WorldWideScience

Sample records for bnct neutron irradiation

  1. Proceedings of neutron irradiation technical meeting on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  2. The optimization study of Bonner sphere in the epi-thermal neutron irradiation field for BNCT.

    Science.gov (United States)

    Ueda, H; Tanaka, H; Maruhashi, A; Ono, K; Sakurai, Y

    2011-12-01

    The optimization study on the Bonner sphere in the epi-thermal neutron irradiation field for BNCT was done for the moderator material, moderator size, and activation foils as a neutron detector in the sphere. The saturated activity for the activation foil was obtained from the calculated response, and the effective energy range for each Bonner sphere was determined from the saturated activity. We can see that boric acid solution moderator is suitable for the spectrum measurement of a epi-thermal neutron irradiation field.

  3. Evaluation of D(d,n)3 He reaction neutron source models for BNCT irradiation system design

    Institute of Scientific and Technical Information of China (English)

    YAO Ze'en; LUO Peng; Tooru KOBAYASHI; Gerard BENGUA

    2007-01-01

    A mathematical method was developed to calculatc the yield.energy spectrum and angular distribution of neutrons from D(d,n)3 He(D-D)reaction in a thick deuterium-titanium target for incident deuterons in energies lower than 1.0MeV.The data of energy spectrum and angular distribution wefe applied to set up the neutron source model for the beam-shaping-assembly(BSA)design of Boron-Neutron-Capture-Therapy(BNCT)using MCNP-4C code.Three cases of D-D neutron source corresponding to incident deuteron energy of 1000.400 and 150 kaV were investigated.The neutron beam characteristics were compared with the model of a 2.45 MeV mono-energetic and isotropic neutron source using an example BSA designed for BNCT irradiation.The results show significant differences in the neutron beam characteristics,particularly the fast neutron component and fast neutron dose in air,between the non-isotropic neutron source model and the 2.5 MeV mono-energetic and isotropic neutron source model.

  4. BNCT irradiation facility at the JRR-4

    Energy Technology Data Exchange (ETDEWEB)

    Torii, Y.; Kishi, T.; Kumada, H.; Yamamoto, K.; Sakurai, F.; Takayanagi, M. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    The JRR--4 was modified for fuel enrichment reducing and reactor equipment renewal. And also a medical irradiation facility for the Boron Neutron Capture Therapy (BNCT) was installed at the JRR--4 in that time. The medical irradiation facility has been composed of a heavy water tank, a collimator and an irradiation room. The heavy water tank has four layers of heavy water for spectrum shifter and 75cm-thickness aluminum for the shield of fast neutron. The collimator is for collimating thermal neutron and epithermal neutron using polyethylene with lithium-fluoride and shielding gamma ray by bismuth. The irradiation room has sufficient space at exit side of the beam, to accommodate a large working area for setting the patient. Both of the medical treatment room and the patient-monitoring area were prepared adjacent to the irradiation room. The medical irradiation facility in the JRR-4 is designed to permit selection of neutron energies from thermal neutron to epithermal neutron by changing the thickness of heavy water layers. Therefore it is available to continue the same kind of BNCT with thermal neutron used to perform in the JRR-2, as well as to commence the research and development of BNCT with epithermal neutron, which will make the brain tumor treatment possible at a deep part of brain. The full power operation of the JRR-4 was resumed with LEU fuel in October 1998 and currently performing some experiments to measure the neutron fluxes and physical doses for determinate characterization of the medical irradiation facility. The first medical irradiation for BNCT was carried out on 25th October 1999. The patient was treated by Tsukuba University group using thermal neutron beam included epi-thermal neutrons. (author)

  5. A toolkit for epithermal neutron beam characterisation in BNCT.

    Science.gov (United States)

    Auterinen, Iiro; Serén, Tom; Uusi-Simola, Jouni; Kosunen, Antti; Savolainen, Sauli

    2004-01-01

    Methods for dosimetry of epithermal neutron beams used in boron neutron capture therapy (BNCT) have been developed and utilised within the Finnish BNCT project as well as within a European project for a code of practise for the dosimetry of BNCT. One outcome has been a travelling toolkit for BNCT dosimetry. It consists of activation detectors and ionisation chambers. The free-beam neutron spectrum is measured with a set of activation foils of different isotopes irradiated both in a Cd-capsule and without it. Neutron flux (thermal and epithermal) distribution in phantoms is measured using activation of Mn and Au foils, and Cu wire. Ionisation chamber (IC) measurements are performed both in-free-beam and in-phantom for determination of the neutron and gamma dose components. This toolkit has also been used at other BNCT facilities in Europe, the USA, Argentina and Japan.

  6. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  7. Production of epithermal neutron beams for BNCT

    CERN Document Server

    Bisceglie, E; Colonna, N; Paticchio, V; Santorelli, P; Variale, V

    2002-01-01

    The use of boron neutron capture therapy (BNCT) for the treatment of deep-seated tumors requires neutron beams of suitable energy and intensity. Simulations indicate the optimal energy to reside in the epithermal region, in particular between 1 and 10 keV. Therapeutic neutron beams with high spectral purity in this energy range could be produced with accelerator-based neutron sources through a suitable neutron-producing reaction. Herein, we report on different solutions that have been investigated as possible sources of epithermal neutron beams for BNCT. The potential use of such sources for a hospital-based therapeutic facility is discussed.

  8. The status of Tsukuba BNCT trial: BPA-based boron neutron capture therapy combined with X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T., E-mail: tetsu_tsukuba@yahoo.co.jp [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)] [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Nakai, K. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Nariai, T. [Department of Neurosurgery, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo (Japan); Kumada, H.; Okumura, T.; Mizumoto, M.; Tsuboi, K. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Zaboronok, A.; Ishikawa, E.; Aiyama, H.; Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)

    2011-12-15

    The phase II trial has been prepared to assess the effectiveness of BPA (250 mg/kg)-based NCT combined with X-ray irradiation and temozolomide (75 mg/m{sup 2}) for the treatment of newly diagnosed GBM. BPA uptake is determined by {sup 18}F-BPA-PET and/or {sup 11}C-MET-PET, and a tumor with the lesion to normal ratio of 2 or more is indicated for BNCT. The maximum normal brain point dose prescribed was limited to 13.0 Gy or less. Primary end point is overall survival.

  9. An Accelerator Neutron Source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  10. An Accelerator Neutron Source for BNCT

    International Nuclear Information System (INIS)

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were (1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, (2) that the patient treatment time be reasonable, (3) that the proton current required to treat patients in reasonable times be technologically achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally (4) that the treatment be safe for the patients

  11. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    International Nuclear Information System (INIS)

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions open-quotes How much?close quotes and open-quotes What kind?close quotes of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient open-quotes scatterer,close quotes and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h-1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs

  12. Boron Neutron Capture Therapy (BNCT) in an Oral Precancer Model: Therapeutic Benefits and Potential Toxicity of a Double Application of BNCT with a Six-Week Interval

    International Nuclear Information System (INIS)

    Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA ((GB-10 + BPA)-BNCT) or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB- 10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.

  13. A feasibility study of the Tehran research reactor as a neutron source for BNCT.

    Science.gov (United States)

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Monshizadeh, Mahdi

    2014-08-01

    Investigation on the use of the Tehran Research Reactor (TRR) as a neutron source for Boron Neutron Capture Therapy (BNCT) has been performed by calculating and measuring energy spectrum and the spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal column, and the medical room. Activation methods with multiple foils and a copper wire have been used for the mentioned measurements. The results show that (1) the small diameter and long length beam tubes cannot provide sufficient neutron flux for BNCT; (2) in order to use the medical room, the TRR core should be placed in the open pool position, in this situation the distance between the core and patient position is about 400 cm, so neutron flux cannot be sufficient for BNCT; and (3) the best facility which can be adapted for BNCT application is the thermal column, if all graphite blocks can be removed. The epithermal and fast neutron flux at the beginning of this empty column are 4.12×10(9) and 1.21×10(9) n/cm(2)/s, respectively, which can provide an appropriate neutron beam for BNCT by designing and constructing a proper Beam Shaping Assembly (BSA) structure.

  14. Conceptual design of epithermal neutron beam for BNCT in the thermalizing column of TRIGA reactor

    International Nuclear Information System (INIS)

    The Monte Carlo feasibility study of development of the epithermal neutron beam for BNCT clinical trials in thermalising column (TC) of TRIGA reactor is presented. The investigation of the possible use of fission converter as well as the set-up of TRIGA reactor core is performed. The optimization of the irradiation facility components is carried out and the configuration with the most favorable cost/performance ratio is proposed. The results prove, that a BNCT irradiation facility with performances, comparable to existing beams throughout the world, could be installed in TC/DC of the TRIGA reactor, quite suitable for the clinical treatments of human patients.(author)

  15. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-04-02

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.

  16. Accelerator based-boron neutron capture therapy (BNCT)-clinical QA and QC

    International Nuclear Information System (INIS)

    Alpha-particle and recoil Li atom yielded by the reaction (10B, n), due to their high LET properties, efficiently and specifically kill the cancer cell that has incorporated the boron. Efficacy of this boron neutron capture therapy (BNCT) has been demonstrated mainly in the treatment of recurrent head/neck and malignant brain cancers in Kyoto University Research Reactor Institute (KUR). As the clinical trial of BNCT is to start from 2009 based on an accelerator (not on the Reactor), this paper describes the tentative outline of the standard operation procedure of BNCT for its quality assurance (QA) and quality control (QC) along the flow of its clinical practice. Personnel concerned in the practice involve the attending physician, multiple physicians in charge of BNCT, medical physicists, nurses and reactor stuff. The flow order of the actual BNCT is as follows: Pre-therapeutic evaluation mainly including informed consent and confirmation of the prescription; Therapeutic planning including setting of therapy volume, and of irradiation axes followed by meeting for stuffs' agreement, decision of irradiating field in the irradiation room leading to final decision of the axis, CT for the planning, decision of the final therapeutic plan according to Japan Atomic Energy Agency-Computational Dosimetry System (JCDS) and meeting of all related personnel for the final confirmation of therapeutic plan; and BNCT including the transport of patient to KUR, dripping of boronophenylalanine, setting up of the patient on the machine, blood sampling for pharmacokinetics, boron level measurement for decision of irradiating time, switch on/off of the accelerator, confirmation of patient's movement in the irradiated field after the neutron irradiation, blood sampling for confirmation of the boron level, and patient's leave from the room. The QA/QC check is principally to be conducted with the two-person rule. The purpose of the clinical trial is to establish the usefulness of BNCT, and

  17. Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats Introduction: Boron Neutron Capture Therapy (BNCT) is based on selective tumor uptake of boron compounds, followed by neutron irradiation. BNCT was proposed for the treatment of unresectable, diffuse lung metastases. The aim of the present study was to perform BNCT studies in an experimental model of lung metastases. Materials and Methods: 3 x 106/0.5 ml colon carcinoma cells (DHD/K12/TRb) were injected iv in syngeneic BDIX rats. Three weeks post-inoculation, rats with diffuse lung metastases were used for in vivo BNCT studies in the RA-3 Nuclear Reactor. Based on previous biodistribution studies and computational dosimetry with Monte Carlo simulation, 2 doses were prescribed, i.e. 4 Gy and 8 Gy minimum absorbed dose to tumor. The animals were assigned to 5 experimental groups (n= 4 to 8) at each dose level: T0 (euthanized pre-treatment), BPA-BNCT, Comb-BNCT (BPA+GB-10), Beam only (background dose) and Sham (same manipulation, no treatment). Boron concentration was measured in a blood sample taken pre-irradiation to verify that the value was in the range established in previous biodistribution studies. The animals were followed clinically for 2 weeks after neutron irradiation and then euthanized to assess the response of tumor and normal lung, macroscopically and histologically. To date we have evaluated the end-point weight of lung (normal lung + metastases) and % lung weight/body weight as an indicator of tumor growth. Results: The statistical analysis (ANOVA) of % lung weight/body weight showed statistically significant differences (p<0.05) between groups T0 (0.79 ± 0.38) and Sham (1.87 ± 0.91). No statistically significant differences were observed between the Beam only groups (at both dose levels) and Sham. Similar and statistically significant tumor control was induced in the groups BPA-BNCT Low dose (LD) (0.56 ± 0.11), BPA-BNCT High dose (HD) (0.80 ± 0.16), Comb-BNCT

  18. The new hybrid thermal neutron facility at TAPIRO reactor for BNCT radiobiological experiments.

    Science.gov (United States)

    Esposito, J; Rosi, G; Agosteo, S

    2007-01-01

    A new thermal neutron irradiation facility, devoted to carry out both dosimetric and radiobiological studies on boron carriers, which are being developed in the framework of INFN BNCT project, has been installed at the ENEA Casaccia TAPIRO research fast reactor. The thermal column, based on an original, hybrid, neutron spectrum shifter configuration, has been recently become operative. In spite of its low power (5 kW), the new facility is able to provide a high thermal neutron flux level, uniformly distributed inside the irradiation cavity, with a quite low gamma background. The main features and preliminary benchmark measurements of the Beam-shaping assembly are here presented and discussed.

  19. Design of epithermal neutron beam for clinical BNCT treatment at Slovenian TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maucec, Marko [Jozef Stefan Institute, Reactor Physics Division, Lubljana (Slovenia). E-mail: marko.mauce@ijs.si

    1999-07-01

    The Monte Carlo feasibility study of development of epithermal neutron beam for BNCT clinical trials on Jozef Stefan Institute (JSI) TRIGA reactor is presented. The investigation of the possible use of fission converter for the purpose of enhancement of neutron beam, as well as the set-up of TRIGA reactor core is performed. The optimization of the irradiation facility components is carried out and the configuration with the most favorable cost/performance ratio is proposed. The simulation results prove that a BNCT irradiation facility with performances, comparable to existing beams throughout the world, could be installed in the thermalizing column of the TRIGA reactor, quite suitable for the clinical treatments of human patients. (author)

  20. Design of epithermal neutron beam for clinical BNCT treatment at Slovenian TRIGA research reactor

    International Nuclear Information System (INIS)

    The Monte Carlo feasibility study of development of epithermal neutron beam for BNCT clinical trials on Jozef Stefan Institute (JSI) TRIGA reactor is presented. The investigation of the possible use of fission converter for the purpose of enhancement of neutron beam, as well as the set-up of TRIGA reactor core is performed. The optimization of the irradiation facility components is carried out and the configuration with the most favorable cost/performance ratio is proposed. The simulation results prove that a BNCT irradiation facility with performances, comparable to existing beams throughout the world, could be installed in the thermalizing column of the TRIGA reactor, quite suitable for the clinical treatments of human patients. (author)

  1. The relationship between boron neutron capture therapy (BNCT) and positron emission tomography (PET) for malignant brain tumors

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a particle irradiation therapy that is theoretically available for selective radiation of tumor cells. Boronophenylalanine-positron emission tomography (18F-BPA-PET) was used in this study. Boron is used as a tracer compound for the neutron capture reaction and has been particularly useful for the recent noncraniotomy BNCT. In this report, we introduce this type of PET as a principal axis in BNCT and relationship with PET. We calculated the drug accumulation to the tumor before neutron irradiation to individualize the treatment. We decided the indication for BNCT on the basis of a PET study and are now expanding the indications to other systemic cancers, including head and neck, lung, and liver cancers. In addition, other irradiation modalities have developed a radiation plan on the basis of a PET study, and several studies attempted improving the results; however, the lesion is exposed to high radiation doses and appear as high accumulation on BPA-PET during BNCT. We determined the neutron exposure time from the dosage for normal tissue in the actual treatment, but the lesion/normal tissue ratio obtained from BPA-PET is for evaluating the tumor dose and following the treatment plan. We also found that a PET study was useful in the follow-up stage to aid in diagnosis of pathologic conditions such as increase in tumor volume, recurrence, or radiation necrosis and for patients who had already been treated for malignant brain tumor. (author)

  2. Determination of the irradiation field at the research reactor TRIGA Mainz for BNCT.

    Science.gov (United States)

    Nagels, S; Hampel, G; Kratz, J V; Aguilar, A L; Minouchehr, S; Otto, G; Schmidberger, H; Schütz, C; Vogtländer, L; Wortmann, B

    2009-07-01

    For the application of the BNCT for the excorporal treatment of organs at the TRIGA Mainz, the basic characteristics of the radiation field in the thermal column as beam geometry, neutron and gamma ray energies, angular distributions, neutron flux, as well as absorbed gamma and neutron doses must be determined in a reproducible way. To determine the mixed irradiation field thermoluminescence detectors (TLD) made of CaF(2):Tm with a newly developed energy-compensation filter system and LiF:Mg,Ti materials with different (6)Li concentrations and different thicknesses as well as thin gold foils were used. PMID:19380234

  3. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  4. The multifunction neutron irradiator (MNI)

    Energy Technology Data Exchange (ETDEWEB)

    Yongmao Zhou; Shenzhi Li

    1994-12-31

    The Multifunction Neutron Irradiator (MNI) under design is a small-type neutron source reactor, for studying the Boron Neutron Capture Therapy (BNCT) for human brain glioblastoma and other uses in neutron technology such as Instrumental Neutron Activation Analysis (INAA), short-lived radioistope production, and some fundamental researches. The reactor core is designed to have passive safety and the process control of the reactor operations is fully computerized. There are two operational modes: The routine operation mode with reactor power 20{approximately}30 kW and flux 1 X 10{sup 12} n {center_dot} cm{sup -2} {center_dot} {sup -1} and the enhanced power operation mode for medical irradiation. The irradiator can be located in a medical center, research institute or university.

  5. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  6. Postoperative treatment of glioblastoma with BNCT at the Petten Irradiation Facility (EORTC Protocol 11961)

    International Nuclear Information System (INIS)

    The boron neutron capture therapy is based on the reaction occurring between the isotope 10B and thermal neutrons. A low energy neutron is captured by the nucleus and it disintegrates into two densely ionising particles, Li nucleus and He nucleus (α particle), with high biological effectiveness. On the basis of comprehensive preclinical investigations in the frame of the European Collaboration with Na2B12H11SH (BSH), as boron delivery agent, the first European phase I, clinical trial was designed at the only available epithermal beam in Europe, at the High Flux Reactor, Petten, in the Netherland. The goal of this study is to establish the safe BNCT dose for cranial tumors under defined conditions. BNCT is applied as postoperative radiotherapy in 4 fractions, after removal of the tumor for a group of patients suffering from glioblastoma, who would have no benefit from conventional treatment, but have sufficient life expectancy to detect late radiation morbidity due to BNCT. The starting dose is set at 80% of the dose where neurological effects occured in preclinical large animal experiments following a single fraction. The radiation dose will be escalated, by constant boron concentration in blood, in 4 steps for cohorts of ten patients, after an observation period of at least 6 months after the end of BNCT of the last patient of a cohort. The adverse events on healthy tissues due to BSH and due to the radiotherapy will be analysed in order to establish the maximal tolerated dose and dose limiting toxicity. Besides of the primary aim of this study the survival will be recorded. The first patient was treated in October 1997, and further four patients have been irradiated to date. The protocol design proved to be well applicable, establishing the basis for scientific evaluation, for performance of safe patient treatment in a very complex situation and for opening the possibility to perform further clinical research work on BNCT. (orig.)

  7. Comparison of the radiobiological effects of Boron neutron capture therapy (BNCT) and conventional Gamma Radiation

    International Nuclear Information System (INIS)

    BNCT is an experimental radiotherapeutic modality that uses the capacity of the isotope 10B to capture thermal neutrons leading to the production of 4He and 7Li, particles with high linear energy transfer (LET). The aim was to evaluate and compare in vitro the mechanisms of response to the radiation arising of BNCT and conventional gamma therapy. We measured the survival cell fraction as a function of the total physical dose and analyzed the expression of p27/Kip1 and p53 by Western blotting in cells of colon cancer (ARO81-1). Exponentially growing cells were distributed into the following groups: 1) BPA (10 ppm 10B) + neutrons; 2) BOPP (10 ppm 10B) + neutrons; 3) neutrons alone; 4) gamma-rays. A control group without irradiation for each treatment was added. The cells were irradiated in the thermal neutron beam of the RA-3 (flux= 7.5 109 n/cm2 sec) or with 60Co (1Gy/min) during different times in order to obtain total physical dose between 1-5 Gy (±10 %). A decrease in the survival fraction as a function of the physical dose was observed for all the treatments. We also observed that neutrons and neutrons + BOPP did not differ significantly and that BPA was the more effective compound. Protein extracts of irradiated cells (3Gy) were isolated to 24 h and 48 h post radiation exposure. The irradiation with neutrons in presence of 10BPA or 10BOPP produced an increase of p53 at 24 h maintain until 48 h. On the contrary, in the groups irradiated with neutrons alone or gamma the peak was observed at 48 hr. The level of expression of p27/Kip1 showed a reduction of this protein in all the groups irradiated with neutrons (neutrons alone or neutrons plus boron compound), being more marked at 24 h. These preliminary results suggest different radiobiological response for high and low let radiation. Future studies will permit establish the role of cell cycle in the tumor radio sensibility to BNCT. (author)

  8. Characterisation of an accelerator-based neutron source for BNCT of explanted livers

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Politecnico di Milano (Italy). Dipartimento di Ingeneria Nucleare; Colautti, P. [INFN, Padova (Italy). Laboratori Nazionali di Legnaro; Corrado, M.G. [Universita degli Studi di Milano (Italy). Dipartimento di Fisica; d`Errico, F. [Pisa Univ. (Italy). Dipt. di Costruzioni Meccaniche e Nucleari; Matzke, M. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Monti, S.; Tinti, R. [ENEA-ERG-FIRE, Bologna (Italy); Silari, M. [Consiglio Nazionale delle Ricerche, Milan (Italy)

    1997-09-01

    An accelerator-based thermal neutron source for BNCT of the explanted liver was designed using the MCNP code. Neutrons are generated via (d,n) reactions by 7 MeV deuterons bombarding a beryllium target. The therapy constraints were approached by simulating an irradiation cavity placed inside a graphite reflector parallelepiped containing a heavy-water moderator in turn enclosing the beryllium target. The experimental verification was performed at the Laboratori Nazionali di Legnaro (Italy). The thermal and epithermal neutron flux was measured at various positions in the irradiation cavity by means of activation techniques employing bare and cadmium covered indium foils. Further measurements were performed with BF{sub 3} detectors. The fast neutron component of the dose equivalent and the energy spectrum above 100keV were assessed by means of a recently developed technique employing variable threshold superheated drop detectors. The prompt gamma ray dose was measured with {sup 7}LiF TLDs. (author).

  9. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility.

    Science.gov (United States)

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively. PMID:26595774

  10. Neutron collimator design of neutron radiography based on the BNCT facility

    OpenAIRE

    Yang, XP.; Yu, BX; Li, YG; Peng, D; Lu, J.; Zhang, GL.; Zhao, H.; Zhang, AW.; Li, CY.; Liu, WJ; Hu, T.; Lv, JG.

    2013-01-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of theneutron collimat...

  11. Resumption of JRR-4 and characteristics of neutron beam for BNCT.

    Science.gov (United States)

    Nakamura, T; Horiguchi, H; Kishi, T; Motohashi, J; Sasajima, F; Kumada, H

    2011-12-01

    The clinical trials of Boron Neutron Capture Therapy (BNCT) have been conducted using Japan Research Reactor No. 4 (JRR-4) at Japan Atomic Energy Agency (JAEA). On December 28th, 2007, a crack of a graphite reflector in the reactor core was found on the weld of the aluminum cladding. For this reason, specifications of graphite reflectors were renewed; dimensions of the graphite were reduced and gaps of water were increased. All existing graphite reflectors of JRR-4 were replaced by new graphite reflectors. In February 2010 the resumption of JRR-4 was carried out with new graphite reflectors. We measured the characteristics of neutron beam at the JRR-4 Neutron Beam Facility. A cylindrical water phantom of 18.6 cm diameter and 24 cm depth was set in front of the beam port with 1cm gap. TLDs and gold wires were inserted within the phantom when the phantom was irradiated. The results of the measured thermal neutron flux and the gamma dose in water were compared with that of MCNP calculation. The neutron energy spectrum of the calculation model with new reflector had little variation compared to that with old reflector, but intensities of the neutron flux and gamma dose with new reflector were rather smaller than those with old reflector. The calculated results showed the same tendency as that of the experimental results. Therefore, the clinical trials of BNCT in JRR-4 could be restarted.

  12. High neutron flux quality for irradiation and BCNT conditions

    International Nuclear Information System (INIS)

    This paper presents methods for characterising the neutron field in irradiation and boron neutron capture therapy (BNCT) facilities, applications for which a high flux quality is needed. The irradiation facility considered consists of an isotopic (Am-Be) neutron source in a cylindrical cavity bored inside a solid paraffin cube measuring 51·51·51 cm, thus constituting a neutron Howitzer. The neutron flux distribution within the cavity above this source was investigated by measurements of aluminium foil activation and by calculations with the MCNP-4C code. The BNCT calculations were performed for different channel radii. Results from measurements and calculations are in good agreement despite the uncertainties in identifying the exact energies at which the two reactions measured, 27Al(n,γ)28Al and 27Al(n, p)27Mg, take place. The study provided useful information about the optimal irradiation and BNCT conditions. (author)

  13. Neutron field characterization in the installation for BNCT study in the IEA-R1 reactor; Caracterizacao do campo de neutrons na instalacao para estudo em BNCT no reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro Junior, Valdeci

    2008-07-01

    This work aims to characterize the mixed neutron and gamma field, in the sample irradiation position, in a research installation for Boron Neutron Capture Therapy (BNCT), in the IPEN IEA-R1 reactor. The BNCT technique has been studied as a safe and selective option in the treatment of resistant cancerigenous tumors or considered non-curable by the conventional techniques, for example, the Glioblastoma Multiform - a brain cancerigenous tumor. Neutron flux measurements were carried out: thermal, resonance and fast, as well as neutron and gamma rays doses, in the sample position, using activation foils detectors and thermoluminescent dosimeters. For the determination of the neutron spectrum and intensity, a set of different threshold activation foils and gold foils covered and uncovered with cadmium irradiated in the installation was used, analyzed by a high Pure Germanium semiconductor detector, coupled to an electronic system suitable for gamma spectrometry. The results were processed with the SAND-BP code. The doses due to gamma and neutron rays were determined using thermoluminescent dosimeters TLD 400 and TLD 700 sensitive to gamma and TLD 600, sensitive to neutrons. The TLDs were selected and used for obtaining the calibration curves - dosimeter answer versus dose - from each of the TLD three types, which were necessary to calculate the doses due to neutron and gamma, in the sample position. The radiation field, in the sample irradiation position, was characterized flux for thermal neutrons of 1.39.10{sup 8} {+-} 0,12.10{sup 8} n/cm{sup 2}s the doses due to thermal neutrons are three times higher than those due to gamma radiation and confirm the reproducibility and consistency of the experimental findings obtained. Considering these results, the neutron field and gamma radiation showed to be appropriated for research in BNCT. (author)

  14. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase 1/2 clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra, alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  15. ANALYSIS OF ACCELERATOR BASED NEUTRON SPECTRA FOR BNCT USING PROTON RECOIL SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI,L.; LUDEWIG,H.; POWELL,J.R.; RAPARIA,D.; ALESSI,J.G.; LOWENSTEIN,D.I.

    1998-11-06

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  16. Dosimetric analysis of BNCT - Boron Neutron Capture Therapy - coupled to 252Cf brachytherapy

    International Nuclear Information System (INIS)

    The incidence of brain tumors is increasing in world population; however, the treatments employed in this type of tumor have a high rate of failure and in some cases have been considered palliative, depending on histology and staging of tumor. Its necessary to achieve the control tumor dose without the spread irradiation cause damage in the brain, affecting patient neurological function. Stereotactic radiosurgery is a technique that achieves this; nevertheless, other techniques that can be used on the brain tumor control must be developed, in order to guarantee lower dose on health surroundings tissues other techniques must be developing. The 252Cf brachytherapy applied to brain tumors has already been suggested, showing promising results in comparison to photon source, since the active source is placed into the tumor, providing greater dose deposition, while more distant regions are spared. BNCT - Boron Neutron Capture Therapy - is another technique that is in developing to brain tumors control, showing theoretical superiority on the rules of conventional treatments, due to a selective irradiation of neoplasics cells, after the patient receives a borate compound infusion and be subjected to a epithermal neutrons beam. This work presents dosimetric studies of the coupling techniques: BNCT with 252Cf brachytherapy, conducted through computer simulation in MCNP5 code, using a precise and well discretized voxel model of human head, which was incorporated a representative Glioblastoma Multiform tumor. The dosimetric results from MCNP5 code were exported to SISCODES program, which generated isodose curves representing absorbed dose rate in the brain. Isodose curves, neutron fluency, and dose components from BNCT and 252Cf brachytherapy are presented in this paper. (author)

  17. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  18. Spectral performance of a composite single-crystal filtered thermal neutron beam for BNCT research at the University of Missouri.

    Science.gov (United States)

    Brockman, J; Nigg, D W; Hawthorne, M F; McKibben, C

    2009-07-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron fluxes produced at the irradiation location are 9.6 x 10(8) and 8.8 x 10(8)neutrons/cm(2)s, respectively. Calculated and measured cadmium ratios (Au foils) are 217 and 132. These results indicate a well-thermalized neutron spectrum with sufficient thermal neutron flux for a variety of small animal BNCT studies.

  19. Boron neutron capture therapy (BNCT) for liver metastasis in an experimental model: dose–response at five-week follow-up based on retrospective dose assessment in individual rats

    Energy Technology Data Exchange (ETDEWEB)

    Emiliano C. C. Pozzi; Veronica A. Trivilin; Lucas L. Colombo; Andrea Monti Hughes; Silvia I. Thorp; Jorge E. Cardoso; Marcel A. Garabalino; Ana J. Molinari; Elisa M. Heber; Paula Curotto; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; David W. Nigg; Amanda E. Schwint

    2013-11-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For each rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5–8.9 Gy and BPA-BNCT II: 9.2–16 Gy. At 5 weeks post-irradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 +/- 6.6 for Sham, 7.8 +/- 4.1 for Beam only, 4.4 +/- 5.6 for BPA-BNCT I and 0.45 +/- 0.20 for BPA-BNCT II; tumor nodule weight was 750 +/- 480 mg for Sham, 960 +/- 620 mg for Beam only, 380 +/- 720 mg for BPA-BNCT I and 7.3 +/- 5.9 mg for BPA-BNCT II. The BPA-BNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively.

  20. Biodistribution of Boron compounds in an experimental model of liver metastases for Boron Neutron Capture (BNCT) Studies

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with thermal or epithermal neutrons. The high linear energy transfer alpha particles and recoiling 7Li nuclei emitted during the capture of a thermal neutron by a 10B nucleus have a short range and a high biological effectiveness. Thus, BNCT would potentially target neoplastic tissue selectively. In previous studies we demonstrated the therapeutic efficacy of different BNCT protocols in an experimental model of oral cancer. More recently we performed experimental studies in normal rat liver that evidenced the feasibility of treating liver metastases employing a novel BNCT protocol proposed by JEC based on ex-situ treatment and partial liver auto-transplant. The aim of the present study was to perform biodistribution studies with different boron compounds and different administration protocols to determine the protocols that would be therapeutically useful in 'in vivo' BNCT studies at the RA-3 Nuclear Reactor in an experimental model of liver metastases in rats. Materials and Methods. A total of 70 BDIX rats (Charles River Lab., MA, USA) were inoculated in the liver with syngeneic colon cancer cells DH/DK12/TRb (ECACC, UK) to induce the development of subcapsular metastatic nodules. 15 days post-inoculation the animals were used for biodistribution studies. A total of 11 protocols were evaluated employing the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B1-0H10), alone or combined employing different doses and administration routes. Tumor, normal tissue and blood samples were processed for boron measurement by ICP-OES. Results. Several protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue, i.e. BPA 15.5 mg 10B/kg iv + GB-10 50 mg 10B/kg iv; BPA 46.5 mg 10B/kg ip; BPA 46.5 mg 10B/kg ip + iv; BPA 46

  1. Neutron collimator design of neutron radiography based on the BNCT facility

    International Nuclear Information System (INIS)

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of the neutron collimator is greater than 1.0×106 n/cm2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography. (authors)

  2. Spatial and spectral characteristics of a compact system neutron beam designed for BNCT facility

    International Nuclear Information System (INIS)

    The development of suitable neutron sources and neutron beam is critical to the success of Boron Neutron Capture Therapy (BNCT). In this work a compact system designed for BNCT is presented. The system consists of 252Cf fission neutron source and a moderator/reflector/filter/shield assembly. The moderator/reflector/filter arrangement has been optimized to maximize the epithermal neutron component which is useful for BNCT treatment of deep seated tumors with the suitably low level of beam contamination. The MCMP5 code has been used to calculate the different components of neutrons, secondary gamma rays originating from 252Cf source and the primary gamma rays emitted directly by this source at the exit face of the compact system. The fluence rate distributions of such particles were also computed along the central axis of a human head phantom

  3. Spatial and spectral characteristics of a compact system neutron beam designed for BNCT facility

    Energy Technology Data Exchange (ETDEWEB)

    Ghassoun, J. [EPRA, Departement de Physique, Faculte des Sciences Semlalia, B.P. 2390, 40000 Marrakech (Morocco)], E-mail: ghassoun@ucam.ac.ma; Chkillou, B.; Jehouani, A. [EPRA, Departement de Physique, Faculte des Sciences Semlalia, B.P. 2390, 40000 Marrakech (Morocco)

    2009-04-15

    The development of suitable neutron sources and neutron beam is critical to the success of Boron Neutron Capture Therapy (BNCT). In this work a compact system designed for BNCT is presented. The system consists of {sup 252}Cf fission neutron source and a moderator/reflector/filter/shield assembly. The moderator/reflector/filter arrangement has been optimized to maximize the epithermal neutron component which is useful for BNCT treatment of deep seated tumors with the suitably low level of beam contamination. The MCMP5 code has been used to calculate the different components of neutrons, secondary gamma rays originating from {sup 252}Cf source and the primary gamma rays emitted directly by this source at the exit face of the compact system. The fluence rate distributions of such particles were also computed along the central axis of a human head phantom.

  4. Spatial and spectral characteristics of a compact system neutron beam designed for BNCT facility.

    Science.gov (United States)

    Ghassoun, J; Chkillou, B; Jehouani, A

    2009-04-01

    The development of suitable neutron sources and neutron beam is critical to the success of Boron Neutron Capture Therapy (BNCT). In this work a compact system designed for BNCT is presented. The system consists of (252)Cf fission neutron source and a moderator/reflector/filter/shield assembly. The moderator/reflector/filter arrangement has been optimized to maximize the epithermal neutron component which is useful for BNCT treatment of deep seated tumors with the suitably low level of beam contamination. The MCMP5 code has been used to calculate the different components of neutrons, secondary gamma rays originating from (252)Cf source and the primary gamma rays emitted directly by this source at the exit face of the compact system. The fluence rate distributions of such particles were also computed along the central axis of a human head phantom. PMID:19168369

  5. Physical and biological dosimetry at the RA-3 facility for small animal irradiation: preliminary BNCT studies in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality based on the capture reaction that occurs between thermal neutrons and boron-10 atoms that accumulate selectively in tumor tissue, emitting high linear energy transfer (LET), short range (5-9 microns) particles (alpha y 7Li). Thus, BNCT would potentially target tumor tissue selectively, sparing normal tissue. Herein we evaluated the feasibility of treating experimental oral mucosa tumors with BNCT at RA-3 (CAE) employing the hamster cheek pouch oral cancer model and characterized the irradiation field at the RA-3 facility. We evaluated the therapeutic effect on tumor of BNCT mediated by BPA in the hamster cheek pouch oral cancer model and the potential radio toxic effects in normal tissue. We evidenced a moderate biological response in tumor, with no radio toxic effects in normal tissue following irradiations with no shielding for the animal body. Given the sub-optimal therapeutic response, we designed and built a 6Li2CO3 shielding for the body of the animal to increase the irradiation dose to tumor, without exceeding normal tissue radio tolerance. The measured absolute magnitude of thermal neutron flux and the characterization of the beam with and without the shielding in place, suggest that the irradiation facility in the thermal column of RA-3 would afford an excellent platform to perform BNCT studies in vitro and in vivo in small experimental animals. The present findings must be confirmed and extended by performing in vivo BNCT radiobiological studies in small experimental animals, employing the shielding device for the animal body. (author)

  6. Neutron collimator design of neutron radiography based on the BNCT facility

    CERN Document Server

    Yang, XP; Li, YG; Peng, D; Lu, J; Zhang, GL; Zhao, H; Zhang, AW; Li, CY; Liu, WJ; Hu, T; Lv, JG

    2013-01-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of theneutron collimator is greater than 10^6 n/cm^2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.

  7. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    CERN Document Server

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  8. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  9. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    Science.gov (United States)

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values.

  10. Feasibility study of using laser-generated neutron beam for BNCT

    International Nuclear Information System (INIS)

    The feasibility of using a laser-accelerated proton beam to produce a neutron source, via (p,n) reaction, for Boron Neutron Capture Therapy (BNCT) applications has been studied by MCNPX Monte Carlo code. After optimization of the target material and its thickness, a Beam Shaping Assembly (BSA) has been designed and optimized to provide appropriate neutron beam according to the recommended criteria by International Atomic Energy Agency. It was found that the considered laser-accelerated proton beam can provide epithermal neutron flux of ∼2×106 n/cm2 shot. To achieve an appropriate epithermal neutron flux for BNCT treatment, the laser must operate at repetition rates of 1 kHz, which is rather ambitious at this moment. But it can be used in some BNCT researches field such as biological research. - Highlights: • Feasibility of using laser-accelerated proton beam for BNCT has been investigated. • The considered beam can provide epithermal neutron flux of ~2×106 (n/cm2.shot). • For BNCT treatment, the laser must operate at repetition rates of 1 kHz

  11. Computational dosimetry of a simulated combined standard X-Rays and BNCT treatment

    Energy Technology Data Exchange (ETDEWEB)

    Casal, M.R., E-mail: mcasal@cnea.gov.ar [Instituto de Oncologia ' Angel H. Roffo' , Universidad de Buenos Aires, Av. San Martin 5481, Bs.As. (Argentina)] [Comision Nacional de Energia Atomica, Av. General Paz 1499, San Martin, Buenos Aires (Argentina); Herrera, M.S., E-mail: mariettaherrera@gmail.com [Comision Nacional de Energia Atomica, Av. General Paz 1499, San Martin, Buenos Aires (Argentina)] [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) Av. Rivadavia 191, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad de General San Martin, 25 de Mayo and M. de Irigoyen, San Martin (Argentina); Gonzalez, S.J., E-mail: srgonzal@cnea.gov.ar [Comision Nacional de Energia Atomica, Av. General Paz 1499, San Martin, Buenos Aires (Argentina)] [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) Av. Rivadavia 191, Buenos Aires (Argentina)

    2011-12-15

    There has been increasing interest in combining Boron Neutron Capture Therapy (BNCT) with standard radiotherapy, either concomitantly or as a BNCT treatment of a recurrent tumor that was previously irradiated with a medical electron linear accelerator (LINAC). In this work we report the simulated dosimetry of treatments combining X-rays and BNCT

  12. A feasibility design study on a neutron spectrometer for BNCT with liquid moderator.

    Science.gov (United States)

    Tamaki, S; Sato, F; Murata, I

    2015-12-01

    Neutrons generated by accelerators have various energy spectra. However, only limited methods are available to measure the whole neutron energy spectrum, especially when including the epithermal region that is normally used in BNCT. In the present study, we carried out the design study on a new neutron spectrometer that can measure such a neutron spectrum more accurately, precisely and with higher energy resolution, using an unfolding technique and a liquid moderator.

  13. FiR 1 Reactor in Service for Boron Neutron Capture Therapy (BNCT) and Isotope Production

    International Nuclear Information System (INIS)

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). Although BNCT dominates the current utilization of the reactor, it also has an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics, etc. with isotope produc- tion and activation analysis services. The whole reactor building has been renovated, creating a dedicated clinical BNCT facility at the reactor. Close to 30 patients have been treated since May 1999, when the licence for patient treatment was granted to the responsible BNCT treatment organization. The treatment organization has a close connection to the Helsinki University Central Hospital. (author)

  14. Tumor development in field-cancerized tissue is inhibited by a double application of Boron neutron capture therapy (BNCT) without exceeding radio-tolerance

    International Nuclear Information System (INIS)

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of a 'single' application of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-1(Na210B10H10) or (GB-10+BPA) to treat hamster cheek pouch tumors with no normal tissue radiotoxicity. Based on these results, we developed a model of precancerous tissue in the hamster cheek pouch for long-term studies. Employing this model we evaluated the long-term potential inhibitory effect on the development of second primary tumors from precancerous tissue and eventual radiotoxicity of a single application of BNCT mediated by BPA, GB-10 or (GB-10+BPA), in the RA-6. The clinical rationale of this study was to search for a BNCT protocol that is therapeutic for tumor, not radio-toxic for the normal tissue that lies in the neutron beam path, and exerts the desired inhibitory effect on the development of second primary tumors, without exceeding the radio-tolerance of precancerous tissue, the dose limiting tissue in this case. Second primary tumors that arise in precancerous tissue (also called locoregional recurrences) are a frequent cause of therapeutic failure in head and neck tumors. Aim: Evaluate the radiotoxicity and inhibitory effect of a 'double' application of the same BNCT protocols that were proved therapeutically successful for tumor and precancerous tissue, with a long term follow up (8 months). A 'double' application of BNCT is a potentially useful strategy for the treatment of tumors, in particular the larger ones, but the cost in terms of side-effects in dose-limiting tissues might preclude its application and requires cautious evaluation. Materials and methods: We performed a double application of 1) BPA-BNCT; 2) (GB- 10+BPA)-BNCT

  15. BNCT activities at Slovenian TRIGA research reactor

    International Nuclear Information System (INIS)

    It has been reported that satisfactory thermal/epithermal neutron beams for Boron Neutron Capture Therapy (BNCT) could be designed at TRIGA research reactors These reactors are generally perceived as being safe to install and operate in populated areas. This contribution presents the most recent BNCT research activities on the 'Jozef Stefan' Institute, where epithermal neutron beam for 'in-vitro' irradiation has been developed and experimentally verified. Furthermore, The Monte Carlo feasibility study of development of the epithermal neutron beam for BNCT clinical trials of human patients in thermalising column (TC) of TRIGA reactor has been carried out. The simulation results prove, that a BNCT irradiation facility with performances, comparable to existing beam throughout the world, could be installed in TC of the TRIGA reactor. (author)

  16. The epithermal neutron beam for BNCT under construction at TAPIRO: Physics

    Energy Technology Data Exchange (ETDEWEB)

    Burn, K W [ENEA- Ente Nuove Tecnologie Energia e Ambiente, FIS-NUC, Via M.M. Sole 4, 40129 Bologna (Italy); Casalini, L [ENEA- Ente Nuove Tecnologie Energia e Ambiente, FIS-NUC, Via M.M. Sole 4, 40129 Bologna (Italy); Mondini, D [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione (DIMNP), Universita di Pisa, Via Diotisalvi 2, 56126 Pisa (Italy); Nava, E [ENEA- Ente Nuove Tecnologie Energia e Ambiente, FIS-NUC, Via M.M. Sole 4, 40129 Bologna (Italy); Rosi, G [ENEA - Ente Nuove Tecnologie Energia e Ambiente, FIS-ION, Via Anguillarese 301, 00060 Rome (Italy); Tinti, R [ENEA- Ente Nuove Tecnologie Energia e Ambiente, FIS-NUC, Via M.M. Sole 4, 40129 Bologna (Italy)

    2006-05-15

    A column to provide an epithermal neutron beam suitable for experimental and clinical BNCT is nearing completion at the TAPIRO reactor (ENEA Casaccia, Rome). TAPIRO is a compact, low power (5 kW), helium-cooled, fast reactor. It has a hard neutron spectrum relative even to other fast reactors. In this paper some of the basic physics aspects of designing an epithermal neutron beam are considered, with reference to the TAPIRO beam.

  17. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    DEFF Research Database (Denmark)

    Hampel, G.; Grunewald, C.; Schütz, C.;

    2011-01-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed at Pavia (Italy) a few...

  18. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    International Nuclear Information System (INIS)

    BNCT is a cancerous cells selective, non-conventional radiotherapy modality to treat malignant tumors such as glioblastoma, melanoma and recurrent head and neck cancer. It consists of a two-step procedure: first, the patient is injected with a tumor localizing drug containing a non-radioactive isotope (Boron-10) with high slow neutron capture cross-section. In a second step, the patient is irradiated with neutrons, which are absorbed by the Boron-10 agent with the subsequently nuclear reaction B- 10(n,a)Li-7, thereby resulting in dose at cellular level due to the high-Let particles. The neutron fields suitable for BNCT are characterized by high neutron fluxes and low gamma dose. Determination of each component is not an easy task, especially when the volume of measurement is quite small or inaccessible for a miniature ionization chamber, for example. A method of measuring the photon and slow neutron dose(mainly by N-14 and B-10) from the glow curve (GC) analysis of a single 7LiF thermoluminescence detector is evaluated. This method was suggested by the group headed by Dr. Grazia Gambarini. The dosemeters used were TLD-600 (6LiF:Mg,Ti with 95.6% 6Li) and TLD-700 (7LiF:Mg,Ti with 99.9% 7LiF) from Harshaw. Photon dose measurement using the GC analysis method with TLD-700 in mixed fields requires the relation of the two main peaks of a TLD-600 GC shape obtained from an exposition to the same neutron field, and a photon calibrated GC with TLD-700. The requirements for slow neutron dose measurements are similar. In order to properly apply the GC analysis method at the Ra-6 Research Reactor BNCT facility, measurements were carried out in a standard water phantom, fully characterized on the BNCT beam by conventional techniques (activation detectors and paired ionization chambers technique). Next, the method was implemented in whole body dose monitoring of a patient undergoing a BNCT treatment, using a Bo MAb (Bottle Manikin Absorption) phantom, with representative

  19. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boggio, E. F.; Longhino, J. M. [Centro Atomico Bariloche, Departamento de Fisica de Reactores y Radiaciones / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina); Andres, P. A., E-mail: efboggio@cab.cnea.gov.ar [Centro Atomico Bariloche, Division Proteccion Radiologica / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina)

    2015-10-15

    BNCT is a cancerous cells selective, non-conventional radiotherapy modality to treat malignant tumors such as glioblastoma, melanoma and recurrent head and neck cancer. It consists of a two-step procedure: first, the patient is injected with a tumor localizing drug containing a non-radioactive isotope (Boron-10) with high slow neutron capture cross-section. In a second step, the patient is irradiated with neutrons, which are absorbed by the Boron-10 agent with the subsequently nuclear reaction B- 10(n,a)Li-7, thereby resulting in dose at cellular level due to the high-Let particles. The neutron fields suitable for BNCT are characterized by high neutron fluxes and low gamma dose. Determination of each component is not an easy task, especially when the volume of measurement is quite small or inaccessible for a miniature ionization chamber, for example. A method of measuring the photon and slow neutron dose(mainly by N-14 and B-10) from the glow curve (GC) analysis of a single {sup 7}LiF thermoluminescence detector is evaluated. This method was suggested by the group headed by Dr. Grazia Gambarini. The dosemeters used were TLD-600 ({sup 6}LiF:Mg,Ti with 95.6% {sup 6}Li) and TLD-700 ({sup 7}LiF:Mg,Ti with 99.9% {sup 7}LiF) from Harshaw. Photon dose measurement using the GC analysis method with TLD-700 in mixed fields requires the relation of the two main peaks of a TLD-600 GC shape obtained from an exposition to the same neutron field, and a photon calibrated GC with TLD-700. The requirements for slow neutron dose measurements are similar. In order to properly apply the GC analysis method at the Ra-6 Research Reactor BNCT facility, measurements were carried out in a standard water phantom, fully characterized on the BNCT beam by conventional techniques (activation detectors and paired ionization chambers technique). Next, the method was implemented in whole body dose monitoring of a patient undergoing a BNCT treatment, using a Bo MAb (Bottle Manikin Absorption) phantom

  20. The Argonne ACWL, a potential accelerator-based neutron source for BNCT

    International Nuclear Information System (INIS)

    THE CWDD (Continuous Wave Deuterium Demonstrator) accelerator was designed to accelerate 80 mA cw of D- to 7.5 MeV. Most of the hardware for the first 2 MeV was installed at Argonne and major subsystems had been commissioned when program funding from the Ballistic Missile Defense Organization ended in October 1993. Renamed the Argonne Continuous Wave Linac (ACWL), we are proposing to complete it to accelerate either deuterons to 2 MeV or protons to 3-3.5 MeV. Equipped with a beryllium or other light-element target, it would make a potent source of neutrons (on the order of 1013 n/s) for BNCT and/or neutron radiography. Project status and proposals for turning ACWL into a neutron source are reviewed, including the results of a computational study that was carried out to design a target/moderator to produce an epithermal neutron beam for BNCT. (orig.)

  1. First tomographic image of neutron capture rate in a BNCT facility

    International Nuclear Information System (INIS)

    This work discusses the development of online dosimetry of the boron dose via Single Photon Emission Computed Tomography (SPECT) during a BNCT treatment irradiation. Such a system will allow the online computation of boron dose maps without the large current uncertainties in the assessment of the boron concentration in different tissues. The first tomographic boron dose image with a SPECT prototype is shown.

  2. First tomographic image of neutron capture rate in a BNCT facility

    Energy Technology Data Exchange (ETDEWEB)

    Minsky, D.M., E-mail: minsky@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martin, Prov. Bs. As. (Argentina)] [Escuela de Ciencia y Tecnologia, , UNSAM, M. de Irigoyen 3100 (1650), San Martin, Prov. Bs. As. (Argentina)] [Conicet, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martin, Prov. Bs. As. (Argentina)] [Escuela de Ciencia y Tecnologia, , UNSAM, M. de Irigoyen 3100 (1650), San Martin, Prov. Bs. As. (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martin, Prov. Bs. As. (Argentina)] [Escuela de Ciencia y Tecnologia, , UNSAM, M. de Irigoyen 3100 (1650), San Martin, Prov. Bs. As. (Argentina)] [Conicet, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Green, S.; Wojnecki, C. [School of Physics and Astronomy, University of Birmingham, B15 2 TT (United Kingdom)] [Department of Medical Physics, University Hospital Birmingham, Birmingham B15 2TH (United Kingdom); Ghani, Z. [Department of Medical Physics, University Hospital Birmingham, Birmingham B15 2TH (United Kingdom)

    2011-12-15

    This work discusses the development of online dosimetry of the boron dose via Single Photon Emission Computed Tomography (SPECT) during a BNCT treatment irradiation. Such a system will allow the online computation of boron dose maps without the large current uncertainties in the assessment of the boron concentration in different tissues. The first tomographic boron dose image with a SPECT prototype is shown.

  3. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    OpenAIRE

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be u...

  4. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    OpenAIRE

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector ...

  5. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. E-mail: stefano.agosteo@polimi.it; Curzio, G.; D' Errico, F.; Nath, R.; Tinti, R

    2002-01-01

    Neutron capture in {sup 10}B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  6. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    Science.gov (United States)

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice.

  7. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material FluentalTM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  8. Neutrons from Antiproton Irradiation

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Petersen, Jørgen B.B.

    the volume targeted for irradiation. A major part of this peripheral dose arise from neutrons, which in particular are problematic due to their high RBE for secondary cancer incidence. We have measured the fast and thermal neutron spectrum in different geometrical configurations in order to experimentally...... the neutron spectrum. Additionally, we used a cylindrical polystyrene loaded with several pairs of thermoluminescent detectors containing Lithium-6 and Lithium-7, which effectively detects thermalized neutrons. The obtained results are compared with FLUKA imulations. Results: The results obtained...... the annihilation vertex inside the polystyrene phantom produced a response which corresponds to a neutron fluence of 8000 neutrons/cm2 per 107 antiprotons. This is equivalent to a neutron kerma of 1.4e-9 Gy (adult brain) per 107 antiprotons following ICRU 46. Conclusion: The thermalized part of the neutron...

  9. Near threshold ⁷Li(p,n) ⁷Be reaction as neutron source for BNCT.

    Science.gov (United States)

    Minsky, D M; Kreiner, A J

    2015-12-01

    (7)Li(p,n)(7)Be is an endothermic reaction and working near its threshold (1.88 MeV) has the advantage of neutron spectra with maximum energies of about 100 keV, considerably lower than at higher beam energies, or than using other neutron-producing reactions or as for the uranium fission spectrum, relevant for BNCT based on nuclear reactors. With this primary energy it is much easier to obtain the energies needed for treating deep seated tumors by BNCT (about 10 keV). This work studies bombarding energies up to 2.05 MeV, different beam incidence angles and the effect of the undesirable gamma production via the (7)Li(p,γp') (7)Li reaction.

  10. A comparison of neutron beams for BNCT based on in-phantom neutron field assessment parameters

    International Nuclear Information System (INIS)

    In this paper our in-phantom neutron field assessment parameters, T and DTumor, were used to evaluate several neutron sources for use in BNCT. Specifically, neutron fields from The Ohio State University (OSU) Accelerator-Based Neutron Source (ABNS) design, two alternative ABNS designs from the literature (the Al/AlF3-Al2O3 ABNS and the 7LiF-Al2O3 ABNS), a fission-convertor plate concept based on the 500-kW OSU Research Reactor (OSURR), and the Brookhaven Medical Research Reactor (BMRR) facility were evaluated. In order to facilitate a comparison of the various neutron fields, values of T and DTumor were calculated in a 14 cmx14 cmx14 cm lucite cube phantom located in the treatment port of each neutron source. All of the other relevant factors, such as phantom materials, kerma factors, and treatment parameters, were kept the same. The treatment times for the OSURR, the 7LiF-Al2O3 ABNS operating at a beam current of 10 mA, and the BMRR were calculated to be comparable and acceptable, with a treatment time per fraction of approximately 25 min for a four fraction treatment scheme. The treatment time per fraction for the OSU ABNS and the Al/AlF3-Al2O3 ABNS can be reduced to below 30 min per fraction for four fractions, if the proton beam current is made greater than approximately 20 mA. DTumor was calculated along the beam centerline for tumor depths in the phantom ranging from 0 to 14 cm. For tumor depths ranging from 0 to approximately 1.5 cm, the value of DTumor for the OSURR is largest, while for tumor depths ranging from 1.5 to approximately 14 cm, the value of DTumor for the OSU-ABNS is the largest

  11. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na210B12H11SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author)

  12. Neutron irradiation of seeds

    International Nuclear Information System (INIS)

    Neutrons are a valuable type of ionizing radiation for seed irradiation and radiobiological studies and for inducing mutations in crop plants. In experiments where neutrons are used in research reactors for seed irradiation it is difficult to measure the dose accurately and therefore to establish significant comparisons between experimental results obtained in various reactors and between repeated experiments in the same reactor. A further obstacle lies in the nature and response of the seeds themselves and the variety of ways in which they are exposed in reactors. The International Atomic Energy Agency decided to initiate international efforts to improve and standardize methods of exposing seeds in research reactors and of measuring and reporting the neutron dose. For this purpose, an International Neutron Seed Irradiation Programme has been established. The present report aims to give a brief but comprehensive picture of the work so far done in this programme. Refs, figs and tabs

  13. Design and Construct of In-Hospital Neutron Irradiator

    International Nuclear Information System (INIS)

    The In-hospital neutron irradiator (IHNI) is designed based on the design of the Miniature Neutron Source Reactor (MNSR) for boron neutron capture therapy (BNCT), NAA, physics experiments, training and teaching. The reactor of the IHNI with thermal power 30 kW is an undermoderated reactor of pool-tank type, UO2 with enrichment of 12.5% as fuel, light water as coolant and moderator, and metal beryllium as reflector. The fission heat produced by the reactor is removed by the natural circulation. On the both sides of the reactor core, there are two neutron beams, one is a thermal neutron beam, and the other, opposite to the thermal beam, is an epithermal neutron beam. An experimental thermal neutron beam is specially designed for the prompt gamma neutron activation analysis (PGNAA). In this paper, the design and experiment results of IHNI will be introduced. (author)

  14. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    Science.gov (United States)

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  15. Collimator and shielding design for boron neutron capture therapy (BNCT) facility at TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    The geometry of reactor core, thermal column, collimator and shielding system for BNCT application of TRIGA MARK II Reactor were simulated with MCNP5 code. Neutron particle lethargy and dose were calculated with MCNPX code. Neutron flux in a sample located at the end of collimator after normalized to measured value (Eid Mahmoud Eid Abdel Munem, 2007) at 1 MW power was 1.06 x 108 n/ cm2/ s. According to IAEA (2001) flux of 1.00 x 109 n/ cm2/ s requires three hours of treatment. Few modifications were needed to get higher flux. (Author)

  16. Boron determination in liver tissue by combining quantitative neutron capture radiography (QNCR) and histological analysis for BNCT treatment planning at the TRIGA Mainz.

    Science.gov (United States)

    Schütz, C; Brochhausen, C; Altieri, S; Bartholomew, K; Bortolussi, S; Enzmann, F; Gabel, D; Hampel, G; Kirkpatrick, C J; Kratz, J V; Minouchehr, S; Schmidberger, H; Otto, G

    2011-09-01

    The typical primary malignancies of the liver are hepatocellular carcinoma and cholangiocarcinoma, whereas colorectal liver metastases are the most frequently occurring secondary tumors. In many cases, only palliative treatment is possible. Boron neutron capture therapy (BNCT) represents a technique that potentially destroys tumor tissue selectively by use of externally induced, locally confined secondary particle irradiation. In 2001 and 2003, BNCT was applied to two patients with colorectal liver metastases in Pavia, Italy. To scrutinize the rationale of BNCT, a clinical pilot study on patients with colorectal liver metastases was carried out at the University of Mainz. The distribution of the (10)B carrier (p-borono-phenylalanine) in the liver and its uptake in cancerous and tumor-free tissue were determined, focusing on a potential correlation between the uptake of p-borono-phenylalanine and the biological characteristics of cancerous tissue. Samples were analyzed using quantitative neutron capture radiography of cryosections combined with histological analysis. Methodological aspects of the combination of these techniques and results from four patients enrolled in the study are presented that indicate that the uptake of p-borono-phenylalanine strongly depends on the metabolic activity of cells. PMID:21692653

  17. Correlation between radiation dose and histopathological findings in patients with gliblastoma treated with boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    The purpose of this study was to clarify the correlation between the radiation dose and histopathological findings in patients with glioblastoma multiforme (GBM) treated with boron neutron capture therapy (BNCT). Histopathological studies were performed on specimens from 8 patients, 3 had undergone salvage surgery and 5 were autopsied. For histopathological cure of GBM at the primary site, the optimal minimal dose to the gross tumor volume (GTV) and the clinical target volume (CTV) were 68 Gy(w) and 44 Gy(w), respectively. - Highlights: • It is very important to determine the curable BNCT radiation dose on histopathological aspect in BNCT. • Of 23 patients with GBM treated with BNCT, autopsy was performed in 5, salvage surgery in 3, and histopathological study in 8. • To achieve the histopathological cure of GBM at the primary site, the optimal minimal dose to the GTV and CTV was 68 Gy(w) and 44 Gy(w), respectively

  18. Gel dosimeters as useful dose and thermal-fluence detectors in Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Valente, M. [Department of Physics of the University and INFN, Via Celoria 16, I-20133 Milan (Italy); Moss, R.L.; Daquino, G.G.; Nievaart, V.A. [Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755ZG Petten, The Netherlands (Netherlands); Mariani, M.; Vanossi, E. [Department of Nuclear Engineering of Polytechnic, CESNEF, Via Ponzio, 34/3 - I-20133 Milan (Italy); Carrara, M. [Medical Physics Department, National Cancer Institute, Via Venezian 1, I-20131, Milan (Italy)

    2006-07-01

    The dosimetry method based on Fricke-Xylenol-Orange-infused gels in form of layers has shown noticeable potentiality for in-phantom or in-free-beam dose and thermal flux profiling and imaging in the high fluxes of thermal or epithermal neutrons utilised for boron neutron capture therapy (BNCT). Gel-dosimeters in form of layers give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. The discrimination of the various dose components is achieved by means of pixel-to-pixel manipulations of pairs of images obtained with gel-dosimeters having different isotopic composition. It is possible to place large dosimeters, detecting in such a way large dose images, because the layer geometry of dosimeters avoids sensitive variation of neutron transport due to the gel isotopic composition. Some results obtained after the last improvements of the method are reported. (Author)

  19. Gel dosimeters as useful dose and thermal-fluence detectors in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    The dosimetry method based on Fricke-Xylenol-Orange-infused gels in form of layers has shown noticeable potentiality for in-phantom or in-free-beam dose and thermal flux profiling and imaging in the high fluxes of thermal or epithermal neutrons utilised for boron neutron capture therapy (BNCT). Gel-dosimeters in form of layers give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. The discrimination of the various dose components is achieved by means of pixel-to-pixel manipulations of pairs of images obtained with gel-dosimeters having different isotopic composition. It is possible to place large dosimeters, detecting in such a way large dose images, because the layer geometry of dosimeters avoids sensitive variation of neutron transport due to the gel isotopic composition. Some results obtained after the last improvements of the method are reported. (Author)

  20. ET-14OPTIMISATION OF BORONOPHENYLALANINE (BPA) DELIVERY AND LAT1 EXPRESSION FOR THE CLINICAL APPLICATION OF BORON NEUTRON CAPTURE THERAPY (BNCT) IN GLIOBLASTOMA

    Science.gov (United States)

    Cruickshank, Garth; Detta, Allah; Green, Stuart; Lockyer, Nick; Ngoga, Desire; Ghani, Zahir; Phoenix, Ben

    2014-01-01

    BNCT is a biologically targeted radiotherapy where preferential boron uptake interacts with a neutron beam in cancerous cells causing irreparable alpha DNA damage. This requires the delivery of at least 30 parts per million (ppm) of 10B into tumour tissue and 30ppm boron) indicates potential BNCT targeting after surgery. Tumour boron uptake is governed by LAT-1 behaviour rather than BBB penetration and explains previous variable clinical results, whilst supporting the LAT1 determined selection of patients for BNCT

  1. Neutron spectra measurement and comparison of the HFR and THOR BNCT beams.

    Science.gov (United States)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-07-01

    This paper aims to measure the spectra of HB11 (high flux reactor, HFR) and the Tsing Hua open-pool reactor (THOR) boron neutron capture therapy (BNCT) beams by multiple activation foils. The self-shielding corrections were made with the aid of MCNP calculations. The initial spectra were adjusted by a sophisticated process named coarse-scaling adjustment using SAND-EX, which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with excellent continuity. The epithermal neutron flux of the THOR beam is about three times of HB11. The thermal neutron flux, boron and gold reaction rates along the central axis of a PMMA phantom are calculated for both adjusted spectra for comparison.

  2. Gamma residual radioactivity measurements on rats and mice irradiated in the thermal column of a TRIGA Mark II reactor for BNCT.

    Science.gov (United States)

    Protti, Nicoletta; Manera, Sergio; Prata, Michele; Alloni, Daniele; Ballarini, Francesca; di Tigliole, Andrea Borio; Bortolussi, Silva; Bruschi, Piero; Cagnazzo, Marcella; Garioni, Maria; Postuma, Ian; Reversi, Luca; Salvini, Andrea; Altieri, Saverio

    2014-12-01

    The current Boron Neutron Capture Therapy (BNCT) experiments performed at the University of Pavia, Italy, are focusing on the in vivo irradiations of small animals (rats and mice) in order to evaluate the effectiveness of BNCT in the treatment of diffused lung tumors. After the irradiation, the animals are manipulated, which requires an evaluation of the residual radioactivity induced by neutron activation and the relative radiological risk assessment to guarantee the radiation protection of the workers. The induced activity in the irradiated animals was measured by high-resolution open geometry gamma spectroscopy and compared with values obtained by Monte Carlo simulation. After an irradiation time of 15 min in a position where the in-air thermal flux is about 1.2 × 10(10) cm(-2) s(-1), the specific activity induced in the body of the animal is mainly due to 24Na, 38Cl, 42K, 56Mn, 27Mg and 49Ca; it is approximately 540 Bq g(-1) in the rat and around 2,050 Bq g(-1) in the mouse. During the irradiation, the animal body (except the lung region) is housed in a 95% enriched 6Li shield; the primary radioisotopes produced inside the shield by the neutron irradiation are 3H by the 6Li capture reaction and 18F by the reaction sequence 6Li(n,α)3H → 16O(t,n)18F. The specific activities of these products are 3.3 kBq g(-1) and 880 Bq g(-1), respectively. PMID:25353239

  3. Application of HVJ envelope system to boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) has been used clinically for the treatment of malignant tumors. Two drugs, p-boronophenylalanine (BPA) and sulfhydral borane (BSH), have been used as boron delivery agents. These drugs seem to be taken up preferentially in solid tumors, but it is uncertain whether therapeutic quantities of boron atoms are taken up by micro-invasive or distant tumor cells. High accumulation and high selective delivery of boron into tumor tissues are the most important requirements to achieve efficient BNCT for malignant tumor. The HVJ envelope (HVJ-E) vector system is a novel fusion-mediated gene delivery system based on inactivated hemagglutinating virus of Japan (HVJ; Sendai virus). Although we developed this vector system for gene transfer, it can also deliver proteins, synthetic oligonucleotides, and drugs. HVJ-liposome, which is liposome fused with HVJ-E, has higher boron trapping efficiency than HVJ-E alone. We report the boron delivery into cultured cells with HVJ-liposome systems. The cellular 10B concentration after 60 min incubation with HVJ-E containing BSH was 24.9 μg/g cell pellet for BHK-21 cells (baby hamster kidney cells) and 19.4 μg/g cell pellet for SCC VII cells (murine squamous cell carcinoma). These concentrations are higher than that of 60 min incubated cells with BSH containing (100μg 10B/ml) medium. These results indicate the HVJ-E fused with tumor cell membrane and rapidly delivered boron agents, and that the HVJ-E-mediated delivery system could be applicable to BNCT. Plans are underway to begin neutron radiation experiments in vivo and in vitro. (author)

  4. JRR-4 medical irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Torii, Y.; Yamamoto, K.; Hori, N.; Kumada, H.; Horiguchi, Y. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-11-01

    JAERI started Boron Neutron Capture Therapy (BNCT) at JRR-2 in 1990. JRR-2 was performed 33 BNCT until 1996 when JRR-2 operation was terminated for decommissioning the reactor. JRR-4 was constructed to research the reactor shielding of the first Japanese nuclear ship ''Mutsu'' in 1965. JRR-4 was modified for reducing fuel enrichment and constructing a new medical irradiation facility at 1997 when after the terminating operation of JRR-2. The medical irradiation facility is especially using for BNCT of brain cancer. JRR-4 medical irradiation facility was designed for both using of thermal neutron beam and epi-thermal neutron. Thermal neutron is using for conventional Japanese BNCT as inter operative irradiation therapy. Epi-thermal neutron beam will be using advanced BNCT for deep cancer and without craniotomy operation for irradiation at the facility. The first medical irradiation for BNCT of JRR-4 was carried out on October 25, 1999. Since then, seven times of irradiation was performed by the end of June 2000. In BNCT irradiation, boron concentration and thermal flux measurements were performed by JAERI. Boron concentration of patient brood was measured using prompt gamma ray analysis technique. Thermal neutron flux was measured by gold wire activation method using beta - gamma coincidence counting system. There data were furnished to medical doctor for determination the irradiation time of BNCT. (author)

  5. Epithermal neutron beam for BNCT research at Washington State University

    International Nuclear Information System (INIS)

    A new filter has been designed and analysed for the Washington State University TRIGATM research reactor. Optimum balance of epithermal flux and background KERMA was obtained with a FluentalTM and alumina filter. The epithermal neutron flux calculated by the DORT transport code was approximately 9 x 108 n/cm2-s with a background KERMA of about 3x10-13 Gy/n/cm2. Operation of the beam for animal testing is expected to commence in 2000. (author)

  6. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver.

    Science.gov (United States)

    Bortolussi, S; Altieri, S

    2007-12-01

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations. PMID:18196797

  7. On the 252Cf primary and secondary gamma rays and epithermal neutron flux for BNCT

    Science.gov (United States)

    Ghassoun, J.; Merzouki, A.; El Morabiti, A.; Jehouani, A.

    2007-10-01

    Monte Carlo simulation has been used to calculate the different components of neutrons and secondary gamma rays originated by 252Cf fission and also the primary gamma rays emitted directly by the 252Cf source at the exit face of a compact system designed for the BNCT. The system consists of a 252Cf source and a moderator/reflector/filter assembly. To study the material properties and configuration possibilities, the MCNP code has been used. The moderator/reflector/filter arrangement is optimised to moderate neutrons to epithermal energy and, as far as possible, to get rid of fast and thermal neutrons and photons from the therapeutic beam. To reduce the total gamma contamination and to have a sufficiently high epithermal neutron flux we have used different photon filters of different thickness. Our analysis showed that the use of an appropriate filter leads to a gamma ray flux reduction without affecting the epithermal neutron beam quality at the exit face of the system.

  8. On the {sup 252}Cf primary and secondary gamma rays and epithermal neutron flux for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Ghassoun, J. [LPTN, Departement de Physique, Faculte des Sciences Semlalia, BP 2390, 40000 Marrakech (Morocco)], E-mail: ghassoun@ucam.ac.ma; Merzouki, A. [LPTN, Departement de Physique, Faculte des Sciences Semlalia, BP 2390, 40000 Marrakech (Morocco); Remote Sensing and Geomatics of the Environnement Laboratory, Ottawa-Carleton Geoscience Centre, Marion Hall-140Louis Pasteur Ottawa, ON, KIN 6N5 (Canada); El Morabiti, A.; Jehouani, A. [LPTN, Departement de Physique, Faculte des Sciences Semlalia, BP 2390, 40000 Marrakech (Morocco)

    2007-10-15

    Monte Carlo simulation has been used to calculate the different components of neutrons and secondary gamma rays originated by {sup 252}Cf fission and also the primary gamma rays emitted directly by the {sup 252}Cf source at the exit face of a compact system designed for the BNCT. The system consists of a {sup 252}Cf source and a moderator/reflector/filter assembly. To study the material properties and configuration possibilities, the MCNP code has been used. The moderator/reflector/filter arrangement is optimised to moderate neutrons to epithermal energy and, as far as possible, to get rid of fast and thermal neutrons and photons from the therapeutic beam. To reduce the total gamma contamination and to have a sufficiently high epithermal neutron flux we have used different photon filters of different thickness. Our analysis showed that the use of an appropriate filter leads to a gamma ray flux reduction without affecting the epithermal neutron beam quality at the exit face of the system.

  9. On the 252Cf primary and secondary gamma rays and epithermal neutron flux for BNCT

    International Nuclear Information System (INIS)

    Monte Carlo simulation has been used to calculate the different components of neutrons and secondary gamma rays originated by 252Cf fission and also the primary gamma rays emitted directly by the 252Cf source at the exit face of a compact system designed for the BNCT. The system consists of a 252Cf source and a moderator/reflector/filter assembly. To study the material properties and configuration possibilities, the MCNP code has been used. The moderator/reflector/filter arrangement is optimised to moderate neutrons to epithermal energy and, as far as possible, to get rid of fast and thermal neutrons and photons from the therapeutic beam. To reduce the total gamma contamination and to have a sufficiently high epithermal neutron flux we have used different photon filters of different thickness. Our analysis showed that the use of an appropriate filter leads to a gamma ray flux reduction without affecting the epithermal neutron beam quality at the exit face of the system

  10. Stability of high-speed lithium sheet jets for the neutron source in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    The stability of high-speed liquid lithium sheet jets was analytically studied for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to realize the thin and high-speed plane sheet jets of liquid lithium in a high-vacuum as an accelerator target. Linear analysis approach is made to the stability on thin plane sheet jets of liquid lithium in a high-vacuum, and then our analytical results were compared with the previous experimental ones. We proved that the waves of surface tension on thin lithium sheet jets in a high-vacuum are of supercritical flows and neutral stable under about 17.4 m/s in flow velocity and that the fast non-dispersive anti-symmetric waves are more significant than the very slow dispersive symmetric waves. We also formulated the equation of shrinking angle in isosceles-triangularly or isosceles-trapezoidal shrinking sheet jets corresponding to the Mach angle of supersonic gas flows. This formula states universally the physical meaning of Weber number of sheet jets on the wave of surface tension in supercritical flows. We obtained satisfactory prospects (making choice of larger flow velocity U and larger thickness of sheet a) to materialize a liquid target of accelerator in BNCT. (author)

  11. Design study of multi-imaging plate system for BNCT irradiation field at Kyoto university reactor.

    Science.gov (United States)

    Tanaka, Kenichi; Sakurai, Yoshinori; Kajimoto, Tsuyoshi; Tanaka, Hiroki; Takata, Takushi; Endo, Satoru

    2016-09-01

    The converter configuration for a multi-imaging plate system was investigated for the application of quality assurance in the irradiation field profile for boron neutron capture therapy. This was performed by the simulation calculation using the PHITS code in the fields at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. The converter constituents investigated were carbon for gamma rays, and polyethylene with and without LiF at varied (6)Li concentration for thermal, epithermal, and fast neutrons. Consequently, potential combinations of the converters were found for two components, gamma rays and thermal neutrons, for the standard thermal neutron mode and three components of gamma rays, epithermal neutrons, and thermal or fast neutrons, for the standard mixed or epithermal neutron modes, respectively. PMID:27423022

  12. Study on changes of sperm count and testis tissue in black mouse after neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ki Jung; Seo, Won Sook [KAERI, Daejeon (Korea, Republic of); Son, Hwa Young [Chungnam National Univ., Daejeon (Korea, Republic of)

    2006-03-15

    For the purpose of the biological effect in black mouse by neutron irradiation, mice were irradiated with 16 or 32 Gy neutron (flux: 1.036739E+09) by lying flat pose at BNCT facility on HANARO Reactors. And 90 days later of irradiation, physical changes of testis and testis tissue were examined. There were no weight changes but a little bit volume changes and sperm counts in the tests. Atrophy of seminiferous tubules irradiated with 32 Gy neutron is increased in number and severity and those in stage VI showed depletion of spermatogonia and pachytene spermatocytes compared to the non-irradiated control group. Testis damage of black mouse was not recovered after long time by 32 Gy neutron irradiation.

  13. Boron neutron capture irradiation: setting up a clinical programme in Nice; Irradiation par capture de neutrons: mise en place d`un programme clinique a Nice

    Energy Technology Data Exchange (ETDEWEB)

    Pignol, J.P.; Chauvel, P.; Courdi, A.; Iborra-Brassart, N.; Frenay, M.; Herault, J.; Bensadoun, R.J.; Milano, G.; Demard, F. [Centre de Lutte Contre le Cancer Antoine Lacassagne, 06 - Nice (France); Paquis, P.; Lonjon, M.; Lebrun-Frenay, C.; Grellier, P.; Chatel, M. [Hopital Pasteur, 06 - Nice (France); Nepveu, F.; Patau, J.P. [Toulouse-3 Univ., 31 (France); Breteau, N. [Hopital de la Source, 45 - Orleans (France)

    1996-12-31

    Neutron capture irradiation aims to selectively destroy tumor tumor cell using {sup 10}B(n,{alpha}){sup 7}Li nuclear reactions produced within themselves. Following the capture reaction, an {alpha} particle and a, {sup 7}Li ion are emitted. Carrying an energy of 2.79 MeV, they destroy all molecular structures along their path close to 10 {mu}m. These captures, used exclusively with a `slow` neutron irradiation, provide a neutron capture therapy (BNCT). If they are used in addition to a fast neutron beam irradiation, they provide a neutron capture potentiation (NCP). The Centre Antoine-Lacassagne in Nice is actively involved in the European Demonstration project for BNCT of grade IV glioblastomas (GBM) after surgical excision and BSH administration. Taking into account the preliminary results obtained in Japan, work on an `epithermal` neutron target compatible with various cyclotron beams is in progress to facilitate further developments of this technique. For NCP, thermalized neutron yield has been measured in phantoms irradiated in the fast neutron beam of the biomedical cyclotron in Nice. A thermal peak appears after 5 cm depth in the tissues, delayed after the fast neutron peak at 1.8 cm depth. Thus, a physical overdosage of 10 % may be obtained if 100 ppm of {sup 10}B are assumed in the tissues. Our results using CAL 58 GBM cell line demonstrate a dose modification factor (DMF) of 1.19 when 100 ppm of boric acid are added to the growth medium. Thus for the particles, issued from neutron capture, a biological efficiency at least twice that of fast neutrons can be derived. These results, compared with historical data on fast neutron irradiation of glioblastoma, suggest that a therapeutic window may be obtained for GBM. (author). 26 refs.

  14. The physics experimental study for in-hospital neutron irradiator

    International Nuclear Information System (INIS)

    MNSRs (Miniature Neutron Source Reactor) are low power research reactors designed and manufactured by China Institute of Atomic Energy (CIAE). MNSRs are mainly used for NAA, training and teaching, testing of nuclear instrumentation. The first MNSR, the prototype MNSR, was put into operation in 1984, later, eight other MNSRs had been built both at home and abroad. For MNSRs, highly enriched uranium (90%) is used as the fuel material. The In-Hospital Neutron Irradiator (IHNI) is designed for Boron Neutron Capture Therapy (BNCT) based on Miniature Neutron Source Reactor(MNSR). On both sides of the reactor core, there are two neutron beams, one is thermal neutron beam, and the other opposite to the thermal beam, is epithermal neutron beam. A small thermal neutron beam is specially designed for the measurement of blood boron concentration by the prompt gamma neutron activation analysis (PGNAA). In this paper, the experimental results of critical mass worth of the top Be reflectors worth of the control rod, neutron flux distribution and other components worth were measured, the experiment was done on the Zero Power Experiment equipment of MNSR. (author)

  15. Feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma from a viewpoint of dose distribution analysis

    International Nuclear Information System (INIS)

    Purpose: To investigate the feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma (MPM) from a viewpoint of dose distribution analysis using Simulation Environment for Radiotherapy Applications (SERA), a currently available BNCT treatment planning system. Methods and Materials: The BNCT treatment plans were constructed for 3 patients with MPM using the SERA system, with 2 opposed anterior-posterior beams. The 1B concentrations in the tumor and normal lung in this study were assumed to be 84 and 24 ppm, respectively, and were derived from data observed in clinical trials. The maximum, mean, and minimum doses to the tumors and the normal lung were assessed for each plan. The doses delivered to 5% and 95% of the tumor volume, D05 and D95, were adopted as the representative dose for the maximum and minimum dose, respectively. Results: When the D05 to the normal ipsilateral lung was 5 Gy-Eq, the D95 and mean doses delivered to the normal lung were 2.2-3.6 and 3.5-4.2 Gy-Eq, respectively. The mean doses delivered to the tumors were 22.4-27.2 Gy-Eq. The D05 and D95 doses to the tumors were 9.6-15.0 and 31.5-39.5 Gy-Eq, respectively. Conclusions: From a viewpoint of the dose-distribution analysis, BNCT has the possibility to be a promising treatment for MPM patients who are inoperable because of age and other medical illnesses

  16. Considerations for boron neutron capture therapy studies; Consideracoes sobre o estudo da BNCT (terapia de captura neutronica por boro)

    Energy Technology Data Exchange (ETDEWEB)

    Faria Gaspar, P. de

    1994-12-31

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps.

  17. Sodium borocaptate (BSH) for Boron Neutron Capture Therapy (BNCT) in the hamster cheek pouch oral cancer model: boron biodistribution at 9 post administration time-points

    International Nuclear Information System (INIS)

    The therapeutic success of Boron Neutron Capture Therapy (BNCT) depends centrally on boron concentration in tumor and healthy tissue. We previously demonstrated the therapeutic efficacy of boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) as boron carriers for BNCT in the hamster cheek pouch oral cancer model. Given the clinical relevance of sodium mercaptoundecahydro-closo-dodecaborate (BSH) as a boron carrier, the aim of the present study was to expand the ongoing BSH biodistribution studies in the hamster cheek pouch oral cancer model. In particular, we studied 3 additional post-administration time-points and increased the sample size corresponding to the time-points evaluated previously, to select more accurately the post-administration time at which neutron irradiation would potentially confer the greatest therapeutic advantage. BSH was dissolved in saline solution in anaerobic conditions to avoid the formation of the dimer BSSB and its oxides which are toxic. The solution was injected intravenously at a dose of 50 mg 10 B/kg (88 mg BSH / kg). Different groups of animals were killed humanely at 7, 8, and 10 h after administration of BSH. The sample size corresponding to the time-points 3, 4, 6, 9 and 12 h was increased. Samples of blood, tumor, precancerous tissue, normal pouch tissue, cheek mucosa, parotid gland, palate, skin, tongue, spinal cord marrow, brain, liver, kidney, spleen and lung were processed for boron measurement by Optic Emission Spectroscopy (ICP-OES). Boron concentration in tumor peaked to 24-34 ppm, 3-10 h post-administration of BSH, with a spread in values that resembled that previously reported in other experimental models and human subjects. The boron concentration ratios tumor/normal pouch tissue and tumor/blood ranged from 1.3 to 1.8. No selective tumor uptake was observed at any of the time points evaluated. The times post-administration of BSH that would be therapeutically most useful would be 5, 7 and 9 h. The

  18. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.

    Science.gov (United States)

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-12-01

    In order to provide an appropriate neutron beam for Boron Neutron Capture Therapy (BNCT), a special Beam Shaping Assembly (BSA) must be designed based on the neutron source specifications. A typical BSA includes moderator, reflector, collimator, thermal neutron filter, and gamma filter. In common BSA, the reflector is considered as a layer which covers the sides of the moderator materials. In this paper, new reflector/moderator geometries including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. It was found that the proposed configurations have a significant effect to improve the thermal to epithermal neutron flux ratio which is an important neutron beam parameter.

  19. Summary of recent BNCT Polish programme and future plans.

    Science.gov (United States)

    Gryziński, M A; Maciak, M; Wielgosz, M

    2015-12-01

    In this work we present Polish achievements on the ground of BNCT research. Starting from preliminary built therapeutic stand at MARIA reactor going through designing of unique detectors for in-phantom and in-beam measurements for mixed radiation fields and finally coming to boron carriers synthesizing and examination in cellular and animal models. Now it is planned to restart research on boron compounds in specially designed BIMA line, to set up epithermal neutron irradiation facility for BNCT research and education and to improve recombination detectors for neutron beams characterisation. PMID:26293009

  20. Boron neutron capture therapy (BNCT) using fast neutrons: Effects in two human tumor cell lines

    International Nuclear Information System (INIS)

    The results demonstrate that the effect of fast neutrons on cell survival in cell culture can be enhanced by boron neutron capture reaction. Even with lower enhancement ratios, the concept of NCT assisted fast neutron therapy may successfully be applied for tumor treatment with the Essen cyclotron. (orig.)

  1. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Science.gov (United States)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  2. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.; Redondo, J.; Baudat, P-A. [Institut de Physique Appliquee, Ecole Polytechnique Federale, Lausanne (Switzerland)] [and others

    1998-10-07

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of {sup 10}B in tumour cells after injection of a boron compound (in our case B{sub 12}H{sub 11}SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  3. Neutron irradiation of seeds 2

    International Nuclear Information System (INIS)

    The irradiation of seeds with the fast neutron of research reactors has been hampered by difficulties in accurately measuring dose and in obtaining repeatable and comparable results. Co-ordinated research under an international program organized by the FAO and IAEA has already resulted in significant improvements in methods of exposing seeds in research reactors and in obtaining accurate dosimetry. This has been accomplished by the development of a standard reactor facility for the neutron irradiation of seeds and standard methods for determining fast-neutron dose and the biological response after irradiation. In this program various divisions of the IAEA and the Joint FAO/IAEA Division co-operate with a number of research institutes and reactor centres throughout the world. Results of the preliminary experiments were reported in Technical Reports Series No. 76, ''Neutron Irradiation of Seeds''. This volume contains the proceedings of a meeting of co-operators in the FAO/IAEA Neutron Seed Irradiation Program and other active scientists in this field. The meeting was held in Vienna from 11 to 15 December 1967. Refs, figs and tabs

  4. Neutron scattering on neutron irradiated steel

    International Nuclear Information System (INIS)

    Three pressure vessel steel systems (two base material and one weld material) with a 50% irradiation induced hardness enhancement were investigated by small angle neutron scattering. All three steel systems were irradiated in the light water moderated research reactor FRJ-1 at a temperature of 1500C. The strongest scattering effect was found for steel A; a pressure vessel containment steel ASTM a 533 B. This system was irradiated with a fluence of 7 1019 n/cm2 (E > 1 MeV). The annealing behaviour was then investigated after isochronal anneals of 300, 350, 400 and 4500C. Viker's hardness measurements were made parallel to the neutron scattering experiments. The hardness enhancement of 50% decreased after the first anneal to 30% and after the second to 18%. The neutron scattering patterns show a decrease in the number of very small voids having a Guinier radius less than 5 A. These voids have annealed, or coagulated into larger voids (Rg = 20-25 A) with a density of n = 1015 cm-3. After the third anneal at 4000C, the scattering patterns became, within statistical errors, identical to the scattering pattern of the unirradiated specimen; but a hardness enhancement of 13% was measured. (orig./WBU)

  5. The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, T., E-mail: schmito@uni-mainz.de [Institute for nuclear chemistry, Johannes Gutenberg-University, Mainz D-55128 (Germany); Bassler, N. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, Aarhus 8000 (Denmark); Blaickner, M. [AIT Austrian Institute of Technology GmbH, Vienna A-1220 (Austria); Ziegner, M. [AIT Austrian Institute of Technology GmbH, Vienna A-1220, Austria and TU Wien, Vienna University of Technology, Vienna A-1020 (Austria); Hsiao, M. C. [Insitute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Liu, Y. H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Koivunoro, H. [Department of Physics, University of Helsinki, POB 64, FI-00014, Finland and HUS Medical Imaging Center, Helsinki University Central Hospital, FI-00029 HUS (Finland); Auterinen, I.; Serén, T.; Kotiluoto, P. [VTT Technical Research Centre of Finland, Espoo (Finland); Palmans, H. [National Physical Laboratory, Acoustics and Ionising Radiation Division, Teddington TW11 0LW, United Kingdom and Medical Physics Group, EBG MedAustron GmbH, Wiener Neustadt A-2700 (Austria); Sharpe, P. [National Physical Laboratory, Acoustics and Ionising Radiation Division, Teddington TW11 0LW (United Kingdom); Langguth, P. [Department of Pharmacy and Toxicology, University of Mainz, Mainz D-55128 (Germany); Hampel, G. [Institut für Kernchemie, Johannes Gutenberg-Universität, Mainz D-55128 (Germany)

    2015-01-15

    Purpose: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Methods: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a {sup 60}Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes FLUKA and MCNP. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen and Olsen alanine response model. Results: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. Conclusions: The

  6. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  7. BNCT. Computational Analysis; BNCT. Analisis computacional

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R.

    2004-07-01

    The BNCT (Boron Neutron Capture Therapy) is a new oncologic radiotherapy technique in the process of research which consists of injecting a non-poisonous pharmacovector into an ill patient in such a way that the tumor receives isotope boron-10, so that the tumoral area can later be bombarded with a beam of neutrons, many of which are captured the isotope in question. (Author)

  8. Depth-dose evaluation for lung and pancreas cancer treatment by BNCT using an epithermal neutron beam

    International Nuclear Information System (INIS)

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreas cancers using an epithermal neutron beam. The MCNP calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5x108 ncm-2s-1. The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT could be applied for both lung and pancreas cancer treatment. (author)

  9. Liposome and co-spray-dried PVP / o-carborane formulations for BNCT treatment of cancer

    OpenAIRE

    Olusanya, Temidayo; Stich, Theresia; Higgins, Samantha Caroline; Lloyd, Rhiannon Eleanor Iris; Pilkington, Geoffrey John; Fatouros, Dimitrios; Calabrese, Gianpiero; Smith, James Richard; Tsibouklis, John

    2015-01-01

    Purpose: Boron neutron capture therapy (BNCT) is a method for selectively destroying malignant (normally glioma) cells whilst sparing normal tissue. Irradiation of 10B (large neutron capture cross-section) with thermal neutrons effects the nuclear fission reaction: 10B + 1n → → 7Li+ + α + γ; where the penetration of α-particles and 7Li+ is only 8 and 5 µm, respectively, i.e., within a single cell thickness. Poor selectivity is the main reason why BNCT has not become a mainstream cancer therap...

  10. Study of the relative dose-response of BANG-3[reg] polymer gel dosimeters in epithermal neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Uusi-Simola, J [Department of Radiology, Helsinki University Central Hospital, FIN-00029 HUS (Finland); Savolainen, S [Department of Radiology, Helsinki University Central Hospital, FIN-00029 HUS (Finland); Kangasmaeki, A [Department of Radiology, Helsinki University Central Hospital, FIN-00029 HUS (Finland); Heikkinen, S [Department of Laboratory Diagnostics, Helsinki University Central Hospital, FIN-00029 HUS (Finland); Perkioe, J [Department of Radiology, Helsinki University Central Hospital, FIN-00029 HUS (Finland); Ramadan, U Abo [Department of Laboratory Diagnostics, Helsinki University Central Hospital, FIN-00029 HUS (Finland); Seppaelae, T [Department of Oncology, Helsinki University Central Hospital, FIN-00029 HUS (Finland); Karila, J [Department of Oncology, Helsinki University Central Hospital, FIN-00029 HUS (Finland); Seren, T [VTT Processes, Technical Research Centre of Finland, FIN-02044 VTT, Finland (Finland); Kotiluoto, P [VTT Processes, Technical Research Centre of Finland, FIN-02044 VTT, Finland (Finland); Sorvari, P [Department of Laboratory Diagnostics, Helsinki University Central Hospital, FIN-00029 HUS (Finland); Auterinen, I [VTT Processes, Technical Research Centre of Finland, FIN-02044 VTT, Finland (Finland)

    2003-09-07

    Polymer gels have been reported as a new, potential tool for dosimetry in mixed neutron-gamma radiation fields. In this work, BANG-3 (MGS Research Inc.) gel vials from three production batches were irradiated with 6 MV photons of a Varian Clinac 2100 C linear accelerator and with the epithermal neutron beam of the Finnish boron neutron capture therapy (BNCT) facility at the FiR 1 nuclear reactor. The gel is tissue equivalent in main elemental composition and density and its T2 relaxation time is dependent on the absorbed dose. The T2 relaxation time map of the irradiated gel vials was measured with a 1.5 T magnetic resonance (MR) scanner using spin echo sequence. The absorbed doses of neutron irradiation were calculated using DORT computer code, and the accuracy of the calculational model was verified by measuring gamma ray dose rate with thermoluminescent dosimeters and {sup 55}Mn(n,{gamma}) activation reaction rate with activation detectors. The response of the BANG-3 gel dosimeter for total absorbed dose in the neutron irradiation was linear, and the magnitude of the response relative to the response in the photon irradiation was observed to vary between different gel batches. The results support the potential of polymer gels in BNCT dosimetry, especially for the verification of two- or three-dimensional dose distributions.

  11. INEL BNCT Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-08-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for August 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  12. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    Science.gov (United States)

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation.

  13. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  14. Design and characterization of a novel neutron shield for BNCT in an experimental model of oral cancer in the hamster cheek pouch at RA-3

    International Nuclear Information System (INIS)

    Our research group at the Radiation Pathology Division of the Department of Radiobiology (National Atomic Energy Commission) has previously demonstrated the therapeutic efficacy of different BNCT protocols to treat oral cancer in an experimental hamster cheek pouch model. In particular, to perform studies in this experimental model at the thermal facility constructed at RA-3, we designed and constructed a shielding device for thermal neutrons, to be able to expose the cheek pouch while minimizing the dose to the rest of the body. This device allowed for the irradiation of one animal at a time. Given the usage rate of the device, the aim of the present study was to design and construct an optimized version of the existing shielding device that would allow for the simultaneous irradiation of 2 animals at the thermal facility of RA-3. Taking into account the characteristics of the neutron source and preliminary biological assays, we designed the shielding device for the body of the animal, i.e. a rectangular shaped box with double acrylic walls. The space between the walls contains a continuous filling of 6Li2CO3 (95% enriched in 6Li), approximately 6 mm thick. Two small windows interrupt the shield at one end of the box through which the right pouch of each hamster is everted out onto an external acrylic shelf for exposure to the neutron flux. The characterization of the shielding device showed that the neutron flux was equivalent at both irradiation positions confirming that we were able to design and construct a new shielding device that allows for the irradiation of 2 animals at the same time at the thermal facility of RA-3. This new version of the shielding device will reduce the number of interventions of the reactor operators, reducing occupational exposure to radiation and will make the procedure more efficient for researchers. In addition, we addressed the generation of tritium as a product of the capture reaction in lithium. It was considered as a potential

  15. Passive neutron assay of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Passive neutron assay of irradiated nuclear fuel has been investigated by calculations and experiments as a simple, complementary technique to the gamma assay. From the calculations it is found that the neutron emission arises mainly from the curium isotopes, the neutrons exhibit very good penetrability of the assemblies, and the neutron multiplication is not affected by the burnup. From the experiments on BWR and PWR assemblies, it is found that the neutron emission rate is proportional to burnup raised to 3.4 power. Recent investigations indicate that the passive neutron assay is a simple and useful technique to determine the consistency of burnups between assemblies. 10 refs

  16. Passive neutron assay of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Passive neutron assay of irradiated nuclear fuel has been investigated by calculations and experiments as a simple, complementary technique to the gamma assay. From the calculations it was found that the neutron emission arises mainly from the curium isotopes, the neutrons exhibit very good penetrability of the assemblies, and the neutron multiplication is not affected by the burnup. From the experiments on BWR and PWR assemblies, the neutron emission rate is proportional to burnup raised to 3.4 power. The investigations indicate that the passive neutron assay is a simple and useful technique to determine the consistency of burnups between assemblies

  17. The 250 kW FiR 1 TRIGA research reactor - International role in Boron Neutron Capture Therapy (BNCT) and regional role in isotope production, education and training

    International Nuclear Information System (INIS)

    The Finnish TRIGA reactor, FiR 1, has been in operation since 1962. From its early days the reactor created versatile research to support both the national nuclear program as well as generally the industry and health care sector. The volume of neutron activation analysis was impressive in the 70's and 80's. In the 1990's a BNCT treatment facility was build at the FiR 1 reactor. The treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Over one hundred patient irradiations have been performed since May 1999. FiR 1 is one of the few facilities in the world providing this kind of treatments. Due to the BNCT project FiR 1 has become an important research and education unit for medical physics. Education and training play also a role at FiR 1 in the form of university courses and training of nuclear industry personnel. Isotopes for tracer studies are produced normally twice a week. The reactor is operated by four reactor operators and five shift supervisors; this in addition to their work as research scientists or research engineers. (author)

  18. BNCT of canine osteosarcoma

    International Nuclear Information System (INIS)

    A dog was diagnosed with osteosarcoma (8x6x5cm) in the right wing of ilium by radiography, radionuclide scintigraphy and histological study of biopsy material. The treatment plan was as follows: γ-therapy in combination with chemotherapy; prevention of hematogenous pulmonary metastases by the transfusion of 130 ml of allogenic marrow from a healthy donor; administration of 11.4g 10B-boronphenylalanine into the right iliac artery; resection of the right iliac wing with the osteosarcoma lesion; neutron irradiation (MEPhI Reactor) of the bone fragment (dose on healthy osteocytes - 15±4 Gy (W), on tumor - 50±9 Gy (W); reimplantation and fixation of the fragment; three courses of adjuvant chemotherapy. The doses were determined in full-scale calculations of the reactor radiation fields with a model of the bone under the code RADUGA. The 10B concentration (μg/g) in the bone was: normal tissue - 9±3, tumor - 28±5. In 24 hours post operation the dog was able to walk using the treated limb, and 6 months later it moved freely. The patient has been under observation for 30 months. The results of the research demonstrate complete cure. The use of similar treatment plans improves the therapeutic efficiency of BNCT. (author)

  19. Calculations of neutron flux for BNCT facility of typical working core Multipurpose Reactor (RSG-GAS) using MCNP4B Code

    International Nuclear Information System (INIS)

    Calculation of neutron flux distributions of RSG-GAS typical working core using MCNP 4b Code has been done. Prior to the calculations, modelling of fuel element of meat as well as surfaces of cladding cell and geometry should be made. The model was then included water as a containment also developed. To achieve neutron flux behavior, it was simulated 200,000 to 2,000,000 neutrons. The calculation results indicated that the neutron flux in TWC core is in the order of 1014. Meanwhile, the best flux order for the BNCT facility should be in the order of 1010. With the use of any method, such as constructing of shielding and collimator, the order of neutron flux will decrease. In the previous research in 2001, the results showed the neutron flux in the order of 1010 by installing the collimator with 45 cm thick, made of Pb and 380 cm from the core centre. The results of this research completed with the research done in 2001, 2000 and 1999 certainly support the possibility to construct the BNCT facility in RSG-GAS reactor core

  20. BNCT-Project at the Finnish TRIGA Reactor

    International Nuclear Information System (INIS)

    An epithermal neutron irradiation station for the Boron Neutron Capture Therapy (BNCT) will be constructed in the thermal column of the Finnish Triga reactor. The first target of the BNCT at FiR 1 is the treatment of malignant brain tumors. The epithermal neutrons have the capability to penetrate deep into the brain tissue thermalizing at the same time. The thermal neutrons are captured by 10B-nuclei situated ideally in the tumor cells only and thus the reaction products destroy selectively only the tumor cells. The graphite filling of the thermal column will be replaced by a special moderator material: Al+AlF3. The moderator material and its thickness has been chosen so that the system produces as much as possible epithermal neutrons with low fast neutron and gamma contamination. Both fast neutrons and gamma radiation are harmful for the patient. To reduce the gamma radiation there is a lead-bismuth gamma shield at the outer end of the moderator block. In spite of the low power (250 kW) of the reactor the needed epithermal neutron dose to destroy the tumor will be accumulated in a reasonable time e.g. 0.5 to 1.5 h. This is possible because of the rather short distance between the reactor core and the irradiation target. (author)

  1. New facility for post irradiation examination of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo; Kawamura, Hiroshi [Oarai Research Establishment, Ibaraki-Ken (Japan)

    1995-09-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  2. Prompt gamma and neutron detection in BNCT utilizing a CdTe detector.

    Science.gov (United States)

    Winkler, Alexander; Koivunoro, Hanna; Reijonen, Vappu; Auterinen, Iiro; Savolainen, Sauli

    2015-12-01

    In this work, a novel sensor technology based on CdTe detectors was tested for prompt gamma and neutron detection using boronated targets in (epi)thermal neutron beam at FiR1 research reactor in Espoo, Finland. Dedicated neutron filter structures were omitted to enable simultaneous measurement of both gamma and neutron radiation at low reactor power (2.5 kW). Spectra were collected and analyzed in four different setups in order to study the feasibility of the detector to measure 478 keV prompt gamma photons released from the neutron capture reaction of boron-10. The detector proved to have the required sensitivity to detect and separate the signals from both boron neutron and cadmium neutron capture reactions, which makes it a promising candidate for monitoring the spatial and temporal development of in vivo boron distribution in boron neutron capture therapy. PMID:26249745

  3. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    Science.gov (United States)

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays.

  4. First clinical results on the finnish study on BPA-mediated BNCT in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Kankaanranta, L. [Helsinki University Hospital, Dept. of Oncology, Helsinki (Finland); Seppaelae, T. [University of Helsinki, Department of Physics, Helsinki (Finland); Kallio, M. [Helsinki University Hospital, Dept. of Neurology, Helsinki (Finland)] [and others

    2000-10-01

    An open phase I dose-escalation boron neutron capture therapy (BNCT) study on glioblastoma multiforme (GBM) was initiated at the BNCT facility FiR 1, Espoo, Finland, in May 1999. The aim of the study is to investigate the safety of boronophenylalanine (BPA)-mediated BNCT. Ten GBM patients were treated with a 2-field treatment plan using one fraction. BPA-F was used as the {sup 10}B carrier infused as a fructose solution 290 mg BPA/kg over 2-hours prior to irradiation with epithermal neutrons. Average doses to the normal brain, contrast enhancing tumour, and the target ranged from 3.0 to 5.6 Gy (W), from 35.1 to 66.7 Gy (W), and from 29.6 to 53.6 Gy (W), respectively. BNCT was associated with acceptable toxicity. The median follow-up is 9 months (range, 3 to 16 months) post diagnosis in July 2000. Seven of the 10 patients have recurrent or persistent GBM, and the median time to progression is 8 months. Only one patient has died, and the estimated 1-year overall survival is 86%. Five of the recurrent tumours were treated with external beam photon radiation therapy to the total dose of 30-40 Gy with few acute side-effects. These preliminary findings suggest that acute toxicity of BPA-mediated BNCT is acceptable when average brain doses of 5.6 Gy (W) or less are used. The followup time is too short to evaluate survival, but the estimated 1-year survival of 86% achieved with BNCT followed by conventional photon irradiation at the time of tumour progression is encouraging and emphasises the need of further investigation of BPA-mediated BNCT. (author)

  5. Combined TL and 10B-alanine ESR dosimetry for BNCT.

    Science.gov (United States)

    Bartolotta, A; D'Oca, M C; Lo Giudice, B; Brai, M; Borio, R; Forini, N; Salvadori, P; Manera, S

    2004-01-01

    The dosimetric technique described in this paper is based on electron spin resonance (ESR) detectors using an alanine-boric compound acid enriched with (10)B, and beryllium oxide thermoluminescent (TL) detectors; with this combined dosimetry, it is possible to discriminate the doses due to thermal neutrons and gamma radiation in a mixed field. Irradiations were carried out inside the thermal column of a TRIGA MARK II water-pool-type research nuclear reactor, also used for Boron Neutron Capture therapy (BNCT) applications, with thermal neutron fluence from 10(9) to 10(14) nth cm(-2). The ESR dosemeters using the alanine-boron compound indicated ESR signals about 30-fold stronger than those using only alanine. Moreover, a negligible correction for the gamma contribution, measured with TL detectors, almost insensitive to thermal neutrons, was necessary. Therefore, a simultaneous analysis of our TL and ESR detectors allows discrimination between thermal neutron and gamma doses, as required in BNCT. PMID:15353720

  6. Design of a beam shaping assembly and preliminary modelling of a treatment room for accelerator-based BNCT at CNEA

    International Nuclear Information System (INIS)

    This work reports on the characterisation of a neutron beam shaping assembly (BSA) prototype and on the preliminary modelling of a treatment room for BNCT within the framework of a research programme for the development and construction of an accelerator-based BNCT irradiation facility in Buenos Aires, Argentina. The BSA prototype constructed has been characterised by means of MCNP simulations as well as a set of experimental measurements performed at the Tandar accelerator at the National Atomic Energy Commission of Argentina. - Highlights: ► Characterisation of a neutron beam shaping assembly for accelerator-based BNCT. ► Measurements: total and epi-cadmium neutron fluxes and beam homogeneity. ► Calculations: Monte Carlo simulations with the MCNP code. ► Measured and calculated figure-of-merit parameters in agreement with those of IAEA. ► Initial MCNP dose calculations for a treatment room to define future design actions.

  7. Neutron irradiation under continuous BPA injection for solving the problem of heterogeneous distribution of BPA

    International Nuclear Information System (INIS)

    In the current BNCT procedure, the blood 10B levels at the completion of neutron irradiation decrease to 60% level of the start. It is highly probable that such a rapid decrease in the blood 10B levels is expanding the heterogeneity in the micro-distribution of BPA in tumors. Ono and Masunaga previously reported that the combination of BSH is one of solutions for the problem of heterogeneous micro-distribution of BPA. As a similar idea, it is possible to kill tumor cells efficiently by increasing inter-cellular BPA levels. Increase of the blood 10B levels with time becomes less steep by 50%, abruptly at around 30 minutes after the start of BPA. Based on this analysis, we injected BPA 500 mg/kg at the speed of 200 mg/kg/h for initial 2 hours, and decreased the speed to 100 mg/kg/h for remaining 1 hour, and neutron was irradiated during final 1 hour. This protocol was applied to 15 cases. The blood level at the completion of neutron irradiation remained at 96% level of the start on average. Similar stable 10B level condition was made in tumor bearing mice by ligaturing renal arteries. After neutron irradiation, tumor cells were examined on micronucleus appearance. Under normal condition, fraction of the cells without micronuclei decreased with neutron fluence in biphasic pattern. However, in mice without BPA excretion it showed nearly linear curve. This means BPA distributed homogeneously through the tumor. From these data, new BPA injection and neutron irradiation protocol is considered useful to overcome the difficulty of BPA. (author)

  8. Development and characteristics of the HANARO ex-core neutron irradiation facility for applications in the boron neutron capture therapy field

    CERN Document Server

    Kim, M S; Jun, B J; Kim, H; Lee, B C; Hwang, Sung-Yul; Jun, Byung-Jin; Kim, Heonil; Kim, Myong-Seop; Lee, Byung-Chul

    2006-01-01

    The HANARO ex-core neutron irradiation facility was developed for various applications in the boron neutron capture therapy (BNCT) field, and its characteristics have been investigated. In order to obtain a sufficient thermal neutron flux with a low level contamination of fast neutrons and gamma-rays, a radiation filtering method is adopted. The radiation filter has been designed by using a silicon single crystal cooled by liquid nitrogen and a bismuth crystal. The installation of the main components of the irradiation facility and the irradiation room are finished. Experimental measurements of the neutron beam characteristics have been performed by using bare and cadmium covered gold foils and wires. The in-phantom neutron flux distribution was measured for a flux mapping inside the phantom. The gamma-ray dose was determined by using TLD-700 thermoluminescence dosimeters. The thermal and fast neutron fluxes and the gamma-ray dose were calculated by using the MCNP code, and they were compared with experimenta...

  9. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, D; Jung, J; Suh, T [The Catholic University of Korea, College of medicine, Department of biomedical engineering (Korea, Republic of)

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  10. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    International Nuclear Information System (INIS)

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  11. Genetic Effects of Neutron Irradiation in Mice

    International Nuclear Information System (INIS)

    The limited amount of information already published on this subject, mainly relating to the induction of dominant lethal mutations by fast neutrons at high intensity, is reviewed. Our work is mainly concerned with the genetic effects of fast neutrons at low intensity, using the reactor GLEEP. At a dose-rate of 0.01 rad/min., these fast fission neutrons are about six times as effective as acute X-irradiation for the induction of dominant lethal mutations in spermatozoa. This value, and the linear dose-mutation relationship, are similar to previous findings with neutron irradiation at high intensity. We are also comparing the rate of induction of specific locus mutations in mouse spermatogonia by about 215 rad of fast neutrons (with slight gamma contamination) and 650 rad of Co60 gamma-rays, administered nearly continuously over twelve weeks. Results to date suggest that these neutrons are about 50 times as effective as gamma-rays for the induction of specific locus mutations; they would also appear to be about six times as effective as acute X-irradiation. It is concluded that the type of dose-rate dependence associated with specific locus mutations induced by low LET radiations is most unlikely to occur with high LET ones; in fact it may be reversed. (author)

  12. Measurement and simulation of the TRR BNCT beam parameters

    Science.gov (United States)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad

    2016-09-01

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  13. Splenomegaly of C57BL/6 mouse by thermal neutron exposure after Borono phenylalanine (BPA) administration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Samyol [Nambu University, Kwangju (Korea, Republic of)

    2007-07-01

    BNCT(Boron Neutron Capture Therapy) is a promising clinical method for a kind of tumors by killing cancer cells selectively at the cell level, its research is going on over the world, especially KURRI (Kyoto University Research Reactor Institute) in Japan and MIT (Massachusetts institute of Technology)in USA. For the research in Korea, a neutron irradiation facility was a BNCT facility at Hanaro to support the research of BNCT (basic medical, chemical, physical and biological technology). In the present research, we firstly tried to measure the biological information for the splenomegaly of C57BL/6 mouse by thermal neutron exposure after BPA (boronophenylalanine) admini-stration.

  14. The BNCT project in the Czech Republic

    International Nuclear Information System (INIS)

    The start of clinical trials is expected before NCT Osaka 2000. The experiences from different part of project are presented. The BNCT facility at LVR-15 reactor of NRI consists of epithermal neutron beam with improved construction (6.98 x 108/cm2s with acceptable background of fast neutrons and gammas) and irradiation and control rooms equipped by appropriate devices. Internationally-recognized software MacNCTPLAN is utilized for computational dosimetry and treatment planning. In the part of protocol the following parameters have been assessed: patient selection, BSH dosage, fractionation, starting dose, dose escalation steps. At the LVR-15, at horizontal channel, a prompt gamma ray analysis (PGRA) system has been developed and is operated for BNCT purposes. Some human blood samples were analyzed and compared with classical ICP method. During the process of licensing the experience was obtained, some notes are discussed in the paper. The first results were received for the study of biological effect of the LVR source for small animal model. (author)

  15. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    International Nuclear Information System (INIS)

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  16. Dislocation morphology in deformed and irradiated niobium. [Neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. P.

    1977-06-01

    Niobium foils of moderate purity were examined for the morphology of dislocations or defect clusters in the deformed or neutron-irradiated state by transmission electron microscopy. New evidence has been found for the dissociation of screw dislocations into partials on the (211) slip plane according to the Crussard mechanism: (a/2) (111) ..-->.. (a/3) (111) + (a/6) (111).

  17. Some structure defects in neutron irradiated fluorphlogopite

    Energy Technology Data Exchange (ETDEWEB)

    Avesov, A.D.; Gasanov, E.M. (AN Uzbekskoj SSR, Tashkent. Inst. Yadernoj Fiziki); Novozhilov, A.I.; Samoilovich, V.I. (Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Sinteza Mineral' nogo Syr' ya, Aleksandrov (USSR))

    1982-09-16

    Structure defects formed in synthetic mica fluorphlogopite KMg/sub 3/(AlSi/sub 3/O/sub 10/)F/sub 2/ with and without Ti admixture under reactor neutron irradiation were investigated by optical absorption and electron paramagnetic resonance spectroscopy.

  18. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 1025 n/m2. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  19. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  20. ATF Neutron Irradiation Program Technical Plan

    Energy Technology Data Exchange (ETDEWEB)

    Geringer, J. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-03-01

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterization of irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.

  1. Neutron dosimetry in the irradiation program Rheinsberg II

    International Nuclear Information System (INIS)

    Specimens made from reactor pressure vessel steels have been irradiated in the radiation channels of the VVER-2 reactor of NPP Rheinsberg in the frame of a long-termed irradiation programme. The programme has focussed on the enlargement of the data base for evaluation of the radiation embrittlement of the reactor pressure vessel. The irradiation capsules were equipped with neutron activation detectors in order to measure the neutron exposure in the irradiation positions. The report describes the type, the design and the chemical composition of the neutron dosimeters, the arrangement in each experiment, the evaluation procedure after irradiation and summarizes the measured and adjusted neutron fluences for each of the 8 experiments of the irradiation programme Rheinsberg II. The results of the experimental neutron dosimetry confirm the results of the neutron calculation. On this base well-proved data of the neutron exposure are established for the materials irradiated in the irradiation programme Rheinsberg II. (orig.)

  2. Neutron irradiation of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Ermi, R.M. [Pacific Northwest National Lab., Richland, WA (United States); Tsai, H. [Argonne National Lab., IL (United States)

    1998-03-01

    Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

  3. BNCT and Targeted Radiotherapy (TRT) developments in Romania

    International Nuclear Information System (INIS)

    There are a number of treatment modalities for cancer including surgery, chemotherapy and radiation therapy. However, these treatments are not always effective. The search for new and more efficient ways to combat cancer has opened new perspectives. Boron neutron capture therapy (BNCT) is a new approach in cancer treatment that has been proposed to combat glioblastomas of the brain, neck cancer and malignant melanomas, tumors that are resistant to traditional cancer therapies. BNCT is based on the 10B(n,α)7Li nuclear reaction, which can potentially deliver a very high and fatal radiation dose to cancerous cells by concentrating boron in them. It is a promising, though complicated treatment. This type of therapy offers a number of potentially significant advantages compared to traditional radiation therapy. Treatment is better targeted to cancerous cells so that when a tumour is irradiated with neutrons, the damage to normal tissue is respectively less. It is also less demanding for the patient as treatment is only one to two sessions, compared to conventional radiation therapy where patients can be treated up to 30 times. It provides an excellent example of the importance of innovation in the search for a cure to cancer. The recent developments in BNCT in Romania as well as the major drawbacks will be presented. (authors)

  4. Assessment of dose rate scaling factors used in NCTPlan treatment planning code for the BNCT beam of THOR

    International Nuclear Information System (INIS)

    Tsing Hua open-pool reactor (THOR) at Tsing Hua University in Taiwan has been used to investigate the feasibility and to enhance the technology of boron neutron capture therapy (BNCT) for years. A rebuilt epithermal beam port for BNCT at THOR was finished in the summer of 2004, and then researches and experiments were performed to hasten the first clinical treatment case of BNCT in Taiwan in the near future. NCTPlan, a Monte Carlo-based clinical treatment planning code, was used to calculate the dose-rate distributions of BNCT in this work. A self-made Snyder head phantom with a servo-motor control system was irradiated in front of the THOR BNCT beam exit. The phantom was made from a 3 mm shell of quartz wool impregnated with acrylic casting resin mounted on an acrylic base, and was filled with water. Gold foils (bare and cadmium-covered) and paired ion chambers (one with graphite wall and filled with CO2 gas, another with A-150 plastic tissue equivalent wall and filled with tissue equivalent gas) were placed inside the Snyder phantom to measure and estimate the depth-dose distributions in the central axis of the beam. Dose components include the contribution of thermal neutrons, fast neutrons, photons and emitted α particles from 10B(n,α)7Li reaction. Comparison and analysis between computed and measured results of depth-dose distributions were made in this work. Dose rate scaling factors (DRSFs) were defined as normalization factors derived individually for each dose component in the BNCT in-phantom radiation field that provide the best agreement between measured and computed data. This paper reports the in-phantom calculated and experimental dosimetry and the determined DRSFs used in NCTPlan code for the BNCT beam of THOR.

  5. A suggestion for B-10 imaging during boron neutron capture therapy

    OpenAIRE

    Cortesi, M.

    2007-01-01

    Selective accumulation of B-10 compound in tumour tissue is a fundamental condition for the achievement of BNCT (Boron Neutron Capture Therapy), since the effectiveness of therapy irradiation derives just from neutron capture reaction of B-10. Hence, the determination of the B-10 concentration ratio, between tumour and healthy tissue, and a control of this ratio, during the therapy, are essential to optimise the effectiveness of the BNCT, which it is known to be based on the selective uptake ...

  6. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  7. An accelerator-based epithermal photoneutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Mitchell, H.E.; Harker, Y.D.; Yoon, W.Y. [and others

    1995-11-01

    Therapeutically-useful epithermal-neutron beams for BNCT are currently generated by nuclear reactors. Various accelerator-based neutron sources for BNCT have been proposed and some low intensity prototypes of such sources, generally featuring the use of proton beams and beryllium or lithium targets have been constructed. This paper describes an alternate approach to the realization of a clinically useful accelerator-based source of epithermal neutrons for BNCT that reconciles the often conflicting objectives of target cooling, neutron beam intensity, and neutron beam spectral purity via a two stage photoneutron production process.

  8. Basic research of boron neutron-capture therapy for treatment of pancreatic cancer. Application of neutron radiography for visualization of boron compound on BNCT

    International Nuclear Information System (INIS)

    The cytotoxic effects of locally injected 10B-immunoliposomes (anti-CEA) on human pancreatic carcinoma xenografts in nude mice were evaluated with thermal neutron irradiation. After thermal neutron irradiation of mice injected with 10B-immunoliposomes, AsPC-1 tumour growth was suppressed relative to controls. Histopathologically, hyalinization and necrosis were found in 10B-treated tumours, while tumour tissue injected with saline or saline-containing immunoliposomes showed neither destruction nor necrosis. These results suggest that intratumoral injection of boronated immunoliposomes can increase the retention of 10B atoms by tumour cells, causing tumour growth suppression in vivo upon thermal neutron irradiation. We prepared boronated PEG-binding bovine serum albumin (10B-PEG-BSA). 10B concentrations in AsPC-1, human pancreatic cancer cells (2 x 105 /well) obtained 24 hrs after incubation with 10B-PEG-BSA was 13.01 ± 1.74 ppm. The number of 10B atoms delivered to the tumor cells was calculated to be 7.83 x 1011 at 24 hrs after incubation with 10B-PEG-BSA. These data indicated that the 10B-PEG-BSA could deliver a sufficient amount of 10B atoms (more than 109 atoms/cell) to the tumor cells to induce cytotoxic effects after incubation upon thermal neutron irradiation. Neutron capture autoradiography by using an Imaging Plate (IP-NCR) was performed on AsPC-1 tumor-bearing mouse that had been given an intratumoral injection of 10B-PEG BSA or 10B-cationic liposome. We had demonstrated the 10B-PEG BSA or 10B-cationic liposome is taken up by AsPC-1 tumor tissue to a much greater extent than by normal tissues. (J.P.N.)

  9. Basic research of boron neutron-capture therapy for treatment of pancreatic cancer. Application of neutron radiography for visualization of boron compound on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Yanagie, Hironobu [Tokyo Univ. (Japan). Inst. of Medical Science

    1997-02-01

    The cytotoxic effects of locally injected {sup 10}B-immunoliposomes (anti-CEA) on human pancreatic carcinoma xenografts in nude mice were evaluated with thermal neutron irradiation. After thermal neutron irradiation of mice injected with {sup 10}B-immunoliposomes, AsPC-1 tumour growth was suppressed relative to controls. Histopathologically, hyalinization and necrosis were found in {sup 10}B-treated tumours, while tumour tissue injected with saline or saline-containing immunoliposomes showed neither destruction nor necrosis. These results suggest that intratumoral injection of boronated immunoliposomes can increase the retention of {sup 10}B atoms by tumour cells, causing tumour growth suppression in vivo upon thermal neutron irradiation. We prepared boronated PEG-binding bovine serum albumin ({sup 10}B-PEG-BSA). {sup 10}B concentrations in AsPC-1, human pancreatic cancer cells (2 x 10{sup 5} /well) obtained 24 hrs after incubation with {sup 10}B-PEG-BSA was 13.01 {+-} 1.74 ppm. The number of {sup 10}B atoms delivered to the tumor cells was calculated to be 7.83 x 10{sup 11} at 24 hrs after incubation with {sup 10}B-PEG-BSA. These data indicated that the {sup 10}B-PEG-BSA could deliver a sufficient amount of {sup 10}B atoms (more than 10{sup 9} atoms/cell) to the tumor cells to induce cytotoxic effects after incubation upon thermal neutron irradiation. Neutron capture autoradiography by using an Imaging Plate (IP-NCR) was performed on AsPC-1 tumor-bearing mouse that had been given an intratumoral injection of {sup 10}B-PEG BSA or {sup 10}B-cationic liposome. We had demonstrated the {sup 10}B-PEG BSA or {sup 10}B-cationic liposome is taken up by AsPC-1 tumor tissue to a much greater extent than by normal tissues. (J.P.N.)

  10. Neutron Spectrum Measurements from Irradiations at NCERC

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Kevin Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Michelle A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hutchens, Gregory Joe [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); White, Morgan Curtis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  11. Carborane-containing metalloporphyrins for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Michiko; Joel, D.D.; Nawrocky, M.M.; Micca, P.L. [and others

    1996-12-31

    For BNCT of malignant brain tumors, it is crucial that there be relatively high boron concentrations in tumor compared with normal tissues within the neutron-irradiated treatment volume. Fairchild and Bond estimated that major advances in BNCT should be possible if ratios of {sup 10}B concentrations in tumor to those in normal tissue (e.g. brain and blood) were at least 5: 1. Given that the only current boron carrier being tested clinically in the U.S., p-boronophenyl-alanine[BPA], yields tumor blood and tumor brain ratios of about 3:1, the criteria for new boronated compounds should be to at least match these ratios and maintain tumor boron concentrations greater than 30 {mu}g B/g. Although previously tested boronated porphyrins have not only matched but surpassed these ratios, it was at a cost of greater toxicity. Chemical and hematological assays of blood analytes; showed marked thrombocytopenia, a decrease to about one-tenth the normal concentration of platelets circulating in the blood, in addition to abnormalities in concentrations of circulating enzymes, that indicated liver toxicity. The physical appearance and behavior of the affected mice were different from those of mice injected with solvent only. Although thrombocytopenia and other toxic effects had disappeared after a few days, previously tested porphyrins would not be safe to infuse into patients for BNCT of potentially hemorrhagic malignant tumors in the brain such as glioblastoma multiforme and metastatic melanoma. We synthesized a different boronated porphyrin, tetracarboranylphenylporphyrin, [TCP] and inserted nickel, copper, or manganese into its coordination center. Biological studies of NiTCP in mice and of CuTCP in rats show that these compounds elicit little or no toxicity when given at potentially therapeutic doses.

  12. Carborane-containing metalloporphyrins for BNCT

    International Nuclear Information System (INIS)

    For BNCT of malignant brain tumors, it is crucial that there be relatively high boron concentrations in tumor compared with normal tissues within the neutron-irradiated treatment volume. Fairchild and Bond estimated that major advances in BNCT should be possible if ratios of 10B concentrations in tumor to those in normal tissue (e.g. brain and blood) were at least 5: 1. Given that the only current boron carrier being tested clinically in the U.S., p-boronophenyl-alanine[BPA], yields tumor blood and tumor brain ratios of about 3:1, the criteria for new boronated compounds should be to at least match these ratios and maintain tumor boron concentrations greater than 30 μg B/g. Although previously tested boronated porphyrins have not only matched but surpassed these ratios, it was at a cost of greater toxicity. Chemical and hematological assays of blood analytes; showed marked thrombocytopenia, a decrease to about one-tenth the normal concentration of platelets circulating in the blood, in addition to abnormalities in concentrations of circulating enzymes, that indicated liver toxicity. The physical appearance and behavior of the affected mice were different from those of mice injected with solvent only. Although thrombocytopenia and other toxic effects had disappeared after a few days, previously tested porphyrins would not be safe to infuse into patients for BNCT of potentially hemorrhagic malignant tumors in the brain such as glioblastoma multiforme and metastatic melanoma. We synthesized a different boronated porphyrin, tetracarboranylphenylporphyrin, [TCP] and inserted nickel, copper, or manganese into its coordination center. Biological studies of NiTCP in mice and of CuTCP in rats show that these compounds elicit little or no toxicity when given at potentially therapeutic doses

  13. THERMAL NEUTRON INTENSITIES IN SOILS IRRADIATED BY FAST NEUTRONS FROM POINT SOURCES. (R825549C054)

    Science.gov (United States)

    Thermal-neutron fluences in soil are reported for selected fast-neutron sources, selected soil types, and selected irradiation geometries. Sources include 14 MeV neutrons from accelerators, neutrons from spontaneously fissioning 252Cf, and neutrons produced from alp...

  14. Preliminary Design of LEU MNSR for BNCT with Excellent Epithermal Neutron Flux Treatment Beam%高额超热中子束流治疗孔道低浓化BNCT堆初步设计方案

    Institute of Scientific and Technical Information of China (English)

    于涛; 钱金栋; 谢金森

    2012-01-01

    Based on the Miniature Neutron Source Reactor (MNSR) with high enrichment uranium (HEU) fuel and accordance with the requirements of BNCT, the 19.5% of enriched fuel UO2 fuel core for BNCT with epithermal neutron treatment beam was primary designed, the reactor core parameters such as epithermal neutron flux density,epithermal neutron flux unit of fast neutron dose rate,epithermal neutron flux unit photon dose rate of γ,epithermal neutron flux ratio of thermal neutron flux, neutron spectrum were calculated and analyzed. The results show that the design program was an excellent epithermal neutron treatment beam.%根据硼中子俘获治疗( BNCT)中子源的要求,在高浓铀为燃料的微型反应堆(MNSR)的基础上,以富集度19.5%的UO2为燃料,将其堆芯低浓化并且添加水平超热中子束流治疗孔道,开展超热中子束流BNCT堆堆芯低浓化初步设计.计算BNCT堆的超热中子注量率、单位超热中子注量的快中子剂量率、单位超热中子注量的γ光子剂量率、超热中子注量与热中子的注量之比、中子束流能谱等关键参数.结果表明,该设计可以得到优良的超热中子束流.

  15. INEL BNCT Research Program annual report 1994

    International Nuclear Information System (INIS)

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included

  16. Neutron flux profile determination for an in-pool animal irradiation facility

    International Nuclear Information System (INIS)

    The University of Virginia 2-MW pool-type nuclear research reactor (UVAR) is used actively for neutron activation analysis, neutron radiography, gemstone coloration, radioisotope production, neutron transmutation doping, and, more recently, medical research. Neutron beams for neutron radiography are extracted from the southeast and southwest edges of the core. While excellent for radiography, the flux intensity of these beams is much too low to permit their use in medical research. Therefore, planning has begun for the installation of a filtered epithermal neutron beamport with flux suitable for boron neutron capture therapy (BNCT) of human cancers. The design of this beamport has been reported previously

  17. Neutron flux profile determination for an in-pool animal irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Bose, S.R.; Mulder, R.U.; Rydin, R.A. [Univ. of Virginia, Charlottesville, VA (United States)] [and others

    1997-12-01

    The University of Virginia 2-MW pool-type nuclear research reactor (UVAR) is used actively for neutron activation analysis, neutron radiography, gemstone coloration, radioisotope production, neutron transmutation doping, and, more recently, medical research. Neutron beams for neutron radiography are extracted from the southeast and southwest edges of the core. While excellent for radiography, the flux intensity of these beams is much too low to permit their use in medical research. Therefore, planning has begun for the installation of a filtered epithermal neutron beamport with flux suitable for boron neutron capture therapy (BNCT) of human cancers. The design of this beamport has been reported previously.

  18. Clinical results of BNCT for malignant brain tumors in children

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [Department of Neurosurgery, Kagawa National Children' s Hospital, Kagawa 765-8501 (Japan)], E-mail: ynakagawa0517@yahoo.co.jp; Kageji, Teruyoshi; Mizobuchi, Yoshifumi [Department of Neurosurgery, University of Tokushima, Tokushima 770-8503 (Japan); Kumada, Hiroaki [Department of Research Reactor, Japan Atomic Energy Research Institute, Ibaragi 319-1195 (Japan); Nakagawa, Yoshiaki [Department of Medical Informatics, Post Graduated School, Kyoto University, Kyoto (Japan)

    2009-07-15

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  19. Neutron capture therapy (NCT) and in-hospital neutron irradiator (IHNI) a new technology on binary targeting radiation therapy of cancer

    International Nuclear Information System (INIS)

    BNCT is finally becoming 'a new option against cancer'. The difficulties for its development progress of that firstly is to improve the performance of boron compounds,secondly, it is the requirements of quantification and accuracy upon radiation dosimetry evaluation in clinical trials. Furthermore, that is long anticipation on hospital base neutron sources. It includes dedicated new NCT reactor, accelerator based neutron sources, and isotope source facilities. In addition to reactors, so far, the technology of other types of sources for clinical trials is not yet completely proven. The In-Hospital Neutron Irradiator specially designed for NCT, based on the MNSR successfully developed by China, can be installed inside or near the hospital and operated directly by doctors. The Irradiator has two neutron beams for respective treatment of the shallow and deep tumors. It is expected to initiate operation in the end of this year. It would provide a safe, low cost, and effective treatment tool for the NCT routine application in near future. (authors)

  20. Thermal annealing in neutron-irradiated tribromobenzenes

    DEFF Research Database (Denmark)

    Siekierska, K.E.; Halpern, A.; Maddock, A. G.

    1968-01-01

    The distribution of 82Br among various products in neutron-irradiated isomers of tribromobenzene has been investigated, and the effect of thermal annealing examined. Reversed-phase partition chromatography was employed for the determination of radioactive organic products, and atomic bromine...... in the crystals was estimated by means of the 1,2-dibromoethylene exchange technique. The results suggest that, as a consequence of nuclear events, quite a number of different reactions occur whereas the principal annealing reaction is a recombination of atomic bromine with a dibromophenyl radical....

  1. TEM study of neutron-irradiated iron

    Energy Technology Data Exchange (ETDEWEB)

    Horton, L.L.; Bentley, J.; Farrell, K.

    1981-01-01

    Results of a transmission electron microscopy study of the defect structure in iron neutron-irradiated to low fluences (less than or equal to 1 dpa) at temperatures of 455 to 1013/sup 0/K are presented. The dislocation microstructures coarsen with increasing irradiation temperature from decorated dislocations, through clusters of dislocation loops, to near-edge, interstitial dislocation loops with b = a<100>, and network segments. Significant cavity formation occurred only at 548 to 723/sup 0/K, with homogeneous distributions found only at 623 and 673/sup 0/K. The maximum swelling of 0.07% occurred at 673/sup 0/K. Large cavities had a truncated octahedral shape with (111) facets and (100) truncations. Damage halos were observed around boron-containing precipitates. The effects of interstitial impurities on microstructural development and the differences in the observed microstructures compared to those in refractory bcc metals are discussed. 8 figures, 6 tables.

  2. Experimental Studies of Boronophenylalanine ({sup 10}BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Carpano, Marina; Perona, Marina; Rodriguez, Carla [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A. [Department of Boron Neutron Capture Therapy, National Atomic Energy Commission, San Martín (Argentina); Brandizzi, Daniel; Cabrini, Romulo [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); School of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Pisarev, Mario [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires (Argentina); Juvenal, Guillermo Juan [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Dagrosa, Maria Alejandra, E-mail: dagrosa@cnea.gov.ar [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina)

    2015-10-01

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ({sup 10}BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10{sup 6} MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of {sup 10}B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R{sup 2} = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R{sup 2} = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT

  3. Experimental Studies of Boronophenylalanine (10BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    International Nuclear Information System (INIS)

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina (10BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 106 MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of 10B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R2 = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R2 = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT treatment for each individual

  4. Antiproliferative effect and apoptosis induction in melanoma treatment by boron neutron capture therapy (BCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, Fernanda; Coelho, Paulo; Arruda-Neto, Joao; Maria, Durvanei [University of Sao Paulo (USP), SP (Brazil)

    2011-07-01

    Full text: Introduction: Boron neutron capture therapy (BNCT) is an experimental radiotherapy where a compound having {sup 10}B is administered to cancer patients and is accumulated in tumor tissues. Thus, the tumor is irradiated with thermal neutrons, {sup 10}B absorbs and destroys them, producing alpha radiation. Boronophenylalanine (BPA) is the agent responsible for delivering boron to the tumor tissue. After BPA administration, BNCT is used as a localized radiotherapy for many tumors treatment, mainly melanoma, which has a high mortality rate among all types of tumors. The aim of this study was to evaluate in vitro antiproliferative and antitumor effects of BNCT application in human melanoma treatment. Materials and Methods: MEWO cells (human melanoma) were cultured and treated with different concentrations of BPA (8.36 to 0.52 mg/ml). After 90 minutes, they were irradiated with thermal neutron flux up to a dose of 8.4 Gy. The parameters analyzed were free radical production, cell cycle progression, cell death signaling pathways, cycling D1, caspase-3 and extracellular matrix synthesis produced, beyond the mitochondrial electric potential analysis. Results: After BNCT treatment, MEWO cells showed an amount of free radical increase about 10 times. Still, there was a significant decrease of cyclin D1, G0/G1 proliferation, synthesis and G2/M cell cycle phases. BNCT induced a mitochondrial electrical potential decrease, as well as fibrillar proteins of extracellular matrix. BNCT had a significant number of dead cell increase, mainly by necrosis. However, BNCT induced phosphorylated caspase 3 increase. Discussion/Conclusion: BNCT induced cell death increase by necrosis, mitochondrial electric potential decrease and free radical production increase. BNCT is cytotoxic to melanoma cells. Besides necrosis, phosphorylated caspase 3 increase was observed, accompanied by a proliferative response decrease regulated by the G1/S checkpoint and matrix extracellular synthesis

  5. Concept of a BNCT line with in-pool fission converter at MARIA reactor in Swierk

    Science.gov (United States)

    Pytel, Krzysztof; Andrzejewski, Krzysztof; Golnik, Natalia; Osko, Jakub

    2009-01-01

    BNCT facility in the Institute of Atomic Energy in Otwock-Swierk is under construction at the horizontal channel H2 of the research reactor MARIA. Measurements of the neutron energy spectrum performed at the front of the H2 experimental channel, have shown that flux of epithermal neutrons (above 10 keV) at the BNCT irradiation port was below 109 n cm-2 s-1 i.e. it was too low to be directly used for the BNCT treatment. Therefore, a fission converter will be placed between the reactor core and the periphery of the graphite reflector of MARIA reactor. The uranium converter will be powered by the densely packed EK-10 fuel elements with 10% enrichment. Preliminary calculations have shown that the total neutron flux in the converter will be about 1013 n cm-2 s-1 and flux of epithermal neutrons at the entrance to the filter/moderator of the beam will be about 2·1013 n cm-2 s-1.

  6. Research needs for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted.

  7. Research needs for neutron capture therapy

    International Nuclear Information System (INIS)

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted

  8. Spin 1 centers in neutron irradiated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Wun; Newell, G. S.

    1963-03-01

    Electron paramagnetic resonance was used to identify a number of fast-neutron induced defects formed in pile irradiated Si and to follow their concentrations as a function of annealing. Measurements were made at 300, 77, and 4.2 deg K on samples that had attained intrinsic resistivity during irradiation, using superheterodyne spectrometers operating at 24 kMc and 9.4 kMc. Aside from the Si-N center, the most prominent lines of the spectrum arise from the m/sub s/ = O to plus or minus 1 transitions of four spin 1 systems. The distinct symmetry and small production rate ( approximately 0.05 centers per fast neutron collision) indicate a class of well-defined but relatively rare defects. Their g tensors, zero-field splitting tensors, and hfs are compatible with systems having two weakly interacting (1 1 1) dangling bonds separated by about a lattice spacing, giving the S = 1 Hamiltonians in the triplet levels formed by the weak exchange interaction. Low-temperature measurements suggest that the singlet-triplet splitting lies between 3 and 50 cm-1. Comparison with floating zone Si shows Center (11, 111), which is dominant in unannealed samples, to be independent of impurity. The remaining three S = 1 centers, which grow and decay rapidly at higher temperatures, involve O. Precise measurements of the parameters of the spin Hamiltonians are given to permit reproducible identification of the centers. (auth)

  9. Neutron irradiation effects on superconducting wires and insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Arata [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)], E-mail: nishi-a@nifs.ac.jp; Takeuchi, Takao [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Nishijima, Shigehiro [Graduate School of Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Nishijima, Gen; Shikama, Tatsuo [Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 (Japan); Ochiai, Kentaro [Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Koizumi, Norikiyo [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2009-06-15

    On the progress of the Deuterium-Deuterium (D-D) or Deuterium-Tritium (D-T) burning plasma devices, the importance of neutron irradiation on superconducting magnet materials increases and the data base is desired to design the next generation devices. To carry out the investigations on the effect of neutron irradiation, neutron irradiation fields are required together with post-irradiation test facilities. In these several years, a collaboration network of neutron irradiation effect on superconducting magnet materials has been constructed. 14 MeV neutron irradiation was carried out at Fusion Neutronics Sources (FNS) in Japan Atomic Energy Agency (JAEA) and fission neutron irradiation was performed at JRR-3 in JAEA. After the irradiation, the Nb{sub 3}Sn, NbTi and Nb{sub 3}Al samples were sent to High Field Laboratory for Superconducting Materials (HFLSM) in Tohoku University and the superconducting properties were evaluated with 28 T hybrid magnet. Also, the organic insulation materials are considered to be weaker than superconducting materials against neutron irradiation and cyanate ester resin composite was fabricated and tested at the fission reactor. One clear result on Nb{sub 3}Sn was the property change of Nb{sub 3}Sn by 14 MeV neutron irradiation over 13 T. The critical current was increased by 1.4 times around 13 T but the increment of the critical current became almost zero at higher magnetic fields and the critical magnetic field of the irradiated sample showed almost the same as non-irradiated one.

  10. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    International Nuclear Information System (INIS)

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities, the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging

  11. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  12. Simulation analysis of radiation fields inside phantoms for neutron irradiation

    International Nuclear Information System (INIS)

    Radiation fields inside phantoms have been calculated for neutron irradiation. Particle and heavy-ion transport code system PHITS was employed for the calculation. Energy and size dependences of neutron dose were analyzed using tissue equivalent spheres of different size. A voxel phantom of mouse was developed based on CT images of an 8-week-old male C3H/HeNs mouse. Deposition energy inside the mouse was calculated for 2- and 10-MeV neutron irradiation. (author)

  13. BNCT Technology Development on HANARO Reactor

    International Nuclear Information System (INIS)

    So as to establish the biological effects of BNCT in the HANARO Reactor, biological damages in cells and animals with treatment of boron/neutron were investigated. And 124I-BPA animal PET image, analysis technology of the boron contents in the mouse tissues by ICP-AES was established. A Standard clinical protocol, a toxicity evaluation report and an efficacy investigation report of BNCT has been developed. Based on these data, the primary permission of clinical application was acquired through IRB of our hospital. Three cases of pre-clinical experiment for boron distribution and two cases of medium-sized animal simulation experiment using cat with verifying for 2 months after BNCT was performed and so the clinical demonstration with a patient was prepared. Also neutron flux, fast neutron flux and gamma ray dose of BNCT facility were calculated and these data will be utilized good informations for clinical trials and further BNCT research. For the new synthesis of a boron compound, o-carboranyl ethylamine, o-carboranylenepiperidine, o-carboranyl-THIQ and o-carboranyl-s-triazine derivatives were synthesized. Among them, boron uptake in the cancer cell of the triazine derivative was about 25 times than that of BPA and so these three synthesized methods of new boron compounds were patented

  14. BNCT Technology Development on HANARO Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ki Jung; Park, Kyung Bae; Whang, Seung Ryul; Kim, Myong Seop

    2007-06-15

    So as to establish the biological effects of BNCT in the HANARO Reactor, biological damages in cells and animals with treatment of boron/neutron were investigated. And 124I-BPA animal PET image, analysis technology of the boron contents in the mouse tissues by ICP-AES was established. A Standard clinical protocol, a toxicity evaluation report and an efficacy investigation report of BNCT has been developed. Based on these data, the primary permission of clinical application was acquired through IRB of our hospital. Three cases of pre-clinical experiment for boron distribution and two cases of medium-sized animal simulation experiment using cat with verifying for 2 months after BNCT was performed and so the clinical demonstration with a patient was prepared. Also neutron flux, fast neutron flux and gamma ray dose of BNCT facility were calculated and these data will be utilized good informations for clinical trials and further BNCT research. For the new synthesis of a boron compound, o-carboranyl ethylamine, o-carboranylenepiperidine, o-carboranyl-THIQ and o-carboranyl-s-triazine derivatives were synthesized. Among them, boron uptake in the cancer cell of the triazine derivative was about 25 times than that of BPA and so these three synthesized methods of new boron compounds were patented.

  15. Comparison of intracerebral delivery of carboplatin and photon irradiation with an optimized regimen for boron neutron capture therapy of the F98 rat glioma

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rolf F., E-mail: rolf.barth@osumc.edu [Department of Pathology, Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States); Yang Weilian; Huo Tianyao [Department of Pathology, Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States); Riley, Kent J.; Binns, Peter J. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Grecula, John C., E-mail: john.grecula@osumc.edu [James Cancer Hospital and Solove Research Institute, Department of Radiation Oncology, Ohio State University, Columbus, OH, 43210 (United States); Gupta, Nilendu, E-mail: nilendu.gupta@osumc.edu [James Cancer Hospital and Solove Research Institute, Department of Radiation Oncology, Ohio State University, Columbus, OH, 43210 (United States); Rousseau, Julia, E-mail: julia.rousseau@yahoo.fr [INSERM, U836, Institute of Neurosciences, Grenoble (France); Elleaume, Helene, E-mail: h.elleaume@esrf.fr [INSERM, U836, Institute of Neurosciences, Grenoble (France)

    2011-12-15

    In this report we have summarized our studies to optimize the delivery of boronophenylalanine (BPA) and sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) of F98 glioma bearing rats. These results have been compared to a chemoradiotherapeutic approach using the same tumor model. The best survival data from our BNCT studies were obtained using a combination of BPA and sodium borocaptate BSH administered via the internal carotid artery, in combination with blood-brain barrier disruption (BBB-D). This treatment resulted in a mean survival time (MST) of 140 d with a 25% cure rate. The other approach combined intracerebral administration of carboplatin by either convection enhanced delivery (CED) or Alzet pump infusion, followed by external beam photon irradiation. This resulted in MSTs of 83 d and 112 d, respectively, with a cure rate of 40% for the latter. However, a significant problem that must be solved for both BNCT and this new chemoradiotherapeutic approach is how to improve drug uptake and microdistribution within the tumor.

  16. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  17. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  18. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  19. Characteristics of the KUR Heavy Water Neutron Irradiation Facility as a neutron irradiation field with variable energy spectra

    Science.gov (United States)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2000-10-01

    The Heavy Water Neutron Irradiation Facility (HWNIF) of the Kyoto University Research Reactor (KUR) was updated in March 1996, mainly for the improvement in neutron capture therapy (NCT). A striking feature of the updated facility is that the energy spectrum of the neutron beam can be controlled from almost pure thermal to epi-thermal, within 5 min by remote control under a continuous reactor operation. This feature is advantageous not only to medical science such as NCT, but also to the other research fields such as physics, engineering, biology, etc. The performance of the updated facility as a neutron irradiation field with variable energy spectra, was characterized. Thermal neutron flux, cadmium ratio, gamma-ray dose rate, etc., at the normal irradiation position for various irradiation modes were determined, mainly on the basis of the measurement using gold activation foils and thermo-luminescent dosimeters (TLDs). The emphasis was on the performance of the new neutron energy spectrum shifter and cadmium thermal neutron filter, that control the mixing ratio of thermal and epi-thermal neutrons, through the change in the heavy water thickness of the spectrum shifter and the aperture size of the cadmium filter. The evaluation of neutron energy spectra at the normal irradiation position was also performed for three representative irradiation modes, in which the neutron intensities are largest of all the irradiation modes. In addition, the irradiation characteristics of two irradiation devices, namely the Irradiation Rail Device and the Remote Patient Carrier, which were updated concurrently with the facility update, were evaluated.

  20. Present status of BNCT at Kyoto University Research Reactor Institute

    International Nuclear Information System (INIS)

    At Kyoto University Research Reactor Institute, we have two facilities for BNCT such as a reactor-based and an accelerator-based neutron source. In this article, we will present the characteristics overview of both facilities. (author)

  1. Neutron Flux Characterization of Irradiation Holes for Irradiation Test at HANARO

    Directory of Open Access Journals (Sweden)

    Yang Seong Woo

    2016-01-01

    Full Text Available The High flux Advanced Neutron Application ReactOr (HANARO is a unique research reactor in the Republic of Korea, and has been used for irradiation testing since 1998. To conduct irradiation tests for nuclear materials, the irradiation holes of CT and OR5 have been used due to a high fast-neutron flux. Because the neutron flux must be accurately calculated to evaluate the neutron fluence of irradiated material, it was conducted using MCNP. The neutron flux was measured using fluence monitor wires to verify the calculated result. Some evaluations have been conducted, however, more than 20% errors have frequently occurred at the OR irradiation hole, while a good agreement between the calculated and measured data was shown at the CT irradiation hole.

  2. BNCT with linac, feasibility study

    International Nuclear Information System (INIS)

    High energy photon beams from Medical Linear Accelerators (linacs) which are used in radiotherapy produce undesirable neutrons, beside the clinically useful electron and photon beams. Neutrons are produced from the photonuclear reaction (γ,n) of high energy photons with high Z-materials which compose the accelerator head. In this paper the possible use of these undesirable neutrons for BNCT is investigated, making use of high energy linacs already installed in hospitals, primarily for high energy electron and photon therapy and applying them in the context of BNCT. The photoneutron components emitted by the accelerator is the source for Monte Carlo simulations of the interactions that take place within the head of a voxel-based phantom. The neutron flux across the phantom head is calculated using different moderator arrangements and different techniques in the aim of increasing the thermal neutron flux at the targeted site. Also, we shall test different configurations of the linac head to maximize the exposure of high-Z materials to the photon beam, including the removal of the flattening filter, so as to boost the photoneutron production in the linac head. Experimental work will be conducted in hospitals to validate the Monte Carlo simulations. To make use of linacs for BNCT will be advantageous in the sense that the setting in a hospital department is much more acceptable by the public than a reactor installation. This will mean less complications regarding patient positioning and movement with respect to the beams, additional patient transportation and management will be more cost effective. (author)

  3. In-phantom dosimetry for BNCT with Fricke and normoxic-polymer gels

    Science.gov (United States)

    Gambarini, G.; Agosteo, S.; Carrara, M.; Gay, S.; Mariani, M.; Pirola, L.; Vanossi, E.

    2006-05-01

    Measurements of in-phantom dose distributions and images are important for Boron Neutron Capture Therapy treatment planning. The method for spatial determination of absorbed doses in thermal or epithermal neutron fields, based on Fricke-xylenol-orange-infused gel dosimeters in form of layers, has revealed to be very reliable, as gel layer dosimeters give the possibility of obtaining spatial dose distributions and measurements of each dose contribution in neutron fields, by means of a properly studied procedure. Quite recently, BNCT has been applied to treat liver metastases; in this work the results of in-phantom dosimetry for explanted liver in BNCT treatments are described. Moreover, polyacrylamide gel (PAG) dosimeters in which a polymerization process appears as a consequence of absorbed dose, have been recently tested, because of their characteristic absence of diffusion. In fact, due to the diffusion of ferric ions, Fricke-gel dosimeters require prompt analysis after exposure to avoid spatial information loss. In this work the preliminary results of a study about the reliability of polymer gel in BNCT dosimetry are also discussed. Gel layers have been irradiated in a phantom exposed in the thermal column of the TRIGA MARK II reactor (Pavia). The results obtained with the two kinds of gel dosimeter have been compared.

  4. Radiation field characterization of a BNCT research facility using Monte Carlo method - code MCNP-4B

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy - BNCT - is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an Am Be neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these Becton studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluencyNT = 1,35x108 n/cm , a fast neutron dose of 5,86x10-10 Gy/NT and a gamma ray dose of 8,30x10-14 Gy/NT. (author)

  5. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.

    Science.gov (United States)

    Lee, Deok-jae; Han, Chi Young; Park, Sung Ho; Kim, Jong Kyung

    2004-01-01

    The beam shaping assembly design has been investigated in order to improve the epithermal neutron beam for accelerator-based boron neutron capture therapy in intensity and quality, and dosimetric evaluation for the beams has been performed using both mathematical and voxel head phantoms with MCNP runs. The neutron source was assumed to be produced from a conventional 2.5 MeV proton accelerator with a thick (7)Li target. The results indicate that it is possible to enhance epithermal neutron flux remarkably as well as to embody a good spectrum shaping to epithermal neutrons only with the proper combination of moderator and reflector. It is also found that a larger number of thermal neutrons can reach deeply into the brain and, therefore, can reduce considerably the treatment time for brain tumours. Consequently, the epithermal neutron beams designed in this study can treat more effectively deep-seated brain tumours.

  6. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    International Nuclear Information System (INIS)

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al27, C12, B11, B10 and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B10 content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B10 content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B10 content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B10 content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 1010 order, however, usual neutron flux from spent fuel is 108 order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B10 content is little decreased, so, initial neutron absorbing ability could be kept continuously

  7. Determination of radiobiological parameters for the safe clinical application of BNCT

    International Nuclear Information System (INIS)

    In the present report the effects of BNCT irradiation on the skin and spinal cord of Fischer 344 rats, for known concentrations of 10B in the blood and these normal tissues, are compared with the effects of the neutron beam alone or photon irradiation. The biological effectiveness of irradiation in the presence of the capture agents BSH and BPA have been compared. Irradiations were carried out using the thermal beam of the Brookhaven Medical Research Reactor (BMRR). Therapy experiments were also carried out as part of this study, using the rat 9L-gliosarcoma cell line, in order to establish the potential therapeutic advantage that might be achieved using the above capture agents. This cell line grows as a solid tumor in vivo as well as in vitro. The implications of these findings, with respect to the clinical use of the Petten HBII based epithermal neutron beam, will be discussed

  8. Heavy Neutron Irradiation Test of Materials in Joyo Instrumented Rigs

    International Nuclear Information System (INIS)

    For studies of radiation effects in materials for advanced nuclear systems including a nuclear fusion reactor, heavy neutron irradiation by high energy neutrons is essential. A sodium cooled high flux fast reactor will be only a choice for realizing heavy neutron irradiation. The paper will describe the brief history of radiation effects study utilizing fission reactors in Japan, and the status of the fast reactor of JOYO in Japan, for applying it to the heavy irradiation of candidate materials for advanced nuclear systems. (author)

  9. Photoneutron source for in-hospital BNCT treatment. Feasibility study

    International Nuclear Information System (INIS)

    Some recent studies in Italy have focused on the possibility of exploiting high energy electron linear accelerators, normally used in gamma radiotherapy, as photo-neutrons source for in-hospital medical applications. Neutrons are produced by Giant Dipole Resonance (GDR) reactions from high energy photons on high Z targets; by proper material and geometry optimization, interesting fluence rates of thermalized neutrons can be made available, with minimized fast neutron and gamma backgrounds, for a fractionated type of Boron Neutron Capture Therapy (BNCT) devoted to external treatment of some specific tumors. A photoneutron converter, constituted by high Z core and surrounded by Low Z materials, is shaped to produce thermal beam inside an irradiation cavity. A feasibility study on Beam Shaping Assembly using MCNPGN simulation code is performed on various geometrical shapes and material selection. A first prototype of the photoconverter has been realized and tested at some hospital high energy medical LINAC facilities. In this paper the preliminary experimental results of neutron fluence rate and neutron spectra produced by the photoconverter prototype are compared to the simulation data. (author)

  10. Feasibility of BNCT radiobiological experiments at the HYTHOR facility

    Science.gov (United States)

    Esposito, J.; Ceballos, C.; Soncin, M.; Fabris, C.; Friso, E.; Moro, D.; Colautti, P.; Jori, G.; Rosi, G.; Nava, E.

    2008-06-01

    HYTHOR (HYbrid Thermal spectrum sHifter tapirO Reactor) is a new thermal-neutron irradiation facility, which was installed and became operative in mid 2005 at the TAPIRO (TAratura PIla Rapida potenza 0) fast reactor, in the Casaccia research centre (near Rome) of ENEA (Ente per le Nuove tecnologie Energia ed Ambiente). The facility has been designed for in vivo radiobiological studies. In HYTHOR irradiation cavity, 1-6 mice can be simultaneously irradiated to study skin melanoma treatments with the BNCT (boron neutron capture therapy). The therapeutic effects of HYTHOR radiation field on mouse melanoma has been studied as a preliminary investigation before studying the tumour local control due to boron neutron capture effect after boronated molecule injection. The method to properly irradiate small animals has been precisely defined. Results show that HYTHOR radiation field is by itself effective in reducing the tumour-growth rate. This finding has to be taken into account in studying the effectiveness of new 10B carriers. A method to properly measure the reduction of the tumour-growth rate is reported and discussed.

  11. INEL BNCT Program: Volume 5, No. 9

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-01-01

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  12. Review of the Advanced Neutron Source (ANS) materials irradiation facilities

    International Nuclear Information System (INIS)

    The purpose of the workshop was to document as accurately as possible the present and future needs for neutron irradiation capacity and facilities as related to the design of the Advanced Neutron Source (ANS) which will be the next generation steady-state research reactor. The report provides the findings and recommendations of the working group. After introductory and background information is presented, the discussion includes the status of the ANS design, in particular in-core materials irradiation facilities design and important experimental parameters. The summary of workshop discussions describes a survey of irradiation-effects research community and opportunities for ex-core irradiation facilities. 20 refs., 2 figs., 4 tabs

  13. Needs of in-situ materials testing under neutron irradiation

    International Nuclear Information System (INIS)

    Under neutron irradiation, the component atoms of materials are displaced as primary knock-on atoms, and the energy of the primary knock-on atoms is consumed by electron excitation and nuclear collision. Elementary irradiation defects accumulate to form damage structure including voids and bubbles. In situ test under neutron irradiation is necessary for investigating into the effect of irradiation on creep behavior, the electric properties of ceramics, transport phenomena and so on. The in situ test is also important to investigate into the phenomena related to the chemical reaction with environment during irradiation. Accelerator type high energy neutron sources are preferable to fission reactors. In this paper, the needs and the research items of in situ test under neutron irradiation using a D-Li stripping type high energy neutron source on metallic and ceramic materials are described. Creep behavior is one of the most important mechanical properties, and depends strongly on irradiation environment, also it is closely related to microstructure. Irradiation affects the electric conductibity of ceramics and also their creep behavior. In this way, in situ test is necessary. (K.I.)

  14. Effects of neutron irradiation on high temperature superconductors

    OpenAIRE

    Hammerer, John J.

    1988-01-01

    Approved for public release; distribution in unlimited. Neutron irradiation of high temperature superconductors was performed in order to determine the effects of nuclear weapons on these novel materials. This radiation could also be encountered in space radiation belts, fusion reactors and particle accelerators. Fluences used were on the order of 10 to the 18th power fast and thermal neutrons/sq cm. The result of the irradiation was a complete loss of observed superconductivity in YBa2Cu3...

  15. Measurement of spatial distribution of neutrons and gamma rays for BNCT using multi-imaging plate system.

    Science.gov (United States)

    Tanaka, Kenichi; Sakurai, Yoshinori; Tanaka, Hiroki; Kajimoto, Tsuyoshi; Takata, Takushi; Takada, Jun; Endo, Satoru

    2015-12-01

    Quality assurance of the spatial distributions of neutrons and gamma rays was tried using imaging plates (IPs) and converters to enhance the beam components in the epithermal neutron mode of the Kyoto University Reactor. The converters used were 4mm thick epoxy resin with B4C at 6.85 weight-percent (wt%) (10)B for epithermal neutrons, and 3mm thick carbon for gamma rays. Results suggested that the IP signal does not need a sensitivity correction regardless of the incident radiation that produces it. PMID:26278346

  16. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC): application for photodynamic therapy and boron neutron capture therapy.

    Science.gov (United States)

    Hiramatsu, Ryo; Kawabata, Shinji; Tanaka, Hiroki; Sakurai, Yoshinori; Suzuki, Minoru; Ono, Koji; Miyatake, Shin-ichi; Kuroiwa, Toshihiko; Hao, Erhong; Vicente, M Graça H

    2015-03-01

    Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC's applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm(2) ) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 10(12) n/cm(2) ) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37-43 days).

  17. Voxel model in BNCT treatment planning: performance analysis and improvements

    Science.gov (United States)

    González, Sara J.; Carando, Daniel G.; Santa Cruz, Gustavo A.; Zamenhof, Robert G.

    2005-02-01

    In recent years, many efforts have been made to study the performance of treatment planning systems in deriving an accurate dosimetry of the complex radiation fields involved in boron neutron capture therapy (BNCT). The computational model of the patient's anatomy is one of the main factors involved in this subject. This work presents a detailed analysis of the performance of the 1 cm based voxel reconstruction approach. First, a new and improved material assignment algorithm implemented in NCTPlan treatment planning system for BNCT is described. Based on previous works, the performances of the 1 cm based voxel methods used in the MacNCTPlan and NCTPlan treatment planning systems are compared by standard simulation tests. In addition, the NCTPlan voxel model is benchmarked against in-phantom physical dosimetry of the RA-6 reactor of Argentina. This investigation shows the 1 cm resolution to be accurate enough for all reported tests, even in the extreme cases such as a parallelepiped phantom irradiated through one of its sharp edges. This accuracy can be degraded at very shallow depths in which, to improve the estimates, the anatomy images need to be positioned in a suitable way. Rules for this positioning are presented. The skin is considered one of the organs at risk in all BNCT treatments and, in the particular case of cutaneous melanoma of extremities, limits the delivered dose to the patient. Therefore, the performance of the voxel technique is deeply analysed in these shallow regions. A theoretical analysis is carried out to assess the distortion caused by homogenization and material percentage rounding processes. Then, a new strategy for the treatment of surface voxels is proposed and tested using two different irradiation problems. For a parallelepiped phantom perpendicularly irradiated with a 5 keV neutron source, the large thermal neutron fluence deviation present at shallow depths (from 54% at 0 mm depth to 5% at 4 mm depth) is reduced to 2% on average

  18. Expectation for energy selective neutron source based on the current neutron irradiation study of materials

    International Nuclear Information System (INIS)

    For an effective utilization of superior characteristics of the energy selective high energy neutron source, a consideration was made. Electron irradiation with high voltage electron microscopes (HVEM), D-T fusion neutron irradiation with rotating target neutron source (RTNS-II), and fission neutron irradiation with fission reactors were referred. The expected Energy Selective Neutron Source (ESNS) were compared with different types of irradiation facilities in regard to energy spectrum, flux stability, temperature control, and possibility of in-situ experiments. The excellent performance of HVEM electron irradiation, and of RTNS-II D-T fusion neutron irradiation was exemplified. The possibility of extending these excellent performances to the future ESNS experiment was discussed. Difficulties in the neutron irradiation experiment with fission reactors were exemplified. Shrinkage and growth of these difficulties in the ESNS experiment was discussed. Expected advantage and limitation of the ESNS was evaluated. Finally the positioning of ESNS was made, and the importance of its complementality with other facilities was pointed out. (M.T.)

  19. Results on Neutron and Gamma Irradiation of Electrolytic Tilmeters

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A.; Calvo, E.; Figueroa, C. F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A. L.; Alberdi, J.; Arce, P.; Barcala, J. M.; Fernando, A.; Fuentes, J.; Josa, M. I.; Luque, J. M.; Molinero, A.; Navarrate, J.; Valdivieso, P.; Fenyvesi, A.; Molnar, J.

    2004-07-01

    We report on irradiation studies done to a sample of high precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, an neutrons, up to a maximum fluence 1.5x10''14 cm''2. The effect of the irradiation on their performance is discussed. (Author) 19 refs.

  20. Tensile and fracture toughness test results of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1998-01-01

    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  1. Neutron irradiation tests on diagnostic components at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, T. E-mail: nisitani@naka.jaeri.go.jp; Shikama, T.; Fukao, M.; Reichle, R.; Sugie, T.; Kakuta, T.; Kasai, S.; Snider, R.; Yamamoto, S

    2001-10-01

    As a part of the R and D program of the ITER Engineering Design Activities (EDA), we have carried out irradiation tests on a number of diagnostic components. In this paper the recent results of neutron irradiation tests on diagnostic windows, bolometer substrates and magnetic coils at JAERI are described. UV range transmission losses of a KU-1 quartz glass were measured during 14 MeV neutron irradiation at the Fusion Neutronics Source (FNS) with neutron fluences of up to 7.4x10{sup 19} n/m{sup 2}. Significant transmission losses were observed in the wavelength of 200-300 nm. Mica substrates of bolometers were irradiated at the Japan Material Testing Reactor (JMTR) with neutron fluence between 1x10{sup 22} and 2.2x10{sup 23} n/m{sup 2}. The size expansion was found to be only 0.13% at 2.2x10{sup 23} n/m{sup 2} and 150 deg. C, which gives us the good prospect of the bolometer in the ITER-FEAT application. Magnetic coils made with four kinds of Mineral Insulated (MI) cables have been irradiated in JMTR up to a fast neutron fluence of 1.1x10{sup 24} n/m{sup 2}. Radiation Induced Electrical Motive Force (RIEMF) of several volts was observed between core inductor and sheath of the MI cable.

  2. Neutron irradiation behavior of different classes of carbons

    International Nuclear Information System (INIS)

    The electronic properties of various carbons have been studied as a function of irradiation (neutron) dose and annealing. A general interpretation in terms of positive holes (in the valence band) and localized or delocalized paramagnetic centres created by the displacement of carbon atoms due to neutron irradiation is given. Different classes of carbons may be defined and an ''equivalent dose'' is used to characterize each carbon in its class. The irradiation and annealing behavior of graphites and pyrocarbons may also be visualized through their ''paths'' in a Hall effect - magnetic susceptibility two-dimensional space

  3. Neutron and gamma irradiation damage to organic materials.

    Energy Technology Data Exchange (ETDEWEB)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  4. Monte Carlo calculation for the development of a BNCT neutron source (1eV-10KeV) using MCNP code.

    Science.gov (United States)

    El Moussaoui, F; El Bardouni, T; Azahra, M; Kamili, A; Boukhal, H

    2008-09-01

    Different materials have been studied in order to produce the epithermal neutron beam between 1eV and 10KeV, which are extensively used to irradiate patients with brain tumors such as GBM. For this purpose, we have studied three different neutrons moderators (H(2)O, D(2)O and BeO) and their combinations, four reflectors (Al(2)O(3), C, Bi, and Pb) and two filters (Cd and Bi). Results of calculation showed that the best obtained assembly configuration corresponds to the combination of the three moderators H(2)O, BeO and D(2)O jointly to Al(2)O(3) reflector and two filter Cd+Bi optimize the spectrum of the epithermal neutron at 72%, and minimize the thermal neutron to 4% and thus it can be used to treat the deep tumor brain. The calculations have been performed by means of the Monte Carlo N (particle code MCNP 5C). Our results strongly encourage further studying of irradiation of the head with epithermal neutron fields.

  5. In-phantom dosimetry using the 13C(d,n)14N reaction for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    The use of the 13 C(d,n)14 N reaction at Ed =1.5 MeV for accelerator-based boron neutron capture therapy is investigated. The 13 C(d,n)14 N reaction presents the advantages of carbon as a target material and its large cross section. The deuteron beam was produced by a tandem accelerator at MIT's Laboratory for Accelerator Beam Applications. The resulting neutron spectra were evaluated in terms of RBE-dose rates at different depths inside a water-filled brain phantom using a heavy water moderator and lead reflector assembly. All results were simulated using the code MCNP. (author)

  6. a New Method to Measure 10B Uptake in Lung Adenocarcinoma in Hospital Bnct

    Science.gov (United States)

    Donegani, E. M.; Basilico, F.; Bolognini, D.; Borasio, P.; Capelli, E.; Cappelletti, P.; Chiari, P.; Frigerio, M.; Gelosa, S.; Giannini, G.; Hasan, S.; Mattera, A.; Mauri, P.; Monti, A. F.; Ostinelli, A.; Prest, M.; Vallazza, E.; Zanini, A.

    2010-04-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapic technique still under development that could become crucial in the fight against some types of cancer (extended ones, located near vital organs or radio resistant). This binary technique requires the administration to the patient of a boron delivery agent and the irradiation with a thermal neutron beam. The high LET particles produced in the 10B(n,α)7Li reaction are exploited to destroy the tumour cells. This work presents a new system based on neutron autoradiography with a non-depleted self-triggering microstrip silicon detector, using a neutron beam produced by a hospital Linac. The system is fast, real time and allows the detection of 10B contents down to 25 ng. The main results on the study of 10B uptake in biological samples will be described in terms of kinetic curves (10B uptake as a function of time).

  7. INEEL BNCT Research Program Annual Report, CY-2000

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert

    2001-03-01

    This report is a summary of the activities conducted in conjunction with the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 2000. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, neutron source design and demonstration, and support the Department of Energy’s (DOE) National BNCT Program goals are the goals of this Program. Contributions from the individual contributors about their projects are included, specifically described are the following, chemistry: analysis of biological samples and an infrared blood-boron analyzer, and physics: progress in the patient treatment planning software, measurement of neutron spectra for the Argentina RA-6 reactor, and recalculation of the Finnish research reactor FiR 1 neutron spectra, BNCT accelerator technology, and modification to the research reactor at Washington State University for an epithermal-neutron beam.

  8. The study of physics and safety characteristics for In-Hospital Neutron Irradiator (IHNI)

    International Nuclear Information System (INIS)

    The IHNI is designed with low-enrichment 235U (LEU) for Boron Neutron Capture Therapy (BNCT) based on Miniature Neutron Source Reactor (MNSR). The IHNI, operated with thermal power 30kW, is an under-moderated reactor of pool-tank type, and UO2 as fuel, light water as coolant and moderator, and metallic beryllium as reflector. The paper gives the physics and safety characteristics of IHNI. The physics characteristics include those parameters of the criticality and the beam port used for BNCT. The safety characteristics compare the safety parameters between reactor core of LEU and HEU. The result shows that LEU could meet the requirements of criticality and flux at exit of each beam. Furthermore, the better safety characteristics could approach by adopting the LEU in comparison with HEU. (author)

  9. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    Science.gov (United States)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  10. Biological Effects of Neutron and Proton Irradiations. Vol. II. Proceedings of the Symposium on Biological Effects of Neutron Irradiations

    International Nuclear Information System (INIS)

    During recent years the interest in biological effects caused by neutrons has been increasing steadily as a result of the rapid development of neutron technology and the great number of neutron sources being used. Neutrons, because of their specific physical characteristics and biological effects, form a special type of radiation hazard but, at the same time, are a prospective tool for applied radiobiology. This Symposium, held in Brookhaven at the invitation of the United States Government from 7-11 October 1963, provided an opportunity for scientists to discuss the experimental information at present available on the biological action of neutrons and to evaluate future possibilities. It was a sequel to the Symposium on Neutron Detection, Dosimetry and Standardization, which was organized by the International Atomic Energy Agency in December 1962 at Harwell. The Symposium was attended by 128 participants from 17 countries and 6 international organizations. Fifty-four papers were presented. The following subjects were discussed in various sessions: (1) Dosimetry. Estimation of absorbed dose of neutrons in biological material. (2) Biological effects of high-energy protons. (3) Cellular and genetic effects. (4) Pathology of neutron irradiation, including acute and chronic radiation syndromes (mortality, anatomical and histological changes, biochemical and metabolic disturbances) and delayed consequences. (5) Relative biological effectiveness of neutrons evaluated by different biological tests. A Panel on Biophysical Considerations in Neutron Experimentation, with special emphasis on informal discussions, was organized during the Symposium. The views of the Panel are recorded in Volume II of the Proceedings. Many reports were presented on the important subject of the relative effectiveness of the biological action of neutrons, as well as on the general pathology of neutron irradiation and the cellular and genetic effects related to it. Three survey papers considered

  11. Biological Effects of Neutron and Proton Irradiations. Vol. I. Proceedings of the Symposium on Biological Effects of Neutron Irradiations

    International Nuclear Information System (INIS)

    During recent years the interest in biological effects caused by neutrons has been increasing steadily as a result of the rapid development of neutron technology and the great number of neutron sources being used. Neutrons, because of their specific physical characteristics and biological effects, form a special type of radiation hazard but, at the same time, are a prospective tool for applied radiobiology. This Symposium, held in Brookhaven at the invitation of the United States Government from 7-11 October 1963, provided an opportunity for scientists to discuss the experimental information at present available on the biological action of neutrons and to evaluate future possibilities. It was a sequel to the Symposium on Neutron Detection, Dosimetry and Standardization, which was organized by the International Atomic Energy Agency in December 1962 at Harwell. The Symposium was attended by 128 participants from 17 countries and 6 international organizations. Fifty-four papers were presented. The following subjects were discussed in various sessions: (1) Dosimetry. Estimation of absorbed dose of neutrons in biological material. (2) Biological effects of high-energy protons. (3) Cellular and genetic effects. (4) Pathology of neutron irradiation, including acute and chronic radiation syndromes (mortality, anatomical and histological changes, biochemical and metabolic disturbances) and delayed consequences. (5) Relative biological effectiveness of neutrons evaluated by different biological tests. A Panel on Biophysical Considerations in Neutron Experimentation, with special emphasis on informal discussions, was organized during the Symposium. The views of the Panel are recorded in Volume II of the Proceedings. Many reports were presented on the important subject of the relative effectiveness of the biological action of neutrons, as well as on the general pathology of neutron irradiation and the cellular and genetic effects related to it. Three survey papers considered

  12. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  13. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Schwint, A.E.; Hartwell, J.K.; Heber, E.M.; Trivillin, V.; Castillo, J.; Wentzeis, L.; Sloan, P.; Wemple, C.A.

    2004-10-04

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  14. A case of astrocytoma, 19 year history after BNCT

    International Nuclear Information System (INIS)

    A 39-year-old man had received Boron Neutron Capture Therapy (BNCT) in 1987 for a Grade II Astrocytoma. He gradually exacerbated and received a second operation in 1994. The mass taken in the second operation is almost competent with radiation necrosis. Following that, he shows no signs of recurrence. Currently, he has returned to full time employment in physical labor. This case suggests effectiveness of BNCT for rather low-grade astrocytomas. (author)

  15. Recovery process of neutron-irradiated vanadium alloys in post-irradiation annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, K., E-mail: fukumoto@u-fukui.ac.jp [Research Institute for Nuclear Engineering, University of Fukui, Tsuruga, Fukui 914-0055 (Japan); Iwasaki, M. [Research Institute for Nuclear Engineering, University of Fukui, Tsuruga, Fukui 914-0055 (Japan); Xu, Q. [KUR, Kyoto University, Kumatori, Osaka (Japan)

    2013-11-15

    Experiments to determine the influence of post-irradiation annealing on the mechanical properties and microstructures of neutron-irradiated V–4Cr–4Ti alloys were conducted. Two groups of specimens (as-irradiated specimens and specimens which underwent the post-irradiation annealing treatment) were subjected to tensile tests at room temperature and 773 K. Post-irradiation annealing experiments carried out over periods of up to 50 h were used to restore strength and ductility. As annealing time was extended, ductility was recovered up to 5% at 50 h anneal; however irradiation hardening was not recovered completely. Microstructural changes due to post-irradiation annealing corresponded to the amount that yield stress increased in tensile behavior in the irradiated specimen. The recovery in ductility was likely caused by the dissolution of interstitial impurities from defect clusters and dislocation cores produced by neutron irradiation during post-irradiation anneal treatment. A 3% elongation recovery in V–4Cr–4Ti alloys was achieved by annealing at 773 K for 20 h in a vacuum for neutron-irradiated samples at low temperature.

  16. Design of a beam shaping assembly and preliminary modelling of a treatment room for accelerator-based BNCT at CNEA

    Energy Technology Data Exchange (ETDEWEB)

    Burlon, A.A.; Girola, S. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina); Valda, A.A., E-mail: valda@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina); Minsky, D.M.; Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, San Martin (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina)] [CONICET, Buenos Aires (Argentina); Sanchez, G. [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin, San Martin (Argentina)

    2011-12-15

    This work reports on the characterisation of a neutron beam shaping assembly (BSA) prototype and on the preliminary modelling of a treatment room for BNCT within the framework of a research programme for the development and construction of an accelerator-based BNCT irradiation facility in Buenos Aires, Argentina. The BSA prototype constructed has been characterised by means of MCNP simulations as well as a set of experimental measurements performed at the Tandar accelerator at the National Atomic Energy Commission of Argentina. - Highlights: Black-Right-Pointing-Pointer Characterisation of a neutron beam shaping assembly for accelerator-based BNCT. Black-Right-Pointing-Pointer Measurements: total and epi-cadmium neutron fluxes and beam homogeneity. Black-Right-Pointing-Pointer Calculations: Monte Carlo simulations with the MCNP code. Black-Right-Pointing-Pointer Measured and calculated figure-of-merit parameters in agreement with those of IAEA. Black-Right-Pointing-Pointer Initial MCNP dose calculations for a treatment room to define future design actions.

  17. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases

    International Nuclear Information System (INIS)

    BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25–76 ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung. - Highlights: • We performed experimental boron biodistribution studies for lung metastases. • 3 protocols employing BPA and GB-10 would be therapeutically useful. • BNCT at RA-3 would be potentially therapeutic for experimental lung metastases

  18. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  19. Neutron irradiation influence on magnesium aluminium spinel inversion

    Science.gov (United States)

    Skvortsova, V.; Mironova-Ulmane, N.; Ulmanis, U.

    2002-05-01

    Grown by the Verneuil method MgO · nAl 2O 3 single crystals and natural spinel crystal have been studied using X-ray diffraction and photoluminescence spectra. The fast neutron irradiation of magnesium aluminium spinel leads to the lattice parameter decrease. The bond lengths of Mg-O and Al-O vary with the u-parameter and the lattice parameter. On the other hand, the bond lengths are related with the inversion parameter. Using changes of the lattice parameter during irradiation we have calculated the inversion parameter, which is 15-20%. In the luminescence spectra, the fast neutron radiation (fluence 10 16 cm -2) produces an increase in the intensity ratio of the N- to R-lines by 5-20%. Taking into account that intensity of the N-lines is closely associated with the inversion parameter, it is possible to state that the neutron irradiation causes the increasing of the spinel inversion.

  20. Neutron irradiation influence on magnesium aluminium spinel inversion

    International Nuclear Information System (INIS)

    Grown by the Verneuil method MgO · nAl2O3 single crystals and natural spinel crystal have been studied using X-ray diffraction and photoluminescence spectra. The fast neutron irradiation of magnesium aluminium spinel leads to the lattice parameter decrease. The bond lengths of Mg-O and Al-O vary with the u-parameter and the lattice parameter. On the other hand, the bond lengths are related with the inversion parameter. Using changes of the lattice parameter during irradiation we have calculated the inversion parameter, which is 15-20%. In the luminescence spectra, the fast neutron radiation (fluence 1016 cm-2) produces an increase in the intensity ratio of the N- to R-lines by 5-20%. Taking into account that intensity of the N-lines is closely associated with the inversion parameter, it is possible to state that the neutron irradiation causes the increasing of the spinel inversion

  1. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Nigg; Various Others

    2014-06-01

    BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25–76 ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung.

  2. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  3. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  4. Neutron irradiation effect of thermally-sensitized stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hide, Kouitiro [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) susceptibility of irradiated thermally-sensitized Type 304 Stainless Steels (SSs) was studied as a function of neutron fluence and correlated with mechanical responses of the materials. Neutron irradiation was carried out to neutron fluences up to 1.1 x 10{sup 24} n/m{sup 2} (E > 1MeV) at the light water reactor temperature in the Japan Material Test Reactor. The irradiated specimens were examined by slow strain rate stress corrosion cracking tests in 290degC pure water of 0.2 ppm dissolved oxygen concentration and microhardness measurements. The IGSCC susceptibility of the irradiated specimens increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}. From an attempt to correlate the IGSCC susceptibility with the mechanical properties, an excellent correlation was identified between the susceptibility and microhardness increments at the grain boundary relative to the grain center. While intergranular corrosion rate of thermally sensitized SS increased with neutron fluence up to 1.1 x 10{sup 24} n/m{sup 2}, that of solution annealed SS did not change. The incremental grain boundary hardening and degradation of intergranular corrosion resistance may presumably be the major factors affecting IGSCC performance. (author)

  5. Fast Neutron Irradiation of the Highly Radioresistant Bacterium Deinococcus Radiodurans

    Science.gov (United States)

    Case, Diane Louise

    Fast neutron dose survival curves were generated for the bacterium Deinococcus radiodurans, which is renowned for its unusually high resistance to gamma, x-ray, and ultraviolet radiation, but for which fast neutron response was unknown. The fast neutrons were produced by the University of Massachusetts Lowell 5.5-MV, type CN Van de Graaff accelerator through the ^7Li(p,n)^7 Be reaction by bombarding a thick metallic lithium target with a 4-MeV proton beam. The bacteria were uniformly distributed on 150-mm agar plates and were exposed to the fast neutron beam under conditions of charged particle equilibrium. The plates were subdivided into concentric rings of increasing diameter from the center to the periphery of the plate, within which the average neutron dose was calculated as the product of the precisely known neutron fluence at the average radius of the ring and the neutron energy dependent kerma factor. The neutron fluence and dose ranged from approximately 3 times 1013 n cm^ {-2} to 1 times 1012 n cm^ {-2}, and 200 kilorad to 5 kilorad, respectively, from the center to the periphery of the plate. Percent survival for Deinococcus radiodurans as a function of fast neutron dose was derived from the ability of the irradiated cells to produce visible colonies within each ring compared to that of a nonirradiated control population. The bacterium Escherichia coli B/r (CSH) was irradiated under identical conditions for comparative purposes. The survival response of Deinococcus radiodurans as a result of cumulative fast neutron exposures was also investigated. The quantification of the ability of Deinococcus radiodurans to survive cellular insult from secondary charged particles, which are produced by fast neutron interactions in biological materials, will provide valuable information about damage and repair mechanisms under extreme cellular stress, and may provide new insight into the origin of this bacterium's unprecedented radiation resistance.

  6. Microstructure and mechanical properties of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, E.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Terai, T.; Tanaka, S.

    1998-01-01

    Microstructure and mechanical properties of the neutron irradiated beryllium with total fast neutron fluences of 1.3 - 4.3 x 10{sup 21} n/cm{sup 2} (E>1 MeV) at 327 - 616degC were studied. Swelling increased by high irradiation temperature, high fluence, and by the small grain size and high impurity. Obvious decreasing of the fracture stress was observed in the bending test and in small grain specimens which had many helium bubbles on the grain boundary. Decreasing of the fracture stress for small grain specimens was presumably caused by crack propagation on the grain boundaries which weekend by helium bubbles. (author)

  7. INEL BNCT Research Program annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1995-11-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. Current clinical results of the Tsukuba BNCT trial

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T.; Matsumura, A. E-mail: matsumur@md.tsukuba.ac.jp; Nakai, K.; Shibata, Y.; Endo, K.; Sakurai, F.; Kishi, T.; Kumada, H.; Yamamoto, K.; Torii, Y

    2004-11-01

    Nine high grade gliomas (5 glioblastomas and 4 anaplastic astrocytomas) were treated with BSH-based intaoperative boron neutron capture therapy (IOBNCT). BSH (100 mg/kg body weight) was intravenously injected, followed by single fraction irradiation using the mixed thermal/epithermal beam of Japan Research Reactor 4. The blood boron level at the time of irradiation averaged 29.9 (18.8-39.5) {mu}g/g. The peak thermal neutron flux as determined by post-irradiation measurements varied from 1.99 to 2.77x10{sup 9} n cm{sup -2} s{sup -1}. No serious BSH-related toxicity was observed in this series. The interim survival data in this study showed median survival times of 23.2 months for glioblastoma and 25.9 months for anaplastic astrocytoma, results which are consistent with the current conventional radiotherapy with/without boost radiation. Of the 4 residual tumors, 2 showed complete response (CR) and 2 showed partial response (PR) within 6 months following BNCT. No linear correlation was proved between the dose and the occurrence of early neurological events. The maximum boron dose of 11.7-12.2 Gy in the brain related to the occurrence of radiation necrosis. The clinical application of a mixed thermal/epithermal beam and JRR-4 facilities on BSH-based IOBNCT proved to be safe and effective in this series.

  9. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  10. Behavior under irradiation of super-mirror for neutron guides; Tenue sous irradiation de supermiroirs pour guides de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    N' Guy-Marechal, K

    1997-10-15

    The aim of this work is to study the aging of NiCx/Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50% hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, the mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author)

  11. Aging under irradiation of super-mirrors used in neutron guides; Tenue sous irradiation de supermiroirs pour guides de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    N`Guy-Marechal, K

    1997-10-16

    The aim of this work is to study the aging of NiC{sub x}/Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50 % hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, then mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author) 62 refs.

  12. Structural properties and neutron irradiation effects of ceramics

    International Nuclear Information System (INIS)

    In high temperature gas-cooled reactors and nuclear fusion reactors being developed at present, various ceramics are to be used in the environment of neutron irradiation for undertaking important functions. The change of the characteristics of those materials by neutron irradiation must be exactly forecast, but it has been known that the response of the materials is different respectively. The production method of ceramics and the resulted structures of ceramics which control their characteristics are explained. The features of covalent bond and ionic bond, the synthesis of powder and the phase change by heating, sintering and sintering agent, and grain boundary phase are described. The smelling of ceramics by neutron irradiation is caused by the formation of the clusters of Frenkel defects and minute spot defects. Its restoration by annealing is explained. The defects remaining in materials after irradiation are the physical defects by flipping atoms cut due to the collision with high energy particles and the chemical defects by nuclear transformation. Some physical defects can be restored, but chemical defects are never restored. The mechanical properties of ceramics and the effect of irradiation on them, and the thermal properties of ceramics and the effect of irradiation on them are reported. (K.I.)

  13. Annealing behaviors of vacancy in varied neutron irradiated Czochralski silicon

    Institute of Scientific and Technical Information of China (English)

    CHEN Gui-feng; LI Yang-xian; LIU Li-li; NIU Ping-juan; NIU Sheng-li; CHEN Dong-feng

    2006-01-01

    The difference of annealing behaviors of vacancy-oxygen complex (VO) in varied dose neutron irradiated Czochralski silicon: (S1 5×1017 n/cm3 and S2 1.07×1019 n/cm3) were studied. The results show that the VO is one of the main defects formed in neutron irradiated Czochralski silicon (CZ-Si). In this defect,oxygen atom shares a vacancy,it is bonded to two silicon neighbors. Annealed at 200 ℃,divacancies are trapped by interstitial oxygen(Oi) to form V2O (840 cm-1). With the decrease of the 829 cm-1 (VO) three infrared absorption bands at 825 cm-1 (V2O2),834 cm-1 (V2O3) and 840 cm-1 (V2O) will rise after annealed at temperature range of 200-500 ℃. After annealed at 450-500 ℃ the main absorption bands in S1 sample are 834 cm-1,825 cm-1 and 889 cm-1 (VO2),in S2 is 825 cm-1. Annealing of A-center in varied neutron irradiated CZ-Si is suggested to consist of two processes. The first is due to trapping of VO by Oi in low dose neutron irradiated CZ-Si (S1) and the second is due to capture the wandering vacancy by VO,etc,in high dose neutron irradiated CZ-Si (S2),the VO2 plays an important role in the annealing of A-center. With the increase of the irradiation dose,the annealing behavior of A-center is changed.

  14. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Directory of Open Access Journals (Sweden)

    Hu J.-P.

    2016-01-01

    Full Text Available Radiation dosimetry for Neutron Capture Therapy (NCT has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR. In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1 in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2 out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3 beam shutter upgrade to reduce strayed neutrons and gamma dose, (4 beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5 beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates to reduce prompt gamma and fast neutron doses, (6 sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7 holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4–7

  15. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Science.gov (United States)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  16. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  17. Improvement of dose distribution by central beam shielding in boron neutron capture therapy

    Science.gov (United States)

    Sakurai, Yoshinori; Ono, Koji

    2007-12-01

    Since boron neutron capture therapy (BNCT) with epithermal neutron beams started at the Kyoto University Reactor (KUR) in June 2002, nearly 200 BNCT treatments have been carried out. The epithermal neutron irradiation significantly improves the dose distribution, compared with the previous irradiation mainly using thermal neutrons. However, the treatable depth limit still remains. One effective technique to improve the limit is the central shield method. Simulations were performed for the incident neutron energies and the annular components of the neutron source. It was clear that thermal neutron flux distribution could be improved by decreasing the lower energy neutron component and the inner annular component of the incident beam. It was found that a central shield of 4-6 cm diameter and 10 mm thickness is effective for the 12 cm diameter irradiation field. In BNCT at KUR, the depth dose distribution can be much improved by the central shield method, resulting in a relative increase of the dose at 8 cm depth by about 30%. In addition to the depth dose distribution, the depth dose profile is also improved. As the dose rate in the central area is reduced by the additional shielding, the necessary irradiation time, however, increases by about 30% compared to normal treatment.

  18. Effects of neutron irradiation on polycrystalline Mg11B2

    International Nuclear Information System (INIS)

    We studied the influence of the disorder introduced in polycrystalline MgB2 samples by neutron irradiation. To circumvent self-shielding effects due to the strong interaction between thermal neutrons and 10B we employed isotopically enriched 11B which contains 40 times less 10B than natural B. The comparison of electrical and structural properties of different series of samples irradiated in different neutron sources, also using Cd shields, allowed us to conclude that, despite the low 10B content, the main damage mechanisms are caused by thermal neutrons, whereas fast neutrons play a minor role. Irradiation leads to an improvement in both upper critical field and critical current density for an exposure level in the range 1-2x1018 cm-2. With increasing fluence the superconducting properties are depressed. An in-depth analysis of the critical field and current density behavior has been carried out to identify what scattering and pinning mechanisms come into play. Finally, the correlation between some characteristic lengths and the transition widths is analyzed

  19. Radiation Damages in Aluminum Alloy SAV-1 under Neutron Irradiation

    Science.gov (United States)

    Salikhbaev, Umar; Akhmedzhanov, Farkhad; Alikulov, Sherali; Baytelesov, Sapar; Boltabaev, Azizbek

    2016-05-01

    The aim of this work was to study the effect of neutron irradiation on the kinetics of radiation damages in the SAV-1 alloy, which belongs to the group of aluminum alloys of the ternary system Al-Mg-Si. For fast-neutron irradiation by different doses up to fluence 1019 cm-2 the SAV-1 samples were placed in one of the vertical channels of the research WWR type reactor (Tashkent). The temperature dependence of the electrical resistance of the alloy samples was investigated in the range 290 - 490 K by the four-compensation method with an error about 0.1%. The experimental results were shown that at all the temperatures the dependence of the SAV-1 alloy resistivity on neutron fluence was nonlinear. With increasing neutron fluence the deviation from linearity and the growth rate of resistivity with temperature becomes more appreciable. The observed dependences are explained by means of martensitic transformations and the radiation damages in the studied alloy under neutron irradiation. The mechanisms of radiation modification of the SAV-1 alloy structure are discussed.

  20. INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996

    International Nuclear Information System (INIS)

    This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of 10B enriched decaborane

  1. Low-temperature neutron irradiation tests of superconducting magnet materials using reactor neutrons at KUR

    Science.gov (United States)

    Yoshida, M.; Nakamoto, T.; Ogitsu, T.; Xu, Q.; Itahashi, T.; Kuno, Y.; Kuriyama, Y.; Mori, Y.; Qin, B.; Sato, A.; Sato, K.; Yoshiie, T.

    2012-06-01

    Radiation resistant superconducting magnets are required for high intensity particle accelerators and associated secondary particle beamlines, such as the LHC upgrade and the COMET experiment at J-PARC. Expected neutron fluence on the superconducting coils reaches 1021 n/m2 or higher, therefore the magnet should be designed taking into account the irradiation effects. Irradiation tests for superconducting magnet materials have been carried out using reactor neutrons at Kyoto Univ. Research Reactor Institute. As a first step of the experiment, aluminum alloy stabilizer for superconducting cable was exposed to the reactor neutrons at low temperature and the resistance has been measured in situ during neutron exposure. After the irradiation at 12 K-15 K, the sample resistance increase was proportional to the integrated neutron fluence, and reached almost double for a fast-neutron fluence of 2.3×1020 n/m2 (>0.1 MeV). It is also confirmed that the induced resistance is fully recovered by thermal cycling to room temperature. Details of the irradiation test and the prospects are described.

  2. Evaluation of thermal neutron irradiation field using a cyclotron-based neutron source for alpha autoradiography

    International Nuclear Information System (INIS)

    It is important to measure the microdistribution of 10B in a cell to predict the cell-killing effect of new boron compounds in the field of boron neutron capture therapy. Alpha autoradiography has generally been used to detect the microdistribution of 10B in a cell. Although it has been performed using a reactor-based neutron source, the realization of an accelerator-based thermal neutron irradiation field is anticipated because of its easy installation at any location and stable operation. Therefore, we propose a method using a cyclotron-based epithermal neutron source in combination with a water phantom to produce a thermal neutron irradiation field for alpha autoradiography. This system can supply a uniform thermal neutron field with an intensity of 1.7×109 (cm−2 s−1) and an area of 40 mm in diameter. In this paper, we give an overview of our proposed system and describe a demonstration test using a mouse liver sample injected with 500 mg/kg of boronophenyl-alanine. - Highlights: • We developed a thermal neutron irradiation field using cyclotron based epithermal neutron source combination with a water phantom for alpha autoradiography. • The uniform thermal neutron irradiation field with an intensity of 1.7×109 (cm−2 s−1) with a size of 40 mm in diameter was obtained. • Demonstration test of alpha autoradiography using a liver sample with the injection of BPA was performed. • Boron image discriminated with the background event of protons was clearly shown by means of the particle identification

  3. The therapeutic ratio in BNCT: Assessment using the Rat 9L gliosarcoma brain tumor and spinal cord models

    International Nuclear Information System (INIS)

    During any radiation therapy, the therapeutic tumor dose is limited by the tolerance of the surrounding normal tissue within the treatment volume. The short ranges of the products of the 10B(n,α)7Li reaction produced during boron neutron capture therapy (BNCT) present an opportunity to increase the therapeutic ratio (tumor dose/normal tissue dose) to levels unprecedented in photon radiotherapy. The mixed radiation field produced during BNCT comprises radiations with different linear energy transfer (LET) and different relative biological effectiveness (RBE). The short ranges of the two high-LET products of the 'B(n,a)'Li reaction make the microdistribution of the boron relative to target cell nuclei of particular importance. Due to the tissue specific distribution of different boron compounds, the term RBE is inappropriate in defining the biological effectiveness of the 10B(n,α)7Li reaction. To distinguish these differences from true RBEs we have used the term open-quotes compound biological effectivenessclose quotes (CBE) factor. The latter can be defined as the product of the true, geometry-independent, RBE for these particles times a open-quotes boron localization factorclose quotes, which will most likely be different for each particular boron compound. To express the total BNCT dose in a common unit, and to compare BNCT doses with the effects of conventional photon irradiation, multiplicative factors (RBEs and CBEs) are applied to the physical absorbed radiation doses from each high-LET component. The total effective BNCT dose is then expressed as the sum of RBE-corrected physical absorbed doses with the unit Gray-equivalent (Gy-Eq)

  4. Swelling and tensile properties of neutron-irradiated vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600{degree}C to neutron fluences ranging from 0.3 to 1.9 {times} 10{sup 27} neutrons/m{sup 2} (17 to 114 atom displacements per atom (dpa)).

  5. Material deterioration due to neutron irradiation

    International Nuclear Information System (INIS)

    IAEA CRP 3 was a major effort to develop and validate surveillance methodologies for irradiation embrittlement characterisation and it is hardly any more possible to carry out similar co-operative programmes due to resource limitations. The programme included material characterisation by tensile, Charpy-V and fracture toughness tests. The programme promoted considerably the acceptance of direct fracture toughness characterisation of the irradiated material condition. Specimen preparation by reconstitution technique is becoming a common expertise in many laboratories. The VTT practice has been widely validated in the current programme. However, no international or co-operative validation programmes have not yet been performed with irradiated material, where the technique has its unique value but where possibility of incorrect application is also evident. (orig.)

  6. Design of a γ-ray analysis system for determination of boron in a patient's head, during neutron irradiation

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) is a new radiation therapy in which thermal neutron capture by 10B is used for the selective destruction of a cancer tumour. At the High Flux Reactor (HFR) in Petten, Netherlands, a therapy facility is built for the neutron irradiations. In first instance, patients with a brain tumour will be treated. The doses delivered to the tumour and to the healthy tissue depend on the thermal neutron fluence and on the boron concentrations in these regions. Yet, both concentrations change in time after the administration of the tumour-seeking boron compound. An accurate determination of the patient's dose requires the knowledge of these time dependent concentrations during the therapy. For this reason, a γ-ray telescope system, together with a reconstruction tool, are developed. Two HPGe-detectors measure the 478 keV prompt γ-rays which are emitted at the boron neutron capture reaction, in a large background of γ-rays and neutrons. By using the detectors in a telescope configuration, only γ-rays emitted by a small specific region are detected. The best shielding of the detectors is obtained by performing the measurements through a small hole in the iron roof. A reconstruction tool is developed to calculate absolute boron concentrations using the measured boron γ-ray detection rates. Besides the boron γ-rays, a large component of 2.2 MeV γ-rays emitted at thermal neutron capture in hydrogen is measured. Since the hydrogen distribution is almost homogeneous over the head, this component can serve as a measure of the total number of thermal neutrons in the observed volume. By using the hydrogen γ-line for normalisation of the boron concentration, the reconstruction tool eliminates the greater part of the influence of the inhomogeneity of the thermal neutron distribution. MCNP calculations are used as a tool for the optimisation of the detector configuration. Experiments on a head phantom with 5 ppm 10B in healthy tissue and 62 ppm in

  7. Radioisotopes produced by neutron irradiation of food.

    Science.gov (United States)

    Albright, S; Seviour, R

    2016-04-01

    The use of neutrons for cargo interrogation has the potential to drastically improve threat detection. Previous research has focussed on the production of (24)Na, based on the isotopes produced in pharmaceuticals and medical devices. For both the total activity and the ingestion dose we show that a variety of isotopes contribute and that (24)Na is only dominant under certain conditions. The composition of the foods has a strong influence on the resulting activity and ingestion dose suggesting that the pharmaceuticals and medical devices considered initially are not a viable analogue for foodstuffs. There is an energy dependence to the isotopes produced due to the cross-sections of different reactions varying with neutron energy. We show that this results in different isotopes dominating the ingestion dose at different energies, which has not been considered in the previous literature. PMID:26749562

  8. Boron imaging with a microstrip silicon detector for applications in BNCT

    Science.gov (United States)

    Mattera, A.; Basilico, F.; Bolognini, D.; Borasio, P.; Cappelletti, P.; Chiari, P.; Conti, V.; Frigerio, M.; Gelosa, S.; Giannini, G.; Hasan, S.; Mascagna, V.; Mauri, P.; Monti, A. F.; Mozzanica, A.; Ostinelli, A.; Prest, M.; Scazzi, S.; Vallazza, E.; Zanini, A.

    2009-06-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapic technique exploiting the α particles produced after the irradiation of the isotope 10 of boron with thermal neutrons in the capture reaction B(n,α)710Li. It is used to treat tumours that for their features (radioresistance, extension, localization near vital organs) cannot be treated through conventional photon-beams radiotherapy. One of the main limitations of this technique is the lack of specificity (i.e. the ability of localizing in tumour cells, saving the healthy tissues) of the compounds used to carry the 10B isotope in the organs to be treated. This work, developed in the framework of the INFN PhoNeS project, describes the possibility of boron imaging performed exploiting the neutrons photoproduced by a linac (the Clinac 2100C/D of the S. Anna Hospital Radiotherapy Unit in Como, Italy) and detecting the α s with a non-depleted microstrip silicon detector: the result is a 1D scan of the boron concentration. Several boron doped samples have been analysed, from solutions of H3BO3 (reaching a minimum detectable amount of 25 ng of 10B) to biological samples of urine containing BPA and BSH (the two molecules currently used for the clinical trials in BNCT) in order to build kinetic curves (showing the absolute 10B concentration as a function of time). Further measurements are under way to test the imaging system with 10BPA-Fructose complex perfused human lung samples.

  9. Radioisotopes Produced by Neutron Irradiation of Food

    OpenAIRE

    Seviour, Rebecca; Albright, Simon

    2016-01-01

    The use of neutrons for cargo interrogation has the potential to drastically improve threat detection. Previous research has focussed on the production of 24Na, based on the isotopes produced in pharmaceuticals and medical devices. For both the total acitivity and the ingestion dose we show that a variety of isotopes contribute and that 24Na is only dominant under certain conditions. The composition of the foods has a strong influence on the resulting activity and ingestion dose suggesting th...

  10. Pollution of liquid argon after neutron irradiation

    CERN Document Server

    Andrieux, M L; Collot, J; de Saintignon, P; Ferrari, A; Hostachy, J Y; Hoummada, A; Martin, P; Merkel, B; Puzo, P; Sauvage, D; Wielers, M

    2001-01-01

    The purpose of the neutron facility installed at SARA is to investigate the behavior of various materials to be used in the ATLAS liquid argon calorimeter, when submitted to fast neutron radiation. The samples are placed in a liquid argon cryostat a few cm away from the neutron source. Various pieces of the electromagnetic calorimeter have been tested in order to evaluate the rate of pollution of the liquid and consequently the possible signal loss in energy measurements. The average fluence was equivalent to the maximum expected in the calorimeter in about 10 years. The most striking feature of the results is that the pollution is not due to oxygen, at least for most of it. Using a particular value of the absorption length derived from these data, a simulation was carried out and the energy signal loss in the calorimeter could be predicted. Within the limits of our present knowledge, the conclusion is that damages due to this pollution will not be a problem. (17 refs).

  11. Pollution of liquid argon after neutron irradiation

    International Nuclear Information System (INIS)

    The purpose of the neutron facility installed at SARA is to investigate the behavior of various materials to be used in the ATLAS liquid argon calorimeter, when submitted to fast neutron radiation. The samples are placed in a liquid argon cryostat a few cm away from the neutron source. Various pieces of the electromagnetic calorimeter have been tested in order to evaluate the rate of pollution of the liquid and consequently the possible signal loss in energy measurements. The average fluence was equivalent to the maximum expected in the calorimeter in about 10 years. The most striking feature of the results is that the pollution is not due to oxygen, at least for most of it. Using a particular value of the absorption length derived from these data, a simulation was carried out and the energy signal loss in the calorimeter could be predicted. Within the limits of our present knowledge, the conclusion is that damages due to this pollution will not be a problem

  12. INEL BNCT Research Program annual report, 1992

    International Nuclear Information System (INIS)

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database

  13. INEL BNCT Research Program annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.

  14. A new NEDO research project towards hospital based accelerator BNCT using advanced DDS system

    International Nuclear Information System (INIS)

    A new national project of developing a hospital based accelerator for boron neutron capture therapy (BNCT) with advanced drug delivery system (DDS) has been started in 2005. In this paper, the outline of the new project will be introduced. The project includes two main topics: 1) a hospital based accelerator for BNCT will be developed by a research consortium of Universities and companies. A fixed field alternating gradient (FFAG) type of accelerator with internal target is planned. 2) New boronated DDS using different methods including porphyrins, virus envelope vector, and liposome are planned. BNCT may become a first line charged particle therapy if the hospital based accelerator become feasible due to broadening the opportunity to use the neutron source. Due to such clinical convenience, there will be also possibility to spread the indication of BNCT for the diseases (cancer and other diseases) which has not been the candidate for BNCT in the nuclear-reactor era. (author)

  15. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  16. Low-energy neutron irradiation on Bi-based (2223 Ag superconductors

    Directory of Open Access Journals (Sweden)

    H Najafpour

    2009-08-01

    Full Text Available  Bi-based and Ag-doped superconductors were irradiated by neutrons. Experimental result showed that XRD patern-intensity of irradiated Bi-based sample was decreased and The Tc of these samples were decreased by 7-10 K. The neutron irradiated sample was also found to decrease by 50% the normal state resistivity of samples. Therefore, neutron irradiation is a useful method to improve the superconductivity behavior of Bi-based materials.

  17. Precipitate stability in neutron-irradiated Zircaloy-4

    Science.gov (United States)

    Yang, W. J. S.

    1988-09-01

    Zircaloy-4, a zirconium-base alloy used extensively as cladding and core structural materials in water-cooled nuclear reactors, was examined by transmission electron microscopy, after neutron irradiation and postirradiation annealing. Phase instabilities found during irradiation at 561 K include the amorphous transformation and the dissolution of the intermetallic Zr(Fe,Cr) 2. The α-matrix is driven toward a single phase solid solution as the neutron fluence increases. This is evidenced by the continuous dissolution of the precipitate without precipitation of any new phase during irradiation. During postirradiation annealing at 833 K, solute Fe precipitates out particularly at the grain boundaries as Zr-Fe zeta-phase. Recrystallization of the amorphous precipitates occurs at a postirradiation annealing temperature of 1023 K. In general, the observed phenomena of amorphous transformation, precipitate dissolution, reprecipitation and recrystallization reflect the complex solute-point defect interactions in the α-matrix. The continuous solute dissolution during irradiation is expected to have a potential effect on irradiation growth, creep and corrosion properties of the alloy.

  18. Study of neutron irradiated silicon counters with a fast amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Bates, S.; Munday, D.J.; Parker, M.A.; Anghinolfi, F.; Chilingarov, A.; Ciasnohova, A.; Glaser, M.; Jarron, P.; Lemeilleur, F.; Santiard, J.C.; Goessling, C.; Lisowski, B.; Pilath, S.; Rolf, A.; Bonino, R.; Clark, A.G.; Kambara, H.; Wu, X.; Fretwurst, E.; Lindstroem, G.; Schulz, T.; Moorhead, G.F.; Taylor, G.N.; Tovey, S.N.; Hawkings, R.; Weidberg, A.; Teiger, J. (Cavendish Lab., Univ. of Cambridge (United Kingdom) CERN, Geneva (Switzerland) Inst. fuer Physik, Univ. Dortmund (Germany) DPNC, Geneva Univ. (Switzerland) 1. Inst. fuer Experimentalphysik, Univ. Hamburg (Germany) School of Physics, Univ. of Melbourne, Parkville, Victoria (Australia) Dept. of Nuclear Physics, Oxford Univ. (United Kingdom) Centre d' Etudes Nucleaires de Saclay, 91 Gif-sur-Yvette (France)); RD2 Collaboration

    1993-12-15

    Silicon detectors have been irradiated with fluences of up to 2.7x10[sup 13] neutrons/cm[sup 2], and have been subsequently studied using low-noise preamplifiers with a peaking time of about 15 ns. The detector response to minimum ionizing particles was found to be close to that of non-irradiated detectors. The short integration time of the preamplifier makes the shot noise due to the detector dark current tolerable up to at least 15 [mu]A/channel. (orig.)

  19. Neutron Irradiation Tests in Superfluid Helium of LHC Cryogenic Thermometers

    CERN Document Server

    Amand, J F; Junquera, T; Thermeau, J P

    1998-01-01

    For control and monitoring purposes, about 10,000 individually calibrated cryogenic temperature sensors will be installed along the 26.7 km LHC. In order to reduce maintenance constraints these sensor s should be as immune as possible to the high neutron fluence environment. For selecting the sensor to be used, a radiation hardness evaluation program at cryogenic conditions is being performed in an irradiation vault of the ISN SARA Cyclotron (Grenoble, France). The set-up is capable of simulating the whole life of a LHC thermometer: same total neutron dose (1015 n.cm-2), irradiation at low tempe rature (1.8 K) and thermal cycles. Bath temperature and sensor resistance are monitored on-line. This paper presents the latest results of this program.

  20. Neutron irradiation and compatibility testing of Li2O

    International Nuclear Information System (INIS)

    A study was made of the neutron-irradiation behavior of 6Li-enriched Li2O material in EBR-II. In addition, a stress-corrosion study was performed ex-reactor to test compatibility of Li2O materials with a variety of stainless steels. Results of the irradiation testing showed that tritium and helium retention in the Li2O (approx. 89% dense) lessened with neutron exposure. Helium and tritium retention appear to approach steady-state after approx. 1% 6Li burnup. The stress-corrosion studies, using 316 stainless steel (Ti-modified) and a 35% Ni alloy, showed that stress does not enhance the corrosion, and that dry Li2O is not significantly corrosive, the LiOH content producing the corrosive effects. Corrosion, in general, was not severe as a passivation in sealed capsules seemed to occur after a time, greatly reducing corrosion rates

  1. Development of positron annihilation spectroscopy for characterizing neutron irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    C.N. Taylor; M. Shimada; D.W. Akers; M.W. Drigert; B.J. Merrill; Y. Hatano

    2013-05-01

    Tungsten samples (6 mm diameter, 0.2 mm thick) were irradiated to 0.025 and 0.3 dpa with neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Samples were then exposed to deuterium plasma in the tritium plasma experiment (TPE) at 100, 200 and 500ºC to a total fluence of 1 x 1026 m-2. Nuclear reaction analysis (NRA) and Doppler broadening positron annihilation spectroscopy (DB-PAS) were performed at various stages to characterize damage and retention. We present the first known results of neutron damaged tungsten characterized by DB-PAS in order to study defect concentration. Two positron sources, 22Na and 68Ge, probe ~58 µm and through the entire 200 µm thick samples, respectively. DB-PAS results reveal clear differences between the various irradiated samples. These results, and the calibration of DB-PAS to NRA data are presented.

  2. In vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Lab. de Biologia Molecular]. E-mail: samanta@usp.br; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo (IMT-SP), SP (Brazil). Lab. de Protozoologia]. E-mail:hfandrad@usp.br

    2005-10-15

    Pentavalent antimony, as meglumine antimoniate (Glucantime) or sodium stibogluconate (Pentostam), is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes {sup 122} Sb and {sup 124} Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology. (author)

  3. Accelerated oxygen precipitation in fast neutron irradiated Czochralski silicon

    Institute of Scientific and Technical Information of China (English)

    Ma Qiao-Yun; Li Yang-Xian; Chen Gui-Feng; Yang Shuai; Liu Li-Li; Niu Ping-Juan; Chen Dong-Feng; Li Hong-Tao

    2005-01-01

    Annealing effect of the oxygen precipitation and the induced defects have been investigated on the fast neutron irradiated Czochralski silicon (CZ-Si) by infrared absorption spectrum and the optical microscopy. It is found that the fast neutron irradiation greatly accelerates the oxygen precipitation that leads to a sharp decrease of the interstitial oxygen with the annealing time. At room temperature (RT), the 1107cm-1 infrared absorption band of interstitial oxygen becomes weak and broadens to low energy side. At low temperature, the infrared absorption peaks appear at 1078cm-1, 1096cm-1, and 1182cm-1, related to different shapes of the oxygen precipitates. The bulk microdefects,including stacking faults, dislocations and dislocation loops, were observed by the optical microscopy. New or large stacking faults grow up when the silicon self-interstitial atoms are created and aggregate with oxygen precipitation.

  4. Neutron irradiation effects on high Nicalon silicon carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, M.C.; Steiner, D.; Snead, L.L. [Oak Ridge National Laboratory, TN (United States)

    1996-10-01

    The effects of neutron irradiation on the mechanical properties and microstructure of SiC and SiC-based fibers is a current focal point for the development of radiation damage resistant SiC/SiC composites. This report discusses the radiation effects on the Nippon Carbon Hi-Nicalon{trademark} fiber system and also discusses an erratum on earlier results published by the authors on this material. The radiation matrix currently under study is also summarized.

  5. Separation of Protactinium from Neutron Irradiated Thorium Oxide

    International Nuclear Information System (INIS)

    The chemical separation of thorium and protactinium can be carried out by leaching most of the last one, about 95%, with aqueous HF from neutron irradiated thorium oxide. This leaching reaction la highly favored by the transformation reaction of the ThO2 material into ThF4. For both reactions, leaching and transformation, the reagents concentration, agitation speed and temperature influences were studied and the activation energies were found. (Author) 18 refs

  6. Comparative effects of neutron irradiation and X irradiation on the embryonic development of the rat

    International Nuclear Information System (INIS)

    Our aim was to compare the dose-response relationship for the embryotoxic effects of 0.43 MeV neutrons with those of 240 kVp X rays after in utero exposures during early organogenesis in the rat. At 9.5 days after conception, pregnant rats were exposed to 0.025 to 0.35 Gy 0.43 MeV neutrons at a dose rate of 0.04 to 0.07 Gy/h. Comparable biological effects were produced using 0.50 to 2.05 Gy 240 kVp X rays. Neutron irradiation produced a greater proportion of offspring with very low body weight than with malformations when compared to X rays. There were no embryotoxic effects observed at neutron exposures of 0.025, 0.049, 0.079, 0.10, 0.15, and 0.20 Gy or X-ray exposures of 0.50 and 0.96 Gy. Taken together, the results suggest that the mechanisms by which neutron irradiation affects embryonic development may, in part, be both quantitatively and qualitatively different from those by which X irradiation affects development. These results support the generalization that the embryo exhibits a nonlinear response to increasing doses of ionizing radiations during the period of early organogenesis. 25 refs., 3 tabs

  7. Commercial Applications at FRM II Based on Neutron Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberg, H.; Draack, A.; Kastenmuller, A. [Technische Universitaet Muenchen, Munchen (Germany)

    2013-07-01

    Due to its design as a heavy water moderated reactor with a very compact core FRM II, Germany's most modern and most powerful research reactor, offers excellent conditions for basic research using beam tubes. On the other hand it is equipped with various irradiation facilities to be used mainly for industrial purposes. From the very beginning of reactor operation a dedicated department had been implemented in order to provide a neutron irradiation service to interested parties on a commercial basis. As of today the most widely used application is Si doping. The semiautomatic doping facility accepts ingots with diameters between 125 mm and 200 mm and a maximum height of 500 mm. The irradiation channel is located deep in the heavy water tank and exhibits a ratio of thermal/fast neutron flux density of > 1000. This value allows the doping of Si to a target resistivity as high as 1100 Ωcm within the tight limits regarding accuracy and homogeneity specified by the customer. Typically the throughput of Si doped in FRM II sums up to about 15 t/year. Another topic of growing importance is the use of FRM II aiming the production of radioisotopes mainly for the radiopharmaceutical industry. The maybe most challenging example is the production of Lu-177 n. c. a. based on the irradiation of Yb{sub 2}O{sub 3} to a high fluence of thermal neutrons of typically 1.5E20 cm{sup -2}. The Lu-177 activity delivered to the customer is in the range of 750 GBq. With respect to further processing it turned out to be a highly advantageous to have the laboratories of ITG, the company extracting the Lu-177 from the freshly irradiated Yb{sub 2}O{sub 3} on site FRM II. Further irradiation facilities are available at FRM II in order to allow the activation of samples for analytical purposes or to irradiate samples for geochronological investigations using the fission track technique. Finally a project on the future installation of a facility dedicated to the irradiation of U-targets for

  8. Influence of neutron irradiation on the tritium retention in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.

    1998-01-01

    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  9. Cavity nucleation and growth during helium implantation and neutron irradiation of Fe and steel

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, Bachu Narain

    In order to investigate the role of He in cavity nucleation in neutron irradiated iron and steel, pure iron and Eurofer-97 steel have been He implanted and neutron irradiated in a systematic way at different temperatures, to different He and neutron doses and with different He implantation rates....

  10. Joining techniques development for neutron irradiation tests and post irradiation examinations in JMTR-HL

    International Nuclear Information System (INIS)

    The hot laboratory (JMTR-HL) associated with the JMTR (Japan Materials Testing Reactor) was founded to examine the material and fuel specimens irradiated mainly in the JMTR. Through the post-irradiation examinations (PIEs) have been developed and performed, the JMTR-HL contributes not only to research of materials for light water reactors, fast reactors, high temperature gas reactor, and fusion reactor, but also to production of domestic industrial radio isotopes like 192Ir. As the part of PIE technology development, several kinds of welding techniques have been systematically developed. These research and development of welding techniques such as circumference and sealing for irradiation capsules and rewelding with irradiated materials were implemented under the remote-controlled conditions in the hot cells. These techniques are very indispensable for the neutron irradiation tests and PIEs to be conducted in the JMTR. (author)

  11. Neutron irradiation behavior of ITER candidate beryllium grades

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [A.A.Bochvar All-Russia Scientific Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Melder, R.R.; Ostrovsky, Z.E.

    1998-01-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why its behaviour under the typical for fusion reactor loading, in particular, under the neutron irradiation is of a great importance. This paper presents mechanical properties, swelling and microstructure of six beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia and also one - (S-65) fabricated by Brush Wellman, USA. The average grain size of the beryllium grades varied from 8 to 25 {mu}m, beryllium oxide content was 0.8-3.2 wt. %, initial tensile strength was 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor up to the fast neutron fluence (5.5-6.2) {center_dot} 10{sup 21} cm{sup -2} (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV at two temperature ranges: T{sub 1} = 130-180degC and T{sub 2} = 650-700degC. After irradiation at 130-180degC no changes in samples dimensions were revealed. After irradiation at 650-700degC swelling of the materials was found to be in the range 0.1-2.1 %. Beryllium grades TR-30 and TRR, having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which was no more than 0.1 % at 650-700degC and fluence 5.5 {center_dot} 10{sup 21} cm{sup -2}. Tensile and compression test results and microstructure parameters measured before and after irradiation are also presented. (author)

  12. BNCT-RTPE: BNCT radiation treatment planning environment

    Energy Technology Data Exchange (ETDEWEB)

    Wessol, D.E.; Wheeler, F.J. [Idaho National Engineering Lab., Idaho Fall, ID (United States); Babcock, R.S. [and others

    1995-11-01

    Several improvements have been developed for the BNCT radiation treatment planning environment (BNCT-Rtpe) during 1994. These improvements have been incorporated into Version 1.0 of BNCT-Rtpe which is currently installed at the INEL, BNL, Japanese Research Center (JRC), and Finland`s Technical Research Center. Platforms supported by this software include Hewlett-Packard (HP), SUN, International Business Machines (IBM), and Silicon Graphics Incorporated (SGI). A draft version of the BNCT-Rtpe user manual is available. Version 1.1 of BNCT-Rtpe is scheduled for release in March 1995. It is anticipated that Version 2.x of BNCT-Rtpe, which includes the nonproprietary NURBS library and data structures, will be released in September 1995.

  13. Small-angle neutron scattering study on irradiated kappa carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Abad, Lucille [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan) and Philippine Nuclear Research Institute, Commonwealth Ave., Diliman, Quezon City (Philippines) and Advanced Science Research Center, Japan Atomic Energy Research Institute, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: lvabad@pnri.dost.gov.ph; Okabe, Satoshi [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Koizumi, Satoshi [Advanced Science Research Center, Japan Atomic Energy Research Institute, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Shibayama, Mitsuhiro [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan)]. E-mail: sibayama@issp.u-tokyo.ac.jp

    2006-05-31

    The structure of gamma-ray-irradiated {kappa}-carrageenan in aqueous solutions was investigated in terms of small-angle neutron scattering. The scattered intensity, I(q), of non-irradiated {kappa}-carrageenan solutions (5 wt%) was well described with an Ornstein-Zernike (OZ)-type function with the correlation length of 85 A, indicating that the {kappa}-carrageenan solution behaves just as a polymer solution in the semi-dilute regime. By increasing the irradiation dose (100 kGy), I(q) changed to a power-law function with the scattering exponent of -1.84. Further increase in dose results in a recovery of OZ-type function. This indicates that a progressive cleavage of {kappa}-carrageenan chains takes place randomly, leading to a self-similar structure at 100 kGy. This is followed by further segmentation of {kappa}-carrageenan chains.

  14. Neutron irradiation of superconductors and damage energy scaling of different neutron spectra

    Science.gov (United States)

    Hahn, P. A.; Weber, H. W.; Guinan, M. W.; Birtcher, R. C.; Brown, B. S.; Greenwood, L. R.

    1985-08-01

    Three different neutron sources were used to irradiate identical sets of NbTi superconductors up to about half the lifetime dose of a superconducting magnet in a fusion reactor. Based on a careful source characterization of the TRIGA Mark-II reactor in Vienna, the spallation neutron source IPNS at Argonne and the 14 MeV neutron source RTNS-II at Livermore, the damage energy cross sections were calculated for four different types of NbTi alloys (42, 46.5, 49 and 54 wt % Ti). The experimental results on the variations of critical current densities j sub c with neutron dose are found to scale within the experimental uncertainties with the appropriate damage energy cross sections. This first explicit proof of damage energy scaling for j sub c-variations in superconductors is considered to be most valuable for the evaluation of radiation damage in superconductors under fusion reactor conditions.

  15. Effect of roentgen, cyclotron neutron, or mixed neutron-photon fractionated irradiation of mice

    International Nuclear Information System (INIS)

    Mice were whole-body-irradiated with 5 fractions of roentgen rays in 5 days, 5 fractions of cycotron neutrons in 5 days, or with mixed neutron-photon fractionated radiation, in the sequence n-n-x-x-x or n-x-x-x-n. The LD50 sub(/) 4 day values were determined. Roentgen rays and neutrons interact in the additive manner in the mixed fractionation schemes: effective dose per fraction is as predicted from the roentgen ray-only and neutron-only experiments. This essentially agrees with HENDRY et coll. (1976). However, no trend was found towards a less-than-additive effect which was observed by those authors and has also been suggested in skin response to mixed schemes (NELSON et coll 1975). (author)

  16. Characterization of hybrid self-powered neutron detector under neutron irradiation

    CERN Document Server

    Nakamichi, M; Yamamura, C; Nakazawa, M; Kawamura, H

    2000-01-01

    To evaluate the irradiation behaviour of a blanket mock-up on in-pile functional test, it is necessary to measure the neutron flux change in the in-pile mock-up by a neutron detector, such as the self-powered neutron detector (SPND). With its small-sized emitter, which has high sensitivity and fast response time, SPND is an indispensable tool in order to measure the local neutron flux change. In the case of an in-pile functional test, it is necessary that response time is less than 1s and ratio of SPND output current is more than 0.3 of output current of SPND with Rh emitter. Therefore, a hybrid SPND with high sensitivity and fast response time was developed. This hybrid SPND used a hybrid emitter, i.e. Co cladded Pt-13%Rh.

  17. Early clinical experience of boron neutron capture therapy for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a binary treatment modality that can selectively irradiate tumor tissue. BNCT uses drugs containing a stable isotope of boron. 10B, to sensitize tumor cells to irradiation by low energy (thermal) neutrons. The interaction of the 10B with a thermal neutron (neutron capture) causes the 10B nucleus to split, releasing an alpha particle and a lithium nucleus. These products of the 10B(n, α)7Li reaction are very damaging to cells but have a combined path length in tissue of approximately 14 μm, or roughly the diameter of one or two cells. Thus, most of the ionizing energy imparted to tissue is localized to 10B-loaded cells

  18. Boron neutron capture therapy for advanced and/or recurrent cancers in the oral cavity

    International Nuclear Information System (INIS)

    This preliminary study of 5 patients with advanced and/or recurrent cancer in the oral cavity was performed to evaluate the effectiveness of Boron Neutron Capture Therapy (BNCT). The patients received therapy with the 10B-carrier p-boronophenylalanine (BPA) with or without borocaptate sodium (BSH) and irradiation thereafter with epithermal neutrons. All underwent 18F-BPA PET studies before receiving BNCT to determine the accumulation ratios of BPA in tumor and normal tissues. The tumor mass was decreased in size and at minimum a transient partial response was achieved in all cases, though rapid tumor re-growth was observed in 2. Although tentative clinical responses and improvements in quality of life were recognized, obliteration of the tumor was not obtained in any of the cases. Additional studies are required to determine the utility and indication of BNCT for oral cancer. (author)

  19. INEL BNCT Program: Volume 5, No. 9. Bulletin, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. [ed.

    1991-12-31

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory`s (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  20. INEL BNCT research program: Annual report, 1995

    International Nuclear Information System (INIS)

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented

  1. INEL BNCT research program: Annual report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented.

  2. SANS response of VVER440-type weld material after neutron irradiation, post-irradiation annealing and reirradiation

    OpenAIRE

    Ulbricht, Andreas; Bergner, Frank; Boehmert, Juergen; Valo, Matti; Mathon, Marie-Helene; Heinemann, Andre

    2007-01-01

    Abstract It is well accepted that the reirradiation behaviour of reactor pressure vessel (RPV) steel after annealing can be different from the original irradiation behaviour. We present the first small-angle neutron scattering (SANS) study of neutron irradiated, annealed and reirradiated VVER440-type RPV weld material. The SANS results are analysed both in terms of the size distribution of irradiation-induced defect/solute atom clusters and in terms of the ratio of total and nuclea...

  3. Functional and histological assessment of the radiobiology of normal rat lung in BNCT

    International Nuclear Information System (INIS)

    This study investigated the radiobiology and sensitivity of the normal rat lung to Boron Neutron Capture Therapy (BNCT) radiation. Rat thorax irradiations were carried out with x-rays or with neutrons in the presence or absence of p-boronophenylalanine (BPA). Lung damage were assessed functionally with breathing rate measurement up to 180 days after irradiation and then histologically. Breathing rates 20% (∼3 σ) above the control group (sham-irradiated rats) mean were considered as positive responses to lung radiation damage. Though most responding animals demonstrated radiation induced pneumonitis (≤110 days) as well as pulmonary fibrosis (>110 days), some animals receiving neutrons plus BPA showed only the latter. The breathing rate dose response data were fit using probit analysis. The ED50 values measured for x-rays, neutron beam only, and neutrons plus BPA were 11.5±0.4 Gy, 9.2±0.5 Gy, and 6.7±0.4 Gy, respectively. The biological weighting factors for the neutron beam (n+γ), the thermal neutron dose component, and the 10B dose component were determined to be 1.2±0.1, 2.2±0.4, and 2.3±0.3, respectively. The histological dose response curves were linear. Consistent with the functional assay, the weighting factors measured histologically were 1.2±0.1 for the thermal neutron beam and 1.9±0.2 for the 10B dose component. (author)

  4. Decommissioning of an Irradiator MPX-γ - 25M and a neutron Irradiator

    International Nuclear Information System (INIS)

    In this paper a technology is developed with its procedures in radiation protection to ensure the safety of the process of decommissioning of two irradiators. Both processes are described, the process of decommissioning of a neutron Irradiator 4. 44·1011Bq, employed in the vegetal radio mutagenesis, and disassembling of an installation of gamma irradiation of 3.33 * 1012 Bq, self-shielded of category I, model MPX - γ - 25 M. The specific objectives are: a) identify aspects of the contractual assurance, of human and technical resources, b) to evaluate the radiological situation of the process and c) analyze the potential radiological extraordinary events in each of the steps of the process, ensuring the right answers. Evaluation of radiological successful events described can be considered as reference to address the process of disassembling of other similar irradiators

  5. Impurities effect on the swelling of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Donne, M.D.; Scaffidi-Argentina, F. [Institut fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany)

    1995-09-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found.

  6. Calculation of neutron spectra on typical irradiation location of the CFBR-II reactor

    International Nuclear Information System (INIS)

    Neutron energy spectra were simulated by the MCNP code. The neutron energy spectra and corresponding average energy of off-coupling box, irradiation channel and outer surface of the off-coupling cover were calculated. The results indicate that about 90% neutrons are in the energy range of 0.05-3 MeV. The average neutron energy of off-coupling box and irradiation channel present 'S' shape along distance, and space asymmetry must be considered. The average neutron energy above off-coupling cover's 45 degree woof fluctuates slightly and it is an appropriate irradiation area. (authors)

  7. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy

    Science.gov (United States)

    Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.

    2009-06-01

    At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.

  8. Indication and possibility of boron neutron capture therapy in head and neck cancer

    International Nuclear Information System (INIS)

    Background: Boron neutron capture therapy (BNCT) is a targeted type of radiotherapy that has a number of significant advantages over conventional external beam photon irradiation, especially in that radiation can be selectively delivered to tumor cells. We had, first in the world, treated with BNCT for a patient with recurrent head and neck cancer (HNC) in 2001. Methods : From December, 2001 to February, 2013, we had treated 37 patients with recurrent HNC by means of 54 applications of BNCT at Kyoto University Research Reactor Institute (KURRI) and Japan Atomic Energy Agency (JAEA). All of them had received standard therapy and subsequently developed recurrent disease for which there were no other treatment options. Results : All of the (1) Regression rates were complete response (CR) : 19 patients (51%), partial response (PR) : 14(38%), progressive disease (PD) : 3(8%), and not evaluated (NE) : 1(3%) patient. (2) The overall patient response rate was 91%, though all the patients had advanced disease. The 4-year and 7-year OS rates were 42% and 36%, respectively. (3) BNCT improved quality of life (QOL), performance status (PS) and survival times. (4) The primary adverse events were brain necrosis, osteomyelitis and transient mucositis and alopecia. Conclusions : Our results indicate that we could make sure that safety and effectiveness of BNCT, and BNCT represents a new and promising treatment modality in patients for whom there are no other treatment options. (author)

  9. Spectroscopic study of fast-neutron-irradiated chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [V. Babes National Inst., Dept. of Molecular Genetics, Bucharest (Romania)]. E-mail: serbanradu@pcnet.ro; Gazdaru, D. [Bucharest Univ., Dept. of Biophysics, Physics Faculty, Bucharest (Romania); Constantinescu, B. [H. Hulubei National Inst., Dept. of Cyclotron, Bucharest (Romania)

    2004-02-01

    The effects produced by fast neutrons (0-100 Gy) on chromatin structure were analyzed by (i) [{sup 1}H]-NMR spectroscopy, (ii) time resolved spectroscopy, and (iii) fluorescence resonance energy transfer (FRET). Two types of chromatin were tested: (i) a chromatin from a normal tissue (liver of Wistar rats) and (ii) a chromatin from a tumoral tissue (Guerin limphotrope epithelioma, a rat solid tumor). The fast-neutron action on chromatin determines greater values of the [{sup 1}H]-NMR transverse relaxation time, indicating a more injured structure. Time-resolved fluorescence measurements show that the relative contribution of the excited state lifetime of bound ethidium bromide to chromatin DNA diminishes with increasing irradiation doses. This reflects the damage that occurs in DNA structure: production of single- and double-strand breaks due to sugar and base modifications. By the FRET method, the distance between dansyl chloride and acridine orange coupled at chromatin was determined. This distance increases upon fast-neutron action. The radiosensitivity of the tumor tissue chromatin seems higher than that of the normal tissue chromatin, probably because of its higher (loose) euchromatin/(compact) heterochromatin ratio. As the values of the physical parameters analyzed are specific for a determined dose, the establishment of these parameters may constitute a criterion for the microdosimetry of chromatin radiolesions produced by fast neutrons. (author)

  10. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    Directory of Open Access Journals (Sweden)

    Alexandra Henriques

    2014-11-01

    Full Text Available Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  11. BNCT and dose fractionation

    International Nuclear Information System (INIS)

    Some portion of the radiation dose received by a patient during BNCT consists of primary and secondary gammas. The biological effect of that portion of the dose will depend upon the time history of the delivered dose. The well-known models for relating time-dose effects to clinical experience, are of questionable value in understanding dose effects in the time regime of a few hours, and for doses of less than tolerance. In order to examine the time-dose effect in the regime of interest to BNCT a simple phenomenological model was developed and normalized to the accepted body of clinical experience. The model has been applied to the question of fractionation of BNCT and the results are presented. The model is simply a linear healing model with two time constants. In other words, a first hit of radiation is assumed to wound (or potentiate) a cell. Given time, the cell will fully repair itself. If a second hit occurs before the cell has healed, the cell is killed. Apparently, there are two kinds of healing, one which occurs in 30 to 60 minutes, the other in two to four days. A small fraction of the cells will die on the first hit

  12. Phase transformations in lithium aluminates irradiated with neutrons

    International Nuclear Information System (INIS)

    The lithium aluminate like candidate to be used in the coverings producers of tritium in the fusion nuclear reactors, presents high resistance to the corrosion to the one to be stuck to structural materials as special steels. However, the crystallographic changes that take place in the cover that is continually subjected to irradiation with neutrons, can alter its resistance to the corrosion. In this work the changes of crystalline structure are shown that they present two types of nano structures of lithium aluminates, subjected to an average total dose 7.81 x 108 Gy in the fixed irradiation system of capsules of the one TRIGA Mark lll nuclear reactor of the Nuclear Center of Mexico. The studied nano structures presented only phase transformations without formation of amorphous material. (Author)

  13. Present status and prospects of medical irradiation in JAERI

    International Nuclear Information System (INIS)

    A medical irradiation facility for Boron Neutron Capture Therapy (BNCT) was installed at JRR-2 in August 1990. Thermal neutron flux at beam port is about 1x109 n/cm2/s. Since then 28 cases of medical irradiation were performed in five years for clinical trials of BNCT for malignant brain tumor patients. The experiences of medical irradiation and dose monitoring are described. The operation of JRR-4 using HEU fuel terminated at the beginning of 1996. A new medical irradiation facility will be installed and the utilization operation of the reactor will be resumed with LEU fuel in the first half of 1998. Recent years a significant progress have been achieved in the field of BNCT using epithermal neutron beam in the USA and Europe. The new facility at JRR-4 is planned to be capable of providing both thermal and epithermal beams. The design of the multi-mode facility and the result of the performance analysis are presented. (author)

  14. Protocols for BNCT of glioblastoma multiforme at Brookhaven: Practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Chanana, A.D.; Coderre, J.A.; Joel, D.D.; Slatkin, D.N.

    1996-12-31

    In this report we discuss some issues considered in selecting initial protocols for boron neutron capture therapy (BNCT) of human glioblastoma multiforme. First the tolerance of normal tissues, especially the brain, to the radiation field. Radiation doses limits were based on results with human and animal exposures. Estimates of tumor control doses were based on the results of single-fraction photon therapy and single fraction BNCT both in humans and experimental animals. Of the two boron compounds (BSH and BPA), BPA was chosen since a FDA-sanctioned protocol for distribution in humans was in effect at the time the first BNCT protocols were written and therapy studies in experimental animals had shown it to be more effective than BSH.

  15. Radiation damage in stainless steel under varying temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Naoaki [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1998-03-01

    Microstructural evolution of model alloys of 316SS was examined by neutron irradiation at JMTR under cyclic temperature varying condition. In the case of Fe-16Cr-17Ni, formation of interstitial loops and voids are strongly suppressed by varying the temperature from 473K to 673K. By adding Ti as miner element (0.25wt%), however, abnormal accumulation of vacancies (void swelling of 11%dpa at 0.1dpa) was observed. Theoretical analysis standing on the rate theory of defect clustering and simulation irradiation experiments with heavy ions indicates that the vacancy-rich condition which appears temporally during and after changing the temperature from low to high brings these results. It was also shown that only 1 dpa pre-irradiation at low temperature changes swelling behavior at high temperature above several 10 dpa. The understanding of non-steady-state defect processes under temperature varying irradiation is very important to estimate the radiation damage under fusion environment where short-term and long-term temperature variation is expected. (author)

  16. Fracture mechanics behaviour of neutron irradiated Alloy A-286

    International Nuclear Information System (INIS)

    The effect of fast-neutron irradiation on the fatigue-crack propagation and fracture toughness behaviour of Alloy A-286 was characterized using fracture mechanics techniques. The fracture toughness was found to decrease continuously with increasing irradiation damage at both 24 deg. C and 427 deg. C. In the unirradiated and low fluence conditions, specimens displayed appreciable plasticity prior to fracture, and equivalent Ksub(Ic) values were determined from Jsub(Ic) fracture toughness results. At high irradiation exposure levels, specimens exhibited a brittle Ksub(Ic) fracture mode. The 427 deg. C fracture toughness fell from 129 MPa√m in the unirradiated condition to 35 MPa√m at an exposure of 16.2 dpa (total fluence of 5.2x1022n/cm2). Room temperature fracture toughness values were consistently 40 to 60 percent higher than the 427 deg. C values. Electron fractography revealed that the reduction in fracture resistance was attributed to a fracture mechanism transition from ductile microvoid coalescence to channel fracture. Fatigue-crack propagation tests were conducted at 427 deg. C on specimens irradiated at 2.4 dpa and 16.2 dpa. Crack growth rates at the lower exposure level were comparable to those in unirradiated material, while those at the higher exposure were slightly higher than in unirradiated material. (author)

  17. Void formation in neutron-irradiated Cu and Cu alloys

    International Nuclear Information System (INIS)

    Pure copper and copper-aluminium alloys were neutron-irradiated at high temperatures in the as-received condition, and after being melted under high vacuum or in argon. Melting under high vacuum was done to reduce the residual gas amount in the specimens. The number density of voids in the vacuum-melted Cu was one tenth of that in as-received Cu after JMTR irradiation to 5.2 x 1024 n/m2 at 603 K. Similarly, voids were also formed in an argon-melted Cu-1at%Al specimen but were not formed in a vacuum-melted one. Following higher dose irradiation in the JOYO reactor, nearly the same number density and size of voids were formed in both argon and vacuum-melted Cu. In Cu-5at%Al, many voids were formed in argon-melted specimens, whereas in vacuum-melted specimens voids were not formed. These results show that voids nucleate at vacancy clusters which trap gas atoms. In the JOYO irradiation, diffused-in gas atoms play an important role in the formation of voids in Cu. In Cu-5at%Al, diffused-in gas atoms were trapped by Al atoms, resulting in a difference of void formation between the two types of specimens. (orig.)

  18. Optimization of the application of BNCT to undifferentiated thyroid cancer

    International Nuclear Information System (INIS)

    The possible increase in BNCT efficacy for undifferentiated thyroid carcinoma (UTC) using BPA plus BOPP and nicotinamide (NA) as a radiosensitizer on the BNCT reaction was analyzed. In these studies nude mice were transplanted with the ARO cells and after 14 days they were treated as follows: 1) Control; 2) NCT (neutrons alone); 3) NCT plus NA (100 mg/kg bw/day for 3 days); 4) BPA (350 mg/kg bw) + neutrons; 5) BPA+ NA+ neutrons; 6) BPA+BOPP (60 mg/kg bw) + neutrons. The flux of hyperthermal neutrons was 2.8 108 during 85 min. Neutrons alone or with NA caused some tumor growth delay, while in the BPA, BPA+NA and BPA+BOPP groups a 100% halt of tumor growth was observed. When the initial tumor volume was 50 mm3 or less a complete cure was found in BPA+NA (2/2); BPA (1/4); BPA+BOPP (7/7). After 90 days of complete regression, recurrence of tumor was observed in 2/2 BPA/NA (2/2) and BPA+BOPP (1/7). Caspase 3 activity was increased in BPA+NA (p<0.05 vs controls). BPA plus NA increased tumor apoptosis but only the combination of BPA+BOPP increased significantly BNCT efficiency. (author)

  19. Phase II clinical study of boron neutron capture therapy combined with X-ray radiotherapy/temozolomide in patients with newly diagnosed glioblastoma multiforme-Study design and current status report

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Shinji, E-mail: neu046@poh.osaka-med.ac.jp [Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 (Japan); Miyatake, Shin-Ichi; Hiramatsu, Ryo; Hirota, Yuki; Miyata, Shiro; Takekita, Yoko; Kuroiwa, Toshihiko [Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 (Japan); Kirihata, Mitsunori [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8931 (Japan); Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji [Kyoto University Research Reactor Institute, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-12-15

    Recently, we reported our clinical experiences of boron neutron capture therapy (BNCT) for the newly diagnosed glioblastoma. The major differences of our protocol from the other past studies were simultaneous use of both sodium borocapate and boronophenylalanine, and combination with fractionated X-ray irradiation. These results showed the efficacy of combination therapy with external beam X-ray irradiation and BNCT. For our future study, we planned the multi-centric phase II clinical study for newly diagnosed glioblastoma patients in Japan (OSAKA-TRIBRAIN0902, NCT00974987).

  20. Use of Neutron Irradiations in the Brookhaven Mutations Programme

    International Nuclear Information System (INIS)

    The Co-operative Radiation-Mutations Programme was established at Brookhaven National Laboratory approximately ten years ago to enable plant breeders and agriculturalists to make use of irradiation techniques in plant improvement programmes. The radiation facilities used in the programme are the thermal neutron column at the BGRR reactor, the 250-kVp X-ray machine in the Biology Department, the kilocurie gamma-sources in the Nuclear Engineering Department, a 12 c Co60 gamma-source in the greenhouse, and a 4000 c Co60 source located in a 13-acre field. The development of facilities, techniques, and theory represent Brookhaven's role in this cooperative project whereas the plant material and seed are provided by agricultural experts who are responsible for growing the irradiated material and screening for mutations. More than 150 scientists in 45 states and Puerto Rico are availing themselves of the programme's facilities. Projects have also initiated with Australia, Belgium, Chile, Costa Rica, Denmark, Ecuador, Formosa, Greece, Guatemala, India, Ireland, Italy, Japan, Kenya, Mexico, the Netherlands, Pakistan, Peru, the Philippines, Romania, South Africa.Thailand, Venezuela, West Germany and Yugoslavia. A review of the above cc-operative projects is presented with emphasis on the use of neutrons in mutation induction. (author)

  1. Proton nuclear magnetic resonance measurement of p-boronophenylalanine (BPA): A therapeutic agent for boron neutron capture therapy

    OpenAIRE

    Zuo, C. S.; Prasad, P V; Busse, Paul; L. Tang; Zamenhof, R. G.

    1999-01-01

    Noninvasive in vivo quantitation of boron is necessary for obtaining pharmacokinetic data on candidate boronated delivery agents developed for boron neutron capture therapy (BNCT). Such data, in turn, would facilitate the optimization of the temporal sequence of boronated drug infusion and neutron irradiation. Current approaches to obtaining such pharmacokinetic data include: positron emission tomography employing F-18 labeled boronated delivery agents (e.g., p-boronophenylalanine), ex vivo n...

  2. Behavior of hydrogen in neutron-irradiated stainless steels

    International Nuclear Information System (INIS)

    Full text: Measurements of angular distribution of annihilation photons (ADAP) are applied to investigations of structure defects and hydrogen behavior in annealed, plastically deformed, and irradiated stainless steels. The subjects of research were two chromium-nickel austenitic steels marked as 10Kh18N10T-Vd (Ep - 502) and Kh15N28B2M4B (Ep - 485), and for comparison purposes, nickel-free ferritic steel 1Kh13M2S2 (Ei - 852), initial state of which were provided by annealing under the temperature of 1050 deg. C during 1.5 hours in vacuum of 10-5 Pa. Preliminary degree of cold deformation was equalled to e = 10%. Hydrogen saturation was carried out according to the Siverts method under the temperature of T = 500 deg. C during 1 hour. Neutron irradiation was conducted up to the fluence range of 1022 M-2 under T≤80 deg.C. Investigation of materials was realized by the method of measuring spectra of angular correlation of two quantum annihilation radiation nascent as a result of interaction of slow positron with electrons. As a positron source The isotope 22Na was chosen with activity equalled to 10 MCi (3.7·108 Bq). Angular resolution of the plant amounted to 0.5 Mrad, and time resolution - about 0.5 ms. Statistical accuracy in the maximum of spectrum was not worse than 0.5%. The main parameters of annihilation are reflected in the table 1. For simplification reasons, in the column 'Condition of materials' of The Table The following abbreviations were used: AC - Annealed Condition; E = 10 % or e10 - Plastic deformation by 10%; H or H500 - hydrogen pick-up under T = 500 deg. C; N0 - irradiation by neutrons; as well as their appropriate combinations in these processes interchange. It is determined that the whole cycle of investigation performed with use of the method of positron diagnostics helped tracing the formation and evolution of defect structure and hydrogen behavior in different kinds of steel in complex physical-mechanical influences concerned with plastic

  3. Radiation-induced meningiomas after BNCT in patients with malignant glioma.

    Science.gov (United States)

    Kageji, T; Sogabe, S; Mizobichi, Y; Nakajima, K; Shinji, N; Nakagawa, Y

    2015-12-01

    Of the 180 patients with malignant brain tumors whom we treated with boron neutron capture therapy (BNCT) since 1968, only one (0.56%) developed multiple radiation-induced meningiomas. The parasagittal meningioma that had received 42 Gy (w) for BNCT showed more rapid growth on Gd-enhanced MRI scans and more atypical features on histopathologic studies than the temporal convexity tumor that had received 20 Gy (w). Long-term follow up MRI studies are necessary in long-survivors of malignant brain tumors treated by BNCT. PMID:26122975

  4. The radiobiology of boron neutron capture therapy: Are ''photon-equivalent'' doses really photon-equivalent?

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) produces a mixture of radiation dose components. The high-linear energy transfer (LET) particles are more damaging in tissue than equal doses of low-LET radiation. Each of the high-LET components can multiplied by an experimentally determined factor to adjust for the increased biological effectiveness and the resulting sum expressed in photon-equivalent units (Gy-Eq). BNCT doses in photon-equivalent units are based on a number of assumptions. It may be possible to test the validity of these assumptions and the accuracy of the calculated BNCT doses by 1) comparing the effects of BNCT in other animal or biological models where the effects of photon radiation are known, or 2) if there are endpoints reached in the BNCT dose escalation clinical trials that can be related to the known response to photons of the tissue in question. The calculated Gy-Eq BNCT doses delivered to dogs and to humans with BPA and the epithermal neutron beam of the Brookhaven Medical Research Reactor were compared to expected responses to photon irradiation. The data indicate that Gy-Eq doses in brain may be underestimated. Doses to skin are consistent with the expected response to photons. Gy-Eq doses to tumor are significantly overestimated. A model system of cells in culture irradiated at various depths in a lucite phantom using the epithermal beam is under development. Preliminary data indicate that this approach can be used to detect differences in the relative biological effectiveness of the beam. The rat 9L gliosarcoma cell survival data was converted to photon-equivalent doses using the same factors assumed in the clinical studies. The results superimposed on the survival curve derived from irradiation with Cs-137 photons indicating the potential utility of this model system. (author)

  5. Using TRIGA Mark II research reactor for irradiation with thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kolšek, Aljaž, E-mail: aljaz.kolsek@gmail.com; Radulović, Vladimir, E-mail: vladimir.radulovic@ijs.si; Trkov, Andrej, E-mail: andrej.trkov@ijs.si; Snoj, Luka, E-mail: luka.snoj@ijs.si

    2015-03-15

    Highlights: • Monte Carlo N-Particle Transport Code was used to design and perform calculations. • Characterization of the TRIGA Mark II ex-core irradiation facilities was performed. • The irradiation device was designed in the TRIGA irradiation channel. • The use of the device improves the fraction of thermal neutron flux by 390%. - Abstract: Recently a series of test irradiations was performed at the JSI TRIGA Mark II reactor for the Fission Track-Thermoionization Mass Spectrometry (FT-TIMS) method, which requires a well thermalized neutron spectrum for sample irradiation. For this purpose the Monte Carlo N-Particle Transport Code (MCNP5) was used to computationally support the design of an irradiation device inside the TRIGA model and to support the actual measurements by calculating the neutron fluxes inside the major ex-core irradiation facilities. The irradiation device, filled with heavy water, was designed and optimized inside the Thermal Column and the additional moderation was placed inside the Elevated Piercing Port. The use of the device improves the ratio of thermal neutron flux to the sum of epithermal and fast neutron flux inside the Thermal Column Port by 390% and achieves the desired thermal neutron fluence of 10{sup 15} neutrons/cm{sup 2} in irradiation time of 20 h.

  6. Using TRIGA Mark II research reactor for irradiation with thermal neutrons

    International Nuclear Information System (INIS)

    Highlights: • Monte Carlo N-Particle Transport Code was used to design and perform calculations. • Characterization of the TRIGA Mark II ex-core irradiation facilities was performed. • The irradiation device was designed in the TRIGA irradiation channel. • The use of the device improves the fraction of thermal neutron flux by 390%. - Abstract: Recently a series of test irradiations was performed at the JSI TRIGA Mark II reactor for the Fission Track-Thermoionization Mass Spectrometry (FT-TIMS) method, which requires a well thermalized neutron spectrum for sample irradiation. For this purpose the Monte Carlo N-Particle Transport Code (MCNP5) was used to computationally support the design of an irradiation device inside the TRIGA model and to support the actual measurements by calculating the neutron fluxes inside the major ex-core irradiation facilities. The irradiation device, filled with heavy water, was designed and optimized inside the Thermal Column and the additional moderation was placed inside the Elevated Piercing Port. The use of the device improves the ratio of thermal neutron flux to the sum of epithermal and fast neutron flux inside the Thermal Column Port by 390% and achieves the desired thermal neutron fluence of 1015 neutrons/cm2 in irradiation time of 20 h

  7. Electroporation increases the effect of borocaptate (10B-BSH) in neutron capture therapy

    International Nuclear Information System (INIS)

    Purpose: The cell membrane permeability of borocaptate (10B-BSH) and its extent of accumulation in cells are controversial. This study was performed to elucidate these points. Methods and Materials: Two different treatments were applied to SCCVII tumor cells. The first group of tumor cells was incubated in culture medium with 10B-BSH or 10B-enriched boric acid, and was exposed to neutrons from the heavy water facility of the Kyoto University Reactor (KUR). More than 99% of neutrons were thermal neutrons at flux base. The second group was pretreated by electroporation in combination with 10B-BSH, and thereafter the cells were irradiated with neutrons. The cell killing effects of boron neutron capture therapy (BNCT) using BSH were investigated by colony formation assay. Results: Surviving cell fraction decreased exponentially with neutron fluence, and addition of BSH significantly enhanced the cell killing effect of neutron capture therapy (NCT) depending on 10B concentration. The effect of BSH-BNCT also increased with preincubation time of cells in the medium containing BSH. The electroporation of cells with BSH at 10 ppm 10B markedly enhanced BSH-BNCT effects in comparison with that of preincubation alone. The effect of BSH-BNCT with electroporation was equal to that of BNCT using 10B-boric acid at a same 10B concentration (10 ppm). Conclusions: BSH is suggested to penetrate the cells slowly and remained after washing. Electroporation can introduce BSH into the cells very efficiently, and BSH stays in the cells and is not lost by washing. Therefore, if electroporation is applied to tumors after BSH injection, 10B remains in tumors but is cleared from normal tissues, and selective accumulation of 10B in tumors will be achieved after an adequate waiting time

  8. Effect of neutron irradiation on passive oxidation of silicon carbide

    International Nuclear Information System (INIS)

    Hot-pressed SiC and pressureless-sintered SiC polycrystalline specimens were neutron-irradiated in the Japan materials testing reactor up to 4.5 x 1024 n/m2 (E>1.0 MeV). The bulk specimens were crushed into powders to increase surface area. Weight change of the specimen and released CO2 gas content were measured after isothermal annealing between 500 and 1300 C in oxidizing atmosphere using an electric balance and a gas chromatograph, respectively. There was no significant difference between irradiated and unirradiated specimens, for both hot-pressed and pressureless-sintered specimens. All of the weight gain data and amount of evolved CO2 satisfied a parabolic rate law against oxidation time. Apparent activation energy of the reaction confirmed the diffusion of O2 molecules through amorphous SiO2 layer. However, apparent activation energy decreased by the irradiation only in pressureless-sintered SiC containing B, suggesting the effect of transmuted atoms, or Li. (orig.)

  9. Dosimetric feasibility study for an extracorporeal BNCT application on liver metastases at the TRIGA Mainz.

    Science.gov (United States)

    Blaickner, M; Kratz, J V; Minouchehr, S; Otto, G; Schmidberger, H; Schütz, C; Vogtländer, L; Wortmann, B; Hampel, G

    2012-01-01

    This study investigates the dosimetric feasibility of Boron Neutron Capture Therapy (BNCT) of explanted livers in the thermal column of the research reactor in Mainz. The Monte Carlo code MCNP5 is used to calculate the biologically weighted dose for different ratios of the (10)B-concentration in tumour to normal liver tissue. The simulation results show that dosimetric goals are only partially met. To guarantee effective BNCT treatment the organ has to be better shielded from all gamma radiation. PMID:21872481

  10. Suitability of boron carriers for BNCT: Accumulation of boron in malignant and normal liver cells after treatment with BPA, BSH and BA

    Energy Technology Data Exchange (ETDEWEB)

    Chou, F.I. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)], E-mail: fichou@mx.nthu.edu.tw; Chung, H.P.; Liu, H.M. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Chi, C.W. [Department of Medical Research and Education, Taipei Veterans General Hospital, Taiwan (China); Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taiwan (China); Lui, W.Y. [Department of Surgery, Taipei Veterans General Hospital, Taiwan (China); Department of Surgery, School of Medicine, National Yang-Ming University, Taiwan (China)

    2009-07-15

    Hepatocellular carcinoma remains widely prevalent in tropical Africa and south-east Asia. At present, there are no effective treatments for hepatoma and its prognosis is extremely poor unless the tumor was diagnosed in an early stage and resected before metastasis. Therefore, boron neutron capture therapy (BNCT) may provide an alternative therapy for treatment of hepatocellular carcinoma. In this study, the intracellular concentrations of L-boronophenylalanine (BPA), sodium borocaptate (BSH) and boric acid (BA) were examined in human hepatoma HepG2 and liver Clone 9 cell cultures. With the use of 25 {mu}g B/mL media of BPA, BSH and BA, the intracellular uptake of boron in HepG2 and Clone 9 cells was compared. The suitability of BPA, BSH and BA were further evaluated on the basis of organ-specific boron distribution in normal rat tissues. BPA, BSH and BA were administered via intraperitoneal injection into rats with corresponding boron concentrations of 7, 25, and 25 mg/kg body weight, respectively. The accumulation rates of BPA, BSH and BA in HepG2 cells were higher than that of Clone 9 cells. Boron concentration in BPA, BSH and BA treated HepG2 cells were 1.8, 1.5, and 1.6-fold of Clone 9 cells at 4 h, respectively. In both HepG2 and Clone 9 cells, although the concentration of boron in BPA-treated cells exceeded that in BA-treated ones, however, cells treated with BPA had similar surviving fraction as those treated with BA after neutron irradiation. The accumulation ratios of boron in liver, pancreas and kidney to boron in blood were 0.83, 4.16 and 2.47, respectively, in BPA treated rats, and 0.75, 0.35 and 2.89, respectively, in BSH treated rats at 3 h after treatment. However, boron does not appear to accumulate specifically in soft tissues in BA treated rats. For in situ BNCT of hepatoma, normal organs with high boron concentration and adjacent to liver may be damaged in neutron irradiation. BPA showed high retention in pancreas and may not be a good drug for

  11. Protecting Intestinal Epithelial Cell Number 6 against Fission Neutron Irradiation through NF-κB Signaling Pathway

    Science.gov (United States)

    Chang, Gong-Min; Gao, Ya-Bing; Wang, Shui-Ming; Xu, Xin-Ping; Zhao, Li; Zhang, Jing; Li, Jin-Feng; Wang, Yun-Liang; Peng, Rui-Yun

    2015-01-01

    The purpose of this paper is to explore the change of NF-κB signaling pathway in intestinal epithelial cell induced by fission neutron irradiation and the influence of the PI3K/Akt pathway inhibitor LY294002. Three groups of IEC-6 cell lines were given: control group, neutron irradiation of 4Gy group, and neutron irradiation of 4Gy with LY294002 treatment group. Except the control group, the other groups were irradiated by neutron of 4Gy. LY294002 was given before 24 hours of neutron irradiation. At 6 h and 24 h after neutron irradiation, the morphologic changes, proliferation ability, apoptosis, and necrosis rates of the IEC-6 cell lines were assayed and the changes of NF-κB and PI3K/Akt pathway were detected. At 6 h and 24 h after neutron irradiation of 4Gy, the proliferation ability of the IEC-6 cells decreased and lots of apoptotic and necrotic cells were found. The injuries in LY294002 treatment and neutron irradiation group were more serious than those in control and neutron irradiation groups. The results suggest that IEC-6 cells were obviously damaged and induced serious apoptosis and necrosis by neutron irradiation of 4Gy; the NF-κB signaling pathway in IEC-6 was activated by neutron irradiation which could protect IEC-6 against injury by neutron irradiation; LY294002 could inhibit the activity of IEC-6 cells. PMID:25866755

  12. Protecting Intestinal Epithelial Cell Number 6 against Fission Neutron Irradiation through NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Gong-Min Chang

    2015-01-01

    Full Text Available The purpose of this paper is to explore the change of NF-κB signaling pathway in intestinal epithelial cell induced by fission neutron irradiation and the influence of the PI3K/Akt pathway inhibitor LY294002. Three groups of IEC-6 cell lines were given: control group, neutron irradiation of 4Gy group, and neutron irradiation of 4Gy with LY294002 treatment group. Except the control group, the other groups were irradiated by neutron of 4Gy. LY294002 was given before 24 hours of neutron irradiation. At 6 h and 24 h after neutron irradiation, the morphologic changes, proliferation ability, apoptosis, and necrosis rates of the IEC-6 cell lines were assayed and the changes of NF-κB and PI3K/Akt pathway were detected. At 6 h and 24 h after neutron irradiation of 4Gy, the proliferation ability of the IEC-6 cells decreased and lots of apoptotic and necrotic cells were found. The injuries in LY294002 treatment and neutron irradiation group were more serious than those in control and neutron irradiation groups. The results suggest that IEC-6 cells were obviously damaged and induced serious apoptosis and necrosis by neutron irradiation of 4Gy; the NF-κB signaling pathway in IEC-6 was activated by neutron irradiation which could protect IEC-6 against injury by neutron irradiation; LY294002 could inhibit the activity of IEC-6 cells.

  13. Neutron irradiation damage of graphite, C/C and metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Iseki, Michio (Nagoya Univ. (Japan). Faculty of Engineering)

    1992-06-01

    Graphite and carbon-carbon composites or other carbide composites are considered to be candidate for plasma facing materials or structural material of fusion reactors because of their low atomic number, high thermal conductivity, stability under irradiation etc. This report briefly summarizes the mechanical properties, physical properties and microstructure changes of graphite, carbon composites and metal matrix composites after neutron irradiation. Generally, the effects of neutron irradiation are quite remarkable on physical properties of the graphite materials. (author).

  14. Radiation effects in the aluminium alloys irradiated with neutrons

    International Nuclear Information System (INIS)

    Full text: Materials of fuel elements for water cooled nuclear reactors are exposed to simultaneous action of an ionizing radiation, temperature and yields of water radiolysis. In particular, irradiation by fast neutrons (En> 0.1 MeV) in research reactors influences mainly the mechanical properties of aluminium alloys, increasing their strength and reducing the plasticity. Radiation can essentially affect the stability of the heat-generating assembly material, changing its structure state. The structure change may also be the result of post-radiation ageing. This paper presents the results of studying the influence of reactor neutrons (research reactor of INP AS RU) on microstructure, electrical characteristics and length changes of SAV-1 and AMG-2 aluminium alloys used in nuclear industry. These alloys are low-alloyed solid solutions and intermetallic phases of CuAl2, Mg2Si, CuMgAl2, CuMg4Al6, Al2Mg2 in an equilibrium state. Samples were cut with orientation in 111 crystallographic axis in the shape of disks with the diameter d= 15 mm and thickness h= 3 mm for the metallographic analysis, and rods with the length of 40 mm and width d = 5 mm for measuring specific electrical resistance and linear dimension changes prior and after irradiations. For precise measurements the sample surfaces were mechanically handled and polished in a chemical solution, and then washed out in the distilled water and ethanol. Further samples, were put into the aluminum container and irradiated in a vertical channel of the reactor to fluencies 1018, 1019, 1020 n/cm2. The relative elongation (extension) δ was calculated as the measured length ratio of the non-irradiated and irradiated sample: δ=L0/L1x100%. Determination of element composition and the metallographic analysis of studied samples were done at the X-ray microanalyzer 'Jeol' JSM 5910 IV. Specific resistance (ρ) values were measures with four probe technique by compensation method at the direct voltage. The sample lengths

  15. Investigating a multi-purpose target for electron linac based photoneutron sources for BNCT of deep-seated tumors

    Energy Technology Data Exchange (ETDEWEB)

    Masoudi, S. Farhad, E-mail: masoudi@kntu.ac.ir; Rasouli, Fatemeh S.

    2015-08-01

    Recent studies in BNCT have focused on investigating appropriate neutron sources as alternatives for nuclear reactors. As the most prominent facilities, the electron linac based photoneutron sources benefit from two consecutive reactions, (e, γ) and (γ, n). The photoneutron sources designed so far are composed of bipartite targets which involve practical problems and are far from the objective of achieving an optimized neutron source. This simulation study deals with designing a compact, optimized, and geometrically simple target for a photoneutron source based on an electron linac. Based on a set of MCNPX simulations, tungsten is found to have the potential of utilizing as both photon converter and photoneutron target. Besides, it is shown that an optimized dimension for such a target slows-down the produced neutrons toward the desired energy range while keeping them economy, which makes achieving the recommended criteria for BNCT of deep-tumors more available. This multi-purpose target does not involve complicated designing, and can be considered as a significant step toward finding application of photoneutron sources for in-hospital treatments. In order to shape the neutron beam emitted from such a target, the beam is planned to pass through an optimized arrangement of materials composed of moderators, filters, reflector, and collimator. By assessment with the recommended in-air parameters, it is shown that the designed beam provides high intensity of desired neutrons, as well as low background contamination. The last section of this study is devoted to investigate the performance of the resultant beam in deep tissue. A typical simulated liver tumor, located within a phantom of human body, was subjected to the irradiation of the designed spectrum. The dosimetric results, including evaluated depth-dose curves and carried out in-phantom parameters show that the proposed configuration establishes acceptable agreement between the appropriate neutron intensity, and

  16. Confirmation of a realistic reactor model for BNCT dosimetry at the TRIGA Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Ziegner, Markus, E-mail: Markus.Ziegner.fl@ait.ac.at [AIT Austrian Institute of Technology GmbH, Vienna A-1220, Austria and Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna A-1020 (Austria); Schmitz, Tobias; Hampel, Gabriele [Institut für Kernchemie, Johannes Gutenberg-Universität, Mainz DE-55128 (Germany); Khan, Rustam [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad PK-44000 (Pakistan); Blaickner, Matthias [AIT Austrian Institute of Technology GmbH, Vienna A-1220 (Austria); Palmans, Hugo [Acoustics and Ionising Radiation Division, National Physical Laboratory, Teddington TW11 0LW, United Kingdom and Medical Physics Group, EBG MedAustron GmbH, Wiener Neustadt A-2700 (Austria); Sharpe, Peter [Acoustics and Ionising Radiation Division, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Böck, Helmuth [Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna A-1020 (Austria)

    2014-11-01

    Purpose: In order to build up a reliable dose monitoring system for boron neutron capture therapy (BNCT) applications at the TRIGA reactor in Mainz, a computer model for the entire reactor was established, simulating the radiation field by means of the Monte Carlo method. The impact of different source definition techniques was compared and the model was validated by experimental fluence and dose determinations. Methods: The depletion calculation code ORIGEN2 was used to compute the burn-up and relevant material composition of each burned fuel element from the day of first reactor operation to its current core. The material composition of the current core was used in a MCNP5 model of the initial core developed earlier. To perform calculations for the region outside the reactor core, the model was expanded to include the thermal column and compared with the previously established ATTILA model. Subsequently, the computational model is simplified in order to reduce the calculation time. Both simulation models are validated by experiments with different setups using alanine dosimetry and gold activation measurements with two different types of phantoms. Results: The MCNP5 simulated neutron spectrum and source strength are found to be in good agreement with the previous ATTILA model whereas the photon production is much lower. Both MCNP5 simulation models predict all experimental dose values with an accuracy of about 5%. The simulations reveal that a Teflon environment favorably reduces the gamma dose component as compared to a polymethyl methacrylate phantom. Conclusions: A computer model for BNCT dosimetry was established, allowing the prediction of dosimetric quantities without further calibration and within a reasonable computation time for clinical applications. The good agreement between the MCNP5 simulations and experiments demonstrates that the ATTILA model overestimates the gamma dose contribution. The detailed model can be used for the planning of structural

  17. Final report on graphite irradiation test OG-3. [Fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Price, R.J.; Beavan, L.A.

    1977-01-01

    The results of dimensional, thermal expansivity, thermal conductivity, Young's modulus, and tensile strength measurements on graphite specimens irradiated in capsule OG-3 are presented. The graphite grades investigated included near-isotropic H-451 (three different preproduction lots), TS-1240, and SO818; needle coke H-327; and European coal tar pitch coke grades P/sub 3/JHA/sub 2/N, P/sub 3/JHAN, and ASI2-500. Data were obtained in the temperature range 823/sup 0/K to 1673/sup 0/K. The peak fast neutron fluence in the experiment was 3 x 10/sup 25/ n/m/sup 3/ (E greater than 29 fJ)/sub HTGR/; the total accumulated fluence exceeded 9 x 10/sup 25/ n/m/sup 2/ on some H-451 specimens and 6 x 10/sup 25/ n/m/sup 2/ on some TS-1240 specimens. Irradiation-induced dimensional changes on H-451 graphite differed slightly from earlier predictions. For an irradiation temperature of about 1225/sup 0/K, axial shrinkage rates at high fluences were somewhat higher than predicted, and the fluence at which radial expansion started (about 9 x 10/sup 25/ n/m/sup 2/ at 1275/sup 0/K) was lower. TS-1240 graphite underwent smaller dimensional changes than H-451 graphite, while limited data on SO818 and ASI2-500 graphites showed similar behavior to H-451. P/sub 3/JHAN and P/sub 3/JHA/sub 2/N graphites displayed anisotropic behavior with rapid axial shrinkage. Comparison of dimensional changes between specimens from three logs of H-451 and of TS-1240 graphites showed no significant log-to-log variations for H-451, and small but significant log-to-log variations for TS-1240. The thermal expansivity of the near-isotropic graphites irradiated at 865-1045/sup 0/K first increased by 5 percent to 10 percent and then decreased. At higher irradiation temperatures the thermal expansivity decreased by up to 50 percent. Changes in thermal conductivity were consistent with previously established curves. Specimens which were successively irradiated at two different temperatures took on the

  18. Studies on thermal expansion and neutron irradiation effect of polycrystalline graphites

    International Nuclear Information System (INIS)

    For thermal expansion and neutron irradiation effect, thermal expansion coefficients and physical properties were measured of polycrystalline graphites, neutron irradiated, unirradiated, and compressively pre-stressed at room temperature, respectively. Factors involved in the thermal expansion were thus clarified. Relationship between thermal expansion coefficient and dimensional changes of graphites irradiated at high temperatures was studied. Thermal expansion and physical properties were measured of the irradiated graphites and subsequently after their thermal annealing at elevated temperatures. Behavior of the irradiation-induced defects is discussed. (author)

  19. Properties of simulated cosmic matters after gamma-ray and neutron irradiation

    Science.gov (United States)

    Koike, K.; Nakagawa, M.; Koike, C.; Chihara, H.; Okada, M.; Matsumura, M.; Awata, T.; Atobe, K.; Takada, J.

    2006-04-01

    Interstellar and circumstellar matter is known to be strongly irradiated by cosmic radiation and several types of cosmic ray particles. The effects of irradiation on simulated interstellar and circumstellar matter such as CaCO3, MgCO3, SiO2 and Al2O3 are investigated. Especially, thermoluminescence (TL) spectra after γ-ray and neutron irradiation are compared carefully. It is shown that the thermoluminescence after neutron irradiation appears significantly in the wavelength of blue region. On the reflectance in infrared region, the irradiation effect appears scarcely.

  20. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Alsabbagh; Apu Sarkar; Brandon Miller; Jatuporn Burns; Leah Squires; Douglas Porter; James I. Cole; K. L. Murty

    2014-10-01

    Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) has been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.24 dpa. Atom probe tomography revealed manganese, silicon-enriched clusters in both ECAP and CG steel after neutron irradiation. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation. However, no significant change was observed in UFG steel revealing better radiation tolerance.

  1. Kinetic Monte Carlo modelling of neutron irradiation damage in iron

    Energy Technology Data Exchange (ETDEWEB)

    Gamez, L. [Instituto de Fusion Nuclear, UPM, Madrid (Spain); Departamento de Fisica Aplicada, ETSII, UPM, Madrid (Spain)], E-mail: linarejos.gamez@upm.es; Martinez, E. [Instituto de Fusion Nuclear, UPM, Madrid (Spain); Lawrence Livermore National Laboratory, LLNL, CA 94550 (United States); Perlado, J.M.; Cepas, P. [Instituto de Fusion Nuclear, UPM, Madrid (Spain); Caturla, M.J. [Departamento de Fisica Aplicada, Universidad de Alicante, Alicante (Spain); Victoria, M. [Instituto de Fusion Nuclear, UPM, Madrid (Spain); Marian, J. [Lawrence Livermore National Laboratory, LLNL, CA 94550 (United States); Arevalo, C. [Instituto de Fusion Nuclear, UPM, Madrid (Spain); Hernandez, M.; Gomez, D. [CIEMAT, Madrid (Spain)

    2007-10-15

    Ferritic steels (FeCr based alloys) are key materials needed to fulfill the requirements expected in future nuclear fusion facilities, both for magnetic and inertial confinement, and advanced fission reactors (GIV) and transmutation systems. Research in such field is actually a critical aspect in the European research program and abroad. Experimental and multiscale simulation methodologies are going hand by hand in increasing the knowledge of materials performance. At DENIM, it is progressing in some specific part of the well-linked simulation methodology both for defects energetics and diffusion, and for dislocation dynamics. In this study, results obtained from kinetic Monte Carlo simulations of neutron irradiated Fe under different conditions are presented, using modified ad hoc parameters. A significant agreement with experimental measurements has been found for some of the parameterization and mechanisms considered. The results of these simulations are discussed and compared with previous calculations.

  2. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  3. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs

  4. Am-Be Neutron Irradiator Used for Nuclear Instrumentation Training

    International Nuclear Information System (INIS)

    A neutron irradiator was assembled at IPEN (Nuclear and Energy Research Institute) facility to perform qualitative- quantitative analysis of materials, using thermal and fast neutrons. In order to determine the 116mIn decay constant, a thermal flux obtained experimentally by Monte Carlo N-Particle Transport Code-MCNP, in a previous work, was used in the nuclear experiment. The activity calculated from the activation parameters was 13.51±0.17 kBq and the activity determined experimentally was 12.51± 0.36 kBq. The decay constant determined by the pulse height analyzer (PHA) measures was 211.4 μ.s-1, and that determined by fitting the data using a Multichannel Scaler (MCS) system was 200.3 ± 1.6 μ.s-1. The half-life of 116mIn found in the literature is 3256.8 s, which corresponds to a decay constant of 212.8 μ.s-1. The present experiment does not intend to establish a new value for the decay constant: it solely aims students' practical exercises in nuclear properties of elements. This experiment is part of the nuclear experimental course. (authors)

  5. Resistivity measurements on the neutron irradiated detector grade silicon materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng

    1993-11-01

    Resistivity measurements under the condition of no or low electrical field (electrical neutral bulk or ENB condition) have been made on various device configurations on detector grade silicon materials after neutron irradiation. Results of the measurements have shown that the ENB resistivity increases with neutron fluence ({Phi}{sub n}) at low {phi}{sub n} (<10{sup 13} n/cm{sup 2}) and saturates at a value between 300 and 400 k{Omega}-cm at {phi}{sub n} {approximately}10{sup 13} n/cm{sup 2}. Meanwhile, the effective doping concentration N{sub eff} in the space charge region (SCR) obtained from the C-V measurements of fully depleted p{sup +}/n silicon junction detectors has been found to increase nearly linearly with {phi}{sub n} at high fluences ({phi}{sub n} > 10{sup 13} n/cm{sup 2}). The experimental results are explained by the deep levels crossing the Fermi level in the SCR and near perfect compensation in the ENB by all deep levels, resulting in N{sub eff} (SCR) {ne} n or p (free carrier concentrations in the ENB).

  6. Hydride Formation in Neutron Irradiated Material Under In Reactor Conditions

    International Nuclear Information System (INIS)

    The present is a brief summary of the three reports completed within the framework of the SPAR III project. The following is a resume of our aims, techniques used to achieve the objectives and conclusions attained under the guiding thread of the hydride formation in neutron irradiated zirconium alloys and other reactor in operating conditions. As is it known, under reactor operating conditions zirconium components go through transformations which affect their original microstructural and thermodynamical properties. Both concerns are starting points of many research lines for the zirconium alloys used in the nuclear power reactors. Regarding microstructural transformations, one of the most important topics is the phase stability of these alloys. To cite a well-known case, second phase particles of zircaloy-4 shown to be unstable under neutron radiation. Since such phases play a role in the corrosion rate control, this instability became a problem for high burnup fuel claddings design. Similar observations can be made about the β−Zr phase in the Zr-2.5Nb CANDU pressure tubes alloy. On the other hand, there are issues directly involved with thermodynamics, e.g., hydrogen behaviour and its role in the degradation processes of fuel assemblies and other zirconium alloys components, which showed to be affected by neutron radiation. Finally, applied stresses and thermal cycling are part of these operating conditions, which can be simulated performing experiments in situ which allows testing hydrogen solubility behaviour and hydride reorientation. In the context described above, the research topics proposed to SPAR III were aimed to improve the knowledge of these degradation processes. In this scheme, zircaloy-4 which remained more than ten years at full power operation and virgin unirradiated zirconium alloys were suited by the more improved micro analytical techniques to characterize microstructural transformations cited above

  7. The radiosensitivities of 4 human tumor cell lines to p (35) Be neutron irradiation

    International Nuclear Information System (INIS)

    Objective: The difference of radiosensitivity of 4 human tumor cell lines to p(35)Be fast neutron and gamma ray was studied in order to provide basis for clinical therapy of tumors. Methods: The radiosensitivity of these cell lines after p(35)Be neutron or gamma ray irradiation was assayed with cell clonogenic survival assay. And the gamma ray-and p(35)Be neutron-induced DNA damage and its repair in human melanoma cells line WM9839 was studied by using the method of comet-electrophoresis assay. Results: The difference of D0(or SF2) after p(35)Be neutron irradiation between these 4 human tumor cell lines was smaller than that after gamma ray irradiation. The repair rate of DNA damage in WM9839 cells after 2 Gy fast-neutron irradiation was lower than that after 2 Gy γ-ray irradiation. The residual DNA damage at 180 min after neutron-irradiation was obviously severer than that after 2 Gy γ-ray irradiation. Conclusion: The fast neutron therapy may make up the defect of the low LET ray therapy, especially to those radioresistant tumor cells to low LET rays

  8. Design and construction of the in-hospital neutron irradiator-1

    International Nuclear Information System (INIS)

    The complete design, component procurement of the facility to be installed inside the hospital specifically for BNCT research and trial of brain tumors have been finished and the construction of it is to be started soon. The neutron physical calculation of the reactor has been made by using programs of WIMSD-4, CITATION and MONTE CARLO and a verification has been done through physical simulation test facilities with zero power. In addition, programs RELAP5/SCDAPSIM/MOD 3.2 have been used to make a serial research for the dynamic performance of the reactor device. The result of the analysis shows that during the accident transient from large step positive reactivity occurs, the reactor power jump can be controlled rapidly in the allowable level in a passive way by its inherent safety. All the above-mentioned make a essential safety base for be suitable for installing and operating inside hospital. (author)

  9. D-D neutron irradiation effects on single-crystal TiO2

    International Nuclear Information System (INIS)

    Rutile single-crystal TiO2 were irradiated by 2.5 MeV neutrons from D-D reaction on a neutron generator at Lanzhou University. Positron annihilation lifetime spectra and X-ray diffraction (XRD) patterns of the irradiated samples were compared with those of the virgin. Considering the fact that the threshold displacement energy of titanium atoms is almost two times of that of oxygen atoms, more oxygen vacancies (VO) would be produced than that of titanium vacancies (VTi) under the neutron irradiation. Lifetime results indicated that the irradiated samples had larger electron density of titanium vacancies than the virgin rutile, as a result of increased oxygen vacancies surrounding the Ti vacancy, because of the coulombic repulsion. From the XRD results, distance along the c-axis shrank slightly and the crystallinity became weaker after the neutron irradiation. (authors)

  10. Tritium extraction from neutron-irradiated lithium aluminate

    International Nuclear Information System (INIS)

    Lithium aluminate is being strongly considered as a breeder material because of its thermophysical, chemical and mechanical stability at high temperatures and its favorable irradiation behavior. Furthermore, it is compatible with other blanket and structural materials. In this work, the effects of calcination temperature during preparation, extraction temperature and sweep gas composition were observed. Lithium aluminate prepared by four different methods, was neutron irradiated for 30 minutes at a flux of 1012 -1013 n/cm2 s in the TRIGA Mark III reactor at Salazar, Mexico; and the tritium extraction rate was measured. Calcination temperature do not affect the tritium extraction rate. However, using high calcination temperature, gamma lithium aluminate was formed. The tritium extraction at 600 Centigrade degrees was lower than at 800 Centigrade degrees and the tritium amount extracted by distillation of the solid sample was higher. The sweep gas composition showed that tritium extraction was less with Ar plus 0.5 % H2 that with Ar plus 0.1 % H2. This result was contrary to expected, where the tritium extraction rate could be higher when hydrogen is added to the sweep gas. Probably this effect could be attributed to the gas purity. (Author)

  11. Development of IASCC Test Facility for Neutron-irradiated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. W.; Kim, D. J.; Hwang, S. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    From literature review and benchmark studies on recent technologies for IASCC evaluation of highly irradiated stainless steels, the requirements to establish IASCC test facility were drawn. According to the requirements, IASCC test facility for assessment of life time and integrity of RVIs in Korean PWRs will be designed in detail and constructed in hot cells of KAERI. Irradiation assisted stress corrosion cracking (IASCC) has been regarded as the main cause for intergranular cracking incidents in reactor vessel internals (RVIs) in light water reactors (LWRs). IASCC was reported in a fuel rod in the 1960s, a control rod in the 1970s, and a baffle former bolt in recent years. For a proactive management of IASCC of these components, a lot of work has been performed in boiling water reactors (BWRs). From these works, IASCC mechanism and its relation to radiation-induced segregation (RIS), neutron fluence, and applied stress were proposed to describe IASCC behavior of RVIs in BWRs. However, the IASCC mechanism of RVIs in pressurized water reactors (PWRs) is not fully understood yet as compared with that in BWRs owing to a lack of reliable data. Recently, worldwide efforts have been made to investigate the IASCC susceptibility of RVIs in PWRs.

  12. Neutron-Irradiated Samples as Test Materials for MPEX

    International Nuclear Information System (INIS)

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility

  13. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    Science.gov (United States)

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; Garrison, Lauren M.; Snead, Lance L.; Katoh, Yutai; Hasegawa, Akira

    2016-10-01

    Neutron irradiation to single crystal pure tungsten was performed in the mixed spectrum High Flux Isotope Reactor (HFIR). To investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ∼90-∼800 °C and fast neutron fluences were 0.02-9.00 × 1025 n/m2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. The hardness and microstructure changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 1025 n/m2 (E > 0.1 MeV). Irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 1025 n/m2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.

  14. The results of a non-linear mathematical model for the kinetics of {sup 10}B after BPA-F infusion in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Ryynaenen, P.; Savolainen, S. [Dept. of Physics, University of Helsinki (Finland); Hiismaeki, P. [VTT Chemical Technology, Technical Research Centre, Espoo (Finland); Kangasmaeki, A. [Dept. of Radiology, University Hospital, Helsinki (Finland)

    2001-07-01

    The aim of this study was to create a model for the kinetics of {sup 10}B in glioma patients after p-boronophenylalanine fructose complex (BPA-F) infusion in order to predict the {sup 10}B concentration in blood during the neutron irradiations in BNCT. The more specific aim was to create a flexible model that would work with variable infusion duration and variable amounts of infused BRA, by forehand carrying out only 1 to 2 kinetic studies per different trials. Previously used bi-exponential fitting and open compartmental model are capable, but, however, heavy kinetic studies are needed before they are reliable enough. A model probe with a memory effect based on phenomenological findings was created. The model development was based on the data from 10 glioblastoma multiforme patients from the Brookhaven National Laboratory BNCT trials. These patients received i.v. 290 mg BPA/kg body weight as a fructose complex during two hours. Blood samples were collected during and after the infusion. The accuracy of the model was verified with distinctive fitting of 10 new glioma patient data from the Finnish BNCT-trials. The {sup 10}B- concentration in whole blood samples was determined by ICP-AES method. In the study it is concluded that the constructed non-linear model is flexible and capable in describing the kinetics of {sup 10}B concentration in blood after a single infusion of BPA-F. (author)

  15. The results of a non-linear mathematical model for the kinetics of 10B after BPA-F infusion in BNCT

    International Nuclear Information System (INIS)

    The aim of this study was to create a model for the kinetics of 10B in glioma patients after p-boronophenylalanine fructose complex (BPA-F) infusion in order to predict the 10B concentration in blood during the neutron irradiations in BNCT. The more specific aim was to create a flexible model that would work with variable infusion duration and variable amounts of infused BRA, by forehand carrying out only 1 to 2 kinetic studies per different trials. Previously used bi-exponential fitting and open compartmental model are capable, but, however, heavy kinetic studies are needed before they are reliable enough. A model probe with a memory effect based on phenomenological findings was created. The model development was based on the data from 10 glioblastoma multiforme patients from the Brookhaven National Laboratory BNCT trials. These patients received i.v. 290 mg BPA/kg body weight as a fructose complex during two hours. Blood samples were collected during and after the infusion. The accuracy of the model was verified with distinctive fitting of 10 new glioma patient data from the Finnish BNCT-trials. The 10B- concentration in whole blood samples was determined by ICP-AES method. In the study it is concluded that the constructed non-linear model is flexible and capable in describing the kinetics of 10B concentration in blood after a single infusion of BPA-F. (author)

  16. Permeability spectra of neutron-irradiated and annealed amorphous FeCuNbSiB ribbons

    International Nuclear Information System (INIS)

    The neutron irradiation effects of soft magnetic properties in the as-quenched and the annealed amorphous Fe73.5Cu1Nb3Si13.5B9 alloys were studied by complex permeability spectra measurement. The annealing at 823 K caused the decrease of permeability from irreversible domain wall motion but increase the permeability from reversible magnetization, compared to the as-quenched sample. The neutron irradiation in the as-quenched sample increases the permeability from both irreversible and reversible magnetization processes. The neutron irradiation in the annealed sample showed the increase of permeability from irreversible domain wall motion, but decrease of permeability from reversible magnetization

  17. Investigation of irradiation conditions for recurrent breast cancer in JRR-4

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, H., E-mail: horiguchi.hironori@jaea.go.jp [Department of Research Reactor and Tandem Accelerator, Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Nakamura, T. [Department of Research Reactor and Tandem Accelerator, Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Kumada, H. [Proton Medical Research Centre, University of Tsukuba, Tsukuba, Ibaraki (Japan); Yanagie, H. [Department of Nuclear Engineering and management, Graduate School of Tokyo, Tokyo (Japan)] [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Suzuki, M. [Particle Radiation Oncology Research Center, Kyoto University, Osaka (Japan); Sagawa, H. [Department of Research Reactor and Tandem Accelerator, Japan Atomic Energy Agency, Tokai, Ibaraki (Japan)

    2011-12-15

    Clinical trials of boron neutron capture therapy (BNCT) for recurrent breast cancers are considered at Japan Research Reactor No. 4 (JRR-4). In this study, the irradiation technique for a total mastectomy patient with recurrent cancer was optimized by dosimetric calculations using JAEA computational dosimetry system (JCDS). The evaluation was performed using an en face technique and a tangents technique with thermal neutron beam mode at JRR-4. The results revealed that equivalent doses of lung, heart, liver and skin were similar in each irradiation technique due to the isotropic scattering of thermal neutrons in the body. On the other hand, the irradiation time with the tangents technique was a few times longer than with the en face technique. We concluded that the en face technique was an optimal irradiation technique for recurrent breast cancers using thermal neutron beam mode in terms of shorter irradiation time and easier patient positioning.

  18. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.

    Science.gov (United States)

    Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P

    2010-10-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  19. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra

    International Nuclear Information System (INIS)

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 1016 cm-2 was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  20. 医院中子照射器Ⅰ型堆热中子束流孔道等效平面源的模拟计算%Numerical calculation for the equivalent surface source of the thermal neutron duct of in-hospital neutron irradiator mark 1 reactor

    Institute of Scientific and Technical Information of China (English)

    朱养妮; 江新标; 赵柱民; 张良; 周永茂

    2012-01-01

    采用蒙特卡罗程序MCNP模拟计算了医院中子照射器Ⅰ型堆(IHNI-1)热中子束流孔道出口处的等效平面源.对B堆芯进行了临界搜索计算,模拟计算了热中子束流孔道及出口处中子、γ的束流参数,应用等效平面源模型建立了BNCT等效中子、γ平面源.为人体头颅等效模型剂量分布的快速计算提供了较为可靠的平面源.%Numerical calculation for the equivalent surface source of the thermal neutron duct of in-hospital neutron irradiator mark 1 (IHNI-1) reactor is carried out using MCNP Monte Carlo code. Cold clean criticality of B-core is searched. Neutron beam parameters at the exit of thermal neutron duct are calculated. Equivalent neutron and -y surface sources for BNCT are built using equivalent surface source model. And these sources are reliable to calculate absorbed dose distribution in equivalent model of head quickly.

  1. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Manuel,

    2014-08-01

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential

  2. Employment of MCNP in the study of TLDS 600 and 700 seeking the implementation of radiation beam characterization of BNCT facility at IEA-R1

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy, BNCT, is a bimodal radiotherapy procedure for cancer treatment. Its useful energy comes from a nuclear reaction driven by impinging thermal neutron upon Boron 10 atoms. A BNCT research facility has been constructed in IPEN at the IEA-R1 reactor, to develop studies in this area. One of its prime experimental parameter is the beam dosimetry which is nowadays made by using activation foils, for neutron measurements, and TLD 400, for gamma dosimetry. For mixed field dosimetry, the International Commission on Radiation Units and Measurements, ICRU, recommends the use of pair of detectors with distinct responses to the field components. The TLD 600/ TLD 700 pair meets this criteria, as the amount of 6Li, a nuclide with high thermal neutron cross section, greatly differs in their composition. This work presents a series of experiments and simulations performed in order to implement the mixed field dosimetry based on the use of TLD 600/TLD 700 pair. It also intended to compare this mixed field dosimetric methodology to the one so far used by the BNCT research group of IPEN. The response of all TLDs were studied under irradiations in different irradiation fields and simulations, underwent by MCNP, were run in order to evaluate the dose contribution from each field component. Series of repeated irradiations under pure gamma field and mixed field neutron/gamma field showed differences in the TLD individual responses which led to the adoption of a Normalization Factor. It has allowed to overcome TLD selection. TLD responses due to different field components and spectra were studied. It has shown to be possible to evaluate the relative gamma/neutron fluxes from the relative responses observed in the two Regions of Interest, ROIs, from TLD 600 and TLD 700. It has also been possible to observe the TLD 700 response to neutron, which leads to a gamma dose overestimation when one follows the ICRU recommended mixed field dosimetric procedure. Dose

  3. The effects of fast-neutron irradiation on the mechanical properties of austenitic stainless steel

    International Nuclear Information System (INIS)

    The paper reviews the effects of fast-neutron irradiation on the tensile properties of austenitic stainless steels at irradiation temperatures of less than 400 degrees Celcius, using as an example, work carried out at Pelindaba on an AISI 316 type steel produced in South Africa. Damage produced in these steels at higher irradiation temperatures and fluences is also briefly discussed. The paper concludes with a discussion of some methods of overcoming or decreasing the effects of irradiation damage

  4. Viability of the ESS-Bilbao neutron source for irradiation of nuclear fusion materials

    Energy Technology Data Exchange (ETDEWEB)

    Páramo, A.R., E-mail: angel.rodriguez.paramo@upm.es [Instituto de Fusión Nuclear UPM, José Gutiérrez Abascal 2, E28006 Madrid (Spain); Sordo, F. [Instituto de Fusión Nuclear UPM, José Gutiérrez Abascal 2, E28006 Madrid (Spain); Consorcio ESS-Bilbao, Edificio Cosimet, Paseo Landabarri, 2 1a planta, 48940 Leioa (Spain); Perlado, J.M.; Rivera, A. [Instituto de Fusión Nuclear UPM, José Gutiérrez Abascal 2, E28006 Madrid (Spain)

    2014-01-15

    The ESS-Bilbao neutron source, currently under construction, is conceived as a multipurpose facility. It will offer a fast neutron beam line for materials irradiation. In this paper we discuss the viability of ESS-Bilbao for experimental studies of fusion materials. Making use of the already designed target station we have calculated the neutron spectrum expected in the fast neutron line. Then, we have studied the neutron irradiation effects in two model materials: iron and silica. We have calculated the expected PKA (primary knock-on atom) spectra and light species production as well as the damage production in these materials. Regarding structural materials, we conclude that the ESS-Bilbao neutron irradiation facility will play a minor role due to the resulting low neutron fluxes (about two orders of magnitude lower than in fusion reactors). On the other hand, ESS-Bilbao turns out to be relevant for studies of final lenses in laser fusion power plants. A comparison with the conditions expected for HiPER final lenses shows that the fluxes will be only a factor 5 smaller in ESS-Bilbao and the PKA spectra will be very similar. Taking into account, in addition, that relevant effects on lenses occur from the onset of irradiation, we conclude that an appropriate irradiation cell with in situ characterisation techniques will make ESS-Bilbao very attractive for applied neutron damage studies of laser fusion final lenses. Finally, we compare ESS-Bilbao with other facilities.

  5. Investigation of development and management of treatment planning systems for BNCT at foreign facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A new computational dosimetry system for BNCT: JCDS is developed by JAERI in order to carry out BNCT with epithermal neutron beam at present. The development and management situation of computational dosimetry system, which are developed and are used in BNCT facilities in foreign countries, were investigated in order to accurately grasp functions necessary for preparation of the treatment planning and its future subjects. In present state, 'SERA', which are developed by Idaho National Engineering and Environmental Laboratory (INEEL), is used in many BNCT facilities. Followings are necessary for development and management of the treatment planning system. (1) Reliability confirmation of system performance by verification as comparison examination of calculated value with actual experimental measured value. (2) Confirmation systems such as periodic maintenance for retention of the system quality. (3) The improvement system, which always considered relative merits and demerits with other computational dosimetry system. (4) The development of integrated system with patient setting. (author)

  6. Positron annihilation studies of neutron irradiated and thermally treated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Positron annihilation lifetime measurements using the pulsed low energy positron system (PLEPS) were applied for the first time for the investigation of defects of irradiated and thermally treated reactor pressure vessel (RPV) steels. PLEPS results showed that the changes in the microstructure of the RPV-steel properties caused by neutron irradiation and post-irradiation thermal treatment can be detected. The samples originated from the Russian 15Kh2MFA and Sv10KhMFT steels, commercially used at WWER-440 reactors, were irradiated near the core at NPP Bohunice (Slovakia) to neutron fluences in the range from 7.8x1023 to 2.5x1024 m-2

  7. Production of a faithful realistic phantom to human head and thermal neutron flux measurement on the brain surface. Cooperative research

    CERN Document Server

    Yamamoto, K; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, T

    2002-01-01

    Thermal neutron flux is determined using the gold wires in current BNCT irradiation, so evaluation of arbitrary points after the irradiation is limited in the quantity of these detectors. In order to make up for the weakness, dose estimation of a patient is simulated by a computational dose calculation supporting system. In another way without computer simulation, a medical irradiation condition can be replicate experimentally using of realistic phantom which was produced from CT images by rapid prototyping technique. This phantom was irradiated at a same JRR-4 neutron beam as clinical irradiation condition of the patient and the thermal neutron distribution on the brain surface was measured in detail. This experimental evaluation technique using a realistic phantom is applicable to in vitro cell irradiation experiments for radiation biological effects as well as in-phantom experiments for dosimetry under the nearly medical irradiation condition of patient.

  8. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.

    Science.gov (United States)

    Kasesaz, Y; Khalafi, H; Rahmani, F

    2013-12-01

    Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method.

  9. Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a selective radiotherapy that is dependent on the accumulation of 10B compound in tumors. Low-intensity ultrasound produces a transient pore on cell membranes, sonoporation, which enables extracellular materials to enter cells. The effect of sonoporation on BNCT was examined in oral squamous cell carcinoma (SCC) xenografts in nude mice. Tumor-bearing mice were administrated boronophenylalanine (BPA) or boronocaptate sodium (BSH) intraperitoneally. Two hours later, tumors were subjected to sonoporation using microbubbles followed by neutron irradiation. The 10B concentration was higher in tumors treated with sonoporation than in untreated tumors, although the difference was not significant in BPA. When tumors in mice that received BPA intraperitoneally were treated with sonoporation followed by exposure to thermal neutrons, tumor volume was markedly reduced and the survival rate was prolonged. Such enhancements by sonoporation were not observed in mice treated with BSH-mediated BNCT. These results indicate that sonoporation enhances the efficiency of BPA-mediated BNCT for oral SCC. Sonoporation may modulate the microlocalization of BPA and BSH in tumors and increase their intracellular levels

  10. In Vitro antileishmanial properties of neutron-irradiated meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Samanta Etel Treiger Borborema

    2005-10-01

    Full Text Available Pentavalent antimony, as meglumine antimoniate (Glucantime® or sodium stibogluconate (Pentostam® , is the main treatment for leishmaniasis, a complex of diseases caused by the protozoan Leishmania, and an endemic and neglected threat in Brazil. Despite over half a century of clinical use, their mechanism of action, toxicity and pharmacokinetic data remain unknown. The analytical methods for determination of antimony in biological systems remain complex and have low sensitivity. Radiotracer studies have a potential in pharmaceutical development. The aim of this study was to obtain a radiotracer for antimony, with suitable physical and biological properties. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes 122Sb and 124Sb, with high radionuclidic purity and good specific activity. This compound showed the same antileishmanial activity as the native compound. The use of the radiotracers, easily created by neutron irradiation, could be an interesting tool to solve important questions in antimonial pharmacology.Os antimoniais pentavalentes, como o antimoniato de meglumina (Glucantime® ou estibogluconato de sódio (Pentostam® , são o principal tratamento para a leishmaniose, um complexo de doenças causadas pelo protozoário parasita Leishmania, uma doença endêmica e negligenciada no Brasil. Apesar do seu uso clínico por mais de meio século, seu mecanismo de ação, toxicidade e dados de farmacocinética permanecem desconhecidos. Os métodos analíticos para determinação de antimônio em sistemas biológicos são complexos e apresentam baixa sensibilidade. Estudos utilizando radiotraçadores têm papel potencial no desenvolvimento farmacológico. O objetivo deste estudo foi desenvolver um radiotraçador de antimônio, com propriedades físicas e biológicas adequadas. O antimoniato de meglumina foi irradiado por nêutrons no reator nuclear IEA-R1, produzindo dois radioisótopos: 122

  11. A Tandem-electrostatic-quadrupole for accelerator-based BNCT

    International Nuclear Information System (INIS)

    A project to develop a Tandem-electrostatic-quadrupole (TESQ) accelerator for accelerator-based boron neutron capture therapy (AB-BNCT) is described. A folded Tandem, with 1.25 MV terminal voltage, combined with an electrostatic quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7Li(p, n)7Be reaction slightly beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7Li(p, n)7Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT

  12. Tandem-ESQ for accelerator-based BNCT

    International Nuclear Information System (INIS)

    A project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) is described. A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7Li(p,n)7Be reaction beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the '7Li(p,n)7Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. (author)

  13. Neutron irradiation test of copper alloy/stainless steel joint materials

    OpenAIRE

    山田 弘一; 河村 弘

    2006-01-01

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al2O3-dispersed strengthened copper or CuCrZr was joined to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The avera...

  14. Application of nondestructive gamma-ray and neutron techniques for the safeguarding of irradiated fuel materials

    International Nuclear Information System (INIS)

    Nondestructive gamma-ray and neutron techniques were used to characterize the irradiation exposures of irradiated fuel assemblies. Techniques for the rapid measurement of the axial-activity profiles of fuel assemblies have been developed using ion chambers and Be(γ,n) detectors. Detailed measurements using high-resolution gamma-ray spectrometry and passive neutron techniques were correlated with operator-declared values of cooling times and burnup

  15. Neutron dosimetry and damage calculations for the EBRII COBRA-1A irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint U.S. and Japanese COBRA-1A1 and 1A2 irradiations in the Experimental Breeder Reactor II. The maximum total neutron fluences at midplane were 2.0E+22 and 7.5E+22 n/cm{sup 2}, for the 1A1 and 1A2 irradiations, respectively, resulting in about 8.0 and 30.3 dpa in stainless steel.

  16. Identification of neutron irradiation induced strain rate sensitivity change using inverse FEM analysis of Charpy test

    International Nuclear Information System (INIS)

    A simple methodology how to obtain additional information about the mechanical behaviour of neutron-irradiated WWER 440 reactor pressure vessel steel was developed. Using inverse identification, the instrumented Charpy test data records were compared with the finite element computations in order to estimate the strain rate sensitivity of 15Ch2MFA steel irradiated with different neutron fluences. The results are interpreted in terms of activation volume change

  17. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    Science.gov (United States)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  18. Manufacturing of thin films of boron for the measurement of the {sup 10}B(n, {alpha}){sup 7} Li reaction used in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Smilgys, Barbara; Oliveira, Sandro Guedes de; Hadler Neto, Julio Cesar; Vellame, Igor Alencar [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin; Soares, Cleber Jose; Salim, Leonardo Alfredo [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas; Coelho, Paulo Rogerio Pinto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear

    2011-07-01

    Full text: The Boron Neutron Capture Therapy (BNCT) is considered to be a possible treatment for different types of aggressive cancers located in areas of difficult access or which already have metastasis. The working principle of this therapy is the selective delivery of a greater amount of boron to the tumor cells than to the healthy ones, followed by the neutron irradiation that will induce the emission of {alpha} particles through the {sup 10}B(n, {alpha}){sup 7} Li reaction used in BNCT reaction. The high energy deposition of the product particles causes the death of the cells and this therapy becomes much effective if the healthy tissue is less exposed to this radiation. The objective of this work is to develop a method for measuring the rate of this reaction by using thin films of boron. We have manufactured thin films with different concentrations of boron deposited on mica and the thin films were exposed to different irradiation time intervals at the reactor IEA-R1 located at IPEN, Sao Paulo. Here we show our first results on the density and uniformity of the thin films, where the detection of the particles is made using plastic track detectors (CR-39) which have their structures damaged by the passage of ions. (author)

  19. Evaluation of neutronic characteristic of irradiation field in MEU6-core. Comparison of neutron flux and neutron spectrum in MEU6-core and Mixed-core

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiharu; Komukai, Bunsaku; Tabata, Toshio; Takeda, Takashi; Fujiki, Kazuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1999-08-01

    In JMTR (Japan Materials Testing Reactor, 50 MW), the core configuration has been changed from previously employed Mixed-core (25 LEUs(low enrichment uranium (19.8%) fuel elements) and 2 MEUs (medium enrichment uranium (45%) fuel elements)) to MEU6-core (21 LEUs and 6 MEUs), since 125th operating cycle (started in Nov. 17, 1998). In order to investigate the effect of core configuration change on the irradiation tests, neutron flux distribution and neutron spectrum of irradiation field in MEU6-core were calculated by diffusion code CITATION and Monte Carlo code MCNP. As the result, it was confirmed that irradiation field in the MEU6-core has the neutronic characteristics almost equivalent to the irradiation field in the Mixed-core. (author)

  20. A source-based fast-neutron facility for precision irradiations

    CERN Document Server

    Scherzinger, J; Davatz, G; Fissum, K G; Gendotti, U; Hall-Wilton, R; Hansson, A; Håkansson, E; Jebali, R; Kanaki, K; Lundin, M; Nilsson, B; Svensson, H

    2014-01-01

    We report on a source-based fast-neutron facility that has been developed for precision irradiations. Well-understood shielding, coincidence, and time-of-flight measurement techniques are employed to produce a polychromatic energy-tagged neutron beam.

  1. Behavior of structural and target materials irradiated in spallation neutron environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States). Dept. of Nuclear Engineering; Wechsler, M. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Borden, M.; Sommer, W.F. [Los Alamos National Lab., NM (United States)

    1995-05-01

    This paper describes considerations for selection of structural and target materials for accelerator-driven neutron sources. Due to the operating constraints of proposed accelerator-driven neutron sources, the criteria for selection are different than those commonly applied to fission and fusion systems. Established irradiation performance of various alloy systems is taken into account in the selection criteria. Nevertheless, only limited materials performance data are available which specifically related to neutron energy spectra anticipated for spallation sources.

  2. Analysis of microstress in neutron irradiated polyester fibre by X-ray diffraction technique

    Indian Academy of Sciences (India)

    B Mallick; R C Behera; T Patel

    2005-10-01

    Microstresses developed in the crystallites of polymeric material due to irradiation of high-energy particle causes peak broadening and shifting of X-ray diffraction lines to lower angle. Neutron irradiation significantly changes the material properties by displacement of lattice atoms and the generation of helium and hydrogen by nuclear transmutation. Another important aspect of neutron irradiation is that the fast neutron can produce dense ionization at deep levels in the materials. The polyethylene terephthalate (PET) fibre of raw denier value, 78.2, were irradiated by fast neutron of energy, 4.44 MeV, at different fluences ranging from 1 × 109 n/cm2 to 1 × 1012 n/cm2. In the present work, the radiation heating microstresses developed in PET micro-crystallites was investigated applying X’Pert-MPD Philips Analytical X-ray diffractometer and the effects of microstresses in tensile strength of fibre measured by Instron have also been reported. The shift of 0.45 cm-1 in the Raman peak position of 1614.65 cm-1 to a higher value confirmed the development of microstresses due to neutron irradiation using micro-Raman technique. The defects due to irradiation were observed by SEM micrographs of single fibre for virgin and all irradiated samples.

  3. Additive effect of BPA and Gd-DTPA for application in accelerator-based neutron source.

    Science.gov (United States)

    Yoshida, F; Yamamoto, T; Nakai, K; Zaboronok, A; Matsumura, A

    2015-12-01

    Because of its fast metabolism gadolinium as a commercial drug was not considered to be suitable for neutron capture therapy. We studied additive effect of gadolinium and boron co-administration using colony forming assay. As a result, the survival of tumor cells with additional 5 ppm of Gd-DTPA decreased to 1/10 compared to the cells with boron only. Using gadolinium to increase the effect of BNCT instead of additional X-ray irradiation might be beneficial, as such combination complies with the short-time irradiation regimen at the accelerator-based neutron source. PMID:26242560

  4. Cell death following BNCT: a theoretical approach based on Monte Carlo simulations.

    Science.gov (United States)

    Ballarini, F; Bakeine, J; Bortolussi, S; Bruschi, P; Cansolino, L; Clerici, A M; Ferrari, C; Protti, N; Stella, S; Zonta, A; Zonta, C; Altieri, S

    2011-12-01

    In parallel to boron measurements and animal studies, investigations on radiation-induced cell death are also in progress in Pavia, with the aim of better characterisation of the effects of a BNCT treatment down to the cellular level. Such studies are being carried out not only experimentally but also theoretically, based on a mechanistic model and a Monte Carlo code. Such model assumes that: (1) only clustered DNA strand breaks can lead to chromosome aberrations; (2) only chromosome fragments within a certain threshold distance can undergo misrejoining; (3) the so-called "lethal aberrations" (dicentrics, rings and large deletions) lead to cell death. After applying the model to normal cells exposed to monochromatic fields of different radiation types, the irradiation section of the code was purposely extended to mimic the cell exposure to a mixed radiation field produced by the (10)B(n,α) (7)Li reaction, which gives rise to alpha particles and Li ions of short range and high biological effectiveness, and by the (14)N(n,p)(14)C reaction, which produces 0.58 MeV protons. Very good agreement between model predictions and literature data was found for human and animal cells exposed to X- or gamma-rays, protons and alpha particles, thus allowing to validate the model for cell death induced by monochromatic radiation fields. The model predictions showed good agreement also with experimental data obtained by our group exposing DHD cells to thermal neutrons in the TRIGA Mark II reactor of the University of Pavia; this allowed to validate the model also for a BNCT exposure scenario, providing a useful predictive tool to bridge the gap between irradiation and cell death. PMID:21481595

  5. Employment of MCNP in the study of TLDS 600 and 700 seeking the implementation of radiation beam characterization of BNCT facility at IEA-R1; Emprego do MCNP no estudo dos TLDS 600 e 700 visando a implementacao da caracterizacao do feixe de irradiacao da instalacao de BNCT do IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, Tassio Antonio

    2013-07-01

    Boron Neutron Capture Therapy, BNCT, is a bimodal radiotherapy procedure for cancer treatment. Its useful energy comes from a nuclear reaction driven by impinging thermal neutron upon Boron 10 atoms. A BNCT research facility has been constructed in IPEN at the IEA-R1 reactor, to develop studies in this area. One of its prime experimental parameter is the beam dosimetry which is nowadays made by using activation foils, for neutron measurements, and TLD 400, for gamma dosimetry. For mixed field dosimetry, the International Commission on Radiation Units and Measurements, ICRU, recommends the use of pair of detectors with distinct responses to the field components. The TLD 600/ TLD 700 pair meets this criteria, as the amount of {sup 6}Li, a nuclide with high thermal neutron cross section, greatly differs in their composition. This work presents a series of experiments and simulations performed in order to implement the mixed field dosimetry based on the use of TLD 600/TLD 700 pair. It also intended to compare this mixed field dosimetric methodology to the one so far used by the BNCT research group of IPEN. The response of all TLDs were studied under irradiations in different irradiation fields and simulations, underwent by MCNP, were run in order to evaluate the dose contribution from each field component. Series of repeated irradiations under pure gamma field and mixed field neutron/gamma field showed differences in the TLD individual responses which led to the adoption of a Normalization Factor. It has allowed to overcome TLD selection. TLD responses due to different field components and spectra were studied. It has shown to be possible to evaluate the relative gamma/neutron fluxes from the relative responses observed in the two Regions of Interest, ROIs, from TLD 600 and TLD 700. It has also been possible to observe the TLD 700 response to neutron, which leads to a gamma dose overestimation when one follows the ICRU recommended mixed field dosimetric procedure. Dose

  6. Microstructure and mechanical properties of neutron irradiated OFHC-copper before and after post-irradiation annealing

    DEFF Research Database (Denmark)

    Singh, B.N.; Edwards, D.J.; Toft, P.

    2001-01-01

    Tensile specimens of OFHC-copper were irradiated with fission neutrons in the DR-3 reactor at Risø National Laboratory at 100 deg. C to different displacement dose levels in the range of 0.01 to 0.3 dpa (NRT). Some of the specimens were tensile tested inthe as-irradiated condition at 100 deg. C w...... barrier hardening (DBH) models. Both technologicaland scientific implications of these results are considered....

  7. Tumor cell killing effect of boronated dipeptide. Boromethylglycylphenylalanine on boron neutron capture therapy for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Takagaki, Masao; Ono, Koji; Masunaga, Shinichiro; Kinashi, Yuko; Kobayashi, Toru [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Oda, Yoshifumi; Kikuchi, Haruhiko; Spielvogel, B.F.

    1994-03-01

    The killing effect of Boron Neutron Capture Therapy; BNCT, is dependant on the boron concentration ratio of tumor to normal brain (T/N ratio), and also that of tumor to blood (T/B ratio). The clinical boron carrier of boro-captate (BSH) showed the large T/N ratio of ca. 8, however the T/B ratio was around 1, which indicated nonselective accumulation into tumor. Indeed high boron concentration of blood restrict the neutron irradiation dose in order to circumvent the normal endothelial damage, especially in the case of deeply seated tumor. Phenylalanine analogue of para borono-phenylalanine (BPA) is an effective boron carrier on BNCT for malignant melanoma. For the BNCT on brain tumors, however, BPA concentration in normal brain was reported to be intolerably high. In order to improve the T/N ratio of BPA in brain, therefore, a dipeptide of boromethylglycylphenylalanine (BMGP) was synthesized deriving from trimethylglycine conjugated with BPA. It is expected to be selectively accumulated into tumor with little uptake into normal brain. Because a dipeptide might not pass through the normal blood brain barrier (BBB). Its killing effect on cultured glioma cell, T98G, and its distribution in rat brain bearing 9L glioma have been investigated in this paper. The BNCT effect of BMGP on cultured cells was nearly triple in comparison with DL-BPA. The neutron dose yielding 1% survival ratio were 7x10{sup 12}nvt for BMGP and 2x10{sup 13}nvt for BPA respectively on BNCT after boron loading for 16 hrs in the same B-10 concentration of 20ppm. Quantitative study of boron concentration via the {alpha}-auto radiography and the prompt gamma ray assay on 9L brain tumor rats revealed that T/N ratio and T/B ratio are 12.0 and 3.0 respectively. Those values are excellent for BNCT use. (author).

  8. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    International Nuclear Information System (INIS)

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated

  9. International Fusion Material Irradiation Facility (IFMIF) neutron source term simulation and neutronics analyses of the high flux test module

    CERN Document Server

    Simakov, S P; Heinzel, V; Moellendorff, U V

    2002-01-01

    The report describes the new results of the development work performed at Forschungszentrum Karlsruhe on the neutronics of the International Fusion Materials Irradiation Facility (IFMIF). An important step forward has been done in the simulation of neutron production of the deuteron-lithium source using the Li(d,xn) reaction cross sections from evaluated data files. The developed Monte Carlo routine and d-Li reaction data newly evaluated at INPE Obninsk have been verified against available experimental data on the differential neutron yield from deuteron-bombarded thick lithium targets. With the modified neutron source three-dimensional distributions of neutron and photon fluxes, displacement and gas production rates and nuclear heating inside the high flux test module (HFTM) were calculated. In order to estimate the uncertainty resulting from the evaluated data, two independent libraries, recently released by INPE and LANL, have been used in the transport calculations. The proposal to use a reflector around ...

  10. Progress on the accelerator based SPES-BNCT project at INFN Legnaro

    Energy Technology Data Exchange (ETDEWEB)

    Pisent, A [INFN-LNL, Legnaro (Padova) (Italy); Colautti, P [INFN-LNL, Legnaro (Padova) (Italy); Esposito, J [INFN-LNL, Legnaro (Padova) (Italy); Nardo, L De [Physics Department, Padova University (Italy); Conte, V [INFN-LNL, Legnaro (Padova) (Italy); Agosteo, D [Nuclear Engineering Department, Milano Polytechnic (Italy); Jori, G [Biology Department, Padova University (Italy); Posocco, P A [INFN-LNL, Legnaro (Padova) (Italy); Tecchio, L B [INFN-LNL, Legnaro (Padova) (Italy); Tinti, R [ENEA - FIS-NUC, Bologna (Italy); Rosi, G [ENEA - FIS-ION, Rome (Italy)

    2006-05-15

    In the framework of an advanced Exotic Ion Beam facility project, named SPES (Study and Production of Exotic Species), that will allow a frontier program in Nuclear and Interdisciplinary Physics, an intense thermal neutron beam facility, devoted to perform Boron Neutron Capture Therapy (BNCT) experimental treatments on skin melanoma tumor is currently under construction based on the SPES proton driver. A vast radiobiological investigation in vitro and in vivo has started with the new {sup 10}B carriers developed. Special microdosimetric detectors have been constructed to properly measure all the BNCT dose components and their qualities. Both microdosimetric and radiobiological measurements are being performed at the Enea-Casaccia TAPIRO reactor.

  11. On grain size dependent void swelling in pure copper irradiated with fission neutrons

    DEFF Research Database (Denmark)

    Singh, B.N.; Eldrup, Morten Mostgaard; Zinkle, S.J.;

    2001-01-01

    in pure copper irradiated with fission neutrons at 623K to a dose level of approx0.3 dpa (displacement peratom). The post-irradiation defect microstructure including voids was investigated using transmission electron microscopy and positron annihilation spectroscopy. The evolution of void swelling...

  12. On grain-size-dependent void swelling in pure copper irradiated with fission neutrons

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Eldrup, Morten Mostgaard; Zinkle, S.J.;

    2002-01-01

    in pure copper irradiated with fission neutrons at 623 K to a dose level of about 0.3 displacement per atom. The post-irradiation defect microstructure including voids was investigated using transmission electron microscopy and positron annihilation spectroscopy. The evolution of void swelling...

  13. Influence of composition, heat treatment and neutron irradiation on the electrical conductivity of copper alloys

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1998-01-01

    The electrical conductivity of three different types of copper alloys, viz. CuNiBe, CuCrZr and Cu-Al(2)O(3) as well as of pure copper are reported. The alloys have undergone different pre-irradiation heat treatments and have been fission-neutron irradiated up to 0.3 dpa. In some cases post...

  14. Evolution of cleared channels in neutron-irradiated pure copper as a function of tensile strain

    DEFF Research Database (Denmark)

    Edwards, D.J.; Singh, B.N.

    2004-01-01

    Tensile specimens of pure copper were neutron irradiated at similar to323 K to a displacement dose of 0.3 dpa (displacement per atom). Five irradiated specimens were tensile tested at 300 K, but four of the specimens were stopped at specific strains -just before the yield point at similar to90% of...

  15. Neutron capture therapy for cancer: development at the National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) involves the concurrent presence of a flux of neutrons of adequate energy and Boron 10 as a capture agent. They interact to damage tumor cells but fail to produce significant damage to healthy tissue because the destructive effect occurs mainly in the tumor cells that have selectively accumulated boron. This technique is applied for the treatment of brain tumors of the glioblastoma multiform type and melanoma in different locations. The aim of this project at CNEA is to develop the technological, scientific, clinical know-how and facilities to undertake clinical trials in Argentina. The development of the irradiation facility, the clinical beam and dosimetry was developed at the RA-6 reactor, Bariloche Atomic Center. Treatment planning, instrumentation for the neutron beam, boron measurements, neutron beam for small animal irradiation at the RA-1 reactor and basic research in radiobiology, microdosimetry and autoradiography were developed at Constituyentes Atomic Center. It is also conducted an intense activity in accelerator based BNCT. The infusions to be injected to the patients are prepared at Ezeiza Atomic Center. The clinics of BNCT radiotherapy is developed at the Roffo Institute of Oncology and the neurosurgery at the Argerich Hospital. At present, the project is close to start in the following months to treat melanoma in the limbs, when the authorization procedure is completed. (author)

  16. ESR analysis of point defects produced in quartz by fast and thermal neutron irradiation

    International Nuclear Information System (INIS)

    ESR signals derived from intrinsic lattice defects in quartz, oxygen vacancies and interstitials, were detected by gamma or neutron irradiation. In addition, an unknown ESR signal at g=2.0050 also was detected by neutron irradiation. This unknown signal may be a superoxide (O2-) produced in depleted zones in quartz, which are formed by knock-on with fast neutrons. Microwave power characteristics indicates that this unknown signal is quite different from a peroxy center (Si-O-O·) although both signals can be produced by knock-on. (author)

  17. Process and device for substance detection in particular explosives by neutron irradiation

    International Nuclear Information System (INIS)

    At a first check point the object is irradiated by thermal neutrons. Capture gamma radiation eventually emitted and characteristic of a chemical element is detected, if the radiation intensity is over a predetermined threshold the object is irradiated by fast neutrons at a second check point and prompt gamma radiation is eventually detected and is characteristic of the chemical element, fast neutron energy is at least equal to prompt gamma energy for confirmation or not of information obtained at the first check point. Application to luggage checking in air ports

  18. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  19. Neutron irradiation effects in reactor pressure vessel steels and weldments. Working document

    International Nuclear Information System (INIS)

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. A separate abstract was prepared for the introduction and for each of the eleven chapters, which are: 1. Reactor Pressure Vessel Design, 2. Reactor Pressure Materials, 3. WWER Pressure Vessels, 4. Determination of Mechanical Properties, 5. Neutron Exposure, 6. Methodology of Irradiation Experiments, 7. Effect of Irradiation on Mechanical Properties, 8. Mechanisms of Irradiation Embrittlement, 9. Modelling of Irradiation Damage, 10. Annealing of Irradiation Damage, 11. Safety Assessment using Surveillance Programmes and Data Bases

  20. Organisation and management of the first clinical trial of BNCT in Europe (EORTC Protocol 11961)

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy is based on the ability of the isotope 10B to capture thermal neutrons and to disintegrate instantaneously producing high LET particles. The only neutron beam available in Europe for such a treatment is based at the European High Flux Reactor HFR at Petten (The Netherlands). The European Commission, owners of the reactor, decided that the potential benefit of the facility should be opened to all European citizens and therefore insisted on a multinational approach to perform the first clinical trial in Europe on BNCT. This precondition had to be respected as well as the national laws and regulations. Together with the Dutch authorities actions were undertaken to overcome the obvious legal problems. Furthermore, the clinical trial at Petten takes place in a nuclear research reactor, which apart from being conducted in a non-hospital environment, is per se known to be dangerous. It was therefore of the utmost importance that special attention is given to safety, beyond normal rules, and to the training of staff. In itself, the trial is an unusual Phase I study, introducing a new drug with a new irradiation modality, with really an unknown dose-effect relationship. This trial must follow optimal procedures, which underscore the quality and qualified manner of performance. (orig.)

  1. Formulation and preliminary evaluation of delivery vehicles for the boron neutron capture therapy of cancer

    OpenAIRE

    Olusanya, Temidayo; Stich, Theresia; Higgins, Samantha Caroline; Lloyd, Rhiannon Eleanor Iris; Smith, James Richard; Fatouros, Dimitrios; Calabrese, Gianpiero; Pilkington, Geoffrey John; Tsibouklis, John

    2015-01-01

    Boron neutron capture therapy (BNCT) is a method for selectively destroying malignant (normally glioma) cells whilst sparing normal tissue1. Irradiation of 10B (large neutron capture cross-section) with thermal neutrons effects the nuclear fission reaction: 10B + 1n → → 7Li+ + α + γ; where the penetration of α-particles and 7Li+ is only 8 and 5 µm, respectively, i.e., within a single cell thickness, assuming 10B can be preferentially located within glioma cells2. Poor selectivity is the main ...

  2. Formulation and preliminary evaluation of delivery vehicles for the boron neutron capture therapy of cancer

    OpenAIRE

    Olusanya, Temidayo Olajumoke Bolanle

    2015-01-01

    Boron neutron capture therapy (BNCT) is a method for selectively destroying malignant (normally glioma) cells whilst sparing normal tissue. Irradiation of 10B (large neutron capture cross-section) with thermal neutrons effects the nuclear fission reaction: 10B + 1n → → 7Li+ + α + γ; where the penetration of -particles and 7Li+ is only 8 and 5 μm, respectively, i.e., within a single cell thickness, assuming 10B can be preferentially located within glioma cells. Poor selectivity is the main r...

  3. Correlating radiation exposure with embrittlement: Comparative studies of electron- and neutron-irradiated pressure vessel alloys

    International Nuclear Information System (INIS)

    Comparative experiments using high energy (10 MeV) electrons and test reactor neutrons have been undertaken to understand the role that primary damage state has on hardening (embrittlement) induced by irradiation at 300 C. Electrons produce displacement damage primarily by low energy atomic recoils, while fast neutrons produce displacements from considerably higher energy recoils. Comparison of changes resulting from neutron irradiation, in which nascent point defect clusters can form in dense cascades, with electron irradiation, where cascade formation is minimized, can provide insight into the role that the in-cascade point defect clusters have on the mechanisms of embrittlement. Tensile property changes induced by 10 MeV electrons or test reactor neutron irradiations of unalloyed iron and an Fe-O.9 wt.% Cu-1.0 wt.% Mn alloy were examined in the damage range of 9.0 x 10-5 dpa to 1.5 x 10-2 dpa. The results show the ternary alloy experienced substantially greater embrittlement in both the electron and neutron irradiate samples relative to unalloyed iron. Despite their disparate nature of defect production similar embrittlement trends with increasing radiation damage were observed for electrons and neutrons in both the ternary and unalloyed iron

  4. Correlating radiation exposure with embrittlement: Comparative studies of electron- and neutron-irradiated pressure vessel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D. E.; Rehn, L. E.; Odette, G. R.; Lucas, G. E.; Klingensmith, D.; Gragg, D.

    1999-12-22

    Comparative experiments using high energy (10 MeV) electrons and test reactor neutrons have been undertaken to understand the role that primary damage state has on hardening (embrittlement) induced by irradiation at 300 C. Electrons produce displacement damage primarily by low energy atomic recoils, while fast neutrons produce displacements from considerably higher energy recoils. Comparison of changes resulting from neutron irradiation, in which nascent point defect clusters can form in dense cascades, with electron irradiation, where cascade formation is minimized, can provide insight into the role that the in-cascade point defect clusters have on the mechanisms of embrittlement. Tensile property changes induced by 10 MeV electrons or test reactor neutron irradiations of unalloyed iron and an Fe-O.9 wt.% Cu-1.0 wt.% Mn alloy were examined in the damage range of 9.0 x 10{sup {minus}5} dpa to 1.5 x 10{sup {minus}2} dpa. The results show the ternary alloy experienced substantially greater embrittlement in both the electron and neutron irradiate samples relative to unalloyed iron. Despite their disparate nature of defect production similar embrittlement trends with increasing radiation damage were observed for electrons and neutrons in both the ternary and unalloyed iron.

  5. A clinical trial protocol for second line treatment of malignant brain tumors with BNCT at University of Tsukuba

    Energy Technology Data Exchange (ETDEWEB)

    Aiyama, H. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Nakai, K., E-mail: knakai@Neurosurg-tsukuba.com [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Yamamoto, T. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan)] [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Nariai, T. [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyouku (Japan); Kumada, H. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Ishikawa, E. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Isobe, T. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan)

    2011-12-15

    We have evaluated the efficacy and safety of boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor using a new protocol. One of the two patients enrolled in this trial is a man with recurrent glioblastoma and the other is a woman with anaplastic meningioma. Both are still alive and no severe adverse events have been observed. Our findings suggest that NCT will be safe as a palliative therapy for malignant brain tumors. - Highlights: Black-Right-Pointing-Pointer Boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor. Black-Right-Pointing-Pointer Two cases with recurrent glioblastoma and anaplastic meningioma. Black-Right-Pointing-Pointer No severe adverse events have been observed using BNCT. Black-Right-Pointing-Pointer BNCT has a possibility of a safe palliative therapy for malignant brain tumors.

  6. Neutron irradiation effects on model compounds for epoxy and polyimide resins

    International Nuclear Information System (INIS)

    Synthesis and irradiation testing of well characterized model compounds for commercial epoxy and polymide insulators is presented. Samples prepared from phthal-(p-phenoxyphenyl)imide and diglycidyl ether of bisphenol A reacted with hexylamine, aniline and benzoic acid were irradiated to neutron fluences as high as 3.32 x 1020n m-2 for determination of irradiation effects related to neutron damage in well defined and characterized organic compounds. Various chemical and physical changes observed in the different molecular structures are reported. (author)

  7. Inhomogeneous strain induced by fast neutron irradiation in NaKSO4 crystals

    International Nuclear Information System (INIS)

    The effect of fast neutron irradiation on the thermal properties of NaKSO4 crystals was studied around the phase transition temperature Tc=453 K. The thermal expansion coefficient as well as the phase transition temperature were found to be dependent upon the irradiation dose. The specific heat, Cp, showed multiple peaks in the phase transition temperature region. An explanation of this behaviour was based on the induced inhomogeneous strain in the crystal casued by the neutron irradiation process. (author). 10 refs, 3 figs

  8. Microstructural changes in a neutron-irradiated Fe–6 at.%Cr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bachhav, Mukesh; Yao, Lan [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Robert Odette, G. [Materials Department, University of California, Santa Barbara, CA 93106 (United States); Marquis, Emmanuelle A., E-mail: emarq@umich.edu [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-10-15

    The microstructural and chemical changes in a Fe–6 at.%Cr binary model alloy neutron irradiated to 1.82 dpa at 290 °C were investigated using atom probe tomography. After irradiation, Si and Cr are found segregated to dislocation loops, which were analyzed in terms of number density, size, and habit plane. Grain boundary chemistry was quantitatively compared between the as-received and the neutron irradiated alloys. The results are discussed in the context of equilibrium segregation, radiation-enhanced diffusion, and/or radiation induced segregation.

  9. Measure of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    A non-destructive technique for the determination of uranium in UO2 samples was developed, marking use of the change in the fission cross of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and furtherdetection of delayed fission neutrons. In order to descriminated U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO2 pellets of Known enrichment. Enrichment detection limit, obtained with 95% confidence level by the the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (Author)

  10. Measurement of uranium enrichment by 14 MeV neutron irradiation

    International Nuclear Information System (INIS)

    a non-destructive technique for the determination of uranium in UO2 samples was developed, making use of the change in the fission cross section of a nuclide with the neutron energy. The active interrogation method was used by irradiating the samples with pulsed 14 MeV neutrons and further detection of delayed fission neutrons. In order to discriminate U-238 from U-235 the neutron energy was tailored by means of two concentric cylinders of lead and paraffin/poliethylene, 11 and 4 cm thick. Between neutron pulses, delayed neutrons from fission were detected by a long counter built with five BF3 proportional counters. Calibration curves for enrichment and total mass versus delayed neutron response were obtained using available UO2 pellets of known enrichment. Enrichment detection limit, obtained with 95% confidence level by the Student distribution was estimated to be 0.33%. The minimal detectable mass was estimated to be 4.4 g. (author)

  11. Evaluation of gamma and neutron irradiation effects on the properties of mica film capacitors

    Indian Academy of Sciences (India)

    Rajesh Roy; Arun Pandya

    2005-12-01

    We present an investigation of gamma and neutron radiation effects on mica film capacitors from an electrical point of view. We have studied quantitatively the effects of gamma and neutron irradiation on mica film capacitors of thickness, 20 and 40 m (0.7874 and 1.5748 mil) with two different areas, 01 and 04 cm2. The capacitance has been measured at room temperature in the frequency range 100 Hz–10 MHz. Negligible change in the capacitance due to high gamma dose of 60Co, 15 kGy at dose rate 0.25 kGy/h, has been observed. However, appreciable change in the capacitance has been observed due to low doses of fast neutrons (cumulative dose, 115 cGy) with flux ∼ 9.925 × 107 neutrons/cm2 h from 252Cf neutron source of fluence, 2.5 × 107 neutrons/s. We have also observed that the impact of gamma and neutron irradiation is more at frequencies higher than 10 kHz. These results show that the mica capacitors do not show any radiation response below 10 kHz. The study shows the radiation response of mica film capacitors to gamma and fast neutron radiations. Mica capacitors show low gamma radiation response in comparison to fast neutron radiation, because a total dose of kGy order has been given by gamma source and only few cGy dose has been given by fast neutron source.

  12. Structure of InP single crystals irradiated with reactor neutrons

    International Nuclear Information System (INIS)

    The structural characteristics of InP single crystals have been investigated depending on the radiation effects produced by fast neutrons and the full spectrum of the reactor neutrons and subsequent heat treatment procedures. The lattice parameter of InP single crystals decreases under neutron irradiation as opposed to other III-V semiconductor compounds. Fast neutrons make the main contribution to the change of the lattice parameter. A thermal neutron component initiates the formation of Sn atoms in the material, but does not influence the change of the lattice parameter significantly. Heat treatment of the irradiated samples up to 600 deg. C causes annealing of the radiation defects and recovery of the lattice parameter. With increasing neutron fluences, the lattice parameter becomes even higher than before irradiation. The data analysis proves the following assumption: anti-site defects PIn mainly contribute to the lattice parameter decrease during neutron irradiation of InP. In this case, anti-site imperfections produce an effect similar to that of vacancy defects

  13. Effects of neutron irradiation on the microstructure of alpha-annealed zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, R.; Kammenzind, B.F. [Bettis Atomic Power Lab., West Mifflin, PA (United States); Farkas, D.M. [General Electric Co., Pleasanton, CA (United States). Vallecitos Nuclear Center

    2002-07-01

    Analytical electron microscopy (AEM) was used to study the separate effects of the irradiation parameters on the evolution of the microstructure in recrystallized alpha-annealed Zircaloy-4 under controlled irradiation conditions. The effects of fast neutron flux from {approx} 4 x 10{sup 13} n/cm{sup 2}-s to {approx} 1.5 x 10{sup 14} n/cm{sup 2}-s (E > 1 MeV){sup 3} neutron fluence in the range of {approx} 15 x 10{sup 20} n/cm{sup 2} to {approx} 50 x 10{sup 20} n/cm{sup 2} and temperature from {approx} 270 to {approx} 330 deg C were studied. The completeness of the test matrix and the exposure in the controlled environment of the advanced test reactor permitted the separate effects of fast neutron flux, fluence, and irradiation temperature to be delineated for the first time. It was found that an increase in the neutron flux increases the degree of amorphization of the second-phase precipitates but retards the redistribution of iron out of the amorphous region (neutron fluence and irradiation temperature remaining the same), whereas increasing temperature (neutron flux and neutron fluence remaining the same) has a reverse effect. Overall, the rate of amorphization of the second-phase precipitates observed in this work was larger than that predicted by many existing literature models. Finally, neither segregation of alloying elements to grain boundaries nor precipitation of any new phases were encountered. (authors)

  14. Radiological risks from irradiation of cargo contents with EURITRACK neutron inspection systems

    International Nuclear Information System (INIS)

    The radiological risk for the population related to the neutron irradiation of cargo containers with a tagged neutron inspection system has been studied. Two possible effects on the public health have been assessed: the modification of the nutritional and organoleptic properties of the irradiated materials, in particular foodstuff, and the neutron activation of consumer products (i.e. food and pharmaceuticals). The result of this study is that irradiation of food and foodstuff, pharmaceutical and medical devices in container cargoes would neither modify the properties of the irradiated material nor produce effective doses of concern for public health. Furthermore, the dose received by possible stowaways present inside the container during the inspection is less than the annual effective dose limit defined by European Legislation for the public. - Highlights: ► Neutron irradiation of cargo containers implies a radiological risk. ► The risk is about the modification of food properties and the products activation. ► Assessment is made about the EURITRACK neutron irradiation system. ► Results show that the EURITRACK scanning is not dangerous for the population.

  15. Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy

    Science.gov (United States)

    Hayashi, Shin-ichiro; Sakurai, Yoshinori; Uchida, Ryohei; Suzuki, Minoru; Usui, Shuji; Tominaga, Takahiro

    2015-01-01

    MAGAT gel dosimeter with boron is irradiated in Heavy Water Neutron Irradiation Facility (HWNIF) of Kyoto University Research Reactor (KUR). The cylindrical gel phantoms are exposed to neutron beams of three different energy spectra (thermal neutron rich, epithermal and fast neutron rich and the mixed modes) in air. Preliminary results corresponding to depth-dose responses are obtained as the transverse relaxation rate (R2=1/T2) from magnetic resonance imaging data. As the results MAGAT gel dosimeter has the higher sensitivity on thermal neutron than on epi-thermal and fast neutron, and the gel with boron showed an enhancement and a change in the depth-R2 response explicitly. From these results, it is suggested that MAGAT gel dosimeter can be an effective tool in BNCT dosimetry.

  16. Development of a neutron irradiation device with a cooled crystal filter: Radiation physical properties and applications in in vivo irradiations

    International Nuclear Information System (INIS)

    The radiation-physical and geometrical properties of a neutron-beam, collimated with a Bi-crystal filter were investigated at the reactor BER II. The influence of the crystal temperature as well as the actions of a reflector and a collimator on neutron flux-density and neutron field of the thermal neutrons were investigated. The dose contributions of the thermal, epithermal and fast neutrons as well as γ-radiation was determined by activation of the sample respective with TLD-measurements. The influence of irradiation and measurement geometry on the sensitivity and detection probability was investigated by means of phantom irradiations. The method prooved to be suitable, to detect changes of the Ca-content in a rat hind leg by about 10%. In investigations on animal groups of about 10 animals a threshold of detectability for changes of the ca-content is to be expected by about 4%. In a further group experiment it was found, that even in the case of multiple radiation the procedure of irradiation and measurement was not followed by a significant change in the Ca-content of the hind legs of the testing animals. (orig.)

  17. Radiological risks from irradiation of cargo contents with EURITRACK neutron inspection systems

    Science.gov (United States)

    Giroletti, E.; Bonomi, G.; Donzella, A.; Viesti, G.; Zenoni, A.

    2012-07-01

    The radiological risk for the population related to the neutron irradiation of cargo containers with a tagged neutron inspection system has been studied. Two possible effects on the public health have been assessed: the modification of the nutritional and organoleptic properties of the irradiated materials, in particular foodstuff, and the neutron activation of consumer products (i.e. food and pharmaceuticals). The result of this study is that irradiation of food and foodstuff, pharmaceutical and medical devices in container cargoes would neither modify the properties of the irradiated material nor produce effective doses of concern for public health. Furthermore, the dose received by possible stowaways present inside the container during the inspection is less than the annual effective dose limit defined by European Legislation for the public.

  18. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    International Nuclear Information System (INIS)

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x1020 n/cm2 and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 1010 Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x1020 n/cm2 and that it decays to about 1/100 in a year. (author)

  19. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Taiju; Ishihara, Masahiro; Baba, Shinichi; Hayashi, Kimio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Motohashi, Yoshinobu [Ibaraki Univ., Mito (Japan)

    2000-05-01

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x10{sup 20} n/cm{sup 2} and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 10{sup 10} Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x10{sup 20} n/cm{sup 2} and that it decays to about 1/100 in a year. (author)

  20. Studies of neutron irradiation of avalanche photodiodes using sup 2 sup 5 sup 2 Cf

    CERN Document Server

    Musienko, Y; Ruuska, D; Swain, J D

    2000-01-01

    Results on the radiation hardness of photodiodes to fast neutrons are presented. Four photodiodes (three avalanche photodiodes from two manufacturers, and one PIN photodiode) were exposed to neutrons from a sup 2 sup 5 sup 2 Cf source at Oak Ridge National Laboratory. The effects of this radiation on many parameters such as gain, intrinsic dark current, quantum efficiency, noise, capacitance, and voltage and temperature coefficients of the gain for these devices for fluences up to approx 2x10 sup 1 sup 3 neutrons/cm sup 2 are shown and discussed. While degradation of APDs occurred during neutron irradiation, they remained photosensitive devices with gain.

  1. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  2. The behaviour of ferritic steels under fast neutron irradiation

    International Nuclear Information System (INIS)

    Ferritic steels have been irradiated in Rapsodie and Phenix to doses up to 150 dpa F. The swelling and irradiation creep characteristics and the mechanical properties of these materials are reported. (author)

  3. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    Science.gov (United States)

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV. PMID:26573366

  4. Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with rotons: comparison with neutron-irradiated microstructures

    Science.gov (United States)

    Gan, J.; Was, G. S.

    2001-08-01

    Irradiation-induced microstructures of high purity and commercial purity austenitic stainless steels were investigated using proton-irradiation. For high purity alloys, Fe-20Cr-9Ni (HP 304 SS), Fe-20Cr-24Ni and Ni-18Cr-9Fe were irradiated using 3.2 MeV protons between 300°C and 600°C at a dose rate of 7×10 -6 dpa/ s to doses up to 3.0 dpa. The commercial purity alloys, CP 304 SS and CP 316 SS were irradiated at 360°C to doses between 0.3 and 5.0 dpa. The dose, temperature and composition dependence of the number density and size of dislocation loops and voids were characterized. The changes in yield strength due to irradiation were estimated from Vickers hardness measurements and compared to calculations using a dispersed-barrier-hardening (DBH) model. The dose and temperature dependence of proton-irradiated microstructure (loops, voids) and the irradiation hardening are consistent with the neutron-data trend. Results indicate that proton-irradiation can accurately reproduce the microstructure of austenitic alloys irradiated in LWR cores.

  5. Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy.

    Science.gov (United States)

    Altieri, S; Balzi, M; Bortolussi, S; Bruschi, P; Ciani, L; Clerici, A M; Faraoni, P; Ferrari, C; Gadan, M A; Panza, L; Pietrangeli, D; Ricciardi, G; Ristori, S

    2009-12-10

    Boron neutron capture therapy (BNCT) is an anticancer therapy based on the incorporation of (10)B in tumors, followed by neutron irradiation. Recently, the synthesis and delivery of new boronated compounds have been recognized as some of the main challenges in BNCT application. Here, we report on the use of liposomes as carriers for BNCT active compounds. Two carborane derivatives, i.e., o-closocarboranyl beta-lactoside (LCOB) and 1-methyl-o-closocarboranyl-2-hexylthioporphyrazine (H(2)PzCOB), were loaded into liposomes bearing different surface charges. The efficacy of these formulations was tested on model cell cultures, that is, DHD/K12/TRb rat colon carcinoma and B16-F10 murine melanoma. These induce liver and lung metastases, respectively, and are used to study the uptake of standard BNCT drugs, including borophenylalanine (BPA). Boron concentration in treated cells was measured by alpha spectrometry at the TRIGA mark II reactor (University of Pavia). Results showed high performance of the proposed formulations. In particular, the use of cationic liposomes increased the cellular concentration of (10)B by at least 30 times more than that achieved by BPA. PMID:19954249

  6. Biological effectiveness of neutron irradiation on animals and man

    International Nuclear Information System (INIS)

    Neutron experiments on a highly radiosensitive in vivo system - oocytes in mice - provide new insight into the nature of the radiosensitive targets of these important cells. With the radiobiological literature as background, neutron data from animals and humans are integrated, and the controversial question of radiation protection standards for neutrons is addressed. Oocyte killing in juvenile mice by 0.43-MeV, 252Cf-fission, and 15 MeV neutrons, compared with that by 60Co gamma rays, yields unusually low neutron RBEs (relative biological effectiveness). At 0.1 rad of 0.43-MeV neutrons the RBE is only 1.8, contrasting greatly with values of 100 or more reported at low-doses for other endpoints. In mice just prior to birth, however, when oocytes are less radiosensitive, the neutron RBE is much higher, similar to values for most other mammalian endpoints. This dramatic change in neutron RBE with mouse age (occurring within 2 to 3 days) can be explained as the result of a shift from a less radiosensitive target (presumably nuclear DNA) to a much more radiosensitive one (probably the oocyte plasma membrane). Using various approaches, a value for the neutron Quality Factor (Q, a radiation protection standard) is estimated as 17 (+-100%), much lower than 100 which has been suggested. With the large uncertainty, 17 is not markedly different from the value of 10 presently in general use

  7. Biological effectiveness of neutron irradiation on animals and man

    Energy Technology Data Exchange (ETDEWEB)

    Straume, T.

    1982-11-01

    Neutron experiments on a highly radiosensitive in vivo system - oocytes in mice - provide new insight into the nature of the radiosensitive targets of these important cells. With the radiobiological literature as background, neutron data from animals and humans are integrated, and the controversial question of radiation protection standards for neutrons is addressed. Oocyte killing in juvenile mice by 0.43-MeV, /sup 252/Cf-fission, and 15 MeV neutrons, compared with that by /sup 60/Co gamma rays, yields unusually low neutron RBEs (relative biological effectiveness). At 0.1 rad of 0.43-MeV neutrons the RBE is only 1.8, contrasting greatly with values of 100 or more reported at low-doses for other endpoints. In mice just prior to birth, however, when oocytes are less radiosensitive, the neutron RBE is much higher, similar to values for most other mammalian endpoints. This dramatic change in neutron RBE with mouse age (occurring within 2 to 3 days) can be explained as the result of a shift from a less radiosensitive target (presumably nuclear DNA) to a much more radiosensitive one (probably the oocyte plasma membrane). Using various approaches, a value for the neutron Quality Factor (Q, a radiation protection standard) is estimated as 17 (+-100%), much lower than 100 which has been suggested. With the large uncertainty, 17 is not markedly different from the value of 10 presently in general use.

  8. Design of small-animal thermal neutron irradiation facility at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    The broad beam facility (BBF) at the Brookhaven Medical Research Reactor (BMRR) can provide a thermal neutron beam with flux intensity and quality comparable to the beam currently used for research on neutron capture therapy using cell-culture and small-animal irradiations. Monte Carlo computations were made, first, to compare with the dosimetric measurements at the existing BBF and, second, to calculate the neutron and gamma fluxes and doses expected at the proposed BBF. Multiple cell cultures or small animals could be irradiated simultaneously at the so-modified BBF under conditions similar to or better than those individual animals irradiated at the existing thermal neutron irradiation Facility (TNIF) of the BMRR. The flux intensity of the collimated thermal neutron beam at the proposed BBF would be 1.7 x 1010 n/cm2·s at 3-MW reactor power, the same as at the TNIF. However, the proposed collimated beam would have much lower gamma (0.89 x 10-11 cGy·cm2/nth) and fast neutron (0.58 x 10-11 cGy·cm2/nth) contaminations, 64 and 19% of those at the TNIF, respectively. The feasibility of remodeling the facility is discussed

  9. L-Phenylalanine preloading reduces the (10)B(n, α)(7)Li dose to the normal brain by inhibiting the uptake of boronophenylalanine in boron neutron capture therapy for brain tumours.

    Science.gov (United States)

    Watanabe, Tsubasa; Tanaka, Hiroki; Fukutani, Satoshi; Suzuki, Minoru; Hiraoka, Masahiro; Ono, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. Previously, high doses of one of the boron compounds used for BNCT, L-BPA, were found to reduce the boron-derived irradiation dose to the central nervous system. However, injection with a high dose of L-BPA is not feasible in clinical settings. We aimed to find an alternative method to improve the therapeutic efficacy of this therapy. We examined the effects of oral preloading with various analogues of L-BPA in a xenograft tumour model and found that high-dose L-phenylalanine reduced the accumulation of L-BPA in the normal brain relative to tumour tissue. As a result, the maximum irradiation dose in the normal brain was 19.2% lower in the L-phenylalanine group relative to the control group. This study provides a simple strategy to improve the therapeutic efficacy of conventional boron compounds for BNCT for brain tumours and the possibility to widen the indication of BNCT to various kinds of other tumours.

  10. Controllability of depth dose distribution for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor.

    Science.gov (United States)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2002-10-01

    The updating construction of the Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor has been performed from November 1995 to March 1996 mainly for the improvement in neutron capture therapy. On the performance, the neutron irradiation modes with the variable energy spectra from almost pure thermal to epi-thermal neutrons became available by the control of the heavy-water thickness in the spectrum shifter and by the open-and-close of the cadmium and boral thermal neutron filters. The depth distributions of thermal, epi-thermal and fast neutron fluxes were measured by activation method using gold and indium, and the depth distributions of gamma-ray absorbed dose rate were measured using thermo-luminescent dosimeter of beryllium oxide for the several irradiation modes. From these measured data, the controllability of the depth dose distribution using the spectrum shifter and the thermal neutron filters was confirmed.

  11. Investigation of reactor neutron irradiation induced dark signals increase in COTS array CCDs

    Directory of Open Access Journals (Sweden)

    Zujun Wang

    2014-09-01

    Full Text Available The experiments of reactor neutron irradiation which induce dark signal increase in COTS array CCDs are presented. The flux of the reactor neutron beams was about 1.33 × 108 n/cm2s. The three samples were exposed to 1MeV neutron-equivalent fluences of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively. The mean dark signal (KD, dark signal non-uniformity (DSNU, and dark signal spikes (hot pixels versus neutron fluence are investigated. The degradation mechanisms of the dark signal in CCDs are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from the CCDs irradiated by neutrons are presented to investigate the generation of dark signal spike. The 1D and 2D figures which show the output signal voltage of pixels in dark images irradiated by different neutron beam fluences, are presented to compare the degradation of KD, DSNU, and dark signal spike.

  12. Design of sample carrier for neutron irradiation facility at TRIGA MARK II nuclear reactor

    Science.gov (United States)

    Abdullah, Y.; Hamid, N. A.; Mansor, M. A.; Ahmad, M. H. A. R. M.; Yusof, M. R.; Yazid, H.; Mohamed, A. A.

    2013-06-01

    The objective of this work is to design a sample carrier for neutron irradiation experiment at beam ports of research nuclear reactor, the Reaktor TRIGA PUSPATI (RTP). The sample carrier was designed so that irradiation experiment can be performed safely by researchers. This development will resolve the transferring of sample issues faced by the researchers at the facility when performing neutron irradiation studies. The function of sample carrier is to ensure the sample for the irradiation process can be transferred into and out from the beam port of the reactor safely and effectively. The design model used was House of Quality Method (HOQ) which is usually used for developing specifications for product and develop numerical target to work towards and determining how well we can meet up to the needs. The chosen sample carrier (product) consists of cylindrical casing shape with hydraulic cylinders transportation method. The sample placing can be done manually, locomotion was by wheel while shielding used was made of boron materials. The sample carrier design can shield thermal neutron during irradiation of sample so that only low fluencies fast neutron irradiates the sample.

  13. Design of sample carrier for neutron irradiation facility at TRIGA MARK II nuclear reactor

    International Nuclear Information System (INIS)

    The objective of this work is to design a sample carrier for neutron irradiation experiment at beam ports of research nuclear reactor, the Reaktor TRIGA PUSPATI (RTP). The sample carrier was designed so that irradiation experiment can be performed safely by researchers. This development will resolve the transferring of sample issues faced by the researchers at the facility when performing neutron irradiation studies. The function of sample carrier is to ensure the sample for the irradiation process can be transferred into and out from the beam port of the reactor safely and effectively. The design model used was House of Quality Method (HOQ) which is usually used for developing specifications for product and develop numerical target to work towards and determining how well we can meet up to the needs. The chosen sample carrier (product) consists of cylindrical casing shape with hydraulic cylinders transportation method. The sample placing can be done manually, locomotion was by wheel while shielding used was made of boron materials. The sample carrier design can shield thermal neutron during irradiation of sample so that only low fluencies fast neutron irradiates the sample.

  14. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    International Nuclear Information System (INIS)

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs

  15. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  16. Study irradiation damage by fast neutrons in Portland cement by means of ultra-sound

    International Nuclear Information System (INIS)

    The effect of neutron irradiation in samples of Portland cement paste was evaluated, using the resonance frequency method and pulse velocity of ultra-sound technique. The samples were divide in three groups: 1) Monitoring samples; 2) Samples to gamma heating simulation; 3) Fast neutron irradiated samples in reactor core. Santa Rita Portland cement was utilized for samples preparation with water-cement rate of 0,40 l/kg. The irradiation was performed in the research reactor IEA-R1, at IPEN-CNEN/SP, with an integrated flux of 7,2 X 10 sup(18) n/cm sup(2) (E approx. 1 Mev). The samples of group 2 were submitted to special micro-waves heat treatment-with the same number of cycles of the reactor-which allowed the detection of fast neutron radiation effects within the predominant thermal effects. (author)

  17. Low temperature testing and neutron irradiation of a swept charge device on board the HXMT satellite

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Sa; CHEN Tian-Xiang; LI Cheng-Kui; HUO Jia; LI Zheng-Wei; LI Wei; HU Wei; ZHANG Yi; LU Bo; ZHU Yue; LIU Yan; CHEN Yong; WU Di; SUN Qing-Rong; ZHANG Zi-Liang; XU Yu-Peng; YANG Yan-Ji; CUI Wei-Wei; LI Mao-Shun; LIU Xiao-Yan; WANG Juan; HAN Da-Wei

    2012-01-01

    We present the low temperature testing of an SCD detector,investigating its performance such as readout noise,energy resolution at 5.9 keV and dark current.The SCD's performance is closely related to temperature,and the temperature range of -80 ℃ to -50 ℃ is the best choice,where the FWHM at 5.9 keV is about 130 eV.The influence of the neutron irradiation from an electrostatic accelerator with fluence up to 1 × 109 cm-2 has been examined.We find the SCD is not vulnerable to neutron irradiation.The detailed operations of the SCD and the test results of low temperature are reported,and the results of neutron irradiation are discussed.

  18. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    Science.gov (United States)

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  19. Influence of Fast Neutron Irradiation on Critical Current Densities of Bi-2223/Ag Tape

    Institute of Scientific and Technical Information of China (English)

    Duan Zhenzhong

    2004-01-01

    Experimental results on the magnetic field behavior of the critical current in silver sheathed Bi-2223 tapes are presented. The experiments consist of transport and magnetic measurements in a wide temperature range and in external magnetic field up to 6 T. Significant enhancement of the intragrain critical current densities Jc are observed after irradiation with fast neutron. This is attributed to an improvement of flux pinning capability by the neutron induced defects, but the weak link structure is somewhat damaged as evidenced by the small degradation of transport critical current at low field. According to the measurement of remanent magnetic moment before and after irradiation with fast neutron, the connectivity in Bi-2223 tapes is reduced by 50% after irradiated to a fluence of 2 × 1021 m-2, which resulted in the critical currents degradated by a factor of 10%.

  20. Characterization of defect accumulation in neutron-irradiated Mo by positron annihilation spectroscopy

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Li, Meimei; Snead, L.L.;

    2008-01-01

    Positron annihilation lifetime spectroscopy measurements were performed on neutron-irradiated low carbon arc cast Mo. Irradiation took place in the high flux isotope reactor, Oak Ridge National Laboratory, at a temperature of 80 +/- 10 degrees C. Neutron fluences ranged from 2 x 10(21) to 8 x 10......(24) n/m(2) (E > 0.1 MeV), corresponding to displacement damage levels in the range from 7.2 x 10(-5) to 2.8 x 10(-1) displacements per atom (dpa). A high density of submicroscopic cavities was observed in the neutron-irradiated Mo and their size distributions were estimated. Cavities were detected even...

  1. Embrittlement of molybdenum-rhenium welds under low and high temperature neutron irradiation

    Science.gov (United States)

    Krajnikov, A. V.; Morito, F.; Danylenko, M. I.

    2014-01-01

    The effect of low- and high-temperature neutron irradiation on the tensile strength, microhardness, and fracture mode has been studied for a series of Mo-Re welds with various Re concentrations. Radiation-induced hardening and concurrent ductility reduction are the key after-effects of neutron exposure. Low-temperature irradiation usually leads to a very hard embrittlement. The hardening effect is rather limited and unstable because of the lack of ductility. Irradiated specimens fail by brittle intergranular or transgranular fracture. The damaging effect of neutrons is less pronounced after high-temperature irradiation. The hardening of the matrix is rather high, but irradiated specimens still keep residual plasticity. High-temperature irradiation intensifies homogeneous nucleation of Re-rich phases, and this effect equalises the difference in mechanical properties between the different weld zones. A characteristic ductility loss exposure temperature was found to separate the temperature fields of absolutely brittle and relatively ductile behaviour. It usually varies between 850 K and 1000 K depending on the alloy composition and irradiation conditions.

  2. Quantitative TEM analysis of precipitation and grain boundary segregation in neutron irradiated EUROFER 97

    Energy Technology Data Exchange (ETDEWEB)

    Dethloff, Christian, E-mail: christian.dethloff@kit.edu; Gaganidze, Ermile; Aktaa, Jarir

    2014-11-15

    Characterization of irradiation induced microstructural defects is essential for assessing the applicability of structural steels like the Reduced Activation Ferritic/Martensitic steel EUROFER 97 in upcoming fusion reactors. In this work Transmission Electron Microscopy (TEM) is used to analyze the types and structure of precipitates, and the evolution of their size distributions and densities caused by neutron irradiation to a dose of 32 displacements per atom (dpa) at 330–340 °C in the irradiation experiment ARBOR 1. A significant growth of MX and M{sub 23}C{sub 6} type precipitates is observed after neutron irradiation, while the precipitate density remains unchanged. Hardening caused by MX and M{sub 23}C{sub 6} precipitate growth is assessed by applying the Dispersed Barrier Hardening (DBH) model, and shown to be of minor importance when compared to other irradiation effects like dislocation loop formation. Additionally, grain boundary segregation of chromium induced by neutron irradiation was investigated and detected in irradiated specimens.

  3. Response to heating of dislocation structures in zircaloy-2 irradiated to high neutron fluences

    International Nuclear Information System (INIS)

    Zirconium alloys have good neutron economy and corrosion resistance in high temperature water and this has led to extensive usage of these alloys in CANDU reactors. However, during neutron irradiation, dimensional changes occur in zirconium components due to the rearrangement of atoms knocked from their lattice sites by fast neutrons. This irradiation growth may limit the lifetime of some reactor components and an understanding of the variables that control the process is of commercial importance. In the current work, the temperature response of the irradiation-induced microstructure was studied by heating foils in the TEM and by annealing bulk specimens. Thin foils of Zircaloy-2 irradiated at 570 K to a fluence of 8 x 1025 n/m2, E > 1.0 MeV, were examined in the heating stage of a Philips EM300 microscope. Surface hydrides were seen to dissolve with increasing temperature. The line defects were stable at temperatures up to 850 K, removing any possibility of their being some form of hydride precipitate. In bulk specimens of the same material heated in vacuum to 773 K for 1 hour, c component dislocations were still evident. Small damage clusters, noted in the as-irradiated foil, have now formed visible loops and line dislocations. Interactions between the c and a type dislocations are difficult to observe due to the high damage density. The implications to irradiation growth of irradiation-induced dislocation structures with c component Burgers vectors will be discussed

  4. Nuclear data needs for neutron spectrum tailoring at International Fusion Materials Irradiation Facility (IFMIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    International Fusion Materials Irradiation Facility (IFMIF) is a proposal of D-Li intense neutron source to cover all aspects of the fusion materials development in the framework of IEA collaboration. The new activity has been started to qualifying the important technical issues called Key Element technology Phase since 2000. Although the neutron spectrum can be adjusted by changing the incident beam energy, it is favorable to be carried out many irradiation tasks at the same time under the unique beam condition. For designing the tailored neutron spectrum, neutron nuclear data for the moderator-reflector materials up to 50 MeV are required. The data for estimating the induced radioactivity is also required to keep the radiation level low enough at maintenance time. The candidate materials and the required accuracy of nuclear data are summarized. (author)

  5. Neutron Exposure Parameters for the Dosimetry Capsule in the Heavy-Section Steel Irradiation Program Tenth Irradiation Series

    Energy Technology Data Exchange (ETDEWEB)

    C.A. Baldwin; F.B.K. Kam; I. Remec

    1998-10-01

    This report describes the computational methodology for the least-squares adjustment of the dosimetry data from the HSSI 10.OD dosimetry capsule with neutronics calculations. It presents exposure rates at each dosimetry location for the neutron fluence greater than 1.0 MeV, fluence greater than 0.1 MeV, and displacements per atom. Exposure parameter distributions are also described in terms of three- dimensional fitting functions. When fitting functions are used it is suggested that an uncertainty of 6% (1 o) should be associated with the exposure rate values. The specific activity of each dosimeter at the end of irradiation is listed in the Appendix.

  6. Multiphysics Analysis of the 2.5 MeV BNCT RFQ Accelerator

    CERN Document Server

    Xiaowen, Zhu; Kun, Zhu

    2016-01-01

    Boron Neutron Capture Therapy (BNCT), is an advanced cancer therapy that destroys the cancer tumors using the well-known Li(p,n)Be . Because of the highly selectively reaction between a boron and a neutron, BNCT is effective for rapidly spreading cancer, invasive carcinoma, such as head and neck cancer, melanoma, malignant brain tumors and so on. The PKU RFQ group proposes an RFQ based neutron source for BNCT application. The 162.5 MHz four-vane RFQ will accelerate 20-mA H+ from 35.0 keV to 2.50 MeV in CW mode, and delivers a neutron yield of 1.73*10^13 n/sec/cm^2. The thermal management will become the most important issues. The detailed multiphysics analysis of the BNCT RFQ will be studied, and the RFQ frequency shift during nominal operating condition is also predicted. The multiphysics analysis is performed by using the CST Multiphysics Model and verified with ANSYS Multiphysics.

  7. Neutron dosimetry and damage calculations for the ATR-A1 irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-09-01

    Neutron fluence measurements and radiation damage calculations are reported for the collaborative US/Japan ATR-A1 irradiation in the Advanced Test Reactor (ATR) at Idaho National Engineering Laboratory (INEL). The maximum total neutron fluence at midplane was 9.4 {times} 10{sup 21} n/cm{sup 2} (5.5 {times} 10{sup 21} n/cm{sup 2} above 0.1 MeV), resulting in about 4.6 dpa in vanadium.

  8. A PC-based computer program for the estimation of the radiation dose in vitro and in vivo boron neutron capture irradiation experiments

    International Nuclear Information System (INIS)

    In Boron Neutron Capture Therapy (BNCT) microdosimetry of charged particle radiation depends on total boron concentration and intracellular boron distribution. Due to the inhomogeneity of boron distribution in cells, radiation doses to both tumor and normal tissue are influenced by boron and nitrogen concentrations and intracellular distributions, cell volume and shape, nuclear size and geometrical structure of the tissue. For correct calculation of the radiation dose in BNCT, these factors should be taken into account. Several computer models have been developed previously in order to estimate the absorbed dose from charged particles in BNCT (Gabel et al.; Kobayashi and Kanda). In these models, however, single values for mean Relative Biological Effectiveness (RBE) are used to convert high LET radiation doses to isoeffective photon equivalent doses. The RBE depends on both LET and endpoint, such as surviving fraction of tumor cells or normal tissue tolerance (Barendsen et al.). Since LET is not constant along the track of a charged particle, the RBE cannot be considered constant for particles generated by boron and nitrogen neutron capture. Experimental RBE data to be used in BNCT have been gathered, but without consensus (Gabel et al.; Fukuda et al.). A computer program designed to run on a microcomputer has been written in Turbo Pascal to determine energy deposition in cell nuclei resulting from charged particle emission after boron or nitrogen neutron capture in nuclear, cytoplasmic and extracellular compartments. This computer model goes beyond former models in estimating a microscopic RBE for each individual charged particle track segment that traverses a cell nucleus. Another refinement is the implementation of dynamic modelling, which offers a more realistic simulation of cell and tissue geometry. This was approached by varying cell geometry and arrangement parameters within a simulation

  9. Antiradiation Vaccine: Technology Development Of Prophylaxis, Prevention And Treatment Of Biological Consequences And Complications After Neutron Irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Neutrons irradiation produce a unique biological effectiveness compare to different types of radiation because their ability to create a denser trail of ionized atoms in biological living tissues[Straume 1982; Latif et al.2010; Katz 1978; Bogatyrev 1982]. The efficacy of an Anti-Radiation Vaccine for the prophylaxis, prevention and therapy of acute radiation pathology was studied in a neutron exposure facility. The biological effects of fast neutrons include damage of central nervous system and cardiovascular system with development of Acute Cerebrovascular and Cardiovascular forms of acute radiation pathology. After irradiation by high doses of fast neutron, formation of neurotoxins, hematotoxins,cytotoxins forming from cell's or tissue structures. High doses of Neutron Irradiation generate general and specific toxicity, inflammation reactions. Current Acute Medical Management and Methods of Radiation Protection are not effective against moderate and high doses of neutron irradiation. Our experiments demonstrate that Antiradiation Vaccine is the most effective radioprotectant against high doses of neutron-radiation. Radiation Toxins(biological substances with radio-mimetic properties) isolated from central lymph of gamma-irradiated animals could be working substance with specific antigenic properties for vaccination against neutron irradiation. Methods: Antiradiation Vaccine preparation standard - mixture of a toxoid form of Radiation Toxins - include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins were isolated from the central lymph of gamma-irradiated animals with different forms of Acute Radiation Syndromes - Cerebrovascular, Cardiovascular, Gastrointestinal, Hematopoietic forms. Devices for Y-radiation were "Panorama","Puma". Neutron exposure was accomplished at the Department of Research Institute of Nuclear Physics, Dubna, Russia. The neutrons

  10. The effect of neutron irradiation on the electrical resistivity of high-strength copper alloys

    International Nuclear Information System (INIS)

    The effects of neutron irradiation on the electrical resistivity of precipitation hardened (PH) and dispersion strengthened (DS) copper alloys are discussed. The analysis is based on the experimental study of radiation damage of PH and DS copper alloys, irradiated in the fast neutron reactor BOR-60 with doses of 8-16 x 1025 n/m2 and in the mixed spectrum neutron reactor SM-2 with doses of 3.7-5.5 x 1025 n/m2. The experimental data on the change Δρ in electrical resistivity of DS-type copper alloys irradiated in the BOR-60 reactor show that irradiation to 7-10 dpa at T=340-450 C causes a drop in electrical conductivity by not more than 20%. The obtained results show that in mixed-spectrum reactors the rate of Δρ normalized to the dpa is about 20 times as high as in fast neutron reactors. The conclusion is made that the calculations performed for ITER must take into account the presence of appreciable fluxes of thermal neutrons in certain components of the reactor. The latter will play a decisive role in the drop in thermal conductivity of copper alloys in these components. (orig.)

  11. Microwave digestion techniques applied to determination of boron by ICP-AES in BNCT program

    International Nuclear Information System (INIS)

    Recently, boron neutron capture therapy (BNCT) has merged as an interesting option for the treatment of some kind of tumors where established therapies show no success. A molecular boronated species, enriched in 10B is administrated to the subject; it localizes in malignant tissues depending the kind of tumor and localization. Therefore, a very important fact in BNCT research is the detection of boron at trace or ultra trace levels precisely and accurately. This is extremely necessary as boronated species do localize in tumoral tissue and also localize in liver, kidney, spleen, skin, membranes. By this way, before testing a boronated species, it is mandatory to determine its biodistribution in a statistically meaning population, that is related with managing of a great number of samples. In the other hand, it is necessary to exactly predict when to begin the irradiation and to determine the magnitude of radiation to obtain the desired radiological dose for a specified mean boron concentration. This involves the determination of boron in whole blood, which is related with boron concentration in the tumor object of treatment. The methodology selected for the analysis of boron in whole blood and tissues must join certain characteristics: it must not be dependant of the chemical form of boron, it has to be fast and capable to determine boron accurately and precisely in a wide range of concentrations. The design and validation of experimental models involving animals in BNCT studies and the determination of boron in blood of animals and subjects upon treatment require reliable analytical procedures to determine boron quantitatively in those biologic materials. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) using pneumatic nebulization is one of the most promising methods for boron analysis, but the sample must be liquid and have low solid concentration. In our case, biological tissues and blood, it is mandatory to mineralize and/or dilute samples

  12. Calculation of fine neutron spectrum in irradiation holes in fuel region of JRR-3M

    International Nuclear Information System (INIS)

    The authors have a plan to evaluate TRU neutron cross sections based on the activation experiments by using JRR-3M. Fine neutron spectrum expressed by 107 energy group structure at irradiation holes in fuel region of JRR-3M core, which was utilized to analyze experimental data, was calculated by 2 step calculation. The first step is the whole core calculation taking account of burnup history and control rod pattern, and the second step is the irradiation hole calculation without any homogenization of irradiation hole components by taking into account of the neutron spectrum of surrounding region. Fine neutron spectra calculated by 2 step calculation were compared with the experimental results on reaction rate, both agreed within several percents relatively. In the comparison of absolute values, however, the maximum difference was up to 30 percents in the vicinity of control rods. This originates from the neutron transport effect around control rods. An improvement for the treatment of neutron transport effect is needed to get higher accuracy. (author)

  13. A study on the effect of neutronic irradiation on the resistivity of graphite and on its use as a detected of fast neutron dose

    CERN Document Server

    Daie-Moreno, J A

    1994-01-01

    This thesis aims to develop a monitor for fast neutron dose, made of graphite, and based on measuring the change in the electric resistivity of the monitor with the irradiation of neutrons. Traditional methods of measuring doses are based on measuring the neutronic activation of pure materials and are, therefore, more complex. The work was carried out in the nuclear research reactor at the La Reina Nuclear Studies Center, belonging to the Chilean Nuclear Energy Commission. Graphite discs of nuclear purity were built for this study and were submitted to successives neutronic irradiations in the nuclear reactor. After each irradiation, the dose of absorbed neutrons and the resistivity of the monitor were measured. The correlation of the data obtained was studied, based on a physical mathematical model that was developed for this purpose. The experimental data that were obtained confirm a sensitive variation in the resistivity of the monitors with the irradiation in the reactor. The model that was developed prop...

  14. Neutron irradiation effects on the ductile-brittle transition of ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Ferritic/martensitic steels such as the conventional 9Cr-1MoVNb (Fe-9Cr-1Mo-0.25V-0.06Nb-0.1C) and 12Cr-1MoVW (Fe-12Cr-1Mo-0.25V-0.5W-0.5Ni-0.2C) steels have been considered potential structural materials for future fusion power plants. The major obstacle to their use is embrittlement caused by neutron irradiation. Observations on this irradiation embrittlement is reviewed. Below 425-450{degrees}C, neutron irradiation hardens the steels. Hardening reduces ductility, but the major effect is an increase in the ductile-brittle transition temperature (DBTT) and a decrease in the upper-shelf energy, as measured by a Charpy impact test. After irradiation, DBTT values can increase to well above room temperature, thus increasing the chances of brittle rather than ductile fracture.

  15. Magnetization studies of YBa 2Cu 3O 7-x irradiated by fast neutrons

    Science.gov (United States)

    Wisniewski, A.; Baran, M.; Przysłupski, P.; Szymczak, H.; Pajaczkowska, A.; Pytel, B.; Pytel, K.

    1988-02-01

    Studies of the effect of fast neutron damage on the magnetic hysteresis of YBa 2Cu 3O 7-x ceramic samples subjected to fluence of neutrons of 2∗10 16 n/cm 2 up to 6∗10 17 n/cm 2 have been performed. irradiation up to dose of 1∗10 17 did not cause any change in the critical temperature. However it causes a strong increase of the magnetic hysteresis which is presumably connected with the creation of defects. The critical current density at 77 K in H = 10 k0e for the sample irradiated with the dose 1∗10 17 n/cm 2 was estimated to be 520 A/cm 2 as compared to 29 A/cm 2 for the reference non-irradiated sample, non-irradiated sample.

  16. Neutron irradiation of Czochralski and temperature gradient technique grown YAG crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Chengyong [Faculty of Scinece, Ningbo University, Ningbo 315211 (China)]. E-mail: Jiangchengyong@nbu.edu.cn

    2006-03-01

    Absorption, fluorescence and thermoluminescence spectra are presented for 1.5-MeV neutron-irradiated YAG crystals grown by Czochralski (CZ) and temperature gradient technique (TGT). F{sup +} centers were formed in both YAG samples and valence of iron impurities in TGT-grown YAG crystals switched from divalent to trivalent after neutron irradiation. At 350 and 300 deg. C thermoluminescence was observed in CZ-grown and TGT-grown YAG crystals, respectively, and assigned to irradiation-induced color centers. Calculated with the initial elevation method, thermoluminescence trap depths of the 350 deg. C band and of the 300 deg. C band are 0.379 and 0.768 eV, respectively. The significant difference in thermoluminescence intensities between CZ- and TGT-grown YAG crystals is associated with the irradiation-induced color centers and quenching effect of Fe{sup 3+} ions.

  17. Additive analysis of nano silicon under the influence of neutron irradiation

    Science.gov (United States)

    Garibli, Aydan; Huseynov, Elchin; Garibov, Adil; Mehdiyeva, Ravan

    2016-04-01

    Nano silicon with 80m2g‑1 specific surface area, 100 nm size and 0.08 g/cm3 density has been irradiated continuously with neutrons (2 × 1013n ṡcm‑2s‑1) up to 20 h at various periods in TRIGA Mark II type research reactor. After the neutron irradiation, cooling time of the samples is taken approximately 360 h. It is found that the initial radioactivity of the irradiated samples changes within 0.1 kBq-3.1 GBq range. Definition of elements’ concentration is determined based on the activities formed in the relevant energy range. After the irradiation, the result of activity analysis carried out the element content of 1% mixture existing in nano Si which has been defined with radionuclides of the relevant element. Moreover, from activities of mixed radioisotopes, their amounts in percentage has been determined.

  18. Investigations into properties of charge traps created in CCDs by neutron and electron irradiation

    Indian Academy of Sciences (India)

    James E Brau; Olga Igonkina; Nikolai B Sinev; Jan Strube

    2007-12-01

    Our group has been investigating the effects related to radiation damage of CCDs since 1998. In a series of measurements in 2003 we found the puzzling effect of very slow filling of charge traps created by radiation damage of the silicon device. In 2005 we intended to study this phenomenon in detail. However, while in 2003 we could see all the traps created by neutron irradiation in 1998-1997 unchanged, such traps unexpectedly almost completely disappeared in 2005. We explain this as an effect of annealing induced by electron irradiation, as in 2003 we irradiated with electrons the same device irradiated with neutrons in 1997-1998. Results of the 2005 measurements are presented.

  19. Effects of silicon, carbon and molybdenum additions on IASCC of neutron irradiated austenitic stainless steels

    Science.gov (United States)

    Nakano, J.; Miwa, Y.; Kohya, T.; Tsukada, T.

    2004-08-01

    To study the effects of minor elements on irradiation assisted stress corrosion cracking (IASCC), high purity type 304 and 316 stainless steels (SSs) were fabricated and minor elements, Si or C were added. After neutron irradiation to 3.5 × 10 25 n/m 2 ( E>1 MeV), slow strain rate tests (SSRTs) of irradiated specimens were conducted in oxygenated high purity water at 561 K. Specimen fractured surfaces were examined using a scanning electron microscope (SEM) after the SSRTs. The fraction of intergranular stress corrosion cracking (IGSCC) on the fractured surface after the SSRTs increased with neutron fluence. In high purity SS with added C, the fraction of IGSCC was the smallest in the all SSs, although irradiation hardening level was the largest of all the SSs. Addition of C suppressed the susceptibility to IGSCC.

  20. Mechanical properties and microstructure of neutron irradiated cold worked Al-6063 alloy

    International Nuclear Information System (INIS)

    The impact of neutron irradiation on the mechanical properties and fracture morphology of cold worked Al-6063 were studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens (50 mm long and 6 mm wide gauge sections) were punched out from an Al-6063 23% cold worked tubes, which had been exposed to prolonged neutron irradiation of up to 4.5 x 1025 thermal neutrons/m2 (E -3 s-1. The uniform elongation and the ultimate tensile strength increase as functions of fluence. Metallographic examination and fractography reveal a decrease in the local area reduction of the final fracture necking. This reduction is accompanied with a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. No voids could be observed up to the maximum fluence. The dislocation density of cold worked Al decreases with the thermal neutron fluence. Prolonged annealing of unirradiated cold worked Al-6063 at 52 C revealed similar results. It thus appears that under our irradiation conditions the temperature during irradiation is the major factor influencing the mechanical properties and the microstructure during irradiation. (orig.)

  1. Location and chemical bond of radionuclides in neutron-irradiated nuclear graphite

    International Nuclear Information System (INIS)

    The locations and the chemical forms (chemical bonds) of radionuclides in neutron-irradiated nuclear graphite have been determined in order to develop principal strategies for the management of graphitic nuclear waste. Due to the relatively low concentration of radionuclides in neutron-irradiated nuclear graphite (<1 ppm) direct spectroscopic methods are not applicable to investigate chemical structures. Therefore, methods by analogy have been applied. Such methods are investigations of the chemically detectable precursors of radionuclides in neutron-irradiated nuclear graphite and subjection of irradiated graphite to different chemical reactions followed by measurements of the radionuclide-containing reaction products by sensitive radiochemical methods. The paper discusses the applicability of these methods. The radionuclides investigated in this study can be divided into three parts: tritium, radiocarbon and metallic activation and fission products. Tritium can be bound in neutron-irradiated nuclear graphite as strongly adsorbed tritiated water (HTO), in oxygen-containing functional groups (e.g. C–OT) and as hydrocarbons (C–T). Radiocarbon is covalently bound with the graphite structure. The activity can be described by a homogeneously distributed part and a heterogeneously distributed part (enriched on surfaces or in hotspots). Metallic radionuclides can be bound as ions or covalent metal–carbon compounds. The distribution of all these radionuclides is mainly dependent on the distribution of their inactive precursors

  2. The Fission Converter-Based Epithermal Neutron Irradiation Facility at the Massachusetts Institute of Technology Reactor

    International Nuclear Information System (INIS)

    A new type of epithermal neutron irradiation facility for use in neutron capture therapy has been designed, constructed, and put into operation at the Massachusetts Institute of Technology Research Reactor (MITR). A fission converter, using plate-type fuel and driven by the MITR, is used as the source of neutrons. After partial moderation and filtration of the fission neutrons, a high-intensity forward directed beam is available with epithermal neutron flux [approximately equal to]1010 n/cm2.s, 1 eV ≤ E ≤ 10 keV, at the entrance to the medical irradiation room, and epithermal neutron flux = 3 to 5 x 109 n/cm2.s at the end of the patient collimator. This is currently the highest-intensity epithermal neutron beam. Furthermore, the system is designed and licensed to operate at three times higher power and flux should this be desired. Beam contamination from unwanted fast neutrons and gamma rays in the aluminum, polytetrafluoroethylene, cadmium and lead-filtered beam is negligible with a specific fast neutron and gamma dose, Dγ,fn/φepi [less than or approximately equal] 2 x 10-13 Gy cm2/nepi. With a currently approved neutron capture compound, boronophenylalanine, the therapeutically advantageous depth of penetration is >9 cm for a unilateral beam placement. Single fraction irradiations to tolerance can be completed in 5 to 10 min. An irradiation control system based on beam monitors and redundant, high-reliability programmable logic controllers is used to control the three beam shutters and to ensure that the prescribed neutron fluence is accurately delivered to the patient. A patient collimator with variable beam sizes facilitates patient irradiations in any desired orientation. A shielded medical room with a large window provides direct viewing of the patient, as well as remote viewing by television. Rapid access through a shielded and automatically operated door is provided. The D2O cooling system for the fuel has been conservatively designed with excess

  3. Stochastic annealing simulation of copper under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States); Singh, B.N. [Risoe National Lab., Roskilde (Denmark)

    1998-03-01

    This report is a summary of a presentation made at ICFRM-8 on computer simulations of defect accumulation during irradiation of copper to low doses at room temperature. The simulation results are in good agreement with experimental data on defect cluster densities in copper irradiated in RTNS-II.

  4. Effects of neutron irradiation on microstructure and mechanical properties of pure iron

    DEFF Research Database (Denmark)

    Singh, B.N.; Horsewell, Andy; Toft, P.

    1999-01-01

    tensile tested at the irradiation temperatures. Microstructures of the as-irradiated and irradiated and tensile tested specimens were investigated by transmission electron microscopy. Fracture surfaces of tensile tested specimens in unirradiated and irradiated conditions were examined in a scanning......Tensile specimens of pure iron were irradiated with fission neutrons (i) at 320 K to displacement dose levels of 7.5 x 10(-3), 7.5 x 10(-2) and 3.75 x 10(-1) dpa (NRT) and (ii) at 523 K to dose levels of 7.5 x 10(-2) and 2.25 x 10(-1) dpa (NRT). Both unirradiated and irradiated specimens were...

  5. The effects of oxide evolution on mechanical properties in proton- and neutron-irradiated Fe-9%Cr ODS steel

    Science.gov (United States)

    Swenson, M. J.; Dolph, C. K.; Wharry, J. P.

    2016-10-01

    The objective of this study is to evaluate the effect of irradiation on the strengthening mechanisms of a model Fe-9%Cr oxide dispersion strengthened steel. The alloy was irradiated with protons or neutrons to a dose of 3 displacements per atoms at 500 °C. Nanoindentation was used to measure strengthening due to irradiation, with neutron irradiation causing a greater increase in yield strength than proton irradiation. The irradiated microstructures were characterized using transmission electron microscopy and atom probe tomography (APT). Cluster analysis reveals solute migration from the Y-Ti-O-rich nanoclusters to the surrounding matrix after both irradiations, though the effect is more pronounced in the neutron-irradiated specimen. Because the dissolved oxygen atoms occupy interstitial sites in the iron matrix, they contribute significantly to solid solution strengthening. The dispersed barrier hardening model relates microstructure evolution to the change in yield strength, but is only accurate if solid solution contributions to strengthening are considered simultaneously.

  6. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    OpenAIRE

    Zujun Wang; Shaoyan Huang; Minbo Liu; Zhigang Xiao; Baoping He; Zhibin Yao; Jiangkun Sheng

    2014-01-01

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 108 n/cm2s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively. The mean dark signal (KD), dark signal spike, dark signal non-uniformity (DSNU), noise (VN)...

  7. The combined effect of electroporation and borocaptate in boron neutron capture therapy for murine solid tumors

    International Nuclear Information System (INIS)

    10B-Enriched borocaptate (BSH) was administered intraperitoneally to SCCVII tumor-bearing C3H/He mice. Electroporation (EP) was conducted by using a tweezers-type electrode. The 10B contents in tumors were measured by prompt γ-ray spectrometry. The colony formation assay was applied to investigate the antitumor effects of boron neutron capture therapy (BNCT) and thereby to estimate the intratumor localization of BSH. The 10B concentrations in tumors decreased with time following BSH administration, falling to 5.4(±0.1) ppm at 3 h, whereas EP treatment (3 repetitions) 15 min after BSH injection delayed the clearance of BSH from tumors, and the 10B level remained at 19.4(±0.9) ppm at 3 h. The effect of BNCT increased with the 10B concentration in tumors, and the combination with EP showed a remarkably large cell killing effect even at 3 h after BSH injection. The effect of BNCT, i.e., slope coefficient of the cell survival curve of tumors, without EP was proportional to tumor 10B level (r=0.982), and that of BSH-BNCT combined with EP lay close to the same correlation line. However, tumors subjected to EP after BSH injection did not show high radiosensitivity when irradiated after conversion to a single cell suspension by enzymatic digestion. This indicates that the increase of the BNCT effect by EP was a consequence of enclosure of BSH in the interstitial space of tumor tissue and not within tumor cells. This is different from a previous in vitro study. The combination of EP and BNCT may be clinically useful, if a procedure to limit EP to the tumor region becomes available or if an alternative similar method is employed. (author)

  8. Separation of Protactinium from Neutron Irradiated Thorium Oxide; Separacion de Protactinio de Oxido de Torio Irradiado con Neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, G.; Gutierrez, L.; Ropero, M.

    1983-07-01

    The chemical separation of thorium and protactinium can be carried out by leaching most of the last one, about 95%, with aqueous HF from neutron irradiated thorium oxide. This leaching reaction la highly favored by the transformation reaction of the ThO{sub 2} material into ThF{sub 4}. For both reactions, leaching and transformation, the reagents concentration, agitation speed and temperature influences were studied and the activation energies were found. (Author) 18 refs.

  9. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel

    International Nuclear Information System (INIS)

    Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) have been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.37 dpa. Atom probe tomography revealed manganese and silicon-enriched clusters in both UFG and CG steel after neutron irradiation. Mechanical properties were characterized using microhardness and tensile tests, and irradiation of UFG carbon steel revealed minute radiation effects in contrast to the distinct radiation hardening and reduction of ductility in its CG counterpart. After irradiation, micro hardness indicated increases of around 9% for UFG versus 62% for CG steel. Similarly, tensile strength revealed increases of 8% and 94% respectively for UFG and CG steels while corresponding decreases in ductility were 56% versus 82%. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation while no significant change was observed in UFG steel, revealing better radiation tolerance. Quantitative correlations between experimental results and modeling were demonstrated based on irradiation induced precipitate strengthening and dislocation forest hardening mechanisms

  10. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Alsabbagh, Ahmad, E-mail: ahalsabb@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Sarkar, Apu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Miller, Brandon [ATR National Scientific User Facility, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Burns, Jatuporn [Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Squires, Leah; Porter, Douglas; Cole, James I. [ATR National Scientific User Facility, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Murty, K.L. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2014-10-06

    Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) have been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.37 dpa. Atom probe tomography revealed manganese and silicon-enriched clusters in both UFG and CG steel after neutron irradiation. Mechanical properties were characterized using microhardness and tensile tests, and irradiation of UFG carbon steel revealed minute radiation effects in contrast to the distinct radiation hardening and reduction of ductility in its CG counterpart. After irradiation, micro hardness indicated increases of around 9% for UFG versus 62% for CG steel. Similarly, tensile strength revealed increases of 8% and 94% respectively for UFG and CG steels while corresponding decreases in ductility were 56% versus 82%. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation while no significant change was observed in UFG steel, revealing better radiation tolerance. Quantitative correlations between experimental results and modeling were demonstrated based on irradiation induced precipitate strengthening and dislocation forest hardening mechanisms.

  11. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.

    Science.gov (United States)

    Akan, Zafer; Türkmen, Mehmet; Çakir, Tahir; Reyhancan, İskender A; Çolak, Üner; Okka, Muhittin; Kiziltaş, Sahip

    2015-05-01

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au-Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented. PMID:25746919

  12. Perspectives for online analysis of raw material by pulsed neutron irradiation

    Science.gov (United States)

    Bach, Pierre; Le Tourneur, P.; Poumarede, B.

    1997-02-01

    On-line analysis by pulsed neutron irradiation is an example of an advanced technology application of nuclear techniques, concerning real problems in the cement, mineral and coal industries. The most significant of these nuclear techniques is their capability of continuous measurement without contact and without sampling, which can lead to improved control of processes and resultant large financial savings. Compared to Californium neutron sources, the use of electrical pulsed neutron generators allows to obtain a higher signal/noise ratio for a more sensitive measurement, and allows to overcome a number of safety problems concerning transportation, installation and maintenance. An experiment related to a possible new on-line raw material analyzer is described, using a pulsed neutron generator. The key factors contributing to an accurate measurement are related to a suitable generator, to a high count rate gamma ray spectroscopy electronics, and to computational tools. Calculation and results for the optimization of the neutron irradiation time diagram are reported. One of the operational characteristics of such an equipment is related to neutron flux available: it is possible to adjust it to the requested accuracy, i.e. for a high accuracy during a few hours/day and for a lower accuracy the rest of the time. This feature allows to operate the neutron tube during a longer time, and then to reduce the cost of analysis.

  13. Microstructure and mechanical properties of heat-treated and neutron irradiated TRISO-ZrC coatings

    International Nuclear Information System (INIS)

    Six developmental sets of as-fabricated and heat-treated, near- and hyper-stoichiometric ZrC coated TRISO particles were subject to fast neutron (E > 0.1 MeV) fluences of 2 and 6 × 1025 neutrons/m2 at 800 and 1250 °C to assess the effects of irradiation on the coating microstructure and mechanical properties. Pre-irradiation microstructural analysis showed that the all but one of the near-stoichiometric samples fabricated by CVD had a homogenous grain structure while others including the hyper-stoichiometric sample had a distinct tiered band pattern with alternating carbon rich interlayers. The band structure in the near-stoichiometric samples became prominent following the heat treatment and the homogenous grained sample underwent severe grain growth. Post-irradiation observations indicated that neutron irradiation did not have any significant effects on the bulk microstructure of any of the samples regardless of the stoichiometry. Post-irradiation softening and reduction in modulus at the highest dose (6 dpa) were observed in all samples regardless of the composition and structure but were less significant in specimens with a banded microstructure. It was concluded that the carbon interlayers which contributed to the formation of the band structure had played a role in preserving the microstructure and the mechanical properties following both heat treatment and irradiation

  14. Tritium release from highly neutron irradiated constrained and unconstrained beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu; Rolli, R.; Vladimirov, P.; Moeslang, A.

    2015-06-15

    Highlights: • For the irradiated constrained beryllium pebbles, the tritium release occurs easier than for the unconstrained ones. • Tritium retention in the irradiated constrained and unconstrained beryllium pebbles decreases with increasing irradiation temperature. • Formation of sub-grains in the constrained beryllium pebbles facilitate the open porosity network formation. - Abstract: Beryllium is the reference neutron multiplier material in the Helium Cooled Pebble Bed (HCPB) breeding blanket of fusion power plants. Significant tritium inventory accumulated in beryllium as a result of neutron-induced transmutations could become a safety issue for the operation of such blankets as well as for the nuclear waste utilization. To provide a related materials database, a neutron irradiation campaign of beryllium pebbles with diameters of 0.5 and 1 mm at 686–1006 K, the HIDOBE-01 experiment, has been performed in the HFR in Petten, the Netherlands, producing up to 3020 appm helium and 298 appm tritium. Thermal desorption tests of irradiated unconstrained and constrained beryllium pebbles were performed in a purge gas flow using a quadrupole mass-spectrometer (QMS) and an ionization chamber. Compared to unconstrained pebbles, constrained beryllium pebbles have an enhanced tritium release at all temperatures investigated. Small elongated sub-grains formed under irradiation in the constrained pebbles promote formation of numerous channels for facilitated tritium release.

  15. Annealing studies of silicon microstrip detectors irradiated at high neutron fluences

    Science.gov (United States)

    Miñano, M.; Balbuena, J. P.; García, C.; González, S.; Lacasta, C.; Lacuesta, V.; Lozano, M.; Martí i Garcia, S.; Pellegrini, G.; Ullán, M.

    2008-06-01

    Silicon p-type detectors are being investigated for the development of radiation-tolerant detectors for the luminosity upgrade of the CERN large hadron collider (Super-LHC (sLHC)). Microstrip detectors have been fabricated by CNM-IMB with an n-side read-out on p-type high-resistivity float zone substrates. They have been irradiated with neutrons at the TRIGA Mark II nuclear reactor in Ljubljana. The irradiation fluxes match with the expected doses for the inner tracker at the sLHC (up to 10 16 equivalent 1 MeV neutrons cm -2). The macroscopic properties of the irradiated prototypes after irradiation were characterized at the IFIC-Valencia laboratory. The charge collection studies were carried out by means of a radioactive source setup as well as by an infrared laser illumination. The annealing behavior was studied in detail on a microstrip detector irradiated with a flux of 10 15 equivalent 1 MeV neutrons cm -2. Collected charge measurements were made after accelerated annealing times at 80 °C up to an equivalent annealing time of several years at room temperature. This note reports on the recorded results from the annealing of the irradiated p-type microstrip sensor.

  16. Doping of monocrystalline silicon with phosphorus by means of neutron irradiation at the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    The first neutron irradiation experiments with monocrystal silicon in the IEA-R1 research reactor of IPEN are related. The silicon is irradiated with phosphorus producing a N type semiconductor with a very small resistivity variation throughout the crystal volume. The neutrons induce nuclear reactions in Si-30 isotope and these atoms are then transformed in to phosphorous atoms. This process is known as Neutron Transmutation Doping. In order to irradiate the silicon crystals in the reactor, a specific device has been constructed, and it permits the irradiation of up to 2.5'' diameter monocrystals. (author)

  17. Analysis of the weight loss of the testicles of mice after 14 and 400 MeV neutron irradiation

    CERN Document Server

    Laurent, J M

    1974-01-01

    The weight loss of the testicles was examined 28 days after neutron irradiation. A mathematical model was developed for evaluating cellular survival curves. The relative biological efficiency, determined using the value of D/sub 0/ calculated from the survival curves obtained, is 2.17 for 400 MeV neutron beams and 2.58 for 14 MeV neutron beams.

  18. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  19. Some mutants in maize obtained by irradiation with thermal neutrons

    International Nuclear Information System (INIS)

    Irradiation was carried out at the Bucharest Institute of Atomic Physics and the National Laboratory Brookhaven, USA. A description is given of 22 genic mutants affecting leaf color, plant size, and branching capacity. Characteristics related to pollen fertility and the vegetative period were affected in all the mutants. Improvement of pollen fertility was attempted over four generations without success. The maize mutants obtained by irradiation may be considered as being without practical significance. (author). 7 figs., 1 tab. 11 ref

  20. Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2014-01-15

    Highlights: • Environmental constant extension rate tensile tests were performed on neutron irradiated steel. • Percentage of intergranular cracking quantified the cracking susceptibility. • Cracking susceptibility varied with test environment, solute addition, and cold work. • No singular microstructural change could explain increases in cracking susceptibility with irradiation dose. • The increment of yield strength due to irradiation correlated well with cracking susceptibility. -- Abstract: The objective of this study was to isolate key factors affecting the irradiation-assisted stress corrosion cracking (IASCC) susceptibility of eleven neutron-irradiated austenitic stainless steel alloys. Four commercial purity and seven high purity stainless steels were fabricated with specific changes in composition and microstructure, and irradiated in a fast reactor spectrum at 320 °C to doses between 4.4 and 47.5 dpa. Constant extension rate tensile (CERT) tests were performed in normal water chemistry (NWC), hydrogen water chemistry (HWC), or primary water (PW) environments to isolate the effects of environment, elemental solute addition, alloy purity, alloy heat, alloy type, cold work, and irradiation dose. The irradiated alloys showed a wide variation in IASCC susceptibility, as measured by the relative changes in mechanical properties and crack morphology. Cracking susceptibility measured by %IG was enhanced in oxidizing environments, although testing in the lowest potential environment caused an increase in surface crack density. Alloys containing solute addition of Ni or Ni + Cr exhibited no IASCC. Susceptibility was reduced in materials cold worked prior to irradiation, and increased with increasing irradiation dose. Irradiation-induced hardening was accounted for by the dislocation loop microstructure, however no relation between crack initiation and radiation hardening was found.

  1. Defect formation in MgOxnAl2O3 at gamma-neutron irradiation

    International Nuclear Information System (INIS)

    Optical and mechanical characteristics of spinel crystals after reactor irradiation are investigated. The comparison of the concentrations of radiation-induced anion vacancies and stable F-centers has shown that less than one tenth of the point defects is stabilized at room temperature. The annealing of these vacancies occurs at 800 K. The vacancy formation during gamma-neutron irradiation of nominally pure spinel crystals improves the crack resistance. The irradiation of Fe- and Mn ion-doped crystals MgOxnAl2O3, is accompanied by the coagulation stresses and crack resistance decrease

  2. Influence of oxygen impurity atoms on defect clusters and radiation hardening in neutron-irradiated vanadium

    International Nuclear Information System (INIS)

    Single crystal TEM samples and polycrystalline tensile samples of vanadium containing 60-640 wt ppm oxygen were irradiated at about 1000C to about 1.3 x 1019 neutrons/cm2 (E greater than 1 MeV) and post-irradiation annealed up to 8000C. The defect cluster density increased and the average size decreased with increasing oxygen concentration. Higher oxygen concentrations caused the radiation hardening and radiation-anneal hardening to increase. The observations are consistent with the nucleation of defect clusters by small oxygen or oxygen-point defect complexes and the trapping of oxygen at defect clusters upon post-irradiation annealing

  3. Measurement techniques of magnetic properties for evaluation of neutron irradiation damage on austenitic stainless steels

    International Nuclear Information System (INIS)

    The remote-controlled equipment for measurement of magnetic flux density has been developed in order to evaluate the irradiation damage of austenitic stainless steels. Magnetic flux densities by neutron irradiation in austenitic stainless steels, SUS304 and Fast Breeder Reactor grade type 316 (316FR), have been measured by the equipment. The results show that irradiation damage affected to magnetic flux density, and indicate the measuring method of magnetic flux density using a small magnetizer with a permanent magnet of 2 mm in diameter is less affected by specimen shape. (author)

  4. Accumulation of tritium in beryllium material under neutron irradiation

    International Nuclear Information System (INIS)

    In the present work the programming code is created on the basis of which the accumulation kinetics of tritium and isotope of He4 in the Be9 sample is analyzed depending on the time. The program is written in C++ programming language and for the calculations Monte Carlo method was applied. This program scoped on the calculation of concentration of helium and tritium in beryllium samples depending on the spectrum of the neutron flux in different experimental reactors such as JMTR, JOYO and IPEN/MB. The processes of accumulation of helium and tritium for each neutron energy spectrum of these reactors were analyzed. (author)

  5. Irradiation creep in austenitic and ferritic steels irradiated in a tailored neutron spectrum to induce fusion reactor levels of helium

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; Gibson, L.T. [Oak Ridge National Laboratory, TN (United States); Jitsukawa, S.

    1996-04-01

    Six austenitic stainless steels and two ferritic alloys were irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor where an atomic displacement level of 7.4 dpa was achieved and was then transferred to the High Flux Isotope Reactor for the remainder of the irradiation to a total displacement level of 19 dpa. Temperatures of 60 and 330{degree}C are reported on. At 330{degree}C irradiation creep was found to be linear in stress and fluence with rates in the range of 1.7 - 5.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. Annealed and cold-worked materials exhibited similar creep rates. There is some indication that austenitic alloys with TiC or TiO precipitates had a slightly higher irradiation creep rate than those without. The ferritic alloys HT-9 and Fe-16Cr had irradiatoin creep rates about 0.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. No meaningful data could be obtained from the tubes irradiated at 60{degree}C because of damage to the tubes.

  6. Hardening and microstructural evolution in A533B steels under neutron irradiation and a direct comparison with electron irradiation

    Science.gov (United States)

    Fujii, K.; Nakata, H.; Fukuya, K.; Ohkubo, T.; Hono, K.; Nagai, Y.; Hasegawa, M.; Yoshiie, T.

    2010-05-01

    A533B steels irradiated at 290 °C up to 10 mdpa in the Kyoto University Reactor were examined by hardness, positron annihilation and atom probe measurements. Dose dependent irradiation hardening and formation of Cu-rich clusters were confirmed in medium Cu (0.12% and 0.16%Cu) steels whereas neither hardening nor cluster formation was detected in low Cu (0.03%Cu) steel. No microvoids were formed in any of the steels. Post-irradiation annealing in medium Cu steels revealed that the hardening recovery at temperatures above 350-400 °C could be attributed to compositional changes and dissociation of the Cu-rich clusters. Compared to electron irradiation at almost the same dose and dose rate, KUR irradiation caused almost the same hardening and produced Cu-rich clusters, more solute-enriched with larger size and lower density. Considering lower production of freely-migrating vacancies in neutron irradiation, the results suggested that cascades enhance the formation of Cu-rich clusters.

  7. Magnetic susceptibility and magnetoresistance of neutron-irradiated doped SI whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Druzhinin, A.A., E-mail: druzh@polynet.lviv.ua [Lviv Polytechnic National University, S. Bandera Str., 12, Lviv 79013 (Ukraine); International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw (Poland); Ostrovskii, I.P.; Khoverko, Yu.M. [Lviv Polytechnic National University, S. Bandera Str., 12, Lviv 79013 (Ukraine); International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw (Poland); Rogacki, K. [International Laboratory of High Magnetic Fields and Low Temperatures, Wroclaw (Poland); Litovchenko, P.G.; Pavlovska, N.T. [Institute of Nuclear Researches, NAS of Ukraine, 47, Prospect Nauky, 03028 Kyiv (Ukraine); Pavlovskyy, Yu.V.; Ugrin, Yu.O. [Ivan Franko Drohobych State Pedagogical University, 24, Franko str., 82100 Drohobych (Ukraine)

    2015-11-01

    The effect of 8.6·10{sup 17} n/cm{sup 2} fast neutron irradiation on the magnetic susceptibility and magnetoresistance of Si whiskers with impurity concentration near metal–insulator transition (MIT) has been studied. Neutron irradiated specimens with boron concentration away of MIT are mainly diamagnetic with a small amount of paramagnetic centers originated from dangling bonds on the whisker surface. It has been established that at temperatures near 4.2 K, a significant contribution to the conductivity is made by light charge carriers of low concentration but with high mobility. The as grown whiskers with impurity concentration correspondent to MIT showed hysteresis loops in magnetization at temperature of liquid helium. Besides hysteresis loops in magnetoresistance was observed for whiskers under compression stress at low temperature up to 7 K. The possible reason of the effect can be magnetic interaction between impurities centers in subsurface region of the whisker with the orbital moment of dangle bounds in the whisker core–shell interstices. - Highlights: • Neutron irradiation influence on magnetic susceptibility of Si whiskers is studied. • Neutron irradiated Si whiskers with boron concentration away of MIT are diamagnetic. • Whiskers in the vicinity to MIT showed hysteresis loops in magnetoresistance. • Whiskers in the vicinity to MIT showed hysteresis loops in magnetic susceptibility.

  8. Defect-production efficiency in spinel crystals under electron and gamma-neutron irradiation

    International Nuclear Information System (INIS)

    The origin and concentration of defects in MgOxnAl2O3 (n=1 and 2.5) crystals were investigated after irradiation with reactor neutrons, electrons, X-rays and UV-light. Low efficiency of defect production in cation sublattice are explained by small coefficient of cation site filling

  9. Response of human lymphocyte chromosomes to fractionated neutron irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sevan' kaev, A.V.; Nasonova, V.A.; Golovinova, G.I. (Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel' skij Inst. Meditsinskoj Radiologii)

    A comparative study was made of the yield of chromosome aberrations in a human lymphocyte culture after a single and fractionated exposure to neutron radiation at the beginning of the G/sub 1/ phase and during the S phase of the mitotic cycle. It was shown that the degree of the chromosome affection in both phases does not depend upon the irradiation schedules.

  10. Effects of neutron irradiation in magnetic properties of metals and alloys

    International Nuclear Information System (INIS)

    The effects of neutron irradiation on the magnetic properties of metals and alloys, namely magnetic anisotropy, hysteresis loop, initial magnetic permeability, which are sensitives to structural changes, are studied. First a short review is made, followed by experimentals results and the plot of the vacancies supersaturation, which are obtained in the reactor of the Instituto de Pesquisas Energeticas e Nucleares. (Author)

  11. Improvement of mungbean by X-ray and thermal neutron irradiation

    International Nuclear Information System (INIS)

    With the aim of improving yield, resistance to Cercospora leaf spot and pod shattering, mungbean varieties Kyunggi No. 5 and M-317 were irradiated with X-rays and thermal neutrons. High yielding mutant lines are generally characterized by a higher number of pods per plant. Better Cercospora resistance appears often associated with later maturity. Satisfactory shattering resistance was not yet obtained. (author)

  12. Pollution of liquid argon after neutron irradiation measured at SARA: summary of raw data

    CERN Document Server

    Andrieux, M L; de Saintignon, P; Ferrari, A; Hostachy, J Y; Martin, P; Wielers, M; Belymam, A; Hoummada, A; Merkel, B; Puzo, P M; Sauvage, D

    1998-01-01

    The SARA fast neutron facility has been used to irradiate various pieces of materials due to be used in the ATLAS electromagnetic calorimeter, immersed in a liquid argon cryostat. The subsequent pollution was measured. The raw data have been summarized in this paper.

  13. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    International Nuclear Information System (INIS)

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice

  14. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    Energy Technology Data Exchange (ETDEWEB)

    Di Cicco, D.; Antal, S.; Ammassari-Teule, M. (Istituto di Psicobiologia e Psicofarmacologia del CNR, Rome (Italy))

    1991-01-01

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice.

  15. Irradiation Induced Defect Characterization in Reactor Pressure Vessel Steel by Small Angle Neutron Scattering

    Science.gov (United States)

    Han, Yougn-Soo; Shin, Eun-Joo; Lee, Chang-Hee; Park, Duck-Gun

    The degradation of the mechanical properties of the RPV (Reactor Pressure Vessel) steel during an irradiation in a nuclear power plant is closely related to the irradiation induced defects. The size of these defects is known to be a few nanometer, and the small angle neutron scattering technique is regarded as the best non destructive technique to characterize the nano sized inhomogeneities in bulk samples. The investigated the RPV steel has been used in YeongKwang nuclear power plant at Korea and the Cu content of the RPV steel is 0.06 wt%. The RPV steel was irradiated in the HANARO reactor at KAERI. The small angle neutron scattering experiments were performed by the SANS instrument in the HANARO reactor. The nano sized irradiation induced defects were quantitatively analyzed by SANS and the type of the irradiation induced defects was discussed in detail. The relation between irradiation induced defects and the yield strength was investigated. The characteristics of irradiation induced defects in low Cu containing RPV steel were discussed.

  16. The Effect of Combining Fast Neutron and Photon Irradiation on the Human Osteosarcoma OS-732 Cell Line

    Institute of Scientific and Technical Information of China (English)

    Linchun Feng; Lin Ma; Jingxiang Huang; Dong Yang; Yingxuan Wang; Mingxue Sun; Jinhua Tang; Weike Chang; Chengxiang Liu

    2005-01-01

    OBJECTIVE To determine the lethal effect of combining fast neutron with photon radiation on the OS-732 cell line.METHODS We examined the effect of irradiation by fast neutrons, photons and a mixed beam (fast neutrons plus photons) on the lethality and colony forming ability of the OS-732 cell line at different times.RESULTS Following a single irradiation close, the lethality was markedly strong at 24, 48 and 72 h in the group treated with fast neutrons alone and in the mixed beam group in which there was a high proportion of fast neutrons.CONCLUSION The lethal effect of a fast neutron and mixed beam with a high proportion of fast neutrons on the OS-732 cell line is highly significant. These studies provide guidance for the clinical application of fast neutrons for osteosarcoma treatment.

  17. Consideration of neutron flux gradients for sophisticated evaluation of irradiation experiments

    International Nuclear Information System (INIS)

    A joint Russian/German irradiation experiment was performed at the pressurised water reactor WWER 2 of the Rheinsberg NPP (Germany). The experiment comprises about 800 Charpy V-notch, SENB and CT specimens made from 24 different heats of Russian type RPV base and weld metals. Comprehensive calculations of the neutron fluence were carried out. A multigroup Monte Carlo method allows the calculation of the neutron fluence of each specimen or of different points within a large specimen under consideration of the details of the geometric arrangement. As the calculations shown the neutron fluence considerably varies over the cross section of an irradiation rig. Therefore, influence of the flux gradients on testing of Charpy V-notch and CT-specimens is evaluated. Methods taking into account a fluence correction of the measured absorbed energies are presented and discussed. (author)

  18. Using activation method to measure neutron spectrum in an irradiation chamber of a research reactor

    International Nuclear Information System (INIS)

    Neutron spectrum should be measured before test samples are irradiated. Neutron spectrum in an irradiation chamber of a research reactor was measured by using activation method when the reactor is in normal operation under 2 MW. Sixteen kinds of non-fission foils (19 reaction channels) were selected, of which 10 were sensitive to thermal and intermediate energy regions, while the others were of different threshold energy and sensitive to fast energy regions. By measuring the foil radioactivity, the neutron spectrum was unfolded with the iterative methods SAND-II and MSIT. Finally, shielding corrections of group cross-section and main factors affecting the calculation accuracy were studied and the uncertainty of solution was analyzed using the Monte Carlo method in the process of SAND-II. (authors)

  19. 基于WIMS和MCNP耦合程序的医院中子照射器Ⅰ型堆燃耗计算%The burnup calculation for in-hospital neutron irradiator mark 1 reactor based on coupled code of WIMS and MCNP

    Institute of Scientific and Technical Information of China (English)

    郭和伟; 江新标; 赵柱民; 陈立新; 张信一; 周永茂

    2012-01-01

    建立了基于WIMS和MCNP的临界-燃耗耦合计算方法,并对此方法进行了验算.通过栅元和组件问题的分析计算以及西安脉冲堆燃耗实验对比,验证了此耦合程序的可靠性和正确性.最后应用此耦合程序对医院中子照射器Ⅰ型堆的燃耗进行了计算和分析.%Numerical calculation for the equivalent surface source of the thermal neutron duct of in-hospital neutron irradiator mark 1 (IHNI-1) reactor is carried out using MCNP Monte Carlo code. Cold clean criticality of B-core is searched. Neutron beam parameters at the exit of thermal neutron duct are calculated. Equivalent neutron and -y surface sources for BNCT are built using equivalent surface source model. And these sources are reliable to calculate absorbed dose distribution in equivalent model of head quickly.

  20. Evaluation on radiation features of the KUR deuterium neutron irradiation equipment. Neutron energy spectra and neutron- and gamma-ray absorption dose rate

    International Nuclear Information System (INIS)

    The deuterium irradiation equipment at reactor for research in Kyoto University (KUR) was reformed at main aim of upgrading of neutron capture therapy (NCT) from November, 1995 to March, 1996. Neutron energy spectra at reference radiation position evaluated on a partial radiation mode by multiple activated foil method, was introduced. As a result of carrying out a simulation calculation using two dimensional transmission calculation supposing medical radiation using the obtained spectra, experimental results could be followed satisfactorily in total. And, comparison with differential absorption dose rate measured by using twin-type ionization box and semiconductor detector for medical probe was also carried out. (G.K.)

  1. Measurement of tumor blood flow following neutron irradiation

    International Nuclear Information System (INIS)

    Clinical oncologists and cancer researchers benefit from information on the vascularization or non-vascularization of solid tumors because of blood flow's influence on three popular treatment types: hyperthermia therapy, radiotherapy, and chemotherapy. The objective of this research is the development of a clinically useful tumor blood flow measurements technique. The designed technique is sensitive, has good spatial resolution, in non-invasive and presents no risk to the patient beyond his usual treatment. Tumor blood flow was determined by measuring the washout of positron emitting isotopes created through neutron therapy treatment. In order to do this, several technical and scientific questions were addressed first. These questions have been answered through both theoretical calculation and measurement. The first question was answered through the measurement of macroscopic cross sections for the predominant nuclear reactions in the body. These results correlate well with an independent mathematical prediction of tissue activation and measurements of mouse spleen neutron activation. The second question was addressed by performing cell suspension and protein precipitation techniques on neutron activated mouse spleens. The third and final question was answered by using first physical principles to develop a model mimicking the blood flow system and measurement technique. In a final set of experiments, the above were applied to flow models and animals. The ultimate aim of this project is to apply its methodology to neutron therapy patients

  2. Mechanical properties of neutron irradiated vanadium alloys under liquid sodium environment

    International Nuclear Information System (INIS)

    Full text of publication follows: Vanadium alloys are candidate materials for fusion reactor blanket structural materials, but its knowledge about the mechanical properties at high temperatures during neutron irradiation is limited and there are uncertainties that may have influenced the results such as the interstitial impurity content of specimens. The objective of this study is to investigate the mechanical properties and microstructural changes of the high-purified V-4Cr-4Ti alloys, NIFS-HEAT2 during neutron irradiation. In this study, tensile test, Charpy impact test and microstructural observation were done for V-4Cr-4Ti alloys and vanadium binary alloys. Small sized tensile specimens, 1.5 Charpy V-notched specimens and TEM specimens of highly purified V-4Cr-4Ti alloys, NIFS-Heat and vanadium binary alloys were irradiated in Joyo in the temperature range from 450 deg. C to 650 deg. C with a damage level from 1 to 5 dpa. In the irradiation experiment, we have developed Na-enclosed irradiation rig in Joyo in order to equalize the irradiation temperature of large scale specimens and prevent the invasion of interstitial impurities from the circumstance in irradiation rig during irradiation for irradiation specimens. After dismantling the Na-enclosed capsule and cleaning the surface of specimens, tensile tests at room temperature, Charpy impact tests and TEM observation were performed. Irradiation hardening and reduction of ductility for NIFS-Heat alloys could be seen at 450 deg. C irradiation in tensile tests, but the destructive loss of plasticity could not be in any vanadium specimens even at 450 deg. C irradiation. Results of Charpy impact test showed that the amounts of upper shelf energy of NIFS-heat specimens irradiated at 450 deg. C and 600 deg. C were about 0.1-0.2 J at room temperature and brittle behavior could not be seen from load displacement relationship and SEM observation of fracture surface. From the TEM observation of NIFS-Heat alloys

  3. Characterisation of the epithermal neutron irradiation facility at the Portuguese research reactor using MCNP

    International Nuclear Information System (INIS)

    The radiation field at the epithermal beamline and irradiation chamber installed at the Portuguese Research Reactor (RPI) at the Campus Tecnológico e Nuclear of Instituto Superior Técnico was characterised in the context of Prompt Gamma Neutron Activation Analysis (PGNAA) applications. Radiographic films, activation foils and thermoluminescence dosimeters were used to measure the neutron fluence and photon dose rates in the irradiation chamber. A fixed-source MCNPX model of the beamline and chamber was developed and compared to measurements in the first step towards planning a new irradiation chamber. The high photon background from the reactor results in the saturation of the detector and the current facility configuration yields an intrinsic insensitivity to various elements of interest for PGNAA. These will be addressed in future developments. - Highlights: • An epithermal neutron irradiation facility modelled using MCNPX. • Foils and TLDs used to measure dose in chamber and compared to simulations. • Proposed modifications to the irradiation chamber outlined based upon results of simulations

  4. Study of the chemical species of fluorine 18 produced by neutron irradiation of lithium aluminate

    International Nuclear Information System (INIS)

    In the present work, the chemical form of fluorine-18 obtained by means of the neutron irradiated lithium aluminate was studied, in order to know its chemical behavior and to observe if it volatilizes and adheres to the walls of a tritium distillation system; for this matter paper chromatography and high voltage electrophoresis techniques were used. Lithium aluminate was synthetized, being characterized as LiAlO2 which was irradiated with neutrons in order to produce fluorine-18. Lithium aluminate is a non-soluble solid, therefore fluorine produced may not be extracted, unless it is dissolved or extracted through the solid. So as not affect in a drastic way the chemical form, it was submitted to extraction processes, agitating the irradiated samples with different acids and basic solutions in order to analyze fluorine-18. The best extraction agent was found to be HCl, where two forms of fluorine-18 were found, one at the point of application, probably as a complex hexafluoride-aluminate and the other as a characteristic Rf of the fluorine ion. In the tritium distillation with helium as a carrier of a sample irradiated and heated up to 220-250oC, no volatile types of fluorine-18 were found, thus it can be considered that in commercial production of tritium by means of neutron irradiation of lithium aluminate, fluorine-18 is not a damaging pollutant of the equipment pipe system. (Author)

  5. Helium release from neutron-irradiated Li{sub 2}O single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Daiju; Tanifuji, Takaaki; Noda, Kenji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Helium release behavior in post-irradiation heating tests was investigated for Li{sub 2}O single crystals which had been irradiated with thermal neutrons in JRR-4 and JRR-2, and fast neutrons in FFTF. It is clarified that the helium release curves from JRR-4 and JRR-2 specimens consists of only one broad peak. From the dependence of the peak temperatures on the neutron fluence and the crystal diameter, and the comparison with the results obtained for sintered pellets, it is considered that the helium generated in the specimen is released through the process of bulk diffusion with trapping by irradiation defects such as some defect clusters. For the helium release from FFTF specimens, two broad peaks were observed in the release curves. It is considered to suggest that two different diffusion paths exist for helium migration in the specimen, that is, bulk diffusion and diffusion through the micro-crack due to the heavy irradiation. In addition, helium bubble formation after irradiation due to the high temperature over 800K is suggested. (J.P.N.)

  6. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    Directory of Open Access Journals (Sweden)

    Zujun Wang

    2014-07-01

    Full Text Available The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 108 n/cm2s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively. The mean dark signal (KD, dark signal spike, dark signal non-uniformity (DSNU, noise (VN, saturation output signal voltage (VS, and dynamic range (DR versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

  7. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    International Nuclear Information System (INIS)

    The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 108 n/cm2s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively. The mean dark signal (KD), dark signal spike, dark signal non-uniformity (DSNU), noise (VN), saturation output signal voltage (VS), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike

  8. Prenatal death and malformations after irradiation of mouse zygotes with neutrons or X-rays

    International Nuclear Information System (INIS)

    Female mice (strain: Heiligenberger Stamm) were irradiated with neutrons (7 MeV) or X-rays when embryos were at the early zygote stage; uterine contents were examined on gestation day 19 for prenatal mortality and malformed fetuses. For both radiation qualities, the dose-dependent survival curve fitted well to a simple exponential equation; the neutron relative biological efficiency (RBE) value was 2.3. The major fraction of deaths induced by exposure to neutrons or X-rays occurred before implantation. Aside from dead embryos, malformed fetuses were observed 19 days p.c. (postconception). The number of malformed fetuses increased with a linear-quadratic function of neutron or X-ray dose. Malformations were mainly gastroschisis, although omphaloceles and anencephalies were also observed. The neutron RBE value for the induction of malformations varied from 2.0 to 2.8 in the dose range tested. Except after 75-cGy neutrons, no significant increase in the proportion of stunted or skeletally malformed fetuses was noted. Our results indicated that the reaction of preimplantation embryos to irradiation could be more complex than the simple all-or-none response considered so far

  9. Might iodomethyl-α-tyrosine be a surrogate for BPA in BNCT?

    International Nuclear Information System (INIS)

    A single-photon emission computed tomography [SPECT] imaging agent that is an analogue of a boron carrier for boron neutron-capture therapy [BNCT] of cerebral gliomas would be useful for assessing the kinetics of boron uptake in tumors and in the surrounding brain tissues noninvasively. BNCT is based on the interaction of thermalized neutrons with 10B nuclei in the targeted tumor. For BNCT of brain tumors, it is crucial that 10B concentrations in radiosensitive regions of the brain be minimal since malignant cells and vital brain tissues are often inter-mingled at the margins of the tumor. Currently, boronophenylalanine [BPA]-mediated BNCT is undergoing preliminary clinical study for postoperative radiotherapy of glioblastorna multiforme at Brookhaven National Laboratory. Investigators in Japan are developing 18F-fluoroboronophenylaianine [FBPA] as a positron 18F (T1/2 = 110 min), which is usually emission tomography [PET] surrogate for BPA. generated at a cyclotron dedicated to PET, is generally a minimally perturbing substitute for the 2-H on the aromatic ring because of its small size and the strong covalent bond it forms with carbon. However, SPECT has potential advantages over PET: (1) SPECT is clinically more widely available at lower cost; (2) most radioisotopes for the synthesis of SPECT agents can be purchased; (3) SPECT is less difficult to implement. It is thought that the quality of images derived from the two techniques would each be sufficiently informative for BNCT treatment planning purposes, provided that the SPECT and PET agents being considered were both pharmacokinetic surrogates for BPA. This study evaluated the use of 123I alpha methyltyrosine as a surrogate for BPA in BNCT

  10. Might iodomethyl-{alpha}-tyrosine be a surrogate for BPA in BNCT?

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Michiko; Micca, P.L.; Nawrocky, M.M.; Slatkin, D.N.

    1996-12-31

    A single-photon emission computed tomography [SPECT] imaging agent that is an analogue of a boron carrier for boron neutron-capture therapy [BNCT] of cerebral gliomas would be useful for assessing the kinetics of boron uptake in tumors and in the surrounding brain tissues noninvasively. BNCT is based on the interaction of thermalized neutrons with {sup 10}B nuclei in the targeted tumor. For BNCT of brain tumors, it is crucial that {sup 10}B concentrations in radiosensitive regions of the brain be minimal since malignant cells and vital brain tissues are often inter-mingled at the margins of the tumor. Currently, boronophenylalanine [BPA]-mediated BNCT is undergoing preliminary clinical study for postoperative radiotherapy of glioblastorna multiforme at Brookhaven National Laboratory. Investigators in Japan are developing {sup 18}F-fluoroboronophenylaianine [FBPA] as a positron {sup 18}F (T{sub 1/2} = 110 min), which is usually emission tomography [PET] surrogate for BPA. generated at a cyclotron dedicated to PET, is generally a minimally perturbing substitute for the 2-H on the aromatic ring because of its small size and the strong covalent bond it forms with carbon. However, SPECT has potential advantages over PET: (1) SPECT is clinically more widely available at lower cost; (2) most radioisotopes for the synthesis of SPECT agents can be purchased; (3) SPECT is less difficult to implement. It is thought that the quality of images derived from the two techniques would each be sufficiently informative for BNCT treatment planning purposes, provided that the SPECT and PET agents being considered were both pharmacokinetic surrogates for BPA. This study evaluated the use of {sup 123}I alpha methyltyrosine as a surrogate for BPA in BNCT.

  11. Characterization of macroscopic properties and crystalline defects in neutron-irradiated silicon carbide

    International Nuclear Information System (INIS)

    Length change, mechanical properties, helium release behavior, ESR observation and microstructure of neutron-irradiated silicon carbide (SiC) were investigated. Changes in those properties due to annealing were also measured to clarify the relationship between crystalline defects induced by neutron irradiation and macroscopic properties. The effects of external stress on defect annihilation and bubble swelling during annealing of neutron-irradiated specimens were investigated. From those experiments, it is clarified that the decrease in length by annealing below 1300 degC was not affected by the external stress. However, annealing above 1300 degC led to an increase in length in B-containing SiC, and the compressive stress retarded the expansion along the loading direction. The helium release behavior of neutron-irradiated SiC containing B was observed and it was clarified that the helium release rate of ceramic and its powder was different from each other. Defects characterization was carried out by ESR measurement and high-resolution electron microscopy. It was indicated that the vacancies with unpaired electron detected by ESR selectively disappear at lower temperature than those detected by a macroscopic length measurement. High-resolution electron microscopy revealed that very small interstitial type Flank loops lying on {111}, having a Burgers vector b=1/3, were formed in β-SiC heavily-neutron-irradiated in a fast reactor. Defect nuclei, a few nanometer in diameter, in hexagonal α-SiC were induced by lower doses in a thermal reactor. They are on the (0001) basal plane and have a Burgers vector b=1/6 [0001]. (J.P.N.)

  12. Neutron metrology in the HFR. Steel irradiation R268-604/605/606

    Energy Technology Data Exchange (ETDEWEB)

    Appelman, K.H.; Voorbraak, W.P.

    1995-05-01

    The irradiation experiment R268-60 series is a part of a material test program to test the mechanical properties of different types of austenitic stainless steel, i.e. ERHII, PAW1B, PAW2 and TIG deposit weld material. The experiment has been irradiated in the HFR Petten. The irradiation circumstances for this experiment, carried out in a TRIO type capsule in HFR position H8, represent the conditions for the internals used in advanced reactors. This report presents the final neutron metrology results obtained from activation monitors in the specimen holders, coded as 604, 605, and 606. Data about the helium production as well as the number of displacements per atom are also included. The main results of the thermal and fast neutron fluence measruements are presented in the tables 2, 3, 4 and 5 and in the figures 1 to 3. (orig.).

  13. Neutron metrology in the HFR. Steel irradiation R268-604/605/606

    International Nuclear Information System (INIS)

    The irradiation experiment R268-60 series is a part of a material test program to test the mechanical properties of different types of austenitic stainless steel, i.e. ERHII, PAW1B, PAW2 and TIG deposit weld material. The experiment has been irradiated in the HFR Petten. The irradiation circumstances for this experiment, carried out in a TRIO type capsule in HFR position H8, represent the conditions for the internals used in advanced reactors. This report presents the final neutron metrology results obtained from activation monitors in the specimen holders, coded as 604, 605, and 606. Data about the helium production as well as the number of displacements per atom are also included. The main results of the thermal and fast neutron fluence measruements are presented in the tables 2, 3, 4 and 5 and in the figures 1 to 3. (orig.)

  14. Neutron irradiation induced effects on the electrochemical current-voltage characteristics of n-GaAs

    International Nuclear Information System (INIS)

    Thermal neutron irradiation produces spatial and energetical homogenously distributed defects in n-GaAs which act as charge carrier traps and scattering centres and as recombination sites for photogenerated charge carriers. Therefore, after neutron irradiation the charge carrier concentration and mobility and the maximum photocurrent are lowered and the photocurrent onset potential is further shifted in positive direction versus flatband potential. Annealing of the irradiated samples lead to defect annihilation and thus, to the recovery of the original electrochemical characteristics. Annealing at temperatures above 600oC leads to an arsenic deficient surface with electronic defect states in the band gap in the near-surface region. Recombination at these defects only influences the maximum photocurrent, but not the photocurrent onset potential. (author)

  15. Influence of rapid thermal process on intrinsic gettering in fast neutron irradiated Czochralski silicon

    Institute of Scientific and Technical Information of China (English)

    CHEN Gui-feng; LI Yang-xian; LI Xing-hua; CAI Li-li; MA Qiao-yun; NIU Ping-juan; NIU Sheng-li; CHEN Dong-feng

    2006-01-01

    A rapid thermal process (RTP) was first introduced into the intrinsic gettering (IG) processes of fast neutron irradiated Czochralski (CZ) silicon. The effect of RTP conditions on bulk microdefects (BMDs) and denuded zone (DZ) was investigated. Fourier transform infrared absorption spectrometer (FTIR) was used to measure the concentration of interstitial oxygen ([Oi]). Bulk microdefects were observed by optical microscope. The results show that,according to the variation of [Oi],it is found that RTP doesn't change the processes of oxygen precipitation in fast neutron irradiated Czochralski silicon. Perfect denuded zone,dense oxygen precipitates and defects form in the bulk of irradiated samples. With increasing temperature of RTP,the width of denuded zone decreases. Increasing RTP cooling rate,the density of Bulk microdefects increases. DZ forms in the sample that annealed in nitrogen atmosphere.

  16. Structure and Spatial Distribution of Ge Nanocrystals Subjected to Fast Neutron Irradiation

    Directory of Open Access Journals (Sweden)

    Alexander N. Ionov

    2011-07-01

    Full Text Available The influence of fast neutron irradiation on the structure and spatial distribution of Ge nanocrystals (NC embedded in an amorphous SiO2 matrix has been studied. The investigation was conducted by means of laser Raman Scattering (RS, High Resolution Transmission Electron Microscopy (HR-TEM and X-ray photoelectron spectroscopy (XPS. The irradiation of Ge- NC samples by a high dose of fast neutrons lead to a partial destruction of the nanocrystals. Full reconstruction of crystallinity was achieved after annealing the radiation damage at 8000C, which resulted in full restoration of the RS spectrum. HR-TEM images show, however, that the spatial distributions of Ge-NC changed as a result of irradiation and annealing. A sharp decrease in NC distribution towards the SiO2 surface has been observed. This was accompanied by XPS detection of Ge oxides and elemental Ge within both the surface and subsurface region.

  17. Selective irradiation of the blood vessels by using boron neutron capture reaction - development and its utilization

    International Nuclear Information System (INIS)

    Full text: The purposes are development of the method to irradiate blood vessels selectively by using B-10(n, alpha) Li-7 reaction and examination of its effect on tumor and normal tissues. We made BSH-enclosed large size liposome (=300 nm) conjugated with PEG ; BSH-PEG-liposome. This type liposome is thought to escapes from macrophage in the liver, and can stay in the blood at high concentration level for long time. They are also considered not to be able to leak from the vessels into the surrounding tissues. If they receive neutron, B-10 emits extreme short-range (<9 micron) alpha-particle and recoil Li-7 nucleus. C3H/He mice and tumor model SCCVII were used to examine the character and effect of this type liposome. Thermal neutron irradiation was performed by KUR heavy water facility and B-10 concentrations in the blood or tissues were measured by prompt gamma-ray spectrometry. The B-10 concentration ratio between blood and tumor 30 minutes after BSH-PEG-liposome administration was 35- 40, and this ratio was stable for several hours. The effect on the tumors that received neutrons was examined by colony formation assay. The tumor cell survival rate of the BSH-PEG-liposome neutron group was very slightly suppressed in comparison with that of neutron alone group, however, the growth of the tumors was remarkably suppressed in BSH-PEG-liposome neutron group. In the mice that received whole body neutron irradiation after BSH-PEF-liposome injection, the mouse group of 50 Gy to the endothelium of the vessel did exhibit no death, and in the groups of 127 and 183 Gy, all individuals died. But diarrhea and bloody anal discharge that suggested radiation intestinal death were not observed at all. Cause of the death seemed to be bone marrow death

  18. Impact property of low-activation vanadium alloy after laser welding and heavy neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaka, Takuya, E-mail: nagasaka@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu (Japan); The Graduate University for Advanced Studies, Toki, Gifu (Japan); Muroga, Takeo [National Institute for Fusion Science, Toki, Gifu (Japan); The Graduate University for Advanced Studies, Toki, Gifu (Japan); Watanabe, Hideo [Research Institute for Applied Mechanics, Kyushu University, Kasuga (Japan); Miyazawa, Takeshi [The Graduate University for Advanced Studies, Toki, Gifu (Japan); Yamazaki, Masanori [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki (Japan); Shinozaki, Kenji [Department of Mechanical System Engineering, Graduate School of Engineering, Hiroshima University, Higashi Hiroshima (Japan)

    2013-11-15

    Weld specimens of the reference low activation vanadium alloy, NIFS-HEAT-2, were irradiated up to a neutron fluence of 1.5 × 10{sup 25} n m{sup −2} (E > 0.1 MeV) (1.2 dpa) at 670 K and 1.3 × 10{sup 26} n m{sup −2} (5.3 dpa) at 720 K in the JOYO reactor in Japan. The base metal exhibited superior irradiation resistance with the ductile-to-brittle transition temperature (DBTT) much lower than room temperature (RT) for both irradiation conditions. The weld metal kept the DBTT below RT after the 1.2 dpa irradiation; however, it showed enhanced irradiation embrittlement with much higher DBTT than RT after the 5.3 dpa irradiation. The high DBTT for the weld metal was effectively recovered by a post-irradiation annealing at 873 K for 1 h. Mechanisms of the irradiation embrittlement and its recovery are discussed, based on characterization of the radiation defects and irradiation-induced precipitation.

  19. Results from the CDE phase activity on neutron dosimetry for the international fusion materials irradiation facility test cell

    CERN Document Server

    Esposito, B; Maruccia, G; Petrizzi, L; Bignon, G; Blandin, C; Chauffriat, S; Lebrun, A; Recroix, H; Trapp, J P; Kaschuck, Y

    2000-01-01

    The international fusion materials irradiation facility (IFMIF) project deals with the study of an accelerator-based, deuterium-lithium source, producing high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials for fusion energy reactors. IFMIF would also provide calibration and validation of data from fission reactor and other accelerator based irradiation tests. This paper describes the activity on neutron/gamma dosimetry (necessary for the characterization of the specimens' irradiation) performed in the frame of the IFMIF conceptual design evaluation (CDE) neutronics tasks. During the previous phase (conceptual design activity (CDA)) the multifoil activation method was proposed for the measurement of the neutron fluence and spectrum and a set of suitable foils was defined. The cross section variances and covariances of this set of foils have now been used for tests on the sensitivity of the IFMIF neutron spectrum determination to cross section uncertainties...

  20. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    Science.gov (United States)

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.