuum as an accelerator target. Linear analysis approach is made to the stability on thin plane sheet jets of liquid lithium in a high-vacuum, and then our analytical results were compared with the previous experimental ones. We proved that the waves of surface tension on thin lithium sheet jets in a high-vacuum are of supercritical flows and neutral stable under about 17.4 m/s in flow velocity and that the fast non-dispersive anti-symmetric waves are more significant than the very slow dispersive symmetric waves. We also formulated the equation of shrinking angle in isosceles-triangularly or isosceles-trapezoidal shrinking sheet jets corresponding to the Mach angle of supersonic gas flows. This formula states universally the physical meaning of Weber number of sheet jets on the wave of surface tension in supercritical flows. We obtained satisfactory prospects (making choice of larger flow velocity U and larger thickness of sheet a) to materialize a liquid target of accelerator in BNCT. (author)

  9. Characterisation of the TAPIRO BNCT epithermal facility

    Energy Technology Data Exchange (ETDEWEB)

    Burn, K. W. [FIS-NUC, ENEA, Via Martiri di Montesole 4, Bologna (Italy); Colli, V. [Dept. of Physics of Univ., INFN, Via Celoria 16, I-20133 Milano (Italy); Curzio, G.; D' Errico, F. [DIMNP, Univ. of Pisa, Via Diotisalvi 2, I-56126 Pisa (Italy); Gambarini, G. [Dept. of Physics of Univ., INFN, Via Celoria 16, I-20133 Milano (Italy); Rosi, G. [FIS-ION, ENEA, Casaccia, Via Anguillarese 301, I-00060 Santa Maria di Galeria, Roma (Italy); Scolari, L. [Dept. of Physics of Univ., INFN, Via Celoria 16, I-20133 Milano (Italy)

    2004-07-01

    A collimated epithermal beam for boron neutron capture therapy (BNCT) research has been designed and built at the TAPIRO fast research reactor. A complete experimental characterisation of the radiation field in the irradiation chamber has been performed, to verify agreement with IAEA requirements. Slow neutron fluxes have been measured by means of an activation technique and with thermoluminescent detectors (TLDs). The fast neutron dose has been determined with gel dosemeters, while the fast neutron spectrum has been acquired by means of a neutron spectrometer based on superheated drop detectors. The gamma-dose has been measured with gel dosemeters and TLDs. For an independent verification of the experimental results, fluxes, doses and neutron spectra have been calculated with Monte Carlo simulations using the codes MCNP4B and MCNPX 2.1.5 with the direct statistical approach (DSA). The results obtained confirm that the epithermal beams achievable at TAPIRO are of suitable quality for BNCT purposes. (authors)

  10. Beam shaping assembly of a D-T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    Science.gov (United States)

    Faghihi, F.; Khalili, S.

    2013-08-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.

  11. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

    Science.gov (United States)

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2012-12-01

    A feasibility study was conducted to design a beam shaping assembly for BNCT based on D-T neutron generator. The optimization of this configuration has been realized in different steps. This proposed system consists of metallic uranium as neutron multiplier, TiF(3) and Al(2)O(3) as moderators, Pb as reflector, Ni as shield and Li-Poly as collimator to guide neutrons toward the patient position. The in-air parameters recommended by IAEA were assessed for this proposed configuration without using any filters which enables us to have a high epithermal neutron flux at the beam port. Also a simulated Snyder head phantom was used to evaluate dose profiles due to the irradiation of designed beam. The dose evaluation results and depth-dose curves show that the neutron beam designed in this work is effective for deep-seated brain tumor treatments even with D-T neutron generator with a neutron yield of 2.4×10(12) n/s. The Monte Carlo Code MCNP-4C is used in order to perform these calculations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Clinical results of BNCT for malignant meningiomas

    International Nuclear Information System (INIS)

    Miyatake, Shin-ichi; Tamura, Yoji; Kawabata, Shinji

    2006-01-01

    Malignant meningiomas is difficult pathology to be controlled as well as GBM. Since June of 2005, we applied BNCT for 7 cases of malignancy related meningiomas with 13 times neutron irradiation. Five were anaplastic, one was atypical meningiomas and one was sarcoma transformed from meningioma with cervical lymph node metastasis. All cases were introduced after repetitive surgeries and XRT or SRS. Follow-up images were available for 6 cases with observation duration between 2 to 9 months. We applied F-BPA-PET before BNCT in 6 out of 7 cases. One case was received methionine-PET. Five out of 6 cases who received BPA-PET study showed good BPA uptake more than 3 of T/N ratio. One atypical meningiomas cases showed 2.0 of T/N ratio. Original tumor sizes were between 9.2 to 92.7 ml. Two out of 5 anaplastic meningiomas showed CR and all six cases showed radiographic improvements. Clinical symptoms before BNCT such as hemiparesis and facial pain were improved after BNCT, except one case. An huge atypical meningiomas which arisen from tentorium and extended bilateral occipital lobes and brain stem, visual problems were worsened after repetitive BNCT with increase of peritumoral edema. Malignant meningiomas are seemed to be good candidate for BNCT. (author)

  13. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, E. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)], E-mail: epozzi@cnea.gov.ar; Nigg, D.W. [Idaho National Laboratory, Idaho Falls (United States); Miller, M.; Thorp, S.I. [Instrumentation and Control Department, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Zarza, L.; Estryk, G. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Monti Hughes, A.; Molinari, A.J.; Garabalino, M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Quintana, J. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Trivillin, V.A.; Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)

    2009-07-15

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10{sup 9} n cm{sup -2} s{sup -1} and the fast neutron flux was 2.5x10{sup 6} n cm{sup -2} s{sup -1}, indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in {sup 6}Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  14. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    International Nuclear Information System (INIS)

    Pozzi, E.; Nigg, D.W.; Miller, M.; Thorp, S.I.; Heber, E.M.; Zarza, L.; Estryk, G.; Monti Hughes, A.; Molinari, A.J.; Garabalino, M.; Itoiz, M.E.; Aromando, R.F.; Quintana, J.; Trivillin, V.A.; Schwint, A.E.

    2009-01-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10 9 n cm -2 s -1 and the fast neutron flux was 2.5x10 6 n cm -2 s -1 , indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in 6 Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  15. Physical engineering and medical physics on boron neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori

    2011-01-01

    The contents of physical engineering and medical physics that support boron neutron capture therapy (BNCT) can be roughly classified to the four items, (1) neutron irradiation system, (2) development and improvement of dose assessment techniques, (3) development and improvement of dose planning system, and (4) quality assurance and quality control. This paper introduces the BNCT at Kyoto University Research Reactor Institute, with a focus on the basic physics of BNCT, thermal neutron irradiation and epithermal neutron irradiation, heavy water neutron irradiation facilities of KUR, and medical irradiation system of KUR. It also introduces the world's first BNCT clinical cyclotron irradiation system (C-BENS) of Kyoto University Research Reactor Institute, BNCT dose assessment techniques, dose planning system, and quality assurance and quality control. (A.O.)

  16. Study on changes of sperm count and testis tissue in black mouse after neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ki Jung; Seo, Won Sook [KAERI, Daejeon (Korea, Republic of); Son, Hwa Young [Chungnam National Univ., Daejeon (Korea, Republic of)

    2006-03-15

    For the purpose of the biological effect in black mouse by neutron irradiation, mice were irradiated with 16 or 32 Gy neutron (flux: 1.036739E+09) by lying flat pose at BNCT facility on HANARO Reactors. And 90 days later of irradiation, physical changes of testis and testis tissue were examined. There were no weight changes but a little bit volume changes and sperm counts in the tests. Atrophy of seminiferous tubules irradiated with 32 Gy neutron is increased in number and severity and those in stage VI showed depletion of spermatogonia and pachytene spermatocytes compared to the non-irradiated control group. Testis damage of black mouse was not recovered after long time by 32 Gy neutron irradiation.

  17. Study on changes of sperm count and testis tissue in black mouse after neutron irradiation

    International Nuclear Information System (INIS)

    Chun, Ki Jung; Seo, Won Sook; Son, Hwa Young

    2006-01-01

    For the purpose of the biological effect in black mouse by neutron irradiation, mice were irradiated with 16 or 32 Gy neutron (flux: 1.036739E+09) by lying flat pose at BNCT facility on HANARO Reactors. And 90 days later of irradiation, physical changes of testis and testis tissue were examined. There were no weight changes but a little bit volume changes and sperm counts in the tests. Atrophy of seminiferous tubules irradiated with 32 Gy neutron is increased in number and severity and those in stage VI showed depletion of spermatogonia and pachytene spermatocytes compared to the non-irradiated control group. Testis damage of black mouse was not recovered after long time by 32 Gy neutron irradiation

  18. In vivo BNCT in experimental and spontaneous tumors at RA-1 reactor

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.; Nigg, David W.

    2003-01-01

    Within the search for new applications of Boron Neutron Capture Therapy (BNCT) and the basic research oriented towards the study of BNCT radiobiology to optimize its therapeutic gain, we previously proposed and validated the hamster cheek pouch oral cancer model and showed, for the first time, the success of BNCT to treat oral cancer in an experimental model. The staff of the Ra-1 Reactor (Constituyentes Atomic Center) adapted the thermal beam and physical set-up to perform in vivo BNCT of superficial tumors in small animals. We preformed a preliminary characterization of the thermal beam, performed beam only irradiation of normal and tumor bearing hamsters and in vivo BNCT of experimental oral squamous cell carcinomas in hamsters mediated by boron phenylalanine (BPA) and GB-10 (Na 2 10 B 10 H 10 ). Having demonstrated the absence of radio toxic effects in healthy tissue and a therapeutic effect of in vivo BNCT in hamster cheek pouch tumors employing the Ra-1 thermal beam, we performed a feasibility study of the treatment by BNCT of 3 terminal cases of spontaneous head and neck squamous cell carcinoma in cats following the corresponding biodistribution studies. This was the first treatment of spontaneous tumors by BNCT in our country and the first treatment by BNCT in cats worldwide. This preclinical study in terminal cases showed significant tumor control by BNCT with no damage to normal tissue. (author)

  19. Considerations for boron neutron capture therapy studies; Consideracoes sobre o estudo da BNCT (terapia de captura neutronica por boro)

    Energy Technology Data Exchange (ETDEWEB)

    Faria Gaspar, P de

    1994-12-31

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps.

  20. Sodium borocaptate (BSH) for Boron Neutron Capture Therapy (BNCT) in the hamster cheek pouch oral cancer model: boron biodistribution at 9 post administration time-points

    International Nuclear Information System (INIS)

    Garabalino, M.A.; Heber, E.M.; Monti, Hughes A.; Molinari, A.J.; Pozzi, E.C.C.; Trivillin, V.A.; Schwint, Amanda E.

    2011-01-01

    The therapeutic success of Boron Neutron Capture Therapy (BNCT) depends centrally on boron concentration in tumor and healthy tissue. We previously demonstrated the therapeutic efficacy of boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) as boron carriers for BNCT in the hamster cheek pouch oral cancer model. Given the clinical relevance of sodium mercaptoundecahydro-closo-dodecaborate (BSH) as a boron carrier, the aim of the present study was to expand the ongoing BSH biodistribution studies in the hamster cheek pouch oral cancer model. In particular, we studied 3 additional post-administration time-points and increased the sample size corresponding to the time-points evaluated previously, to select more accurately the post-administration time at which neutron irradiation would potentially confer the greatest therapeutic advantage. BSH was dissolved in saline solution in anaerobic conditions to avoid the formation of the dimer BSSB and its oxides which are toxic. The solution was injected intravenously at a dose of 50 mg 10 B/kg (88 mg BSH / kg). Different groups of animals were killed humanely at 7, 8, and 10 h after administration of BSH. The sample size corresponding to the time-points 3, 4, 6, 9 and 12 h was increased. Samples of blood, tumor, precancerous tissue, normal pouch tissue, cheek mucosa, parotid gland, palate, skin, tongue, spinal cord marrow, brain, liver, kidney, spleen and lung were processed for boron measurement by Optic Emission Spectroscopy (ICP-OES). Boron concentration in tumor peaked to 24-34 ppm, 3-10 h post-administration of BSH, with a spread in values that resembled that previously reported in other experimental models and human subjects. The boron concentration ratios tumor/normal pouch tissue and tumor/blood ranged from 1.3 to 1.8. No selective tumor uptake was observed at any of the time points evaluated. The times post-administration of BSH that would be therapeutically most useful would be 5, 7 and 9 h. The

  1. PBF/BNCT [power burst facility/boron neutron capture therapy] program for cancer treatment

    International Nuclear Information System (INIS)

    Dorn, R.V. III.

    1989-06-01

    Highlights of the PBF/BNCT Program during June include progress within the areas of gross boron analysis in tissue, blood, and urine; analytical methodologies development for BSH (sodium borocaptate) purity determination; boron microscopic (subcellular) analytical development; noninvasive boron quantification determination; dosimetry; and analytical radiation transport and interaction modeling for BNCT

  2. Neutron irradiation facility and its characteristics

    International Nuclear Information System (INIS)

    Oyama, Yukio; Noda, Kenji

    1995-01-01

    A neutron irradiation facility utilizing spallation reactions with high energy protons is conceived as one of the facilities in 'Proton Engineering center (PEC)' proposed at JAERI. Characteristics of neutron irradiation field of the facility for material irradiation studies are described in terms of material damage parameters, influence of the pulse irradiation, irradiation environments other than neutronics features, etc., comparing with the other sorts of neutron irradiation facilities. Some perspectives for materials irradiation studies using PEC are presented. (author)

  3. Boron neutron capture therapy (BNCT) using fast neutrons: Effects in two human tumor cell lines

    International Nuclear Information System (INIS)

    Sauerwein, W.; Ziegler, W.; Szypniewski, H.; Streffer, C.

    1990-01-01

    The results demonstrate that the effect of fast neutrons on cell survival in cell culture can be enhanced by boron neutron capture reaction. Even with lower enhancement ratios, the concept of NCT assisted fast neutron therapy may successfully be applied for tumor treatment with the Essen cyclotron. (orig.)

  4. Microdosimetric measurements in the thermal neutron irradiation facility of LENA reactor

    International Nuclear Information System (INIS)

    Colautti, P.; Moro, D.; Chiriotti, S.; Conte, V.; Evangelista, L.; Altieri, S.; Bortolussi, S.; Protti, N.; Postuma, I.

    2014-01-01

    A twin TEPC with electric-field guard tubes has been constructed to be used to characterize the BNCT field of the irradiation facility of LENA reactor. One of the two mini TEPC was doped with 50 ppm of 10 B in order to simulate the BNC events occurring in BNCT. By properly processing the two microdosimetric spectra, the gamma, neutron and BNC spectral components can be derived with good precision (∼6%). However, direct measurements of 10 B in some doped plastic samples, which were used for constructing the cathode walls, point out the scarce accuracy of the nominal 10 B concentration value. The influence of the Boral ® door, which closes the irradiation channel, has been measured. The gamma dose increases significantly (+51%) when the Boral ® door is closed. The crypt-cell-regeneration weighting function has been used to measure the quality, namely the RBE µ value, of the radiation field in different conditions. The measured RBE µ values are only partially consistent with the RBE values of other BNCT facilities. - Highlights: • A counter with two mini TEPCs, both equipped with electrical-field guard tubes, has been constructed. • The microdosimetric spectrum of the LENA-reactor irradiation vane has been studied. • The radiation-field quality (RBE) assessment confirms that the D n /D tot ratio is not an accurate parameter to characterize the BNCT radiation field

  5. First clinical results from the EORTC phase I Trial ''postoperative treatment of glioblastoma with BNCT at the Petten irradiation facility''

    International Nuclear Information System (INIS)

    Sauerwein, W.; Hideghety, K.; Rassow, J.; Devries, M.J.; Goetz, C.; Paquis, P.; Grochulla, F.; Wolbers, J.G.; Haselsberger, K.; Turowski, B.; Moss, R.L.; Stecher-Rasmussen, F.; Touw, D.; Wiestler, O.D.; Frankhauser, H.; Gabel, D.

    2001-01-01

    Based on the pre-clinical work of the European Collaboration on Boron Neutron Capture Therapy a study protocol was prepared in 1995 to initiate Boron Neutron Capture Therapy (BNCT) in patients at the High Flux Reactor (HFR) in Petten. Bio-distribution and pharmacokinetics data of the boron drug Na 2 B 12 H 11 SH (BSH) as well as the radiobiological effects of BNCT with BSH in healthy brain tissue of dogs were considered in designing the strategy for this clinical Phase I trial. The primary goal of the radiation dose escalation study is the investigation of possible adverse events due to BNCT; i.e. to establish the dose limiting toxicity and the maximal tolerated dose. The treatment is delivered in 4 fractions at a defined average boron concentration in blood. Cohorts of 10 patients are treated per dose group. The starting dose was set at 80% of the dose at which neurological symptoms occurred in preclinical dog experiments following a single fraction. After an observation period of at least 6 months, the dose is increased by 10% for the next cohort if less then three severe side effects related to the treatment occurred. The results of the first cohort are presented here. The evaluated dose level can be considered safe. (author)

  6. First clinical results from the EORTC phase I Trial ''postoperative treatment of glioblastoma with BNCT at the Petten irradiation facility''

    Energy Technology Data Exchange (ETDEWEB)

    Sauerwein, W; Hideghety, K; Rassow, J [Department of Radiotherapy, University of Essen (Germany); Devries, M J [NDDO Oncology, Amsterdam (Netherlands); Goetz, C [Neurochirurgische Klinik, Klinikum Grosshadern Muenchen, Munich (Germany); Paquis, P [Dept. de Neurochirurgie, Hopital Pasteur, Nice (France); Grochulla, F [Klinik fuer Neurochirurgie, Zentralkrankenhaus Bremen (Germany); Wolbers, J G [Department of Neurosurgery, University Hospital ' ' Vrije Universiteit' ' , Amsterdam (Netherlands); Haselsberger, K [Klinik fuer Neurochirurgie, Karl-Franzens-Universitaet, Graz (Austria); Turowski, B [Institut fuer Neuroradiologie, Johann-Wolfgang-von-Goethe-Universitaet, Frankfurt (Germany); Moss, R L [HFR Unit, Joint Research Centre, European Commission, Petten (Netherlands); Stecher-Rasmussen, F [Nuclear Research and Consultancy Group NRG, Petten (Netherlands); Touw, D [Pharmacy, University/Academic Hospital ' ' Vrije Universiteit' ' , Amsterdam (Netherlands); Wiestler, O D [Department of Neuropathology, German Brain Tumour Reference Centre, Universitaetsklinikum Bonn (Germany); Frankhauser, H [Service de Neurochirurgie CHUV, Lausanne (Switzerland); Gabel, D [Chemistry Department, University of Bremen (Germany)

    2001-05-01

    Based on the pre-clinical work of the European Collaboration on Boron Neutron Capture Therapy a study protocol was prepared in 1995 to initiate Boron Neutron Capture Therapy (BNCT) in patients at the High Flux Reactor (HFR) in Petten. Bio-distribution and pharmacokinetics data of the boron drug Na{sub 2}B{sub 12}H{sub 11}SH (BSH) as well as the radiobiological effects of BNCT with BSH in healthy brain tissue of dogs were considered in designing the strategy for this clinical Phase I trial. The primary goal of the radiation dose escalation study is the investigation of possible adverse events due to BNCT; i.e. to establish the dose limiting toxicity and the maximal tolerated dose. The treatment is delivered in 4 fractions at a defined average boron concentration in blood. Cohorts of 10 patients are treated per dose group. The starting dose was set at 80% of the dose at which neurological symptoms occurred in preclinical dog experiments following a single fraction. After an observation period of at least 6 months, the dose is increased by 10% for the next cohort if less then three severe side effects related to the treatment occurred. The results of the first cohort are presented here. The evaluated dose level can be considered safe. (author)

  7. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, M. [National Radiation Protection Department - NRPD, Atomic Energy Organization of Iran - AEOI, Tehran (Iran, Islamic Republic of); End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Kasesaz, Y.; Khalafi, H.; Shayesteh, M. [Radiation Application School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  8. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    International Nuclear Information System (INIS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Shayesteh, M.

    2015-01-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  9. Accelerator-based BNCT.

    Science.gov (United States)

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  10. A sensitivity study on neutron flux variation due to 10B concentration in dose calculation for BNCT

    International Nuclear Information System (INIS)

    Jung, Sang Hoon

    2006-02-01

    The effects of inclusion of 10 B concentration on neutron flux and dose in dose calculation were studied. In order to provide the quantitative effects of inclusion of 10 B concentrations on depressions of neutron and photon flux and dose, the fluxes and doses with voxel head phantoms for various 10 B concentrations homogeneously distributed were calculated by using MCNPX simulations. A lithium target system and beam shaping assembly, which have been developed at the Hanyang University, were used as epithermal neutron beam. The calculation results show that the neutron flux at the center of the head phantom decreases by approximately 5.4% per 10 ppm of 10 B concentration in comparison with the neutron flux in the case of boron-free. It was also observed that the tissue dose at the center of the head phantom is depressed by approximately 4.7% per 10 ppm of the 10 B concentration and the tumor dose by approximately 5.3% per 10 ppm. According to depth of tumors, it was observed that the depressions of the doses in the tumors are ranged in 3.7 ∼ 9.2%. The dose calculations in the case of boron-free show that it is overestimated in comparison with the dose calculations in the cases of the inclusion of 10 B concentrations for the normal tissue and the tumors. Therefore, in dose calculation for BNCT, the depressions of neutron flux and dose should be considered. The results in this study are available to setting up the depression ratios which can be used for converting neutron and gamma fluxes and doses in phantom with boron free into the fluxes and doses in phantom with inclusion of 10 B concentrations in treatment. It is expected that the depression ratios is practicable to dose evaluation for BNCT

  11. Radiation protection in BNCT patients

    International Nuclear Information System (INIS)

    Blaumann, Hernan R.; Scharnichia, E.; Levanon, I.; Fernandez, C.; Facchini, Guillermo; Longhino, J.; Calzetta, Osvaldo; Pereira, M.

    2008-01-01

    Full text: Boron Neutron Capture Therapy (BNCT) is a technique that selectively targets cancer cells while sparing normal tissues by virtue of the differential uptake of a 10 B carrier compound in tumor. The National Atomic Energy Commission (CNEA) and the Oncology Institute 'Angel H. Roffo' (IOAR) began a BNCT programme in 2003 for treating cutaneous skin melanomas in extremities. The neutron beam used is the hyperthermal one developed at the RA-6 Reactor of the Bariloche Atomic Centre (CAB). The prescribed dose is delivered in one fraction and therefore patient positioning and knowledge of the dose received by normal tissue are crucial. 10 irradiations have been done since 2003, all of them in legs and feet and the dose prescription was determined by the maximum tolerable skin dose. Due to the characteristics of this treatment the patient body might be exposed not only to the primary beam but also to the secondary photon beam produced by neutron capture at the target itself. Thus a patient radiation-monitoring plan was implemented in order to evaluate the gamma dose delivered to sensible organs of each patient. An acrylic water-filled whole body phantom was used for preliminary gamma dose and thermal neutron flux measurements at positions related to patient's body sensible organs considering tentative patient positions. The beam port shielding was, in this way, optimized. TLD-700 and Manganese foils were used for gamma and thermal neutron detection. The TLD-700 thermal neutron response was previously evaluated by using the in-phantom beam dosimetry characterization. In-vivo dosimetry with TLD is routinely implemented in order to evaluate gamma dose to sensible organs of each patient. These organs are chosen depending on its distance from the zone to be irradiated and its radio-sensibility. All TLDs have been positioned well outside the irradiation field. Maximum gamma dose received outside the radiation field in healthy tissues was well below tolerance dose for

  12. Fatal carotid blowout syndrome after BNCT for head and neck cancers

    International Nuclear Information System (INIS)

    Aihara, T.; Hiratsuka, J.; Ishikawa, H.; Kumada, H.; Ohnishi, K.; Kamitani, N.; Suzuki, M.; Sakurai, H.; Harada, T.

    2015-01-01

    Boron neutron capture therapy (BNCT) is high linear energy transfer (LET) radiation and tumor-selective radiation that does not cause serious damage to the surrounding normal tissues. BNCT might be effective and safe in patients with inoperable, locally advanced head and neck cancers, even those that recur at previously irradiated sites. However, carotid blowout syndrome (CBS) is a lethal complication resulting from malignant invasion of the carotid artery (CA); thus, the risk of CBS should be carefully assessed in patients with risk factors for CBS after BNCT. Thirty-three patients in our institution who underwent BNCT were analyzed. Two patients developed CBS and experienced widespread skin invasion and recurrence close to the carotid artery after irradiation. Careful attention should be paid to the occurrence of CBS if the tumor is located adjacent to the carotid artery. The presence of skin invasion from recurrent lesions after irradiation is an ominous sign of CBS onset and lethal consequences. - Highlights: • This study is fatal carotid blowout syndrome after BNCT for head and neck cancers. • Thirty-three patients in our institution who underwent BNCT were analyzed. • Two patients (2/33) developed CBS. • The presence of skin invasion from recurrent lesions after irradiation is an ominous sign of CBS. • We must be aware of these signs to perform BNCT safely.

  13. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    Science.gov (United States)

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  14. Neutrons from Antiproton Irradiation

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Petersen, Jørgen B.B.

    the neutron spectrum. Additionally, we used a cylindrical polystyrene loaded with several pairs of thermoluminescent detectors containing Lithium-6 and Lithium-7, which effectively detects thermalized neutrons. The obtained results are compared with FLUKA imulations. Results: The results obtained...... spectrum is very low, and does not pose a problem for radiation therapy. However, the contribution from fast neutrons is much more significant. The dose equivalent contribution from neutrons originate from the patient alone and reaches levels which are found in passive moderated proton therapy. The exact...

  15. Neutron irradiation of seeds 2

    Energy Technology Data Exchange (ETDEWEB)

    1968-10-01

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs.

  16. Neutron irradiation of seeds 2

    International Nuclear Information System (INIS)

    1968-01-01

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs

  17. Clinical practice in BNCT to the brain

    International Nuclear Information System (INIS)

    Nakagawa, Y.

    2001-01-01

    Our concept of Boron Neutron Capture Therapy (BNCT) is to selectively destroy tumour cells using the high LET particles yielded from the 10B(n,α)7Li reactions. The effort of clinical investigators has concentrated on how to escalate the radiation dose at the target point. BNCT in Japan combines thermal neutrons and BSH (Na 2 B 12 H 11 SH). The radiation dose is determined by the neutron fluence at the target point and the boron concentration in the tumour tissue. According to the recent analysis, the ratio of boron concentration (BSH) in tumour tissue and blood is nearly stable at around 1.2 to 1.69. Escalation of the radiation dose was carried out by means of improving the penetration of the thermal neutron beam. Since 1968, 175 patients with glioblastoma (n=83), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumour (n=32) were treated by BNCT at 5 reactors (HTR n=13, JRR-3 n=1, MulTR n=98, KUR n=30, JRR-2 n=33). The retrospective analysis revealed that the important factors related to the clinical results and QOL of the patients were minimum tumour volume radiation dose, more than 18Gy of physical dose and maximum vascular radiation dose (less than 15Gy) in the normal cortex. We have planned several trials to escalate the target radiation dose. One trial makes use of a cavity in the cortex following debulking surgery of the tumour tissue to improve neutron penetration. The other trial is introduction of epithermal neutron. KUR and JRR-4 were reconstructed and developed to be able to irradiate using epithermal neutrons. The new combination of surgical procedure and irradiation using epithermal neutrons should remarkably improve the target volume dose compared to the radiation dose treated by thermal neutrons. (author)

  18. Comparative study of the radiobiological effects induced on adherent vs suspended cells by BNCT, neutrons and gamma rays treatments

    International Nuclear Information System (INIS)

    Cansolino, L.; Clerici, A.M.; Zonta, C.; Dionigi, P.; Mazzini, G.; Di Liberto, R.; Altieri, S.; Ballarini, F.; Bortolussi, S.; Carante, M.P.; Ferrari, M.; González, S.J.; Postuma, I.; Protti, N.; Santa Cruz, G.A.; Ferrari, C.

    2015-01-01

    The present work is part of a preclinical in vitro study to assess the efficacy of BNCT applied to liver or lung coloncarcinoma metastases and to limb osteosarcoma. Adherent growing cell lines can be irradiated as adherent to the culture flasks or as cell suspensions, differences in radio-sensitivity of the two modalities of radiation exposure have been investigated. Dose related cell survival and cell cycle perturbation results evidenced that the radiosensitivity of adherent cells is higher than that of the suspended ones.

  19. Depth-dose evaluation for lung and pancreas cancer treatment by BNCT using an epithermal neutron beam

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Fukushima, Yuji

    2000-01-01

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreas cancers using an epithermal neutron beam. The MCNP calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5x10 8 ncm -2 s -1 . The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT could be applied for both lung and pancreas cancer treatment. (author)

  20. Neutron irradiation effects on plasma facing materials

    Science.gov (United States)

    Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.

    2000-12-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.

  1. Neutron irradiation effects on plasma facing materials

    International Nuclear Information System (INIS)

    Barabash, V.; Federici, G.; Roedig, M.; Snead, L.L.; Wu, C.H.

    2000-01-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed

  2. Tandem electrostatic accelerators for BNCT

    International Nuclear Information System (INIS)

    Ma, J.C.

    1994-01-01

    The development of boron neutron capture therapy (BNCT) into a viable therapeutic modality will depend, in part, on the availability of suitable neutron sources compatible with installation in a hospital environment. Low-energy accelerator-based intense neutron sources, using electrostatic or radio frequency quadrupole proton accelerators have been suggested for this purpose and are underdevelopment at several laboratories. New advances in tandem electrostatic accelerator technology now allow acceleration of the multi-milliampere proton beams required to produce therapeutic neutron fluxes for BNCT. The relatively compact size, low weight and high power efficiency of these machines make them particularly attractive for installation in a clinical or research facility. The authors will describe the limitations on ion beam current and available neutron flux from tandem accelerators relative to the requirements for BNCT research and therapy. Preliminary designs and shielding requirements for a tandern accelerator-based BNCT research facility will also be presented

  3. Simple computational modeling for human extracorporeal irradiation using the BNCT facility of the RA-3 Reactor

    International Nuclear Information System (INIS)

    Farias, Ruben; Gonzalez, S.J.; Bellino, A.; Sztenjberg, M.; Pinto, J.; Thorp, Silvia I.; Gadan, M.; Pozzi, Emiliano; Schwint, Amanda E.; Heber, Elisa M.; Trivillin, V.A.; Zarza, Leandro G.; Estryk, Guillermo; Miller, M.; Bortolussi, S.; Soto, M.S.; Nigg, D.W.

    2009-01-01

    We present a simple computational model of the reactor RA-3 developed using Monte Carlo transport code MCNP. The model parameters are adjusted in order to reproduce experimental measured points in air and the source validation is performed in an acrylic phantom. Performance analysis is carried out using computational models of animal extracorporeal irradiation in liver and lung. Analysis is also performed inside a neutron shielded receptacle use for the irradiation of rats with a model of hepatic metastases.The computational model reproduces the experimental behavior in all the analyzed cases with a maximum difference of 10 percent. (author)

  4. BNCT Project at the J. Stefan TRIGA Reactor

    International Nuclear Information System (INIS)

    Glumac, B.; Maucec, M.; Jeraj, R.; Kodeli, I.

    1994-01-01

    Contribution presents condensed description of the BNCT method, as one of the most promising methods of cancer radio therapy in the future. Certain planned research activities considering realization of BNCT project in Slovenia are also shown. Modelling of irradiation facility as well as mathematical simulation of neutron and photon transport are completely performed by Monte Carlo computer simulation, and for that reason some basic characteristics and capabilities of MCNP4A computer code are also presented. Finally, some results obtained up to this time are presented. (author)

  5. Intracellular targeting of mercaptoundecahydrododecaborate (BSH) to malignant glioma by transferrin-PEG liposomes for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Doi, Atsushi; Miyatake, Shin-ichi; Iida, Kyouko

    2006-01-01

    Malignant glioma is one of the most difficult tumor to control with usual therapies. In our institute, we select boron neutron capture therapy (BNCT) as an adjuvant radiation therapy after surgical resection. This therapy requires the selective delivery of high concentration of 10 B to malignant tumor tissue. In this study, we focused on a tumor-targeting 10 B delivery system (BDS) for BNCT that uses transferrin-conjugated polyethylene-glycol liposome encapsulating BSH (TF-PEG liposome-BSH) and compared 10 B uptake of the tumor among BSH, PEG liposome-BSH and TF-PEG liposome-BSH. In vitro, we analyzed 10 B concentration of the cultured human U87Δ glioma cells incubated in medium containing 20 μg 10 B/ml derived from each BDS by inductively coupled plasma atomic emission spectrometry (ICP-AES). In vivo, human U87Δ glioma-bearing nude mice were administered with each BDS (35mg 10 B/kg) intravenously. We analyzed 10 B concentration of tumor, normal brain and blood by ICP-AES. The TF-PEG liposome-BSH showed higher absolute concentration more than the other BDS. Moreover, TF-PEG liposome-BSH decreased 10 B concentration in blood and normal tissue while it maintained high 10 B concentration in tumor tissue for a couple of days. This showed the TF-PEG liposome-BSH caused the selective delivery of high concentration of 10 B to malignant tumor tissue. The TF-PEG liposome-BSH is more potent BDS for BNCT to obtain absolute high 10 B concentration and good contrast between tumor and normal tissue than BSH and PEG liposome-BSH. (author)

  6. Beam shaping assembly of a D–T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    International Nuclear Information System (INIS)

    Faghihi, F.; Khalili, S.

    2013-01-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D–T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D–T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor. - Highlights: ► An assembly for the D–T neutron source including many regions is given herein. ► Dosimetry simulations in the Snyder head phantom for a deeply-seated tumor are carried out. ► Brief literatures conclusions on the recent BNCT studies are presented herein

  7. Hair dosimetry following neutron irradiation.

    Science.gov (United States)

    Lebaron-Jacobs, L; Gaillard-Lecanu, E; Briot, F; Distinguin, S; Boisson, P; Exmelin, L; Racine, Y; Berard, P; Flüry-Herard, A; Miele, A; Fottorino, R

    2007-05-01

    Use of hair as a biological dosimeter of neutron exposure was proposed a few years ago. To date, the (32)S(n,p)(32)P reaction in hair with a threshold of 2.5 MeV is the best choice to determine the fast neutron dose using body activation. This information is essential with regards to the heterogeneity of the neutron transfer to the organism. This is a very important parameter for individual dose reconstruction from the surface to the deeper tissues. This evaluation is essential to the adapted management of irradiated victims by specialized medical staff. Comparison exercises between clinical biochemistry laboratories from French sites (the CEA and COGEMA) and from the IRSN were carried out to validate the measurement of (32)P activity in hair and to improve the techniques used to perform this examination. Hair was placed on a phantom and was irradiated at different doses in the SILENE reactor (Valduc, France). Different parameters were tested: variation of hair type, minimum weight of hair sample, hair wash before measurement, delivery period of results, and different irradiation configurations. The results obtained in these comparison exercises by the different laboratories showed an excellent correlation. This allowed the assessment of a dose-activity relationship and confirmed the feasibility and the interest of (32)P measurement in hair following fast neutron irradiation.

  8. Radioprotective agents to reduce BNCT (Boron Neutron Capture Therapy) induced mucositis in the hamster cheek pouch; Agentes radioprotectores para reducir la mucositis inducida por la terapia por captura neutrónica en boro (BNCT) en la bolsa de la mejilla del hámster

    Energy Technology Data Exchange (ETDEWEB)

    Monti Hughes, A. [Dpto. de Radiobiología, Gerencia de Química Nuclear y Ciencias de la Salud, GAATEN, Comisión Nacional de Energía Atómica (CNEA) (Argentina); Pozzi, E. C.C. [Gerencia de Reactores de Investigación y Producción, GAATEN, CNEA (Argentina); Thorp, S., E-mail: andrea.monti@cnea.gov.ar [Sub-Gerencia Instrumentación y Control, GAEN, CNEA(Argentina)

    2013-07-01

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of BNCT mediated by boronophenylalanine (BPA) in the hamster cheek pouch oral cancer and pre cancer model. Despite therapeutic efficacy, mucositis induced in premalignant tissue was dose limiting and favored, in some cases, tumor development. In a clinical scenario, oral mucositis limits the dose administered to head and neck tumors. Aim: Our aim was to evaluate the effect of the administration of different radioprotective agents, seeking to reduce BNCT-induced mucositis to acceptable levels in dose-limiting premalignant tissue; without compromising therapeutic effect evaluated as inhibition on tumor development in premalignant tissue; without systemic or local side effects; and without negative effects on the biodistribution of the boron compound used for treatment. Materials and methods: Cancerized hamsters with DMBA (dimethylbenzanthracene) were treated with BPA-BNCT 5 Gy total absorbed dose to premalignant tissue, at the RA-3 Nuclear Reactor, divided into different groups: 1-treated with FLUNIXIN; 2- ATORVASTATIN; 3-THALIDOMIDE; 4-HISTAMINE (two concentrations: Low -1 mg/ml- and High -5 mg/ml-); 5-JNJ7777120; 6-JNJ10191584; 7-SALINE (vehicle). Cancerized animals without any treatment (neither BNCT nor radioprotective therapy) were also analyzed. We followed the animals during one month and evaluated the percentage of animals with unacceptable/severe mucositis, clinical status and percentage of animals with new tumors post treatment. We also performed a preliminary biodistribution study of BPA + Histamine “low” concentration to evaluate the potential effect of the radioprotector on BPA biodistribution. Results: Histamine

  9. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  10. Meeting the challenge of homogenous boron targeting of heterogeneous tumors for effective boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Trivillin, Veronica A.; Itoiz, Maria E.; Rebagliati, J. Raul; Batistoni, Daniel; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.; Gonzalez, Beatriz N.

    2006-01-01

    BNCT is a tumor cell targeted radiation therapy. Inadequately boron targeted tumor populations jeopardize tumor control. Meeting the to date unresolved challenge of homogeneous targeting of heterogeneous tumors with effective boron carriers would contribute to therapeutic efficacy. The aim of the present study was to evaluate the degree of variation in boron content delivered by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and the combined administration of (BPA+GB-10) in different portions of tumor, precancerous tissue around tumor and normal pouch tissue in the hamster cheek pouch oral cancer model. Boron content was evaluated by ICP-AES. The degree of homogeneity in boron targeting was assessed in terms of the coefficient of variation ([S.D./Mean]x100) of boron values. Statistical analysis of the results was performed by one-way ANOVA and the least significant difference test. GB-10 and GB-10 plus BPA achieved respectively a statistically significant 1.8-fold and 3.3-fold increase in targeting homogeneity over BPA. The combined boron compound administration protocol contributes to homogeneous targeting of heterogeneous tumors and would increase therapeutic efficacy of BNCT by exposing all tumor populations to neutron capture reactions in boron. (author)

  11. A preliminary inter-centre comparison study for photon, thermal neutron and epithermal neutron responses of two pairs of ionisation chambers used for BNCT

    International Nuclear Information System (INIS)

    Roca, Antoaneta; Liu, Yuan-Hao; Wojnecki, Cecile; Green, Stuart; Nievaart, Sander; Ghani, Zamir; Moss, Ray

    2009-01-01

    The dual ionisation chamber technique is the recommended method for mixed field dosimetry of epithermal neutron beams. This paper presents initial data from an ongoing inter-comparison study involving two identical pairs of ionisation chambers used at the BNCT facilities of Petten, NL and of University of Birmingham, UK. The goal of this study is to evaluate the photon, thermal neutron and epithermal neutron responses of both pairs of TE(TE) (Exradin T2 type) and Mg(Ar) (Exradin M2 type) ionisation chambers in similar experimental conditions. At this stage, the work has been completed for the M2 type chambers and is intended to be completed for the T2 type chambers in the near future.

  12. Neutron irradiation of bacteriophage λ

    International Nuclear Information System (INIS)

    Bozin, D.; Milosevic, M. . E-mail address of corresponding author: bozinde@vin.bg.ac.yu

    2005-01-01

    Double strand breaks (DSB) are the most dangerous lesions in DNA caused by irradiation, but many other lesions, usually called mutations, have not been clearly identified. These lesions, like DSB, can be the source of serious chromosomal damages and finally - cell death. Growing interest in heavy particles for radiotherapy and radioprotection encourages the search of the molecular basis of their action. In this respect, we chose bacteriophage λ1390 as the model system for the study of consequences of neutron irradiation. This derivative of λ phage possesses an unique ability to reversibly reorganize their genome in response to various selective pressures. The phages were irradiated with 13 Gy of mixed neutrons (7.5 Gy from fast and 5.6 Gy from thermal neutrons) and phages genomes were tested to DSB and mutations. Additionally, the stability of λ capsid proteins were tested. After all tests, we can conclude that, under our conditions, low flux of neutrons does not induce neither DNA strand break or DNA mutation nor the stability of λ capsid proteins. (author)

  13. INEL BNCT Program

    International Nuclear Information System (INIS)

    Ackermann, A.L.; Dorn, R.V. III.

    1991-03-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program for March 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, a milestone summary, and animal data charts

  14. INEL BNCT Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-08-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for August 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  15. Neutron irradiation damage in transition metal carbides

    International Nuclear Information System (INIS)

    Matsui, Hisayuki; Nesaki, Kouji; Kiritani, Michio

    1991-01-01

    Effects of neutron irradiation on the physical properties of light transition metal carbides, TiC x , VC x and NbC x , were examined, emphasizing the characterization of irradiation induced defects in the nonstoichiometric composition. TiC x irradiated with 14 MeV (fusion) neutrons showed higher damage rates with increasing C/Ti (x) ratio. A brief discussion is made on 'cascade damage' in TiC x irradiated with fusion neutrons. Two other carbides (VC x and NbC x ) were irradiated with fission reactor neutrons. The irradiation effects on VC x were not so simple, because of the complex irradiation behavior of 'ordered' phases. For instance, complete disordering was revealed in an ordered phase, 'V 8 C 7 ', after an irradiation dose of 10 25 n/m 2 . (orig.)

  16. Design and characterization of a novel neutron shield for BNCT in an experimental model of oral cancer in the hamster cheek pouch at RA-3

    International Nuclear Information System (INIS)

    Pozzi, E.C.C.; Curotto, P.; Monti Hughes, A.; Nigg, D.W.; Schwint, A.E.; Trivillin, V.A.; Thorp, S.I.

    2013-01-01

    Our research group at the Radiation Pathology Division of the Department of Radiobiology (National Atomic Energy Commission) has previously demonstrated the therapeutic efficacy of different BNCT protocols to treat oral cancer in an experimental hamster cheek pouch model. In particular, to perform studies in this experimental model at the thermal facility constructed at RA-3, we designed and constructed a shielding device for thermal neutrons, to be able to expose the cheek pouch while minimizing the dose to the rest of the body. This device allowed for the irradiation of one animal at a time. Given the usage rate of the device, the aim of the present study was to design and construct an optimized version of the existing shielding device that would allow for the simultaneous irradiation of 2 animals at the thermal facility of RA-3. Taking into account the characteristics of the neutron source and preliminary biological assays, we designed the shielding device for the body of the animal, i.e. a rectangular shaped box with double acrylic walls. The space between the walls contains a continuous filling of 6Li 2 CO 3 (95% enriched in 6Li), approximately 6 mm thick. Two small windows interrupt the shield at one end of the box through which the right pouch of each hamster is everted out onto an external acrylic shelf for exposure to the neutron flux. The characterization of the shielding device showed that the neutron flux was equivalent at both irradiation positions confirming that we were able to design and construct a new shielding device that allows for the irradiation of 2 animals at the same time at the thermal facility of RA-3. This new version of the shielding device will reduce the number of interventions of the reactor operators, reducing occupational exposure to radiation and will make the procedure more efficient for researchers. In addition, we addressed the generation of tritium as a product of the capture reaction in lithium. It was considered as a

  17. Desain Beam Shaping Assembly (BSA berbasis D-D Neutron Generator 2,45 MeV untuk Uji Fasilitas BNCT

    Directory of Open Access Journals (Sweden)

    Desman P. Gulo

    2015-12-01

    Full Text Available Boron Neutron Capture Therapy (BNCT is one of the cancer treatments that are being developed in nowadays. In order to support BNCT treatment for cancer that exists in underneath skin like breast cancer, the facility needs a generator that is able to produce epithermal neutron. One of the generator that is able to produce neutron is D-D neutron generator with 2.45 MeV energy. Based on the calculation of this paper, we found that the total production of neutron per second (neutron yield from Neutron Generator (NG by PSTA-BATAN Yogyakarta is 2.55×1011 n/s. The energy and flux that we found is in the range of quick neutron. Thus, it needs to be moderated to the level of epithermal neutron which is located in the interval energy of 1 eV to 10 KeV with 109 n/cm2s flux. This number is the recommendation standard from IAEA. Beam Shaping Assembly (BSA is needed in order to moderate the quick neutron to the level of epithermal neutron. One part of BSA that has the responsibility in moderating the quick neutron to epithermal neutron is the moderator. The substance of moderator used in this paper is MgF2 and A1F3. The thickness of moderator has been set in in such a way by using MCNPX software in order to fulfill the standard of IAEA. As the result of optimizing BSA moderator, the data obtain epithermal flux with the total number of 4.64×108 n/cm2/s for both of moderators with the thickness of moderator up to 15 cm. At the end of this research, the number of epithermal flux does not follow the standard of IAEA. This is because the flux neutron that is being produced by NG is relatively small. In conclusion, the NG from PSTA-BATAN Yogyakarta is not ready to be used for the BNCT treatment facility for the underneath skin cancer like breast cancer.

  18. BNCT of canine osteosarcoma

    International Nuclear Information System (INIS)

    Mitin, V.N.; Kulakov, V.N.; Khokhlov, V.F.

    2006-01-01

    A dog was diagnosed with osteosarcoma (8x6x5cm) in the right wing of ilium by radiography, radionuclide scintigraphy and histological study of biopsy material. The treatment plan was as follows: γ-therapy in combination with chemotherapy; prevention of hematogenous pulmonary metastases by the transfusion of 130 ml of allogenic marrow from a healthy donor; administration of 11.4g 10 B-boronphenylalanine into the right iliac artery; resection of the right iliac wing with the osteosarcoma lesion; neutron irradiation (MEPhI Reactor) of the bone fragment (dose on healthy osteocytes - 15±4 Gy (W), on tumor - 50±9 Gy (W); reimplantation and fixation of the fragment; three courses of adjuvant chemotherapy. The doses were determined in full-scale calculations of the reactor radiation fields with a model of the bone under the code RADUGA. The 10 B concentration (μg/g) in the bone was: normal tissue - 9±3, tumor - 28±5. In 24 hours post operation the dog was able to walk using the treated limb, and 6 months later it moved freely. The patient has been under observation for 30 months. The results of the research demonstrate complete cure. The use of similar treatment plans improves the therapeutic efficiency of BNCT. (author)

  19. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  20. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  1. Treatment Planning Systems for BNCT Requirements and Peculiarities

    CERN Document Server

    Daquino, G G

    2003-01-01

    The main requirements and peculiarities expected from the BNCT-oriented treatment planning system (TPS) are summarized in this paper. The TPS is a software, which can be integrated or composed by several auxiliary programs. It plays important roles inside the whole treatment planning of the patient's organ in BNCT. However, the main goal is the simulation of the irradiation, in order to obtain the optimal configuration, in terms of neutron spectrum, patient positioning and dose distribution in the tumour and healthy tissues. The presence of neutrons increases the level of complexity, because much more nuclear reactions need to be monitored and properly calculated during the simulation of the patient's treatment. To this purposes several 3D geometry reconstruction techniques, generally based on the CT scanning data, are implemented and Monte Carlo codes are normally used. The TPSs are expected to show also the results (basically doses and fluences) in a proper format, such as isocurves (or isosurfaces) along t...

  2. Tumor blood vessel "normalization" improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Nigg

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  3. Tumor blood vessel 'normalization' improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    International Nuclear Information System (INIS)

    Nigg, D.W.

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  4. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    Science.gov (United States)

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Design of a thermal neutron field by 252Cf source for measurement of 10B concentrations in the blood samples for BNCT

    International Nuclear Information System (INIS)

    Naito, H.; Sakurai, Y.; Maruhashi, A.

    2006-01-01

    10 B concentrations in the blood samples for BNCT has been estimated due to amounts of prompt gamma rays from 10 B in the fields of thermal neutrons from a special guide tube attached to research reactor. A system using radioisotopes as the source of thermal neutron fields has advantages that are convenient and low cost because it doesn't need running of a reactor or an accelerator. The validity of 252 Cf as a neutron source for 10 B concentrations detection system was investigated. This system is composed of D 2 O moderator, Pb reflector/filter, C reflector, and LiF filter. A thermal neutron field with low background gamma-rays is obtained. A large source of 252 Cf is required to obtain a sufficient flux. (author)

  6. First clinical results on the finnish study on BPA-mediated BNCT in glioblastoma

    International Nuclear Information System (INIS)

    Kankaanranta, L.; Seppaelae, T.; Kallio, M.

    2000-01-01

    An open phase I dose-escalation boron neutron capture therapy (BNCT) study on glioblastoma multiforme (GBM) was initiated at the BNCT facility FiR 1, Espoo, Finland, in May 1999. The aim of the study is to investigate the safety of boronophenylalanine (BPA)-mediated BNCT. Ten GBM patients were treated with a 2-field treatment plan using one fraction. BPA-F was used as the 10 B carrier infused as a fructose solution 290 mg BPA/kg over 2-hours prior to irradiation with epithermal neutrons. Average doses to the normal brain, contrast enhancing tumour, and the target ranged from 3.0 to 5.6 Gy (W), from 35.1 to 66.7 Gy (W), and from 29.6 to 53.6 Gy (W), respectively. BNCT was associated with acceptable toxicity. The median follow-up is 9 months (range, 3 to 16 months) post diagnosis in July 2000. Seven of the 10 patients have recurrent or persistent GBM, and the median time to progression is 8 months. Only one patient has died, and the estimated 1-year overall survival is 86%. Five of the recurrent tumours were treated with external beam photon radiation therapy to the total dose of 30-40 Gy with few acute side-effects. These preliminary findings suggest that acute toxicity of BPA-mediated BNCT is acceptable when average brain doses of 5.6 Gy (W) or less are used. The followup time is too short to evaluate survival, but the estimated 1-year survival of 86% achieved with BNCT followed by conventional photon irradiation at the time of tumour progression is encouraging and emphasises the need of further investigation of BPA-mediated BNCT. (author)

  7. Progress in neutron beam development at the HFR Petten (feasibility study for a BNCT facility)

    International Nuclear Information System (INIS)

    Constantine, G.; Moss, R.L.; Watkins, P.R.D.; Perks, C.A.; Delafield, H.J.; Ross, D.; Voorbraak, W.P.; Paardekooper, A.; Freudenreich, W.E.; Stecher-Rasmussen, F.

    1990-08-01

    Boron Neutron Capture Therapy, using intermediate energy neutrons to achieve the deep penetration essential for treating brain tumours, can be implemented with a filtered reactor neutron beam. This is designed to minimize the mean energy of the neutrons to keep proton recoil damage to the scalp within normal tissue tolerance limits whilst delivering the required thermal neutron fluence to the tumour over a reasonably short period. This can only be realized in conjunction with a high power density reactor. At the Joint Research Centre Petten an optimized neutron filter is currently being built for installation into the HB11 beam tube of the High Flux Reactor HFR. Part of the development leading to this design has been an extensive study of broad spectrum, filtered beam performance on the HB7 beam tube facility. A wide range of calculations was performed using the Monte Carlo code, MCPN, supported by validation experiments in which several filter configuration incorporating aluminium, sulphur, liquid argon, titanium and cadmium were installed for low power measurements of the neutron fluence rate, neutron spectra and beam gamma-ray contamination. The measurements were carried out within a successful European collaboration. Evaluations were made of the reactor core edge and unfiltered beam spectra, for comparison with MCNP calculations. Multi-foil activation methods and also gamma dose determination in the filtered beam using thermo-luminescent detectors were performed by the ECN. The Harwell/ Birmingham University collaborators undertook the neutron spectrum measurements in the filtered beam. proton recoil spectrometry was used above 30 keV, combined with a multi-sphere and BF 3 chamber response modification technique. Subsequent spectrum adjustment was carried out with the SENSAK code. The agreement between the calculated and measured spectra has given confidence in the reactor and filter modelling methods used to design the HB11 therapy facility. (author). 12 refs

  8. Characterisation of the TAPIRO BNCT thermal facility

    Energy Technology Data Exchange (ETDEWEB)

    Rosi, G. [ENEA FIS-ION, CR Casaccia, Via Anguillarese 301, I-00060 Roma (Italy); Gambarini, G.; Colli, V.; Gay, S.; Scolari, L. [Dept. of Physics, Univ. of Milan, INFN, Via Celoria 16, I-20133 Milano (Italy); Fiorani, O.; Perrone, A. [ENEA FIS-ION, CR Casaccia, Via Anguillarese 301, I-00060 Roma (Italy); Nava, E. [ENEA FIS-NUC, Via Martiri di Monte Sole 4, I-40129 Bologna (Italy); Fasolo, F.; Visca, L.; Zanini, A. [INFN, Via Pietro Giuria 1, I-10125 Torino (Italy)

    2004-07-01

    Dosimetry and spectrometry measurements have been carried out in the thermal column of the research fast reactor RSV-TAPIRO (ENEA-Casaccia, Rome) in order to investigate its suitability for irradiation of cells or mice, with a view to research in the interests of boron neutron capture therapy (BNCT). The thermal column consists of a graphite moderator (40 cm thick) containing a lead shield (13 cm thick) in order to shield reactor background. The irradiation volume, inside this structure, has cubic shape (18 x 18 x 18 cm{sup 3}). Besides measurements of fluence and dose rates in air or in phantom performed with thermoluminescence dosemeters (TLDs) and using the activation technique, dose and fluence profiles have been generated using a method based on gel dosemeters analysed with optical imaging. To check the consistency of the results, spectrometry measurements in the same irradiation volume have been performed by means of bubble detectors. (authors)

  9. New facility for post irradiation examination of neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Ishitsuka, Etsuo; Kawamura, Hiroshi

    1995-01-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800 degrees C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and 60 Co;7.4 MBq/day

  10. Hyper-thermal neutron irradiation field for neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori; Kobayashi, Tooru; Kanda, Keiji

    1994-01-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum of a Maxwell distribution higher than the room temperature of 300 K, has been studied in order to improve the thermal neutron flux distribution in a living body for a deep-seated tumor in neutron capture therapy (NCT). Simulation calculations using MCNP-V3 were carried out in order to investigate the characteristics of the hyper-thermal neutron irradiation field. From the results of simulation calculations, the following were confirmed: (i) The irradiation field of the hyper-thermal neutrons is feasible by using some scattering materials with high temperature, such as Be, BeO, C, SiC and ZrH 1.7 . Especially, ZrH 1.7 is thought to be the best material because of good characteristics of up-scattering for thermal neutrons. (ii) The ZrH 1.7 of 1200 K yields the hyper-thermal neutrons of a Maxwell-like distribution at about 2000 K and the treatable depth is about 1.5 cm larger comparing with the irradiation of the thermal neutrons of 300 K. (iii) The contamination by the secondary gamma-rays from the scattering materials can be sufficiently eliminated to the tolerance level for NCT through the bismuth layer, without the larger change of the energy spectrum of hyper-thermal neutrons. ((orig.))

  11. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, D; Jung, J; Suh, T [The Catholic University of Korea, College of medicine, Department of biomedical engineering (Korea, Republic of)

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  12. In vitro neutron irradiation of glioma and endothelial cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, L. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy)], E-mail: luca.menichetti@ifc.cnr.it; Gaetano, L. [University Scuola Superiore Sant' Anna, Pisa (Italy); Zampolli, A.; Del Turco, S. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy); Ferrari, C. [University of Pavia, Department of Surgery, Laboratory of experimental Surgery, Pavia (Italy); Bortolussi, S.; Stella, S.; Altieri, S. [University of Pavia, Department of Nuclear Physics, Pavia (Italy); National Institute for Nuclear Physics (INFN), Section of Pavia (Italy); Salvadori, P.A. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy); Cionini, L. [Unit of Radiotherapy, AOUP-University Hospital, Pisa (Italy)

    2009-07-15

    To fully develop its potential boron neutron capture therapy (BNCT) requires the combination of a suitable thermal/epithermal neutron flux together with a selective intake of {sup 10}B-boron nuclei in the target tissue. The latter condition is the most critical to be realized as none of the boron carriers used for experimental or clinical purposes proved at the moment an optimal selectivity for cancer cells compared to normal cells. In addition to complex physical factors, the assessment of the intracellular concentration of boron represent a crucial parameter to predict the dose delivered to the cancer cells during the treatment. Nowadays the dosimetry calculation and then the prediction of the treatment effectiveness are made using Monte Carlo simulations, but some of the model assumption are still uncertain: the radiobiological dose efficacy and the probability of tumour cell survival are crucial parameters that needs a more reliable experimental approach. The aim of this work was to evaluate the differential ability of two cell lines to selectively concentrate the boron-10 administered as di-hydroxyboryl-phenylalanine (BPA)-fructose adduct, and the effect of the differential boron intake on the damage produced by the irradiation with thermal neutrons; the two cell lines were selected to be representative one of normal tissues involved in the active/passive transport of boron carriers, and one of the tumour. Recent in vitro studies demonstrated how BPA is taken by proliferating cells, however the mechanism of BPA uptake and the parameters driving the kinetics of influx and the elimination of BPA are still not clarified. In these preliminary studies we analysed the survival of F98 and human umbilical vein endothelial cells (HUVEC) cells line after irradiation, using different thermal fluencies at the same level of density population and boron concentration in the growing medium prior the irradiation. This is first study performed on endothelium model obtained by

  13. EPR of alanine irradiated by neutrons

    International Nuclear Information System (INIS)

    Pivovarov, S.P.; Seredavina, T.A.; Zhdanov, S.V.; Mul'gin, S.I.; Zhakparov, R.K.

    2001-01-01

    In the work the first results of EPR studies of alanine, irradiated with diverse doses at neutron cyclotron generator different conditions and on the critical reactor stand are presented. A dose linearity dependence of EPR signal is observing, the methods of γ-background contribution separation are discussed. Obtain results is giving the basis to recommendation of alanine as an effective detector irradiation. However it is demanded the farther study on clarification of radiation sensitivity value dependence on the neutron energy spectrum form

  14. Polarizing neutron by light-irradiated graphene

    International Nuclear Information System (INIS)

    Peng, Feng

    2015-01-01

    We study the spin orientation of the neutron scattered by light-irradiated graphene and calculate the average value of spin z-component of the neutron in terms of a generating functional technique. Our calculation results indicate that there is a remarkable neutron polarization effect when a neutron penetrates graphene irradiated by a circularly polarized light. We analyse the dynamical source of generating this effect from the aspect of photon-mediated interaction between the neutron spin and valley pseudospin. By comparing with the polarization induced by a magnetic field, we find that this polarization may be equivalent to the one led by a magnetic field of several hundred Teslas if the photon frequency is in the X-ray frequency range. This provides an approach of polarizing neutrons. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Implementation of BNCT treatment planning procedures

    International Nuclear Information System (INIS)

    Capala, J.; Ma, R.; Diaz, A.Z.; Chanana, A.D.; Coderre, J.A.

    2001-01-01

    Estimation of radiation doses delivered during boron neutron capture therapy (BNCT) requires combining data on spatial distribution of both the thermal neutron fluence and the 10 B concentration, as well as the relative biological effectiveness of various radiation dose components in the tumor and normal tissues. Using the treatment planning system created at Idaho National Engineering and Environmental Laboratory and the procedures we had developed for clinical trials, we were able to optimize the treatment position, safely deliver the prescribed BNCT doses, and carry out retrospective analyses and reviews. In this paper we describe the BNCT treatment planning process and its implementation in the ongoing dose escalation trials at Brookhaven National Laboratory. (author)

  16. Measurement and simulation of the TRR BNCT beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bavarnegin, Elham [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Sadremomtaz, Alireza [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Khalafi, Hossein [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Kasesaz, Yaser, E-mail: ykasesaz@aeoi.org.ir [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-09-11

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  17. Effect of neutron irradiation on vitreous carbon

    International Nuclear Information System (INIS)

    Kurolenkin, E.I.; Virgil'ev, Yu.S.; Chugunova, T.K.

    1989-01-01

    The change in mass (m), volume (V), specific electric resistance (ρ), coefficient of linear thermal expansion (α), dynamic elasticity modulus (E), and limit of bending strength (σ) of vitreous carbon are studied upon neutron irradiation. Samples for study were two forms of vitreous carbon obtained by hardening thermally reactive polymers at 900-1,000 degree K. Phenol-formaldehyde (bakelite lacquer A, Bakelite A) and furfural-phenol-formaldehyde (FM-2) resin were used. They were irradiated in the experimental water - water VVR-M reactor between 360-1,030 degree K. The maximal neutron flux was 1.65·10 21 neut/cm 2 . Neutron irradiation of vitreous carbon led to its shrinkage and accompanied weakening. Shrinkage and weakening of vitreous carbon was decreased with an increase of treatment and irradiation temperatures

  18. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    OpenAIRE

    Wang, Peng; Zhen, Haining; Jiang, Xinbiao; Zhang, Wei; Cheng, Xin; Guo, Geng; Mao, Xinggang; Zhang, Xiang

    2010-01-01

    Abstract Background Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical Un...

  19. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    International Nuclear Information System (INIS)

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-01-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7 Li(p, n) 7 Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  20. The BNCT project in the Czech Republic

    International Nuclear Information System (INIS)

    Burian, J.; Marek, M.; Rataj, J.; Honova, H.; Petruzelka, L.; Prokes, K.; Tovarys, F.; Dbaly, V.; Honzatko, J.; Tomandl, I.

    2000-01-01

    The start of clinical trials is expected before NCT Osaka 2000. The experiences from different part of project are presented. The BNCT facility at LVR-15 reactor of NRI consists of epithermal neutron beam with improved construction (6.98 x 10 8 /cm 2 s with acceptable background of fast neutrons and gammas) and irradiation and control rooms equipped by appropriate devices. Internationally-recognized software MacNCTPLAN is utilized for computational dosimetry and treatment planning. In the part of protocol the following parameters have been assessed: patient selection, BSH dosage, fractionation, starting dose, dose escalation steps. At the LVR-15, at horizontal channel, a prompt gamma ray analysis (PGRA) system has been developed and is operated for BNCT purposes. Some human blood samples were analyzed and compared with classical ICP method. During the process of licensing the experience was obtained, some notes are discussed in the paper. The first results were received for the study of biological effect of the LVR source for small animal model. (author)

  1. Characterization of materials used for neutron spectra modification

    International Nuclear Information System (INIS)

    Solieman, A.H.M.; Comsan, M.N.H.; Fahmey, M.A.; Morsy, A.A.

    2008-01-01

    Monte Carlo Simulation is used to study the thickness-dependent neutron-spectral-modification after transport in different materials. A collection of significant materials is studied, for choosing of potential candidates in the construction and design of accelerator-based neutron irradiation system suitable for Boron Neutron Capture Therapy (BNCT)

  2. Chemical reactions induced by fast neutron irradiation

    International Nuclear Information System (INIS)

    Katsumura, Y.

    1989-01-01

    Here, several studies on fast neutron irradiation effects carried out at the reactor 'YAYOI' are presented. Some indicate a significant difference in the effect from those by γ-ray irradiation but others do not, and the difference changes from subject to subject which we observed. In general, chemical reactions induced by fast neutron irradiation expand in space and time, and there are many aspects. In the time region just after the deposition of neutron energy in the system, intermediates are formed densely and locally reflecting high LET of fast neutrons and, with time, successive reactions proceed parallel to dissipation of localized energy and to diffusion of the intermediates. Finally the reactions are completed in longer time region. If we pick up the effects which reserve the locality of the initial processes, a significant different effect between in fast neutron radiolysis and in γ-ray radiolysis would be derived. If we observe the products generated after dissipation and diffusion in longer time region, a clear difference would not be observed. Therefore, in order to understand the fast neutron irradiation effects, it is necessary to know the fundamental processes of the reactions induced by radiations. (author)

  3. Radiation field characterization of a BNCT research facility using Monte Carlo Method - Code MCNP-4B

    International Nuclear Information System (INIS)

    Hernandes, Antonio Carlos

    2002-01-01

    Boron Neutron Capture Therapy - BNCT- is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an AmBe neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these BNCT studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluency Ν Τ = 1,35x10 8 n/cm 2 , a fast neutron dose of 5,86x -1 0 Gy/Ν Τ and a gamma ray dose of 8,30x -14 Gy/Ν Τ . (author)

  4. A neutron irradiator to perform nuclear activation

    International Nuclear Information System (INIS)

    Zamboni, C. B.; Zahn, G.S.; Figueredo, A. M. G.; Madi, T. F.; Yoriyaz, H.; Lima, R. B.; Shtejer, K.; Dalaqua Jr, L.

    2001-01-01

    The development of appropriate nuclear instrumentation to perform neutron activation analyze (NAA), using thermal and fast neutrons, can be useful to investigate materials outside the reactor premises. Considering this fact, a small size neutron irradiator prototype was developed at IPEN facilities (Instituto de Pesquisas Energeticas e Nucleares - Brazil). Basically, this prototype consists of a cylinder of 1200 mm long and 985 mm diameter (filled with paraffin) with two Am-Be sources (600GBq each) arranged in the longitudinal direction of its geometric center. The material to be irradiated is positioned at a radial direction of the cylinder between the two Am-Be sources. The main advantage of this irradiator is a very stable neutron flux eliminating the use of standard material (measure of the induced activity in the sample by comparative method). This way the process became agile, practical and economic, but quantities at mg levels of samples are necessary to achieve good sensitivity, when the material has a low microscopy neutron cross section. As fast and thermal neutron can be used, the flux distribution, for both, were calculated and the prototype performance is discussed

  5. In vitro biological models in order to study BNCT

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Kreimann, Erica L.; Schwint, Amanda E.; Juvenal, Guillermo J.; Pisarev, Mario A.; Farias, Silvia S.; Garavaglia, Ricardo N.; Batistoni, Daniel A.

    1999-01-01

    Undifferentiated thyroid carcinoma (UTC) lacks an effective treatment. Boron neutron capture therapy (BNCT) is based on the selective uptake of 10 B-boronated compounds by some tumours, followed by irradiation with an appropriate neutron beam. The radioactive boron originated ( 11 B) decays releasing 7 Li, gamma rays and alpha particles, and these latter will destroy the tumour. In order to explore the possibility of applying BNCT to UTC we have studied the biodistribution of BPA. In vitro studies: the uptake of p- 10 borophenylalanine (BPA) by the UTC cell line ARO, primary cultures of normal bovine thyroid cells (BT) and human follicular adenoma (FA) thyroid was studied. No difference in BPA uptake was observed between proliferating and quiescent ARO cells. The uptake by quiescent ARO, BT and FA showed that the ARO/BT and ARO/FA ratios were 4 and 5, respectively (p< 0.001). The present experimental results open the possibility of applying BNCT for the treatment of UTC. (author)

  6. Irradiation facilities at the advanced neutron source

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) is a facility, centered around a new 330MW(f) heavy-water cooled and reflected research reactor, proposed for construction at Oak Ridge. The main scientific justification for the new source is the United States' need for increased capabilities in neutron scattering and other neutron beam research, but the technical objectives of the project also cater for the need to replace the irradiation facilities at the aging High Flux Isotope Reactor and to provide other research capabilities to the scientific community. This document provides a description of the ANS facilities

  7. Possible alternation of the blood-brain barrier by boron-neutron capture therapy

    International Nuclear Information System (INIS)

    Hatanaka, H.; Moritani, M.; Camillo, M.

    1991-01-01

    In the course of re-assessment of boron-neutron capture therapy (BNCT) for malignant brain tumors, fractionation of neutron irradiation has been proposed. The authors have used BNCT with a single fraction technique during the past 21 years and now decided to study some effects of fractionation. Twenty-two healthy mouse brains were irradiated with thermal neutrons after boron-10 injection (mercaptoundecahydrododecaborate). A second dose of boron-10 was administered and its uptake in the boron-neutron-capture-irradiated brains was determined. A tendency towards increased boron uptake in the moderately BNCT-treated brains was noticed, which may result in increased brain damage if fractionated neutron irradiation is used. (orig.)

  8. Thermal neutron dose calculations in a brain phantom from 7Li(p,n) reaction based BNCT setup

    International Nuclear Information System (INIS)

    Elshahat, B.A.; Naqvi, A.A.; Maalej, N.; Abdallah, Khalid

    2006-01-01

    Monte Carlo simulations were carried out to calculate neutron dose in a brain phantom from a 7 Li(p,n) reaction based setup utilizing a high density polyethylene moderator with graphite reflector. The dimensions of the moderator and the reflector were optimized through optimization of epithermal /(fast +thermal) neutron intensity ratio as a function of geometric parameters of the setup. Results of our calculation showed the capability of our setup to treat the tumor within 4 cm of the head surface. The calculated Peak Therapeutic Ratio for the setup was found to be 2.15. With further improvement in the moderator design and brain phantom irradiation arrangement, the setup capabilities can be improved to reach further deep-seated tumor. (author)

  9. Quality control procedure of the BNCT patient dose determination

    International Nuclear Information System (INIS)

    Bjugg, H.; Kortesniemi, M.; Seppaelae, T.; Karila, J.; Perkioe, J.; Ryynaenen, P.; Savolainen, S.; Auterinen, I.; Kotiluoto, P.; Seren, T.

    2000-01-01

    The concepts used at the Finnish BNCT facility for the patient dose quality assurance are introduced here. Dose planning images are obtained using a MR scanner with MRI sensitive markers. The dose distribution is computed with BNCT Rtpe. The program and the beam (DORT) model used have been verified with measurements and validated with MCNP calculations in phantoms. Dosimetric intercomparison has been done between FiR 1 and BMRR BNCT beams. The FiR 1 beam has been characterised also by visiting teams. Before every patient irradiation the relationship between beam monitor pulse rate and neutron fluence rate in the beam is checked by activation measurements. Cross-hair lasers used in the patient positioning are checked for spatial drift prior to each treatment. Kinetic models used to estimate the time-behaviour of blood boron concentration have been verified using independent patient sample data to assess and verify the performance of the applications. Quality control guides have been developed for each step in the patient irradiation. (author)

  10. Basic research of boron neutron-capture therapy for treatment of pancreatic cancer. Application of neutron radiography for visualization of boron compound on BNCT

    International Nuclear Information System (INIS)

    Yanagie, Hironobu

    1997-01-01

    The cytotoxic effects of locally injected 10 B-immunoliposomes (anti-CEA) on human pancreatic carcinoma xenografts in nude mice were evaluated with thermal neutron irradiation. After thermal neutron irradiation of mice injected with 10 B-immunoliposomes, AsPC-1 tumour growth was suppressed relative to controls. Histopathologically, hyalinization and necrosis were found in 10 B-treated tumours, while tumour tissue injected with saline or saline-containing immunoliposomes showed neither destruction nor necrosis. These results suggest that intratumoral injection of boronated immunoliposomes can increase the retention of 10 B atoms by tumour cells, causing tumour growth suppression in vivo upon thermal neutron irradiation. We prepared boronated PEG-binding bovine serum albumin ( 10 B-PEG-BSA). 10 B concentrations in AsPC-1, human pancreatic cancer cells (2 x 10 5 /well) obtained 24 hrs after incubation with 10 B-PEG-BSA was 13.01 ± 1.74 ppm. The number of 10 B atoms delivered to the tumor cells was calculated to be 7.83 x 10 11 at 24 hrs after incubation with 10 B-PEG-BSA. These data indicated that the 10 B-PEG-BSA could deliver a sufficient amount of 10 B atoms (more than 10 9 atoms/cell) to the tumor cells to induce cytotoxic effects after incubation upon thermal neutron irradiation. Neutron capture autoradiography by using an Imaging Plate (IP-NCR) was performed on AsPC-1 tumor-bearing mouse that had been given an intratumoral injection of 10 B-PEG BSA or 10 B-cationic liposome. We had demonstrated the 10 B-PEG BSA or 10 B-cationic liposome is taken up by AsPC-1 tumor tissue to a much greater extent than by normal tissues. (J.P.N.)

  11. Basic research of boron neutron-capture therapy for treatment of pancreatic cancer. Application of neutron radiography for visualization of boron compound on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Yanagie, Hironobu [Tokyo Univ. (Japan). Inst. of Medical Science

    1997-02-01

    The cytotoxic effects of locally injected {sup 10}B-immunoliposomes (anti-CEA) on human pancreatic carcinoma xenografts in nude mice were evaluated with thermal neutron irradiation. After thermal neutron irradiation of mice injected with {sup 10}B-immunoliposomes, AsPC-1 tumour growth was suppressed relative to controls. Histopathologically, hyalinization and necrosis were found in {sup 10}B-treated tumours, while tumour tissue injected with saline or saline-containing immunoliposomes showed neither destruction nor necrosis. These results suggest that intratumoral injection of boronated immunoliposomes can increase the retention of {sup 10}B atoms by tumour cells, causing tumour growth suppression in vivo upon thermal neutron irradiation. We prepared boronated PEG-binding bovine serum albumin ({sup 10}B-PEG-BSA). {sup 10}B concentrations in AsPC-1, human pancreatic cancer cells (2 x 10{sup 5} /well) obtained 24 hrs after incubation with {sup 10}B-PEG-BSA was 13.01 {+-} 1.74 ppm. The number of {sup 10}B atoms delivered to the tumor cells was calculated to be 7.83 x 10{sup 11} at 24 hrs after incubation with {sup 10}B-PEG-BSA. These data indicated that the {sup 10}B-PEG-BSA could deliver a sufficient amount of {sup 10}B atoms (more than 10{sup 9} atoms/cell) to the tumor cells to induce cytotoxic effects after incubation upon thermal neutron irradiation. Neutron capture autoradiography by using an Imaging Plate (IP-NCR) was performed on AsPC-1 tumor-bearing mouse that had been given an intratumoral injection of {sup 10}B-PEG BSA or {sup 10}B-cationic liposome. We had demonstrated the {sup 10}B-PEG BSA or {sup 10}B-cationic liposome is taken up by AsPC-1 tumor tissue to a much greater extent than by normal tissues. (J.P.N.)

  12. Summaries on various researches aiming at the closed head BNCT

    International Nuclear Information System (INIS)

    Ono, Koji

    2000-01-01

    As in the boron neutron capture therapy (BNCT) flight of alpha particle formed by reaction of neutron and boron is nearly equal to diameter of cancer cell, when a boron compound accumulates selectively to a cancer cell to be radiated onto the cell by enough amount of neutron beam the alpha particles are irradiated onto the cancer cells nearly selectively. Like this, this is a curing means capable of overcoming a problem undecidable by a paradigm of radiation remedy in the 20th Century, a micro dose amount effect supposing to be a paradigm in the 21st Century, the very (biological) dose concentration into cancer cell is a curing method matching to upgrading on rate of cancer control and improvement on post-cure of the patients without increase of subreaction in every tumors. Here were summarized on characteristic comparison of thermal outer-neutron beams in KUR, JRR-4 and the Peten HFR reactors, development of new boron compounds, effect of BNCT on re-oxygenation of the cancer, and induction of mutation by neutron beam. (G.K.)

  13. Neutron resistant irradiation alloy and usage thereof

    International Nuclear Information System (INIS)

    Okada, Osamu; Nakata, Kiyotomo; Kato, Takahiko.

    1997-01-01

    A neutron irradiation embrittlement-resistant alloy comprising a Ti alloy having an average grain size of 2μm or smaller and containing from 30 to 40wt% of Al is subjected to powder solidification and then to isothermal forging at a forging rate of from 50 to 80% at a temperature range of from 1150 to 1500K. Namely, since the Ti-Al type alloy comprises from 30 to 30wt% of Al, optionally, from 1 to 6% of Mn, from 0.1 to 0.5% of Si, from 4 to 16% of V and the balance of Ti, it has excellent specific strength, high durable temperature and excellent neutron irradiation resistance, and has ductility required as structural materials. Accordingly, if the Ti-Al type alloy excellent in embrittlement resistance to neutron irradiation dimensional stability of materials is applied to constitutional parts of a reactor core of a nuclear reactor and a thermonuclear reactor to be exposed under neutron irradiation, high reliability is provided and the amount of activated materials is reduced by improving the working life of the materials. (N.H.)

  14. Carborane-containing metalloporphyrins for BNCT

    International Nuclear Information System (INIS)

    Miura, Michiko; Joel, D.D.; Nawrocky, M.M.; Micca, P.L.

    1996-01-01

    For BNCT of malignant brain tumors, it is crucial that there be relatively high boron concentrations in tumor compared with normal tissues within the neutron-irradiated treatment volume. Fairchild and Bond estimated that major advances in BNCT should be possible if ratios of 10 B concentrations in tumor to those in normal tissue (e.g. brain and blood) were at least 5: 1. Given that the only current boron carrier being tested clinically in the U.S., p-boronophenyl-alanine[BPA], yields tumor blood and tumor brain ratios of about 3:1, the criteria for new boronated compounds should be to at least match these ratios and maintain tumor boron concentrations greater than 30 μg B/g. Although previously tested boronated porphyrins have not only matched but surpassed these ratios, it was at a cost of greater toxicity. Chemical and hematological assays of blood analytes; showed marked thrombocytopenia, a decrease to about one-tenth the normal concentration of platelets circulating in the blood, in addition to abnormalities in concentrations of circulating enzymes, that indicated liver toxicity. The physical appearance and behavior of the affected mice were different from those of mice injected with solvent only. Although thrombocytopenia and other toxic effects had disappeared after a few days, previously tested porphyrins would not be safe to infuse into patients for BNCT of potentially hemorrhagic malignant tumors in the brain such as glioblastoma multiforme and metastatic melanoma. We synthesized a different boronated porphyrin, tetracarboranylphenylporphyrin, [TCP] and inserted nickel, copper, or manganese into its coordination center. Biological studies of NiTCP in mice and of CuTCP in rats show that these compounds elicit little or no toxicity when given at potentially therapeutic doses

  15. Carborane-containing metalloporphyrins for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Michiko; Joel, D.D.; Nawrocky, M.M.; Micca, P.L. [and others

    1996-12-31

    For BNCT of malignant brain tumors, it is crucial that there be relatively high boron concentrations in tumor compared with normal tissues within the neutron-irradiated treatment volume. Fairchild and Bond estimated that major advances in BNCT should be possible if ratios of {sup 10}B concentrations in tumor to those in normal tissue (e.g. brain and blood) were at least 5: 1. Given that the only current boron carrier being tested clinically in the U.S., p-boronophenyl-alanine[BPA], yields tumor blood and tumor brain ratios of about 3:1, the criteria for new boronated compounds should be to at least match these ratios and maintain tumor boron concentrations greater than 30 {mu}g B/g. Although previously tested boronated porphyrins have not only matched but surpassed these ratios, it was at a cost of greater toxicity. Chemical and hematological assays of blood analytes; showed marked thrombocytopenia, a decrease to about one-tenth the normal concentration of platelets circulating in the blood, in addition to abnormalities in concentrations of circulating enzymes, that indicated liver toxicity. The physical appearance and behavior of the affected mice were different from those of mice injected with solvent only. Although thrombocytopenia and other toxic effects had disappeared after a few days, previously tested porphyrins would not be safe to infuse into patients for BNCT of potentially hemorrhagic malignant tumors in the brain such as glioblastoma multiforme and metastatic melanoma. We synthesized a different boronated porphyrin, tetracarboranylphenylporphyrin, [TCP] and inserted nickel, copper, or manganese into its coordination center. Biological studies of NiTCP in mice and of CuTCP in rats show that these compounds elicit little or no toxicity when given at potentially therapeutic doses.

  16. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Hay, J.C.

    1998-01-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 10 25 n/m 2 . Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  17. ATF Neutron Irradiation Program Technical Plan

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.

  18. Morphometric and immunocytochemical analysis of melanoma samples for individual optimization of therapy for boron neutron capture (BNCT)

    International Nuclear Information System (INIS)

    Carpano, M; Dagrosa, A; Brandizzi, D; Nievas, S; Olivera, M S; Perona, M; Rodriguez, C; Cabrini, R; Juvenal, G; Pisarev, M

    2012-01-01

    Introduction: Tumors from different patients with the same histological diagnosis can show different responses to ionizing radiation including BNCT. Further knowledge about individual tumor characteristics is needed in order to optimize the individual application of this therapy. In previous studies we have shown different patterns of boron intracellular concentration in three human melanoma cell lines. When we performed xenografts with these cell lines in nude mice a wide range of boron concentrations in tumor was observed. We also evaluated the tumor temperature obtained by thermography. Objectives: The aim of this study was to evaluate the differences in the BPA uptake related to different histological and thermal characteristics of each tumor in nude mice bearing human melanoma. We also studied the proliferation and the vasculature in tumors by immunohistochemical studies and the relationship with the BPA uptake. Materials and Methodos: NIH nude mice of 6-8 weeks were implanted (s.c.) into the back right flank with 3.106 human melanoma cells (MELJ). To evaluate the BPA uptake, animals were injected at a dose of 350 mg/Kg b.w. (ip) and sacrificed 2 h post administration. Each sample of tumor was divided into two equal parts, one for uptake of B and another for histological studies. Boron measurements in tissues were performed by ICP-OES. For the histological studies, samples from the tumors were fixed in buffered 10% formaldehyde, embedded in paraffin and stained with hematoxylin and eosin (HE). Infrared imaging studies were performed the day before the biodistribution, measuring the tumor and body temperatures. Immunohistochemical studies were performed with antibodies Ki-67 and CD31. The first one is a marker of proliferative rate and the second one is a specific marker of endothelial cells which allows to identify the vasculature. Formaldehyde-fixed paraffin-embedded tissues and avidin biotin complex immunostaining were used. Results: Tumor BPA uptake showed

  19. INEL BNCT Research Program annual report 1994

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1995-11-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included

  20. Neutron irradiation of rat embryos in utero

    International Nuclear Information System (INIS)

    Vogel, H.H. Jr.

    1978-01-01

    In the rat radiation is most effective in producing congenital anomalies during the organ-forming period (days 9 to 13), which is approximately equivalent to the 14th to 50th days of human pregnancy. We have exposed female Sprague--Dawley rats on the 18th day of pregnancy to single whole-body doses of fission neutrons (20 to 150 rads). After 20 rads there was a small decrease in body weight which lasted from birth to weaning. During this period 9% of the irradiated rats died compared with 4% of the controls. After 50 rads, 65/275 (23.6%) of the rats died between birth and weaning, and the body-weight loss of the survivors was increased. After 100 rads, 62/133 (47%) died at birth or day 1 and 103/133 (77.4%) died before weaning. A large and significant decrease in body weight persisted in the survivors. After 150 rads of fission neutrons, all 95 rats died within 48 hr of birth. From cross-fostering experiments, we believe this is a direct effect of radiation on the embryos and not an indirect action through the mother or her milk. The LD 50 for the period from birth to weaning is approximately 75 rads of fission neutrons. Studies of organ weight were conducted daily for the first week after birth in an attempt to find the cause of radiation mortality. Body weight of the irradiated animals averaged only about one-half that of the controls. The liver, kidney, brain, and testes of the neutron-irradiated rats weighed significantly less than those of the controls. The weights of the spleen, lungs, duodenum, and stomach were decreased but not significantly. The bone marrow appeared depleted in the irradiated long bones, but the spleen maintained active hematopoiesis 1 to 2 months after neutron exposure

  1. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  2. Comparison and analysis of BNCT radiation dose between gold wire and JCDS measurement

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, Hiroaki

    2006-01-01

    We compared and evaluated boron neutron capture therapy (BNCT) radiation dose between gold wire measurement and JAERI Computational Dosimetry System (JCDS). Gold wire analysis demonstrates the actual BNCT dose though it dose not reflect the real the maximum and minimum dose in tumor tissue. We can conclude that JCDS is precise and high-reliable dose planning system for BNCT. (author)

  3. Neutron Spectrum Measurements from Irradiations at NCERC

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Kevin Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Michelle A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hutchens, Gregory Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  4. Biological Tests for Boron Neutron Capture Therapy Research at the TRIGA Mark II Reactor in Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Protti, N.; Ballarini, F.; Bortolussi, S.; De Bari, A.; Stella, S.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Nuclear Physics National Institute (INFN), Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Pavia (Italy); Bakeine, J.G.; Cansolino, L.; Clerici, A.M. [Laboratory of Experimental Surgery, Department of Surgery, University of Pavia, Pavia (Italy)

    2011-07-01

    The thermal column of the TRIGA Mark II reactor of the Pavia University is used as an irradiation facility to perform biological tests and irradiations of living systems for Boron Neutron Capture Therapy (BNCT) research. The suitability of the facility has been ensured by studying the neutron flux and the photon background in the irradiation chamber inside the thermal column. This characterization has been realized both by flux and dose measurements as well as by Monte Carlo simulations. The routine irradiations concern in vitro cells cultures and different tumor animal models to test the efficacy of the BNCT treatment. Some results about these experiments will be described. (author)

  5. Development of the patient setting system for BNCT at JRR-4

    International Nuclear Information System (INIS)

    Kumada, H.; Yamamoto, K.; Torii, Y.

    2000-01-01

    A new treatment planning software: Computational Dosimetry System (JCDS) is in progress its development for BNCT with epithermal neutron beam in JAERI. Irradiation conditions such as beam angle to a patient are calculated by JCDS. In order to implement these conditions, it is necessary to precisely set the patient to actual irradiation position simulated by JCDS beforehand. Therefore, the Patient Setting System, which accurately and quickly sets the patient to the irradiation position, is being developed with JCDS concurrently. In this report, the current status of the development of JCDS and the Patient Setting System in JAERI will be described. (author)

  6. Medical setup of intraoperative BNCT at JRR-4

    International Nuclear Information System (INIS)

    Akutsu, H.; Yamamoto, T.; Matsumura, A.

    2000-01-01

    Since October 1999, we have been performing clinical trials of intraoperative boron neutron capture therapy (IOBNCT) using a mixed thermal-epithermal beam at the Japan Research Reactor No. 4 (JRR-4). For immediate pre-BNCT care, including administration of a boron compound as well as post-BNCT care, a collaborating neurosurgical department of the University of Tsukuba was prepared in the vicinity of JRR-4. Following craniotomy in the treatment room, anesthetized patients were transported into the irradiation room for BNCT. The boron concentration in tissue was measured by the PGA and ICP-AES methods. The long-term follow-up was done at the University of Tsukuba Hospital. IOBNCT is a complex clinical procedure, which requires sophisticated operating team and co-medical staffs and also cooperation with physicist team. IOBNCT is a complex clinical procedure requiring a high level of cooperation among the operating team, co-medical staff, and physicists. For the safe and successful performance of IOBNCT, we have made the program including critical pathway and prepared various equipments for IOBNCT. To ensure the safe and successful performance of IOBNCT, we developed a critical pathway for use during the procedure, and prepared various apparatus for IOBNCT. (author)

  7. Clinical results of BNCT for malignant brain tumors in children

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Kageji, Teruyoshi; Mizobuchi, Yoshifumi; Kumada, Hiroaki; Nakagawa, Yoshiaki

    2009-01-01

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  8. Neutron irradiation effects in advanced superconductors

    International Nuclear Information System (INIS)

    Yoshida, H.; Kodaka, H.; Miyata, K.; Hayashi, Y.; Atobe, K.

    1988-01-01

    This paper reports the effects of neutron irradiation on superconducting transitions studied by susceptibility and resistivity measurements for A15 type compounds, Laves-phase compounds and oxide superconductors. For A15 superconductors, the transition temperature (T c ) decreased with increasing neutron fluence and showed large drop started at about 5 x 10 18 n/cm 2 (E > 0.1 MeV). Post-irradiation annealing gave recovery of T c , but the behaviors were different for the materials with different composition and microstructure. The Laves-phase compounds showed less degradation than the A15 superconductors. For oxide superconductors very sensitive transition change was observed, including the radiation-induced superconductivity

  9. A standard fission neutron irradiation facility

    International Nuclear Information System (INIS)

    Sahasrabudhe, S.G.; Chakraborty, P.P.; Iyer, M.R.; Kirthi, K.N.; Soman, S.D.

    1979-01-01

    A fission neutron irradiation facility (FISNIF) has been set up at the thermal column of the CIRUS reactor at BARC. The spectrum and the flux have been measured using threshold detectors. The paper describes the setting up of the facility, measurement and application. A concentric cylinder containing UO 2 powder sealed inside surrounds the irradiation point of a pneumatic sample transfer system located in the thermal column of the reactor. Samples are loaded in a standard aluminium capsule with cadmium lining and transported pneumatically. A sample transfer time of 1 s can be achieved in the facility. Typical applications of the facility for studying activation of iron and sodium in fission neutrons are also discussed. (Auth.)

  10. Irradiation creep in reactor graphites for HTR applications. [Neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Veringa, H J; Blackstone, R [Stichting Reactor Centrum Nederland, Petten

    1976-01-01

    A series of restrained shrinkage experiments on a number of graphites in the temperature range 400 to 1400/sup 0/C is described. A description is given of the experimental method and method of data evaluation. The results are compared with data from other sources. Analysis of data confirms that the creep coefficient, which is defined as the radiation induced creep strain per unit stress per unit neutron fluence, is inversely proportional to the pre-irradiation value of the Young's modulus of the material. The radiation creep coefficient increases with temperature in the range 400 to 1400/sup 0/C. It can be represented by the sum of two temperature dependent functions, one of which is inversely proportional to the neutron flux density, the other independent of the neutron flux density. When the data are analysed in this way it is found that the graphites investigated in the present work, although made from widely different starting materials and by different processes, show the same dependence of the irradiation creep coefficient on the temperature and the neutron flux density.

  11. Experimental Studies of Boronophenylalanine ({sup 10}BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Carpano, Marina; Perona, Marina; Rodriguez, Carla [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A. [Department of Boron Neutron Capture Therapy, National Atomic Energy Commission, San Martín (Argentina); Brandizzi, Daniel; Cabrini, Romulo [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); School of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Pisarev, Mario [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires (Argentina); Juvenal, Guillermo Juan [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Dagrosa, Maria Alejandra, E-mail: dagrosa@cnea.gov.ar [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina)

    2015-10-01

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ({sup 10}BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10{sup 6} MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of {sup 10}B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R{sup 2} = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R{sup 2} = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT

  12. Thermogravimetric analysis of reactor-neutrons-irradiated LEXAN polycarbonate film

    International Nuclear Information System (INIS)

    Kalsi, P.C.

    2000-01-01

    The effects of reactor-neutrons irradiation on the thermogravimetric (TG) analysis of LEXAN polycarbonate film in air were studied. Irradiation enhances the degradation rate and the effect increases further with increasing neutron fluence. The kinetics of the different steps of degradation were also evaluated from the TG curves. The activation energy values calculated for all the degradation stages decrease on irradiation. (author)

  13. Intense neutron irradiation facility for fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio; Kato, Yoshio; Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Technical R and D of d-Li stripping type neutron irradiation facilities for development of fusion reactor materials was carried out in Fusion Materials Irradiation Test Facility (FMIT) project and Energy Selective Neutron Irradiation Test Facility (ESNIT) program. Conceptual design activity (CDA) of International Fusion Materials Irradiation Facility (IFMIF), of which concept is an advanced version of FMIT and ESNIT concepts, are being performed. Progress of users` requirements and characteristics of irradiation fields in such neutron irradiation facilities, and outline of baseline conceptual design of IFMIF were described. (author)

  14. Design, Construction, and Modeling of a 252Cf Neutron Irradiator

    Directory of Open Access Journals (Sweden)

    Blake C. Anderson

    2016-01-01

    Full Text Available Neutron production methods are an integral part of research and analysis for an array of applications. This paper examines methods of neutron production, and the advantages of constructing a radioisotopic neutron irradiator assembly using 252Cf. Characteristic neutron behavior and cost-benefit comparative analysis between alternative modes of neutron production are also examined. The irradiator is described from initial conception to the finished design. MCNP modeling shows a total neutron flux of 3 × 105 n/(cm2·s in the irradiation chamber for a 25 μg source. Measurements of the gamma-ray and neutron dose rates near the external surface of the irradiator assembly are 120 μGy/h and 30 μSv/h, respectively, during irradiation. At completion of the project, total material, and labor costs remained below $50,000.

  15. Fast and epithermal neutron radiography using neutron irradiator

    International Nuclear Information System (INIS)

    Oliveira, Karol A.M. de; Crispim, Verginia R.; Ferreira, Francisco J.O.

    2013-01-01

    The neutron radiography technique (NR) with neutrons in the energy range fast to epithermal is a powerful tool used in no-destructive inspection of bulky objects of diverse materials, including those rich in hydrogen, oxygen, nitrogen ad carbon. Thus, it can be used to identify, inclusions, voids and thickness differences in materials such as explosive artifacts and narcotics. Aiming at using NR with fast and epithermal neutrons, an Irradiator was constructed by: a 241 Am-Be source, with 5 Ci activity, a collimator with adjustable collimation rate, L/D; and a shield device composed by plates of borated paraffin and iron. The test specimens chosen were a Beam Purity Indicator (BPI) and an Indicator of Visual Resolution (IVR). The neutron radiography images obtained had a resolution of 444.4 μm and 363.6 μm respectively when registered in: 1) the sheet of the nuclear track solid detector, CR-39 type, through X (n,p) Y nuclear reaction; and 2) Kodak Industrex M radiographic film plate in close contact with a boron converter screen, both stored in a Kodak radiographic cassette. (author)

  16. Neutron capture therapy (NCT) and in-hospital neutron irradiator (IHNI) a new technology on binary targeting radiation therapy of cancer

    International Nuclear Information System (INIS)

    Zhou Yongmao

    2009-01-01

    BNCT is finally becoming 'a new option against cancer'. The difficulties for its development progress of that firstly is to improve the performance of boron compounds,secondly, it is the requirements of quantification and accuracy upon radiation dosimetry evaluation in clinical trials. Furthermore, that is long anticipation on hospital base neutron sources. It includes dedicated new NCT reactor, accelerator based neutron sources, and isotope source facilities. In addition to reactors, so far, the technology of other types of sources for clinical trials is not yet completely proven. The In-Hospital Neutron Irradiator specially designed for NCT, based on the MNSR successfully developed by China, can be installed inside or near the hospital and operated directly by doctors. The Irradiator has two neutron beams for respective treatment of the shallow and deep tumors. It is expected to initiate operation in the end of this year. It would provide a safe, low cost, and effective treatment tool for the NCT routine application in near future. (authors)

  17. Research needs for neutron capture therapy

    International Nuclear Information System (INIS)

    1995-01-01

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted

  18. Effect of neutron irradiation on vanadium alloys

    International Nuclear Information System (INIS)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600 0 C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520 0 C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys

  19. Effect of neutron irradiation on vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  20. Radiation damage of pixelated photon detector by neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Isamu [KEK, 1-1 Oho Tsukuba 305-0801 (Japan)], E-mail: isamu.nakamura@kek.jp

    2009-10-21

    Radiation Damage of Pixelated Photon Detector by neutron irradiation is reported. MPPC, one of PPD or Geiger-mode APD, developed by Hamamatsu Photonics, is planned to be used in many high energy physics experiments. In such experiments radiation damage is a serious issue. A series of neutron irradiation tests is performed at the Reactor YAYOI of the University of Tokyo. MPPCs were irradiated at the reactor up to 10{sup 12}neutron/cm{sup 2}. In this paper, the effect of neutron irradiation on the basic characteristics of PPD including gain, noise rate, photon detection efficiency is presented.

  1. BNCT Technology Development on HANARO Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ki Jung; Park, Kyung Bae; Whang, Seung Ryul; Kim, Myong Seop

    2007-06-15

    So as to establish the biological effects of BNCT in the HANARO Reactor, biological damages in cells and animals with treatment of boron/neutron were investigated. And 124I-BPA animal PET image, analysis technology of the boron contents in the mouse tissues by ICP-AES was established. A Standard clinical protocol, a toxicity evaluation report and an efficacy investigation report of BNCT has been developed. Based on these data, the primary permission of clinical application was acquired through IRB of our hospital. Three cases of pre-clinical experiment for boron distribution and two cases of medium-sized animal simulation experiment using cat with verifying for 2 months after BNCT was performed and so the clinical demonstration with a patient was prepared. Also neutron flux, fast neutron flux and gamma ray dose of BNCT facility were calculated and these data will be utilized good informations for clinical trials and further BNCT research. For the new synthesis of a boron compound, o-carboranyl ethylamine, o-carboranylenepiperidine, o-carboranyl-THIQ and o-carboranyl-s-triazine derivatives were synthesized. Among them, boron uptake in the cancer cell of the triazine derivative was about 25 times than that of BPA and so these three synthesized methods of new boron compounds were patented.

  2. BNCT Technology Development on HANARO Reactor

    International Nuclear Information System (INIS)

    Chun, Ki Jung; Park, Kyung Bae; Whang, Seung Ryul; Kim, Myong Seop

    2007-06-01

    So as to establish the biological effects of BNCT in the HANARO Reactor, biological damages in cells and animals with treatment of boron/neutron were investigated. And 124I-BPA animal PET image, analysis technology of the boron contents in the mouse tissues by ICP-AES was established. A Standard clinical protocol, a toxicity evaluation report and an efficacy investigation report of BNCT has been developed. Based on these data, the primary permission of clinical application was acquired through IRB of our hospital. Three cases of pre-clinical experiment for boron distribution and two cases of medium-sized animal simulation experiment using cat with verifying for 2 months after BNCT was performed and so the clinical demonstration with a patient was prepared. Also neutron flux, fast neutron flux and gamma ray dose of BNCT facility were calculated and these data will be utilized good informations for clinical trials and further BNCT research. For the new synthesis of a boron compound, o-carboranyl ethylamine, o-carboranylenepiperidine, o-carboranyl-THIQ and o-carboranyl-s-triazine derivatives were synthesized. Among them, boron uptake in the cancer cell of the triazine derivative was about 25 times than that of BPA and so these three synthesized methods of new boron compounds were patented

  3. Thermal neutron converter for irradiations with fission neutrons

    International Nuclear Information System (INIS)

    Wagner, F.M.; Kampfer, S.; Kastenmuller, A.; Waschkowski, W.; Bucherl, Th.; Kampfer, S.

    2007-01-01

    The new research reactor FRM II at Garching started operation in March 2004. The compact core is cooled by light water, and moderated by heavy water. Two fuel plates mounted in the heavy water tank convert thermal to fast neutrons. The fast neutron flux in the connected beam tube is up to 7 centre dot 10 8 s -1 cm -2 (depending on filters and collimation); the mean neutron energy is about 1.6 MeV. There are two irradiation rooms along the beam. The first is mainly used for medical therapy (MEDAPP facility), the second for materials characterization (NECTAR facility). At the former therapy facility RENT at the old research reactor FRM, the same beam quality was available until July 2000. Therefore, only a small program is run for the determination of the biological effectiveness of the new beam. The neutron and gamma dose rates in the medical beam are 0.54 and 0.20 Gy/min, respectively. The therapy facility MEDAPP is still under examination according to European regulations for medical devices. Full medical operation will start in 2007. The radiography and tomography facility NECTAR is in operation and aims at non-destructive inspection of objects up to 400 kg mass and 80 centre dot 80 centre dot 80 cm 3 in size. As for fission neutrons the macroscopic cross section of hydrogen is much higher than for other materials (e. g. Fe and Pb), one special application is the detection of hydrogen-containing materials (e. g. oil) in dense materials

  4. Antitumor potential induction and free radicals production in melanoma cells by Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, F. [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)] [Faculty of Medicine, University of Sao Paulo, 455 Doutor Arnaldo Avenue, Sao Paulo (Brazil); Coelho, P.R.P.; Muniz, R.O.R.; Souza, G.S. [Institute for Nuclear and Energy Research, 2242 Lineu Prestes Avenue, Sao Paulo (Brazil); Arruda-Neto, J. [Physics Institute, University of Sao Paulo, 187 Matao Street, Sao Paulo (Brazil)] [FESP, Sao Paulo Engineering School, 5520 Nove de Julho Avenue, Sao Paulo (Brazil); Maria, Durvanei A., E-mail: durvaneiaugusto@yahoo.com.br [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)

    2011-12-15

    Antiproliferative and oxidative damage effects occurring in Boron Neutron Capture Therapy (BNCT) in normal fibroblasts and melanoma cell lines were analyzed. Melanoma cells and normal fibroblasts were treated with different concentrations of Boronophenylalanine and irradiated with thermal neutron flux. The cellular viability and the oxidative stress were determined. BNCT induced free radicals production and proliferative potential inhibition in melanoma cells. Therefore, this therapeutic technique could be considered efficient to inhibit growth of melanoma with minimal effects on normal tissues. - Highlights: Black-Right-Pointing-Pointer Boron Neutron Capture Therapy (BNCT) induces melanoma cell death. Black-Right-Pointing-Pointer BNCT stimulates free radicals production and proliferative inhibition in melanoma cells. Black-Right-Pointing-Pointer It produces tumor membrane degeneration and destruction with apoptotic bodies formation. Black-Right-Pointing-Pointer This therapy damages tumor cells selectively, with minimum effects on normal adjacent tissue.

  5. Neutron irradiation effects in pressure vessel steels and weldments

    Energy Technology Data Exchange (ETDEWEB)

    Ianko, L [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Power; Davies, L M

    1994-12-31

    This paper deals with the effects of neutron irradiation on the steel and welds used for the pressure vessels which house the reactor cores in light water reactors: irradiation effects on mechanical properties and the shift in ductile-brittle transition temperature, importance of the knowledge of the neutron fluence and of the monitoring and surveillance programmes; empirical and mechanistic modelling of irradiation effects and the necessity of data extension to new operational limits; consequences on the manufacturing and structural design of materials and structures; mitigation of irradiation effects by annealing; international activities and programmes in the field of neutron irradiation effects on PV steels and welds. 37 refs., 22 figs.

  6. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  7. Boron neutron capture therapy of ocular melanoma and intracranial glioma using p-boronophenylalanine

    International Nuclear Information System (INIS)

    Coderre, J.A.; Greenberg, D.; Micca, P.L.; Joel, D.D.; Saraf, S.; Packer, S.

    1990-01-01

    During conventional radiotherapy, the dose that can be delivered to the tumor is limited by the tolerance of the surrounding normal tissue within the treatment volume. Boron Neutron Capture Therapy (BNCT) represents a promising modality for selective tumor irradiation. The key to effective BNCT is selective localization of 10 B in the tumor. We have shown that the synthetic amino acid p-boronophenylalanine (BPA) will selectively deliver boron to melanomas and other tumors such as gliosarcomas and mammary carcinomas. Systemically delivered BPA may have general utility as a boron delivery agent for BNCT. In this paper, BNCT with BPA is used in treatment of experimentally induced gliosarcoma in rats and nonpigmented melanoma in rabbits. The tissue distribution of boron is described, as is response to the BNCT. 6 refs., 4 figs., 1 tab

  8. Design and testing of a rotating, cooled device for extra-corporate treatment of liver cancer by BNCT in the epithermal neutron beam at the HFR Petten

    International Nuclear Information System (INIS)

    Moss, Ray; Nievaart, Sander; Pott, Lucien; Wittig, Andrea; Sauerwein, Wolfgang

    2006-01-01

    As part of the joint project on extra-corporal treatment of liver cancer by BNCT between JRC Petten and the University Hospital Essen, a facility has been designed and built to contain the liver during its irradiation treatment at the HFR Petten. The design consists of a rotating spheroid shaped PMMA holder, manufactured to open at the equator and closed by screwing together, surrounded by PMMA and graphite blocks. A validation exercise has been performed regarding both the nuclear conditions and the physical conditions. For the former, activation foil sets of Au, Cu and Mn, were irradiated at positions inside the liver holder filled with water, whilst a second measurement campaign has been performed using gel dosimetry. For the physical test, it is required to operate (rotate) the facility for up to 4 hours and to maintain the liver at approximately 4degC. The latter test was performed using 'cold gun sprays' that inject cold air near the liver holder. Both the nuclear and physical validation tests were performed successfully. (author)

  9. BNCT with linac, feasibility study

    International Nuclear Information System (INIS)

    Alfuraih, A.; Ma, A.; Spyrou, N.M.; Awotwi-Pratt, Joseph

    2006-01-01

    High energy photon beams from Medical Linear Accelerators (linacs) which are used in radiotherapy produce undesirable neutrons, beside the clinically useful electron and photon beams. Neutrons are produced from the photonuclear reaction (γ,n) of high energy photons with high Z-materials which compose the accelerator head. In this paper the possible use of these undesirable neutrons for BNCT is investigated, making use of high energy linacs already installed in hospitals, primarily for high energy electron and photon therapy and applying them in the context of BNCT. The photoneutron components emitted by the accelerator is the source for Monte Carlo simulations of the interactions that take place within the head of a voxel-based phantom. The neutron flux across the phantom head is calculated using different moderator arrangements and different techniques in the aim of increasing the thermal neutron flux at the targeted site. Also, we shall test different configurations of the linac head to maximize the exposure of high-Z materials to the photon beam, including the removal of the flattening filter, so as to boost the photoneutron production in the linac head. Experimental work will be conducted in hospitals to validate the Monte Carlo simulations. To make use of linacs for BNCT will be advantageous in the sense that the setting in a hospital department is much more acceptable by the public than a reactor installation. This will mean less complications regarding patient positioning and movement with respect to the beams, additional patient transportation and management will be more cost effective. (author)

  10. Evaluation of the characteristics of boron-dose enhancer (BDE) materials for BNCT using near threshold {sup 7}Li(p,n){sup 7}Be direct neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bengua, Gerard [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennann-gun, Osaka 590-0494 (Japan); Kobayashi, Tooru [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennann-gun, Osaka 590-0494 (Japan); Tanaka, Kenichi [Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Nakagawa, Yoshinobu [National Kagawa Children' s Hospital, Zentsuji-cho, Zentsuji, Kagawa 765-8501 (Japan)

    2004-03-07

    The characteristics of a number of candidate boron-dose enhancer (BDE) materials for boron neutron capture therapy (BNCT) using near threshold {sup 7}Li(p,n){sup 7}Be direct neutrons were evaluated based on the treatable protocol depth (TPD), defined in this paper. Simulation calculations were carried out by means of MCNP-4B transport code for candidate BDE materials, namely, (C{sub 2}H{sub 4}){sub n}, (C{sub 2}H{sub 3}F){sub n}, (C{sub 2}H{sub 2}F{sub 2}){sub n}, (C{sub 2}HF{sub 3}){sub n}, (C{sub 2}D{sub 4}){sub n}, (C{sub 2}F{sub 4}){sub n}, beryllium metal, graphite, D{sub 2}O and {sup 7}LiF. Dose protocols applied were those used for intra-operative BNCT treatment for brain tumour currently used in Japan. The maximum TPD (TPD{sub max}) for each BDE material was found to be between 4 cm and 5 cm in the order of (C{sub 2}H{sub 4}){sub n} < (C{sub 2}H{sub 3}F){sub n} < (C{sub 2}H{sub 2}F{sub 2}){sub n} < (C{sub 2}HF{sub 3}){sub n} < beryllium metal < (C{sub 2}D{sub 4}){sub n} < graphite < (C{sub 2}F{sub 4}){sub n} < D{sub 2}O < {sup 7}LiF. Based on the small and arbitrary variations in the TPD{sub max} for these materials, an explicit advantage of a candidate BDE material could not be established from the TPD{sub max} alone. The dependence of TPD on BDE thickness was found to be influenced by the type of BDE material. For materials with hydrogen, sharp variations in TPD were observed, while those without hydrogen exhibited more moderate fluctuations in TPD as the BDE thickness was varied. The BDE thickness corresponding to TPD{sub max} (BDE(TPD{sub max})) was also found to depend on the type of BDE material used. Thicker BDE(TPD{sub max}), obtained mostly for BDE materials without hydrogen, significantly reduced the dose rates within the phantom. The TPD{sub max}, the dependence of TPD on BDE thickness and the BDE (TPD{sub max}) were ascertained as appropriate optimization criteria in choosing suitable BDE materials for BNCT. Among the candidate BDE materials

  11. Conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at SINQ

    International Nuclear Information System (INIS)

    Zanini, L.; Baluc, N.; Simone, A. De; Eichler, R.; Joray, S.; Manfrin, E.; Pouchon, M.; Rabaioli, S.; Schumann, D.; Welte, J.; Zhernosekov, K.

    2011-12-01

    This comprehensive, illustrated report by the Paul Scherrer Institute PSI in Switzerland documents the proposals concerning the conceptual design, neutronic and radioprotection study of a fast neutron irradiation station at the PSI's Swiss Spallation Neutron Source SINQ facility. The need for fast neutron irradiation is discussed and the possibility of using SINQ as a fast neutron irradiation facility is considered. The production of isotopes, tracers and medical isotopes is discussed, as are fission and fusion reactor technologies. The characteristics of the neutron spectrum in SINQ are discussed. The neutronic and radioprotection calculations for an irradiation station at SINQ are looked at in detail and extensive examples of work done and results obtained are presented and discussed. Radioprotection issues are also looked at. Further contributions in the report cover the hot/cold irradiation station in the SINQ target. An appendix provides detailed drawings of the facility's pneumatic delivery system

  12. Phase transformations in neutron-irradiated Zircaloys

    International Nuclear Information System (INIS)

    Chung, H.M.

    1986-04-01

    Microstructural evolution in Zircaloy-2 and -4 spent-fuel cladding specimens after ∼3 years of irradiation in commercial power reactors has been investigated by TEM and HVEM. Two kinds of precipitates induced by the fast-neutron irradiation in the reactors have been identified, i.e., Zr 3 O and cubic-ZrO 2 particles approximately 2 to 10 nm in size. By means of a weak-beam dark-field ''2-1/2D-microscopy'' technique, the bulk nature of the precipitates and the surficial nature of artifact oxide and hydride phases could be discerned. The Zr(Fe/sub x/,Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/,Ni/sub 1-x/) intermetallic precipitates normally present in the as-fabricated material virtually dissolved in the spent-fuel cladding specimens after a fast-neutron fluence of ∼4 x 10 21 ncm -2 in the power reactors. The observed radiation-induced phase transformations are compared with predictions based on the currently available understanding of the alloy characteristics. 29 refs

  13. Radiation field characterization of a BNCT research facility using Monte Carlo method - code MCNP-4B

    International Nuclear Information System (INIS)

    Hernandez, Antonio Carlos

    2002-01-01

    Boron Neutron Capture Therapy - BNCT - is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an Am Be neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these Becton studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluencyN T = 1,35x10 8 n/cm , a fast neutron dose of 5,86x10 -10 Gy/N T and a gamma ray dose of 8,30x10 -14 Gy/N T . (author)

  14. Impact of neutron irradiation on thermal helium desorption from iron

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang, E-mail: hux1@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Field, Kevin G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Taller, Stephen [University of Michigan, Ann Arbor, MI 48109 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wirth, Brian D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 10{sup 18} He/m{sup 2}. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  15. Induced defects in neutron irradiated GaN single crystals

    International Nuclear Information System (INIS)

    Park, I. W.; Koh, E. K.; Kim, Y. M.; Choh, S. H.; Park, S. S.; Kim, B. G.; Sohn, J. M.

    2005-01-01

    The local structure of defects in undoped, Si-doped, and neutron irradiated free standing GaN bulk crystals, grown by hydride vapor phase epitaxy, has been investigated by employing Raman scattering and cathodoluminescence. The GaN samples were irradiated to a dose of 2 x 10 17 neutrons in an atomic reactor at Korea Atomic Energy Research Institute. There was no appreciable change in the Raman spectra for undoped GaN samples before and after neutron irradiation. However, a forbidden transition, A 1 (TO) mode, appeared for a neutron irradiated Si-doped GaN crystal. Cathodoluminescence spectrum for the neutron irradiated Si-doped GaN crystal became much more broadened than that for the unirradiated one. The experimental results reveal the generation of defects with locally deformed structure in the wurtzite Si-doped GaN single crystal

  16. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Y.; Miyahara, N.

    2007-01-01

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  17. INEL BNCT Program: Volume 5, No. 9

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-01-01

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  18. Tumor control induced by Boron Neutron Capture Therapy (BNCT) as a function of dose in an experimental model of liver metastases at 5 weeks follow-up

    International Nuclear Information System (INIS)

    Pozzi, E C C; Trivillin, V A; Colombo, L L; Monti Hughes, A; Thorp, S; Cardoso, J E; Garabalino, M A; Molinari, A J; Heber, E M; Curotto, Paula; Miller, M; Itoiz, M E; Aromando, R F; Nigg, D W; Schwint, A E

    2012-01-01

    BNCT has been proposed for the treatment of multifocal, non-resectable, bilobar colorectal liver metastases that do not respond to chemotherapy. We recently reported that BNCT mediated by boronophenylalanine (BPA) induced significant remission of experimental colorectal tumor nodules in rat liver at 3 weeks follow-up with no contributory liver toxicity (Pozzi et al.,2012). The aim of the present study was to evaluate tumor control and potential liver toxicity of BPA-BNCT at 5 weeks follow-up. Prescribed dose was retrospectively evaluated based on blood boron values, allowing for assessment of response over a range of delivered dose values (author)

  19. Damages to gladiolu corm caused by fast neutron irradiation

    International Nuclear Information System (INIS)

    Zhang Zhiwei; Wang Dan; Zhang Dongxue; Zheng Chun

    2007-01-01

    Gladiolus corms were irradiated to 100-500kGy by fast neutrons in the CFBR-II pulsed reactor, Scanning electron microscope images of the irradiated samples revealed significant radiation damages to the gladiolus corms, and the mutagenic effects were studied by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Within the dose range, radiation damage to the corm increased with the dose, with corm epidermis of the samples irradiated in vertical incidence being more serious than those irradiated in side-incidence to the same dose. Biological characters were investigated via field experiments, and the bands of protein subunit were analyzed by SDS-PAGE. The results showed that the fast neutrons irradiation inhibited growth of M1 generation seedling significantly. Protein expression was obviously inhibited by the irradiation. The study indicates that fast neutron induction is an effective way for gladiolus breeding. And the results may lay a foundation for studies on fast neutron mutation breeding. (authors)

  20. Comparison of three experimental protocols in pre clinical studies for thyroid cancer treatment using sodium butyrate in combination with boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Perona, M; Rodriguez, C; Carpano, M; Majdalani E; Nievas, S; Olivera, M; Pisarev, M; Cabrini, R; Juvenal, G; Dagrosa A

    2012-01-01

    Background: We have shown that boron neutron capture therapy (BNCT) could be an alternative for the treatment of poorly differentiated (PDTC) and undifferentiated thyroid carcinoma (UTC). However new strategies are being assayed in order to optimize its application. Histone de acetylase inhibitors (HDAC-I) like sodium butyrate (NaB), are emerging as a new class of chemotherapeutic agents which target the epigenome. Since histone hyper acetylation mediates changes in chromatin conformation, HDAC-I are involved in different epigenetically controlled activities like apoptosis, proliferation, cell differentiation, induction of cell cycle arrest and motility. The purpose of the present studies was to analyze different treatment regimens of combination of NaB and boronophenylalanine (BPA) uptake in animals bearing transplants of a human thyroid carcinoma Methods: NIH nude mice of 6-8 weeks were implanted (s.c.) with 10 6 of human follicular thyroid carcinoma cells (WRO). Three regimens were evaluated in 48 animals after 15 days when tumors had a size between 50 and 100 mm 3 . Group 1 (n=10): BPA and NaB (50 mM) via i.p. at a dose of 110 mg/kg b.w. 24 h before boron compound administration; group 2 (n=10): BPA and NaB 3.4% in the water ad libitum during a month after 15 days post-implantation; group 3 (n=10): BPA alone. In all the groups BPA was injected at a dose of 350 mg/Kg b.w. (i.p.) and the animals were sacrificed at 2 h post-administration. Boron measurements in tissues and blood were performed by ICP-OES. A control group without NaB (n=6) for each regimen was included. The tumor growth and the body weight were determined twice a week during a month. Results: The administration of NaB 3.4% during a month previous to BNCT did not modify the body weight of the mice and decreased the tumor growth compared to its control group (p<0.01). The biodistribution studies showed a tumor boron concentration of 32.6 ± 1.4 ppm for group 1 (NaB 50 mM plus BPA), of 16.9 ± 3.7 ppm

  1. SPES-BNCT Project Beam Shaping Assembly. State of the Art

    International Nuclear Information System (INIS)

    Ceballos Sanchez, Cesar

    2007-01-01

    The SPES-BNCT project will exploit the intense proton beam provided by the RFQ (30mA, 5MeV), currently under construction at LNL, to yield a neutron source using the 9 Be(p,xn) nuclear reaction. The goal is to setup an accelerator-driven, thermal neutron beam facility, aimed at the Boron Neutron Capture experimental treatment of extended shallow skin melanoma. The neutron energy spectrum is shifted with a beam shaping assembly (BSA) surrounding the target. This device is fully designed with the Monte Carlo simulation code MCNPX, with the purpose of maximizing the thermal neutron component of the beam and focusing it on the irradiation area. (Author)

  2. Four cases of facial melanoma treated by BNCT with 10B-p-boronophenylalanine

    International Nuclear Information System (INIS)

    Fukuda, H.; Mishima, Y.; Hiratsuka, J.; Kobayashi, T.; Karashima, H.; Yoshino, K.; Tsuru, K.; Araki, K.; Ichihashi, M.

    2000-01-01

    We treated four cases of facial melanoma by BNCT with 10 B-paraboronophenylalanine · fructose complex (BPA). The patients received 180 to 200 mg BPA/kg-BW intravenously for 3 to 5 hours. One to two hours after the end of BPA administration, they were irradiated with a thermal neutron beam at the Kyoto University Reactor (KUR). The local control of the tumors was good and complete regression was achieved in all cases. The acute and subacute skin reactions ranged from dry desquamation to erosion and were within tolerable limits. After 2 to 3 months, the skin recovered from damage with slight pigmentation or depigmentation and without serious functional or cosmetic problems. Our results indicate BNCT of facial melanoma is promising not only for tumor cure but also for good QOL of the patients, although surgery is the standard and first choice for the treatment of malignant melanoma. (author)

  3. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hee Dong; Han, Seul Gi; Lee, Sang Dong; Kim, Ki Hong; Ryu, Eag Hyang; Park, Hwa Gyu [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2014-10-15

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al{sup 27}, C{sup 12}, B{sup 11}, B{sup 10} and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B{sup 10} content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B{sup 10} content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B{sup 10} content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B{sup 10} content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 10{sup 10} order, however, usual neutron flux from spent fuel is 10{sup 8} order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B{sup 10} content is little decreased, so, initial neutron absorbing ability could be kept continuously.

  4. Neutron Dosimetry and Irradiation of Solids; Dosimetrie des neutrons et irradiation des solides

    Energy Technology Data Exchange (ETDEWEB)

    Perriot, G; Schmitt, A P [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    Results of work at C.E.A. from 1958 to 1960 are reviewed. The possibilities offered by classical dosimetry methods are discussed. The tests which led to the utilization, for fast neutron dosimetry, of resistivity variations induced in solid W by such neutrons are described. Experimental W irradiation results led to a definition of neutron efficiency which describes the relations between neutron energy and their effects on materials. Possibilities offered by detectors which make use of radiation damage and are sensitive to neutrons at keV energies were explored. In other work, the principal French reactors were classified according to their ability to produce damage in materials such as W. (authors) [French] Dans ce rapport on a presente les resultats essentiels de travaux qui ont ete effectues de 1958 a 1980 par des chercheurs du CEA issus de differents services. En meme temps qu'une revue des possibilites offertes a l'epoque par les methodes classiques de dosimetrie (utilisation des detecteurs par activation), on a decrit les essais qui devaient permettre d'utiliser, a la dosimetrie les neutrons rapides, les variations de resistivite qu'ils creent dans un corps solide (tungstene). L'irradiation du tungstene a montre l'importance qu'il y avait a definir 'l'efficacite' des neutrons, c'est-a-dire leur aptitude plus ou moins grande, selon leur energie, a creer des defauts dans les materiaux. L'efficacite d'un emplacement d'irradiation se trouvant liee au spectre neutronique, on a vu les difficultes qu'il y avait a utiliser les detecteurs par activation des qu'on n'avait plus affaire a un spectre en 1/E ou de fission et on a pu entrevoir les possibilites offertes par les detecteurs utilisant la creation des defauts qui repondent a tous les neutrons d'energies, superieures a quelques keV. Enfin, on a classe les principaux types de Piles Francaises selon leur aptitude a creer plus ou moins rapidement des dommages dans des materiaux comme le tungstene. (auteur)

  5. EDX microanalysis of neutron-irradiated alloys

    International Nuclear Information System (INIS)

    Thomas, L.E.

    1981-09-01

    Energy-dispersive X-ray (EDX) spectrometry of 50 nm thick specimens in the scanning transmission electron microscope provides quantitative elemental analyses of selected regions as small as 20 nm in diameter. To analyze highly radioactive neutron-irradiated alloys it is necessary to reduce the high counting deadtimes caused by energetic γ-Compton scattering in the Si(Li) detector, and to account for spurious background contributions from γ-rays and characteristic x-ray emissions. Several simple methods for overcoming effects of specimen radioactivity are described, including use of a tungsten collimator to attenuate γ and x-rays coming from the thick edges of self-supporting disk specimens. These methods allow analyses of Fe-Cr-Ni based alloys with γ-activities up to 1000 μC/sub i/. Techniques used to maintain high spatial resolution and accuracy in quantitatve analysis are also described, and their use is illustrated

  6. Response of neutron-irradiated RPV steels to thermal annealing

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the fracture toughness properties that have been degraded by neutron irradiation. This paper summarizes experimental results of work performed at the Oak Ridge National Laboratory (ORNL) to study the annealing response of several irradiated RPV steels

  7. Feasibility study on BNCT-SPECT using a CdTe detector

    International Nuclear Information System (INIS)

    Murata, Isao; Mukai, Taiki; Ito, Masao; Miyamaru, Hiroyuki; Yoshida, Shigeo

    2011-01-01

    There is no doubt that boron neutron capture therapy (BNCT) is a promising cancer therapy in the near future. At present, one of the severest problems to solve is monitoring of the treatment effect during neutron irradiation. It is known to be difficult in real time. So far, activation foils, small detectors and so on were used to measure the thermal neutron fluence in a certain place of the tumor. The dose distribution is thus estimated from the measured result and prediction with a transport code. In the present study, 478 keV gamma-rays emitted from the excited state of 7 Li produced by 10 B(n,α) 7 Li reaction are directly measured to realize real time monitoring of the treatment effect of BNCT. In this paper, the result of the feasibility study carried out using a Monte Carlo transport code is summarized. We used CdTe detectors with a quite narrow collimator to obtain a BNCT image keeping good spatial resolution. The intensity of capture gamma-rays of 2223 keV produced by 1 H(n,γ) 2 H reaction is very much higher than that of 478 keV. We thus adjusted the detector efficiency by selecting an appropriate thickness so as to optimize the efficiency ratio between 478 and 2223 keV. From the result of the detector response calculation, in case of 20 mm thick CdTe detector with the collimator of 2 mm in diameter, sufficient net count of ∼1000 for 478 keV in 30 min. was realized. It means an efficient and high-resolution BNCT-SPECT image could be obtained. (author)

  8. Emulation of neutron irradiation effects with protons: validation of principle

    International Nuclear Information System (INIS)

    Was, G.S.; Busby, J.T.; Allen, T.; Kenik, E.A.; Jensson, A.; Bruemmer, S.M.; Gan, J.; Edwards, A.D.; Scott, P.M.; Andreson, P.L.

    2002-01-01

    This paper presents the results of the irradiation, characterization and irradiation assisted stress corrosion cracking (IASCC) behavior of proton- and neutron-irradiated samples of 304SS and 316SS from the same heats. The objective of the study was to determine whether proton irradiation does indeed emulate the full range of effects of in-reactor neutron irradiation: radiation-induced segregation (RIS), irradiated microstructure, radiation hardening and IASCC susceptibility. The work focused on commercial heats of 304 stainless steel (heat B) and 316 stainless steel (heat P). Irradiation with protons was conducted at 360 deg. C to doses between 0.3 and 5.0 dpa to approximate those by neutron irradiation at 275 deg. C over the same dose range. Characterization consisted of grain boundary microchemistry, dislocation loop microstructure, hardness as well as stress corrosion cracking (SCC) susceptibility of both un-irradiated and irradiated samples in oxygenated and de-oxygenated water environments at 288 deg. C. Overall, microchemistry, microstructure, hardening and SCC behavior of proton- and neutron-irradiated samples were in excellent agreement. RIS analysis showed that in both heats and for both irradiating particles, the pre-existing grain boundary Cr enrichment transformed into a 'W' shaped profile at 1.0 dpa and then into a 'V' shaped profile between 3.0 and 5.0 dpa. Grain boundary segregation of Cr, Ni, Si, and Mo all followed the same trends and agreed well in magnitude. The microstructure of both proton- and neutron-irradiated samples was dominated by small, faulted dislocation loops. Loop size distributions were nearly identical in both heats over a range of doses. Saturated loop size following neutron irradiation was about 30% larger than that following proton irradiation. Loop density increased with dose through 5.0 dpa for both particle irradiations and was a factor of 3 greater in neutron-irradiated samples vs. proton-irradiated samples. Grain boundary

  9. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    Directory of Open Access Journals (Sweden)

    Yang Seong Woo

    2016-01-01

    Full Text Available The High flux Advanced Neutron Application ReactOr (HANARO is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  10. Calculations on neutron irradiation damage in reactor materials

    International Nuclear Information System (INIS)

    Sone, Kazuho; Shiraishi, Kensuke

    1976-01-01

    Neutron irradiation damage calculations were made for Mo, Nb, V, Fe, Ni and Cr. Firstly, damage functions were calculated as a function of neutron energy with neutron cross sections of elastic and inelastic scatterings, and (n,2n) and (n,γ) reactions filed in ENDF/B-III. Secondly, displacement damage expressed in displacements per atom (DPA) was estimated for neutron environments such as fission spectrum, thermal neutron reactor (JMTR), fast breeder reactor (MONJU) and two fusion reactors (The Conceptual Design of Fusion Reactor in JAERI and ORNL-Benchmark). then, damage cross section in units of dpa. barn was defined as a factor to convert a given neutron fluence to the DPA value, and was calculated for the materials in the above neutron environments. Finally, production rates of helium and hydrogen atoms were calculated with (n,α) and (n,p) cross sections in ENDF/B-III for the materials irradiated in the above reactors. (auth.)

  11. Estimate of absorbed dose received by individuals irradiated with neutrons

    International Nuclear Information System (INIS)

    Fonseca, E.S. da; Mauricio, C.L.P.

    1995-01-01

    An innovating methodology is proposed to estimate the absorbed dose received by individuals irradiated with neutrons in an accident, even in the case that the victim is not using any kind of neutron dosemeter. The method combines direct measurements of 24 Na and 32 P activated in the human body. The calculation method was developed using data taken from previously published papers and experimental measurements. Other irradiations results in different neutron spectra prove the validity of the methodology here proposed. Using a whole body counter to measure 24 Na activity, it is possible to evaluate neutron absorbed doses in the order of 140 μGy of very soft (thermal) spectra. For fast neutron fields, the lower limit for neutron dose detection increases, but the present method continues to be very useful in accidents, with higher neutron doses. (author). 5 refs., 1 fig., 4 tabs

  12. Influence of neutron irradiation on ferromagnetic metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Nasu, Saburo; Sitek, J.

    1992-01-01

    Transmission 57 Fe Moessbauer spectroscopy is used to study effects of neutron irradiation on magnetic properties of Fe-based ferromagnetic metallic glasses. Elastic stress centers are produced during the process of neutron irradiation as a result of atom mixing. Rearrangement of the atoms causes changes in the average value of the hyperfine field distribution and orientation of the net magnetic moment. They are shown to depend on the composition of the investigated samples. Cr-doped metallic glasses depict transformation from ferromagnetic to paramagnetic state at room temperature after neutron irradiation implying changes in the Curie temperature. Presence of Ni in the samples reduces the effects of radiation damage. (orig.)

  13. Boron neutron capture therapy induces cell cycle arrest and DNA fragmentation in murine melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, F. [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)] [Faculty of Medicine, University of Sao Paulo, 455 Doutor Arnaldo Avenue, Sao Paulo (Brazil); Coelho, P.R.P. [Institute for Nuclear and Energy Research, 2242 Lineu Prestes Avenue, Sao Paulo (Brazil); Arruda-Neto, J. [Physics Institute, University of Sao Paulo, 187 Matao Street, Sao Paulo (Brazil)] [FESP, Sao Paulo Engineering School, 5520 Nove de Julho Avenue, Sao Paulo (Brazil); Maria, Durvanei A., E-mail: durvaneiaugusto@yahoo.br [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)

    2011-12-15

    The melanoma is a highly lethal skin tumor, with a high incidence. Boron Neutron Capture Therapy (BNCT) is a radiotherapy which combines Boron with thermal neutrons, constituting a binary system. B16F10 melanoma and L929 fibroblasts were treated with Boronophenylalanine and irradiated with thermal neutron flux. The electric potential of mitochondrial membrane, cyclin D1 and caspase-3 markers were analyzed. BNCT induced a cell death increase and cyclin D1 amount decreased only in B16F10 melanoma. Besides, there was not caspase-3 phosphorylation.

  14. Conceptual Design of a Clinical BNCT Beam in an Adjacent Dry Cell of the Jozef Stefan Institute TRIGA Reactor

    International Nuclear Information System (INIS)

    Maucec, Marko

    2000-01-01

    The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation point, the efficiency of a fission plate with almost 1.5 kg of 20% enriched uranium and 2.3 kW of thermal power is investigated. With the same purpose in mind, the TRIGA reactor core setup is optimized, and standard fresh fuel elements are concentrated partly in the outermost ring of the core. Further, a detailed parametric study of the materials and dimensions for all the relevant parts of the irradiation facility is carried out. Some of the standard epithermal neutron filter/moderator materials, as well as 'pressed-only' low-density Al 2 O 3 and AlF 3 , are considered. The proposed version of the BNCT facility, with PbF 2 as the epithermal neutron filter/moderator, provides an epithermal neutron flux of ∼1.1 x 10 9 n/cm 2 .s, thus enabling patient irradiation times of nfast /φ epi -13 Gy.cm 2 /n and [overdot]D γ /φ epi -13 Gy.cm 2 /n), the in-air performances of the proposed beam are comparable to all existing epithermal BNCT facilities. The design presents an equally efficient alternative to the BNCT beams in TRIGA reactor thermal columns that are more commonly applied. The cavity of the dry cell, a former JSI TRIGA reactor spent-fuel storage facility, adjacent to the thermalizing column, could rather easily be rearranged into a suitable patient treatment room, which would substantially decrease the overall developmental costs

  15. In-phantom dosimetry using the 13C(d,n)14N reaction for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    Burlon, Alejandro; Kreiner, Andres J.; White, S.; Blackburn, B.; Gierga, David; Yanch, Jacquelyn C.

    2000-01-01

    The use of the 13 C(d,n) 14 N reaction at E d =1.5 MeV for accelerator-based boron neutron capture therapy is investigated. The 13 C(d,n) 14 N reaction presents the advantages of carbon as a target material and its large cross section. The deuteron beam was produced by a tandem accelerator at MIT's Laboratory for Accelerator Beam Applications. The resulting neutron spectra were evaluated in terms of RBE-dose rates at different depths inside a water-filled brain phantom using a heavy water moderator and lead reflector assembly. All results were simulated using the code MCNP. (author)

  16. Neutron irradiation control in the neutron transmutation doping process in HANARO using SPND

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Gi-Doo; Kim, Myong-Seop [Korea Atomic Energy Research Institute, Yuseong, Daejeon, 305-353, (Korea, Republic of)

    2015-07-01

    The neutron irradiation control method by using self-powered neutron detector (SPND) is developed for the neutron transmutation doping (NTD) application in HANARO. An SPND is installed at a fixed position of the upper part of the sleeve in HANARO NTD hole for real-time monitoring of the neutron irradiation. It is confirmed that the SPND is significantly affected by the in-core condition and surroundings of the facility. Furthermore, the SPND signal changes about 15% throughout a whole cycle according to the change of the control rod position. But, it is also confirmed that the variation of the neutron flux on the silicon ingots inside the irradiation can is not so big while moving of the control rod. Accordingly, the relationship between the ratio of the neutron flux to the SPND signal output and the control rod position is established. In this procedure, the neutron flux measurement by using zirconium foil is utilized. The real NTD irradiation experiments are performed using the established relationship. The irradiated neutron fluence can be controlled within ±1.3% of the target one. The mean value of the irradiation/target ratio of the fluence is 0.9992, and the standard deviation is 0.0071. Thus, it is confirmed that the extremely accurate irradiation would be accomplished. This procedure can be useful for the SPND application installed at the fixed position to the field requiring the extremely high accuracy. (authors)

  17. Monte Carlo calculation for the development of a BNCT neutron source (1eV-10KeV) using MCNP code.

    Science.gov (United States)

    El Moussaoui, F; El Bardouni, T; Azahra, M; Kamili, A; Boukhal, H

    2008-09-01

    Different materials have been studied in order to produce the epithermal neutron beam between 1eV and 10KeV, which are extensively used to irradiate patients with brain tumors such as GBM. For this purpose, we have studied three different neutrons moderators (H(2)O, D(2)O and BeO) and their combinations, four reflectors (Al(2)O(3), C, Bi, and Pb) and two filters (Cd and Bi). Results of calculation showed that the best obtained assembly configuration corresponds to the combination of the three moderators H(2)O, BeO and D(2)O jointly to Al(2)O(3) reflector and two filter Cd+Bi optimize the spectrum of the epithermal neutron at 72%, and minimize the thermal neutron to 4% and thus it can be used to treat the deep tumor brain. The calculations have been performed by means of the Monte Carlo N (particle code MCNP 5C). Our results strongly encourage further studying of irradiation of the head with epithermal neutron fields.

  18. INEEL BNCT Research Program Annual Report, CY-2000

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert

    2001-03-01

    This report is a summary of the activities conducted in conjunction with the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 2000. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, neutron source design and demonstration, and support the Department of Energy’s (DOE) National BNCT Program goals are the goals of this Program. Contributions from the individual contributors about their projects are included, specifically described are the following, chemistry: analysis of biological samples and an infrared blood-boron analyzer, and physics: progress in the patient treatment planning software, measurement of neutron spectra for the Argentina RA-6 reactor, and recalculation of the Finnish research reactor FiR 1 neutron spectra, BNCT accelerator technology, and modification to the research reactor at Washington State University for an epithermal-neutron beam.

  19. Subcellular targets of mercaptoborate (BSH), a carrier of 10B for neutron capture therapy (BNCT) of brain tumors

    Czech Academy of Sciences Publication Activity Database

    Mareš, Vladislav; Krajčí, D.; Lisá, Věra

    2003-01-01

    Roč. 52, č. 5 (2003), s. 629-635 ISSN 0862-8408 R&D Projects: GA MPO FD-K/048 Institutional research plan: CEZ:AV0Z5011922 Keywords : thermal neutrons * brain tumors * sodium borocaptate Subject RIV: FD - Oncology ; Hematology Impact factor: 0.939, year: 2003

  20. Needs of in-situ materials testing under neutron irradiation

    International Nuclear Information System (INIS)

    Noda, K.; Hishinuma, A.; Kiuchi, K.

    1989-01-01

    Under neutron irradiation, the component atoms of materials are displaced as primary knock-on atoms, and the energy of the primary knock-on atoms is consumed by electron excitation and nuclear collision. Elementary irradiation defects accumulate to form damage structure including voids and bubbles. In situ test under neutron irradiation is necessary for investigating into the effect of irradiation on creep behavior, the electric properties of ceramics, transport phenomena and so on. The in situ test is also important to investigate into the phenomena related to the chemical reaction with environment during irradiation. Accelerator type high energy neutron sources are preferable to fission reactors. In this paper, the needs and the research items of in situ test under neutron irradiation using a D-Li stripping type high energy neutron source on metallic and ceramic materials are described. Creep behavior is one of the most important mechanical properties, and depends strongly on irradiation environment, also it is closely related to microstructure. Irradiation affects the electric conductibity of ceramics and also their creep behavior. In this way, in situ test is necessary. (K.I.)

  1. The intrinsic gettering in neutron irradiation Czochralski-silicon

    CERN Document Server

    Li Yang Xian; Niu Ping Juan; Liu Cai Chi; Xu Yue Sheng; Yang Deren; Que Duan Lin

    2002-01-01

    The intrinsic gettering in neutron irradiated Czochralski-silicon is studied. The result shows that a denuded zone at the surface of the neutron irradiated Czochralski-silicon wafer may be formed through one-step short-time annealing. The width of the denuded zone is dependent on the annealing temperature and the dose of neutron irradiation, while it is irrelated to the annealing time in case the denuded zone is formed. The authors conclude that the interaction between the defects induced by neutron irradiation and the oxygen in the silicon accelerates the oxygen precipitation in the bulk, and becomes the dominating factor of the quick formation of intrinsic gettering. It makes the effect of thermal history as the secondary factor

  2. Study of damages by neutron irradiation in lithium aluminates

    International Nuclear Information System (INIS)

    Palacios G, O.

    1999-01-01

    Lithium aluminates proposed to the production of tritium in fusion nuclear reactors, due to the thermal stability that they present as well as the behavior of the aluminium to the irradiation. As a neutron flux with profile (≅ 14 Mev) of a fusion reactor is not available. A irradiation experiment was designed in order to know the micro and nano structure damages produced by fast and thermal neutrons in two irradiation positions of the fusion nuclear reactor Triga Mark III: CT (Thermal Column) and SIFCA (System of Irradiation Fixed of Capsules). In this work samples of lithium aluminate were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy). Two samples were prepared by two methods: a) coalition method and b) peroxide method. This characterization comprised original and irradiated samples. The irradiated sample amounted to 4 in total: one for each preparation method and one for each irradiation position. The object of this analysis was to correlate with the received neutron dose the damages suffered by the samples with the neutron irradiation during long periods (440 H), in their micro and nano structure aspects; in order to understand the changes as a function of the irradiation zone (with thermal and fast neutron flux) and the preparation methods of the samples and having as an antecedent the irradiation in SIFCA position by short times (2h). The obtained results are referred to the stability of γ -aluminate phase, under given conditions of irradiation and defined nano structure arrangement. They also refer to the proposals of growth mechanism and nucleation of new phases. The error associated with the measurement of neutron dose is also discussed. (Author)

  3. Alterations in water and electrolyte absorption in the rat colon following neutron irradiation: influence of neutron component and irradiation dose.

    Science.gov (United States)

    Dublineau, I; Ksas, B; Joubert, C; Aigueperse, J; Gourmelon, P; Griffiths, N M

    2002-12-01

    To study the absorptive function of rat colon following whole-body exposure to neutron irradiation, either to the same total dose with varying proportion of neutrons or to the same neutron proportion with an increasing irradiation dose. Different proportions of neutron irradiation were produced from the reactor SILENE using a fissile solution of uranium nitrate (8, 47 and 87% neutron). Water and electrolyte fluxes were measured in the rat in vivo under anaesthesia by insertion into the descending colon of an agarose gel cylinder simulating the faeces. Functional studies were completed by histological analyses. In the first set of experiments, rats received 3.8 Gy with various neutron percentages and were studied from 1 to 14 days after exposure. In the second set of experiments, rats were exposed to increasing doses of irradiation (1-4Gy) with a high neutron percentage (87%n) and were studied at 4 days after exposure. The absorptive capacity of rat colon was diminished by irradiation at 3-5 days, with a nadir at 4 days. The results demonstrate that an increase in the neutron proportion is associated with an amplification of the effects. Furthermore, a delay in the re-establishment of normal absorption was observed with the high neutron proportion (87%n). A dose-dependent reduction of water absorption by rat colon was also observed following neutron irradiation (87%n), with a 50% reduction at 3 Gy. Comparison of this dose-effect curve with the curve obtained following gamma (60)Co-irradiation indicates an RBE of 2.2 for absorptive colonic function in rat calculated at 4 days after exposure.

  4. Anisotropic shift of the irreversibility line by neutron irradiation

    International Nuclear Information System (INIS)

    Sauerzopf, F.M.; Wiesinger, H.P.; Weber, H.W.; Crabtree, G.W.; Frischherz, M.C.; Kirk, M.A.

    1991-09-01

    The irreversibility line of high-T c superconductors is shifted considerably by irradiating the material with fast neutrons. The anisotropic and non-monotonous shift is qualitatively explained by a simple model based on an interaction between three pinning mechanisms, the intrinsic pinning by the ab-planes, the weak pinning by the pre-irradiation defect structure, and strong pinning by neutron induced defect cascades. A correlation between the cascade density and the position of the irreversibility line is observed

  5. F-type centers in neutron-irradiated AIN

    International Nuclear Information System (INIS)

    Atobe, Kozo; Honda, Makoto; Fukuoka, Noboru; Okada, Moritami; Nakagawa, Masuo.

    1990-01-01

    The production of point defects by neutron irradiation and thermal decay in sintered AIN polycrystal are investigated. The absorption band at 370 nm is observed after reactor neutron irradiation to a dose of 10 16 n/cm 2 (E > 0.1 MeV). The defect corresponding to the band is tentatively assigned as an F-type center from the optical absorption and electron spin resonance. (author)

  6. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com; Sikolenko, Vadim

    2004-10-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  7. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    Science.gov (United States)

    Korenev, Sergey; Sikolenko, Vadim

    2004-09-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  8. Fiscal year 1976 DT fusion neutron irradiations and dosimetry at the LLL rotating target neutron source

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation of 319 samples during 19 irradiation periods (beam-on time of more than 1026 hours) is described. Experiments from 24 individuals representing 11 institutions are summarized. The numbers of the UCID dosimetry reports detailing each of the irradiations are given

  9. Comparison of deuterium retention for ion-irradiated and neutron-irradiated tungsten

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Kobayashi, Makoto; Okuno, Kenji; Shimada, Masashi; Calderoni, Pattrick; Oda, Takuji; Hara, Masanori; Hatano, Yuji; Watanabe, Hideo

    2014-01-01

    The behavior of D retentions for Fe 2+ irradiated tungsten with the damage of 0.025-3 dpa was compared with that for neutron irradiated tungsten with 0.025 dpa. The D 2 TDS spectra for Fe 2+ irradiated tungsten consisted of two desorption stages at 450 K and 550 K although that for neutron irradiated tungsten was composed of three stages and addition desorption stage was found around 750 K. The desorption rate of major desorption stage at 550 K increased as the number of dpa by Fe 2+ irradiation increased. In addition, the first desorption stage at 450 K was only found for the damaged samples, indicating that the second stage would be based on intrinsic defects or vacancy produced by Fe 2+ irradiation and the first stage should be the accumulation of D in mono vacancy leading to the lower activation energy, where the dislocation loop and vacancy was produced. The third one was only found for the neutron irradiation, showing the D trapping by void or vacancy cluster and the diffusion effect is also contributed due to high FWHM of TDS spectrum. It can be said that the D 2 TDS spectra for Fe 2+ -irradiated tungsten could not represent that for neutron-irradiated one, showing that the deuterium trapping and desorption mechanism for neutron-irradiated tungsten has a difference from that for ion-irradiated one. (author)

  10. A case of astrocytoma, 19 year history after BNCT

    International Nuclear Information System (INIS)

    Kamano, Shuji

    2006-01-01

    A 39-year-old man had received Boron Neutron Capture Therapy (BNCT) in 1987 for a Grade II Astrocytoma. He gradually exacerbated and received a second operation in 1994. The mass taken in the second operation is almost competent with radiation necrosis. Following that, he shows no signs of recurrence. Currently, he has returned to full time employment in physical labor. This case suggests effectiveness of BNCT for rather low-grade astrocytomas. (author)

  11. Refractometry characteristics of α-quartz after neutron irradiation

    International Nuclear Information System (INIS)

    Abdkadyrova, I.Kh.

    1997-01-01

    Lattice structure distortions in irradiated crystalline quartz were studied by refractometry methods. The refractometry constants of α-quartz for the flux of fast neutrons 10 18 - 10 21 neutron/cm 2 were calculated. The critical kinetics of this constants at the phase transformation is observed.(author). 5 refs., 1 fig

  12. Studies of neutron irradiation effects at IPNS-REF

    International Nuclear Information System (INIS)

    Kirk, M.A.

    1983-09-01

    Neutron irradiation effects studies at the Radiation Effects Facility (REF) at the Intense Pulsed Neutron Source (IPNS) located at Argonne National Laboratory (ANL) are reviewed. A brief history of the development of this user facility is followed by an overview of the scientific program. Experiments unique to a spallation neutron source are covered in more detail. Future direction of research at this facility is suggested

  13. Hydriding and neutron irradiation in zircaloy-4

    International Nuclear Information System (INIS)

    Ramos, Ruben Fortunato; Martin, Juan Ezequiel; Orellano, Pablo; Dorao, Carlos; Analia Soldati; Ghilarducci, Ada Albertina; Corso, Hugo Luis; Peretti, Hernan Americo; Bolcich, Juan Carlos

    2003-01-01

    The composition of Zircaloy-4 for nuclear applications is specified by the ASTM B350 Standard, that fixes the amount of alloying elements (Sn, Fe, Cr) and impurities (Ni, Hf, O, N, C, among others) to optimize good corrosion and mechanical behavior.The recycling of zircaloy-4 scrap and chips resulting from cladding tube fabrication is an interesting issue.However, changes in the final composition of the recycled material may occur due to contamination with tool pieces, stainless steel chips, turnings, etc. while scrap is stored and handled. Since the main components of the possible contaminants are Fe, Cr and Ni, it arises the interest in studying up to what limit the Fe, Ni and Cr contents could be exceeded beyond the standard specification without affecting significantly the alloy properties.Zircaloy-4 alloys elaborated with Fe, Cr and Ni additions and others of standard composition in use in nuclear plants are studied by tensile tests, SEM observations and EDS microanalysis.Some samples are tested in the initial condition and others after hydriding treatments and neutron irradiation in the RA6

  14. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  15. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Schwint, A.E.; Hartwell, J.K.; Heber, E.M.; Trivillin, V.; Castillo, J.; Wentzeis, L.; Sloan, P.; Wemple, C.A.

    2004-10-04

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  16. The Design of a Prompt Gamma Neutron Activation Analysis Beam for BNCT Purpose at the TRIGA Mark II Reactor in Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Stella, S.; Bazani, A.; Ballarini, F.; Bortolussi, S.; Protti, N.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Section of Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)

    2011-07-01

    In preclinical and clinical Boron Neutron Capture Therapy studies the knowledge of the amount of {sup 10}B in blood and tissues is very important. The boron concentration measurements method used in Pavia (Italy) is based on the charged particles spectrometry of thin tissue cuts irradiated in the Thermal Column of the TRIGA reactor of the University. In order to perform measurements in biological liquids such as blood and urine, or in other tissue that cannot be cut in slices, a Prompt Gamma Neutron Activation Analysis (PGNAA) facility is being designed, which measures {sup 10}B concentration detecting the prompt gamma from boron nuclear capture reaction. At the TRIGA reactor in Pavia, there are four horizontal channels, potentially available for PGNAA. The choice of the suitable channel, and the design of its configuration, were achieved using the Monte Carlo neutron transport code MCNP4c2. To perform the simulations, an input code already validated, describing the reactor structure and the neutron source, was used. The calculations were implemented applying non-analog techniques for the neutron transport, that are necessary to obtain a sufficient statistic in every positions along the channel and especially at its end. The selection of the channel for PGNAA installation was carried out by comparing the simulated fluxes obtained in the different channels at the present configuration. The channel shielded by the core reflector was chosen, because the graphite lowers the fast component of the neutrons, with no need to insert additional material in the facility. The thermal flux at its end is 1.7 x 10{sup 8} n/cm{sup 2} s with thermal-to-total neutron flux ratio around 0.8. Subsequently a bismuth block for gamma radiation shielding and blocks of single crystal sapphire as filter for fast neutron component were inserted in the channel. Other components of the facility that are under study are a collimator and the beam catcher. (author)

  17. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary; Wirth, Brian; Motta, Athur; Morgan, Dane; Kaoumi, Djamel; Hosemann, Peter; Odette, Robert

    2018-04-30

    Project Objective: The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiated microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations

  18. Specific Heat Capacity of Alloy 690 for Simulating Neutron Irradiation

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Kim, Hee Moon; Song, Woong Sub; Baik, Seung Je; Joo, Young Sun; Ahn, Sang Bok; Park, Jin Seok; Lee, Won Jae; Ryu, Woo Seok

    2011-01-01

    The KAERI(Korea Atomic Energy Research Institute) is developing new type of nuclear reactor, so called 'SMART'(System Integrated Modular Advanced Reactor) which has many features of small power and system integrated modular type. Alloy 690 was selected as the candidate material for the heat exchanger tube of the steam generator of SMART. The SMART R and D is now facing the stage of engineering verification and approval of standard design to apply to DEMO reactors. Therefore, the material performance under the relevant environment is required to be evaluated. The important material performance issues are mechanical properties i.e. (fracture toughness, tensile and hardness) and thermal properties i.e. (thermal diffusivity, specific heat capacity and thermal conductivity) for which the engineering database is necessary to design a steam generator. However, the neutron post irradiation characteristics of the alloy 690 are barely known. As a result, PIE(Post Irradiation Examination) of thermal properties are planed and performed successfully. But specific heat capacity measurement is not performed because of not having proper test system for irradiated materials. Therefore in order to verify the effect of neutron irradiation for alloy 690, simulation method is adopted. In general, high energy neutron bombardment in material bring about lattice defects i.e. void, pore and dislocation. Dominant factor to impact to heat capacity is mainly dislocation in material. Therefore, simulation of neutron irradiation is devised by material rolling method in order to make artificial dislocation in alloy 690 as same effect of neutron irradiation. After preparing test specimens, heat capacity measurements are performed and results are compared with rolled materials and un-rolled materials to verify the effect of neutron irradiation simulation. Main interest of simulation is that heat capacity value is changed by neutron irradiation

  19. Evaluation for activities of component of Cyclotron-Based Epithermal Neutron Source (C-BENS) and the surface of concrete wall in irradiation room

    Energy Technology Data Exchange (ETDEWEB)

    Imoto, M., E-mail: masayuki.imoto@gmail.com [Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan); Tanaka, H. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Fujita, K.; Mitsumoto, T. [Sumitomo Heavy Industries, Ltd., Tokyo 141-6025 (Japan); Ono, K.; Maruhashi, A.; Sakurai, Y. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)

    2011-12-15

    The workers employed in BNCT must enter the irradiation room just after an irradiation under the condition of remaining activities. To reduce the radiation exposure for the workers, it is important to identify the origins of the activities. In this research, the activities induced on the concrete wall surface were evaluated using MCNP-5 and the measurement results of thermal neutron distribution. Furthermore, the radioisotopes produced in the moderator were identified with a High Purity Germanium detector. It was found that the activities of the wall were mainly caused by {sup 46}Sc, {sup 60}Co and {sup 152}Eu, and that {sup 24}Na and {sup 56}Mn were mainly produced in the moderator.

  20. Results on Neutron and Gamma Irradiation of Electrolytic Tilmeters

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C. F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J. M.; Fernando, A.; Fuentes, J.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrate, J.; Valdivieso, P.; Fenyvesi, A.; Molnar, J.

    2004-01-01

    We report on irradiation studies done to a sample of high precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, an neutrons, up to a maximum fluence 1.5x10''14 cm''2. The effect of the irradiation on their performance is discussed. (Author) 19 refs

  1. Results on Neutron and Gamma Irradiation of Electrolytic Tilmeters

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Calvo, E.; Figueroa, C. F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J. M.; Fernando, A.; Fuentes, J.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrate, J.; Valdivieso, P.; Fenyvesi, A.; Molnar, J.

    2004-07-01

    We report on irradiation studies done to a sample of high precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, an neutrons, up to a maximum fluence 1.5x10''14 cm''2. The effect of the irradiation on their performance is discussed. (Author) 19 refs.

  2. Calculation of fluence rate distributions in a pre design clinical facility for BNCT at the LFR

    International Nuclear Information System (INIS)

    Peeters, T.T.J.M.; Freudenreich, W.E.

    1995-12-01

    In a previous study [1], it was demonstrated that the creation of a thermal neutron facility for clinical BNCT in the LFR is feasible. Monte Carlo calculations had shown that the neutron fluence rates and gamma dose rates at the detector position of a model representing a first outline of a clinical facility met all requirements that are necessary for clinical BNCT. In order to gain more information about the neutron fluence rates at several positions, a second step is required. Calculations have been performed for the free beam and for a tumour bearing phantom at 5 cm and 10 cm distance from the irradiation window. Due to thermalization and back scattering, the thermal fluence rates in the tumour at 5 and 10 cm distance from the bismuth shield appeared to be approximately twice as high as the thermal fluence rates in the free beam at the corresponding positions of 5 to 6 cm and 10 to 11 cm from the irradiation window. (orig.)

  3. Tensile and fracture toughness test results of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1998-01-01

    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  4. Seed irradiation with continuously increasing doses of thermal neutrons

    International Nuclear Information System (INIS)

    Uhlik, J.; Pfeifer, M.; Pittermann, P.

    1977-01-01

    In the 'Raman' pea cv. the biological activity of thermal neutrons was investigated after irradiation of a 780 mm column of seeds for 3000 and 4167 seconds with a flux of 5.607 x 10 9 n.cm -2 per second. For different fractions of the seed column the average density of the neutron flux was calculated. It was proved that for the described method of seed irradiation it was sufficient to determine only the dose approaching the lethal dose. If a sufficiently high column of seeds is used part of the column of seeds will be irradiated with the optimum range of doses. The advantages of the suggested method of irradiation are not only smaller time and technological requirements resulting from the need for the determination of only the critical lethal dose of radiation by means of inhibition tests performed with seedlings, but also a simpler irradiation procedure. The suggested method of irradiation is at least nine times cheaper. (author)

  5. Defects investigation in neutron irradiated reactor steels by positron annihilation

    International Nuclear Information System (INIS)

    Slugen, V.

    2003-01-01

    Positron annihilation spectroscopy (PAS) based on positron lifetime measurements using the Pulsed Low Energy Positron System (PLEPS) was applied to the investigation of defects of irradiated and thermally treated reactor pressure vessel (RPV) steels. PLEPS results showed that the changes in microstructure of the RPV-steel properties caused by neutron irradiation and post-irradiation heat treatment can be well detected. From the lifetime measurements in the near-surface region (20-550 nm) the defect density in Russian types of RPV-steels was calculated using the diffusion trapping model. The post-irradiation heat treatment studies performed on non-irradiated specimens are also presented. (author)

  6. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  7. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-01-01

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  8. Neutron and gamma irradiation effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  9. Neutron and gamma irradiation damage to organic materials.

    Energy Technology Data Exchange (ETDEWEB)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  10. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    Science.gov (United States)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  11. Neutron self-shielding with k0-NAA irradiations

    International Nuclear Information System (INIS)

    Chilian, C.; Chambon, R.; Kennedy, G.

    2010-01-01

    A sample of SMELS Type II reference material was mixed with powdered Cd-nitrate neutron absorber and analysed by k 0 NAA for 10 elements. The thermal neutron self-shielding effect was found to be 34.8%. When flux monitors were irradiated sufficiently far from the absorbing sample, it was found that the self-shielding could be corrected accurately using an analytical formula and an iterative calculation. When the flux monitors were irradiated 2 mm from the absorbing sample, the calculations over-corrected the concentrations by as much as 30%. It is recommended to irradiate flux monitors at least 14 mm from a 10 mm diameter absorbing sample.

  12. Aspects of Low Temperature Irradiation in Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Brune, D.

    1968-08-01

    Neutron irradiation of the sample while frozen in a cooling device inserted in a reactor channel has been carried out in the analysis of iodine in aqueous samples as well as of mercury in biological tissue and water. For the simultaneous irradiation of a large number of aqueous solutions the samples were arranged in a suitable geometry in order to avoid mutual flux perturbation effects. The influence of the neutron temperature on the activation process has been discussed. Potential applications of the low temperature irradiation technique are outlined

  13. Aspects of Low Temperature Irradiation in Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D

    1968-08-15

    Neutron irradiation of the sample while frozen in a cooling device inserted in a reactor channel has been carried out in the analysis of iodine in aqueous samples as well as of mercury in biological tissue and water. For the simultaneous irradiation of a large number of aqueous solutions the samples were arranged in a suitable geometry in order to avoid mutual flux perturbation effects. The influence of the neutron temperature on the activation process has been discussed. Potential applications of the low temperature irradiation technique are outlined.

  14. INEL BNCT Research Program annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1995-11-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. Boron Neutron Capture Therapy at European research reactors - Status and perspectives

    International Nuclear Information System (INIS)

    Moss, R.L.

    2004-01-01

    Over the last decade. there has been a significant revival in the development of Boron Neutron Capture Therapy (BNCT) as a treatment modality for curing cancerous tumours, especially glioblastoma multiforme and subcutaneous malignant melanoma. In 1987 a European Collaboration on BNCT was formed, with the prime task to identify suitable research reactors in Europe where BNCT could be applied. Due to reasons discussed in this paper, the HFR Petten was chosen as the test-bed for demonstrating BNCT. Currently, the European Collaboration is approaching the start of clinical trials, using epithermal neutrons and borocaptate sodium (BSH) as the 10 B delivery agent. The treatment is planned to start in the first half of 1996. The paper here presents an overview on the principle of BNCT, the requirements imposed on a research reactor in order to be considered for BNCT, and the perspectives for other European materials testing reactors. A brief summary on the current status of the work at Petten is given, including: the design, construction and characterisation of the epithermal neutron beam: performance and results of the healthy tissue tolerance study; the development of a treatment planning programme based on the Monte Carlo code MCNP; the design of an irradiation room; and on the clinical trials themselves. (author)

  16. DAMAGE IN MOLYBDENUM ASSOCIATED WITH NEUTRON IRRADIATION AND SUBSEQUENT POST-IRRADIATION ANNEALING

    Energy Technology Data Exchange (ETDEWEB)

    Mastel, B.

    1963-07-23

    Molybdemum containing carbon was studied in an attempt to establish the combined effect of impurity content and neutron irradiation on the properties and structure of specific metals. Molybdenum foils were punched into discs and heat treated in vacuum. They were then slow-cooled and irradiated. After irradiation and subsequent decay of radioactivity to a low level the foils were subjected to x-ray diffraction measurements. Cold-worked foils with less than 10 ppm carbon showed no change in microstructure due to irradiation. Molybdenum foils that were annealed prior to irradiation showed spot defects. In foils containing up to 500 ppm carbon, it was concluded that the small loops present after irradiation are due to the clustering of point defects at interstitial carbon atoms, followed by collapse to form a dislocation loop. The amount of lattice expansion after irradiation was strongly dependent on impurity content. Neutron irradiation was found to reduce the number of active slip systems. (M.C.G.)

  17. Study of boron carbide evolution under neutron irradiation

    International Nuclear Information System (INIS)

    Simeone, D.

    1999-01-01

    Owing to its high neutron efficiency, boron carbide (B 4 C) is used as a neutron absorber in control rods of nuclear plants. Its behaviour under irradiation has been extensively studied for many years. It now seems clear that brittleness of the material induced by the 10 B(n,α) 7 Li capture reaction is due to penny shaped helium bubbles associated to a high strain field around them. However, no model explains the behaviour of the material under neutron irradiation. In order to build such a model, this work uses different techniques: nuclear microprobe X-ray diffraction profile analysis and Raman and Nuclear Magnetic Resonance Spectroscopy to present an evolution model of B 4 C under neutron irradiation. The use of nuclear reactions produced by a nuclear microprobe such as the 7 Li(p,p'γ) 7 Li reaction, allows to measure lithium profile in B 4 C pellets irradiated either in Pressurised Water Reactors or in Fast Breeder Reactors. Examining such profiles enables us to describe the migration of lithium atoms out of B 4 C materials under neutron irradiation. The analysis of X-ray diffraction profiles of irradiated B 4 C samples allows us to quantify the concentrations of helium bubbles as well as the strain fields around such bubbles.Furthermore Raman spectroscopy studies of different B 4 C samples lead us to propose that under neutron irradiation. the CBC linear chain disappears. Such a vanishing of this CBC chain. validated by NMR analysis, may explain the penny shaped of helium bubbles inside irradiated B 4 C. (author)

  18. Biological Effects of Neutron and Proton Irradiations. Vol. II. Proceedings of the Symposium on Biological Effects of Neutron Irradiations

    International Nuclear Information System (INIS)

    1964-01-01

    During recent years the interest in biological effects caused by neutrons has been increasing steadily as a result of the rapid development of neutron technology and the great number of neutron sources being used. Neutrons, because of their specific physical characteristics and biological effects, form a special type of radiation hazard but, at the same time, are a prospective tool for applied radiobiology. This Symposium, held in Brookhaven at the invitation of the United States Government from 7-11 October 1963, provided an opportunity for scientists to discuss the experimental information at present available on the biological action of neutrons and to evaluate future possibilities. It was a sequel to the Symposium on Neutron Detection, Dosimetry and Standardization, which was organized by the International Atomic Energy Agency in December 1962 at Harwell. The Symposium was attended by 128 participants from 17 countries and 6 international organizations. Fifty-four papers were presented. The following subjects were discussed in various sessions: (1) Dosimetry. Estimation of absorbed dose of neutrons in biological material. (2) Biological effects of high-energy protons. (3) Cellular and genetic effects. (4) Pathology of neutron irradiation, including acute and chronic radiation syndromes (mortality, anatomical and histological changes, biochemical and metabolic disturbances) and delayed consequences. (5) Relative biological effectiveness of neutrons evaluated by different biological tests. A Panel on Biophysical Considerations in Neutron Experimentation, with special emphasis on informal discussions, was organized during the Symposium. The views of the Panel are recorded in Volume II of the Proceedings. Many reports were presented on the important subject of the relative effectiveness of the biological action of neutrons, as well as on the general pathology of neutron irradiation and the cellular and genetic effects related to it. Three survey papers considered

  19. Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source

    International Nuclear Information System (INIS)

    Andreani, C.; Pietropaolo, A.; Salsano, A.; Gorini, G.; Tardocchi, M.; Paccagnella, A.; Gerardin, S.; Frost, C. D.; Ansell, S.; Platt, S. P.

    2008-01-01

    The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10 7 . Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays

  20. Some recent developments in treatment planning software and methodology for BNCT

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wheeler, F.J.; Wessol, D.E.; Wemple, C.A.; Babcock, R.; Capala, J.

    1996-01-01

    Over the past several years/the Idaho National Engineering Laboratory (INEL) has led the development of a unique, internationally-recognized set of software modules (BNCT rtpe) for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT). The computational capability represented by this software is essential to the proper administration of all forms of radiotherapy for cancer. Such software addresses the need to perform pretreatment computation and optimization of the radiation dose distribution in the target volume. This permits the achievement of the optimal therapeutic ratio (tumor dose relative to critical normal tissue dose) for each individual patient via a systematic procedure for specifying the appropriate irradiation parameters to be employed for a given treatment. These parameters include angle of therapy beam incidence, beam aperture and shape,and beam intensity as a function of position across the beam front. The INEL software is used for treatment planning in the current series of human glioma trials at Brookhaven National Laboratory (BNL) and has also been licensed for research and developmental purposes to several other BNCT research centers in the US and in Europe

  1. Some recent developments in treatment planning software and methodology for BNCT

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wheeler, F.J.; Wessol, D.E.

    1996-01-01

    Over the past several years the Idaho National Engineering Laboratory (INEL) has led the development of a unique, internationally-recognized set of software modules (BNCT-rtpe) for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT). The computational capability represented by this software is essential to the proper administration of all forms of radiotherapy for cancer. Such software addresses the need to perform pretreatment computation and optimization of the radiation dose distribution in the target volume. This permits the achievement of the optimal therapeutic ratio (tumor dose relative to critical normal tissue dose) for each individual patient via a systematic procedure for specifying the appropriate irradiation parameters to be employed for a given treatment. These parameters include angle of therapy beam incidence, beam aperture and shape, and beam intensity as a function of position across the beam front. The INEL software is used for treatment planning in the current series of human glioma trials at Brookhaven National Laboratory (BNL) and has also been licensed for research and developmental purposes to several other BNCT research centers in the US and in Europe

  2. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  3. In vitro studies of cellular response to DNA damage induced by boron neutron capture therapy

    International Nuclear Information System (INIS)

    Perona, M.; Pontiggia, O.; Carpano, M.; Thomasz, L.; Thorp, S.; Pozzi, E.; Simian, M.; Kahl, S.; Juvenal, G.; Pisarev, M.; Dagrosa, A.

    2011-01-01

    The aim of these studies was to evaluate the mechanisms of cellular response to DNA damage induced by BNCT. Thyroid carcinoma cells were incubated with 10 BPA or 10 BOPP and irradiated with thermal neutrons. The surviving fraction, the cell cycle distribution and the expression of p53 and Ku70 were analyzed. Different cellular responses were observed for each irradiated group. The decrease of Ku70 in the neutrons +BOPP group could play a role in the increase of sensitization to radiation.

  4. Effect of neutron irradiation on p-type silicon

    International Nuclear Information System (INIS)

    Sopko, B.

    1973-01-01

    The possibilities are discussed of silicon isotope reactions with neutrons of all energies. In the reactions, 30 Si is converted to a stable phosphorus isotope forming n-type impurities in silicon. The above reactions proceed as a result of thermal neutron irradiation. An experiment is reported involving irradiation of two p-type silicon single crystals having a specific resistance of 2000 ohm.cm and 5000 to 20 000 ohm.cm, respectively, which changed as a result of irradiation into n-type silicon with a given specific resistance. The specific resistance may be pre-calculated from the concentration of impurities and the time of irradiation. The effects of irradiation on other silicon parameters and thus on the suitability of silicon for the manufacture of semiconductor elements are discussed. (J.K.)

  5. Epithermal neutron beam interference with cardiac pacemakers

    International Nuclear Information System (INIS)

    Koivunoro, H.; Serén, T.; Hyvönen, H.; Kotiluoto, P.; Iivonen, P.; Auterinen, I.; Seppälä, T.; Kankaanranta, L.; Pakarinen, S.; Tenhunen, M.; Savolainen, S.

    2011-01-01

    In this paper, a phantom study was performed to evaluate the effect of an epithermal neutron beam irradiation on the cardiac pacemaker function. Severe malfunction occurred in the pacemakers after substantially lower dose from epithermal neutron irradiation than reported in the fast neutron or photon beams at the same dose rate level. In addition the pacemakers got activated, resulting in nuclides with half-lives from 25 min to 115 d. We suggest that BNCT should be administrated only after removal of the pacemaker from the vicinity of the tumor.

  6. Epithermal neutron beam interference with cardiac pacemakers

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, H., E-mail: hanna.koivunoro@helsinki.fi [Department of Physics, P.O.B. 64, FI-00014 University of Helsinki (Finland)] [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland)] [Boneca Corporation, Finland, Filnland (Finland); Seren, T. [VTT Technical Research Centre of Finland (Finland); Hyvoenen, H. [Boneca Corporation, Finland, Filnland (Finland); Kotiluoto, P. [VTT Technical Research Centre of Finland (Finland); Iivonen, P. [St. Jude Medical (Finland); Auterinen, I. [VTT Technical Research Centre of Finland (Finland); Seppaelae, T.; Kankaanranta, L. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland); Pakarinen, S. [Department of Cardiology, Helsinki University Central Hospital (Finland); Tenhunen, M. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland); Savolainen, S. [HUS Helsinki Medical Imaging Center, Helsinki University Central Hospital (Finland)

    2011-12-15

    In this paper, a phantom study was performed to evaluate the effect of an epithermal neutron beam irradiation on the cardiac pacemaker function. Severe malfunction occurred in the pacemakers after substantially lower dose from epithermal neutron irradiation than reported in the fast neutron or photon beams at the same dose rate level. In addition the pacemakers got activated, resulting in nuclides with half-lives from 25 min to 115 d. We suggest that BNCT should be administrated only after removal of the pacemaker from the vicinity of the tumor.

  7. INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1997-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of 10 B enriched decaborane

  8. A design study on hyper-thermal neutron irradiation field for neutron capture therapy at Kyoto University Reactor

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kobayashi, T.

    2000-01-01

    A study about the installation of a hyper-thermal neutron converter to a clinical collimator was performed, as a series of the design study on a hyper-thermal neutron irradiation field at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. From the parametric-surveys by Monte Carlo calculation, it was confirmed that the practical irradiation field of hyper-thermal neutrons would be feasible by the modifications of the clinical collimator and the bismuth-layer structure. (author)

  9. Clinical lessons from the first applications of BNCT on unresectable liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Zonta, A; Prati, U; Roveda, L; Ferrari, C; Zonta, S; Clerici, Am; Zonta, C; Pinelli, T [Department of Nuclear and Theoretical Physics, University of Pavia and I.N.F.N., Pavia (Italy); Fossati, F [Department of Nuclear and Theoretical Physics, University of Pavia and I.N.F.N., Pavia (Italy); Altieri, S [Department of Nuclear and Theoretical Physics, University of Pavia and I.N.F.N., Pavia (Italy); Bortolussi, S [Department of Nuclear and Theoretical Physics, University of Pavia and I.N.F.N., Pavia (Italy); Bruschi, P [Department of Nuclear and Theoretical Physics, University of Pavia and I.N.F.N., Pavia (Italy); Nano, R [Department of Animal Biology, University of Pavia (Italy); Barni, S [Department of Animal Biology, University of Pavia (Italy); Chiari, P [Department of Animal Biology, University of Pavia (Italy); Mazzini, G [IGM CNR Histochemistry and Cytometry Section, University of Pavia (Italy)

    2006-05-15

    After a long series of studies on the effects of neutron irradiation of 10B loaded neoplastic cells both in culture and in animal experiments, we started the clinical application of BNCT on humans affected by liver metastases of a radically resected colon adenocarcinoma. The procedure we adopted includes a first surgical phase, with hepatectomy; a radiotherapeutic phase, in which the isolated liver, washed and chilled, is extracorporeally irradiated with thermal neutrons; and then a second surgical phase for the reconnection of the liver to the patient. Until now two patients have been subjected to the BNCT treatment. The first one survived 44 months with a good quality of life, and died because of diffuse recurrences of his intestinal tumour. The second patient had the same early perioperative course, but after 33 days a worsening of a dilatative cardiomyopaty, from which he was suffering, determined a cardiac failure and eventually death. This clinical experience, although limited, has shown that extracorporeal neutron irradiation of the liver is a feasible procedure, able to ensure the complete destruction of liver metastases and a possible long lasting survival. In our patients neutron irradiation caused massive cellular necrosis highly specific to tumour cells, whereas normal cells were mostly spared. Nevertheless, the impact of such a traumatic operation on the patient's organism must be taken into account. Finally, we have to be aware that the fight against tumour rarely leads to a complete victory. We now have an innovative weapon which is both powerful and partly unsettled: it must be refined and above all used.

  10. Neutronic Modelling in Support of the Irradiation Programmes

    International Nuclear Information System (INIS)

    Koonen, E.

    2005-01-01

    Irradiation experiments are generally conducted to determine some specific characteristics of the concerned fuels and structural materials under well defined irradiation conditions. For the determination of the latter the BR2 division has an autonomous reactor physics cell and has implemented the required computational tools. The major tool used is a three-dimensional full-scale Monte Carlo model of the BR2 reactor developed under MCNP-4C for the simulation of irradiation conditions. The objectives of work performed by SCK-CEN are to evaluate and adjust irradiation conditions by adjustments of the environment, differential rod positions, axial and azimuthal positioning of the samples, global power level, ...; to deliver reliable, well defined irradiation condition and fluence data during and after irradiation; to assist the designer of new irradiation devices by simulations and neutronic optimisations of design options; to provide computational support to related projects as a way to valorise the capabilities that the BR2 reactor can offer

  11. The Swedish facility for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Skoeld, K.; Capala, J. [Studsvik Medical AB (Sweden); Kierkegaard, J.; Haakansson, R. [Studsvik Nuclear AB (Sweden); Gudowska, I. [Karolinska Institute (Sweden)

    2000-10-01

    A BNCT (Boron Neutron Capture Therapy) facility has been constructed at the R2-0 reactor at Studsvik, Sweden. R2-0 is a 1 MW, open core, pool reactor. The reactor core is suspended on a movable tower and can be positioned anywhere in the pool. The BNCT facility includes two adjacent, parallel filter/moderator configurations and the reactor core is positioned in front of any of them as appropriate. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range and with an extended collimator for convenient patient positioning. The other beam has been designed for radiobiological research and is equipped with a heavy water moderator and a large irradiation cavity with a uniform field of thermal neutrons. (author)

  12. The Swedish facility for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Skoeld, K.; Capala, J.; Kierkegaard, J.; Haakansson, R.; Gudowska, I.

    2000-01-01

    A BNCT (Boron Neutron Capture Therapy) facility has been constructed at the R2-0 reactor at Studsvik, Sweden. R2-0 is a 1 MW, open core, pool reactor. The reactor core is suspended on a movable tower and can be positioned anywhere in the pool. The BNCT facility includes two adjacent, parallel filter/moderator configurations and the reactor core is positioned in front of any of them as appropriate. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range and with an extended collimator for convenient patient positioning. The other beam has been designed for radiobiological research and is equipped with a heavy water moderator and a large irradiation cavity with a uniform field of thermal neutrons. (author)

  13. Verification of neutron irradiation on S/G tube materials

    International Nuclear Information System (INIS)

    Kang, Byoung Hwi; Lee, S. K.; Jang, D. Y.; Jo, K. H.

    2010-12-01

    The fluence monitors were fabricated with metal wires of the purity ≥ 99.9%, whose dimensions were 0.1mm diameter, about 3mm length, and around 150-200 μg mass range. Three wire samples (Fe, Ni, Ti) were prepared for one irradiation aluminum capsule. Five capsules were irradiated in the OR5 hole of the HANARO reactor at 30 MW power for about 25 days. The reaction rates were calculated by using the measured radiation activity data, and then neutron fluence were obtained from the reaction rates and the weighted neutron cross section with calculated neutron spectrum at the fluence monitor position. The measured neutron fluences were compared to the calculated ones. (Errors ≤ 35%)

  14. The therapeutic ratio in BNCT: Assessment using the Rat 9L gliosarcoma brain tumor and spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Fisher, C.D.; Bywaters, A.; Morris, G.M.; Hopewell, J.W.

    1996-01-01

    During any radiation therapy, the therapeutic tumor dose is limited by the tolerance of the surrounding normal tissue within the treatment volume. The short ranges of the products of the 10 B(n,α) 7 Li reaction produced during boron neutron capture therapy (BNCT) present an opportunity to increase the therapeutic ratio (tumor dose/normal tissue dose) to levels unprecedented in photon radiotherapy. The mixed radiation field produced during BNCT comprises radiations with different linear energy transfer (LET) and different relative biological effectiveness (RBE). The short ranges of the two high-LET products of the 'B(n,a)'Li reaction make the microdistribution of the boron relative to target cell nuclei of particular importance. Due to the tissue specific distribution of different boron compounds, the term RBE is inappropriate in defining the biological effectiveness of the 10 B(n,α) 7 Li reaction. To distinguish these differences from true RBEs we have used the term open-quotes compound biological effectivenessclose quotes (CBE) factor. The latter can be defined as the product of the true, geometry-independent, RBE for these particles times a open-quotes boron localization factorclose quotes, which will most likely be different for each particular boron compound. To express the total BNCT dose in a common unit, and to compare BNCT doses with the effects of conventional photon irradiation, multiplicative factors (RBEs and CBEs) are applied to the physical absorbed radiation doses from each high-LET component. The total effective BNCT dose is then expressed as the sum of RBE-corrected physical absorbed doses with the unit Gray-equivalent (Gy-Eq)

  15. Behavior under irradiation of super-mirror for neutron guides

    International Nuclear Information System (INIS)

    N'Guy-Marechal, K.

    1997-10-01

    The aim of this work is to study the aging of NiCx/Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50% hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, the mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author)

  16. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  17. Detection and measurement of neutron-irradiated gemstones

    International Nuclear Information System (INIS)

    Bunnak, S.; Jerachanchai, S.; Chinudomsub, K.; Saiyut, K.

    1990-01-01

    Color enhance gemstone, neutron-irradiated topaz, was analyzed by gamma spectrometry for examining characteristic and activity. Topaz was irradiated in the wet-tube facility of the Research Reactor TRR/1 which neutron fluence is 2.52x10 17 neutron per square centimeter. After 100 days of decay, topaz was sampling to the qualitative and quantitative analysis using multichannel analyzer of Nuclear Data Model ND65 and hyper pure germanium detector. Calculation and evaluation were done by microcomputer IBM/PC 640 KB RAM. The qualitative analysis showed that the neutron-irradiated topaz has 2 major isotopes, i.e., Ta-182 and Sc-46. Quantitative activity was compared with reference standard source Eu-152 (NBS) and the results were shown in the table 1. The Health Physics Division, OAEP, inspected on 6240.9 gm of the neutron-irradiated topaz using standard release limit 2 nCi/gm (74 Bq/gm). It was found that only 423.9 gm out of the total amount were over the standard release limit

  18. Neutron irradiation effect of thermally-sensitized stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hide, Kouitiro [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) susceptibility of irradiated thermally-sensitized Type 304 Stainless Steels (SSs) was studied as a function of neutron fluence and correlated with mechanical responses of the materials. Neutron irradiation was carried out to neutron fluences up to 1.1 x 10{sup 24} n/m{sup 2} (E > 1MeV) at the light water reactor temperature in the Japan Material Test Reactor. The irradiated specimens were examined by slow strain rate stress corrosion cracking tests in 290degC pure water of 0.2 ppm dissolved oxygen concentration and microhardness measurements. The IGSCC susceptibility of the irradiated specimens increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}. From an attempt to correlate the IGSCC susceptibility with the mechanical properties, an excellent correlation was identified between the susceptibility and microhardness increments at the grain boundary relative to the grain center. While intergranular corrosion rate of thermally sensitized SS increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}, that of solution annealed SS did not change. The incremental grain boundary hardening and degradation of intergranular corrosion resistance may presumably be the major factors affecting IGSCC performance. (author)

  19. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design

    International Nuclear Information System (INIS)

    Lee, Pei-Yi; Jiang, Shiang-Huei; Liu, Yuan-Hao

    2014-01-01

    The 7 Li(p,xn) 7 Be nuclear reaction, based on the low-energy protons, could produce soft neutrons for accelerator-based boron neutron capture therapy (AB-BNCT). Based on the fact that the induced neutron field is relatively divergent, the relationship between the incident angle of proton beam and the neutron beam quality was evaluated in this study. To provide an intense epithermal neutron beam, a beam-shaping assembly (BSA) was designed. And a modified Snyder head phantom was used in the calculations for evaluating the dosimetric performance. From the calculated results, the intensity of epithermal neutrons increased with the increase in proton incident angle. Hence, either the irradiation time or the required proton current can be reduced. When the incident angle of 2.5-MeV proton beam is 120 deg., the required proton current is ∼13.3 mA for an irradiation time of half an hour. The results of this study show that the BSA designs can generate neutron beams with good intensity and penetrability. Using a 20-mA, 2.5-MeV proton beam as the source, the required irradiation time, to induce 60 RBE-Gy of maximum tumour dose, is less than half an hour in any proton beam alignments. On the premise that the dosimetric performances are similar, the intensity of epithermal neutrons can be increased by using non-collinear (e.g. 90 deg., 120 deg.) incident protons. Thus, either the irradiation time or the required proton current can be reduced. The use of 120 deg. BSA model shows the possibility to reduce the required proton current to ∼13.3 mA when the goal of irradiation time is 30 min. The decrease of required proton beam current certainly will make the use of lithium target much easier. In June 2013, a 5-MeV, 30-mA radio frequency quadruple (RFQ) accelerator for BNCT was built at INFN-LNL (Legnaro National Laboratories, Italy), which shows a possibility to build a suitable RFQ accelerator for the authors' design. In addition, a 2.5-MeV, 30-mA Tandem accelerator was

  20. BNCT clinical trials of skin melanoma patients in Argentina

    International Nuclear Information System (INIS)

    Roth, Berta M.; Bonomi, Marcelo R.; Gonzalez, Sara J.

    2006-01-01

    The clinical outcome of six skin melanoma BNCT irradiations is presented. Three patients (A, B and C), with multiple subcutaneous skin metastases progressed to chemotherapy were infused with ∼14 g/m 2 of boronophenylalanine ( 10 BPA)-fructose and irradiated in the hyperthermal neutron beam of the RA-6 reactor. Patient A received two one fraction irradiations in different areas of the leg, B received one fraction and C was irradiated in three consecutive fields at the calf, heel and foot sole. The maximum prescribed dose to normal skin ranged from 16.5 to 24 Gy-Eq. With a minimum follow-up of 10 months there was a G1 acute epithelitis in A and B and a G3 in C. No late toxicity was observed. Due to the in-field tumor-growth-delay and the absence of severe acute and/or late toxicity observed during the follow-up period, a dose-escalation trial is ongoing. (author)

  1. Microstructure and mechanical properties of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, E.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Terai, T.; Tanaka, S.

    1998-01-01

    Microstructure and mechanical properties of the neutron irradiated beryllium with total fast neutron fluences of 1.3 - 4.3 x 10{sup 21} n/cm{sup 2} (E>1 MeV) at 327 - 616degC were studied. Swelling increased by high irradiation temperature, high fluence, and by the small grain size and high impurity. Obvious decreasing of the fracture stress was observed in the bending test and in small grain specimens which had many helium bubbles on the grain boundary. Decreasing of the fracture stress for small grain specimens was presumably caused by crack propagation on the grain boundaries which weekend by helium bubbles. (author)

  2. Neutron irradiation of RPCs for the CMS experiment

    CERN Document Server

    Abbrescia, M; Belli, G; Bruno, G; Colaleo, A; Guida, R; Iaselli, G; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F

    2003-01-01

    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about 10**8 n cm**-**2 s**- **1), integrating values of dose and fluence equivalent to 10 LHC- years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces.

  3. Neutron irradiation of RPCs for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G. E-mail: gabriella.pugliese@ba.infn.it; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Guida, R.; Ratti, S.P.; Riccardi, C.; Torre, P.; Vitulo, P

    2003-08-01

    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about 10{sup 8} n cm{sup -2} s{sup -1}), integrating values of dose and fluence equivalent to 10 LHC-years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces.

  4. Neutron irradiation effects of iron alloys and ceramics

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Takenaka, Minoru; Hasegawa, Masayuki.

    1991-01-01

    Positron annihilation angular correlation measurements have been performed for the neutron irradiated various metals and ceramics in order to obtain the information of the microvoids and positronium formation in them. Positronium (Ps) formation was observed in Nb containing a small amount of oxygen and Fe-15%Cr-16%Ni-0.006%B 10 . In practical steels such as JPCA and JFMS no Ps formation was observed. High temperature deformation might induce microvoids into metals, but the positron annihilation angular correlation measurements could not confirm this. In non-metallic materials neutron irradiated no Ps formation has so far been observed. (author)

  5. Behavior of fluorine 18 in neutron irradiated zeolites

    International Nuclear Information System (INIS)

    Estevez Lopez, D.R.

    1992-01-01

    The transformation of Li-exchanged H-Y zeolite has been investigated at 300, 550, 850 and 1050 Centigrade degree, formation of quartz structure in addition to an amorphous phase, was nited. The Li-aluminosilicate obtained was neutron irradiated and the chemical behavior of 18 F produced by the reaction sequence 6 Li (n, α) 3 H, 16 O ( 3 H, n) 18 F, was studied. The neutron irradiated material was purged with argon-hydron gas streams. It was found that the amount of released 18 F depends on the temperature used (Author)

  6. Microstructural evolution in neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    English, C.A.; Phythian, W.J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. The microstructural evolution in neutron irradiated reactor pressure vessel steels is described. The damage mechanisms are elaborated and techniques for examining the microstructure are suggested. The importance of the initial damage event is analysed, and the microstructural evolution in RPV steels is examined

  7. A phase-I clinical trial for cranial BNCT at Harvard-MIT

    International Nuclear Information System (INIS)

    Busse, P.M.; Palmer, M.R.; Harling, O.K.

    2000-01-01

    Phase I trial designed to determine the maximum tolerable dose to normal tissue for cranial BNCT (Boron Neutron Capture Therapy) irradiations was recently completed at Harvard Medical School and MIT. Twenty-two subjects diagnosed with either glioblastoma multiforme or intracranial melanoma were treated between 1996 and 1999. Subjects received either one or two administrations of boronophenylalanine intravenously at doses between 250 and 350 mg/kg body weight, then exposed in one, two or three fields to epithermal neutrons at the MIT Research Reactor in one or two fractions. Over the course of the study, the maximum normal tissue dose target was increased from 8.8 to 14.2 RBE (Relative Biological Effectiveness) Gy in 10% increments. Subjects have been followed clinically and radiographically. Of those patients surviving beyond six months, no MRI (Magnetic Resonance Image) white-matter changes were observed and no long-term complications attributable to BNCT were evident. Tumor responses were observed, particularly with the melanoma subjects. With increasing doses, difficulties arose from long irradiation times (approximately 3 hours) and the emergence of acute reactions in the skin and mucosa. The trial was stopped in May 1999. Future trials will be initiated with the new high intensity, low background fission converter beam at MIT. (author)

  8. Focusing mirrors for enhanced neutron radiography with thermal neutrons and application for irradiated nuclear fuel

    Science.gov (United States)

    Rai, Durgesh K.; Abir, Muhammad; Wu, Huarui; Khaykovich, Boris; Moncton, David E.

    2018-01-01

    Neutron radiography is a powerful method of probing the structure of materials based on attenuation of neutrons. This method is most suitable for materials containing heavy metals, which are not transparent to X-rays, for example irradiated nuclear fuel and other nuclear materials. Neutron radiography is one of the first non-distractive post-irradiated examination methods, which is applied to gain an overview of the integrity of irradiated nuclear fuel and other nuclear materials. However, very powerful gamma radiation emitted by the samples is damaging to the electronics of digital imaging detectors and has so far precluded the use of modern detectors. Here we describe a design of a neutron microscope based on focusing mirrors suitable for thermal neutrons. As in optical microscopes, the sample is separated from the detector, decreasing the effect of gamma radiation. In addition, the application of mirrors would result in a thirty-fold gain in flux and a resolution of better than 40 μm for a field-of-view of about 2.5 cm. Such a thermal neutron microscope can be useful for other applications of neutron radiography, where thermal neutrons are advantageous.

  9. Materials for cold neutron sources: Cryogenic and irradiation effects

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1990-01-01

    Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation on the mechanical properties of these alloys are briefly reviewed, and the very limited information on the effects of cryogenic irradiation are outlined. Generating mechanical property data under cold source operating conditions is a daunting prospect. It is clear that the cold source material will be degraded by neutron irradiation, and so the cold source must be designed as a brittle vessel. The continued effective operation of many different cold sources at a number of reactors makes it clear that this can be accomplished. 46 refs., 8 figs., 2 tab

  10. Present status of Accelerator-Based BNCT.

    Science.gov (United States)

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A; Minsky, Daniel M; Debray, Mario E; Somacal, Hector R; Capoulat, María Eugenia; Herrera, María S; Del Grosso, Mariela F; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Endothermic (7)Li(p,n)(7)Be and (9)Be(p,n)(9)B and exothermic (9)Be(d,n)(10)B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. (9)Be(p,n)(9)B needs at least 4-5 MeV bombarding energy to have a sufficient yield, while (9)Be(d,n)(10)B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. (7)Li(p,n)(7)Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. (9)Be(d,n)(10)B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions.

  11. First results of laser welding of neutron irradiated stainless steel

    International Nuclear Information System (INIS)

    Osch, E.V. van; Hulst, D.S. d'; Laan, J.G. van der.

    1994-10-01

    First results of experimental investigations on the laser reweldability of neutron irradiated material are reported. These experiments include the manufacture of 'heterogeneous' joints, which means joining of irradiated stainless steel of type AISI 316L-SPH to 'fresh' unirradiated material. The newly developed laser welding facility in the ECN Hot Cell Laboratory and experimental procedures are described. Visual inspections of welded joints are reported as well as results of electron microscopy and preliminary metallographic examinations. (orig.)

  12. Irradiation hardening and localized deformation of neutron-irradiated α-iron single crystals

    International Nuclear Information System (INIS)

    Mughrabi, H.; Stroehle, D.; Wilkens, M.

    1981-01-01

    The early yielding behaviour of neutron-irradiated α iron single crystals orientated for single slip was investigated as a function of neutron dose. In the range of neutron doses between approx. equal to 10 18 and approx. equal to 10 19 n/cm 2 , the irradiation hardening increment was found to be almost constant. Qualitative modifications of this behaviour were observed in the case of predeformed specimens. The localized deformation of the neutron-irradiated specimens by dislocation channelling was investigated by slip-line observations, transmission electron microscopy and X-ray topography. A model of localized deformation is proposed in order to explain the development of the observed asymmetric dislocation double layers which bound the channels and transmit characteristic misorientations. (orig.)

  13. Radiation transport calculation methods in BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Seppaelae, T.; Savolainen, S.

    2000-01-01

    Boron neutron capture therapy (BNCT) is used as a radiotherapy for malignant brain tumours. Radiation dose distribution is necessary to determine individually for each patient. Radiation transport and dose distribution calculations in BNCT are more complicated than in conventional radiotherapy. Total dose in BNCT consists of several different dose components. The most important dose component for tumour control is therapeutic boron dose D B . The other dose components are gamma dose D g , incident fast neutron dose D f ast n and nitrogen dose D N . Total dose is a weighted sum of the dose components. Calculation of neutron and photon flux is a complex problem and requires numerical methods, i.e. deterministic or stochastic simulation methods. Deterministic methods are based on the numerical solution of Boltzmann transport equation. Such are discrete ordinates (SN) and spherical harmonics (PN) methods. The stochastic simulation method for calculation of radiation transport is known as Monte Carlo method. In the deterministic methods the spatial geometry is partitioned into mesh elements. In SN method angular integrals of the transport equation are replaced with weighted sums over a set of discrete angular directions. Flux is calculated iteratively for all these mesh elements and for each discrete direction. Discrete ordinates transport codes used in the dosimetric calculations are ANISN, DORT and TORT. In PN method a Legendre expansion for angular flux is used instead of discrete direction fluxes, land the angular dependency comes a property of vector function space itself. Thus, only spatial iterations are required for resulting equations. A novel radiation transport code based on PN method and tree-multigrid technique (TMG) has been developed at VTT (Technical Research Centre of Finland). Monte Carlo method solves the radiation transport by randomly selecting neutrons and photons from a prespecified boundary source and following the histories of selected particles

  14. Structural properties and neutron irradiation effects of ceramics

    International Nuclear Information System (INIS)

    Yano, Toyohiko

    1994-01-01

    In high temperature gas-cooled reactors and nuclear fusion reactors being developed at present, various ceramics are to be used in the environment of neutron irradiation for undertaking important functions. The change of the characteristics of those materials by neutron irradiation must be exactly forecast, but it has been known that the response of the materials is different respectively. The production method of ceramics and the resulted structures of ceramics which control their characteristics are explained. The features of covalent bond and ionic bond, the synthesis of powder and the phase change by heating, sintering and sintering agent, and grain boundary phase are described. The smelling of ceramics by neutron irradiation is caused by the formation of the clusters of Frenkel defects and minute spot defects. Its restoration by annealing is explained. The defects remaining in materials after irradiation are the physical defects by flipping atoms cut due to the collision with high energy particles and the chemical defects by nuclear transformation. Some physical defects can be restored, but chemical defects are never restored. The mechanical properties of ceramics and the effect of irradiation on them, and the thermal properties of ceramics and the effect of irradiation on them are reported. (K.I.)

  15. INEL BNCT Research Program annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.

  16. INEL BNCT Research Program annual report, 1992

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database

  17. Neutron irradiation creep in stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuele, Wolfgang (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy)); Hausen, Hermann (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy))

    1994-09-01

    Irradiation creep elongations were measured in the HFR at Petten on AMCR steels, on 316 CE-reference steels, and on US-316 and US-PCA steels varying the irradiation temperature between 300 C and 500 C and the stress between 25 and 300 MPa. At the beginning of an irradiation a type of primary'' creep stage is observed for doses up to 3-5 dpa after which dose the secondary'' creep stage begins. The primary'' creep strain decreases in cold-worked steel materials with decreasing stress and decreasing irradiation temperature achieving also negative creep strains depending also on the pre-treatment of the materials. These primary'' creep strains are mainly attributed to volume changes due to the formation of radiation-induced phases, e.g. to the formation of [alpha]-ferrite below about 400 C and of carbides below about 700 C, and not to irradiation creep. The secondary'' creep stage is found for doses larger than 3 to 5 dpa and is attributed mainly to irradiation creep. The irradiation creep rate is almost independent of the irradiation temperature (Q[sub irr]=0.132 eV) and linearly dependent on the stress. The total creep elongations normalized to about 8 dpa are equal for almost every type of steel irradiated in the HFR at Petten or in ORR or in EBR II. The negative creep elongations are more pronounced in PCA- and in AMCR-steels and for this reason the total creep elongation is slightly smaller at 8 dpa for these two steels than for the other steels. ((orig.))

  18. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Directory of Open Access Journals (Sweden)

    Hu J.-P.

    2016-01-01

    Full Text Available Radiation dosimetry for Neutron Capture Therapy (NCT has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR. In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1 in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2 out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3 beam shutter upgrade to reduce strayed neutrons and gamma dose, (4 beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5 beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates to reduce prompt gamma and fast neutron doses, (6 sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7 holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4–7

  19. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  20. Improvements at the biological shielding of BNCT research facility in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Souza, Gregorio Soares de

    2011-01-01

    The technique of neutron capture in boron is a promising technique in cancer treatment, it uses the high LET particles from the reaction 10 B (n, α) 7 Li to destroy cancer cells.The development of this technique began in the mid-'50s and even today it is the object of study and research in various centers around the world, Brazil has built a facility that aims to conduct research in BNCT, this facility is located next to irradiation channel number three at the research nuclear reactor IEA-R1 and has a biological shielding designed to meet the radiation protection standards. This biological shielding was developed to allow them to conduct experiments with the reactor at maximum power, so it is not necessary to turn on and off the reactor to irradiate samples. However, when the channel is opened for experiments the background radiation in the experiments salon increases and this background variation makes it impossible to perform measurements in a neutron diffraction research that utilizes the irradiation channel number six. This study aims to further improve the shielding in order to minimize the variation of background making it possible to perform the research facility in BNCT without interfering with the action of the research group of the irradiation channel number six. To reach this purpose, the code MCNP5, dosimeters and activation detectors were used to plan improvements in the biological shielding. It was calculated with the help of the code an improvement that can reduce the average heat flow in 71.2% ± 13 and verified experimentally a mean reduce of 70 ± 9% in dose due to thermal neutrons. (author)

  1. Irradiation system for neutron capture therapy using the small accelerator

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Hoshi, Masaharu

    2002-01-01

    Neutron capture therapy (NCT) is to kill tumor cells that previously incorporated the stable isotope which generates heavy charged particles with a short range and a high linear energy transfer (LET) on neutron irradiation. Boron-10 is ordinarily used as such an isotope. The tumor tissue is neutron-irradiated at craniotomy after preceding craniotomy for tumor extraction: therefore two surgeries are required for the present NCT in Japan. The reactions 10 B(n, αγ) 7 Li and 7 Li (p, n) 7 Be are thought preferential for patients and doctors if a convenient small accelerator, not the reactor used at present, is available in the hospital because only one craniotomy is sufficient. Authors' examinations of the system for NCT using the small accelerator involve irradiation conditions, desirable energy spectrum of neutron, characterization of thermal and epi-thermal neutrons, social, practical and technical comparison of the reactor and accelerator, and usefulness of the reaction 7 Li (p, n) 7 Be. The system devoted to the NCT is awaited in future. (K.H.)

  2. Neutron irradiation effect on thermomechanical properties of shape memory alloys

    International Nuclear Information System (INIS)

    Abramov, V.Ya.; Ionajtis, R.R.; Kotov, V.V.; Loguntsev, E.N.; Ushakov, V.P.

    1996-01-01

    Alloys of Ti-Ni, Ti-Ni-Pd, Fe-Mn-Si, Mn-Cu-Cr, Mn-Cu, Cu-Al-Mn, Cu-Al-Ni systems are investigated after irradiation in IVV-2M reactor at various temperatures with neutron fluence of 10 19 - 10 20 cm -2 . The degradation of shape memory effect in titanium nickelide base alloys is revealed after irradiation. Mn-Cu and Mn-Cu-Cr alloys show the best results. Trends in shape memory alloy behaviour depending on irradiation temperature are found. A consideration is given to the possibility of using these alloys for components of power reactor control and protection systems [ru

  3. Mechanical behaviour of neutron irradiated Nb monocrystalline

    International Nuclear Information System (INIS)

    Otero, M.P.; Lucki, G.

    1986-01-01

    Nb [941] - oriented single crystal was irradiated to a fluence of 1,1 x 10 19 n/cm 2 in the IEA-R1 reactor at IPEN-CNEN/SP. Tensile-Stress experiments showed an irradiation induced hardening, characterized by an increase in the yield stress of about 16%. This result was interpreted using the 'lattice hardening' model. The observed slip systems are attributed to the gliding of the anomalous slip planes. (Author) [pt

  4. Gamma and Neutron Irradiation of Semitransparent Amorphous Silicon Sensors

    International Nuclear Information System (INIS)

    Carabe, J.; Fernandez, M. G.; Ferrando, A.; Fuentes, J.; Gandia, J.; Josa, M. I.; Molinero, A.; Oller, J. C.; Arce, P.; Calvo, E.; Figueroa, C. F.; Garcia, N.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A. L.; Fenyvesi, A.; Molnar, J.; Sohler, D.

    1999-12-01

    Semitransparent amorphous silicon sensors are key elements for laser light 2D position reconstruction in the CMS multipoint alignment link system. Some of the sensors have to work in very hard radiation environment. We have irradiated with gammas, up to 10 Mrad, and neutrons, up to 10 ''14 cm''-2, two different type of sensors and measured their change in performance. (Author) 10 refs

  5. Comparison of initial damage rates using neutron and electron irradiations

    International Nuclear Information System (INIS)

    Goldstone, J.A.R.

    1978-08-01

    The purpose of this experiment was twofold: (1) The number of interstitials that pin dislocations was studied as a function of neutron energy. (2) By comparison with electron irradiations on the sample, a correlation between the predicted and measured numbers of defects was found. All irradiations were performed on the same high purity copper sample. The sample was machined in the form of a cantilever beam with a flexural resonant frequency of 770 Hz. Changes in Young's modulus at constant strain amplitude were monitored continuously through changes in the resonant frequency of the sample. These changes in the modulus can be related to the number of pinning points added to dislocation lines, which are in turn related to the number of free interstitials produced. Neutron energy dependence experiments were done from 2 to 24 MeV on the copper sample and at 14 MeV on a gold sample. By equating pinning rates from electron and neutron irradiations and using the free interstitial production rate obtained from electron irradiations, an estimate of the free interstitial production cross section for neutrons of 2 to 24 MeV was made

  6. DT fusion neutron irradiation of BNL--LASL superconductor wires

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1976-01-01

    The following samples were irradiated with the LLL rotating target neutron source: 19-core Nb 3 Sn multifilament wires, Nb 3 Sn single core, V 3 Ga single core, NbTi Supercon 402, and NbTi cupronickel jacketed. No test results are given

  7. Comparison of gamma, neutron and proton irradiations of multimode fibers

    International Nuclear Information System (INIS)

    Gingerich, M.E.; Dorsey, K.L.; Askins, C.G.; Friebele, E.J.

    1987-01-01

    The effects of pure gamma, pure proton, and mixed neutron-gamma irradiation fields on a set of both pure and doped silica core multimode fibers have been investigated. Only slight differences are found in the radiation response of pure and doped silica core fibers exposed to gamma or mixed neutron-gamma fields, indicating that Co-60 sources can be used to simulate the effects of the mixed field (except in the case of a pure neutron environment). Although it is noted that neither mix field nor gamma sources adequately simulate the effects of proton irradiation of doped silica core fibers, a good correspondence is found in the case of the pure silica core waveguide. 13 references

  8. Clinical requirements and accelerator concepts for BNCT

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Leung, K.N.; Reginato, L.L.; Wells, R.P.

    1997-05-01

    Accelerator-based neutron sources are an attractive alternative to nuclear reactors for providing epithermal neutron beams for Boron Neutron Capture Therapy. Based on clinical requirements and neutronics modeling the use of proton and deuteron induced reactions in 7 Li and 9 Be targets has been compared. Excellent epithermal neutron beams can be produced via the 7 Li(p,n) 7 Be reaction at proton energies of ∼2.5 MeV. An electrostatic quadrupole accelerator and a lithium target, which can deliver and handle 2.5 MeV protons at beam currents up to 50 mA, are under development for an accelerator-based BNCT facility at the Lawrence Berkeley National Laboratory

  9. Property change of advanced tungsten alloys due to neutron irradiation

    International Nuclear Information System (INIS)

    Fukuda, Makoto; Hasegawa, Akira; Tanno, Takashi; Nogami, Shuhei; Kurishita, Hiroaki

    2013-01-01

    This study investigates the effect of neutron irradiation on the functional properties of pure tungsten (W) and advanced tungsten alloys (e.g., lanthanum (La)-doped W, potassium (K)-doped W, and ultra-fine-grained (UFG) W–TiC alloys) tested in the Japan Materials Testing Reactor (JMTR) or experimental fast reactor Joyo. The irradiation temperature and damage were in the range 804–1073 K and 0.15–0.47 dpa, respectively. TEM images of all samples after 0.42 dpa irradiation at 1023 K showed voids, black dots, and dislocation loops, indicating that similar damage structures were formed in pure W, La-doped W, K-doped W, and UFG W–0.5 wt% TiC. The electrical resistivity of all specimens increased following neutron irradiation. Nearly identical electrical resistivity and irradiation hardening were observed in pure W, La-doped W, and K-doped W. The electrical resistivity of UFG W–TiC was higher than that of other specimens before and after irradiation, which may be attributed to its ultra-fine-grain structure, as well as the presence of impurities introduced during the alloying process. Compared to the other specimens, the UFG W–TiC was more resistant to irradiation hardening

  10. Swelling and tensile properties of neutron-irradiated vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600 degree C to neutron fluences ranging from 0.3 to 1.9 x 10 27 neutrons/m 2 (17 to 114 atom displacements per atom [dpa])

  11. Effect of neutron irradiation on mechanical properties of ferritic steels

    International Nuclear Information System (INIS)

    Kass, S.B.; Murty, K.L.

    1995-01-01

    Effect of neutron radiation exposure was investigated in various ferritic steels with the main emphasis being the effects of thermal neutrons on radiation hardening. Pure iron of varied grain sizes was also used for characterizing the grain size effects on the source hardening before and after neutron irradiation. While many steels are considered in the overall study, the results on 1020, A516 and A588 steels are emphasized. Radiation hardening due to fast neutrons was seen to be sensitive to the composition of the steels with A354 being the least resistant and A490 the least sensitive. Majority of the radiation hardening stems from friction hardening, and source hardening term decreased with exposure to neutron radiation apparently due to the interaction of interstitial impurities with radiation produced defects. Inclusion of thermal neutrons along with fast resulted in further decrease in the source hardening with a slight increase in the friction hardening which revealed a critical grain size below which exposure to total (fast and thermal) neutron spectrum resulted in a slight reduction in the yield stress compared to the exposure to only fast neutrons. This is the first time such a grain size effect is reported and this is shown to be consistent with known radiation effects on friction and source hardening terms along with the observation that low energy neutrons have a nonnegligible effect on the mechanical properties of steels. In ferritic steels, however, despite their small grain size, exposure to total neutron spectrum yielded higher strengths than exposure to only fast neutrons. This behavior is consistent with the fact that the source hardening is small in these alloys and radiation effect is due only to friction stress

  12. Analytical electron microscopy of neutron-irradiated reactor alloys

    International Nuclear Information System (INIS)

    Thomas, L.E.

    1982-01-01

    Exposure to the high neutron fluxes and temperatures from 400 to 650 0 C in the core region of a fast breeder reactor profoundly alters the microstructure and properties of structural steels and superalloys. The development of irradiation-induced voids, dislocations and precipitates, as well as segregation of alloying elements on a microscopic scale has been related to macroscopic swelling, creep, hardening and embrittlement which occur during prolonged exposures in reactor. Microanalytical studies using TEM/STEM methods, primarily energy dispersive x-ray (EDX) microanalysis, have greatly aided understanding of alloy behavior under irradiation. The main uses of analytical electron microscopy in studying irradiated alloys have been the identification of irradiation-induced precipitates and determination of the changes in local composition due to irradiation-induced solute segregation

  13. Microstructural defects in EUROFER 97 after different neutron irradiation conditions

    Directory of Open Access Journals (Sweden)

    Christian Dethloff

    2016-12-01

    Full Text Available Characterization of irradiation induced microstructural evolution is essential for assessing the applicability of structural steels like the Reduced Activation Ferritic/Martensitic steel EUROFER 97 in upcoming fusion reactors. In this work Transmission Electron Microscopy (TEM is used to determine the defect microstructure after different neutron irradiation conditions. In particular dislocation loops, voids and precipitates are analyzed concerning defect nature, density and size distribution after irradiation to 15 dpa at 300 °C in the mixed spectrum High Flux Reactor (HFR. New results are combined with previously obtained data from irradiation in the fast spectrum BOR-60 reactor (15 and 32 dpa, 330 °C, which allows for assessment of dose and dose rate effects on the aforementioned irradiation induced defects and microstructural characteristics.

  14. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    International Nuclear Information System (INIS)

    Wang, Peng; Zhen, Haining; Jiang, Xinbiao; Zhang, Wei; Cheng, Xin; Guo, Geng; Mao, Xinggang; Zhang, Xiang

    2010-01-01

    Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [ 60 Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [ 60 Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [ 60 Co] γ-rays; Group C included cells treated with 8 Gy of [ 60 Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [ 60 Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with

  15. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    Amaro, C.R.

    1995-01-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  16. Electrical properties of gallium arsenide irradiated with electrons and neutrons

    International Nuclear Information System (INIS)

    Kol'chenko, T.I.; Lomako, V.M.

    1975-01-01

    A study was made of changes in the electrical properties of GaAs doped with Te, S, Se, Si, Ge, Sn (n 0 approximately 10 16 -10 18 cm -3 ) and irradiated either with 2.5-28 MeV electrons or with fast reactor neutrons. An analysis of changes in the electron density indicated that the rate of carrier removal by electron bombardment was independent of the dopant but was governed by isolated radiation defects. The change in the mobility due to irradiation with 2.5-10 MeV electrons was also governed by isolated defects. When the electron energy was increased to 28 MeV the main contribution to the change in the mobility was made by defect clusters. In the neutron-irradiation case the changes in the carrier density and mobility were mainly due to defect clusters and the nature of changes in the electrical properties was again independent of the dopant

  17. Effect of neutron and gamma irradiation on magnetic bubble memories

    International Nuclear Information System (INIS)

    Cambou, B.

    1981-06-01

    Many years of research preceeded the introduction of magnetic bubble memories (M.B.M.) into the memory components market. They are used as bulk storage memories principally for their non volatile characteristics under irradiation. A physical and technological description of MBM is given in the first part of the text together with the results of work on their vulnerability when subjected to irradiation. Permanent damage caused by neutrons and gamma radiation on thin magnetic layers is then studied. A theoretical analysis on the stability of bubbles based on the results of pulsed laser experiments is given. The stability of the information stored in a commercially available MBM subjected to neutron and gamma irradiation (MBM - TIB 203 of 92 kBits, Texas) is described in the last part of the text. The vulnerability thresholds determined for the MBM are too high for them to be used in a radioactive environment with an improved electronic control system [fr

  18. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  19. BNCT-RTPE: BNCT radiation treatment planning environment

    International Nuclear Information System (INIS)

    Wessol, D.E.; Wheeler, F.J.; Babcock, R.S.

    1995-01-01

    Several improvements have been developed for the BNCT radiation treatment planning environment (BNCT-Rtpe) during 1994. These improvements have been incorporated into Version 1.0 of BNCT-Rtpe which is currently installed at the INEL, BNL, Japanese Research Center (JRC), and Finland's Technical Research Center. Platforms supported by this software include Hewlett-Packard (HP), SUN, International Business Machines (IBM), and Silicon Graphics Incorporated (SGI). A draft version of the BNCT-Rtpe user manual is available. Version 1.1 of BNCT-Rtpe is scheduled for release in March 1995. It is anticipated that Version 2.x of BNCT-Rtpe, which includes the nonproprietary NURBS library and data structures, will be released in September 1995

  20. Monte Carlo calculations on efficiency of boron neutron capture therapy for brain cancer

    International Nuclear Information System (INIS)

    Awadalla, Galaleldin Mohamed Suliman

    2015-11-01

    The search for ways to treat cancer has led to many different treatments, including surgery, chemotherapy, and radiation therapy. Among these treatments, boron neutron capture therapy (BNCT) has shown promising results. BNCT is a radiotherapy treatment modality that has been proposed to treat brain cancer. In this technique, cancerous cells are being injected with 1 0B and irradiated by thermal neutrons to increase the probability of 1 0B (n, a)7 L i reaction to occur. This reaction can potentially deliver a high radiation dose sufficient to kill cancer cells by concentrating boron in them. The short rang of 1 0B (n, a) 7 L i reaction limits the damage to only cancerous cells without affecting healthy tissues. The effectiveness and safety of radiotherapy are dependent on the radiation dose delivered to the tumor and healthy tissues. In this thesis, after reviewing the basics and working principles of boron neutron capture therapy (BNCT), monte Carlo simulations were carried out to model a thermal neutron source suitable for BNCT and to examine the performance of proposed model when used to irradiate a sample of boron containing both 1 0B and 1 1B isotopes. MCNP5 code was used to examine the modeled neutron source through different shielding materials. The results were presented, analyzed and discussed at the end of the work. (author)

  1. Synergistic effects of neutron and gamma ray irradiation of a commercial CHMOS microcontroller

    International Nuclear Information System (INIS)

    Xiao-Ming, Jin; Ru-Yu, Fan; Wei, Chen; Dong-Sheng, Lin; Shan-Chao, Yang; Xiao-Yan, Bai; Yan, Liu; Xiao-Qiang, Guo; Gui-Zhen, Wang

    2010-01-01

    This paper presents the experimental results of a combined irradiation environment of neutron and gamma rays on 80C196KC20, which is a 16-bit high performance member of the MCS96 microcontroller family. The electrical and functional tests were made in three irradiation environments: neutron, gamma rays, combined irradiation of neutron and gamma rays. The experimental results show that the neutron irradiation can affect the total ionizing dose behaviour. Compared with the single radiation environment, the microcontroller exhibits considerably more severe degradation in neutron and gamma ray synergistic irradiation. This phenomenon may cause a significant hardness assurance problem. (condensed matter: structure, thermal and mechanical properties)

  2. Neutron Focusing Mirrors for Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    Science.gov (United States)

    Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris

    Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.

  3. Radioisotopes produced by neutron irradiation of food.

    Science.gov (United States)

    Albright, S; Seviour, R

    2016-04-01

    The use of neutrons for cargo interrogation has the potential to drastically improve threat detection. Previous research has focussed on the production of (24)Na, based on the isotopes produced in pharmaceuticals and medical devices. For both the total activity and the ingestion dose we show that a variety of isotopes contribute and that (24)Na is only dominant under certain conditions. The composition of the foods has a strong influence on the resulting activity and ingestion dose suggesting that the pharmaceuticals and medical devices considered initially are not a viable analogue for foodstuffs. There is an energy dependence to the isotopes produced due to the cross-sections of different reactions varying with neutron energy. We show that this results in different isotopes dominating the ingestion dose at different energies, which has not been considered in the previous literature. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Radioisotopes produced by neutron irradiation of food

    International Nuclear Information System (INIS)

    Albright, S.; Seviour, R.

    2016-01-01

    The use of neutrons for cargo interrogation has the potential to drastically improve threat detection. Previous research has focussed on the production of "2"4Na, based on the isotopes produced in pharmaceuticals and medical devices. For both the total activity and the ingestion dose we show that a variety of isotopes contribute and that "2"4Na is only dominant under certain conditions. The composition of the foods has a strong influence on the resulting activity and ingestion dose suggesting that the pharmaceuticals and medical devices considered initially are not a viable analogue for foodstuffs. There is an energy dependence to the isotopes produced due to the cross-sections of different reactions varying with neutron energy. We show that this results in different isotopes dominating the ingestion dose at different energies, which has not been considered in the previous literature. - Highlights: • We show that neutron interrogation of food can produce many radioisotopes. • We show a strong dependance between food and certain radioisotopes. • Some isotopes are shown to have an energy dependence. • Previous claims that 24Na is the main threat is shown to only apply in special cases.

  5. Effects of employing a 10B-carrier and manipulating intratumour hypoxia on local tumour response and lung metastatic potential in boron neutron capture therapy

    Science.gov (United States)

    Masunaga, S; Sakurai, Y; Tanaka, H; Suzuki, M; Liu, Y; Kondo, N; Maruhashi, A; Kinashi, Y; Ono, K

    2012-01-01

    Objectives To evaluate the effects of employing a 10B-carrier and manipulating intratumour hypoxia on local tumour response and lung metastatic potential in boron neutron capture therapy (BNCT) by measuring the response of intratumour quiescent (Q) cells. Methods B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2′-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumours received reactor thermal neutron beam irradiation following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)] in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumour-bearing mice, macroscopic lung metastases were enumerated 17 days after irradiation. Results BPA-BNCT increased the sensitivity of the total tumour cell population more than BSH-BNCT. However, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. With or without a 10B–carrier, MTH enhanced the sensitivity of the Q cell population. Without irradiation, nicotinamide treatment decreased the number of lung metastases. With irradiation, BPA-BNCT, especially in combination with nicotinamide treatment, showed the potential to reduce the number of metastases more than BSH-BNCT. Conclusion BSH-BNCT in combination with MTH improves local tumour control, while BPA-BNCT in combination with nicotinamide may reduce the number of lung metastases. PMID:22391496

  6. Comparison of the image-derived radioactivity and blood-sample radioactivity for estimating the clinical indicators of the efficacy of boron neutron capture therapy (BNCT): 4-borono-2-18F-fluoro-phenylalanine (FBPA) PET study.

    Science.gov (United States)

    Isohashi, Kayako; Shimosegawa, Eku; Naka, Sadahiro; Kanai, Yasukazu; Horitsugi, Genki; Mochida, Ikuko; Matsunaga, Keiko; Watabe, Tadashi; Kato, Hiroki; Tatsumi, Mitsuaki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT), positron emission tomography (PET) with 4-borono-2- 18 F-fluoro-phenylalanine (FBPA) is the only method to estimate an accumulation of 10 B to target tumor and surrounding normal tissue after administering 10 B carrier of L-paraboronophenylalanine and to search the indication of BNCT for individual patient. Absolute concentration of 10 B in tumor has been estimated by multiplying 10 B concentration in blood during BNCT by tumor to blood radioactivity (T/B) ratio derived from FBPA PET. However, the method to measure blood radioactivity either by blood sampling or image data has not been standardized. We compared image-derived blood radioactivity of FBPA with blood sampling data and studied appropriate timing and location for measuring image-derived blood counts. We obtained 7 repeated whole-body PET scans in five healthy subjects. Arterialized venous blood samples were obtained from the antecubital vein, heated in a heating blanket. Time-activity curves (TACs) of image-derived blood radioactivity were obtained using volumes of interest (VOIs) over ascending aorta, aortic arch, pulmonary artery, left and right ventricles, inferior vena cava, and abdominal aorta. Image-derived blood radioactivity was compared with those measured by blood sampling data in each location. Both the TACs of blood sampling radioactivity in each subject, and the TACs of image-derived blood radioactivity showed a peak within 5 min after the tracer injection, and promptly decreased soon thereafter. Linear relationship was found between blood sampling radioactivity and image-derived blood radioactivity in all the VOIs at any timing of data sampling (p radioactivity measured in the left and right ventricles 30 min after injection showed high correlation with blood radioactivity. Image-derived blood radioactivity was lower than blood sampling radioactivity data by 20 %. Reduction of blood radioactivity of FBPA in left ventricle after 30 min of FBPA

  7. Design of a permanent Cd-shielded epithermal neutron irradiation site in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Haddad, Kh.; Haj-Hassan, H.

    2008-01-01

    A Cd-shield (cylindrical shell 1 mm in thickness, 34 mm in diameter and 180 mm in length) was used to design a permanent epithermal neutron irradiation site for epithermal neutron activation analysis (ENAA) in the Syrian Miniature Neutron Source Reactor (MNSR). This site was achieved by shielding the surface of the aluminum tube of one of the outer irradiation sites. The calculated depression ratio of thermal neutron flux was 1/10. Homogeneity of the neutron flux in the first outer irradiation site has been found numerically using the WIMSD4 and CITATION codes and experimentally by irradiating five short copper wires using the outer irradiation capsule. Good agreement was obtained between the calculated and the measured results of the neutron flux distributions. (author)

  8. Design of a permanent Cd-shielded epithermal neutron irradiation site in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Haddad, Kh.; Haj-Hassan, H.

    2009-01-01

    A Cd-shield (cylindrical shell 1 mm in thickness, 34 mm in diameter and 180 mm in length) was used to design a permanent epithermal neutron irradiation site for epithermal neutron activation analysis (ENAA) in the Syrian Miniature Neutron Source Reactor (MNSR). This site was achieved by shielding the surface of the aluminum tube of one of the outer irradiation sites. The calculated depression ratio of thermal neutron flux was 1/10. Homogeneity of the neutron flux in the first outer irradiation site has been found numerically using the WIMSD4 and CITATION codes and experimentally by irradiating five short copper wires using the outer irradiation capsule. Good agreement was obtained between the calculated and the measured results of the neutron flux distributions. (author)

  9. Morphological profiles of neutron and X-irradiated small intestine

    International Nuclear Information System (INIS)

    Carr, K.E.; O'Shea, O.; Hazzard, R.A.; McCullough, J.S.; Hume, S.P.; Nelson, A.C.

    1996-01-01

    This paper describes the response of mouse small intestine, at several time points after treatment with neutron or X-irradiation, using doses expected to give similar effects in terms of crypt/microcolony survival. Using resin histology, the effects of radiation on the numbers of duodenal cell types and measurements of tissue areas were assessed. The results for individual parameters and for an estimate of overall damage are given in a data display, which summarises the morphological profile of the organ after both types of radiation. Damage and recovery were seen for many of the parameters studied but there was no standard response pattern applicable for all parameters. In particular, the response of individual crypt cell types could not be predicted from knowledge of the change in crypt numbers. With regard to the holistic response of the gut, neutron irradiation appeared to have caused more damage and produced more early effects than the X-irradiation. More specifically, neutron treatment led to more damage to the neuromuscular components of the wall, while X-irradiation produced early vascular changes. (author)

  10. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system

    Science.gov (United States)

    NAKAMURA, Satoshi; IMAMICHI, Shoji; MASUMOTO, Kazuyoshi; ITO, Masashi; WAKITA, Akihisa; OKAMOTO, Hiroyuki; NISHIOKA, Shie; IIJIMA, Kotaro; KOBAYASHI, Kazuma; ABE, Yoshihisa; IGAKI, Hiroshi; KURITA, Kazuyoshi; NISHIO, Teiji; MASUTANI, Mitsuko; ITAMI, Jun

    2017-01-01

    This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24Na, 38Cl, 80mBr, 82Br, 56Mn, and 42K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 102, (2.2 ± 0.1) × 101, (3.4 ± 0.4) × 102, 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 101 Bq/g/mA, respectively. The 24Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system. PMID:29225308

  11. Swelling in neutron-irradiated titanium alloys

    International Nuclear Information System (INIS)

    Peterson, D.T.

    1982-04-01

    Immersion density measurements have been performed on a series of titanium alloys irradiated in EBR-II to a fluence of 5 x 10 22 n/cm 2 (E > 0.1 MeV) at 450 and 550 0 C. The materials irradiated were the near-alpha alloys Ti-6242S and Ti-5621S, the alpha-beta alloy Ti-64, and the beta alloy Ti-38644. Swelling was observed in all alloys with the greater swelling being observed at 550 0 C. Microstructural examination revealed the presence of voids in all alloys. Ti-38644 was found to be the most radiation resistant. Ti-6242S and Ti-5621S also displayed good radiation resistance, whereas considerable swelling and precipitation were observed in Ti-64 at 550 0 C

  12. High temperature superconductors for fusion magnets -influence of neutron irradiation

    International Nuclear Information System (INIS)

    Chudy, M.; Eisterer, M.; Weber, H. W.

    2010-01-01

    In this work authors present the results of study of influence of neutron irradiation of high temperature superconductors for fusion magnets. High temperature superconductors (type of YBCO (Yttrium-Barium-Copper-Oxygen)) are strong candidates to be applied in the next step of fusion devices. Defects induced by fast neutrons are effective pinning centres, which can significantly improve critical current densities and reduce J c anisotropy. Due to induced lattice disorder, T c is reduced. Requirements for ITER (DEMO) are partially achieved at 64 K.

  13. Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Rasouli

    2012-09-01

    Full Text Available Introduction BNCT is an effective method to destroy brain tumoral cells while sparing the healthy tissues. The recommended flux for epithermal neutrons is 109 n/cm2s, which has the most effectiveness on deep-seated tumors. In this paper, it is indicated that using D-T neutron source and optimizing of Beam Shaping Assembly (BSA leads to treating brain tumors in a reasonable time where all IAEA recommended criteria are met. Materials and Methods The proposed BSA based on a D-T neutron generator consists of a neutron multiplier system, moderators, reflector, and collimator. The simulated Snyder head phantom is used to evaluate dose profiles in tissues due to the irradiation of designed beam. Monte Carlo Code, MCNP-4C, was used in order to perform these calculations.   Results The neutron beam associated with the designed and optimized BSA has an adequate epithermal flux at the beam port and neutron and gamma contaminations are removed as much as possible. Moreover, it was showed that increasing J/Φ, as a measure of beam directionality, leads to improvement of beam performance and survival of healthy tissues surrounding the tumor. Conclusion According to the simulation results, the proposed system based on D-T neutron source, which is suitable for in-hospital installations, satisfies all in-air parameters. Moreover, depth-dose curves investigate proper performance of designed beam in tissues. The results are comparable with the performances of other facilities.

  14. Boron neutron capture therapy for advanced and/or recurrent cancers in the oral cavity

    International Nuclear Information System (INIS)

    Ariyoshi, Yasunori; Shimahara, Masashi; Kimura, Yoshihiro; Miyatake, Shin-ichi; Kuroiwa, Toshihiko; Nagata, Kenji; Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji

    2006-01-01

    This preliminary study of 5 patients with advanced and/or recurrent cancer in the oral cavity was performed to evaluate the effectiveness of Boron Neutron Capture Therapy (BNCT). The patients received therapy with the 10 B-carrier p-boronophenylalanine (BPA) with or without borocaptate sodium (BSH) and irradiation thereafter with epithermal neutrons. All underwent 18 F-BPA PET studies before receiving BNCT to determine the accumulation ratios of BPA in tumor and normal tissues. The tumor mass was decreased in size and at minimum a transient partial response was achieved in all cases, though rapid tumor re-growth was observed in 2. Although tentative clinical responses and improvements in quality of life were recognized, obliteration of the tumor was not obtained in any of the cases. Additional studies are required to determine the utility and indication of BNCT for oral cancer. (author)

  15. INEL BNCT research program: Annual report, 1995

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented

  16. INEL BNCT research program: Annual report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented.

  17. INEL BNCT Program: Volume 5, No. 9. Bulletin, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. [ed.

    1991-12-31

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory`s (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  18. Method of measuring neutron spectra in JMTR exclusively used for irradiation and their evaluation

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi

    1983-01-01

    In the core of the Japan Materials Testing Reactor, about 60 capsules are irradiated. These are the material capsules for irradiating reactor materials, the fuel capsules for irradiating reactor fuel, the RI capsules for producing radioisotopes and so on. In the irradiation experiment using a reactor, the information on the neutron fluence is indispensable, and the neutron fluence in the irradiated specimen part is evaluated with a dosimeter or the nuclear calculation for the core of the JMTR. At the time of irradiating reactor materials, the dosimeter Fe-54 (n,p) Mn-54 is generally used for evaluating the neutron fluence more than 1 MeV. In the case of fuel irradiation, the thermal neutron fluence is evaluated with the dosimeter Co-59 (n,γ) Co-60. It is important to examine in detail neutron spectra by both calculation and experiment in the reactors exclusively used for irradiation such as the JMTR. The neutron irradiation field in the JMTR, neutron spectrum measuring experiment, the neutron flux monitors for standardizing data, the measurement of X-ray and gamma ray, neutron guess spectrum, the compilation of neutron cross section for SAND 2, and the unfolding of neutron spectra are reported. The degree of agreement of the neutron fluence more than 1 MeV by measurement and calculation was +- 10 to 20 %. (Kako, I.)

  19. Isotropic nuclear graphites; the effect of neutron irradiation

    International Nuclear Information System (INIS)

    Lore, J.; Buscaillon, A.; Mottet, P.; Micaud, G.

    1977-01-01

    Several isotropic graphites have been manufactured using different forming processes and fillers such as needle coke, regular coke, or pitch coke. Their properties are described in this paper. Specimens of these products have been irradiated in the fast reactor Rapsodie between 400 to 1400 0 C, at fluences up to 1,7.10 21 n.cm -2 PHI.FG. The results show an isotropic behavior under neutron irradiation, but the induced dimensional changes are higher than those of isotropic coke graphites although they are lower than those of conventional extruded graphites made with the same coke

  20. Radiation defects produced by neutron irradiation in germanium single crystals

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Honda, Makoto; Atobe, Kozo; Yamaji, Hiromichi; Ide, Mutsutoshi; Okada, Moritami.

    1992-01-01

    The nature of defects produced in germanium single crystals by neutron irradiation at 25 K was studied by measuring the electrical resistivity. It was found that two levels located at E c -0.06 eV and E c -0.13 eV were introduced in an arsenic-doped sample. Electron traps at E c -0.10eV were observed in an indium-doped sample. The change in electrical resistivity during irradiation was also studied. (author)

  1. Swelling and fracturing of borides under neutron irradiation

    International Nuclear Information System (INIS)

    Krainy, A.G.; Ogorodnikov, V.V.; Grinik, E.U.; Chirko, L.I.; Shinakov, A.A.

    1994-01-01

    The neutron irradiation of high temperature borides, which are included in boron-containing reactor materials, results in high internal stresses, leading to considerable swelling and micro- and macro-fracturing. Experimental results over a large range of temperature and fluences, show a change of damage mechanism for borides within 400-530 C: the macro-cracking with formation of annular and radial cracks is observed below this temperature zone. The accumulation of micro-fractures and the process of gas swelling take place at irradiation temperatures above 530 C. The effect of the high internal stresses is compared to external pressure. 12 refs., 4 figs

  2. Effects of neutron irradiation on a superconducting metallic glass

    International Nuclear Information System (INIS)

    Kramer, E.A.; Johnson, W.L.; Cline, C.

    1979-06-01

    The effects of fast neutron irradiation on a superconducting metallic glass (Mo 6 Ru 4 ) 82 B 18 have been studied. Following irradiation to a total fluence of 10 19 n/cm 2 , T/sub c/ increases from 6.05 K to 6.19 K, and the width of the transition decreases sharply. The density of the material decreases by 1.5%, and the x-ray scattering intensity maxima are broadened. An improvement in the ductility of the samples is observed which together with the other observations suggests the production of defects having atomic scale dimensions and characterized by excess volume

  3. In vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Lab. de Biologia Molecular]. E-mail: samanta@usp.br; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo (IMT-SP), SP (Brazil). Lab. de Protozoologia]. E-mail:hfandrad@usp.br

    2005-10-15

    Pentavalent antimony, as meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes {sup 122} Sb and {sup 124} Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology. (author)

  4. Investigation of radiation damage effects in neutron irradiated CCD

    International Nuclear Information System (INIS)

    Brau, James E.; Igonkina, Olga; Potter, Chris T.; Sinev, Nikolai B.

    2005-01-01

    A Charge Coupled Devices (CCD)-based vertex detector is a leading option for vertex detection at the future linear collider. A major issue for this application is the radiation hardness of such devices. Tests of radiation hardness of CCDs used in the SLD vertex detector, VXD3, have been reported earlier. The first measurements of 1998 involved a spare VXD3 CCD that was irradiated with neutrons from a radioactive source (Pu-Be), and from a nuclear reactor. In 2003, we had the opportunity to disassemble the VXD3 detector and study the nature of the radiation damage it incurred during 3 years of operation at SLC. In the preparation for this study, additional experiments with the spare VXD3 CCD were performed. These included measurements of trapping times in neutron irradiated CCDs. Results, reported here, will help us better understand the mechanism of radiation damage effects and develop techniques to minimize performance degradation due to radiation damage

  5. Microstructural evolution in reactor pressure vessel steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Katsumi; Fukuya, Koji [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    2000-09-01

    Understanding microstructural changes in reactor pressure vessel steels is important in order to evaluate radiation-induced embrittlement, one of the major aging phenomena affecting the extension of plant life. In this study, actual surveillance test specimens and samples of rector vessel low-alloy steel (A533B steel) irradiated in a research reactor were examined using state-of-the-art techniques to clarify the neutron flux effect on the microstructural changes. These techniques included small angle neutron scattering and atom probes. Microstructural changes which are considered to be the main factors affecting embrittlement, including the production of copper-rich precipitates and the segregation of impurity elements, were confirmed by the results of the study. In addition, the mechanical properties were predicted based on the obtained quantitative data such as the diameters of precipitates. Consequently, the hardening due to irradiation was almost simulated. (author)

  6. A Study on the Thermal Neutron Filter for the Irradiation of Electronic Materials at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Kim, Sung Ryul; Park, Seung Jae; Shin, Yoon Taeg; Cho, Man Soon; Cho, Kee Nam [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The representative example is a technique of making the semiconductor with the transmutation using the pure Si. This NTD (Neutron Transmutation Doping) Si is used as a high-quality semiconductor because it has a uniform resistance. Likewise, the electronic materials are being investigated to improve the performance of material using the neutron irradiation method. The mechanism for reaction between the electronic materials and the neutrons depends on the energy of the neutron. Capturing reaction by thermal neutrons causes the transmutation and a lot of defects are made by fast neutrons. The study for the effect by such neutron energy is necessary to understand the performance improvement of the irradiated electronic materials. The thermal neutron filter was investigated to be used for the irradiation of electronic materials at HANARO. IP irradiation hole was selected and the irradiation device was designed. The analysis was conducted considering four candidate materials.

  7. Effect of neutron irradiation on select MAX phases

    International Nuclear Information System (INIS)

    Tallman, Darin J.; Hoffman, Elizabeth N.; Caspi, El’ad N.; Garcia-Diaz, Brenda L.; Kohse, Gordon; Sindelar, Robert L.; Barsoum, Michel W.

    2015-01-01

    Herein we report on the effect of neutron irradiation – of up to 0.1 displacements per atom at 360(20) °C or 695(25) °C – on polycrystalline samples of Ti 3 AlC 2 , Ti 2 AlC, Ti 3 SiC 2 and Ti 2 AlN. Rietveld refinement of X-ray diffraction patterns of the irradiated samples showed irradiation-enhanced dissociation into TiC of the Ti 3 AlC 2 and Ti 3 SiC 2 phases, most prominently in the former. Ti 2 AlN also showed an increase in TiN content, as well as Ti 4 AlN 3 after irradiation. In contrast, Ti 2 AlC was quite stable under these irradiation conditions. Dislocation loops are seen to form in Ti 2 AlC and Ti 3 AlC 2 after irradiation at 360(20) °C. The room temperature electrical resistivity of all samples increased by an order of magnitude after irradiation at 360(20) °C, but only by 25% after 695(25) °C, providing evidence for the MAX phases’ dynamic recovery at temperatures as low at 695(25) °C. Based on these preliminary results, it appears that Ti 2 AlC and Ti 3 SiC 2 are the more promising materials for high-temperature nuclear applications

  8. The proposed cold neutron irradiation facility at the Breazeale reactor

    International Nuclear Information System (INIS)

    Dimeo, R. M.; Sokol, P. E.; Carpenter, J. M.

    1997-01-01

    We discuss the design considerations of a Cold Neutron Irradiation Facility (CNIF) originally to have been installed at the Penn State Breazeale Reactor (PSBR). The goal of this project was to study the effects of radiation-induced damage to cryogenic moderators and, in particular, solid methane. This work evolved through the design stage undergoing a full safety analysis and received tentative approval from the PSBR Safeguards Committee but was discontinued due to budgetary constraints. (auth)

  9. Separation of Protactinium from Neutron Irradiated Thorium Oxide

    International Nuclear Information System (INIS)

    Dominguez, G.; Gutierrez, L.; Ropero, M.

    1983-01-01

    The chemical separation of thorium and protactinium can be carried out by leaching most of the last one, about 95%, with aqueous HF from neutron irradiated thorium oxide. This leaching reaction la highly favored by the transformation reaction of the ThO 2 material into ThF 4 . For both reactions, leaching and transformation, the reagents concentration, agitation speed and temperature influences were studied and the activation energies were found. (Author) 18 refs

  10. Neutron irradiation effects on high Nicalon silicon carbide fibers

    International Nuclear Information System (INIS)

    Osborne, M.C.; Steiner, D.; Snead, L.L.

    1996-01-01

    The effects of neutron irradiation on the mechanical properties and microstructure of SiC and SiC-based fibers is a current focal point for the development of radiation damage resistant SiC/SiC composites. This report discusses the radiation effects on the Nippon Carbon Hi-Nicalon trademark fiber system and also discusses an erratum on earlier results published by the authors on this material. The radiation matrix currently under study is also summarized

  11. National Low-Temperature Neutron-Irradiation Facility

    International Nuclear Information System (INIS)

    Coltman, R.R. Jr.; Klabunde, C.E.; Young, F.W. Jr.

    1983-08-01

    The Materials Sciences Division of the United States Department of Energy will establish a National Low Temperature Neutron Irradiation Facility (NLTNIF) which will utilize the Bulk Shielding Reactor (BSR) located at Oak Ridge National Laboratory. The facility will provide high radiation intensities and special environmental and testing conditions for qualified experiments at no cost to users. This report describes the planned experimental capabilities of the new facility

  12. Neutron irradiation effects on high Nicalon silicon carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, M.C.; Steiner, D.; Snead, L.L. [Oak Ridge National Laboratory, TN (United States)

    1996-10-01

    The effects of neutron irradiation on the mechanical properties and microstructure of SiC and SiC-based fibers is a current focal point for the development of radiation damage resistant SiC/SiC composites. This report discusses the radiation effects on the Nippon Carbon Hi-Nicalon{trademark} fiber system and also discusses an erratum on earlier results published by the authors on this material. The radiation matrix currently under study is also summarized.

  13. Functional and histological assessment of the radiobiology of normal rat lung in BNCT

    International Nuclear Information System (INIS)

    Kiger, J.L.; Riley, K.J.; Binns, P.J.; Harling, O.K.; Coderre, J.A.; Kiger, W.S. III; Patel, H.

    2006-01-01

    This study investigated the radiobiology and sensitivity of the normal rat lung to Boron Neutron Capture Therapy (BNCT) radiation. Rat thorax irradiations were carried out with x-rays or with neutrons in the presence or absence of p-boronophenylalanine (BPA). Lung damage were assessed functionally with breathing rate measurement up to 180 days after irradiation and then histologically. Breathing rates 20% (∼3 σ) above the control group (sham-irradiated rats) mean were considered as positive responses to lung radiation damage. Though most responding animals demonstrated radiation induced pneumonitis (≤110 days) as well as pulmonary fibrosis (>110 days), some animals receiving neutrons plus BPA showed only the latter. The breathing rate dose response data were fit using probit analysis. The ED 50 values measured for x-rays, neutron beam only, and neutrons plus BPA were 11.5±0.4 Gy, 9.2±0.5 Gy, and 6.7±0.4 Gy, respectively. The biological weighting factors for the neutron beam (n+γ), the thermal neutron dose component, and the 10 B dose component were determined to be 1.2±0.1, 2.2±0.4, and 2.3±0.3, respectively. The histological dose response curves were linear. Consistent with the functional assay, the weighting factors measured histologically were 1.2±0.1 for the thermal neutron beam and 1.9±0.2 for the 10 B dose component. (author)

  14. Neutron irradiation facilities for fission and fusion reactor materials studies

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs

  15. Neutron and gamma irradiation effects on power semiconductor switches

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Frasca, A.J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN bipolar junction transistors (BJTs), and metal-oxide-semiconductor field effect transistors (MOSFETs)

  16. Effects of the neutronic irradiation on the impact tests

    International Nuclear Information System (INIS)

    Lapena, J.; Perosanz, F.J.; Hernandez, M.T.

    1993-01-01

    The changes that the Charpy curves suffer when steel is exposed to neutronic fluence are studied. Three steels with different chemical composition were chosen, two of them (JPF and JPJ) being treated at only one neutronic fluence, while the last one (JRQ) was irradiated at three fluences. In this way, it was possible to compare the effect of increasing the neutronic dose, and to study the experimental results as a function of the steel chemical composition. Two characteristic facts have been observed: the displacement of the curve at higher temperatures, and decrease of the upper shelf energy (USE). The mechanical recovery of the materials after two different thermal treatments is also described, and a comparation between the experimental results obtained and the damage prediction formulas given by different regulatory international organisms in the nuclear field is established. Author. 11 refs

  17. Germanium-doped gallium phosphide obtained by neutron irradiation

    Science.gov (United States)

    Goldys, E. M.; Barczynska, J.; Godlewski, M.; Sienkiewicz, A.; Heijmink Liesert, B. J.

    1993-08-01

    Results of electrical, optical, electron spin resonance and optically detected magnetic resonance studies of thermal neutron irradiated and annealed at 800 °C n-type GaP are presented. Evidence is found to support the view that the main dopant introduced via transmutation of GaP, germanium, occupies cation sites and forms neutral donors. This confirms the possibility of neutron transmutation doping of GaP. Simultaneously, it is shown that germanium is absent at cation sites. Presence of other forms of Ge-related defects is deduced from luminescence and absorption data. Some of them are tentatively identified as VGa-GeGa acceptors leading to the self-compensation process. This observation means that the neutron transmutation as a doping method in application to GaP is not as efficient as for Si.

  18. Irradiation of oxyhemoglobin and carboxyhemoglobin by fast neutrons

    International Nuclear Information System (INIS)

    AbdelBaset, M.S.; Salama, A.A.

    1991-01-01

    Oxyhemoglobin (Hbo 2 ) and carboxyhemoglobin (HbCO) (2.6x10 - 5 M) were subjected to Cf neutron fluences in the range of 10 - 10 n/cm . Irradiation caused partial conversion of oxyhemoglobin to methemoglobin according to the exposure doses. Also, the results indicated that the exposure of HbCO to neutrons leads to the cleavage of iron porphyrin-CO to free CO. After cleavage of 100% CO, the effect of neutrons is devoted to the oxidation of hemoglobin to methemoglobin. From the results presented in this study, it is concluded that HbCO is more radioresistant than HbO 2 . The main target in the case of HbCO is the iron-porphyrin-CO.2 tab.3 fig

  19. Determination of neutron flux distribution in an Am-Be irradiator using the MCNP.

    Science.gov (United States)

    Shtejer-Diaz, K; Zamboni, C B; Zahn, G S; Zevallos-Chávez, J Y

    2003-10-01

    A neutron irradiator has been assembled at IPEN facilities to perform qualitative-quantitative analysis of many materials using thermal and fast neutrons outside the nuclear reactor premises. To establish the prototype specifications, the neutron flux distribution and the absorbed dose rates were calculated using the MCNP computer code. These theoretical predictions then allow one to discuss the optimum irradiator design and its performance.

  20. Cavity nucleation and growth during helium implantation and neutron irradiation of Fe and steel

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, Bachu Narain

    In order to investigate the role of He in cavity nucleation in neutron irradiated iron and steel, pure iron and Eurofer-97 steel have been He implanted and neutron irradiated in a systematic way at different temperatures, to different He and neutron doses and with different He implantation rates....

  1. Commercial Applications at FRM II Based on Neutron Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberg, H.; Draack, A.; Kastenmuller, A. [Technische Universitaet Muenchen, Munchen (Germany)

    2013-07-01

    Due to its design as a heavy water moderated reactor with a very compact core FRM II, Germany's most modern and most powerful research reactor, offers excellent conditions for basic research using beam tubes. On the other hand it is equipped with various irradiation facilities to be used mainly for industrial purposes. From the very beginning of reactor operation a dedicated department had been implemented in order to provide a neutron irradiation service to interested parties on a commercial basis. As of today the most widely used application is Si doping. The semiautomatic doping facility accepts ingots with diameters between 125 mm and 200 mm and a maximum height of 500 mm. The irradiation channel is located deep in the heavy water tank and exhibits a ratio of thermal/fast neutron flux density of > 1000. This value allows the doping of Si to a target resistivity as high as 1100 Ωcm within the tight limits regarding accuracy and homogeneity specified by the customer. Typically the throughput of Si doped in FRM II sums up to about 15 t/year. Another topic of growing importance is the use of FRM II aiming the production of radioisotopes mainly for the radiopharmaceutical industry. The maybe most challenging example is the production of Lu-177 n. c. a. based on the irradiation of Yb{sub 2}O{sub 3} to a high fluence of thermal neutrons of typically 1.5E20 cm{sup -2}. The Lu-177 activity delivered to the customer is in the range of 750 GBq. With respect to further processing it turned out to be a highly advantageous to have the laboratories of ITG, the company extracting the Lu-177 from the freshly irradiated Yb{sub 2}O{sub 3} on site FRM II. Further irradiation facilities are available at FRM II in order to allow the activation of samples for analytical purposes or to irradiate samples for geochronological investigations using the fission track technique. Finally a project on the future installation of a facility dedicated to the irradiation of U-targets for

  2. Influence of neutron irradiation on the tritium retention in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.

    1998-01-01

    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  3. Cation disorder in high-dose, neutron-irradiated spinel

    International Nuclear Information System (INIS)

    Sickafus, K.E.; Larson, A.C.; Yu, N.; Nastasi, M.; Hollenberg, G.W.; Garner, F.A.; Bradt, R.C.

    1994-08-01

    The objective of this effort is to determine whether MgAl 2 O 4 spinel is a suitable ceramic for fusion applications. Here, the crystal structures of MgAl 2 O 4 spinel single crystals irradiated to high neutron fluences [>5·10 26 n/m 2 (E n > 0.1 MeV)] were examined by neutron diffraction. Crystal structure refinement of the highest dose sample indicated that the average scattering strength of the tetrahedral crystal sites decreased by ∼ 20% while increasing by ∼ 8% on octahedral sites. Since the neutron scattering length for Mg is considerably larger than for Al, this results is consistent with site exchange between Mg 2+ ions on tetrahedral sites and Al 3+ ions on octahedral sites. Least-squares refinements also indicated that, in all irradiated samples, at least 35% of Mg 2+ and Al 3+ ions in the crystal experienced disordering replacements. This retained dpa on the cation sublattices is the largest retained damage ever measured in an irradiated spinel material

  4. Stability of the Hall sensors performance under neutron irradiation

    International Nuclear Information System (INIS)

    Duran, I.; Hron, M.; Stockel, J.; Viererbl, L.; Vsolak, R.; Cerva, V.; Bolshakova, I.; Holyaka, R.; Vayakis, G.

    2004-01-01

    A principally new diagnostic method must be developed for magnetic measurements in steady state regime of operation of fusion reactor. One of the options is the use of transducers based on Hall effect. The use of Hall sensors in ITER is presently limited by their questionable radiation and thermal stability. Issues of reliable operation in ITER like radiation and thermal environment are addressed in the paper. The results of irradiation tests of candidate Hall sensors in LVR-15 and IBR-2 experimental fission reactors are presented. Stable operation (deterioration of sensitivity below one percent) of the specially prepared sensors was demonstrated during irradiation by the total fluence of 3.10 16 n/cm 2 in IBR-2 reactor. Increasing the total neutron fluence up to 3.10 17 n/cm 2 resulted in deterioration of the best sensor's output still below 10% as demonstrated during irradiation in LVR-15 fission reactor. This level of neutron is already higher than the expected ITER life time neutron fluence for a sensor location just outside the ITER vessel. (authors)

  5. ANITA-2000, Isotope Inventories from Neutron Irradiation, for Fusion Applications

    International Nuclear Information System (INIS)

    Cepraga, Dan-Gabriel

    2000-01-01

    1 - Description of program or function: ANITA-2000 is a code package for the activation characterisation of materials exposed to neutrons in fusion machines. The main component of the package is the activation code ANITA-4M that computes the radioactive inventory of a material exposed to neutron irradiation, continuous or stepwise. It provides activity, atomic density, decay heat, biological hazard, clearance index and gamma-ray source spectra at shut down and for different cooling times. An interactive utility module, MODBIN, to produce the neutron activation cross sections libraries in the required binary ANITA-4M Format, is also included. The GRANITA interactive module may plot activation parameters as a function of the cooling time. The main improvements include: -the number of irradiation time intervals has been increased to 2000; -different neutron wall loading can be used for each burn time interval; -the photon source calculation in the 18 energy group Scale structure has been added; -the clearance index can be calculated. In addition the code language has been standardized to Fortran '95 - by maintaining the backward compatibility (except for the time/date routines) - so as the same code package can be compiled and run on Unix environment and on PC, both under DOS-Windows and under Linux. 2 - Methods: The mathematical solution of the problem is given in analytical form using recurrence relations. Double precision arithmetic is used

  6. Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain

    International Nuclear Information System (INIS)

    Seppaelae, Tiina; Auterinen, Iiro; Aschan, Carita; Seren, Tom; Benczik, Judit; Snellman, Marjatta; Huiskamp, Rene; Ramadan, Usama Abo; Kankaanranta, Leena; Joensuu, Heikki; Savolainen, Sauli

    2002-01-01

    Boron neutron capture therapy (BNCT) is an experimental type of radiotherapy, presently being used to treat glioblastoma and melanoma. To improve patient safety and to determine the radiobiological characteristics of the epithermal neutron beam of Finnish BNCT facility (FiR 1) dose-response studies were carried on the brain of dogs before starting the clinical trials. A dose planning procedure was developed and uncertainties of the epithermal neutron-induced doses were estimated. The accuracy of the method of computing physical doses was assessed by comparing with in vivo dosimetry. Individual radiation dose plans were computed using magnetic resonance images of the heads of 15 Beagle dogs and the computational model of the FiR 1 epithermal neutron beam. For in vivo dosimetry, the thermal neutron fluences were measured using Mn activation foils and the gamma-ray doses with MCP-7s type thermoluminescent detectors placed both on the skin surface of the head and in the oral cavity. The degree of uncertainty of the reference doses at the thermal neutron maximum was estimated using a dose-planning program. The estimated uncertainty (±1 standard deviation) in the total physical reference dose was ±8.9%. The calculated and the measured dose values agreed within the uncertainties at the point of beam entry. The conclusion is that the dose delivery to the tissue can be verified in a practical and reliable fashion by placing an activation dosimeter and a TL detector at the beam entry point on the skin surface with homogeneous tissues below. However, the point doses cannot be calculated correctly in the inhomogeneous area near air cavities of the head model with this type of dose-planning program. This calls for attention in dose planning in human clinical trials in the corresponding areas

  7. Nuclear engineering aspects of glioma BNCT research in Italy

    International Nuclear Information System (INIS)

    Curzio, G.; Mazzini, M.

    1998-01-01

    A research project on Boron Neutron Capture Therapy (BNCZ) of gliomas has been set up in Italy, with the participation of Departments of Oncology and Mechanical and Nuclear Construction (DCMN) of the University of Pisa, as well as the Neuroscience and Physics Departments of the Universities of Roma. The specific objective of DCMN Research Unit is the study of the physical-engineering aspects related to BNCT. The paper outlines the research lines in progress at DCMN: Monte Carlo calculations of neutron dose distribution for BNCT treatment planning; measurements of neutron fluxes, spectra and doses by neutron detectors specifically set up; design of modifications to the nuclear reactors of ENEA Casaccia Center. In particular, the paper emphasizes the most original contributions on dosimetric aspects, both from informatic and experimental points of view.(author)

  8. Neutron irradiation behavior of ITER candidate beryllium grades

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [A.A.Bochvar All-Russia Scientific Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Melder, R.R.; Ostrovsky, Z.E.

    1998-01-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why its behaviour under the typical for fusion reactor loading, in particular, under the neutron irradiation is of a great importance. This paper presents mechanical properties, swelling and microstructure of six beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia and also one - (S-65) fabricated by Brush Wellman, USA. The average grain size of the beryllium grades varied from 8 to 25 {mu}m, beryllium oxide content was 0.8-3.2 wt. %, initial tensile strength was 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor up to the fast neutron fluence (5.5-6.2) {center_dot} 10{sup 21} cm{sup -2} (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV at two temperature ranges: T{sub 1} = 130-180degC and T{sub 2} = 650-700degC. After irradiation at 130-180degC no changes in samples dimensions were revealed. After irradiation at 650-700degC swelling of the materials was found to be in the range 0.1-2.1 %. Beryllium grades TR-30 and TRR, having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which was no more than 0.1 % at 650-700degC and fluence 5.5 {center_dot} 10{sup 21} cm{sup -2}. Tensile and compression test results and microstructure parameters measured before and after irradiation are also presented. (author)

  9. Characterization of hybrid self-powered neutron detector under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamichi, M. E-mail: masaru@oarai.jaeri.go.jp; Nagao, Y.; Yamamura, C.; Nakazawa, M.; Kawamura, H

    2000-11-01

    To evaluate the irradiation behaviour of a blanket mock-up on in-pile functional test, it is necessary to measure the neutron flux change in the in-pile mock-up by a neutron detector, such as the self-powered neutron detector (SPND). With its small-sized emitter, which has high sensitivity and fast response time, SPND is an indispensable tool in order to measure the local neutron flux change. In the case of an in-pile functional test, it is necessary that response time is less than 1s and ratio of SPND output current is more than 0.3 of output current of SPND with Rh emitter. Therefore, a hybrid SPND with high sensitivity and fast response time was developed. This hybrid SPND used a hybrid emitter, i.e. Co cladded Pt-13%R000.

  10. Characterization of hybrid self-powered neutron detector under neutron irradiation

    CERN Document Server

    Nakamichi, M; Yamamura, C; Nakazawa, M; Kawamura, H

    2000-01-01

    To evaluate the irradiation behaviour of a blanket mock-up on in-pile functional test, it is necessary to measure the neutron flux change in the in-pile mock-up by a neutron detector, such as the self-powered neutron detector (SPND). With its small-sized emitter, which has high sensitivity and fast response time, SPND is an indispensable tool in order to measure the local neutron flux change. In the case of an in-pile functional test, it is necessary that response time is less than 1s and ratio of SPND output current is more than 0.3 of output current of SPND with Rh emitter. Therefore, a hybrid SPND with high sensitivity and fast response time was developed. This hybrid SPND used a hybrid emitter, i.e. Co cladded Pt-13%Rh.

  11. Effect of bevacizumab combined with boron neutron capture therapy on local tumor response and lung metastasis

    Science.gov (United States)

    MASUNAGA, SHIN-ICHIRO; SAKURAI, YOSHINORI; TANO, KEIZO; TANAKA, HIROKI; SUZUKI, MINORU; KONDO, NATSUKO; NARABAYASHI, MASARU; WATANABE, TSUBASA; NAKAGAWA, YOSUKE; MARUHASHI, AKIRA; ONO, KOJI

    2014-01-01

    The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide. PMID:24944637

  12. A comparison of microstructures in copper irradiated with fission, fusion, and spallation neutrons

    International Nuclear Information System (INIS)

    Muroga, T.; Heinisch, H.L.; Sommer, W.F.; Ferguson, P.D.

    1992-01-01

    The objective of this work is to investigate the effects of the neutron energy spectrum in low dose irradiations on the microstructure and mechanical properties of metals. The microstructures of pure copper irradiated to low doses at 36-90 C with spallation neutrons, fusion neutrons and fission neutrons are compared. The defect cluster densities for the spallation and fusion neutrons are very similar when compared on the basis of displacements per atom (dpa). In both cases, the density increases in proportion to the square root of the dpa. The difference in defect density between fusion neutrons and fission neutrons corresponds with differences observed in data on yield stress changes

  13. Positron annihilation and Moessbauer studies of neutron irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Brauer, G.; Matz, W.; Liszkay, L.; Molnar, B.

    1990-11-01

    Positron annihilation (lifetime, Doppler broadening) and Moessbauer studies on unirradiated, neutron irradiated and neutron irradiated plus annealed reactor pressure vessel steels (Soviet type 15Kh2NMFA) are presented. The role of microstructural properties and the formation of irradiation-induced precipitates is discussed. (orig.) [de

  14. Theoretical description of the influence of neutron irradiation on viscoplastic properties of mild steel

    International Nuclear Information System (INIS)

    Pecherski, R.

    1978-01-01

    The physical bases of plastic deformation of mild steel are described. The influence of neutron irradiation on the change of mechanisms of plastic deformation is discussed in detail. Constitutive equations of viscoplasticity for irradiated mild steel are given. The problem of thickwalled viscoplastic spherical tank irradiated by neutrons is studied. (Z.R.)

  15. Neutron irradiation test of depleted CMOS pixel detector prototypes

    International Nuclear Information System (INIS)

    Mandić, I.; Cindro, V.; Gorišek, A.; Hiti, B.; Kramberger, G.; Mikuž, M.; Zavrtanik, M.; Hemperek, T.; Daas, M.; Hügging, F.; Krüger, H.; Pohl, D.-L.; Wermes, N.; Gonella, L.

    2017-01-01

    Charge collection properties of depleted CMOS pixel detector prototypes produced on p-type substrate of 2 kΩ cm initial resistivity (by LFoundry 150 nm process) were studied using Edge-TCT method before and after neutron irradiation. The test structures were produced for investigation of CMOS technology in tracking detectors for experiments at HL-LHC upgrade. Measurements were made with passive detector structures in which current pulses induced on charge collecting electrodes could be directly observed. Thickness of depleted layer was estimated and studied as function of neutron irradiation fluence. An increase of depletion thickness was observed after first two irradiation steps to 1 · 10 13 n/cm 2 and 5 · 10 13 n/cm 2 and attributed to initial acceptor removal. At higher fluences the depletion thickness at given voltage decreases with increasing fluence because of radiation induced defects contributing to the effective space charge concentration. The behaviour is consistent with that of high resistivity silicon used for standard particle detectors. The measured thickness of the depleted layer after irradiation with 1 · 10 15 n/cm 2 is more than 50 μm at 100 V bias. This is sufficient to guarantee satisfactory signal/noise performance on outer layers of pixel trackers in HL-LHC experiments.

  16. High dose neutron irradiation damage in beryllium as blanket material

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V.P. E-mail: fae@niiar.ru; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B. E-mail: vniinm.400@g23.relkom.ru

    2001-11-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10{sup 22} and 8.0x10{sup 22} cm{sup -2} (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10{sup 22} cm{sup -2} (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10{sup 22} cm{sup -2} (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket.

  17. High dose neutron irradiation damage in beryllium as blanket material

    International Nuclear Information System (INIS)

    Chakin, V.P.; Kazakov, V.A.; Teykovtsev, A.A.; Pimenov, V.V.; Shimansky, G.A.; Ostrovsky, Z.E.; Suslov, D.N.; Latypov, R.N.; Belozerov, S.V.; Kupriyanov, I.B.

    2001-01-01

    The paper presents the investigation results of beryllium products that operated in the SM and BOR-60 reactors up to neutron doses of 2.8x10 22 and 8.0x10 22 cm -2 (E>1 MeV), respectively. The calculated and experimental data are given on helium and tritium accumulation, swelling, micro-hardness and thermal conductivity. The microstructural investigation results of irradiated beryllium are also presented. It is shown that the rate of helium and tritium accumulation in beryllium in the SM and BOR-60 reactors is high enough, which is of interest from the viewpoint of modeling the working conditions of the DEMO fusion reactor. Swelling of beryllium at irradiation temperature of 70-150 deg. C and neutron fluence of 2.8x10 22 cm -2 (E>1 MeV) makes up 0.8-1.5%, at 400 deg. C and fluence of 8x10 22 cm -2 (E>1 MeV)-3.2-5.0%. Irradiation hardening and decrease of thermal conductivity strongly depend on the irradiation temperature and are more significant at reduced temperatures. All results presented in the paper were analyzed with due account of the supposed working parameters of the DEMO fusion reactor blanket

  18. Protocols for BNCT of glioblastoma multiforme at Brookhaven: Practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Chanana, A.D.; Coderre, J.A.; Joel, D.D.; Slatkin, D.N.

    1996-12-31

    In this report we discuss some issues considered in selecting initial protocols for boron neutron capture therapy (BNCT) of human glioblastoma multiforme. First the tolerance of normal tissues, especially the brain, to the radiation field. Radiation doses limits were based on results with human and animal exposures. Estimates of tumor control doses were based on the results of single-fraction photon therapy and single fraction BNCT both in humans and experimental animals. Of the two boron compounds (BSH and BPA), BPA was chosen since a FDA-sanctioned protocol for distribution in humans was in effect at the time the first BNCT protocols were written and therapy studies in experimental animals had shown it to be more effective than BSH.

  19. Electrical properties of indium arsenide irradiated with fast neutrons

    International Nuclear Information System (INIS)

    Kolin, N.G.; Osvenskii, V.B.; Rytova, N.S.; Yurova, E.S.

    1987-01-01

    A study was made of the influence of irradiation with fast reactor neutrons on electrical properties of indium arsenide samples with different dopant concentrations. The laws governing the formation and annealing of radiation defects in indium arsenide were found to be governed by the donor-acceptor interaction. Depending on the density of free carriers in the original crystal, irradiation could produce charged defects of predominantly donor or acceptor types. Donor defects in irradiated InAs samples were annealed practically completely, whereas a considerable fraction of residual acceptor defects was retained even after heat treatment at 900 degree C. The concentration of these residual acceptors depended on the electron density at the annealing temperature

  20. Study of natural diamond detector spectrometric properties under neutron irradiation

    CERN Document Server

    Alekseyev, A B; Kaschuck, Y; Krasilnikov, A; Portnov, D; Tugarinov, S

    2002-01-01

    Natural diamond detector (NDD) performance was studied up to a neutron fluence of 10 sup 1 sup 5 neutron/cm sup 2. The variations of the NDD spectrometric response to incident alpha-particles from sup 2 sup 4 sup 1 Am source after exposure to fast neutron fluences up to 3x10 sup 1 sup 6 n/cm sup 2 were examined. No significant variations up to the level of 10 sup 1 sup 4 n/cm sup 2 were observed. Degradation of charge collection efficiency at higher fluences is reported. No remarkable increase of the NDD leakage current and count rate change had been observed up to a neutron fluence of 3x10 sup 1 sup 6 n/cm sup 2. The charge collection efficiency variations of neutron irradiated diamond spectrometer were studied ex situ under gamma-rays, beta-radiation and visible light excitation. Charge collection efficiency restoration up to 75% level and the NDD performance stabilization by extrinsic low-intensity visible light (550 nm

  1. Metal ion protection of DNA to fast neutron irradiation

    International Nuclear Information System (INIS)

    Constantinescu, B.; Bugoi, R.; Radulescu, I.; Radu, L.

    1998-01-01

    The most important effects of the ionising radiation are the single and double strand breaks (SSB and DBS), modifications of the DNA bases and deoxyribose, as well as the occurrence of alkali and heat labile sites (revealed as strand breaks after alkaline or thermic treatment of irradiated DNA). The ionising particles can have either direct effects on the DNA constituents or indirect effects, mediated by the OH - radicals, produced by water radiolysis. The occurrence of SSB and DSB in the chromatin DNA strands is supposed to hinder the DNA-dye complex formation. Usually, the dyes present different fluorescence parameters in the two possible states, so one can correlate the lifetime or the quantum yield with the extent of the damage. We took into account the protective effect offered both by histones, which behave as 'scavenger molecules' for OH - radicals and by the high compactness of DNA chromatin. Similar protective effects might be the results of the metallic ion addition which triggers some conformational transitions of the chromatin DNA towards a highly compacted structure. In this paper we present a study of the complexes of fast neutron irradiated chromatin with proflavine. Fluorimetric and time resolved spectroscopic determinations (single photon counting method) of chromatin-Pr complexes were realised. Information regarding the chromatin protein damage were obtained by monitoring the fluorescence of Trp. The chromatin was irradiated (20-100 Gy) with fast neutrons, obtained by the reaction of 13.5 MeV deuterons on a thick beryllium target at the IFIN-HH U-120 Cyclotron. The dose mean lineal energy in water at the point of interest was 50 keV/m and the mean dose rate was 1.5 Gy/min. By fluorescence determinations, changes of the Pr intercalation parameters in fast neutron irradiated chromatin DNA have been observed. Fluorescence techniques provide valuable information on the binding equilibrium by considering the radiation deexcitation of the complex. The

  2. Neutron irradiation effects on magnetic properties of some Heusler alloys

    International Nuclear Information System (INIS)

    Onodera, Hideya; Shinohara, Takeshi; Yamamoto, Hisao; Watanabe, Hiroshi

    1975-01-01

    The neutron irradiation effects were studied with measurements of temperature dependence of magnetization in ordered and disordered Heusler alloys. The irradiation was carried out in JMTR with a total flux of fast neutrons of 10 20 nvt. Fully ordered Cu 2 MnIn, partially ordered Cu 2 MnAl and completely disordered Cu 2 MnSn were prepared with various temperature treatments. The magnetization-temperature curves of each specimen were measured before and after irradiation. In the irradiated Cu 2 MnIn, the disordering by the irradiation gave rise to a decrease of magnetization, and the temperature dependence of magnetization showed that the disordered region contained various regions with different degrees of disorder. For the distribution of the disordered region, the calculation based on the theory of temperature spike by Seitz and Koekler gave a feasible result that a disordered region comprised a central core with a radius of 5.4 A which was completely disordered and a periphery of 3.3 A thickness which was partially disordered. From the magnetization-temperature curves of Cu 2 MnAl, it was considered that the disordered regions induced by the irradiation had different properties from those induced by the heat treatment. The former were the localized and comprised regions corresponding to various degrees of disorder, while the latter spread spatially in a wide range with a certain degree of disorder. The ordering by enhanced diffusion occurred simultaneously to an extent comparable to the disordering, and so it played an important role in the magnetization in the partially disordered Cu 2 MnAl. In the disordered Cu 2 MnSn, however, the ordering effect was very small. It is supposed to be difficult for the A2 structure to transform into the L2 1 structure by the enhanced diffusion. (auth.)

  3. DT fusion neutron irradiation of ORNL magnesium oxide crystals and BNL--LASL superconductor wires

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1978-01-01

    The DT fusion neutron irradiation of two ORNL magnesium oxide crystals and eleven BNL-LASL superconductor wires is described. The sample position and neutron dose record are given. The maximum neutron fluence on any sample was 2.16 x 10 16 neutrons/cm 2

  4. Optimization of the application of BNCT to undifferentiated thyroid cancer

    International Nuclear Information System (INIS)

    Dagrosa, M.A.; Thomasz, L.; Longhino, J.

    2006-01-01

    The possible increase in BNCT efficacy for undifferentiated thyroid carcinoma (UTC) using BPA plus BOPP and nicotinamide (NA) as a radiosensitizer on the BNCT reaction was analyzed. In these studies nude mice were transplanted with the ARO cells and after 14 days they were treated as follows: 1) Control; 2) NCT (neutrons alone); 3) NCT plus NA (100 mg/kg bw/day for 3 days); 4) BPA (350 mg/kg bw) + neutrons; 5) BPA+ NA+ neutrons; 6) BPA+BOPP (60 mg/kg bw) + neutrons. The flux of hyperthermal neutrons was 2.8 10 8 during 85 min. Neutrons alone or with NA caused some tumor growth delay, while in the BPA, BPA+NA and BPA+BOPP groups a 100% halt of tumor growth was observed. When the initial tumor volume was 50 mm 3 or less a complete cure was found in BPA+NA (2/2); BPA (1/4); BPA+BOPP (7/7). After 90 days of complete regression, recurrence of tumor was observed in 2/2 BPA/NA (2/2) and BPA+BOPP (1/7). Caspase 3 activity was increased in BPA+NA (p<0.05 vs controls). BPA plus NA increased tumor apoptosis but only the combination of BPA+BOPP increased significantly BNCT efficiency. (author)

  5. Microstructure-tensile property correlation of 316SS in low dose neutron irradiations

    International Nuclear Information System (INIS)

    Yoshida, N.; Muroga, T.; Araki, K.; Heinisch, H.L.; Kiritani, M.

    1990-05-01

    The objective of this work is to determine the effects of the neutron spectrum on radiation-induced changes in mechanical properties for metals irradiated with fission and fusion neutrons. 10 refs., 6 figs

  6. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  7. Measurement and evaluation of fast neutron flux of CT and OR5 irradiation hole in HANARO

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Choo, Kee Nam; Lee, Seung-Kyu; Kim, Yong Kyun

    2012-01-01

    The irradiation test has been conducted to evaluate the irradiation performance of many materials by a material capsule at HANARO. Since the fast neutron fluence above 1 MeV is important for the irradiation test of material, it must be measured and evaluated exactly at each irradiation hole. Therefore, a fast neutron flux was measured and evaluated by a 09M-02K capsule irradiated in an OR5 irradiation hole and a 10M-01K capsule irradiated in a CT irradiation hole. Fe, Ni, and Ti wires as the fluence monitor were used for the detection of fast neutron flux. Before the irradiation test, the neutron flux and spectrum was calculated for each irradiation hole using an MCNP code. After the irradiation test, the activity of the fluence monitor was measured by an HPGe detector and the reaction rate was calculated. For the OR5 irradiation hole, the radial difference of the fast neutron flux was observed from a calculated data due to the OR5 irradiation hole being located outside the core. Furthermore, a control absorber rod was withdrawn from the core as the increase of the irradiation time at the same irradiation cycle, so the distribution of neutron flux was changed from the beginning to the end of the cycle. These effects were considered to evaluate the fast neutron flux. Neutron spectrums of the CT and OR5 irradiation hole were adjusted by the measured data. The fluxes of a fast neutron above 1 MeV were compared with calculated and measured value. Although the maximum difference was shown at 18.48%, most of the results showed good agreement. (author)

  8. Results of neutron irradiation of liquid lithium saturated with deuterium

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Ponkratov, Yuriy; Kulsartov, Timur; Gordienko, Yuriy; Skakov, Mazhyn; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Mazzitelli, Giuseppe

    2017-01-01

    Highlights: • The results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1M research reactor are described. • At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(−144/RT). • The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise. - Abstract: This paper describes the results on neutron irradiation of liquid lithium saturated with deuterium at the IVG.1 M research reactor. The neutron flux at the reactor core center at 2 MW was 5 10 −13 cm −2 s −1 . The efficiency coefficients of helium and tritium release from lithium saturated with deuterium were calculated. The tritium interaction with lithium atoms (formation and dissociation of lithium tritide) has an effect on tritium release. An increment of sample’s temperature results in tritium release acceleration due to rising of the dissociation rate of lithium tritide. At temperatures below 573 K the efficiency coefficient of tritium release is well described by the expression K = 0.015 exp(−14/RT), and above 623 K − K = 10 9 exp(-144/RT). The T 2 molecules contribution into the overall tritium release becomes apparent at temperatures higher than 673 K and increases with the temperature rise.

  9. Recovery characteristics of neutron-irradiated V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Pareja, R.

    2000-01-01

    The recovery characteristics of neutron-irradiated pure V and V-Ti alloys with 1.0 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. Microvoid formation during irradiation at 320 K is produced in pure V and V-1Ti but not in V-4.5Ti. The results are consistent with a model of swelling inhibition induced by vacancy trapping by solute Ti during irradiation. The temperature dependencies of the parameter S in the range 8-300 K indicate a large dislocation bias for vacancies and solute Ti. This dislocation bias prevents the microvoid nucleation in V-4.5Ti, and the microvoid growth in V-1Ti, when vacancies become mobile during post-irradiation annealing treatments. A characteristic increase of the positron lifetime is found during recovery induced by isochronal annealing. It is attributed to a vacancy accumulation into the lattice of Ti oxides precipitated during cooling down, or at their matrix/precipitate interfaces. These precipitates could be produced by the decomposition of metastable phases of Ti oxides formed during post-irradiation annealing above 1000 K

  10. Neutron-irradiation facilities at the Intense Pulsed Neutron Source-I for fusion magnet materials studies

    International Nuclear Information System (INIS)

    Brown, B.S.; Blewitt, T.H.

    1982-01-01

    The decommissioning of reactor-based neutron sources in the USA has led to the development of a new generation of neutron sources that employ high-energy accelerators. Among the accelerator-based neutron sources presently in operation, the highest-flux source is the Intense Pulsed Neutron Source (IPNS), a user facility at Argonne National Laboratory. Neutrons in this source are produced by the interaction of 400 to 500 MeV protons with either of two 238 U target systems. In the Radiation Effects Facility (REF), the 238 U target is surrounded by Pb for neutron generatjion and reflection. The REF has three separate irradiation thimbles. Two thimbles provide irradiation temperatures between that of liquid He and several hundred degrees centigrade. The third thimble operates at ambient temperature. The large irradiation volume, the neutron spectrum and flux, the ability to transfer samples without warm up, and the dedication of the facilities during the irradiation make this ideally suited for radiation damage studies on components for superconducting fusion magnets. Possible experiments for fusion magnet materials are discussed on cyclic irradiation and annealing of stabilizers in a high magnetic field, mechanical tests on organic insulation irradiated at 4 K, and superconductors measured in high fields after irradiation

  11. Impurities effect on the swelling of neutron irradiated beryllium

    International Nuclear Information System (INIS)

    Donne, M.D.; Scaffidi-Argentina, F.

    1995-01-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found

  12. Neutron Irradiation Tests of Calibrated Cryogenic Sensors at Low Temperatures

    CERN Document Server

    Junquera, T; Thermeau, J P; Casas-Cubillos, J

    1998-01-01

    This paper presents the advancement of a program being carried out in view of selecting the cryogenic temperature sensors to be used in the LHC accelerator. About 10,000 sensors will be installed around the 26.6 km LHC ring, and most of them will be exposed to high radiation doses during the accelerator lifetime. The following thermometric sensors : carbon resistors, thin films, and platinum resistors, have been exposed to high neutron fluences (>10$^15$ n/cm$^2$) at the ISN (Grenoble, France) Cryogenic Irradiation Test Facility. A cryostat is placed in a shielded irradiation vault where a 20 MeV deuteron beam hits a Be target, resulting in a well collimated and intense neutron beam. The cryostat, the on-line acquisition system, the temperature references and the main characteristics of the irradiation facility are described. The main interest of this set-up is its ability to monitor online the evolution of the sensors by comparing its readout with temperature references that are in principle insensitive to t...

  13. Additive effect of BPA and Gd-DTPA for application in accelerator-based neutron source

    International Nuclear Information System (INIS)

    Yoshida, F.; Yamamoto, T.; Nakai, K.; Zaboronok, A.; Matsumura, A.

    2015-01-01

    Because of its fast metabolism gadolinium as a commercial drug was not considered to be suitable for neutron capture therapy. We studied additive effect of gadolinium and boron co-administration using colony forming assay. As a result, the survival of tumor cells with additional 5 ppm of Gd-DTPA decreased to 1/10 compared to the cells with boron only. Using gadolinium to increase the effect of BNCT instead of additional X-ray irradiation might be beneficial, as such combination complies with the short-time irradiation regimen at the accelerator-based neutron source. - Highlights: • Gd-DTPA is widely clinically used as a contrast medium for MRI. • Shift to an accelerator-based neutron source is advantageous for gadolinium NCT. • Boron–gadolinium NCT effects on tumor cell lines were significant. • Additional administration of Gd-DTPA might enhance the effect of BPA–BNCT.

  14. Decommissioning of an Irradiator MPX-γ - 25M and a neutron Irradiator

    International Nuclear Information System (INIS)

    Soguero, Dania; Guerra, Mercedes; Prieto, Enrique; Desdin, Luis

    2013-01-01

    In this paper a technology is developed with its procedures in radiation protection to ensure the safety of the process of decommissioning of two irradiators. Both processes are described, the process of decommissioning of a neutron Irradiator 4. 44·10 11 Bq, employed in the vegetal radio mutagenesis, and disassembling of an installation of gamma irradiation of 3.33 * 10 12 Bq, self-shielded of category I, model MPX - γ - 25 M. The specific objectives are: a) identify aspects of the contractual assurance, of human and technical resources, b) to evaluate the radiological situation of the process and c) analyze the potential radiological extraordinary events in each of the steps of the process, ensuring the right answers. Evaluation of radiological successful events described can be considered as reference to address the process of disassembling of other similar irradiators

  15. Spectroscopic study of fast-neutron-irradiated chromatin

    International Nuclear Information System (INIS)

    Radu, L.; Gazdaru, D.; Constantinescu, B.

    2004-01-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [ 1 H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [ 1 H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  16. Spectroscopic study of fast-neutron-irradiated chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [V. Babes National Inst., Dept. of Molecular Genetics, Bucharest (Romania)]. E-mail: serbanradu@pcnet.ro; Gazdaru, D. [Bucharest Univ., Dept. of Biophysics, Physics Faculty, Bucharest (Romania); Constantinescu, B. [H. Hulubei National Inst., Dept. of Cyclotron, Bucharest (Romania)

    2004-02-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [{sup 1}H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [{sup 1}H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  17. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Makoto, E-mail: makoto.fukuda@qse.tohoku.ac.jp [Tohoku University, Sendai, 980-8579 (Japan); Kiran Kumar, N.A.P.; Koyanagi, Takaaki; Garrison, Lauren M. [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Snead, Lance L. [Massachusetts Institute of Technology, Cambridge, MA, 02139 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Hasegawa, Akira [Tohoku University, Sendai, 980-8579 (Japan)

    2016-10-15

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90–∼800 °C and fast neutron fluences were 0.02–9.00 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10{sup 25} n/m{sup 2} (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten. - Highlights: • The microstructure and irradiation hardening of single crystal pure W irradiated in HFIR was investigated. • The neutron energy spectrum influence was evaluated by comparing the HFIR results with previous work in Joyo and JMTR. • In the dose range up to ∼1 dpa, the neutron energy spectrum influence of irradiation hardening was not clear. • In the dose range above 1 dpa, the neutron energy influence on irradiation hardening and microstructural development was clearly observed. • The irradiation induced precipitates caused significant irradiation hardening of pure W irradiated in HFIR.

  18. Investigation of dose distribution in mixed neutron-gamma field of boron neutron capture therapy using N isopropylacrylamide gel

    Energy Technology Data Exchange (ETDEWEB)

    Bavarmegin, Elham; Sadremomtaz, Alireza [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Khalafi, Hossein; Kasesaz, Yaser [Dept. of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Khajeali, Azim [Medical Education Research Center, Tabriz (Iran, Islamic Republic of)

    2017-02-15

    Gel dosimeters have unique advantages in comparison with other dosimeters. Until now, these gels have been used in different radiotherapy techniques as a reliable dosimetric tool. Because dose distribution measurement is an important factor for appropriate treatment planning in different radiotherapy techniques, in this study, we evaluated the ability of the N-isopropylacrylamide (NIPAM) polymer gel to record the dose distribution resulting from the mixed neutron-gamma field of boron neutron capture therapy (BNCT). In this regard, a head phantom containing NIPAM gel was irradiated using the Tehran Research Reactor BNCT beam line, and then by a magnetic resonance scanner. Eventually, the R2 maps were obtained in different slices of the phantom by analyzing T2-weighted images. The results show that NIPAM gel has a suitable potential for recording three-dimensional dose distribution in mixed neutron-gamma field dosimetry.

  19. Chemical transformations associated with neutronic irradiation of telluric acid

    International Nuclear Information System (INIS)

    Bertet, M.

    1963-01-01

    The chemical transformations which arise from irradiation of telluric acid with neutrons have been studied under several experimental conditions. The effects of the reaction (n, γ ) on Te VI and of the isomeric transitions 131m Te VI → 131 Te and 129m Te VI → 129 Te, and the oxidation states of 131 I formed by β decay of 131 Te have been investigated in detail. The Szilard-Chalmers effect has been put in evidence. Retention (R) depends on the isomeric state of Rd-Te and is higher for the metastable isotopes. R increases with the time of irradiation. R seems to be independent of the medium which is used for dissolving telluric acid irradiated in the solid state. Higher values of R are found if the acid is irradiated in neutral or alkaline solution; irradiation in acid solution leads to lower values for R. Retention for 131 Te VI and 129 Te VI formed by isomeric transition depends on the pH of the solution where this disintegration occurs. For instance, with 129 Te, R is greater in 6 M NaOH (80 per cent) than in 3 M HCI (40 per cent). The relative amounts of the oxidation states of 131 I (reduced fraction (I - , IO - , I 2 ), iodate and periodate) depend on the medium, both if the acid is irradiated in the solid state and it is irradiated in solution. In the first case, the reduced fraction increases from 12 to 89 per cent when the dissolving medium is changed from neutral to 0.8 M HNO 3 . In the second case, the reduced fraction is 90 per cent in neutral or acid solution and 64 per cent in 0.5 M KOH. It has been shown, furthermore, that microamounts of Te VI are formed in certain cases. (author) [fr

  20. Fast neutron irradiation for locally advanced pancreatic cancer

    International Nuclear Information System (INIS)

    Smith, F.P.; Schein, P.S.; MacDonald, J.S.; Woolley, P.V.; Ornitz, R.; Rogers, C.

    1981-01-01

    Nineteen patients with locally advanced pancreatic cancer and one patient with islet cell cancer were treated with 1700-1500 neutron rad alone or in combination with 5-fluorouracil to exploit the theoretic advantages of higher linear energy of transfer, and lower oxygen enhancement ratio of neutrons. Only 5 of 14 (36%) obtained partial tumor regression. The median survival for all patients with pancreatic cancer was 6 months, which is less than that reported with 5-fluorouracil and conventional photon irradiation. Gastrointestinal toxicity was considerable; hemorhagic gastritis in five patients, colitis in two and esophagitis in one. One patient developed radiation myelitis. We therefore, caution any enthusiasm for this modality of therapy until clear evidence of a therapeutic advantage over photon therapy is demonstrated in controlled clinical trials

  1. Fast neutron irradiation for locally advanced pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.P. (Georgetown Univ. Medical Center, Washington, DC); Schein, P.S.; MacDonald, J.S.; Woolley, P.V.; Ornitz, R.; Rogers, C.

    1981-11-01

    Nineteen patients with locally advanced pancreatic cancer and one patient with islet cell cancer were treated with 1700-1500 neutron rad alone or in combination with 5-fluorouracil to exploit the theoretic advantages of higher linear energy of transfer, and lower oxygen enhancement ratio of neutrons. Only 5 of 14 (36%) obtained partial tumor regression. The median survival for all patients with pancreatic cancer was 6 months, which is less than that reported with 5-fluorouracil and conventional photon irradiation. Gastrointestinal toxicity was considerable; hemorhagic gastritis in five patients, colitis in two and esophagitis in one. One patient developed radiation myelitis. We therefore, caution any enthusiasm for this modality of therapy until clear evidence of a therapeutic advantage over photon therapy is demonstrated in controlled clinical trials.

  2. Effect of neutron irradiation on single crystal V3Si

    International Nuclear Information System (INIS)

    Viswanathan, R.; Caton, R.; Cox, D.E.; Guha, A.; Sarachik, M.P.; Smith, F.W.; Testardi, L.R.

    1977-01-01

    We We have investigated the effect of successive neutron irradiation up to a fluence of approximately 2 x 10 19 n/cm 2 , by measurements of heat capacity, susceptibility, resistivity, acoustic velocity and neutron diffraction in a single crystal V 3 Si. We find that for low level doses (phi t greater than or equal to 3.5 x 10 18 n/cm 2 ) (a) the structural transformation is very sensitive, whereas the suerconducting transition temperature, T/sub c/, is hardly affected, and (b) except for low temperature heat capacity, most of the other measurements show very little change. For the highest fluence of 2 x 10 19 n/cm 2 used to date, the T/sub c/ dropped to 7.5 K with large changes in the linear heat capacity coefficient, magnetic susceptibility and sound velocity. These results are discussed briefly in this paper

  3. High-energy neutron irradiation of superconducting compounds

    International Nuclear Information System (INIS)

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  4. Point defects in cubic boron nitride after neutron irradiation

    International Nuclear Information System (INIS)

    Atobe, Kozo; Honda, Makoto; Ide, Munetoshi; Yamaji, Hiromichi; Matsukawa, Tokuo; Fukuoka, Noboru; Okada, Moritami; Nakagawa, Masuo.

    1993-01-01

    The production of point defects induced by reactor neutrons and the thermal behavior of defects in sintered cubic boron nitride are investigated using the optical absorption and electron spin resonance (ESR) methods. A strong structureless absorption over the visible region was observed after fast neutron irradiation to a dose of 5.3 x 10 16 n/cm 2 (E > 0.1 MeV) at 25 K. This specimen also shows an ESR signal with g-value 2.006 ± 0.001, which can be tentatively identified as an electron trapped in a nitrogen vacancy. On examination of the thermal decay of the signal, the activation energy for recovery of the defects was determined to be about 1.79 eV. (author)

  5. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Alexandra Henriques

    2014-11-01

    Full Text Available Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  6. The radiobiology of boron neutron capture therapy: Are ''photon-equivalent'' doses really photon-equivalent?

    International Nuclear Information System (INIS)

    Coderre, J.A.; Diaz, A.Z.; Ma, R.

    2001-01-01

    Boron neutron capture therapy (BNCT) produces a mixture of radiation dose components. The high-linear energy transfer (LET) particles are more damaging in tissue than equal doses of low-LET radiation. Each of the high-LET components can multiplied by an experimentally determined factor to adjust for the increased biological effectiveness and the resulting sum expressed in photon-equivalent units (Gy-Eq). BNCT doses in photon-equivalent units are based on a number of assumptions. It may be possible to test the validity of these assumptions and the accuracy of the calculated BNCT doses by 1) comparing the effects of BNCT in other animal or biological models where the effects of photon radiation are known, or 2) if there are endpoints reached in the BNCT dose escalation clinical trials that can be related to the known response to photons of the tissue in question. The calculated Gy-Eq BNCT doses delivered to dogs and to humans with BPA and the epithermal neutron beam of the Brookhaven Medical Research Reactor were compared to expected responses to photon irradiation. The data indicate that Gy-Eq doses in brain may be underestimated. Doses to skin are consistent with the expected response to photons. Gy-Eq doses to tumor are significantly overestimated. A model system of cells in culture irradiated at various depths in a lucite phantom using the epithermal beam is under development. Preliminary data indicate that this approach can be used to detect differences in the relative biological effectiveness of the beam. The rat 9L gliosarcoma cell survival data was converted to photon-equivalent doses using the same factors assumed in the clinical studies. The results superimposed on the survival curve derived from irradiation with Cs-137 photons indicating the potential utility of this model system. (author)

  7. Annealing of dislocation loops in neutron-irradiated copper investigated by positron annihilation

    International Nuclear Information System (INIS)

    Gauster, W.B.; Mantl, S.; Schober, T.; Triftshauser, W.

    1975-01-01

    Positron annihilation angular correlation measurements were carried out on neutron-irradiated copper as a function of annealing temperature. Two types of specimens were used: single crystals irradiated with fast neutrons, and 10 B-doped polycrystalline samples irradiated with thermal neutrons. All irradiations were at approximately 320 0 K. A structure in the annealing curve, not previously observed by other techniques, indicates that between 460 and 600 0 K the dislocation loops present after irradiation dissociate and more effective positron trapping sites are formed. (auth)

  8. Inhibition of tumor growth in a glioma model treated with boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goodman, J.H.; McGregor, J.M.; Clendenon, N.R.; Gahbauer, R.A.; Barth, R.F.; Soloway, A.H.; Fairchild, R.G.

    1990-01-01

    This investigation attempts to determine whether increased survival time seen when the F98 glioma model is treated with boron neutron capture therapy (BNCT) is a result of inhibition of tumor growth caused by radiation-induced alterations in endothelial cells and normal tissue components. This indirect effect of radiation has been called the tumor bed effect. A series of tumor-bearing rats was studied, using a standardized investigational BNCT protocol consisting of 50 mg/kg of Na2B12H11SH injected intravenously 14 to 17 hours before neutron irradiation at 4 x 10(12) n/cm2. Ten rats, serving as controls, received no treatment either before or after tumor implantation. A second group of 10 rats was treated with BNCT 4 days before tumor implantation; these animals received no further treatment. The remaining group of 10 rats received no pretreatment but was treated with BNCT 10 days after implantation. Histological and ultrastructural analyses were performed in 2 animals from each group 17 days after implantation. Survival times of the untreated control animals (mean, 25.8 days) did not differ statistically from the survival times of the rats in the pretreated group (mean, 25.5 days). The rats treated with BNCT after implantation survived significantly longer (P less than 0.02; mean, 33.2 days) than the controls and the preirradiated animals. Tumor size indices calculated from measurements taken at the time of death were similar in all groups. These results indicate that, with this tumor model, BNCT does not cause a tumor bed effect in cerebral tissue. The therapeutic gains observed with BNCT result from direct effects on tumor cells or on the peritumoral neovascularity

  9. Swelling in neutron irradiated nickel-base alloys

    International Nuclear Information System (INIS)

    Brager, H.R.; Bell, W.L.

    1972-01-01

    Inconel 625, Incoloy 800 and Hastelloy X were neutron irradiated at 500 to 700 0 C. It was found that of the three alloys investigated, Inconel 625 offers the greatest swelling resistance. The superior swelling resistance of Inconel 625 relative to that of Hastelloy-X is probably related to differences in the concentrations of the minor rather than major alloy constituents, and can involve (a) enhanced recombination of defects in the Inconel 625 and (b) preferential attraction of vacancies to incoherent precipitates. (U.S.)

  10. Ultrasonic attenuation measurements and 'glassy' behaviour of neutron irradiated quartz

    International Nuclear Information System (INIS)

    Laermans, C.; Esteves, V.; Vanelstraete, A.

    1986-01-01

    The ultrasonic attenuation of longitudinal acoustic waves in slightly disordered crystalline quartz has been measured over a temperature range from 1.3 to 300 K, using the pulse-echo technique. Neutron irradiation is demonstrated to increase the ultrasonic attenuation at low temperatures indicating the presence of two-level tunneling systems similar to those of glasses. The present low-temperature acoustic results agree with a frequency independence and a T 3 behaviour for the relaxation process predicted by the two-level tunneling TLS-model where the regime ωT 1 >> 1 holds. (author)

  11. Positron lifetime study of neutron-irradiated molybdenum

    International Nuclear Information System (INIS)

    Hinode, Kenji; Tanigawa, Shoichiro; Kumakura, Hiroaki; Doyama, Masao; Shiraishi, Kensuke.

    1978-01-01

    Annealing behavior of fast-neutron-irradiated molybdenum was studied by means of positron lifetime technique. It was found that Stage III annealing can be mainly identified as the vacancy migration process from the detailed analyses of data. The void growth after successive high temperature annealings was clearly detected through the changes of positron lifetime parameters. An attempt to analyse the size distribution of voids from positron lifetime spectra was presented, and discussions on the evaluation of void concentration from positron data are also given. (author)

  12. Gamma and neutron irradiation tests on commercial IC op amps

    International Nuclear Information System (INIS)

    Kennedy, E.J.; Morris, A.C. Jr.; Su, D.K.

    1985-01-01

    Experimental results of gamma and neutron irradiation tests on 30 types of integrated-circuit operational amplifiers from 11 manufacturers are presented. All units were low-cost, commercial-grade devices. Op amps were evaluated for changes in offset voltage, input bias current, power supply current, open-loop gain, gain-bandwidth product, slew rate, power-supply and common-mode rejection ratios. Bipolar transistor op amps with resistive collector load resistors for the input stage indicated the best radiation hardness

  13. Analytical dosimetry for spontaneous tumor dogs receiving boron neutron capture therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Atkinson, C.A.; Gavin, P.R.

    1992-01-01

    The dog irradiation project of the Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program is administered by Washington State University (WSU) with analytical and physical dosimetry provided by the Idaho National Engineering Laboratory (INEL). One subtask of this project includes BNCT safety studies for dogs with spontaneously-occurring bra