WorldWideScience

Sample records for bnct final progress

  1. Accelerator-based BNCT.

    Science.gov (United States)

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  2. An accelerator neutron source for BNCT. Technical progress report, 1 June 1993--31 May 1994

    International Nuclear Information System (INIS)

    Blue, T.E.; Vafai, K.

    1994-02-01

    This is the progress report for the project entitled, ''An Accelerator Neutron Source for BNCT.'' The progress report is for the period from July 1, 1993 to date. The overall objective of our research project is to develop an Accelerator Epithermal Neutron Irradiation Facility (AENIF) for Boron Neutron Capture Therapy (BNCT). The AENIF consists of a 2.5 MeV high current proton accelerator, a lithium target to produce source neutrons, and a moderator/reflector assembly to obtain from the energetic source neutrons an epithermal neutron field suitable for BNCT treatments. Our project goals are to develop the non-accelerator components of the AENIF, and to specifically include in our development: (1) design, numerical simulation, and experimental verification of a target assembly which is capable of removing 75 kW of beam power; (2) re-optimization of the moderator assembly design based on in-phantom dose assessments using neutron spectra calculated in phantom and an energy-dependent neutron Relative Biological Effectiveness (RBE); (3) construction of a prototype moderator assembly and confirmation of its design by measurements; (4) design of the shielding of the accelerator and treatment rooms for an AENIF; and (5) design of a high energy beam transport system which is compatible with the shielding design and the thermal-hydraulic design

  3. BNCT-RTPE: BNCT radiation treatment planning environment

    International Nuclear Information System (INIS)

    Wessol, D.E.; Wheeler, F.J.; Babcock, R.S.

    1995-01-01

    Several improvements have been developed for the BNCT radiation treatment planning environment (BNCT-Rtpe) during 1994. These improvements have been incorporated into Version 1.0 of BNCT-Rtpe which is currently installed at the INEL, BNL, Japanese Research Center (JRC), and Finland's Technical Research Center. Platforms supported by this software include Hewlett-Packard (HP), SUN, International Business Machines (IBM), and Silicon Graphics Incorporated (SGI). A draft version of the BNCT-Rtpe user manual is available. Version 1.1 of BNCT-Rtpe is scheduled for release in March 1995. It is anticipated that Version 2.x of BNCT-Rtpe, which includes the nonproprietary NURBS library and data structures, will be released in September 1995

  4. Present status of accelerator-based BNCT: Focus on developments in Argentina

    International Nuclear Information System (INIS)

    Cartelli, D.; Capoulat, M.E.; Bergueiro, J.; Gagetti, L.; Suárez Anzorena, M.; Grosso, M.F. del; Baldo, M.; Castell, W.; Padulo, J.; Suárez Sandín, J.C.; Igarzabal, M.; Erhardt, J.; Mercuri, D.

    2015-01-01

    In this work we provide some information on the present status of accelerator-based BNCT (AB-BNCT) worldwide and subsequently concentrate on the recent accelerator technology developments in Argentina. - Highlights: • The current status of projects and associated facilities for AB-BNCT worldwide is shown. • Only low (few MeV) energy accelerators are included. • The recent progress of the Argentine AB-BNCT program is described.

  5. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  6. INEL BNCT Research Program annual report 1994

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1995-11-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included

  7. INEL BNCT Research Program annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1995-11-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. Accelerator based-boron neutron capture therapy (BNCT)-clinical QA and QC

    International Nuclear Information System (INIS)

    Suzuki, Minoru; Tanaka, Hiroki; Sakurai, Yoshinori; Yong, Liu; Kashino, Genro; Kinashi, Yuko; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2009-01-01

    Alpha-particle and recoil Li atom yielded by the reaction ( 10 B, n), due to their high LET properties, efficiently and specifically kill the cancer cell that has incorporated the boron. Efficacy of this boron neutron capture therapy (BNCT) has been demonstrated mainly in the treatment of recurrent head/neck and malignant brain cancers in Kyoto University Research Reactor Institute (KUR). As the clinical trial of BNCT is to start from 2009 based on an accelerator (not on the Reactor), this paper describes the tentative outline of the standard operation procedure of BNCT for its quality assurance (QA) and quality control (QC) along the flow of its clinical practice. Personnel concerned in the practice involve the attending physician, multiple physicians in charge of BNCT, medical physicists, nurses and reactor stuff. The flow order of the actual BNCT is as follows: Pre-therapeutic evaluation mainly including informed consent and confirmation of the prescription; Therapeutic planning including setting of therapy volume, and of irradiation axes followed by meeting for stuffs' agreement, decision of irradiating field in the irradiation room leading to final decision of the axis, CT for the planning, decision of the final therapeutic plan according to Japan Atomic Energy Agency-Computational Dosimetry System (JCDS) and meeting of all related personnel for the final confirmation of therapeutic plan; and BNCT including the transport of patient to KUR, dripping of boronophenylalanine, setting up of the patient on the machine, blood sampling for pharmacokinetics, boron level measurement for decision of irradiating time, switch on/off of the accelerator, confirmation of patient's movement in the irradiated field after the neutron irradiation, blood sampling for confirmation of the boron level, and patient's leave from the room. The QA/QC check is principally to be conducted with the two-person rule. The purpose of the clinical trial is to establish the usefulness of BNCT

  9. PBF/BNCT [power burst facility/boron neutron capture therapy] program for cancer treatment

    International Nuclear Information System (INIS)

    Dorn, R.V. III.

    1989-06-01

    Highlights of the PBF/BNCT Program during June include progress within the areas of gross boron analysis in tissue, blood, and urine; analytical methodologies development for BSH (sodium borocaptate) purity determination; boron microscopic (subcellular) analytical development; noninvasive boron quantification determination; dosimetry; and analytical radiation transport and interaction modeling for BNCT

  10. INEL BNCT Research Program annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.

  11. INEL BNCT Research Program annual report, 1992

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database

  12. INEEL BNCT Research Program Annual Report, CY-2000

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert

    2001-03-01

    This report is a summary of the activities conducted in conjunction with the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 2000. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, neutron source design and demonstration, and support the Department of Energy’s (DOE) National BNCT Program goals are the goals of this Program. Contributions from the individual contributors about their projects are included, specifically described are the following, chemistry: analysis of biological samples and an infrared blood-boron analyzer, and physics: progress in the patient treatment planning software, measurement of neutron spectra for the Argentina RA-6 reactor, and recalculation of the Finnish research reactor FiR 1 neutron spectra, BNCT accelerator technology, and modification to the research reactor at Washington State University for an epithermal-neutron beam.

  13. First clinical results on the finnish study on BPA-mediated BNCT in glioblastoma

    International Nuclear Information System (INIS)

    Kankaanranta, L.; Seppaelae, T.; Kallio, M.

    2000-01-01

    An open phase I dose-escalation boron neutron capture therapy (BNCT) study on glioblastoma multiforme (GBM) was initiated at the BNCT facility FiR 1, Espoo, Finland, in May 1999. The aim of the study is to investigate the safety of boronophenylalanine (BPA)-mediated BNCT. Ten GBM patients were treated with a 2-field treatment plan using one fraction. BPA-F was used as the 10 B carrier infused as a fructose solution 290 mg BPA/kg over 2-hours prior to irradiation with epithermal neutrons. Average doses to the normal brain, contrast enhancing tumour, and the target ranged from 3.0 to 5.6 Gy (W), from 35.1 to 66.7 Gy (W), and from 29.6 to 53.6 Gy (W), respectively. BNCT was associated with acceptable toxicity. The median follow-up is 9 months (range, 3 to 16 months) post diagnosis in July 2000. Seven of the 10 patients have recurrent or persistent GBM, and the median time to progression is 8 months. Only one patient has died, and the estimated 1-year overall survival is 86%. Five of the recurrent tumours were treated with external beam photon radiation therapy to the total dose of 30-40 Gy with few acute side-effects. These preliminary findings suggest that acute toxicity of BPA-mediated BNCT is acceptable when average brain doses of 5.6 Gy (W) or less are used. The followup time is too short to evaluate survival, but the estimated 1-year survival of 86% achieved with BNCT followed by conventional photon irradiation at the time of tumour progression is encouraging and emphasises the need of further investigation of BPA-mediated BNCT. (author)

  14. BNCT Project at the J. Stefan TRIGA Reactor

    International Nuclear Information System (INIS)

    Glumac, B.; Maucec, M.; Jeraj, R.; Kodeli, I.

    1994-01-01

    Contribution presents condensed description of the BNCT method, as one of the most promising methods of cancer radio therapy in the future. Certain planned research activities considering realization of BNCT project in Slovenia are also shown. Modelling of irradiation facility as well as mathematical simulation of neutron and photon transport are completely performed by Monte Carlo computer simulation, and for that reason some basic characteristics and capabilities of MCNP4A computer code are also presented. Finally, some results obtained up to this time are presented. (author)

  15. INEL BNCT research program: Annual report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented.

  16. INEL BNCT research program: Annual report, 1995

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented

  17. An Accelerator Neutron Source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  18. An Accelerator Neutron Source for BNCT

    International Nuclear Information System (INIS)

    Blue, Thomas E.

    2006-01-01

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were (1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, (2) that the patient treatment time be reasonable, (3) that the proton current required to treat patients in reasonable times be technologically achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally (4) that the treatment be safe for the patients

  19. INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1997-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of 10 B enriched decaborane

  20. 'Sequential' Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    International Nuclear Information System (INIS)

    Molinari, Ana J.; Pozzi, Emiliano C.C.; Hughes, Andrea Monti; Heber, Elisa M.; Garabalino, Marcela A.; Thorp, Silvia I.; Miller, Marcelo; Itoiz, Maria E.; Aromando, Romina F.; Nigg, David W.; Quintana, Jorge; Santa Cruz, Gustavo A.; Trivillin, Veronica A.; Schwint, Amanda E.

    2011-01-01

    In the present study we evaluated the therapeutic effect and/or potential radiotoxicity of the novel 'Tandem' Boron Neutron Capture Therapy (T-BNCT) for the treatment of oral cancer in the hamster cheek pouch model at RA-3 Nuclear Reactor. Two groups of animals were treated with 'Tandem BNCT', i.e. BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (T-24h-BNCT) or 48 h (T-48h-BNCT) later. A total tumor dose-matched single application of BNCT mediated by BPA and GB-10 administered jointly ((BPA + GB-10)-BNCT) was administered to an additional group of animals. At 28 days post-treatment, T-24h-BNCT and T-48h-BNCT induced, respectively, overall tumor control (OTC) of 95% and 91%, with no statistically significant differences between protocols. Tumor response for the single application of (BPA + GB-10)-BNCT was 75%, significantly lower than for T-BNCT. The T-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47% and 60% of the animals respectively. No normal tissue radiotoxicity was associated to tumor control for any of the protocols. 'Tandem' BNCT enhances tumor control in oral cancer and reduces or, at worst, does not increase, mucositis in dose-limiting precancerous tissue.

  1. “Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    Energy Technology Data Exchange (ETDEWEB)

    Ana J. Molinari; Emiliano C. C. Pozzi; Andrea Monti Hughes; Elisa M. Heber; Marcela A. Garabalino; Silvia I. Thorp; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; David W. Nigg; Jorge Quintana; Gustavo A. Santa Cruz; Veronica A. Trivillin; Amanda E. Schwint

    2011-04-01

    In the present study we evaluated the therapeutic effect and/or potential radiotoxicity of the novel “Tandem” Boron Neutron Capture Therapy (T-BNCT) for the treatment of oral cancer in the hamster cheek pouch model at RA-3 Nuclear Reactor. Two groups of animals were treated with “Tandem BNCT”, i.e. BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (T-24h-BNCT) or 48 h (T-48h-BNCT) later. A total tumor dose-matched single application of BNCT mediated by BPA and GB-10 administered jointly [(BPA + GB-10)-BNCT] was administered to an additional group of animals. At 28 days post-treatment, T-24h-BNCT and T-48h-BNCT induced, respectively, overall tumor control (OTC) of 95% and 91%, with no statistically significant differences between protocols. Tumor response for the single application of (BPA + GB-10)-BNCT was 75%, significantly lower than for T-BNCT. The T-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47% and 60% of the animals respectively. No normal tissue radiotoxicity was associated to tumor control for any of the protocols. “Tandem” BNCT enhances tumor control in oral cancer and reduces or, at worst, does not increase, mucositis in dose-limiting precancerous tissue.

  2. Tandem electrostatic accelerators for BNCT

    International Nuclear Information System (INIS)

    Ma, J.C.

    1994-01-01

    The development of boron neutron capture therapy (BNCT) into a viable therapeutic modality will depend, in part, on the availability of suitable neutron sources compatible with installation in a hospital environment. Low-energy accelerator-based intense neutron sources, using electrostatic or radio frequency quadrupole proton accelerators have been suggested for this purpose and are underdevelopment at several laboratories. New advances in tandem electrostatic accelerator technology now allow acceleration of the multi-milliampere proton beams required to produce therapeutic neutron fluxes for BNCT. The relatively compact size, low weight and high power efficiency of these machines make them particularly attractive for installation in a clinical or research facility. The authors will describe the limitations on ion beam current and available neutron flux from tandem accelerators relative to the requirements for BNCT research and therapy. Preliminary designs and shielding requirements for a tandern accelerator-based BNCT research facility will also be presented

  3. Clinical results of boron neutron capture therapy (BNCT) for glioblastoma

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H.

    2011-01-01

    The purpose of this study was to evaluate the clinical outcome of BSH-based intra-operative BNCT (IO-BNCT) and BSH and BPA-based non-operative BNCT (NO-BNCT). We have treated 23 glioblastoma patients with BNCT without any additional chemotherapy since 1998. The median survival time (MST) of BNCT was 19.5 months, and 2-year, 3-year and 5-year survival rates were 26.1%, 17.4% and 5.8%, respectively. This clinical result of BNCT in patients with GBM is superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment. - Highlights: ► In this study, we evaluate the clinical outcome of boron neutron capture therapy (BNCT) for malignant brain tumors. ► We have treated 23 glioblastoma (GBM) patients with BNCT without any additional chemotherapy. ► Clinical results of BNCT in patients with GBM are superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment.

  4. Nuclear engineering aspects of glioma BNCT research in Italy

    International Nuclear Information System (INIS)

    Curzio, G.; Mazzini, M.

    1998-01-01

    A research project on Boron Neutron Capture Therapy (BNCZ) of gliomas has been set up in Italy, with the participation of Departments of Oncology and Mechanical and Nuclear Construction (DCMN) of the University of Pisa, as well as the Neuroscience and Physics Departments of the Universities of Roma. The specific objective of DCMN Research Unit is the study of the physical-engineering aspects related to BNCT. The paper outlines the research lines in progress at DCMN: Monte Carlo calculations of neutron dose distribution for BNCT treatment planning; measurements of neutron fluxes, spectra and doses by neutron detectors specifically set up; design of modifications to the nuclear reactors of ENEA Casaccia Center. In particular, the paper emphasizes the most original contributions on dosimetric aspects, both from informatic and experimental points of view.(author)

  5. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT

    International Nuclear Information System (INIS)

    Monti Hughes, A.; Heber, E.M.; Pozzi, E.; Nigg, D.W.; Calzetta, O.; Blaumann, H.; Longhino, J.; Nievas, S.I.; Aromando, R.F.; Itoiz, M.E.; Trivillin, V.A.; Schwint, A.E.

    2009-01-01

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  6. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Monti Hughes, A.; Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Pozzi, E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Research and Production Reactors, Ezeiza Atomic Center, CNEA, Buenos Aires (Argentina); Nigg, D.W. [Idaho National Laboratory, Idaho Falls, Idaho (United States); Calzetta, O.; Blaumann, H.; Longhino, J. [Department of Nuclear Engineering, Bariloche Atomic Center, CNEA, Rio Negro (Argentina); Nievas, S.I. [Department of Chemistry, CNEA, Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Trivillin, V.A. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina)], E-mail: schwint@cnea.gov.ar

    2009-07-15

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na{sub 2}{sup 10}B{sub 10}H{sub 10}) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  7. The Phase I/II BNCT Trials at the Brookhaven medical research reactor: Critical considerations

    International Nuclear Information System (INIS)

    Diaz, A.Z.

    2001-01-01

    A phase I/II clinical trial of boronophenylalanine-fructose (BPA-F) mediated boron neutron capture therapy (BNCT) for Glioblastoma Multiforme (GBM) was initiated at Brookhaven National Laboratory (BNL) in 1994. Many critical issues were considered during the design of the first of many sequential dose escalation protocols. These critical issues included patient selection criteria, boron delivery agent, dose limits to the normal brain, dose escalation schemes for both neutron exposure and boron dose, and fractionation. As the clinical protocols progressed and evaluation of the tolerance of the central nervous system (CNS) to BPA-mediated BNCT at the BMRR continued new specifications were adopted. Clinical data reflecting the progression of the protocols will be presented to illustrate the steps taken and the reasons behind their adoption. (author)

  8. Requirements for BNCT at a nuclear research reactor. Results from a BNCT workshop organized by the European Commission in Prague, November 2005

    International Nuclear Information System (INIS)

    Moss, Ray; Sauerwein, Wolfgang; Wittig, Andrea; Burian, Jiri

    2006-01-01

    As part of the European Commission's Enlargement and Integration Action (E and IA), which is intended to improve exchange and relationship within the extended European Union (EU), a Workshop was organized in Prague in November 2005. The purpose of the workshop was to present and discuss technical and organisational requirements in setting up a BNCT facility at a research reactor. Topics included: treatment of a patient by BNCT; organisational aspects and regulatory affairs; BNCT from the nuclear perspective and BNCT from the clinician's perspective. Presentations were given by BNCT experts in their particular field, whilst eleven different national nuclear research centres from the New Member States and Accession Countries, interested in developing a BNCT programme, presented the status of their preparations. The conclusions of the Workshop were that an early and close collaboration between nuclear and medical groups is the basis for BNCT, that a local effort to build a BNCT facility should be supported by a national research programme including basic and clinical science and that the JRC and its partners are ready to support national initiatives within the EU and candidate countries. (author)

  9. Clinical results of BNCT for malignant meningiomas

    International Nuclear Information System (INIS)

    Miyatake, Shin-ichi; Tamura, Yoji; Kawabata, Shinji

    2006-01-01

    Malignant meningiomas is difficult pathology to be controlled as well as GBM. Since June of 2005, we applied BNCT for 7 cases of malignancy related meningiomas with 13 times neutron irradiation. Five were anaplastic, one was atypical meningiomas and one was sarcoma transformed from meningioma with cervical lymph node metastasis. All cases were introduced after repetitive surgeries and XRT or SRS. Follow-up images were available for 6 cases with observation duration between 2 to 9 months. We applied F-BPA-PET before BNCT in 6 out of 7 cases. One case was received methionine-PET. Five out of 6 cases who received BPA-PET study showed good BPA uptake more than 3 of T/N ratio. One atypical meningiomas cases showed 2.0 of T/N ratio. Original tumor sizes were between 9.2 to 92.7 ml. Two out of 5 anaplastic meningiomas showed CR and all six cases showed radiographic improvements. Clinical symptoms before BNCT such as hemiparesis and facial pain were improved after BNCT, except one case. An huge atypical meningiomas which arisen from tentorium and extended bilateral occipital lobes and brain stem, visual problems were worsened after repetitive BNCT with increase of peritumoral edema. Malignant meningiomas are seemed to be good candidate for BNCT. (author)

  10. BNCT Technology Development on HANARO Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ki Jung; Park, Kyung Bae; Whang, Seung Ryul; Kim, Myong Seop

    2007-06-15

    So as to establish the biological effects of BNCT in the HANARO Reactor, biological damages in cells and animals with treatment of boron/neutron were investigated. And 124I-BPA animal PET image, analysis technology of the boron contents in the mouse tissues by ICP-AES was established. A Standard clinical protocol, a toxicity evaluation report and an efficacy investigation report of BNCT has been developed. Based on these data, the primary permission of clinical application was acquired through IRB of our hospital. Three cases of pre-clinical experiment for boron distribution and two cases of medium-sized animal simulation experiment using cat with verifying for 2 months after BNCT was performed and so the clinical demonstration with a patient was prepared. Also neutron flux, fast neutron flux and gamma ray dose of BNCT facility were calculated and these data will be utilized good informations for clinical trials and further BNCT research. For the new synthesis of a boron compound, o-carboranyl ethylamine, o-carboranylenepiperidine, o-carboranyl-THIQ and o-carboranyl-s-triazine derivatives were synthesized. Among them, boron uptake in the cancer cell of the triazine derivative was about 25 times than that of BPA and so these three synthesized methods of new boron compounds were patented.

  11. BNCT Technology Development on HANARO Reactor

    International Nuclear Information System (INIS)

    Chun, Ki Jung; Park, Kyung Bae; Whang, Seung Ryul; Kim, Myong Seop

    2007-06-01

    So as to establish the biological effects of BNCT in the HANARO Reactor, biological damages in cells and animals with treatment of boron/neutron were investigated. And 124I-BPA animal PET image, analysis technology of the boron contents in the mouse tissues by ICP-AES was established. A Standard clinical protocol, a toxicity evaluation report and an efficacy investigation report of BNCT has been developed. Based on these data, the primary permission of clinical application was acquired through IRB of our hospital. Three cases of pre-clinical experiment for boron distribution and two cases of medium-sized animal simulation experiment using cat with verifying for 2 months after BNCT was performed and so the clinical demonstration with a patient was prepared. Also neutron flux, fast neutron flux and gamma ray dose of BNCT facility were calculated and these data will be utilized good informations for clinical trials and further BNCT research. For the new synthesis of a boron compound, o-carboranyl ethylamine, o-carboranylenepiperidine, o-carboranyl-THIQ and o-carboranyl-s-triazine derivatives were synthesized. Among them, boron uptake in the cancer cell of the triazine derivative was about 25 times than that of BPA and so these three synthesized methods of new boron compounds were patented

  12. New EORTC clinical trials for BNCT

    International Nuclear Information System (INIS)

    Hideghety, K.; Moss, R.; Vries, M. de

    2000-01-01

    Due to ethical reasons, a separated optimization of the two components of BNCT in the frame of clinical investigations can only be performed applying the whole binary system. The ongoing trial at HFR (High Flux Reactor Petten) has proven the feasibility of BNCT under defined conditions. On that basis the European Commission supported a comprehensive research project on boron imaging including three further clinical studies. In the first trial the boron uptake related to the blood boron concentration and surrounding normal tissue in various solid tumours will be examined using BSH (Sodiumborocaptate), BPA (Boronophenylalanine) or both in order to explore tumour entities, which may gain benefit from BNCT. The major objectives of the second trial are to define the maximum tolerated single and cumulative dose, and the dose limiting toxicity of BSH. The third clinical trial, a phase II study is designed to evaluate the anti-tumour effect of fractionated BNCT at the Petten treatment facility against cerebral metastasis of malignant melanoma using BPA. (author)

  13. Dose estimation of the THOR BNCT treatment room

    International Nuclear Information System (INIS)

    Hsu, F.Y.; Liu, H.M.; Yu, C.C.; Huang, Y.H.; Tsai, H.N.

    2006-01-01

    BNCT beam of Tsing Hua Open-pool Reactor (THOR) was designed and constructed since 1998. A treatment room for the newly modified THOR BNCT beam was constructed for the next clinical-stage trials in 2004. Dose distribution in a patient (or a phantom) is important as irradiated with the BNCT beam. The dose distributions for different type of radiations such as neutron and photons in the treatment room are strongly becoming the index or reference of success for a BNCT facility. An ART head phantom was placed in front of the THOR BNCT beam port and was irradiated. In each section of the head phantom, numbers of small holes are inside and separated uniformly. Dual detector: TLD-600 and TLD-700 chips were placed inside these holes within the phantom to distinct doses of neutron and photon. Besides, Dual-TLD chips were latticed placed in the horizontal plane of beam central axis, in the treatment room to estimate the spatial dose distribution of neutron and photon. Gold foils were assisted in TLD dose calibrations. Neutron and photon dose distributions in phantom and spatial dose distributions in the THOR BNCT treatment room were both estimated in this work. Testing and improvement in THOR BNCT beam were continuative during these years. Results of this work could be the reference and be helpful for the further clinical trials in nearly future. (author)

  14. Retrospective review of the clinical BNCT trial at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Diaz, A.Z.; Chanana, A.D.; Coderre, J.A.; Ma, R.

    2000-01-01

    The primary objective of the phase I/II dose escalation studies was to evaluate the safety of the boronophenylalanine-fructose (BPA-F) mediated boron neutron capture therapy (BNCT) in subjects with glioblastoma multiforme (GBM). A secondary objective was to retrospectively assess the palliation of GBM by BNCT. Fifty-three subjects with GBM were treated under multiple dose escalation protocols at the Brookhaven Medical Research Reactor (BMRR). Twenty-six subjects were treated using one field, 17 subjects were treated using 2 fields and 10 subjects were treated using 3 fields. BPA-F related toxicity was not observed. The maximum radiation dose to a volume of approximately 1 cc of the normal brain varied from 8.9 to 15.9 gray-equivalent (Gy-Eq). The volume-weighted average radiation dose to normal brain varied from 1.9 to 9.5 Gy-Eq. Six RTOG (Radiation Therapy Oncology Group) grade 3 or 4 toxicities were attributed to BNCT. Four of the 53 subjects are still alive with 3 of them free of recurrent disease with over two years follow-up. The median times to progression and median survival time from diagnosis were 28.4 weeks and 12.8 months respectively. (author)

  15. An update on the clinical trial of BNCT at the BMRR

    International Nuclear Information System (INIS)

    Ma, R.; Capala, J.; Chanana, A.D.; Coderre, J.A.; Diaz, A.Z.

    1999-01-01

    Boron neutron capture therapy (BNCT) was proposed more than six decades ago. It is a binary treatment modality that requires selective delivery of a 10 B-labeled compound to a tumor and slow neutron irradiation of the tumor-bearing tissues. In order to improve the penetration of the neutron beam, an epithermal neutron beam was developed at the Brookhaven Medical Research Reactor (BMRR). This epithermal neutron beam can deliver relatively high thermal neutron fluence at depth without severe skin damage. Boronophenylalanine-fructose (BPA-F), a nontoxic boron carrier, was found to preferentially accumulate in tumor cells following intravenous infusion in patients with GBM. In preclinical BNCT studies in rats bearing 9L gliosarcoma, BPA-mediated BNCT was shown to be more efficacious than photon irradiation. In 1994, improvements in the neutron beam and in the understanding of the radiobiology of BPA-mediated BNCT led to the initiation of BNCT trials for human GBM at BMRR using BPA-F and epithermal neutrons. The primary objective of the phase I/II clinical trial of BPA-mediated BNCT at BMRR is to evaluate the safety of the BPA-F-mediated BNCT using epithermal neutrons in patients with GBM at a series of escalating BNCT doses. An incidental objective is to evaluate the therapeutic effectiveness of BNCT at each dose level. For each dose escalation group, the average brain dose (ABD) is escalated, as well as the minimum tumor dose. In summary, the BNCT procedure employed in the phase I/II clinical trial of BPA-F-mediated BNCT for GBM at BNL was found to be safe in all patients. The palliation afforded by a single session of BNCT compares favorably with palliation provided by fractionated photon therapy and adjuvant chemotherapy. If no evidence of radiation-induced brain toxicity is found in the current protocol, BNCT radiation dose will be further escalated

  16. Implementation of BNCT treatment planning procedures

    International Nuclear Information System (INIS)

    Capala, J.; Ma, R.; Diaz, A.Z.; Chanana, A.D.; Coderre, J.A.

    2001-01-01

    Estimation of radiation doses delivered during boron neutron capture therapy (BNCT) requires combining data on spatial distribution of both the thermal neutron fluence and the 10 B concentration, as well as the relative biological effectiveness of various radiation dose components in the tumor and normal tissues. Using the treatment planning system created at Idaho National Engineering and Environmental Laboratory and the procedures we had developed for clinical trials, we were able to optimize the treatment position, safely deliver the prescribed BNCT doses, and carry out retrospective analyses and reviews. In this paper we describe the BNCT treatment planning process and its implementation in the ongoing dose escalation trials at Brookhaven National Laboratory. (author)

  17. Gene transfer-applied BNCT (g-BNCT) for amelanotic melanoma in brain. Further upregulation of 10B uptake by cell modulation

    International Nuclear Information System (INIS)

    Iwakura, M.; Tamaki, N.; Hiratsuka, J.

    2000-01-01

    Our success in eradicating melanoma by single BNCT with BPA led to the next urgent theme, i.e. application of such BNCT for currently uncurable melanoma metastasis in brain. In order to establish 10 B-BPA-BNCT for melanoma in brain, we have investigated the pharmacokinetics of BPA which is most critical factor for successful BNCT, in melanotic and amelanotic and further tyrosinase gene-transfected amelanotic melanoma proliferating in brain having blood-brain-barrier, as compared to melanoma proliferating in skin. We have established three implanted models for melanoma in brain: 1) A1059 cells, amelanotic melanoma, 2) B16B15b cells, melanotic melanoma cells, highly metastatic to brain, and 3) TA1059 cells, with active melanogenesis induced by tyrosinase gene transfection. We would like to report the results of comparative analysis of the BPA uptake ability in these melanoma cells in both brain and skin. Based on these findings, we are further investigating to enhance 10 B-BPA uptake by not only g-BNCT but also by additional melanogenesis upregulating cell modulation. (author)

  18. Boron Neutron Capture Therapty (BNCT) in an Oral Precancer Model: Therapeutic Benefits and Potential Toxicity of a Double Application of BNCT with a Six-Week Interval

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Monti Hughes; Emiliano C.C. Pozzi; Elisa M. Heber; Silvia Thorp; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; Ana J. Molinari; Marcela A. Garabalino; David W. Nigg; Veronica A. Trivillin; Amanda E. Schwint

    2011-11-01

    Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10 + BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB- 10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.

  19. SERA -- An advanced treatment planning system for neutron therapy and BNCT

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wemple, C.A.; Wessol, D.E.; Wheeler, F.J.; Albright, C.; Cohen, M.; Frandsen, M.; Harkin, G.; Rossmeier, M.

    1999-01-01

    Detailed treatment planning calculations on a patient-specific basis are required for boron neutron capture therapy (BNCT). Two integrated treatment planning systems developed specifically for BNCT have been in clinical use in the United States over the past few years. The MacNCTPLAN BNCT treatment planning system is used in the clinical BNCT trials that are underway at the Massachusetts Institute of Technology. A second system, BNCT rtpe (BNCT radiation therapy planning environment), developed independently by the Idaho national Engineering and Environmental Laboratory (INEEL) in collaboration with Montana State University (MSU), is used for treatment planning in the current series of BNCT clinical trials for glioblastoma at Brookhaven National Laboratory (BNL). This latter system is also licensed for use at several other BNCT research facilities worldwide. Although the currently available BNCT planning systems have served their purpose well, they suffer from somewhat long computation times (2 to 3 CPU-hours or more per field) relative to standard photon therapy planning software. This is largely due to the need for explicit three-dimensional solutions to the relevant transport equations. The simplifying approximations that work well for photon transport computations are not generally applicable to neutron transport computations. Greater computational speeds for BNCT treatment planning must therefore generally be achieved through the application of improved numerical techniques rather than by simplification of the governing equations. Recent efforts at INEEL and MSU have been directed toward this goal. This has resulted in a new paradigm for this type of calculation and the subsequent creation of the new simulation environment for radiotherapy applications (SERA) treatment planning system for BNCT. SERA is currently in initial clinical testing in connection with the trials at BNL, and it is expected to replace the present BNCT rtpe system upon general release

  20. The studsvik BNCT project: structure and the proposed protocols

    International Nuclear Information System (INIS)

    Capala, J.; Stenstam, B.H.; Skoeld, K.; Henriksson, R.; Salford, L.; Carlsson, J.

    2000-01-01

    The BNCT facility at Studsvik is now ready for clinical trials. Scientific operations of the Studsvik BNCT project are overseen by the Scientific Advisory Board comprised of representatives of all major universities in Sweden. Furthermore, special task groups for clinical and preclinical studies have been formed to facilitate collaboration with academia and to assure the quality of the research. Proposed clinical Phase II trials for glioblastoma are sponsored by the Swedish National Neuro-Oncology Group and, initially, will involve two protocols: Protocol no.1. BNCT for glioblastoma patients who have not received any therapy other than surgery (including stereotactic biopsy only). Protocol no.2. BNCT as a palliative treatment for patients with recurrent glioblastoma following conventional therapies or BNCT. In both protocols, BPA, administered by a 6 hour i.v. infusion, will be used as the boron delivery agent. (author)

  1. In vivo BNCT in experimental and spontaneous tumors at RA-1 reactor

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.; Nigg, David W.

    2003-01-01

    Within the search for new applications of Boron Neutron Capture Therapy (BNCT) and the basic research oriented towards the study of BNCT radiobiology to optimize its therapeutic gain, we previously proposed and validated the hamster cheek pouch oral cancer model and showed, for the first time, the success of BNCT to treat oral cancer in an experimental model. The staff of the Ra-1 Reactor (Constituyentes Atomic Center) adapted the thermal beam and physical set-up to perform in vivo BNCT of superficial tumors in small animals. We preformed a preliminary characterization of the thermal beam, performed beam only irradiation of normal and tumor bearing hamsters and in vivo BNCT of experimental oral squamous cell carcinomas in hamsters mediated by boron phenylalanine (BPA) and GB-10 (Na 2 10 B 10 H 10 ). Having demonstrated the absence of radio toxic effects in healthy tissue and a therapeutic effect of in vivo BNCT in hamster cheek pouch tumors employing the Ra-1 thermal beam, we performed a feasibility study of the treatment by BNCT of 3 terminal cases of spontaneous head and neck squamous cell carcinoma in cats following the corresponding biodistribution studies. This was the first treatment of spontaneous tumors by BNCT in our country and the first treatment by BNCT in cats worldwide. This preclinical study in terminal cases showed significant tumor control by BNCT with no damage to normal tissue. (author)

  2. 201Tl/99mTc-MIBI SPECT to evaluate therapy effect of BNCT with BSH and BPA for malignant brain tumor

    International Nuclear Information System (INIS)

    Shibata, Yasushi; Katayama, Wataru; Yamamoto, Tetsuya; Nakai, Kei; Endo, Kiyoshi; Matsuda, Masahide; Matsushita, Akira; Matsumura, Akira

    2006-01-01

    201 Tl/ 99m Tc-MIBI SPECT are imaging modalities to evaluate the malignancy and viability of brain tumor. We reviewed these SPECT findings before and after BNCT, and evaluated the usefulness of SPECT. The study includes total 11 patients admitted in our hospital between 1999 and 2005, 8 with glioblastoma, 2 with anaplastic astrocytoma and 2 with anaplastic oligodendroglioma. SPECT was taken with multidetector SPECT at 15 minutes and 3 hours after intravenous injection of Tl 74 MBq or MIBI 740 MBq. Region of interests were set on tumor and contralateral white matter and radioactivity ratios were calculated as Tl, MIBI indexes. For patients with no residual tumor in MRI, Tl/MIBI indexes were low. For patients with large residual tumor the indexes were high. For the patients with recurrent tumor the indexes were very high. Tl/MIBI indexes before BNCT correlated with survival and progression-free period after BNCT. SPECT indexes decreased after BNCT. For 8 patients with recurrent tumor, the indexes increased. Tl and MIBI SPECT are valuable to evaluate malignancy, viability, survival and recurrence of malignant glioma in BNCT. (author)

  3. Tandem-ESQ for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Burlon, A.A.; Di Paolo, H.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Kwan, J.W.; Henestroza, E.

    2006-01-01

    A project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) is described. A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the '7Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. (author)

  4. Fatal carotid blowout syndrome after BNCT for head and neck cancers

    International Nuclear Information System (INIS)

    Aihara, T.; Hiratsuka, J.; Ishikawa, H.; Kumada, H.; Ohnishi, K.; Kamitani, N.; Suzuki, M.; Sakurai, H.; Harada, T.

    2015-01-01

    Boron neutron capture therapy (BNCT) is high linear energy transfer (LET) radiation and tumor-selective radiation that does not cause serious damage to the surrounding normal tissues. BNCT might be effective and safe in patients with inoperable, locally advanced head and neck cancers, even those that recur at previously irradiated sites. However, carotid blowout syndrome (CBS) is a lethal complication resulting from malignant invasion of the carotid artery (CA); thus, the risk of CBS should be carefully assessed in patients with risk factors for CBS after BNCT. Thirty-three patients in our institution who underwent BNCT were analyzed. Two patients developed CBS and experienced widespread skin invasion and recurrence close to the carotid artery after irradiation. Careful attention should be paid to the occurrence of CBS if the tumor is located adjacent to the carotid artery. The presence of skin invasion from recurrent lesions after irradiation is an ominous sign of CBS onset and lethal consequences. - Highlights: • This study is fatal carotid blowout syndrome after BNCT for head and neck cancers. • Thirty-three patients in our institution who underwent BNCT were analyzed. • Two patients (2/33) developed CBS. • The presence of skin invasion from recurrent lesions after irradiation is an ominous sign of CBS. • We must be aware of these signs to perform BNCT safely.

  5. American brain tumor patients treated with BNCT in Japan

    International Nuclear Information System (INIS)

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-01-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy

  6. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Thatar Vento, V.; Levinas, P.; Bergueiro, J.; Di Paolo, H.; Burlon, A.A.; Kesque, J.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Minsky, D.M.

    2009-01-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  7. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    Science.gov (United States)

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  8. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    Science.gov (United States)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  9. INEL BNCT Program

    International Nuclear Information System (INIS)

    Ackermann, A.L.; Dorn, R.V. III.

    1991-03-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program for March 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, a milestone summary, and animal data charts

  10. Boron neutron capture therapy (BNCT) for glioblastoma multiforme (GBM), using the epithermal neutron beam at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Chadha, Manjeet; Capala, Jacek; Coderre, Jeffrey A.; Elowitz, Eric H.; Joel, Darrel D.; Hungyuan, B. Liu; Slatkin, Daniel N.; Chanana, Arjun D.

    1996-01-01

    , respectively. The 10 B concentration in the normal brain was ≤ that in the blood. Radiation Dosimetry: The estimated radiation doses were recorded using a normal brain endothelium to blood 10 B concentration ratio of 1:1 and a tumor to blood 10 B concentration ratio of 3.5:1. The average 10 B blood concentration during irradiation was 13.0 ± 1.5μg 10 B/g (range: 11.2-15.4). The maximum tumor dose ranged from 47.6-64.4 Gy-Eq (mean 52.8±4.2 Gy-Eq). The minimum target volume dose ranged from 7.8-16.2 Gy-Eq (mean 12.3±1.8 Gy-Eq). Dose to scalp ranged from 10-15 Gy-Eq. The critical brain structures in all cases received less than 6.5 Gy-Eq. Clinical Outcome: Following BNCT all patients experienced in-field alopecia, and grade 1 erythema was noted in 2 patients. Transient drop in lymphocyte counts was noted in 6 patients that returned to normal range in 2 weeks. No CNS toxicity attributed to BNCT was observed. At a median follow up of 9.5 mo (range 3-15 mo), 1 patient is dead from disseminated craniospinal disease and 6 from local recurrence. In the remaining 3 patients, all but 1 patient has shown evidence of disease progression at the primary site. Conclusion: It is feasible to deliver a single-fraction of BPA-based BNCT. At the dose prescribed, the patients did not experience any adverse morbidity. To further evaluate the therapeutic efficacy of BNCT, a dose escalation study delivering a minimum target volume dose of 17 Gy-Eq is in progress

  11. BNCT for malignant brain tumors in children

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, Hiroaki

    2006-01-01

    BSH-based intra-operative BNCT as an initial treatment underwent in 4 children with malignant brain tumors since 1998. There were 2 glioblastomas, one primitive neuroectodermal tumor (PNET) and one anaplastic ependymoma patient. They included two children under 3-year-old. All GBM patients were died of CSF dissemination without tumor regrowth in the primary site. Another PNET and anaplastic ependymoma patients are still alive without tumor recurrence. We can consider BNCT is optimal treatment modality for malignant brain tumor in children. (author)

  12. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility

    International Nuclear Information System (INIS)

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively. - Highlights: • Two in-core neutron detectors and three BNCT neutron beam monitors were compared. • BNCT neutron beam monitors improve the stability in neutron

  13. INEL BNCT Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-08-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for August 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  14. Feasibility study to develop BNCT facility at the Indonesian research reactor

    International Nuclear Information System (INIS)

    Hastowo, H.

    2001-01-01

    A survey on the Indonesian research reactors and its supporting facilities has been done in order to check the possibility to install BNCT facility. Oncologists from several hospitals have been informing about the BNCT treatment for tumours and they give a positive response to support utilisation of the BNCT facility. Several aspects required to support the BNCT treatment have also been identified and related activities on that matter soon will be initiated. The interim result in our survey indicated that utilisation of the 30 MW Multipurpose reactor would not be possible from the technical point of view. Further study will be concentrated on the TRIGA reactor and an epithermal neutron beam facility at the thermal column of this reactor will be designed for further work. (author)

  15. Design of a BNCT facility at HANARO

    International Nuclear Information System (INIS)

    Jun, Byung Jin; Lee, Byung Chul

    1998-01-01

    Based on the feasibility study of the BNCT at HANARO, it was confirmed that only thermal BNCT is possible at the IR beam tube if appropriate filtering system be installed. Medical doctors in Korea Cancer Center Hospital agreed that the thermal BNCT facility would be worthwhile for the BNCT technology development in Korea as well as superficial cancer treatment. For the thermal BNCT to be effective, the thermal neutron flux should be high enough for patient treatment during relatively short time and also the fast neutron and gamma-ray fluxes should be as low as possible. In this point of view, the following design requirements are set up: 1) thermal neutron flux at the irradiation position should be higher than 3x10 9 n/cm 2 -sec, 2) ratio of the fast neutrons and gamma-rays to the thermal neutrons should be minimized, and 3) patient treatment should be possible without interrupt to the reactor operation. To minimize the fast neutrons and gamma-rays with the required thermal neutrons at the irradiation position, a radiation filter consisting of single crystals of silicon and bismuth at liquid nitrogen temperature is designed. For the shielding purpose around the irradiation position, polyethylene, lead, LiF, etc., are appropriately arranged around the radiation filter. A water shutter in front of the radiation filter is adopted so as to avoid interrupt to the reactor operation. At present, detail design of the radiation filter is ongoing. Cooling capabilities of the filter will be tested through a mockup experiment. Dose rate distributions around the radiation filter and a prompt gamma-ray activation analysis system for the analyses of boron content in the biological samples are under design. The construction of this facility will be started from next year if it is permitted from the regulatory body this year. Some other future works exist and are described in the paper. (author)

  16. Present status of Accelerator-Based BNCT.

    Science.gov (United States)

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A; Minsky, Daniel M; Debray, Mario E; Somacal, Hector R; Capoulat, María Eugenia; Herrera, María S; Del Grosso, Mariela F; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Endothermic (7)Li(p,n)(7)Be and (9)Be(p,n)(9)B and exothermic (9)Be(d,n)(10)B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. (9)Be(p,n)(9)B needs at least 4-5 MeV bombarding energy to have a sufficient yield, while (9)Be(d,n)(10)B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. (7)Li(p,n)(7)Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. (9)Be(d,n)(10)B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions.

  17. Proceedings of neutron irradiation technical meeting on BNCT

    International Nuclear Information System (INIS)

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  18. {sup 124}Sb–Be photo-neutron source for BNCT: Is it possible?

    Energy Technology Data Exchange (ETDEWEB)

    Golshanian, Mohadeseh [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Department of Physics, Shahrood University, Shahrood (Iran, Islamic Republic of); Rajabi, Ali Akbar [Department of Physics, Shahrood University, Shahrood (Iran, Islamic Republic of); Kasesaz, Yaser, E-mail: ykasesaz@aeoi.org.ir [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-11-01

    In this research a computational feasibility study has been done on the use of {sup 124}SbBe photo-neutron source for Boron Neutron Capture Therapy (BNCT) using MCNPX Monte Carlo code. For this purpose, a special beam shaping assembly has been designed to provide an appropriate epithermal neutron beam suitable for BNCT. The final result shows that using 150 kCi of {sup 124}Sb, the epithermal neutron flux at the designed beam exit is 0.23×10{sup 9} (n/cm{sup 2} s). In-phantom dose analysis indicates that treatment time for a brain tumor is about 40 min which is a reasonable time. This high activity {sup 124}Sb could be achieved using three 50 kCi rods of {sup 124}Sb which can be produced in a research reactor. It is clear, that as this activity is several hundred times the activity of a typical cobalt radiotherapy source, issues related to handling, safety and security must be addressed.

  19. Development of breast cancer irradiation technique for BNCT at JRR-4

    International Nuclear Information System (INIS)

    Nakamura, Takemi; Horiguchi, Hironori; Arai, Masaji; Yanagie, Hironobu

    2014-06-01

    In the Department of Research Reactor and Tandem Accelerator, developments of irradiation technique with application enlargement for breast cancer on BNCT have been performed in the second medium term plans. We compiled this report about the technological development to solve several problems with the irradiation of breast cancer in the medical irradiation facility of JRR-4. In the present study, design fabrication of a collimator for breast cancer, dose evaluation analysis by clinical model, investigation of dose enhancement at deeper region and investigation of fixing method for breast cancer irradiation were studied. By these evaluation results, we verified that the developed breast cancer irradiation technique can be applied to BNCT medical irradiation of JRR-4. These results are expected to be able to contribute to breast cancer irradiation techniques of other reactor-based BNCT and future accelerator-based BNCT. (author)

  20. Comparison and analysis of BNCT radiation dose between gold wire and JCDS measurement

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, Hiroaki

    2006-01-01

    We compared and evaluated boron neutron capture therapy (BNCT) radiation dose between gold wire measurement and JAERI Computational Dosimetry System (JCDS). Gold wire analysis demonstrates the actual BNCT dose though it dose not reflect the real the maximum and minimum dose in tumor tissue. We can conclude that JCDS is precise and high-reliable dose planning system for BNCT. (author)

  1. Radiation transport calculation methods in BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Seppaelae, T.; Savolainen, S.

    2000-01-01

    Boron neutron capture therapy (BNCT) is used as a radiotherapy for malignant brain tumours. Radiation dose distribution is necessary to determine individually for each patient. Radiation transport and dose distribution calculations in BNCT are more complicated than in conventional radiotherapy. Total dose in BNCT consists of several different dose components. The most important dose component for tumour control is therapeutic boron dose D B . The other dose components are gamma dose D g , incident fast neutron dose D f ast n and nitrogen dose D N . Total dose is a weighted sum of the dose components. Calculation of neutron and photon flux is a complex problem and requires numerical methods, i.e. deterministic or stochastic simulation methods. Deterministic methods are based on the numerical solution of Boltzmann transport equation. Such are discrete ordinates (SN) and spherical harmonics (PN) methods. The stochastic simulation method for calculation of radiation transport is known as Monte Carlo method. In the deterministic methods the spatial geometry is partitioned into mesh elements. In SN method angular integrals of the transport equation are replaced with weighted sums over a set of discrete angular directions. Flux is calculated iteratively for all these mesh elements and for each discrete direction. Discrete ordinates transport codes used in the dosimetric calculations are ANISN, DORT and TORT. In PN method a Legendre expansion for angular flux is used instead of discrete direction fluxes, land the angular dependency comes a property of vector function space itself. Thus, only spatial iterations are required for resulting equations. A novel radiation transport code based on PN method and tree-multigrid technique (TMG) has been developed at VTT (Technical Research Centre of Finland). Monte Carlo method solves the radiation transport by randomly selecting neutrons and photons from a prespecified boundary source and following the histories of selected particles

  2. Proceedings of neutron irradiation technical meeting on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  3. A Tandem-electrostatic-quadrupole for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Kwan, J.W.; Burlon, A.A.; Di Paolo, H.; Henestroza, E.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.

    2007-01-01

    A project to develop a Tandem-electrostatic-quadrupole (TESQ) accelerator for accelerator-based boron neutron capture therapy (AB-BNCT) is described. A folded Tandem, with 1.25 MV terminal voltage, combined with an electrostatic quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p, n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p, n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT

  4. Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats

    International Nuclear Information System (INIS)

    Trivillin, V.A.; Garabalino, M.A.; Colombo, L.L.

    2013-01-01

    Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats Introduction: Boron Neutron Capture Therapy (BNCT) is based on selective tumor uptake of boron compounds, followed by neutron irradiation. BNCT was proposed for the treatment of unresectable, diffuse lung metastases. The aim of the present study was to perform BNCT studies in an experimental model of lung metastases. Materials and Methods: 3 x 106/0.5 ml colon carcinoma cells (DHD/K12/TRb) were injected iv in syngeneic BDIX rats. Three weeks post-inoculation, rats with diffuse lung metastases were used for in vivo BNCT studies in the RA-3 Nuclear Reactor. Based on previous biodistribution studies and computational dosimetry with Monte Carlo simulation, 2 doses were prescribed, i.e. 4 Gy and 8 Gy minimum absorbed dose to tumor. The animals were assigned to 5 experimental groups (n= 4 to 8) at each dose level: T0 (euthanized pre-treatment), BPA-BNCT, Comb-BNCT (BPA+GB-10), Beam only (background dose) and Sham (same manipulation, no treatment). Boron concentration was measured in a blood sample taken pre-irradiation to verify that the value was in the range established in previous biodistribution studies. The animals were followed clinically for 2 weeks after neutron irradiation and then euthanized to assess the response of tumor and normal lung, macroscopically and histologically. To date we have evaluated the end-point weight of lung (normal lung + metastases) and % lung weight/body weight as an indicator of tumor growth. Results: The statistical analysis (ANOVA) of % lung weight/body weight showed statistically significant differences (p<0.05) between groups T0 (0.79 ± 0.38) and Sham (1.87 ± 0.91). No statistically significant differences were observed between the Beam only groups (at both dose levels) and Sham. Similar and statistically significant tumor control was induced in the groups BPA-BNCT Low dose (LD) (0.56 ± 0.11), BPA-BNCT High dose (HD) (0.80 ± 0.16), Comb-BNCT

  5. Beam shaping assembly of a D–T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    International Nuclear Information System (INIS)

    Faghihi, F.; Khalili, S.

    2013-01-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D–T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D–T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor. - Highlights: ► An assembly for the D–T neutron source including many regions is given herein. ► Dosimetry simulations in the Snyder head phantom for a deeply-seated tumor are carried out. ► Brief literatures conclusions on the recent BNCT studies are presented herein

  6. Protocols for BNCT of glioblastoma multiforme at Brookhaven: Practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Chanana, A.D.; Coderre, J.A.; Joel, D.D.; Slatkin, D.N.

    1996-12-31

    In this report we discuss some issues considered in selecting initial protocols for boron neutron capture therapy (BNCT) of human glioblastoma multiforme. First the tolerance of normal tissues, especially the brain, to the radiation field. Radiation doses limits were based on results with human and animal exposures. Estimates of tumor control doses were based on the results of single-fraction photon therapy and single fraction BNCT both in humans and experimental animals. Of the two boron compounds (BSH and BPA), BPA was chosen since a FDA-sanctioned protocol for distribution in humans was in effect at the time the first BNCT protocols were written and therapy studies in experimental animals had shown it to be more effective than BSH.

  7. A case of astrocytoma, 19 year history after BNCT

    International Nuclear Information System (INIS)

    Kamano, Shuji

    2006-01-01

    A 39-year-old man had received Boron Neutron Capture Therapy (BNCT) in 1987 for a Grade II Astrocytoma. He gradually exacerbated and received a second operation in 1994. The mass taken in the second operation is almost competent with radiation necrosis. Following that, he shows no signs of recurrence. Currently, he has returned to full time employment in physical labor. This case suggests effectiveness of BNCT for rather low-grade astrocytomas. (author)

  8. Beam shaping assembly of a D-T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    Science.gov (United States)

    Faghihi, F.; Khalili, S.

    2013-08-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.

  9. BNCT with linac, feasibility study

    International Nuclear Information System (INIS)

    Alfuraih, A.; Ma, A.; Spyrou, N.M.; Awotwi-Pratt, Joseph

    2006-01-01

    High energy photon beams from Medical Linear Accelerators (linacs) which are used in radiotherapy produce undesirable neutrons, beside the clinically useful electron and photon beams. Neutrons are produced from the photonuclear reaction (γ,n) of high energy photons with high Z-materials which compose the accelerator head. In this paper the possible use of these undesirable neutrons for BNCT is investigated, making use of high energy linacs already installed in hospitals, primarily for high energy electron and photon therapy and applying them in the context of BNCT. The photoneutron components emitted by the accelerator is the source for Monte Carlo simulations of the interactions that take place within the head of a voxel-based phantom. The neutron flux across the phantom head is calculated using different moderator arrangements and different techniques in the aim of increasing the thermal neutron flux at the targeted site. Also, we shall test different configurations of the linac head to maximize the exposure of high-Z materials to the photon beam, including the removal of the flattening filter, so as to boost the photoneutron production in the linac head. Experimental work will be conducted in hospitals to validate the Monte Carlo simulations. To make use of linacs for BNCT will be advantageous in the sense that the setting in a hospital department is much more acceptable by the public than a reactor installation. This will mean less complications regarding patient positioning and movement with respect to the beams, additional patient transportation and management will be more cost effective. (author)

  10. Might iodomethyl-α-tyrosine be a surrogate for BPA in BNCT?

    International Nuclear Information System (INIS)

    Miura, Michiko; Micca, P.L.; Nawrocky, M.M.; Slatkin, D.N.

    1996-01-01

    A single-photon emission computed tomography [SPECT] imaging agent that is an analogue of a boron carrier for boron neutron-capture therapy [BNCT] of cerebral gliomas would be useful for assessing the kinetics of boron uptake in tumors and in the surrounding brain tissues noninvasively. BNCT is based on the interaction of thermalized neutrons with 10 B nuclei in the targeted tumor. For BNCT of brain tumors, it is crucial that 10 B concentrations in radiosensitive regions of the brain be minimal since malignant cells and vital brain tissues are often inter-mingled at the margins of the tumor. Currently, boronophenylalanine [BPA]-mediated BNCT is undergoing preliminary clinical study for postoperative radiotherapy of glioblastorna multiforme at Brookhaven National Laboratory. Investigators in Japan are developing 18 F-fluoroboronophenylaianine [FBPA] as a positron 18 F (T 1/2 = 110 min), which is usually emission tomography [PET] surrogate for BPA. generated at a cyclotron dedicated to PET, is generally a minimally perturbing substitute for the 2-H on the aromatic ring because of its small size and the strong covalent bond it forms with carbon. However, SPECT has potential advantages over PET: (1) SPECT is clinically more widely available at lower cost; (2) most radioisotopes for the synthesis of SPECT agents can be purchased; (3) SPECT is less difficult to implement. It is thought that the quality of images derived from the two techniques would each be sufficiently informative for BNCT treatment planning purposes, provided that the SPECT and PET agents being considered were both pharmacokinetic surrogates for BPA. This study evaluated the use of 123 I alpha methyltyrosine as a surrogate for BPA in BNCT

  11. Might iodomethyl-{alpha}-tyrosine be a surrogate for BPA in BNCT?

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Michiko; Micca, P.L.; Nawrocky, M.M.; Slatkin, D.N.

    1996-12-31

    A single-photon emission computed tomography [SPECT] imaging agent that is an analogue of a boron carrier for boron neutron-capture therapy [BNCT] of cerebral gliomas would be useful for assessing the kinetics of boron uptake in tumors and in the surrounding brain tissues noninvasively. BNCT is based on the interaction of thermalized neutrons with {sup 10}B nuclei in the targeted tumor. For BNCT of brain tumors, it is crucial that {sup 10}B concentrations in radiosensitive regions of the brain be minimal since malignant cells and vital brain tissues are often inter-mingled at the margins of the tumor. Currently, boronophenylalanine [BPA]-mediated BNCT is undergoing preliminary clinical study for postoperative radiotherapy of glioblastorna multiforme at Brookhaven National Laboratory. Investigators in Japan are developing {sup 18}F-fluoroboronophenylaianine [FBPA] as a positron {sup 18}F (T{sub 1/2} = 110 min), which is usually emission tomography [PET] surrogate for BPA. generated at a cyclotron dedicated to PET, is generally a minimally perturbing substitute for the 2-H on the aromatic ring because of its small size and the strong covalent bond it forms with carbon. However, SPECT has potential advantages over PET: (1) SPECT is clinically more widely available at lower cost; (2) most radioisotopes for the synthesis of SPECT agents can be purchased; (3) SPECT is less difficult to implement. It is thought that the quality of images derived from the two techniques would each be sufficiently informative for BNCT treatment planning purposes, provided that the SPECT and PET agents being considered were both pharmacokinetic surrogates for BPA. This study evaluated the use of {sup 123}I alpha methyltyrosine as a surrogate for BPA in BNCT.

  12. Development of the patient setting system for BNCT at JRR-4

    International Nuclear Information System (INIS)

    Kumada, H.; Yamamoto, K.; Torii, Y.

    2000-01-01

    A new treatment planning software: Computational Dosimetry System (JCDS) is in progress its development for BNCT with epithermal neutron beam in JAERI. Irradiation conditions such as beam angle to a patient are calculated by JCDS. In order to implement these conditions, it is necessary to precisely set the patient to actual irradiation position simulated by JCDS beforehand. Therefore, the Patient Setting System, which accurately and quickly sets the patient to the irradiation position, is being developed with JCDS concurrently. In this report, the current status of the development of JCDS and the Patient Setting System in JAERI will be described. (author)

  13. Fission reactor based epithermal neutron irradiation facilities for routine clinical application in BNCT-Hatanaka memorial lecture

    International Nuclear Information System (INIS)

    Harling, Otto K.

    2009-01-01

    Based on experience gained in the recent clinical studies at MIT/Harvard, the desirable characteristics of epithermal neutron irradiation facilities for eventual routine clinical BNCT are suggested. A discussion of two approaches to using fission reactors for epithermal neutron BNCT is provided. This is followed by specific suggestions for the performance and features needed for high throughput clinical BNCT. An example of a current state-of-the-art, reactor based facility, suited for routine clinical use is discussed. Some comments are provided on the current status of reactor versus accelerator based epithermal neutron sources for BNCT. This paper concludes with a summary and a few personal observations on BNCT by the author.

  14. Quality control procedure of the BNCT patient dose determination

    International Nuclear Information System (INIS)

    Bjugg, H.; Kortesniemi, M.; Seppaelae, T.; Karila, J.; Perkioe, J.; Ryynaenen, P.; Savolainen, S.; Auterinen, I.; Kotiluoto, P.; Seren, T.

    2000-01-01

    The concepts used at the Finnish BNCT facility for the patient dose quality assurance are introduced here. Dose planning images are obtained using a MR scanner with MRI sensitive markers. The dose distribution is computed with BNCT Rtpe. The program and the beam (DORT) model used have been verified with measurements and validated with MCNP calculations in phantoms. Dosimetric intercomparison has been done between FiR 1 and BMRR BNCT beams. The FiR 1 beam has been characterised also by visiting teams. Before every patient irradiation the relationship between beam monitor pulse rate and neutron fluence rate in the beam is checked by activation measurements. Cross-hair lasers used in the patient positioning are checked for spatial drift prior to each treatment. Kinetic models used to estimate the time-behaviour of blood boron concentration have been verified using independent patient sample data to assess and verify the performance of the applications. Quality control guides have been developed for each step in the patient irradiation. (author)

  15. In vitro biological models in order to study BNCT

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Kreimann, Erica L.; Schwint, Amanda E.; Juvenal, Guillermo J.; Pisarev, Mario A.; Farias, Silvia S.; Garavaglia, Ricardo N.; Batistoni, Daniel A.

    1999-01-01

    Undifferentiated thyroid carcinoma (UTC) lacks an effective treatment. Boron neutron capture therapy (BNCT) is based on the selective uptake of 10 B-boronated compounds by some tumours, followed by irradiation with an appropriate neutron beam. The radioactive boron originated ( 11 B) decays releasing 7 Li, gamma rays and alpha particles, and these latter will destroy the tumour. In order to explore the possibility of applying BNCT to UTC we have studied the biodistribution of BPA. In vitro studies: the uptake of p- 10 borophenylalanine (BPA) by the UTC cell line ARO, primary cultures of normal bovine thyroid cells (BT) and human follicular adenoma (FA) thyroid was studied. No difference in BPA uptake was observed between proliferating and quiescent ARO cells. The uptake by quiescent ARO, BT and FA showed that the ARO/BT and ARO/FA ratios were 4 and 5, respectively (p< 0.001). The present experimental results open the possibility of applying BNCT for the treatment of UTC. (author)

  16. Successful BNCT for patients with cutaneous and mucosal melanomas. Report of 4 cases

    International Nuclear Information System (INIS)

    Morita, Norimasa; Hiratsuka, Junichi; Kuwabara, Chiaki; Aihara, Teruhito; Harada, Tamotsu; Imajo, Yoshinari; Ono, Koji; Fukuda, Hiroshi; Kumada, Hiroaki

    2006-01-01

    Since 2003 we have conducted BNCT clinical trials on melanomas at the Kyoto University Research Reactor (KUR) and Japan Research Reactor No.4 (JRR-4). We report 4 patients given BNCT for malignant melanomas: 2 with superficial spreading types on the heel, 1 with mucosal melanoma in the nasal cavity, and 1 with a melanoma on the vulva and in the vagina. The two cutaneous melanomas and the nasal cavity mucosal melanoma showed a complete response (CR) by 6 months after BNCT. The residual melanoma showed a partial response (PR) by 3 months after treatment and no regrowth since then. Although two patients experienced normal-tissue damage that exceeded the tolerance level, all the participants were cured within a few months of treatment. BNCT was shown to be a promising treatment for mucosal, as well as for cutaneous, melanomas. (author)

  17. Medical setup of intraoperative BNCT at JRR-4

    International Nuclear Information System (INIS)

    Akutsu, H.; Yamamoto, T.; Matsumura, A.

    2000-01-01

    Since October 1999, we have been performing clinical trials of intraoperative boron neutron capture therapy (IOBNCT) using a mixed thermal-epithermal beam at the Japan Research Reactor No. 4 (JRR-4). For immediate pre-BNCT care, including administration of a boron compound as well as post-BNCT care, a collaborating neurosurgical department of the University of Tsukuba was prepared in the vicinity of JRR-4. Following craniotomy in the treatment room, anesthetized patients were transported into the irradiation room for BNCT. The boron concentration in tissue was measured by the PGA and ICP-AES methods. The long-term follow-up was done at the University of Tsukuba Hospital. IOBNCT is a complex clinical procedure, which requires sophisticated operating team and co-medical staffs and also cooperation with physicist team. IOBNCT is a complex clinical procedure requiring a high level of cooperation among the operating team, co-medical staff, and physicists. For the safe and successful performance of IOBNCT, we have made the program including critical pathway and prepared various equipments for IOBNCT. To ensure the safe and successful performance of IOBNCT, we developed a critical pathway for use during the procedure, and prepared various apparatus for IOBNCT. (author)

  18. Carborane-containing metalloporphyrins for BNCT

    International Nuclear Information System (INIS)

    Miura, Michiko; Joel, D.D.; Nawrocky, M.M.; Micca, P.L.

    1996-01-01

    For BNCT of malignant brain tumors, it is crucial that there be relatively high boron concentrations in tumor compared with normal tissues within the neutron-irradiated treatment volume. Fairchild and Bond estimated that major advances in BNCT should be possible if ratios of 10 B concentrations in tumor to those in normal tissue (e.g. brain and blood) were at least 5: 1. Given that the only current boron carrier being tested clinically in the U.S., p-boronophenyl-alanine[BPA], yields tumor blood and tumor brain ratios of about 3:1, the criteria for new boronated compounds should be to at least match these ratios and maintain tumor boron concentrations greater than 30 μg B/g. Although previously tested boronated porphyrins have not only matched but surpassed these ratios, it was at a cost of greater toxicity. Chemical and hematological assays of blood analytes; showed marked thrombocytopenia, a decrease to about one-tenth the normal concentration of platelets circulating in the blood, in addition to abnormalities in concentrations of circulating enzymes, that indicated liver toxicity. The physical appearance and behavior of the affected mice were different from those of mice injected with solvent only. Although thrombocytopenia and other toxic effects had disappeared after a few days, previously tested porphyrins would not be safe to infuse into patients for BNCT of potentially hemorrhagic malignant tumors in the brain such as glioblastoma multiforme and metastatic melanoma. We synthesized a different boronated porphyrin, tetracarboranylphenylporphyrin, [TCP] and inserted nickel, copper, or manganese into its coordination center. Biological studies of NiTCP in mice and of CuTCP in rats show that these compounds elicit little or no toxicity when given at potentially therapeutic doses

  19. Carborane-containing metalloporphyrins for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Michiko; Joel, D.D.; Nawrocky, M.M.; Micca, P.L. [and others

    1996-12-31

    For BNCT of malignant brain tumors, it is crucial that there be relatively high boron concentrations in tumor compared with normal tissues within the neutron-irradiated treatment volume. Fairchild and Bond estimated that major advances in BNCT should be possible if ratios of {sup 10}B concentrations in tumor to those in normal tissue (e.g. brain and blood) were at least 5: 1. Given that the only current boron carrier being tested clinically in the U.S., p-boronophenyl-alanine[BPA], yields tumor blood and tumor brain ratios of about 3:1, the criteria for new boronated compounds should be to at least match these ratios and maintain tumor boron concentrations greater than 30 {mu}g B/g. Although previously tested boronated porphyrins have not only matched but surpassed these ratios, it was at a cost of greater toxicity. Chemical and hematological assays of blood analytes; showed marked thrombocytopenia, a decrease to about one-tenth the normal concentration of platelets circulating in the blood, in addition to abnormalities in concentrations of circulating enzymes, that indicated liver toxicity. The physical appearance and behavior of the affected mice were different from those of mice injected with solvent only. Although thrombocytopenia and other toxic effects had disappeared after a few days, previously tested porphyrins would not be safe to infuse into patients for BNCT of potentially hemorrhagic malignant tumors in the brain such as glioblastoma multiforme and metastatic melanoma. We synthesized a different boronated porphyrin, tetracarboranylphenylporphyrin, [TCP] and inserted nickel, copper, or manganese into its coordination center. Biological studies of NiTCP in mice and of CuTCP in rats show that these compounds elicit little or no toxicity when given at potentially therapeutic doses.

  20. Alpha-amino alcohol of para-boronophenylalanine, BPAol, as a potential boron carrier for BNCT

    International Nuclear Information System (INIS)

    Takagaki, M.; Ono, K.; Masunaga, S.; Kinashi, Y.

    2000-01-01

    α amino alcohol of boronophenylalanine BPAol in which -COOH group is replaced with hydrophilic group of -OH of p-boronophenylalanine (BPA) has been synthesized and its BNCT effect on experimental tumor models have been investigated. Tumor cell killing effect of BPAol on C6 gliosarcoma cells was very high 4.4 times as that of BPA, since it was actively accumulated into tumor cells in 4-5 times as that of BPA. Carboxylic group of BPA might not play as an essential role in uptake of BPA into tumor cells. BPAol-based BNCT strongly inhibited the tumor growth of Green's melanotic melanoma hamsters even under therapeutic dose of BPA-based BNCT. These preliminary findings strongly warrant further extensive pre-clinical study for BPAol as a boron carrier for BNCT. (author)

  1. Measurement and simulation of the TRR BNCT beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bavarnegin, Elham [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Sadremomtaz, Alireza [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Khalafi, Hossein [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Kasesaz, Yaser, E-mail: ykasesaz@aeoi.org.ir [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-09-11

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  2. Considerations for boron neutron capture therapy studies; Consideracoes sobre o estudo da BNCT (terapia de captura neutronica por boro)

    Energy Technology Data Exchange (ETDEWEB)

    Faria Gaspar, P de

    1994-12-31

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps.

  3. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).

    Science.gov (United States)

    Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro

    2017-12-01

    The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.

  4. Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Reiriz, Alejandro, E-mail: garciareiriz@gmail.com [Department of Analytical Chemistry, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario Institute of Chemistry (IQUIR-CONICET), Suipacha 531, Rosario S2002LRK (Argentina); Magallanes, Jorge [Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, San Martin, B1650KNA, Buenos Aires (Argentina); Zupan, Jure [National Institute of Chemistry, Hajdrihova 19, SLO-1000 Ljubljana, Eslovenia (Slovenia); Liberman, Sara [Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, San Martin, B1650KNA, Buenos Aires (Argentina)

    2011-12-15

    For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in blood during BNCT treatment, a method is suggested based on Kohonen neural networks. The results of a model trained with the concentration profiles from the literature are described. The prediction of the model was validated by the leave-one-out method. Its robustness shows that it is mostly independent on small variations. The ability to fit retrospective experimental data shows an uncertainty lower than the two compartment model used previously. - Highlights: Black-Right-Pointing-Pointer We predicted decaying concentration profiles of BPA in blood during BNCT therapy. Black-Right-Pointing-Pointer Is suggested a method based on Kohonen neural networks. Black-Right-Pointing-Pointer The results show that it is very robust and mostly independent of small variations. Black-Right-Pointing-Pointer It has a better ability to fit retrospective experimental data. Black-Right-Pointing-Pointer The model could be progressively improved by adding new data to the training matrix.

  5. Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients

    International Nuclear Information System (INIS)

    García-Reiriz, Alejandro; Magallanes, Jorge; Zupan, Jure; Líberman, Sara

    2011-01-01

    For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in blood during BNCT treatment, a method is suggested based on Kohonen neural networks. The results of a model trained with the concentration profiles from the literature are described. The prediction of the model was validated by the leave-one-out method. Its robustness shows that it is mostly independent on small variations. The ability to fit retrospective experimental data shows an uncertainty lower than the two compartment model used previously. - Highlights: ► We predicted decaying concentration profiles of BPA in blood during BNCT therapy. ► Is suggested a method based on Kohonen neural networks. ► The results show that it is very robust and mostly independent of small variations. ► It has a better ability to fit retrospective experimental data. ► The model could be progressively improved by adding new data to the training matrix.

  6. The Idaho Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program overview

    International Nuclear Information System (INIS)

    Dorn, R.V. III; Griebenow, M.L.; Ackermann, A.L.; Miller, L.G.; Miller, D.L.; Wheeler, F.J.; Bradshaw, K.M.; Wessol, D.E.; Harker, Y.D.; Nigg, D.W.; Randolph, P.D.; Bauer, W.F.; Gavin, P.R.; Richards, T.L.

    1992-01-01

    The Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program has been funded since 1988 to evaluate brain tumor treatment using Na 2 B 12 H 11 SH (borocaptate sodium or BSH) and epithermal neutrons. The PBF/BNCT Program pursues this goal as a comprehensive, multidisciplinary, multiorganizational endeavor applying modern program management techniques. The initial focus was to: (1) establish a representative large animal model and (2) develop the generic analytical and measurement capabilities require to control treatment repeatability and determine critical treatment parameters independent of tumor type and body location. This paper will identify the PBF/BNCT Program elements and summarize the status of some of the developed capabilities

  7. 23 CFR 140.609 - Progress and final vouchers.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Progress and final vouchers. 140.609 Section 140.609 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PAYMENT PROCEDURES REIMBURSEMENT Reimbursement for Bond Issue Projects § 140.609 Progress and final vouchers. (a) Progress vouchers may be...

  8. Long-survivors of glioblatoma treated with boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H.

    2011-01-01

    The purpose of this study was to compare the radiation dose between long-survivors and non-long-survivors in patients with glioblatoma (GBM) treated with boron neutron capture therapy (BNCT). Among 23 GBM patients treated with BNCT, there were five patients who survived more than three years after diagnosis. The physical and weighted dose of the minimum gross tumor volume (GTV) of long-survivors was much higher than that of non-long survivors with significant statistical differences.

  9. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  10. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Chadha, M.

    1996-01-01

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT

  11. "Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    Energy Technology Data Exchange (ETDEWEB)

    Ana J. Molinari; Andrea Monti Hughes; Elisa M. Heber; Marcela A. Garabalino; Veronica A. Trivillin; Amanda E. Schwint; Emiliano C. C. Pozzi; Maria E. Itoiz; Silvia I. Thorp; Romina F. Aromando; David W. Nigg; Jorge Quintana; Gustavo A. Santa Cruz

    2011-04-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with a thermal or epithermal neutron beam. The minor abundance stable isotope of boron, 10B, interacts with low energy (thermal) neutrons to produce high linear energy transfer (LET) a-particles and 7Li ions. These disintegration products are known to have a high relative biological effectiveness (RBE). Their short range (<10 {micro}m) would limit the damage to cells containing 10B (1,2). Thus, BNCT would target tumor tissue selectively, sparing normal tissue. Clinical trials of BNCT for the treatment of glioblastoma multiforme and/or melanoma and, more recently, head and neck tumors and liver metastases, using boronophenylalanine (BPA) or sodium mercaptoundecahydrododecaborane (BSH) as the 10B carriers, have been performed or are underway in Argentina, Japan, the US and Europe (e.g. 3-8). To date, the clinical results have shown a potential, albeit inconclusive, therapeutic advantage for this technique. Contributory translational studies have been carried out employing a variety of experimental models based on the implantation of tumor cells in normal tissue (e.g. 5).

  12. Investigation of development and management of treatment planning systems for BNCT at foreign facilities

    International Nuclear Information System (INIS)

    2001-03-01

    A new computational dosimetry system for BNCT: JCDS is developed by JAERI in order to carry out BNCT with epithermal neutron beam at present. The development and management situation of computational dosimetry system, which are developed and are used in BNCT facilities in foreign countries, were investigated in order to accurately grasp functions necessary for preparation of the treatment planning and its future subjects. In present state, 'SERA', which are developed by Idaho National Engineering and Environmental Laboratory (INEEL), is used in many BNCT facilities. Followings are necessary for development and management of the treatment planning system. (1) Reliability confirmation of system performance by verification as comparison examination of calculated value with actual experimental measured value. (2) Confirmation systems such as periodic maintenance for retention of the system quality. (3) The improvement system, which always considered relative merits and demerits with other computational dosimetry system. (4) The development of integrated system with patient setting. (author)

  13. Abscopal effect of boron neutron capture therapy (BNCT). Proof of principle in an experimental model of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trivillin, Veronica A.; Monti Hughes, Andrea; Schwint, Amanda E. [Comision Nacional de Energia Atomica (CNEA), Department of Radiobiology, B1650KNA San Martin, Provincia Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Pozzi, Emiliano C.C.; Curotto, Paula [Centro Atomico Ezeiza, Comision Nacional de Energia Atomica (CNEA), Department of Research and Production Reactors, Provincia Buenos Aires (Argentina); Colombo, Lucas L. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Instituto de Oncologia Angel H. Roffo, Ciudad Autonoma de Buenos Aires (Argentina); Thorp, Silvia I.; Farias, Ruben O. [Comision Nacional de Energia Atomica (CNEA), Department of Instrumentation and Control, Provincia Buenos Aires (Argentina); Garabalino, Marcela A. [Comision Nacional de Energia Atomica (CNEA), Department of Radiobiology, B1650KNA San Martin, Provincia Buenos Aires (Argentina); Gonzalez, Sara J. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Comision Nacional de Energia Atomica (CNEA), Department of Instrumentation and Control, Provincia Buenos Aires (Argentina); Santa Cruz, Gustavo A. [Comision Nacional de Energia Atomica (CNEA), Department of Boron Neutron Capture Therapy, Provincia Buenos Aires (Argentina); Carando, Daniel G. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Universidad de Buenos Aires, Faculty of Exact and Natural Sciences, Ciudad Autonoma de Buenos Aires (Argentina)

    2017-11-15

    The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 x 10{sup 6} DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 x 10{sup 6} DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm{sup 3}. In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm{sup 3}. The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect. (orig.)

  14. Abscopal effect of boron neutron capture therapy (BNCT). Proof of principle in an experimental model of colon cancer

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Monti Hughes, Andrea; Schwint, Amanda E.; Pozzi, Emiliano C.C.; Curotto, Paula; Colombo, Lucas L.; Thorp, Silvia I.; Farias, Ruben O.; Garabalino, Marcela A.; Gonzalez, Sara J.; Santa Cruz, Gustavo A.; Carando, Daniel G.

    2017-01-01

    The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 x 10 6 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 x 10 6 DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm 3 . In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm 3 . The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect. (orig.)

  15. Effect of different BNCT protocols on DNA synthesis in precancerous and normal tissues in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Aromando, Romina; Trivillin, Veronica A.; Itoiz, Maria E.; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.

    2006-01-01

    We previously reported the therapeutic success of different BNCT protocols in the treatment of oral cancer, employing the hamster cheek pouch model. The aim of the present study was to evaluate the effect of these BNCT protocols on DNA synthesis in precancerous and normal tissue in this model and assess the potential lag in the development of second primary tumors in precancerous tissue. The data are relevant to potential control of field cancerized tissue and tolerance of normal tissue. We evaluated DNA synthesis in precancerous and normal pouch tissue 1-30 days post-BNCT mediated by BPA, GB-10 or BPA + GB-10 employing incorporation of bromo-deoxyuridine as an end-point. The BNCT-induced potential lag in the development of second primary tumors in precancerous tissue was monitored. A drastic, statistically significant reduction in DNA synthesis occurred in pacancerous tissue as early as 1 day post-BNCT and was sustained at virtually all time points until 30 days post-BNCT for all protocols. The histological categories evaluated individually within precancerous tissue (dysplasia, hyperplasia and NUMF [no unusual microscopic features]) responded similarly. DNA synthesis in normal tissue treated with BNCT oscillated around the very low pre-treatment values. A BNCT-induced lag in the development of second primary tumors was observed. BNCT induced a drastic fall in DNA synthesis in precancerous tissue that would be associated to the observed lag in the development of second primary tumors. The minimum variations in DNA synthesis in BNCT-treated normal tissue would correlate with the absence of normal tissue radiotoxicity. The present data would contribute to optimize therapeutic efficacy in the treatment of field-cancerized areas. (author)

  16. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chadha, M.

    1997-01-01

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains

  17. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  18. Clinical results of BNCT for malignant gliomas using BSH and BPA simultaneously

    International Nuclear Information System (INIS)

    Miyatake, Shin-ichi; Kawabata, Shinji; Kajimoto, Yoshinaga

    2006-01-01

    Since 2002 to 2006, we applied BNCT for 41 cases of malignant gliomas. We used 3 different protocols. In each protocol, we used BSH and BPA simultaneously. In protocol 1, BSH 5g/body and BPA 250 mg/kg were used for consecutive 13 cases. Median survival time (MST) of newly diagnosed 4 cases of GB was 23 months after diagnosis. 2 cases were still alive. All cases including recurrent ones showed radiographic improvement. Eight out of 12 cases showed more than 50% mass reduction on images. Major cause of death was CSF dissemination. In protocol 2, BNCT were applied for 4 patients, two times with one to 2 week-interval. MST after BNCT was 13.3 months. In protocol 3, BPA 700 mg/kg were used with 20 to 30 Gy XRT after BNCT. XRT boost was applied especially for deeper part of the tumor. In protocol 3, 6 newly diagnosed GB patients were observed more than 16 months. 3 were dead and 3 were still alive on the preparation of this abstract. MST of these 6 patients was 17.3 months after diagnosis. In each protocol, radiation necrosis was the problem for recurrent cases, while removal of the necrosis prolonged the survival and recovered the neurological deficits. (author)

  19. Introducing BNCT treatment in new treatment facilities

    International Nuclear Information System (INIS)

    Gabel, D.

    2001-01-01

    The physical and radiobiological studies that should be performed before the initiation of BNCT are discussed. The need for dose-escalation versus response studies in large animal models is questioned. These studies are time consuming, expensive and legally difficult in some countries and may be dispensable. (author)

  20. The BNCT project in the Czech Republic

    International Nuclear Information System (INIS)

    Burian, J.; Marek, M.; Rataj, J.; Honova, H.; Petruzelka, L.; Prokes, K.; Tovarys, F.; Dbaly, V.; Honzatko, J.; Tomandl, I.

    2000-01-01

    The start of clinical trials is expected before NCT Osaka 2000. The experiences from different part of project are presented. The BNCT facility at LVR-15 reactor of NRI consists of epithermal neutron beam with improved construction (6.98 x 10 8 /cm 2 s with acceptable background of fast neutrons and gammas) and irradiation and control rooms equipped by appropriate devices. Internationally-recognized software MacNCTPLAN is utilized for computational dosimetry and treatment planning. In the part of protocol the following parameters have been assessed: patient selection, BSH dosage, fractionation, starting dose, dose escalation steps. At the LVR-15, at horizontal channel, a prompt gamma ray analysis (PGRA) system has been developed and is operated for BNCT purposes. Some human blood samples were analyzed and compared with classical ICP method. During the process of licensing the experience was obtained, some notes are discussed in the paper. The first results were received for the study of biological effect of the LVR source for small animal model. (author)

  1. Characterisation of the TAPIRO BNCT epithermal facility

    Energy Technology Data Exchange (ETDEWEB)

    Burn, K. W. [FIS-NUC, ENEA, Via Martiri di Montesole 4, Bologna (Italy); Colli, V. [Dept. of Physics of Univ., INFN, Via Celoria 16, I-20133 Milano (Italy); Curzio, G.; D' Errico, F. [DIMNP, Univ. of Pisa, Via Diotisalvi 2, I-56126 Pisa (Italy); Gambarini, G. [Dept. of Physics of Univ., INFN, Via Celoria 16, I-20133 Milano (Italy); Rosi, G. [FIS-ION, ENEA, Casaccia, Via Anguillarese 301, I-00060 Santa Maria di Galeria, Roma (Italy); Scolari, L. [Dept. of Physics of Univ., INFN, Via Celoria 16, I-20133 Milano (Italy)

    2004-07-01

    A collimated epithermal beam for boron neutron capture therapy (BNCT) research has been designed and built at the TAPIRO fast research reactor. A complete experimental characterisation of the radiation field in the irradiation chamber has been performed, to verify agreement with IAEA requirements. Slow neutron fluxes have been measured by means of an activation technique and with thermoluminescent detectors (TLDs). The fast neutron dose has been determined with gel dosemeters, while the fast neutron spectrum has been acquired by means of a neutron spectrometer based on superheated drop detectors. The gamma-dose has been measured with gel dosemeters and TLDs. For an independent verification of the experimental results, fluxes, doses and neutron spectra have been calculated with Monte Carlo simulations using the codes MCNP4B and MCNPX 2.1.5 with the direct statistical approach (DSA). The results obtained confirm that the epithermal beams achievable at TAPIRO are of suitable quality for BNCT purposes. (authors)

  2. Conceptual design of 30 MeV magnet system used for BNCT epithermal neutron source

    International Nuclear Information System (INIS)

    Slamet Santosa; Taufik

    2015-01-01

    Conceptual design of 30 MeV Magnet System Used for BNCT Epithermal Neutron Source has been done based on methods of empirical model of basic equation, experiences of 13 MeV cyclotron magnet design and personal communications. In the field of health, cyclotron can be used as an epithermal neutron source for Boron Neutron Capture Therapy (BNCT). The development of cyclotron producing epithermal neutrons for BNCT has been performed at Kyoto University, of which it produces a proton beam current of 1.1 mA with energy of 30 MeV. With some experiences on 13 MeV cyclotron magnet design, to support BNCT research and development we performed the design studies of 30 MeV cyclotron magnet system, which is one of the main components of the cyclotron for deflecting proton beam into circular trajectory and serves as beam focusing. Results of this study are expected to define the parameters of particular cyclotron magnet. The scope of this study includes the study of the parameters component of the 30 MeV cyclotron and magnet initial parameters. The empirical method of basic equation model is then corroborated by a simulation using Superfish software. Based on the results, a 30 MeV cyclotron magnet for BNCT neutron source enables to be realized with the parameters of B 0 = 1.06 T, frequency RF = 64.733938 ≈ 65 MHz, the external radius of 0.73 m, the radius of the polar = 0.85 m, BH = 1.95 T and a gap hill of 4 cm. Because proton beam current that be needed for BNCT application is very large, then in the calculation it is chosen a great focusing axial νz = 0.630361 which can generate B V = 0.44 T. (author)

  3. Radiation shielding design of BNCT treatment room for D-T neutron source.

    Science.gov (United States)

    Pouryavi, Mehdi; Farhad Masoudi, S; Rahmani, Faezeh

    2015-05-01

    Recent studies have shown that D-T neutron generator can be used as a proper neutron source for Boron Neutron Capture Therapy (BNCT) of deep-seated brain tumors. In this paper, radiation shielding calculations have been conducted based on the computational method for designing a BNCT treatment room for a recent proposed D-T neutron source. By using the MCNP-4C code, the geometry of the treatment room has been designed and optimized in such a way that the equivalent dose rate out of the treatment room to be less than 0.5μSv/h for uncontrolled areas. The treatment room contains walls, monitoring window, maze and entrance door. According to the radiation protection viewpoint, dose rate results of out of the proposed room showed that using D-T neutron source for BNCT is safe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Feasibility study on BNCT-SPECT using a CdTe detector

    International Nuclear Information System (INIS)

    Murata, Isao; Mukai, Taiki; Ito, Masao; Miyamaru, Hiroyuki; Yoshida, Shigeo

    2011-01-01

    There is no doubt that boron neutron capture therapy (BNCT) is a promising cancer therapy in the near future. At present, one of the severest problems to solve is monitoring of the treatment effect during neutron irradiation. It is known to be difficult in real time. So far, activation foils, small detectors and so on were used to measure the thermal neutron fluence in a certain place of the tumor. The dose distribution is thus estimated from the measured result and prediction with a transport code. In the present study, 478 keV gamma-rays emitted from the excited state of 7 Li produced by 10 B(n,α) 7 Li reaction are directly measured to realize real time monitoring of the treatment effect of BNCT. In this paper, the result of the feasibility study carried out using a Monte Carlo transport code is summarized. We used CdTe detectors with a quite narrow collimator to obtain a BNCT image keeping good spatial resolution. The intensity of capture gamma-rays of 2223 keV produced by 1 H(n,γ) 2 H reaction is very much higher than that of 478 keV. We thus adjusted the detector efficiency by selecting an appropriate thickness so as to optimize the efficiency ratio between 478 and 2223 keV. From the result of the detector response calculation, in case of 20 mm thick CdTe detector with the collimator of 2 mm in diameter, sufficient net count of ∼1000 for 478 keV in 30 min. was realized. It means an efficient and high-resolution BNCT-SPECT image could be obtained. (author)

  5. BNCT of 3 cases of spontaneous head and neck cancer in feline patients

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M.; Trivillin, V.A.; Heber, E.M.; Angeles Cantarelli, Maria de los; Itoiz, M.E.; Nigg, D.W.; Rebagliati, R.J.; Batistoni, Daniel; Schwint, A.E. E-mail: schwint@cnea.gov.ar

    2004-11-01

    Having demonstrated BPA-BNCT induced control of experimental squamous cell carcinomas (SCC) of the hamster cheek pouch mucosa with no damage to normal tissue we explored the feasibility and safety of treating spontaneous head and neck tumors, with particular focus on SCC, of terminal feline patients with low dose BPA-BNCT employing the thermal beam of the RA-1 Reactor within a preclinical context. The biodistribution studies showed that, in all three cases evaluated, BPA delivered absolute boron values to tumor in the range that proved therapeutically useful in the experimental model of SCC. BPA-BNCT studies showed no radiotoxic effects, partial tumor control in terms of impaired growth and partial necrosis, an improvement in clinical condition and prolonged survival beyond the terminal condition of the feline patients at the time of recruitment.

  6. Towards a new therapy protocol for liver metastases. Effect of boron compounds and BNCT on normal liver regeneration

    International Nuclear Information System (INIS)

    Cardoso, Jorge E.; Heber, Elisa M.; Trivillin, Veronica A.

    2006-01-01

    The Taormina project developed a new method for BNCT treatment of multifocal unresectable liver metastases based on whole liver autograft. The Roffo Institute liver surgeons propose a new technique based on partial liver autograft that would pose less risk to the patient but would require significant healthy liver regeneration following BNCT. The aim of the present study was to assess the effect of BPA, GB-10 (Na 2 10 B 10 H 10 ) and (GB-10 + BPA) and of BNCT mediated by these boron compounds on normal liver regeneration in the Wistar rat. Normal liver regeneration, body weight, hemogram, liver and kidney function were assessed following partial hepatectomy post administration of BPA, GB-10 or (GB-10 + BPA) and post in vivo BNCT at the RA-6 Reactor. These end-points were evaluated 9 days following partial hepatectomy, the time at which complete liver regeneration occurs in untreated controls. The corresponding biodistribution studies were conducted to perform dosimetric calculations. BPA, GB-10 and (GB-10 + PBA) and in vivo BNCT mediated by these boron compounds in dose ranges compatible with therapy did not cause alterations in the outcome of normal liver regeneration, and did not induce alterations in body weight, hemogram, liver or kidney function. The experimental data available to date support the development of a new BNCT protocol for the treatment of liver metastases that requires the regeneration of normal liver past-BNCT. (author)

  7. Clinical results of BNCT for malignant brain tumors in children

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Kageji, Teruyoshi; Mizobuchi, Yoshifumi; Kumada, Hiroaki; Nakagawa, Yoshiaki

    2009-01-01

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  8. Epithermal neutron beam for BNCT research at the Washington State University TRIGA research reactor

    International Nuclear Information System (INIS)

    Nigg, D.W.; Venhuizen, J.R.; Wheeler, F.J.; Wemple, C.A.; Tripard, G.E.; Gavin, P.R.

    2000-01-01

    A new epithermal-neutron beam facility for BNCT (Boron Neutron Capture Therapy) research and boronated agent screening in animal models is in the final stages of construction at Washington State University (WSU). A key distinguishing feature of the design is the incorporation of a new, high-efficiency, neutron moderating and filtering material, Fluental, developed by the Technical Research Centre of Finland. An additional key feature is the provision for adjustable filter-moderator thickness to systematically explore the radiobiological consequences of increasing the fast-neutron contamination above the nominal value associated with the baseline system. (author)

  9. Some recent developments in treatment planning software and methodology for BNCT

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wheeler, F.J.; Wessol, D.E.; Wemple, C.A.; Babcock, R.; Capala, J.

    1996-01-01

    Over the past several years/the Idaho National Engineering Laboratory (INEL) has led the development of a unique, internationally-recognized set of software modules (BNCT rtpe) for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT). The computational capability represented by this software is essential to the proper administration of all forms of radiotherapy for cancer. Such software addresses the need to perform pretreatment computation and optimization of the radiation dose distribution in the target volume. This permits the achievement of the optimal therapeutic ratio (tumor dose relative to critical normal tissue dose) for each individual patient via a systematic procedure for specifying the appropriate irradiation parameters to be employed for a given treatment. These parameters include angle of therapy beam incidence, beam aperture and shape,and beam intensity as a function of position across the beam front. The INEL software is used for treatment planning in the current series of human glioma trials at Brookhaven National Laboratory (BNL) and has also been licensed for research and developmental purposes to several other BNCT research centers in the US and in Europe

  10. Some recent developments in treatment planning software and methodology for BNCT

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wheeler, F.J.; Wessol, D.E.

    1996-01-01

    Over the past several years the Idaho National Engineering Laboratory (INEL) has led the development of a unique, internationally-recognized set of software modules (BNCT-rtpe) for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT). The computational capability represented by this software is essential to the proper administration of all forms of radiotherapy for cancer. Such software addresses the need to perform pretreatment computation and optimization of the radiation dose distribution in the target volume. This permits the achievement of the optimal therapeutic ratio (tumor dose relative to critical normal tissue dose) for each individual patient via a systematic procedure for specifying the appropriate irradiation parameters to be employed for a given treatment. These parameters include angle of therapy beam incidence, beam aperture and shape, and beam intensity as a function of position across the beam front. The INEL software is used for treatment planning in the current series of human glioma trials at Brookhaven National Laboratory (BNL) and has also been licensed for research and developmental purposes to several other BNCT research centers in the US and in Europe

  11. PSI-Center Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, Thomas R. [Univ. of Washington, Seattle, WA (United States); Shumlak, Uri [Univ. of Washington, Seattle, WA (United States); Sovinec, Carl [Univ. of Washington, Seattle, WA (United States); Hansen, Chris [Univ. of Washington, Seattle, WA (United States); Ji, Jeong-Young [Utah State Univ., Logan, UT (United States); Nelson, Brian [Univ. of Wisconsin, Madison, WI (United States)

    2017-04-20

    This is the Final Progress Report of the Plasma Science and Innovation Center (PSI-Center) covering March 2014 through February 2017. The Center has accomplished a great deal during this period. The PSI-Center is organized into four groups: Edge and Dynamic Neutrals; Transport and Kinetic Effects; Equilibrium, Stability, and Kinetic Effects in 3D Topologies; and Interface for Validation. Each group has made good progress and the results from each group are given in detail.

  12. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    CERN Document Server

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  13. Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head-and-Neck Cancer: Final Analysis of a Phase I/II Trial

    Energy Technology Data Exchange (ETDEWEB)

    Kankaanranta, Leena [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Seppaelae, Tiina; Koivunoro, Hanna [Department of Physics, University of Helsinki, Helsinki (Finland); Boneca Corporation, Helsinki (Finland); Saarilahti, Kauko [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Atula, Timo [Department of Otorhinolaryngology, Helsinki University Central Hospital, Helsinki (Finland); Collan, Juhani [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Salli, Eero; Kortesniemi, Mika [Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Uusi-Simola, Jouni [Department of Physics, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Vaelimaeki, Petteri [Department of Physics, University of Helsinki, Helsinki (Finland); Boneca Corporation, Helsinki (Finland); Maekitie, Antti [Department of Otorhinolaryngology, Helsinki University Central Hospital, Helsinki (Finland); Seppaenen, Marko [Turku PET Centre, Turku University Hospital, Turku (Finland); Minn, Heikki [Department of Oncology, Turku University Central Hospital, Turku (Finland); Revitzer, Hannu [Aalto University School of Science and Technology, Esopo (Finland); Kouri, Mauri [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo (Finland); Savolainen, Sauli [Department of Physics, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Joensuu, Heikki, E-mail: heikki.joensuu@hus.fi [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland)

    2012-01-01

    Purpose: To investigate the efficacy and safety of boron neutron capture therapy (BNCT) in the treatment of inoperable head-and-neck cancers that recur locally after conventional photon radiation therapy. Methods and Materials: In this prospective, single-center Phase I/II study, 30 patients with inoperable, locally recurred head-and-neck cancer (29 carcinomas and 1 sarcoma) were treated with BNCT. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 50 to 98 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed by use of the RECIST (Response Evaluation Criteria in Solid Tumors) and adverse effects by use of the National Cancer Institute common terminology criteria version 3.0. Intravenously administered L-boronophenylalanine-fructose (400 mg/kg) was administered as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Twenty-six patients received BNCT twice; four were treated once. Of the 29 evaluable patients, 22 (76%) responded to BNCT, 6 (21%) had tumor growth stabilization for 5.1 and 20.3 months, and 1 (3%) progressed. The median progression-free survival time was 7.5 months (95% confidence interval, 5.4-9.6 months). Two-year progression-free survival and overall survival were 20% and 30%, respectively, and 27% of the patients survived for 2 years without locoregional recurrence. The most common acute Grade 3 adverse effects were mucositis (54% of patients), oral pain (54%), and fatigue (32%). Three patients were diagnosed with osteoradionecrosis (each Grade 3) and one patient with soft-tissue necrosis (Grade 4). Late Grade 3 xerostomia was present in 3 of the 15 evaluable patients (20%). Conclusions: Most patients who have inoperable, locally advanced head-and-neck carcinoma that has recurred at a previously irradiated site respond to boronophenylalanine-mediated BNCT, but cancer recurrence after BNCT remains frequent. Toxicity was

  14. A clinical trial protocol for second line treatment of malignant brain tumors with BNCT at University of Tsukuba

    International Nuclear Information System (INIS)

    Aiyama, H.; Nakai, K.; Yamamoto, T.; Nariai, T.; Kumada, H.; Ishikawa, E.; Isobe, T.; Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A.

    2011-01-01

    We have evaluated the efficacy and safety of boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor using a new protocol. One of the two patients enrolled in this trial is a man with recurrent glioblastoma and the other is a woman with anaplastic meningioma. Both are still alive and no severe adverse events have been observed. Our findings suggest that NCT will be safe as a palliative therapy for malignant brain tumors. - Highlights: ► Boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor. ► Two cases with recurrent glioblastoma and anaplastic meningioma. ► No severe adverse events have been observed using BNCT. ► BNCT has a possibility of a safe palliative therapy for malignant brain tumors.

  15. Clinical practice in BNCT to the brain

    International Nuclear Information System (INIS)

    Nakagawa, Y.

    2001-01-01

    Our concept of Boron Neutron Capture Therapy (BNCT) is to selectively destroy tumour cells using the high LET particles yielded from the 10B(n,α)7Li reactions. The effort of clinical investigators has concentrated on how to escalate the radiation dose at the target point. BNCT in Japan combines thermal neutrons and BSH (Na 2 B 12 H 11 SH). The radiation dose is determined by the neutron fluence at the target point and the boron concentration in the tumour tissue. According to the recent analysis, the ratio of boron concentration (BSH) in tumour tissue and blood is nearly stable at around 1.2 to 1.69. Escalation of the radiation dose was carried out by means of improving the penetration of the thermal neutron beam. Since 1968, 175 patients with glioblastoma (n=83), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumour (n=32) were treated by BNCT at 5 reactors (HTR n=13, JRR-3 n=1, MulTR n=98, KUR n=30, JRR-2 n=33). The retrospective analysis revealed that the important factors related to the clinical results and QOL of the patients were minimum tumour volume radiation dose, more than 18Gy of physical dose and maximum vascular radiation dose (less than 15Gy) in the normal cortex. We have planned several trials to escalate the target radiation dose. One trial makes use of a cavity in the cortex following debulking surgery of the tumour tissue to improve neutron penetration. The other trial is introduction of epithermal neutron. KUR and JRR-4 were reconstructed and developed to be able to irradiate using epithermal neutrons. The new combination of surgical procedure and irradiation using epithermal neutrons should remarkably improve the target volume dose compared to the radiation dose treated by thermal neutrons. (author)

  16. 2-O-α-glucopytanosyl L-ascorbic acid reduced mutagenicity at HPRT locus of mouse splenocytes following BNCT

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Masunaga, Shin-ichiro; Suzuki, Minoru; Nagata, Kanji; Ono, Koji

    2006-01-01

    In boron neutron capture therapy (BNCT), normal tissue surrounding the tumor cells sometimes take up boron compounds resulting in radiation-induced damage to normal tissue. We have previously reported the evidence for increased the mutagenicity of thermal neutron in the presence of boron. In addition, we described the biological radio-protective effects of the ascorbic acid for mutation induction following BNCT in vitro. Here, we investigated these radio-protective effects of ascorbic acid for mutation induction in mouse splenocytes on HPRT locus following a BNCT study in vivo. (author)

  17. Radiobiology studies for the evaluation of epithermal neutron beams used for BNCT

    International Nuclear Information System (INIS)

    Green, S.; Jones, B.; Mill, A.J.

    2006-01-01

    This paper outlines our plans for a study to establish the radiobiological effectiveness of the various mixes of radiation components present in an epithermal neutron beam designed for BNCT and to incorporate these data into clinical protocols for the treatment of malignant glioma. This is a description of work which is funded and just now beginning in Birmingham so no results can be presented. Our project will involve a combination of experimental measurements carried out in Birmingham and in Boston and mathematical modelling carried out in Birmingham. Despite all the extant in-vitro and in-vivo work, there is no widely accepted method to determine biological effect by accounting for variations in beam component mix, dose rate and treatment fractionation for disparate from the various BNCT centres. The objectives of this study are: To develop a cell-based radiobiology protocol to provide essential data on safety and efficacy of beams for Boron Neutron Capture Therapy (BNCT) in advance of clinical trials. To exploit the facilities at Massachusetts Institute of Technology for variable dose-rate epithermal irradiations to validate the above protocol. To develop mathematical models of this radiobiological system that can be used to inform decisions on dose selection, fractionation schedules, BNCT use as supplementary boosts or for re-treatment of recurrent cancers. To provide fundamental data relevant to the understanding of the radiobiology of simultaneous mixed high-and low-LET radiations over a clinically relevant dose-range. (author)

  18. Optimization of the application of BNCT to undifferentiated thyroid cancer

    International Nuclear Information System (INIS)

    Dagrosa, M.A.; Thomasz, L.; Longhino, J.

    2006-01-01

    The possible increase in BNCT efficacy for undifferentiated thyroid carcinoma (UTC) using BPA plus BOPP and nicotinamide (NA) as a radiosensitizer on the BNCT reaction was analyzed. In these studies nude mice were transplanted with the ARO cells and after 14 days they were treated as follows: 1) Control; 2) NCT (neutrons alone); 3) NCT plus NA (100 mg/kg bw/day for 3 days); 4) BPA (350 mg/kg bw) + neutrons; 5) BPA+ NA+ neutrons; 6) BPA+BOPP (60 mg/kg bw) + neutrons. The flux of hyperthermal neutrons was 2.8 10 8 during 85 min. Neutrons alone or with NA caused some tumor growth delay, while in the BPA, BPA+NA and BPA+BOPP groups a 100% halt of tumor growth was observed. When the initial tumor volume was 50 mm 3 or less a complete cure was found in BPA+NA (2/2); BPA (1/4); BPA+BOPP (7/7). After 90 days of complete regression, recurrence of tumor was observed in 2/2 BPA/NA (2/2) and BPA+BOPP (1/7). Caspase 3 activity was increased in BPA+NA (p<0.05 vs controls). BPA plus NA increased tumor apoptosis but only the combination of BPA+BOPP increased significantly BNCT efficiency. (author)

  19. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, G.; Grunewald, C.; Schutz, C.; Schmitz, T.; Kratz, J.V. [Nuclear Chemistry, University of Mainz, D-55099 Mainz (Germany); Brochhausen, C.; Kirkpatrick, J. [Department of Pathology, University of Mainz, D-55099 Mainz (Germany); Bortulussi, S.; Altieri, S. [Department of Nuclear and Theoretical Physics University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN) Pavia Section, Pavia (Italy); Kudejova, P. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen, D-85748 Garching (Germany); Appelman, K.; Moss, R. [Joint Research Centre (JRC) of the European Commission, NL-1755 ZG Petten (Netherlands); Bassler, N. [University of Aarhus, Norde Ringade, DK-8000, Aarhus C (Denmark); Blaickner, M.; Ziegner, M. [Molecular Medicine, Health and Environment Department, AIT Austrian Institute of Technology GmbH (Austria); Sharpe, P.; Palmans, H. [National Physical Laboratory, Teddington TW11 0LW, Middlesex (United Kingdom); Otto, G. [Department of Hepatobiliary, Pancreatic and Transplantation Surgery, University of Mainz, D-55099 Mainz (Germany)

    2011-07-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed in Pavia (Italy) a few years ago, where patients with liver metastases were treated by combining BNCT with auto-transplantation of the organ. Here, in Mainz, a preclinical trial has been started on patients suffering from liver metastases of colorectal carcinoma. In vitro experiments and the first animal tests have also been initiated to investigate radiobiological effects of radiation generated during BNCT. For both experiments and the treatment, a reliable dosimetry system is necessary. From work elsewhere, the use of alanine detectors appears to be an appropriate dosimetry technique. (author)

  20. BNCT clinical trials of skin melanoma patients in Argentina

    International Nuclear Information System (INIS)

    Roth, Berta M.; Bonomi, Marcelo R.; Gonzalez, Sara J.

    2006-01-01

    The clinical outcome of six skin melanoma BNCT irradiations is presented. Three patients (A, B and C), with multiple subcutaneous skin metastases progressed to chemotherapy were infused with ∼14 g/m 2 of boronophenylalanine ( 10 BPA)-fructose and irradiated in the hyperthermal neutron beam of the RA-6 reactor. Patient A received two one fraction irradiations in different areas of the leg, B received one fraction and C was irradiated in three consecutive fields at the calf, heel and foot sole. The maximum prescribed dose to normal skin ranged from 16.5 to 24 Gy-Eq. With a minimum follow-up of 10 months there was a G1 acute epithelitis in A and B and a G3 in C. No late toxicity was observed. Due to the in-field tumor-growth-delay and the absence of severe acute and/or late toxicity observed during the follow-up period, a dose-escalation trial is ongoing. (author)

  1. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-01-01

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the 10 B(n,α) 7 Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented

  2. INEL BNCT Program: Volume 5, No. 9

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-01-01

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  3. Cationized gelatin-HVJ envelope with sodium borocaptate improved the BNCT efficacy for liver tumors in vivo

    International Nuclear Information System (INIS)

    Fujii, Hitoshi; Tabata, Yasuhiko; Kaneda, Yasufumi; Sawa, Yoshiki; Lee, Chun Man; Matsuyama, Akifumi; Komoda, Hiroshi; Sasai, Masao; Suzuki, Minoru; Asano, Tomoyuki; Doki, Yuichiro; Kirihata, Mitsunori; Ono, Koji

    2011-01-01

    Boron neutron capture therapy (BNCT) is a cell-selective radiation therapy that uses the alpha particles and lithium nuclei produced by the boron neutron capture reaction. BNCT is a relatively safe tool for treating multiple or diffuse malignant tumors with little injury to normal tissue. The success or failure of BNCT depends upon the 10 B compound accumulation within tumor cells and the proximity of the tumor cells to the body surface. To extend the therapeutic use of BNCT from surface tumors to visceral tumors will require 10 B compounds that accumulate strongly in tumor cells without significant accumulation in normal cells, and an appropriate delivery method for deeper tissues. Hemagglutinating Virus of Japan Envelope (HVJ-E) is used as a vehicle for gene delivery because of its high ability to fuse with cells. However, its strong hemagglutination activity makes HVJ-E unsuitable for systemic administration. In this study, we developed a novel vector for 10 B (sodium borocaptate: BSH) delivery using HVJ-E and cationized gelatin for treating multiple liver tumors with BNCT without severe adverse events. We developed cationized gelatin conjugate HVJ-E combined with BSH (CG-HVJ-E-BSH), and evaluated its characteristics (toxicity, affinity for tumor cells, accumulation and retention in tumor cells, boron-carrying capacity to multiple liver tumors in vivo, and bio-distribution) and effectiveness in BNCT therapy in a murine model of multiple liver tumors. CG-HVJ-E reduced hemagglutination activity by half and was significantly less toxic in mice than HVJ-E. Higher 10 B concentrations in murine osteosarcoma cells (LM8G5) were achieved with CG-HVJ-E-BSH than with BSH. When administered into mice bearing multiple LM8G5 liver tumors, the tumor/normal liver ratios of CG-HVJ-E-BSH were significantly higher than those of BSH for the first 48 hours (p < 0.05). In suppressing the spread of tumor cells in mice, BNCT treatment was as effective with CG-HVJ-E-BSH as with BSH

  4. Cationized gelatin-HVJ envelope with sodium borocaptate improved the BNCT efficacy for liver tumors in vivo

    Directory of Open Access Journals (Sweden)

    Ono Koji

    2011-01-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is a cell-selective radiation therapy that uses the alpha particles and lithium nuclei produced by the boron neutron capture reaction. BNCT is a relatively safe tool for treating multiple or diffuse malignant tumors with little injury to normal tissue. The success or failure of BNCT depends upon the 10B compound accumulation within tumor cells and the proximity of the tumor cells to the body surface. To extend the therapeutic use of BNCT from surface tumors to visceral tumors will require 10B compounds that accumulate strongly in tumor cells without significant accumulation in normal cells, and an appropriate delivery method for deeper tissues. Hemagglutinating Virus of Japan Envelope (HVJ-E is used as a vehicle for gene delivery because of its high ability to fuse with cells. However, its strong hemagglutination activity makes HVJ-E unsuitable for systemic administration. In this study, we developed a novel vector for 10B (sodium borocaptate: BSH delivery using HVJ-E and cationized gelatin for treating multiple liver tumors with BNCT without severe adverse events. Methods We developed cationized gelatin conjugate HVJ-E combined with BSH (CG-HVJ-E-BSH, and evaluated its characteristics (toxicity, affinity for tumor cells, accumulation and retention in tumor cells, boron-carrying capacity to multiple liver tumors in vivo, and bio-distribution and effectiveness in BNCT therapy in a murine model of multiple liver tumors. Results CG-HVJ-E reduced hemagglutination activity by half and was significantly less toxic in mice than HVJ-E. Higher 10B concentrations in murine osteosarcoma cells (LM8G5 were achieved with CG-HVJ-E-BSH than with BSH. When administered into mice bearing multiple LM8G5 liver tumors, the tumor/normal liver ratios of CG-HVJ-E-BSH were significantly higher than those of BSH for the first 48 hours (p . In suppressing the spread of tumor cells in mice, BNCT treatment was as

  5. A clinical trial protocol for second line treatment of malignant brain tumors with BNCT at University of Tsukuba

    Energy Technology Data Exchange (ETDEWEB)

    Aiyama, H. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Nakai, K., E-mail: knakai@Neurosurg-tsukuba.com [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Yamamoto, T. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan)] [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Nariai, T. [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyouku (Japan); Kumada, H. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Ishikawa, E. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Isobe, T. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan)

    2011-12-15

    We have evaluated the efficacy and safety of boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor using a new protocol. One of the two patients enrolled in this trial is a man with recurrent glioblastoma and the other is a woman with anaplastic meningioma. Both are still alive and no severe adverse events have been observed. Our findings suggest that NCT will be safe as a palliative therapy for malignant brain tumors. - Highlights: Black-Right-Pointing-Pointer Boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor. Black-Right-Pointing-Pointer Two cases with recurrent glioblastoma and anaplastic meningioma. Black-Right-Pointing-Pointer No severe adverse events have been observed using BNCT. Black-Right-Pointing-Pointer BNCT has a possibility of a safe palliative therapy for malignant brain tumors.

  6. Treatment Planning Systems for BNCT Requirements and Peculiarities

    CERN Document Server

    Daquino, G G

    2003-01-01

    The main requirements and peculiarities expected from the BNCT-oriented treatment planning system (TPS) are summarized in this paper. The TPS is a software, which can be integrated or composed by several auxiliary programs. It plays important roles inside the whole treatment planning of the patient's organ in BNCT. However, the main goal is the simulation of the irradiation, in order to obtain the optimal configuration, in terms of neutron spectrum, patient positioning and dose distribution in the tumour and healthy tissues. The presence of neutrons increases the level of complexity, because much more nuclear reactions need to be monitored and properly calculated during the simulation of the patient's treatment. To this purposes several 3D geometry reconstruction techniques, generally based on the CT scanning data, are implemented and Monte Carlo codes are normally used. The TPSs are expected to show also the results (basically doses and fluences) in a proper format, such as isocurves (or isosurfaces) along t...

  7. Boron neutron capture therapy (BNCT) for high-grade gliomas of the brain: a cautionary note

    International Nuclear Information System (INIS)

    Laramore, George E.; Spence, Alexander M.

    1996-01-01

    Purpose/Objective: Boron neutron capture therapy (BNCT) is a method of treating high-grade gliomas of the brain that involves incorporating 10 B into the tumor using appropriate pharmacological agents and then irradiating the tumor with thermal or epithermal neutron beams. To date, over 120 patients have been treated in this manner by Japanese investigators using a thermal neutron beam from a nuclear reactor. Favorable reports on outcome have motivated considerable current research in BNCT. The purpose of this study is to provide an independent analysis of the Japanese data by identifying the subset of patients from the United States who received this treatment in Japan and comparing their outcomes relative to a matched cohort who received conventional therapy in various Radiation Therapy Oncology Group (RTOG) studies. Methods and Materials: The principal referral sources of patients to Japan for BNCT were identified and the names of patients sent for treatment obtained. The treating physicians in Japan were also contacted to see if additional patients from the United States had been treated. Either the patients or their next of kin were contacted, and permission was obtained to retrieve medical records including tumor pathology for central review. Prognostic variables according to an analysis of the RTOG brain tumor database by Curran et al. were determined from these records and used to construct a matched cohort of patients treated conventionally. Results: A total of 14 patients were identified who had traveled to Japan for BNCT treatment between July, 1987 and June, 1994. In the case of one patient (deceased), it was not possible to contact the next of kin. Material was obtained on the other 13 patients and review of the pathology indicated that 1 patient had a central nervous system lymphoma rather than a high-grade glioma. Survival data was analyzed for the other 12 patients on an actuarial basis, and this showed no difference compared to survival data for a

  8. Boron biodistribution for BNCT in the hamster cheek pouch oral cancer model: Combined administration of BSH and BPA

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Nigg; William Bauer; Various Others

    2014-06-01

    Sodium mercaptoundecahydro-closo-dodecaborate (BSH) is being investigated clinically for BNCT. We examined the biodistribution of BSH and BPA administered jointly in different proportions in the hamster cheek pouch oral cancer model. The 3 assayed protocols were non-toxic, and showed preferential tumor boron uptake versus precancerous and normal tissue and therapeutic tumor boron concentration values (70–85 ppm). All 3 protocols warrant assessment in BNCT studies to contribute to the knowledge of (BSH+BPA)-BNCT radiobiology for head and neck cancer and optimize therapeutic efficacy.

  9. Therapeutic efficacy and toxicity of a single and double application of boron neutron capture therapy (BNCT) in a hamster cheek pouch oral precancer model

    International Nuclear Information System (INIS)

    Monti Hughes, A; Pozzi, E C C; Thorp, S; Garabalino, M A; Farias, R O; Gonzalez, S J; Heber, E M; Itoiz, M E; Aromando, R F; Molinari, A J; Miller, M; Nigg, D W; Curotto, P; Trivillin, V A; Schwint, A E

    2012-01-01

    Tumor development from tissue with potentially malignant disorders (PMD) gives rise to second primary tumors. We previously demonstrated the partial inhibitory effect on tumor development of Boron Neutron Capture Therapy (BNCT) mediated by the boron compounds BPA (boronophenylalanine) and decahydrodecaborate (GB-10) in a hamster pouch oral precancer model. Seeking to optimize BNCT, the aim of the present study was to contribute to the knowledge of BNCT radiobiology for oral precancer and assess new BNCT protocols in terms of inhibition of tumor development and radiotoxicity. Groups of cancerized hamsters were locally exposed to single or double applications (2 weeks apart) of BPA-BNCT or (GB-10 + BPA)-BNCT at a total dose of 8Gy to tissue with PMD; to a single application of BPA-BNCT at 6Gy and to a double application (4 weeks apart) of BPA-BNCT or (BPA + GB-10)-BNCT at a total dose of 10Gy. Cancerized, sham-irradiated hamsters served as controls. Clinical status, tumor development from tissue with PMD and mucositis were followed for 8 months. The marked therapeutic efficacy of single applications of BNCT at 6 and 8Gy were associated to severe radiotoxicity. Dose fractionation into 2 applications reduced mucositis but also reduced therapeutic efficacy, depending on dose and interval between applications. A double application (4 weeks apart) of (GB-10 + BPA)-BNCT at a total dose of 10Gy rendered the best therapeutic advantage, i.e. 63% - 100% inhibition of tumor development with only slight mucositis in 67% of cases. The data reported herein show that issues such as dose levels and dose fractionation, interval between applications, and choice of boron compounds are pivotal to therapeutic advantage and must be tailored for a particular pathology and anatomic site. The present study determined treatment conditions that would contribute to optimize BNCT for precancer and that would warrant cautious assessment in a clinical scenario (author)

  10. Reprint of Application of BNCT to the treatment of HER2+ breast cancer recurrences: Research and developments in Argentina

    International Nuclear Information System (INIS)

    Gadan, M.A.; González, S.J.; Batalla, M.; Olivera, M.S.; Policastro, L.; Sztejnberg, M.L.

    2015-01-01

    In the frame of the Argentine BNCT Project a new research line has been started to study the application of BNCT to the treatment of locoregional recurrences of HER2+ breast cancer subtype. Based on former studies, the strategy considers the use of immunoliposomes as boron carriers nanovehicles to target HER2 overexpressing cells. The essential concerns of the current stage of this proposal are the development of carriers that can improve the efficiency of delivery of boron compounds and the dosimetric assessment of treatment feasibility. For this purpose, an specific pool of clinical cases that can benefit from this application was determined. In this work, we present the proposal and the advances related to the different stages of current research. - Highlights: • A new proposal of BNCT for HER2+ breast cancer treatment is introduced. • The proposal considers development of immunoliposomes as boron carrier nanovehicles. • Locoregional recurrences after treatment were identified as candidates for initial BNCT studies. • First analysis show acceptable neutron flux distributions provided by RA-6 BNCT facility.

  11. Tumor development in field-cancerized tissue is inhibited by a double application of Boron neutron capture therapy (BNCT) without exceeding radio-tolerance

    International Nuclear Information System (INIS)

    Monti Hughes, Andrea; Heber, Elisa M.; Itoiz, Maria E.; Molinari, Ana J.; Garabalino, Marcela A.; Trivillin, Veronica A.; Schwint, Amanda E.; Aromando, Romina F.

    2009-01-01

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of a 'single' application of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-1(Na 2 10 B 10 H 10 ) or (GB-10+BPA) to treat hamster cheek pouch tumors with no normal tissue radiotoxicity. Based on these results, we developed a model of precancerous tissue in the hamster cheek pouch for long-term studies. Employing this model we evaluated the long-term potential inhibitory effect on the development of second primary tumors from precancerous tissue and eventual radiotoxicity of a single application of BNCT mediated by BPA, GB-10 or (GB-10+BPA), in the RA-6. The clinical rationale of this study was to search for a BNCT protocol that is therapeutic for tumor, not radio-toxic for the normal tissue that lies in the neutron beam path, and exerts the desired inhibitory effect on the development of second primary tumors, without exceeding the radio-tolerance of precancerous tissue, the dose limiting tissue in this case. Second primary tumors that arise in precancerous tissue (also called locoregional recurrences) are a frequent cause of therapeutic failure in head and neck tumors. Aim: Evaluate the radiotoxicity and inhibitory effect of a 'double' application of the same BNCT protocols that were proved therapeutically successful for tumor and precancerous tissue, with a long term follow up (8 months). A 'double' application of BNCT is a potentially useful strategy for the treatment of tumors, in particular the larger ones, but the cost in terms of side-effects in dose-limiting tissues might preclude its application and requires cautious evaluation. Materials and methods: We performed a double application of 1) BPA-BNCT; 2) (GB

  12. Radioprotective agents to reduce BNCT (Boron Neutron Capture Therapy) induced mucositis in the hamster cheek pouch

    International Nuclear Information System (INIS)

    Monti Hughes, A.; Pozzi, E.C.C.; Thorp, S.

    2013-01-01

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of BNCT mediated by boronophenylalanine (BPA) in the hamster cheek pouch oral cancer and pre cancer model. Despite therapeutic efficacy, mucositis induced in premalignant tissue was dose limiting and favored, in some cases, tumor development. In a clinical scenario, oral mucositis limits the dose administered to head and neck tumors. Aim: Our aim was to evaluate the effect of the administration of different radioprotective agents, seeking to reduce BNCT-induced mucositis to acceptable levels in dose-limiting premalignant tissue; without compromising therapeutic effect evaluated as inhibition on tumor development in premalignant tissue; without systemic or local side effects; and without negative effects on the biodistribution of the boron compound used for treatment. Materials and methods: Cancerized hamsters with DMBA (dimethylbenzanthracene) were treated with BPA-BNCT 5 Gy total absorbed dose to premalignant tissue, at the RA-3 Nuclear Reactor, divided into different groups: 1-treated with FLUNIXIN; 2- ATORVASTATIN; 3-THALIDOMIDE; 4-HISTAMINE (two concentrations: Low -1 mg/ml- and High -5 mg/ml-); 5-JNJ7777120; 6-JNJ10191584; 7-SALINE (vehicle). Cancerized animals without any treatment (neither BNCT nor radioprotective therapy) were also analyzed. We followed the animals during one month and evaluated the percentage of animals with unacceptable/severe mucositis, clinical status and percentage of animals with new tumors post treatment. We also performed a preliminary biodistribution study of BPA + Histamine “low” concentration to evaluate the potential effect of the radioprotector on BPA biodistribution. Results: Histamine

  13. Logic Estimation of the Optimum Source Neutron Energy for BNCT of Brain Tumors

    International Nuclear Information System (INIS)

    Dorrah, M.A.; Gaber, F.A.; Abd Elwahab, M.A.; Kotb, M.A.; Mohammed, M.M.

    2012-01-01

    BNCT is very complicated technique; primarily due to the complexity of element composition of the brain. Moreover; numerous components contributes to the over all radiation dose both to normal brain and to tumor. Simple algebraic summation cannot be applied to these dose components, since each component should at first be weighed by its relative biological effectiveness (RBE) value. Unfortunately, there is no worldwide agreement on these RBE values. For that reason, the parameters required for accurate planning of BNCT of brain tumors located at different depths in brain remained obscure. The most important of these parameters is; the source neutron energy. Thermal neutrons were formerly employed for BNCT, but they failed to prove therapeutic efficacy. Later on; epithermal neutrons were suggested proposing that they would be enough thermalized while transporting in the brain tissues. However; debate aroused regarding the source neutrons energy appropriate for treating brain tumors located at different depths in brain. Again, the insufficient knowledge regarding the RBE values of the different dose components was a major obstacle. A new concept was adopted for estimating the optimum source neutrons energy appropriate for different circumstances of BNCT. Four postulations on the optimum source neutrons energy were worked out, almost entirely independent of the RBE values of the different dose components. Four corresponding condition on the optimum source neutrons energy were deduced. An energy escalation study was carried out investigating 65 different source neutron energies, between 0.01 eV and 13.2 MeV. MCNP4B Monte C arlo neutron transport code was utilized to study the behavior of neutrons in the brain. The deduced four conditions were applied to the results of the 65 steps of the neutron energy escalation study. A source neutron energy range of few electron volts (eV) to about 30 keV was estimated to be the most appropriate for BNCT of brain tumors located at

  14. Medical set-up of boron neutron capture therapy (BNCT) for malignant glioma at the Japan research reactor (JRR)-4

    International Nuclear Information System (INIS)

    Yamamoto, T.; Matsumura, A.; Nose, T.; Shibata, Y.; Nakai, K.; Sakurai, F.; Kishi, T.; Kumada, H.; Yamamoto, K.; Torii, Y.

    2001-01-01

    The University of Tsukuba project for boron neutron capture therapy (BNCT) was initiated at the Japan Atomic Energy Research Institute (JAERI) in 1992. The clinical study for BNCT began at the Japan Research Reactor (JRR)-2 of the JAERI in November 1995. By the end of 1998, a new medical irradiation facility had been installed in JRR-4 of that included a new medical treatment room and patient-monitoring area adjacent to the irradiation room. The medical treatment room was built to reflect a hospital-type operation room that includes an operating table with a carbon head frame, anesthesia apparatus with several cardiopulmonary monitors, etc. Following craniotomy in the treatment room, a patient under anesthesia is transported into the irradiation room for BNCT. The boron concentration in tissue is measured with prompt gamma ray analysis (PGA) and simultaneously by inductively coupled plasma atomic emission spectroscopy (ICP-AES) methods. For the immediate pre- and post-BNCT care, a collaborating neurosurgical department of the University of Tsukuba was prepared in the vicinity of the JAERI. The long term follow-up is done at the University of Tsukuba Hospital. Epithermal neutron beam also became available at the new JRR-4. By changing the thickness and/or the configuration of heavy water, a cadmium plate, and a graphite reflector, the JRR-4 provides a variety of neutron beams, including three typical beams (Epithermal mode and Thermal modes I and II). Intraoperative BNCT using the thermal beam is planned to study at the beginning of the clinical trial. The ongoing development of the JAERI Computational Dosimetry System (JCDS) and radiobiological studies have focused in the application of the epithermal beam for BNCT. After obtaining these basic data, we are planning to use the epithermal beam for intraoperative BNCT. (author)

  15. Radiobiology of BNCT mediated by GB-10 and GB-10+BPA in experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Nigg, David; Calzetta, Osvaldo; Blaumann, Herman; Longhino, Juan; Schwint, Amanda E. E-mail: schwint@cnea.gov.ar

    2004-11-01

    We previously reported biodistribution and pharmacokinetic data for GB-10 (Na{sub 2}{sup 10}B{sub 10}H{sub 10}) and the combined administration of GB-10 and boronophenylalanine (BPA) as boron delivery agents for boron neutron capture therapy (BNCT) in the hamster cheek pouch oral cancer model. The aim of the present study was to assess, for the first time, the response of hamster cheek pouch tumors, precancerous tissue and normal tissue to BNCT mediated by GB-10 and BNCT mediated by GB-10 and BPA administered jointly using the thermalized epithermal beam of the RA-6 Reactor at the Bariloche Atomic Center. GB-10 exerted 75.5% tumor control (partial+complete remission) with no damage to precancerous tissue around tumor or to normal tissue. Thus, GB-10 proved to be a therapeutically efficient boron agent in this model despite the fact that it is not taken up selectively by oral tumor tissue. GB-10 exerted a selective effect on tumor blood vessels leading to significant tumor control with a sparing effect on normal tissue. BNCT mediated by the combined administration of GB-10 and BPA resulted in a reduction in the dose to normal tissue and would thus allow for significant escalation of dose to tumor without exceeding normal tissue tolerance.

  16. Radiobiology of BNCT mediated by GB-10 and GB-10+BPA in experimental oral cancer

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Nigg, David; Calzetta, Osvaldo; Blaumann, Herman; Longhino, Juan; Schwint, Amanda E.

    2004-01-01

    We previously reported biodistribution and pharmacokinetic data for GB-10 (Na 2 10 B 10 H 10 ) and the combined administration of GB-10 and boronophenylalanine (BPA) as boron delivery agents for boron neutron capture therapy (BNCT) in the hamster cheek pouch oral cancer model. The aim of the present study was to assess, for the first time, the response of hamster cheek pouch tumors, precancerous tissue and normal tissue to BNCT mediated by GB-10 and BNCT mediated by GB-10 and BPA administered jointly using the thermalized epithermal beam of the RA-6 Reactor at the Bariloche Atomic Center. GB-10 exerted 75.5% tumor control (partial+complete remission) with no damage to precancerous tissue around tumor or to normal tissue. Thus, GB-10 proved to be a therapeutically efficient boron agent in this model despite the fact that it is not taken up selectively by oral tumor tissue. GB-10 exerted a selective effect on tumor blood vessels leading to significant tumor control with a sparing effect on normal tissue. BNCT mediated by the combined administration of GB-10 and BPA resulted in a reduction in the dose to normal tissue and would thus allow for significant escalation of dose to tumor without exceeding normal tissue tolerance

  17. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  18. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    International Nuclear Information System (INIS)

    Kondoh, H.; Mishima, Y.; Hiratsuka, J.; Iwakura, M.

    2000-01-01

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with 10 B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of 10 B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  19. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    International Nuclear Information System (INIS)

    Subhash, Chandra

    2008-01-01

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  20. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, E. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)], E-mail: epozzi@cnea.gov.ar; Nigg, D.W. [Idaho National Laboratory, Idaho Falls (United States); Miller, M.; Thorp, S.I. [Instrumentation and Control Department, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Zarza, L.; Estryk, G. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Monti Hughes, A.; Molinari, A.J.; Garabalino, M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Quintana, J. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Trivillin, V.A.; Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)

    2009-07-15

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10{sup 9} n cm{sup -2} s{sup -1} and the fast neutron flux was 2.5x10{sup 6} n cm{sup -2} s{sup -1}, indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in {sup 6}Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  1. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    International Nuclear Information System (INIS)

    Pozzi, E.; Nigg, D.W.; Miller, M.; Thorp, S.I.; Heber, E.M.; Zarza, L.; Estryk, G.; Monti Hughes, A.; Molinari, A.J.; Garabalino, M.; Itoiz, M.E.; Aromando, R.F.; Quintana, J.; Trivillin, V.A.; Schwint, A.E.

    2009-01-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10 9 n cm -2 s -1 and the fast neutron flux was 2.5x10 6 n cm -2 s -1 , indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in 6 Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  2. A treatment planning comparison of BPA- or BSH-based BNCT of malignant gliomas

    International Nuclear Information System (INIS)

    Capala, J.; Coderre, J.A.; Chanana, A.D.

    1996-01-01

    Accurate delivery of the prescribed dose during clinical BNCT requires knowledge (or reasonably valid assumptions) about the boron concentrations in tumor and normal tissues. For conversion of physical dose (Gy) into photon-equivalent dose (Gy-Eq), relative biological effectiveness (RBE) and/or compound-adjusted biological effectiveness (CBE) factors are required for each tissue. The BNCT treatment planning software requires input of the following values: the boron concentration in blood and tumor, RBEs in brain, tumor and skin for the high-LET beam components, the CBE factors for brain, tumor, and skin, and the RBE for the gamma component

  3. Tumor blood vessel "normalization" improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Nigg

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  4. Tumor blood vessel 'normalization' improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    International Nuclear Information System (INIS)

    Nigg, D.W.

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  5. Treatment optimization of a brain tumor in BNCT by Monte Carlo method

    International Nuclear Information System (INIS)

    Nejat, S.; Binesh, A.; Karimian, A.

    2012-01-01

    Brain cancers are one of the most important diseases. BNCT (Boron Neutron Capture Therapy) is used to brain tumor treatment. In this method the 1 0B (n,α) 7 Li reaction is used. The purpose of this study is absorbed dose evaluation of tumoral and healthy parts of brain. To achieve this aim the brain was simulated by a cylindrical phantom with the dimensions of 20 cm in diameter and height. In BNCT treatment the BSH (Na 2 B 12 H 11 SH) is injected to the human body and absorbed in the healthy and tumoral parts by the ratios of 18 and 65 ppm respectively. So in this research the absorption of BSH in tumoral and healthy parts of brain was considered as the mentioned ratio. Then the neutron with the energy range of 50 eV - 10 keV was exposed to the brain and maximum absorbed dose in healthy and tumoral parts of brain were calculated for a cylindrical tumor with the thickness of about 1 cm which was considered in 5.5 cm depth of brain. This research showed the suitable energy to treat this tumor by BNCT is interval 4 keV- 6keV. The average of dose which is met with healthy and tumor tissue was gained for 6 keV energy of brain 1.18x10 -12 cGy/n and 5.98x10 -12 cGy/n respectively. Maximum of dose which is met with healthy tissue was 4.3 Gy which is much less than standard amount 12.6 Gy. Therefore BNCT method is known as an effective way in the therapy of this kind of tumor. (authors)

  6. Construction of voxel head phantom and application to BNCT dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Sik; Lee, Choon Ik; Lee, Jai Ki [Hanyang Univ., Seoul (Korea, Republic of)

    2001-06-15

    Voxel head phantom for overcoming the limitation of mathematical phantom in depicting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for voxel Monte Carlo calculation. Simple binary voxel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct voxel head phantom. Comparison od doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of voxel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is 30{mu}g/g to 3 {mu}g/g. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  7. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation

    International Nuclear Information System (INIS)

    Zaboronok, A.; Yamamoto, T.; Nakai, K.; Yoshida, F.; Uspenskii, S.; Selyanin, M.; Zelenetskii, A.; Matsumura, Akira

    2015-01-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron–hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required. - Highlights: • Hyaluronic acid (HA) is a nonimmunogenic, biocompatible polymer. • Boron–HA (BHA) acid can contain a large number of boron atoms for BNCT. • Active targeting can be realized with CD44 and other HA receptors on tumor cells. • BHA showed a certain degree of toxicity against C6 tumor cells and V79 fibroblasts. • BHA was injected into rats via the tail vein, boron was detected in tumors in vivo.

  8. An epithermal neutron source for BNCT based on an ESQ-accelerator

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Phillips, T.L.; Reginato, L.L.; Wells, R.P.

    1997-07-01

    An accelerator-based BNCT facility is under development at the Lawrence Berkeley National Laboratory. Neutrons will be produced via the 7 Li(p,n) reaction at proton energies of about 2.5 MeV with subsequent moderation and filtering for shaping epithermal neutron beams for BNCT. Moderator, filter, and shielding assemblies have been modeled using MCNP. Head-phantom dose distributions have been calculated using the treatment planning software BNCT RTPE. The simulation studies have shown that a proton beam current of ∼ 20 mA is required to deliver high quality brain treatments in about 40 minutes. The results also indicate that significantly higher doses can be delivered to deep-seated tumors in comparison to the Brookhaven Medical Research Reactor beam. An electrostatic quadrupole (ESQ) accelerator is ideally suited to provide the high beam currents desired. A novel power supply utilizing the air-coupled transformer concept is under development. It will enable the ESQ-accelerator to deliver proton beam currents exceeding 50 mA. A lithium target has been designed which consists of a thin layer of lithium on an aluminum backing. Closely spaced, narrow coolant passages cut into the aluminum allow the removal of a 50kW heat-load by convective water cooling. The system under development is suitable for hospital installation and has the potential for providing neutron beams superior to reactor sources

  9. Clinical lessons from the first applications of BNCT on unresectable liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Zonta, A; Prati, U; Roveda, L; Ferrari, C; Zonta, S; Clerici, Am; Zonta, C; Pinelli, T [Department of Nuclear and Theoretical Physics, University of Pavia and I.N.F.N., Pavia (Italy); Fossati, F [Department of Nuclear and Theoretical Physics, University of Pavia and I.N.F.N., Pavia (Italy); Altieri, S [Department of Nuclear and Theoretical Physics, University of Pavia and I.N.F.N., Pavia (Italy); Bortolussi, S [Department of Nuclear and Theoretical Physics, University of Pavia and I.N.F.N., Pavia (Italy); Bruschi, P [Department of Nuclear and Theoretical Physics, University of Pavia and I.N.F.N., Pavia (Italy); Nano, R [Department of Animal Biology, University of Pavia (Italy); Barni, S [Department of Animal Biology, University of Pavia (Italy); Chiari, P [Department of Animal Biology, University of Pavia (Italy); Mazzini, G [IGM CNR Histochemistry and Cytometry Section, University of Pavia (Italy)

    2006-05-15

    After a long series of studies on the effects of neutron irradiation of 10B loaded neoplastic cells both in culture and in animal experiments, we started the clinical application of BNCT on humans affected by liver metastases of a radically resected colon adenocarcinoma. The procedure we adopted includes a first surgical phase, with hepatectomy; a radiotherapeutic phase, in which the isolated liver, washed and chilled, is extracorporeally irradiated with thermal neutrons; and then a second surgical phase for the reconnection of the liver to the patient. Until now two patients have been subjected to the BNCT treatment. The first one survived 44 months with a good quality of life, and died because of diffuse recurrences of his intestinal tumour. The second patient had the same early perioperative course, but after 33 days a worsening of a dilatative cardiomyopaty, from which he was suffering, determined a cardiac failure and eventually death. This clinical experience, although limited, has shown that extracorporeal neutron irradiation of the liver is a feasible procedure, able to ensure the complete destruction of liver metastases and a possible long lasting survival. In our patients neutron irradiation caused massive cellular necrosis highly specific to tumour cells, whereas normal cells were mostly spared. Nevertheless, the impact of such a traumatic operation on the patient's organism must be taken into account. Finally, we have to be aware that the fight against tumour rarely leads to a complete victory. We now have an innovative weapon which is both powerful and partly unsettled: it must be refined and above all used.

  10. The use of positron emission tomography in BNCT treatment planning for metastatic malignant melanoma and glioblastoma multiforme

    International Nuclear Information System (INIS)

    Kabalka, G.; Nichols, T.; Smith, G.; Miller, L.; Kahn, M.

    2000-01-01

    Positron emission tomography (PET) evaluations of six glioblastoma multiforme (GBM) and one metastatic melanoma (MM) patient have been carried out utilizing fluorine-18 labeled p-boronophenylalanine. Four of the GBM patients were imaged both prior to and post BNCT. In one GBM patient, biopsy derived boron distribution data compared favorably to the PET derived data. The PET data have been used as input to dosimetry calculations and the results vary from those obtained using current protocols. In addition, PET images of the thorax would indicate that the utility of PET for staging tumors for BNCT may extend beyond the brain. However, higher than anticipated levels of activity in the lungs (as also seen in salivary glands) indicate the more effective BNCT agents will be required. (author)

  11. Monitoring total boron in blood for BNCT by a novel atomic emission method

    International Nuclear Information System (INIS)

    Laakso, J.; Kulvik, M.; Ruokonen, I.; Vaehaetalo, J.; Faerkkilae, M.; Kallio, M.; Zilliacus, R.

    2000-01-01

    In BNCT the duration and timing of the is adjusted by 10 B concentrations in whole blood. Time-frame for determinations is less than 20 minutes. Therefore fast and accurate boron determinations are a prerequisite for BNCT. We present a method based on ICP-AES instrument for whole blood and plasma boron determinations with protein precipitation with trichloroacetic acid as sample pre-treatment and beryllium as an internal standard. The method was compared to established but tedious ICP-mass spectrometric method with wet ashing as a sample pre-treatment. The ICP-AES method is in good agreement (correlation coefficient 0.99) the ICP-MS. Within-day and between-day imprecisions were less than 3,5% CV for whole blood samples. Samples taken during and after BPA-F infusion (290 mg/kg) revealed an uneven distribution between plasma and erythrocytes. The present method is feasible and one of the fastest currently available for BNCT. Our results indicate that BPA-F or its metabolites do not seem to be tightly bound to plasma proteins. It also seems that determination of boron in plasma sample may be preferable than measuring boron in whole blood. (author)

  12. 2.5 MeV CW 4-vane RFQ accelerator design for BNCT applications

    Science.gov (United States)

    Zhu, Xiaowen; Wang, Hu; Lu, Yuanrong; Wang, Zhi; Zhu, Kun; Zou, Yubin; Guo, Zhiyu

    2018-03-01

    Boron Neutron Capture Therapy (BNCT) promises a bright future in cancer therapy for its highly selective destruction of cancer cells, using the 10B +n→7Li +4 He reaction. It offers a more satisfactory therapeutic effect than traditional methods for the treatment of malignant brain tumors, head and neck cancer, melanoma, liver cancer and so on. A CW 4-vane RFQ, operating at 162.5 MHz, provides acceleration of a 20 mA proton beam to 2.5 MeV, bombarding a liquid lithium target for neutron production with a soft neutron energy spectrum. The fast neutron yield is about 1.73×1013 n/s. We preliminarily develop and optimize a beam shaping assembly design for the 7Li(p, n)7Be reaction with a 2.5 MeV proton beam. The epithermal neutron flux simulated at the beam port will reach up to 1 . 575 ×109 n/s/cm2. The beam dynamics design, simulation and benchmark for 2.5 MeV BNCT RFQ have been performed with both ParmteqM (V3.05) and Toutatis, with a transmission efficiency higher than 99.6% at 20 mA. To ease the thermal management in the CW RFQ operation, we adopt a modest inter-vane voltage design (U = 65 kV), though this does increase the accelerator length (reaching 5.2 m). Using the well-developed 3D electromagnetic codes, CST MWS and ANSYS HFSS, we are able to deal with the complexity of the BNCT RFQ, taking the contribution of each component in the RF volume into consideration. This allows us to optimize the longitudinal field distribution in a full-length model. Also, the parametric modeling technique is of great benefit to extensive modifications and simulations. In addition, the resonant frequency tuning of this RFQ is studied, giving the tuning sensitivities of vane channel and wall channel as -16.3 kHz/°C and 12.4 kHz/°C, respectively. Finally, both the multipacting level of this RFQ and multipacting suppressing in the coaxial coupler are investigated.

  13. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, H.; Mishima, Y. [Mishima Institute for Dermatological Research, Kobe, Hyogo (Japan); Hiratsuka, J. [Kawasaki Medical School, Dept. of Radiation Oncology, Kurashiki, Okayama (Japan); Iwakura, M. [Kobe Univ. (Japan). School of Medicine

    2000-10-01

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with {sup 10}B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of {sup 10}B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  14. OPTIMIZATION OF A NEUTRON BEAM SHAPING ASSEMBLY DESIGN FOR BNCT AND ITS DOSIMETRY SIMULATION BASED ON MCNPX

    Directory of Open Access Journals (Sweden)

    I Made Ardana

    2017-10-01

    OPTIMASI DESAIN KOLIMATOR NEUTRON UNTUK SISTEM BNCT DAN UJI DOSIMETRINYA MENGGUNAKAN PROGRAM MCNPX. Telah dilakukan penelitian tentang sistem BNCT yang meliputi dua tahapan simulasi dengan menggunakan program MCNPX yaitu uji simulasi untuk optimasi desain kolimator neutron untuk sistem BNCT berbasis Siklotron 30 MeV dan uji simulasi untuk menghitung fluks neutron dan dosimetri radiasi pada kanker sarkoma jaringan lunak pada leher dan kepala. Tujuan simulasi untuk mendapatkan desain kolimator yang paling optimal dalam memoderasi fluks neutron cepat yang dihasilkan dari sistem target berilium sehingga dapat dihasilkan fluks neutron yang sesuai untuk sistem BNCT. Uji optimasi dilakukan dengan cara memvariasikan bahan dan ketebalan masing-masing komponen dalam kolimator seperi reflektor, moderator, filter neutron cepat, filter neutron thermal, filter radiasi gamma dan lubang keluaran. Desain kolimator yang diperoleh dari hasil optimasi tersusun atas moderator berbahan Al dengan ketebalan 39 cm, filter neutron cepat berbahan LiF2 setebal 8,2 cm, dan filter neutron thermal berbahan B4C setebal 0,5 cm. Untuk reflektor, filter radiasi gamma dan lubang keluaran masing-masing menggunakan bahan PbF2, Pb dan Bi. Fluks neutron epithermal yang dihasilkan dari kolimator yang didesain adalah sebesar 2,83 x 109 n/s cm-2 dan telah memenuhi seluruh parameter fluks neutron yang sesuai untuk sistem BNCT. Selanjutnya uji simulasi dosimetri pada kanker sarkoma jaringan lunak pada leher dan kepala dilakukan dengan cara memvariasikan konsentrasi senyawa boron pada model phantom leher manusia (ORNL. Selanjutnya model phantom tersebut diiradiasi dengan fluks neutron yang berasal dari kolimator yang telah didesain sebelumnya. Hasilnya, fluks neutron thermal mencapai nilai tertinggi pada kedalaman 4,8 cm di dalam model phantom leher ORNL dengan laju dosis tertinggi terletak pada area jaringan kanker. Untuk masing-masing variasi konsentrasi senyawa boron pada model phantom leher ORNL supaya

  15. Development of an anthropomorfic simulator for simulation and measurements of neutron dose and flux the facility for BNCT studies

    International Nuclear Information System (INIS)

    Muniz, Rafael Oliveira Rondon

    2010-01-01

    IPEN facility for researches in BNCT (Boron Neutron Capture Therapy) uses IEA-R1 reactor's irradiation channel number 3, where there is a mixed radiation field - neutrons and gamma. The researches in progress require the radiation fields, in the position of the irradiation of sample, to have in its composition maximized thermal neutrons component and minimized, fast and epithermal neutron flux and gamma radiation. This work was developed with the objective of evaluating whether the present radiation field in the facility is suitable for BNCT researches. In order to achieve this objective, a methodology for the dosimetry of thermal neutrons and gamma radiation in mixed fields of high doses, which was not available in IPEN, was implemented in the Center of Nuclear Engineering of IPEN, by using thermoluminescent dosimeters - TLDs 400, 600 and 700. For the measurements of thermal and epithermal neutron flux, activation detectors of gold were used applying the cadmium ratio technique. A cylindrical phantom composed by acrylic discs was developed and tested in the facility and the DOT 3.5. computational code was used in order to obtain theoretical values of neutron flux and the dose along phantom. In the position corresponding to about half the length of the cylinder of the phantom, the following values were obtained: thermal neutron flux (2,52 ± 0,06).10 8 n/cm 2 s, epithermal neutron flux (6,17 ± 0,26).10 7 .10 6 n/cm 2 s, absorbed dose due to thermal neutrons (4,2 ± 1,8)Gy and (10,1 ± 1,3)Gy due to gamma radiation. The obtained values show that the fluxes of thermal and epithermal neutrons flux are appropriate for studies in BNCT, however, the dose due to gamma radiation is high, indicating that the facility should be improved. (author)

  16. Cell death following BNCT: A theoretical approach based on Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ballarini, F., E-mail: francesca.ballarini@pv.infn.it [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, Pavia (Italy)] [INFN (National Institute of Nuclear Physics)-Sezione di Pavia, via Bassi 6, Pavia (Italy); Bakeine, J. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, Pavia (Italy); Bortolussi, S. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, Pavia (Italy)] [INFN (National Institute of Nuclear Physics)-Sezione di Pavia, via Bassi 6, Pavia (Italy); Bruschi, P. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, Pavia (Italy); Cansolino, L.; Clerici, A.M.; Ferrari, C. [University of Pavia, Department of Surgery, Experimental Surgery Laboratory, Pavia (Italy); Protti, N.; Stella, S. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, Pavia (Italy)] [INFN (National Institute of Nuclear Physics)-Sezione di Pavia, via Bassi 6, Pavia (Italy); Zonta, A.; Zonta, C. [University of Pavia, Department of Surgery, Experimental Surgery Laboratory, Pavia (Italy); Altieri, S. [University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6, Pavia (Italy)] [INFN (National Institute of Nuclear Physics)-Sezione di Pavia, via Bassi 6, Pavia (Italy)

    2011-12-15

    In parallel to boron measurements and animal studies, investigations on radiation-induced cell death are also in progress in Pavia, with the aim of better characterisation of the effects of a BNCT treatment down to the cellular level. Such studies are being carried out not only experimentally but also theoretically, based on a mechanistic model and a Monte Carlo code. Such model assumes that: (1) only clustered DNA strand breaks can lead to chromosome aberrations; (2) only chromosome fragments within a certain threshold distance can undergo misrejoining; (3) the so-called 'lethal aberrations' (dicentrics, rings and large deletions) lead to cell death. After applying the model to normal cells exposed to monochromatic fields of different radiation types, the irradiation section of the code was purposely extended to mimic the cell exposure to a mixed radiation field produced by the {sup 10}B(n,{alpha}) {sup 7}Li reaction, which gives rise to alpha particles and Li ions of short range and high biological effectiveness, and by the {sup 14}N(n,p){sup 14}C reaction, which produces 0.58 MeV protons. Very good agreement between model predictions and literature data was found for human and animal cells exposed to X- or gamma-rays, protons and alpha particles, thus allowing to validate the model for cell death induced by monochromatic radiation fields. The model predictions showed good agreement also with experimental data obtained by our group exposing DHD cells to thermal neutrons in the TRIGA Mark II reactor of University of Pavia; this allowed to validate the model also for a BNCT exposure scenario, providing a useful predictive tool to bridge the gap between irradiation and cell death.

  17. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, M. [National Radiation Protection Department - NRPD, Atomic Energy Organization of Iran - AEOI, Tehran (Iran, Islamic Republic of); End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Kasesaz, Y.; Khalafi, H.; Shayesteh, M. [Radiation Application School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  18. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    International Nuclear Information System (INIS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Shayesteh, M.

    2015-01-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  19. Development of a Tandem-ElectroStatic-Quadrupole accelerator facility for Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Thatar Vento, V.; Levinas, P.; Bergueiro, J.; Burlon, A.A.; Di Paolo, H.; Kesque, J.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.; Minsky, D.M.; Estrada, L.; Hazarabedian, A.; Johann, F.; Suarez Sandin, J.C.; Castell, W.; Davidson, J.; Davidson, M.; Repetto, M.; Obligado, M.; Nery, J.P.; Huck, H.; Igarzabal, M.; Fernandez Salares, A.

    2008-01-01

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). An ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.4-2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.20-1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is one of the technologically simplest and cheapest solutions for optimized AB-BNCT. At present there is no BNCT facility in the world with the characteristics presented in this work. For the accelerator, results on its design, construction and beam transport calculations are discussed. Taking into account the peculiarities of the expected irradiation field, the project also considers a specific study of the treatment room. This study aims at the design of the treatment room emphasizing aspects related to patient, personnel and public radiation protection; dose monitoring; patient positioning and room construction. The design considers both thermal (for the treatment of shallow tumors) and epithermal (for deep-seated tumors) neutron beams entering the room through a port connected to the accelerator via a moderation and neutron beam shaping assembly. Preliminary results of dose calculations for the treatment room design, using the MCNP program, are presented

  20. The therapeutic ratio in BNCT: Assessment using the Rat 9L gliosarcoma brain tumor and spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Fisher, C.D.; Bywaters, A.; Morris, G.M.; Hopewell, J.W.

    1996-01-01

    During any radiation therapy, the therapeutic tumor dose is limited by the tolerance of the surrounding normal tissue within the treatment volume. The short ranges of the products of the 10 B(n,α) 7 Li reaction produced during boron neutron capture therapy (BNCT) present an opportunity to increase the therapeutic ratio (tumor dose/normal tissue dose) to levels unprecedented in photon radiotherapy. The mixed radiation field produced during BNCT comprises radiations with different linear energy transfer (LET) and different relative biological effectiveness (RBE). The short ranges of the two high-LET products of the 'B(n,a)'Li reaction make the microdistribution of the boron relative to target cell nuclei of particular importance. Due to the tissue specific distribution of different boron compounds, the term RBE is inappropriate in defining the biological effectiveness of the 10 B(n,α) 7 Li reaction. To distinguish these differences from true RBEs we have used the term open-quotes compound biological effectivenessclose quotes (CBE) factor. The latter can be defined as the product of the true, geometry-independent, RBE for these particles times a open-quotes boron localization factorclose quotes, which will most likely be different for each particular boron compound. To express the total BNCT dose in a common unit, and to compare BNCT doses with the effects of conventional photon irradiation, multiplicative factors (RBEs and CBEs) are applied to the physical absorbed radiation doses from each high-LET component. The total effective BNCT dose is then expressed as the sum of RBE-corrected physical absorbed doses with the unit Gray-equivalent (Gy-Eq)

  1. A preclinical study of boron neutron capture therapy (BNCT) of spontaneous tumors in cats at RA-6 in Argentina

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.; Calzetta, Osvaldo A.; Blaumann, Hernan R.; Longhino, J.; Rao, Monica; Cantarelli, Maria de los A.

    2005-01-01

    BNCT is a binary treatment modality that combines irradiation with a thermal or epithermal neutron beam with tumor-seeking, boron containing drugs to produce selective irradiation of tumor tissue. Having demonstrated that BNCT mediated by boronophenylalanine (BPA) induced control of experimental squamous cell carcinomas (SCC) of the hamster cheek pouch mucosa with no damage to normal tissue we explored the feasibility and safety of treating spontaneous head and neck tumors, with particular focus on SCC, of terminal feline patients with low dose BPA-BNCT employing the thermal beam of RA-1. Having demonstrated partial tumor control with no radio toxic effects, the aim of the present study was to evaluate the effect of BPA-BNCT on tumor and normal tissue in 3 cases of spontaneous SCC in feline patients employing a higher neutron fluence than in the previous study. The present study was performed at RA-6 with the thermalized epithermal neutron beam. All three irradiations were successful. Except for an initial, moderate and reversible mucositis, no significant radio toxic effects were observed in terms of clinical follow-up, histological examination, biochemical analysis and assessment of autopsy material. Partial tumor control was evidenced in terms of growth inhibition and partial necrosis and improvement in the quality of life during the survival period. Optimization of the therapeutic efficacy of BNCT would require improvement in boron tumor targeting and strategies to increase in-depth dose in large tumors. (author)

  2. Synthesis and in-vivo detection of boronated compounds for use in BNCT

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1990-04-01

    The primary objective of the DOE Program at the University of Tennessee Biomedical Imaging Center is the development of new technology to detect boron compounds in-vivo. The research focuses on the development of multinuclear magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques for verifying and measuring BNCT agents in-vivo. A small but significant portion of the effort is directed toward the design of boron-containing neutron-capture-therapy agents. The UT -- DOE program is unique in that it has access to two state-of-the-art multinuclear magnetic resonance imaging units housed in the Biomedical Imaging Center at the University of Tennessee Medical Center at Knoxville. Included in this report are two sections describing research accomplishments in multinuclear magnetic resonance imaging and synthesis of potential BNCT agents

  3. Early phase II study on BNCT in metastatic malignant melanoma using the boron carrier BPA (EORTC protocol 11011)

    International Nuclear Information System (INIS)

    Wittig, Andrea; Sauerwein, Wolfgang; Moss, Raymond

    2006-01-01

    The aim of the trial is to examine the clinical response of metastatic melanoma following BNCT with BPA. The trial contains an optional biodistribution sub-study, which is done if operable metastases are removed prior BNCT. BNCT is applied in 2 fractions at the HFR in Petten. In cases of diffuse brain metastases the whole brain is irradiated homogeneously using 5 irradiation beams from different directions. Up to now 4 patients suffering from multiple brain metastases (more than 20) have been included. In all cases we observed a partial response or no change in the irradiated volume. However, none of the patients survived more than 3 months. The pharmacokinetic of the BPA can be predicted very precisely using a two-compartment model. The treatment can be performed safety. (author)

  4. Biodistribution of Boron compounds in an experimental model of liver metastases for Boron Neutron Capture (BNCT) Studies

    International Nuclear Information System (INIS)

    Garabalino, Marcela A.; Monti Hughes, Andrea; Molinari, Ana J.; Heber, Elisa M.; Pozzi, Emiliano C.C.; Itoiz, Maria E.; Trivillin, Veronica A.; Schwint, Amanda E.; Nievas, Susana; Aromando, Romina F.

    2009-01-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10 B carriers in tumors followed by irradiation with thermal or epithermal neutrons. The high linear energy transfer alpha particles and recoiling 7 Li nuclei emitted during the capture of a thermal neutron by a 10 B nucleus have a short range and a high biological effectiveness. Thus, BNCT would potentially target neoplastic tissue selectively. In previous studies we demonstrated the therapeutic efficacy of different BNCT protocols in an experimental model of oral cancer. More recently we performed experimental studies in normal rat liver that evidenced the feasibility of treating liver metastases employing a novel BNCT protocol proposed by JEC based on ex-situ treatment and partial liver auto-transplant. The aim of the present study was to perform biodistribution studies with different boron compounds and different administration protocols to determine the protocols that would be therapeutically useful in 'in vivo' BNCT studies at the RA-3 Nuclear Reactor in an experimental model of liver metastases in rats. Materials and Methods. A total of 70 BDIX rats (Charles River Lab., MA, USA) were inoculated in the liver with syngeneic colon cancer cells DH/DK12/TRb (ECACC, UK) to induce the development of subcapsular metastatic nodules. 15 days post-inoculation the animals were used for biodistribution studies. A total of 11 protocols were evaluated employing the boron compounds boronophenylalanine (BPA) and GB-10 (Na 2 10 B 1 -0H 10 ), alone or combined employing different doses and administration routes. Tumor, normal tissue and blood samples were processed for boron measurement by ICP-OES. Results. Several protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue, i.e. BPA 15.5 mg 10 B/kg iv + GB-10 50 mg 10 B/kg iv; BPA 46.5 mg 10 B/kg ip; BPA 46.5 mg 10 B/kg ip

  5. Co-registration of the BNCT treatment planning images for clinical practice

    International Nuclear Information System (INIS)

    Salli, Eero; Seppaelae, Tiina; Kankaanranta, Leena; Asikainen, Sami; Savolainen, Sauli; Koivunoro, Hanna

    2006-01-01

    We have co-registered MRI, CT and FBPA-PET images for BNCT in clinical practice. Co-registration improves the spatial accuracy of the treatment planning by enabling use of information from all the co-registered modalities. The multimodal co-registration has been implemented as a service product provided by the Imaging Center of Helsinki University Central Hospital to other departments. To increase the accuracy of co-registration and patient positioning in the head area BNCT, a patient-specific fixation mask suitable for PET, MRI and CT was developed. The goal of the fixation mask is to normalize the orientation of the patient's head and neck. Co-registration is performed at the image processing unit by using a rigid body model, mutual-information based algorithms and partly in-house developed software tools. The accuracy of co-registration is verified by comparing the locations of the external skin markers and anatomical landmarks in different modalities. After co-registration, the images are transformed and covered into a format required by the BNCT dose-planning software and set to the dose-planning unit of the hospital. So far co-registration has been done for 22 patients. The co-registration protocol has proved to be reliable and efficient. Some registration errors are seen on some patients in the neck area because the rigid-body model used in co-registration is not fully valid for the brain-neck entity. The registration accuracy in this area could likely be improved by implementing a co-registration procedure utilizing a partly non-rigid body model. (author)

  6. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    Science.gov (United States)

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Radioprotective agents to reduce BNCT (Boron Neutron Capture Therapy) induced mucositis in the hamster cheek pouch; Agentes radioprotectores para reducir la mucositis inducida por la terapia por captura neutrónica en boro (BNCT) en la bolsa de la mejilla del hámster

    Energy Technology Data Exchange (ETDEWEB)

    Monti Hughes, A. [Dpto. de Radiobiología, Gerencia de Química Nuclear y Ciencias de la Salud, GAATEN, Comisión Nacional de Energía Atómica (CNEA) (Argentina); Pozzi, E. C.C. [Gerencia de Reactores de Investigación y Producción, GAATEN, CNEA (Argentina); Thorp, S., E-mail: andrea.monti@cnea.gov.ar [Sub-Gerencia Instrumentación y Control, GAEN, CNEA(Argentina)

    2013-07-01

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of BNCT mediated by boronophenylalanine (BPA) in the hamster cheek pouch oral cancer and pre cancer model. Despite therapeutic efficacy, mucositis induced in premalignant tissue was dose limiting and favored, in some cases, tumor development. In a clinical scenario, oral mucositis limits the dose administered to head and neck tumors. Aim: Our aim was to evaluate the effect of the administration of different radioprotective agents, seeking to reduce BNCT-induced mucositis to acceptable levels in dose-limiting premalignant tissue; without compromising therapeutic effect evaluated as inhibition on tumor development in premalignant tissue; without systemic or local side effects; and without negative effects on the biodistribution of the boron compound used for treatment. Materials and methods: Cancerized hamsters with DMBA (dimethylbenzanthracene) were treated with BPA-BNCT 5 Gy total absorbed dose to premalignant tissue, at the RA-3 Nuclear Reactor, divided into different groups: 1-treated with FLUNIXIN; 2- ATORVASTATIN; 3-THALIDOMIDE; 4-HISTAMINE (two concentrations: Low -1 mg/ml- and High -5 mg/ml-); 5-JNJ7777120; 6-JNJ10191584; 7-SALINE (vehicle). Cancerized animals without any treatment (neither BNCT nor radioprotective therapy) were also analyzed. We followed the animals during one month and evaluated the percentage of animals with unacceptable/severe mucositis, clinical status and percentage of animals with new tumors post treatment. We also performed a preliminary biodistribution study of BPA + Histamine “low” concentration to evaluate the potential effect of the radioprotector on BPA biodistribution. Results: Histamine

  8. INEL BNCT Program: Volume 5, No. 9. Bulletin, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. [ed.

    1991-12-31

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory`s (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  9. Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new ''B2'' configuration of the RA-6 nuclear reactor

    International Nuclear Information System (INIS)

    Monti Hughes, Andrea; Trivillin, Veronica A.; Schwint, Amanda E.; Longhino, Juan; Boggio, Esteban; Medina, Vanina A.; Martinel Lamas, Diego J.; Garabalino, Marcela A.; Heber, Elisa M.; Pozzi, Emiliano C.C.; Itoiz, Maria E.; Aromando, Romina F.; Nigg, David W.

    2017-01-01

    Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new ''B2'' configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in ''B1'' experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94-96%) than in control (16%) and BO groups (9-38%), and did not differ significantly from the ''B1'' results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control. (orig.)

  10. Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new ''B2'' configuration of the RA-6 nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Monti Hughes, Andrea; Trivillin, Veronica A.; Schwint, Amanda E. [Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Department of Radiobiology, San Martin, Province Buenos Aires (Argentina); National Research Council (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Longhino, Juan; Boggio, Esteban [Bariloche Atomic Center, CNEA, Department of Nuclear Engineering, San Carlos de Bariloche, Province Rio Negro (Argentina); Medina, Vanina A.; Martinel Lamas, Diego J. [National Research Council (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Pontifical Catholic University of Argentina (UCA), Laboratory of Tumoral Biology and Inflammation, School of Medical Sciences, Institute for Biomedical Research (BIOMED CONICET-UCA), Ciudad Autonoma de Buenos Aires (Argentina); Garabalino, Marcela A.; Heber, Elisa M.; Pozzi, Emiliano C.C. [Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Department of Radiobiology, San Martin, Province Buenos Aires (Argentina); Itoiz, Maria E. [Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Department of Radiobiology, San Martin, Province Buenos Aires (Argentina); UBA, Department of Oral Pathology, Faculty of Dentistry, Ciudad Autonoma de Buenos Aires (Argentina); Aromando, Romina F. [UBA, Department of Oral Pathology, Faculty of Dentistry, Ciudad Autonoma de Buenos Aires (Argentina); Nigg, David W. [Idaho National Laboratory, Idaho Falls (United States)

    2017-11-15

    Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new ''B2'' configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in ''B1'' experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94-96%) than in control (16%) and BO groups (9-38%), and did not differ significantly from the ''B1'' results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control. (orig.)

  11. Summaries on various researches aiming at the closed head BNCT

    International Nuclear Information System (INIS)

    Ono, Koji

    2000-01-01

    As in the boron neutron capture therapy (BNCT) flight of alpha particle formed by reaction of neutron and boron is nearly equal to diameter of cancer cell, when a boron compound accumulates selectively to a cancer cell to be radiated onto the cell by enough amount of neutron beam the alpha particles are irradiated onto the cancer cells nearly selectively. Like this, this is a curing means capable of overcoming a problem undecidable by a paradigm of radiation remedy in the 20th Century, a micro dose amount effect supposing to be a paradigm in the 21st Century, the very (biological) dose concentration into cancer cell is a curing method matching to upgrading on rate of cancer control and improvement on post-cure of the patients without increase of subreaction in every tumors. Here were summarized on characteristic comparison of thermal outer-neutron beams in KUR, JRR-4 and the Peten HFR reactors, development of new boron compounds, effect of BNCT on re-oxygenation of the cancer, and induction of mutation by neutron beam. (G.K.)

  12. Evaluation of BPA uptake in clear cell sarcoma (CCS) in vitro and development of an in vivo model of CCS for BNCT studies.

    Science.gov (United States)

    Fujimoto, T; Andoh, T; Sudo, T; Fujita, I; Imabori, M; Moritake, H; Sugimoto, T; Sakuma, Y; Takeuchi, T; Sonobe, H; Epstein, Alan L; Akisue, T; Kirihata, M; Kurosaka, M; Fukumori, Y; Ichikawa, H

    2011-12-01

    Clear cell sarcoma (CCS), a rare malignant tumor with a predilection for young adults, is of poor prognosis. Recently however, boron neutron capture therapy (BNCT) with the use of p-borono-L-phenylalanine (BPA) for malignant melanoma has provided good results. CCS also produces melanin; therefore, the uptake of BPA is the key to the application of BNCT to CCS. We describe, for the first time, the high accumulation of boron in CCS and the CCS tumor-bearing animal model generated for BNCT studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Radiation field characterization of a BNCT research facility using Monte Carlo Method - Code MCNP-4B

    International Nuclear Information System (INIS)

    Hernandes, Antonio Carlos

    2002-01-01

    Boron Neutron Capture Therapy - BNCT- is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an AmBe neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these BNCT studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluency Ν Τ = 1,35x10 8 n/cm 2 , a fast neutron dose of 5,86x -1 0 Gy/Ν Τ and a gamma ray dose of 8,30x -14 Gy/Ν Τ . (author)

  14. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    Science.gov (United States)

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Application of HVJ envelope system to boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Nakai, Kei; Kurooka, Masaaki; Kaneda, Yasufumi; Yamamoto, Tetsuya; Matsumura, Akira; Asano, Tomoyuki

    2006-01-01

    Boron Neutron Capture Therapy (BNCT) has been used clinically for the treatment of malignant tumors. Two drugs, p-boronophenylalanine (BPA) and sulfhydral borane (BSH), have been used as boron delivery agents. These drugs seem to be taken up preferentially in solid tumors, but it is uncertain whether therapeutic quantities of boron atoms are taken up by micro-invasive or distant tumor cells. High accumulation and high selective delivery of boron into tumor tissues are the most important requirements to achieve efficient BNCT for malignant tumor. The HVJ envelope (HVJ-E) vector system is a novel fusion-mediated gene delivery system based on inactivated hemagglutinating virus of Japan (HVJ; Sendai virus). Although we developed this vector system for gene transfer, it can also deliver proteins, synthetic oligonucleotides, and drugs. HVJ-liposome, which is liposome fused with HVJ-E, has higher boron trapping efficiency than HVJ-E alone. We report the boron delivery into cultured cells with HVJ-liposome systems. The cellular 10 B concentration after 60 min incubation with HVJ-E containing BSH was 24.9 μg/g cell pellet for BHK-21 cells (baby hamster kidney cells) and 19.4 μg/g cell pellet for SCC VII cells (murine squamous cell carcinoma). These concentrations are higher than that of 60 min incubated cells with BSH containing (100μg 10 B/ml) medium. These results indicate the HVJ-E fused with tumor cell membrane and rapidly delivered boron agents, and that the HVJ-E-mediated delivery system could be applicable to BNCT. Plans are underway to begin neutron radiation experiments in vivo and in vitro. (author)

  16. PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Ishiwata, Kiichi; Kimura, Yuichi; Inaji, Motoki; Momose, Toshiya; Yamamoto, Tetsuya; Matsumura, Akira; Ishii, Kenji; Ohno, Kikuo

    2009-01-01

    Introduction: To plan the optimal BNCT for patients with malignant cerebral glioma, estimation of the ratio of boron concentration in tumor tissue against that in the surrounding normal brain (T/N ratio of boron) is important. We report a positron emission tomography (PET) imaging method to estimate T/N ratio of tissue boron concentration based on pharmacokinetic analysis of amino acid probes. Methods: Twelve patients with cerebral malignant glioma underwent 60 min dynamic PET scanning of brain after bolus injection of 18 F-borono-phenyl-alanine (FBPA) with timed arterial blood sampling. Using kinetic parameter obtained by this scan, T/N ratio of boron concentration elicited by one-hour constant infusion of BPA, as performed in BNCT, was simulated on Runge-Kutta algorithm. 11 C-methionine (MET) PET scan, which is commonly used in worldwide PET center as brain tumor imaging tool, was also performed on the same day to compare the image characteristics of FBPA and that of MET. Result: PET glioma images obtained with FBPA and MET are almost identical in all patients by visual inspection. Estimated T/N ratio of tissue boron concentration after one-hour constant infusion of BPA, T/N ratio of FBPA on static condition, and T/N ratio of MET on static condition showed significant linear correlation between each other. Conclusion: T/N ratio of boron concentration that is obtained by constant infusion of BPA during BNCT can be estimated by FBPA PET scan. This ratio can also be estimated by MET-PET imaging. As MET-PET study is available in many clinical PET center, selection of candidates for BNCT may be possible by MET-PET images. Accurate planning of BNCT may be performed by static images of FBPA PET. Use of PET imaging with amino acid probes may contribute very much to establish an appropriate application of BNCT for patients with malignant glioma.

  17. Boron neutron capture therapy combined with fractionated photon irradiation for glioblastoma: A recursive partitioning analysis of BNCT patients

    International Nuclear Information System (INIS)

    Nakai, K.; Yamamoto, T.; Aiyama, H.; Takada, T.; Yoshida, F.; Kageji, T.; Kumada, H.; Isobe, T.; Endo, K.; Matsuda, M.; Tsurubuchi, T.; Shibata, Y.; Takano, S.; Mizumoto, M.; Tsuboi, K.; Matsumura, A.

    2011-01-01

    Eight patients to received Boron Neutron Capture Therapy (BNCT) were selected from 33 newly diagnosed glioblastoma patients (NCT(+) group). Serial 42 glioblastoma patients (NCT(−) group) were treated without BNCT. The median OS of the NCT(+) group and NCT (−) group were 24.4 months and 14.9 months. In the high risk patients (RPA class V), the median OS of the NCT(+) group tended to be better than that of NCT(−) group. 50% of BNCT patients were RPA class V. - Highlights: ► We treated 8 patients with boron neutron capture therapy (NCT) for glioblastoma. ► We compare the overall survival between NCT including series and without NCT series. ► The median overall survival of the NCT including series was 24.4 months. ► In the high risk patients, the median OS of NCT including series tended to be better.

  18. Physical and biological dosimetry at the RA-3 facility for small animal irradiation: preliminary BNCT studies in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Pozzi, Emiliano; Miller, Marcelo; Thorp, Silvia I.; Heber, Elisa M.; Trivillin, Veronica A.; Zarza, Leandro; Estryk, Guillermo; Schwint, Amanda E.; Nigg, David W.

    2007-01-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality based on the capture reaction that occurs between thermal neutrons and boron-10 atoms that accumulate selectively in tumor tissue, emitting high linear energy transfer (LET), short range (5-9 microns) particles (alpha y 7 Li). Thus, BNCT would potentially target tumor tissue selectively, sparing normal tissue. Herein we evaluated the feasibility of treating experimental oral mucosa tumors with BNCT at RA-3 (CAE) employing the hamster cheek pouch oral cancer model and characterized the irradiation field at the RA-3 facility. We evaluated the therapeutic effect on tumor of BNCT mediated by BPA in the hamster cheek pouch oral cancer model and the potential radio toxic effects in normal tissue. We evidenced a moderate biological response in tumor, with no radio toxic effects in normal tissue following irradiations with no shielding for the animal body. Given the sub-optimal therapeutic response, we designed and built a 6 Li 2 CO 3 shielding for the body of the animal to increase the irradiation dose to tumor, without exceeding normal tissue radio tolerance. The measured absolute magnitude of thermal neutron flux and the characterization of the beam with and without the shielding in place, suggest that the irradiation facility in the thermal column of RA-3 would afford an excellent platform to perform BNCT studies in vitro and in vivo in small experimental animals. The present findings must be confirmed and extended by performing in vivo BNCT radiobiological studies in small experimental animals, employing the shielding device for the animal body. (author) [es

  19. Synthesis and evaluation of boronated folates for BNCT

    International Nuclear Information System (INIS)

    Shukla, S.; Sekido, M.; Guo, W.; Mueller, R.; Sudimack, J.; Lee, R.J.; Tjarks, W.; Adams, D.M.; Barth, R.F.

    2000-01-01

    To study the possible utilization of folic acid as the 10 B carrier for BNCT, folic acid conjugated boron containing liposomes and starburst dendrimers were prepared. In both systems folic acid was used as the recognition part and polyethylene glycol (PEG) as the spacer. In vitro studies were carried out using folate receptor overexpressing 24JK-FBP and KB cells. The results indicated that these boronated folic acid conjugates were incorporated into the tumor cells via receptor-mediated endocytosis. (author)

  20. Radiation protection in BNCT patients

    International Nuclear Information System (INIS)

    Blaumann, Hernan R.; Scharnichia, E.; Levanon, I.; Fernandez, C.; Facchini, Guillermo; Longhino, J.; Calzetta, Osvaldo; Pereira, M.

    2008-01-01

    Full text: Boron Neutron Capture Therapy (BNCT) is a technique that selectively targets cancer cells while sparing normal tissues by virtue of the differential uptake of a 10 B carrier compound in tumor. The National Atomic Energy Commission (CNEA) and the Oncology Institute 'Angel H. Roffo' (IOAR) began a BNCT programme in 2003 for treating cutaneous skin melanomas in extremities. The neutron beam used is the hyperthermal one developed at the RA-6 Reactor of the Bariloche Atomic Centre (CAB). The prescribed dose is delivered in one fraction and therefore patient positioning and knowledge of the dose received by normal tissue are crucial. 10 irradiations have been done since 2003, all of them in legs and feet and the dose prescription was determined by the maximum tolerable skin dose. Due to the characteristics of this treatment the patient body might be exposed not only to the primary beam but also to the secondary photon beam produced by neutron capture at the target itself. Thus a patient radiation-monitoring plan was implemented in order to evaluate the gamma dose delivered to sensible organs of each patient. An acrylic water-filled whole body phantom was used for preliminary gamma dose and thermal neutron flux measurements at positions related to patient's body sensible organs considering tentative patient positions. The beam port shielding was, in this way, optimized. TLD-700 and Manganese foils were used for gamma and thermal neutron detection. The TLD-700 thermal neutron response was previously evaluated by using the in-phantom beam dosimetry characterization. In-vivo dosimetry with TLD is routinely implemented in order to evaluate gamma dose to sensible organs of each patient. These organs are chosen depending on its distance from the zone to be irradiated and its radio-sensibility. All TLDs have been positioned well outside the irradiation field. Maximum gamma dose received outside the radiation field in healthy tissues was well below tolerance dose for

  1. Feasibility study on the utilization of boron neutron capture therapy (BNCT) in a rat model of diffuse lung metastases

    Energy Technology Data Exchange (ETDEWEB)

    Bakeine, G.J. [Department of Clinical Medicine and Neurology, Cattinara Hospital, University of Trieste (Italy)], E-mail: jamesbakeine1@yahoo.com; Di Salvo, M. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); Bortolussi, S.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi 6, Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); Bertolotti, A.; Nano, R. [Department of Animal Biology University of Pavia, Piazza Botta, Pavia (Italy); Clerici, A.; Ferrari, C.; Zonta, C. [Department of Surgery University of Pavia, Piazza Botta, Pavia (Italy); Marchetti, A. [Scientific Research Office, Fondazione San Matteo University Policlinic, Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi 6, Pavia (Italy)

    2009-07-15

    In order for boron neutron capture therapy (BNCT) to be eligible for application in lung tumour disease, three fundamental criteria must be fulfilled: there must be selective uptake of boron in the tumour cells with respect to surrounding healthy tissue, biological effectiveness of the radiation therapy and minimal damage or collateral effects of the irradiation on the surrounding tissues. In this study, we evaluated the biological effectiveness of BNCT by in vitro irradiation of rat colon-carcinoma cells previously incubated in boron-enriched medium. One part of these cells was re-cultured in vitro while the other was inoculated via the inferior vena cava to induce pulmonary metastases in a rat model. We observed a post-irradiation in vitro cell viability of 0.05% after 8 days of cell culture. At 4 months follow-up, all animal subjects in the treatment group that received irradiated boron-containing cells were alive. No animal survived beyond 1 month in the control group that received non-treated cells (p<0.001 Kaplan-Meier). These preliminary findings strongly suggest that BNCT has a significant lethal effect on tumour cells and post irradiation surviving cells lose their malignant capabilities in vivo. This radio-therapeutic potential warrants the investigation of in vivo BNCT for lung tumour metastases.

  2. Feasibility study on the utilization of boron neutron capture therapy (BNCT) in a rat model of diffuse lung metastases

    International Nuclear Information System (INIS)

    Bakeine, G.J.; Di Salvo, M.; Bortolussi, S.; Stella, S.; Bruschi, P.; Bertolotti, A.; Nano, R.; Clerici, A.; Ferrari, C.; Zonta, C.; Marchetti, A.; Altieri, S.

    2009-01-01

    In order for boron neutron capture therapy (BNCT) to be eligible for application in lung tumour disease, three fundamental criteria must be fulfilled: there must be selective uptake of boron in the tumour cells with respect to surrounding healthy tissue, biological effectiveness of the radiation therapy and minimal damage or collateral effects of the irradiation on the surrounding tissues. In this study, we evaluated the biological effectiveness of BNCT by in vitro irradiation of rat colon-carcinoma cells previously incubated in boron-enriched medium. One part of these cells was re-cultured in vitro while the other was inoculated via the inferior vena cava to induce pulmonary metastases in a rat model. We observed a post-irradiation in vitro cell viability of 0.05% after 8 days of cell culture. At 4 months follow-up, all animal subjects in the treatment group that received irradiated boron-containing cells were alive. No animal survived beyond 1 month in the control group that received non-treated cells (p<0.001 Kaplan-Meier). These preliminary findings strongly suggest that BNCT has a significant lethal effect on tumour cells and post irradiation surviving cells lose their malignant capabilities in vivo. This radio-therapeutic potential warrants the investigation of in vivo BNCT for lung tumour metastases.

  3. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    Science.gov (United States)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  4. Monte Carlo simulations of the cellular S-value, lineal energy and RBE for BNCT

    International Nuclear Information System (INIS)

    Liu Chingsheng; Tung Chuanjong

    2006-01-01

    Due to the non-uniform uptake of boron-containing pharmaceuticals in cells and the short-ranged alpha and lithium particles, microdosimetry provides useful information on the cellular dose and response of boron neutron capture therapy (BNCT). Radiation dose and quality in BNCT may be expressed in terms of the cellular S-value and the lineal energy spectrum. In the present work, Monte Carlo simulations were performed to calculate these microdosimetric parameters for different source-target configurations and sizes in cells. The effective relative biological effectiveness (RBE) of the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam was evaluated using biological weighting functions that depended on the lineal energy. RBE changes with source-target configurations and sizes were analyzed. (author)

  5. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-01-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10 9 n/cm 2 /s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin (∼ 5 cm iron). However, this approach has an extremely low neutron yield (n/p ∼ 1.0(-6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target ∼ 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies (∼ 2.5 MeV) have a much higher yield (n/p ∼ 1.0(-4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV

  6. Quality assurance for BNCT at nuclear facilities. A necessary burden or the unavoidable seal of approval

    International Nuclear Information System (INIS)

    Moss, R.; Morrissey, J.; Sauerwein, W.; Hideghety, K.; Rassow, J.; Stecher-Rasmussen, F.

    2000-01-01

    The BNCT clinical trial at the HFR Petten is performed on a completely multi-national basis. The irradiation facility is located in one country (The Netherlands), is operated by an international team of experts under the leadership of a radiotherapist from another country (Germany) and treats patients coming from different European countries. In gaining the necessary approval, it became apparent, especially in the many discussions with the (Dutch) Health authorities that Quality Assurance (QA) would be and is a critical aspect. This is even more so, in the case of BNCT, where it was not only a (relatively) new experimental treatment (in 1996/97) about to be performed for the first time in Europe, but it was to be performed in a non-hospital environment and furthermore in a nuclear research reactor. It was necessary therefore to comply, as closely as possible, with similarly accepted practices in conventional radiotherapy. Despite QA being a sometimes burdensome task, this paper nevertheless raises the issue as to whether it is necessary or whether it is the seal of approval for BNCT as an acceptable mode of treatment in mainstream radiotherapy. (author)

  7. Azaboranes with hydroxypropyl residues as possible new compounds for use in BNCT

    International Nuclear Information System (INIS)

    Bauer, C.; Gabel, D.; Doefler, U.

    2000-01-01

    The azaboranes of the type RNH 2 B 8 H 11 NHR where R contains a hydroxyl group are possible new compounds for BNCT, because they are water stable and more or less water soluble for physiological transport. These compounds also fulfil the condition of not being toxic. (author)

  8. PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Tadashi [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan)], E-mail: nariai.nsrg@tmd.ac.jp; Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Nakacho, Itabashi-ku, Tokyo (Japan); Kimura, Yuichi [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba (Japan); Inaji, Motoki; Momose, Toshiya [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan); Yamamoto, Tetsuya; Matsumura, Akira [Department of Neurosurgery, University of Tsukuba, Tennodai, Tsukuba, Igaraki (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Nakacho, Itabashi-ku, Tokyo (Japan); Ohno, Kikuo [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan)

    2009-07-15

    Introduction: To plan the optimal BNCT for patients with malignant cerebral glioma, estimation of the ratio of boron concentration in tumor tissue against that in the surrounding normal brain (T/N ratio of boron) is important. We report a positron emission tomography (PET) imaging method to estimate T/N ratio of tissue boron concentration based on pharmacokinetic analysis of amino acid probes. Methods: Twelve patients with cerebral malignant glioma underwent 60 min dynamic PET scanning of brain after bolus injection of {sup 18}F-borono-phenyl-alanine (FBPA) with timed arterial blood sampling. Using kinetic parameter obtained by this scan, T/N ratio of boron concentration elicited by one-hour constant infusion of BPA, as performed in BNCT, was simulated on Runge-Kutta algorithm. {sup 11}C-methionine (MET) PET scan, which is commonly used in worldwide PET center as brain tumor imaging tool, was also performed on the same day to compare the image characteristics of FBPA and that of MET. Result: PET glioma images obtained with FBPA and MET are almost identical in all patients by visual inspection. Estimated T/N ratio of tissue boron concentration after one-hour constant infusion of BPA, T/N ratio of FBPA on static condition, and T/N ratio of MET on static condition showed significant linear correlation between each other. Conclusion: T/N ratio of boron concentration that is obtained by constant infusion of BPA during BNCT can be estimated by FBPA PET scan. This ratio can also be estimated by MET-PET imaging. As MET-PET study is available in many clinical PET center, selection of candidates for BNCT may be possible by MET-PET images. Accurate planning of BNCT may be performed by static images of FBPA PET. Use of PET imaging with amino acid probes may contribute very much to establish an appropriate application of BNCT for patients with malignant glioma.

  9. Four cases of facial melanoma treated by BNCT with 10B-p-boronophenylalanine

    International Nuclear Information System (INIS)

    Fukuda, H.; Mishima, Y.; Hiratsuka, J.; Kobayashi, T.; Karashima, H.; Yoshino, K.; Tsuru, K.; Araki, K.; Ichihashi, M.

    2000-01-01

    We treated four cases of facial melanoma by BNCT with 10 B-paraboronophenylalanine · fructose complex (BPA). The patients received 180 to 200 mg BPA/kg-BW intravenously for 3 to 5 hours. One to two hours after the end of BPA administration, they were irradiated with a thermal neutron beam at the Kyoto University Reactor (KUR). The local control of the tumors was good and complete regression was achieved in all cases. The acute and subacute skin reactions ranged from dry desquamation to erosion and were within tolerable limits. After 2 to 3 months, the skin recovered from damage with slight pigmentation or depigmentation and without serious functional or cosmetic problems. Our results indicate BNCT of facial melanoma is promising not only for tumor cure but also for good QOL of the patients, although surgery is the standard and first choice for the treatment of malignant melanoma. (author)

  10. The hamster cheek pouch (HCP) as an experimental model of oral cancer for BNCT: biodistribution and pharmacokinetics of BPA

    International Nuclear Information System (INIS)

    Kreimann, E.; Itoiz, M.E.; Dagrosa, A.; Garavaglia, R.; Farias, S.; Batistoni, D.; Schwint, A.E.

    2000-01-01

    We propose and validate the HCP model of oral cancer for BNCT studies. This model serves to explore new applications of the technique, study the biology of BNCT and assess Boron uptake in clinically relevant oral tissues. Tumors are induced by a process that mimics spontaneous malignant transformation instead of by the growth of implanted tumor cells. Syrian hamsters were submitted to tumor induction with a chemical carcinogenesis protocol and then used for biodistribution and pharmacokinetic studies of BPA. The data reveal selective uptake by tumor and, to a lesser degree, by precancerous tissue. Boron concentration in oral tissues and skin was higher than in blood, an issue of clinical relevance given that these tissues may be dose-limiting. Absolute and relative values of Boron concentration would be potentially therapeutic. Boron concentration exhibited a linear relationship with percentage of viable tissue in HCP tumors. The HCP model would provide a novel, contributory approach to BNCT research. (author)

  11. Improvement of neutron irradiation field of research reactors for BNCT

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    1992-01-01

    The modification of research reactors for an improvement of the irradiation field for BNCT has been investigated in comparison with the field characteristics of the 'old' configuration at the Musashi reactor. The new point of this study is that the evaluation has been done by using an arrangement including both the facility structure and a whole-body phantom, and also by considering the whole-body absorbed dose. (author)

  12. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boggio, E. F.; Longhino, J. M. [Centro Atomico Bariloche, Departamento de Fisica de Reactores y Radiaciones / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina); Andres, P. A., E-mail: efboggio@cab.cnea.gov.ar [Centro Atomico Bariloche, Division Proteccion Radiologica / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina)

    2015-10-15

    , with representative measuring points of critical organs. Finally, mice phantoms were constructed and irradiated in the BNCT beam using an experimental setup specifically designed for biological models experimentation. TLD- 700 and activation detectors were implemented to compare with the Monte Carlo (MCNP) calculation model results, in order to evaluate the method performance. The potential of GC analysis method to estimate both photon and slow neutron dose by using a single TLD-700 is shown, resulting in a dosimetric tool of great value. By using this method, whole body dosimetry results simple and precise, in contrast with the traditional method used so far. Experimental validation for Monte Carlo (MCNP) calculation models of little animal irradiation setups were carried out successfully, especially when ionization chambers cannot be used because of instrument dimensions. (Author)

  13. Optimization of the irradiation beam in the BNCT research facility at IEA-R1 reactor

    International Nuclear Information System (INIS)

    Castro, Vinicius Alexandre de

    2014-01-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapeutic technique for the treatment of some types of cancer whose useful energy comes from a nuclear reaction that occurs when thermal neutron impinges upon a Boron-10 atom. In Brazil there is a research facility built along the beam hole number 3 of the IEA-R1 research reactor at IPEN, which was designed to perform BNCT research experiments. For a good performance of the technique, the irradiation beam should be mostly composed of thermal neutrons with a minimum as possible gamma and above thermal neutron components. This work aims to monitor and evaluate the irradiation beam on the sample irradiation position through the use of activation detectors (activation foils) and also to propose, through simulation using the radiation transport code, MCNP, new sets of moderators and filters which shall deliver better irradiation fields at the irradiation sample position In this work, a simulation methodology, based on a MCNP card, known as wwg (weight window generation) was studied, and the neutron energy spectrum has been experimentally discriminated at 5 energy ranges by using a new set o activation foils. It also has been concluded that the BNCT research facility has the required thermal neutron flux to perform studies in the area and it has a great potential for improvement for tailoring the irradiation field. (author)

  14. On line local measurement of thermal neutron flux on BNCT patient using SPND

    International Nuclear Information System (INIS)

    Miller, M.E.; Sztejnberg Goncalves-Carralves, M.L.; Gonzalez, S.J.

    2006-01-01

    The first on-line neutron flux measurement on a patient using a self-powered neutron detector (SPND) was assessed during the fourth clinical trial of the Boron Neutron Capture Therapy (BNCT) Project carried out at the National Atomic Energy Commission of Argentina (CNEA) and the medical center Angel H. Roffo. The SPND was specially developed and assembled for BNCT by CNEA. Its small size, 1 cm sensible length and 1.9 mm diameter, allowed performing a localized measurement. Since the treated tumors were cutaneous melanomas of nodular type, the SPND was located on the patient's skin. The patient was exposed to three different and consecutive fields and in each of them the SPND was used to measure local thermal neutron fluxes at selected dosimetric reference points. The values of the measured fluxes agreed with the ones estimated by calculation. This trial also demonstrated the usefulness of the SPND for assessing flux on-line. (author)

  15. Design of thermal neutron beam based on an electron linear accelerator for BNCT.

    Science.gov (United States)

    Zolfaghari, Mona; Sedaghatizadeh, Mahmood

    2016-12-01

    An electron linear accelerator (Linac) can be used for boron neutron capture therapy (BNCT) by producing thermal neutron flux. In this study, we used a Varian 2300 C/D Linac and MCNPX.2.6.0 code to simulate an electron-photoneutron source for use in BNCT. In order to decelerate the produced fast neutrons from the photoneutron source, which optimize the thermal neutron flux, a beam-shaping assembly (BSA) was simulated. After simulations, a thermal neutron flux with sharp peak at the beam exit was obtained in the order of 3.09×10 8 n/cm 2 s and 6.19×10 8 n/cm 2 s for uranium and enriched uranium (10%) as electron-photoneutron sources respectively. Also, in-phantom dose analysis indicates that the simulated thermal neutron beam can be used for treatment of shallow skin melanoma in time of about 85.4 and 43.6min for uranium and enriched uranium (10%) respectively. Copyright © 2016. Published by Elsevier Ltd.

  16. Tumor control induced by Boron Neutron Capture Therapy (BNCT) as a function of dose in an experimental model of liver metastases at 5 weeks follow-up

    International Nuclear Information System (INIS)

    Pozzi, E C C; Trivillin, V A; Colombo, L L; Monti Hughes, A; Thorp, S; Cardoso, J E; Garabalino, M A; Molinari, A J; Heber, E M; Curotto, Paula; Miller, M; Itoiz, M E; Aromando, R F; Nigg, D W; Schwint, A E

    2012-01-01

    BNCT has been proposed for the treatment of multifocal, non-resectable, bilobar colorectal liver metastases that do not respond to chemotherapy. We recently reported that BNCT mediated by boronophenylalanine (BPA) induced significant remission of experimental colorectal tumor nodules in rat liver at 3 weeks follow-up with no contributory liver toxicity (Pozzi et al.,2012). The aim of the present study was to evaluate tumor control and potential liver toxicity of BPA-BNCT at 5 weeks follow-up. Prescribed dose was retrospectively evaluated based on blood boron values, allowing for assessment of response over a range of delivered dose values (author)

  17. Quality management in BNCT at a nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sauerwein, Wolfgang, E-mail: w.sauerwein@uni-due.de [NCTeam, Department of Radiation Oncology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen (Germany); Moss, Raymond [ESE Unit, Institute for Energy, Joint Research Centre, European Commission, Westerduinweg 3, P.O. Box 2 NL-1755ZG Petten (Netherlands); Stecher-Rasmussen, Finn [NCT Physics, Nassaulaan 12, 1815GK Alkmaar (Netherlands); Rassow, Juergen [NCTeam, Department of Radiation Oncology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen (Germany); Wittig, Andrea [Department of Radiotherapy and Radiation Oncology, University Hospital Marburg, Philipps-University Marburg, Baldingerstrasse, 35043 Marburg (Germany)

    2011-12-15

    Each medical intervention must be performed respecting Health Protection directives, with special attention to Quality Assurance (QA) and Quality Control (QC). This is the basis of safe and reliable treatments. BNCT must apply QA programs as required for performance and safety in (conventional) radiotherapy facilities, including regular testing of performance characteristics (QC). Furthermore, the well-established Quality Management (QM) system of the nuclear reactor used has to be followed. Organization of these complex QM procedures is offered by the international standard ISO 9001:2008.

  18. Positron emission tomography and [{sup 18}F]BPA: A perspective application to assess tumour extraction of boron in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, L. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy)], E-mail: luca.menichetti@ifc.cnr.it; Cionini, L. [Unit of Radiotherapy, AOUP-University Hospital, Pisa (Italy); Sauerwein, W.A. [Department of Radiation Oncology, University Duisburg-Essen, University Hospital Essen (Germany); Altieri, S. [University of Pavia, Department of Nuclear Physics, Pavia (Italy); Solin, O.; Minn, H. [Turku PET Centre, University of Turku (Finland); Salvadori, P.A. [Department of PET and Radiopharmaceutical Chemistry, C.N.R. Institute of Clinical Physiology, Pisa (Italy)

    2009-07-15

    Positron emission tomography (PET) has become a key imaging tool in clinical practice and biomedical research to quantify and study biochemical processes in vivo. Physiologically active compounds are tagged with positron emitters (e.g. {sup 18}F, {sup 11}C, {sup 124}I) while maintaining their biological properties, and are administered intravenously in tracer amounts (10{sup -9}-10{sup -12} M quantities). The recent physical integration of PET and computed tomography (CT) in hybrid PET/CT scanners allows a combined anatomical and functional imaging: nowadays PET molecular imaging is emerging as powerful pharmacological tool in oncology, neurology and for treatment planning as guidance for radiation therapy. The in vivo pharmacokinetics of boron carrier for BNCT and the quantification of {sup 10}B in living tissue were performed by PET in the late nineties using compartmental models based on PET data. Nowadays PET and PET/CT have been used to address the issue of pharmacokinetic, metabolism and accumulation of BPA in target tissue. The added value of the use of L-[{sup 18}F]FBPA and PET/CT in BNCT is to provide key data on the tumour extraction of {sup 10}B-BPA versus normal tissue and to predict the efficacy of the treatment based on a single-study patient analysis. Due to the complexity of a binary treatment like BNCT, the role of PET/CT is currently to design new criteria for patient enrolment in treatment protocols: the L-[{sup 18}F]BPA/PET methodology could be considered as an important tool in newly designed clinical trials to better estimate the concentration ratio of BPA in the tumour as compared to neighbouring normal tissues. Based on these values for individual patients the decision could be made whether BNCT treatment could be advantageous due to a selective accumulation of BPA in an individual tumour. This approach, applicable in different tumour entities like melanoma, glioblastoma and head and neck malignancies, make this methodology as reliable

  19. Clinical requirements and accelerator concepts for BNCT

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Leung, K.N.; Reginato, L.L.; Wells, R.P.

    1997-05-01

    Accelerator-based neutron sources are an attractive alternative to nuclear reactors for providing epithermal neutron beams for Boron Neutron Capture Therapy. Based on clinical requirements and neutronics modeling the use of proton and deuteron induced reactions in 7 Li and 9 Be targets has been compared. Excellent epithermal neutron beams can be produced via the 7 Li(p,n) 7 Be reaction at proton energies of ∼2.5 MeV. An electrostatic quadrupole accelerator and a lithium target, which can deliver and handle 2.5 MeV protons at beam currents up to 50 mA, are under development for an accelerator-based BNCT facility at the Lawrence Berkeley National Laboratory

  20. Dosimetric analysis of BNCT - Boron Neutron Capture Therapy - coupled to 252Cf brachytherapy

    International Nuclear Information System (INIS)

    Brandao, Samia F.; Campos, Tarcisio P.R.

    2009-01-01

    The incidence of brain tumors is increasing in world population; however, the treatments employed in this type of tumor have a high rate of failure and in some cases have been considered palliative, depending on histology and staging of tumor. Its necessary to achieve the control tumor dose without the spread irradiation cause damage in the brain, affecting patient neurological function. Stereotactic radiosurgery is a technique that achieves this; nevertheless, other techniques that can be used on the brain tumor control must be developed, in order to guarantee lower dose on health surroundings tissues other techniques must be developing. The 252 Cf brachytherapy applied to brain tumors has already been suggested, showing promising results in comparison to photon source, since the active source is placed into the tumor, providing greater dose deposition, while more distant regions are spared. BNCT - Boron Neutron Capture Therapy - is another technique that is in developing to brain tumors control, showing theoretical superiority on the rules of conventional treatments, due to a selective irradiation of neoplasics cells, after the patient receives a borate compound infusion and be subjected to a epithermal neutrons beam. This work presents dosimetric studies of the coupling techniques: BNCT with 252 Cf brachytherapy, conducted through computer simulation in MCNP5 code, using a precise and well discretized voxel model of human head, which was incorporated a representative Glioblastoma Multiform tumor. The dosimetric results from MCNP5 code were exported to SISCODES program, which generated isodose curves representing absorbed dose rate in the brain. Isodose curves, neutron fluency, and dose components from BNCT and 252 Cf brachytherapy are presented in this paper. (author)

  1. Design and simulation of an optimized e-linac based neutron source for BNCT research

    International Nuclear Information System (INIS)

    Durisi, E.; Alikaniotis, K.; Borla, O.; Bragato, F.; Costa, M.; Giannini, G.; Monti, V.; Visca, L.; Vivaldo, G.; Zanini, A.

    2015-01-01

    The paper is focused on the study of a novel photo-neutron source for BNCT preclinical research based on medical electron Linacs. Previous studies by the authors already demonstrated the possibility to obtain a mixed thermal and epithermal neutron flux of the order of 10"7 cm"−"2 s"−"1. This paper investigates possible Linac’s modifications and a new photo-converter design to rise the neutron flux above 5 10"7 cm"−"2 s"−"1, also reducing the gamma contamination. - Highlights: • Proposal of a mixed thermal and epithermal (named hyperthermal) neutron source based on medical high energy electron Linac. • Photo-neutron production via Giant Dipole Resonance on high Z materials. • MCNP4B-GN simulations to design the photo-converter geometry maximizing the hyperthermal neutron flux and minimizing the fast neutron and gamma contaminations. Hyperthermal neutron field suitable for BNCT preclinical research.

  2. Capability of NIPAM polymer gel in recording dose from the interaction of 10B and thermal neutron in BNCT

    International Nuclear Information System (INIS)

    Khajeali, Azim; Reza Farajollahi, Ali; Kasesaz, Yaser; Khodadadi, Roghayeh; Khalili, Assef; Naseri, Alireza

    2015-01-01

    The capability of N-isopropylacrylamide (NIPAM) polymer gel to record the dose resulting from boron neutron capture reaction in BNCT was determined. In this regard, three compositions of the gel with different concentrations of 10 B were prepared and exposed to gamma radiation and thermal neutrons. Unlike irradiation with gamma rays, the boron-loaded gels irradiated by neutron exhibited sensitivity enhancement compared with the gels without 10 B. It was also found that the neutron sensitivity of the gel increased by the increase of concentration of 10 B. It can be concluded that NIPAM gel might be suitable for the measurement of the absorbed dose enhancement due to 10 B and thermal neutron reaction in BNCT. - Highlights: • Three compositions of NIPAM gel with different concentration of 10 B have been exposed by gamma and thermal neutron. • The vials containing NIPAM gel have been irradiated by an automatic system capable of providing for dose uniformity. • Suitability of NIPAM polymer gel in measuring radiation doses in BNCT has been investigated.

  3. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  4. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    Auterinen, I.; Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material Fluental TM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  5. MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.

    Science.gov (United States)

    Kotiluoto, P; Auterinen, I

    2004-11-01

    A successful boron neutron capture treatment (BNCT) of a patient with multiple liver metastases has been first given in Italy, by placing the removed organ into the thermal neutron column of the Triga research reactor of the University of Pavia. In Finland, FiR 1 Triga reactor with an epithermal neutron beam well suited for BNCT has been extensively used to irradiate patients with brain tumors such as glioblastoma and recently also head and neck tumors. In this work we have studied by MCNP Monte Carlo simulations, whether it would be beneficial to treat an isolated liver with epithermal neutrons instead of thermal ones. The results show, that the epithermal field penetrates deeper into the liver and creates a build-up distribution of the boron dose. Our results strongly encourage further studying of irradiation arrangement of an isolated liver with epithermal neutron fields.

  6. 9Be(d,n)10B-based neutron sources for BNCT

    International Nuclear Information System (INIS)

    Capoulat, M.E.; Herrera, M.S.; Minsky, D.M.; González, S.J.; Kreiner, A.J.

    2014-01-01

    In the frame of accelerator-based BNCT, the 9 Be(d,n) 10 B reaction was investigated as a possible source of epithermal neutrons. In order to determine the configuration in terms of bombarding energy, target thickness and Beam Shaping Assembly (BSA) design that results in the best possible beam quality, a systematic optimization study was carried out. From this study, the optimal configuration resulted in tumor doses ≥40 Gy-Eq, with a maximum value of 51 Gy-Eq at a depth of about 2.7 cm, in a 60 min treatment. The optimal configuration was considered for the treatment planning assessment of a real Glioblastoma Multiforme case. From this, the resulted dose performances were comparable to those obtained with an optimized 7 Li(p,n)-based neutron source, under identical conditions and subjected to the same clinical protocol. - Highlights: • Study of the 9 Be(d,n) 10 B reaction as a source of epithermal neutrons for BNCT. • Evaluation of the optimal configuration of target thickness, deuteron energy and BSA design. • Computational dose assessment for brain tumor treatments using the MCNP code. • Treatment planning assessment of a particular clinical Glioblastoma Multiforme case. • Dose performances were comparable to those obtained with an optimized 7 Li(p,n)-based source

  7. A phase-I clinical trial for cranial BNCT at Harvard-MIT

    International Nuclear Information System (INIS)

    Busse, P.M.; Palmer, M.R.; Harling, O.K.

    2000-01-01

    Phase I trial designed to determine the maximum tolerable dose to normal tissue for cranial BNCT (Boron Neutron Capture Therapy) irradiations was recently completed at Harvard Medical School and MIT. Twenty-two subjects diagnosed with either glioblastoma multiforme or intracranial melanoma were treated between 1996 and 1999. Subjects received either one or two administrations of boronophenylalanine intravenously at doses between 250 and 350 mg/kg body weight, then exposed in one, two or three fields to epithermal neutrons at the MIT Research Reactor in one or two fractions. Over the course of the study, the maximum normal tissue dose target was increased from 8.8 to 14.2 RBE (Relative Biological Effectiveness) Gy in 10% increments. Subjects have been followed clinically and radiographically. Of those patients surviving beyond six months, no MRI (Magnetic Resonance Image) white-matter changes were observed and no long-term complications attributable to BNCT were evident. Tumor responses were observed, particularly with the melanoma subjects. With increasing doses, difficulties arose from long irradiation times (approximately 3 hours) and the emergence of acute reactions in the skin and mucosa. The trial was stopped in May 1999. Future trials will be initiated with the new high intensity, low background fission converter beam at MIT. (author)

  8. INEL BNCT Research Program, May/June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (IBPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  9. INEL BNCT Research Program, September--October 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-12-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotain. carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophonylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  10. INEL BNCT research program, July--August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-10-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  11. INEL BNCT Research Program, March/April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murino screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronopheoylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  12. INEL BNCT Research Program, September--October 1992

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1992-12-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotain. carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophonylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed

  13. INEL BNCT Research Program, January/February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1993-04-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  14. INEL BNCT Research Program, January/February 1993

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1993-04-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed

  15. INEL BNCT Research Program, May/June 1992

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (IBPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed

  16. Neutron field characterization in the installation for BNCT study in the IEA-R1 reactor; Caracterizacao do campo de neutrons na instalacao para estudo em BNCT no reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro Junior, Valdeci

    2008-07-01

    This work aims to characterize the mixed neutron and gamma field, in the sample irradiation position, in a research installation for Boron Neutron Capture Therapy (BNCT), in the IPEN IEA-R1 reactor. The BNCT technique has been studied as a safe and selective option in the treatment of resistant cancerigenous tumors or considered non-curable by the conventional techniques, for example, the Glioblastoma Multiform - a brain cancerigenous tumor. Neutron flux measurements were carried out: thermal, resonance and fast, as well as neutron and gamma rays doses, in the sample position, using activation foils detectors and thermoluminescent dosimeters. For the determination of the neutron spectrum and intensity, a set of different threshold activation foils and gold foils covered and uncovered with cadmium irradiated in the installation was used, analyzed by a high Pure Germanium semiconductor detector, coupled to an electronic system suitable for gamma spectrometry. The results were processed with the SAND-BP code. The doses due to gamma and neutron rays were determined using thermoluminescent dosimeters TLD 400 and TLD 700 sensitive to gamma and TLD 600, sensitive to neutrons. The TLDs were selected and used for obtaining the calibration curves - dosimeter answer versus dose - from each of the TLD three types, which were necessary to calculate the doses due to neutron and gamma, in the sample position. The radiation field, in the sample irradiation position, was characterized flux for thermal neutrons of 1.39.10{sup 8} {+-} 0,12.10{sup 8} n/cm{sup 2}s the doses due to thermal neutrons are three times higher than those due to gamma radiation and confirm the reproducibility and consistency of the experimental findings obtained. Considering these results, the neutron field and gamma radiation showed to be appropriated for research in BNCT. (author)

  17. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    DEFF Research Database (Denmark)

    Hampel, G.; Grunewald, C.; Schütz, C.

    2011-01-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed at Pavia (Italy) a few ...

  18. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, D; Jung, J; Suh, T [The Catholic University of Korea, College of medicine, Department of biomedical engineering (Korea, Republic of)

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  19. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas, E-mail: samiabrandao@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2013-06-15

    Objective: comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and methods: simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results: intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively, on the healthy tissue, on the balloon periphery and on the /{sub 1} and /{sub 2} tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively on the healthy tissue, on the target tumor and on the /{sub 1} and /{sub 2} infiltration zones. Conclusion: Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones. (author)

  20. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Directory of Open Access Journals (Sweden)

    Samia de Freitas Brandao

    2013-07-01

    Full Text Available Objective Comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and Methods Simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results Intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h-1.p-1.s, respectively, on the healthy tissue, on the balloon periphery and on the I 1 and I 2 tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h-1.p-1.s, respectively on the healthy tissue, on the target tumor and on the I 1 and I 2 infiltration zones. Conclusion Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones.

  1. Boron Neutron Capture Therapy at the TRIGA Mark II of Pavia, Italy - The BNCT of the diffuse tumours

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S.; Bortolussi, S.; Stella, S.; Bruschi, P.; Gadan, M.A. [University of Pavia (Italy); INFN - National Institute for Nuclear Physics, of Pavia (Italy)

    2008-10-29

    The selectivity based on the B distribution rather than on the irradiation field makes Boron neutron Capture Therapy (BNCT) a valid option for the treatment of the disseminated tumours. As the range of the high LET particles is shorter than a cell diameter, the normal cells around the tumour are not damaged by the reactions occurring in the tumoral cells. PAVIA 2001: first treatment of multiple hepatic metastases from colon ca by BNCT and auto-transplantation technique: TAOrMINA project. The liver was extracted after BPA infusion, irradiated in the Thermal Column of the Pavia TRIGA Mark II reactor, and re-implanted in the patient. Two patients were treated, demonstrating the feasibility of the therapy and the efficacy in destroying the tumoral nodules sparing the healthy tissues. In the last years, the possibility of applying BNCT to the lung tumours using epithermal collimated neutron beams and without explanting the organ, is being explored. The principal obtained results of the BNCT research are presented, with particular emphasis on the following aspects: a) the project of a new thermal column configuration to make the thermal neutron flux more uniform inside the explanted liver, b) the Monte Carlo study by means of the MCNP code of the thermal neutron flux distribution inside a patient's thorax irradiated with epithermal neutrons, and c) the measurement of the boron concentration in tissues by (n,{alpha}) spectroscopy and neutron autoradiography. The dose distribution in the thorax are simulated using MCNP and the anthropomorphic model ADAM. To have a good thermal flux distribution inside the lung epithermal neutrons must be used, which thermalize crossing the first tissue layers. Thermal neutrons do not penetrate and the obtained uniformity is poor. In the future, the construction of a PGNAA facility using a horizontal channel of the TRIGA Mark II is planned. With this method the B concentration can be measured also in liquid samples (blood, urine) and

  2. Boron dose determination for BNCT using Fricke and EPR dosimetry

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ciesielski, B.

    1995-01-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to α and 7 Li charged particles resulting from a neutron capture by 10 B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient's dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here

  3. BNCT of canine osteosarcoma

    International Nuclear Information System (INIS)

    Mitin, V.N.; Kulakov, V.N.; Khokhlov, V.F.

    2006-01-01

    A dog was diagnosed with osteosarcoma (8x6x5cm) in the right wing of ilium by radiography, radionuclide scintigraphy and histological study of biopsy material. The treatment plan was as follows: γ-therapy in combination with chemotherapy; prevention of hematogenous pulmonary metastases by the transfusion of 130 ml of allogenic marrow from a healthy donor; administration of 11.4g 10 B-boronphenylalanine into the right iliac artery; resection of the right iliac wing with the osteosarcoma lesion; neutron irradiation (MEPhI Reactor) of the bone fragment (dose on healthy osteocytes - 15±4 Gy (W), on tumor - 50±9 Gy (W); reimplantation and fixation of the fragment; three courses of adjuvant chemotherapy. The doses were determined in full-scale calculations of the reactor radiation fields with a model of the bone under the code RADUGA. The 10 B concentration (μg/g) in the bone was: normal tissue - 9±3, tumor - 28±5. In 24 hours post operation the dog was able to walk using the treated limb, and 6 months later it moved freely. The patient has been under observation for 30 months. The results of the research demonstrate complete cure. The use of similar treatment plans improves the therapeutic efficiency of BNCT. (author)

  4. Feasibility of the utilization of BNCT in the fast neutron therapy beam at Fermilab

    International Nuclear Information System (INIS)

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Paul M. Jr.

    2000-01-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue

  5. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    International Nuclear Information System (INIS)

    Nigg, David W.

    2012-01-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K(nido-7-CH3(CH2)15-7,8-C2B9H11) in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K(nido-7-CH3(CH2)15-7,8-C2B9H11) in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 (ae-B20H17NH3), administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  6. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg

    2012-05-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 [ae-B20H17NH3], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 {+-} 16.1 ppm at 48 h and to 43.9 {+-} 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  7. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Herrera, M.S.; González, S.J.; Burlon, A.A.; Minsky, D.M.; Kreiner, A.J.

    2011-01-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma.

  8. Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: Trial using a lung metastasis model of CCS.

    Science.gov (United States)

    Andoh, Tooru; Fujimoto, Takuya; Suzuki, Minoru; Sudo, Tamotsu; Sakurai, Yoshinori; Tanaka, Hiroki; Fujita, Ikuo; Fukase, Naomasa; Moritake, Hiroshi; Sugimoto, Tohru; Sakuma, Toshiko; Sasai, Hiroshi; Kawamoto, Teruya; Kirihata, Mitsunori; Fukumori, Yoshinobu; Akisue, Toshihiro; Ono, Koji; Ichikawa, Hideki

    2015-12-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In the present study, we established a lung metastasis animal model of CCS and investigated the therapeutic effect of boron neutron capture therapy (BNCT) using p-borono-L-phenylalanine (L-BPA). Biodistribution data revealed tumor-selective accumulation of (10)B. Unlike conventional gamma-ray irradiation, BNCT significantly suppressed tumor growth without damaging normal tissues, suggesting that it may be a potential new therapeutic option to treat CCS lung metastases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1998-01-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by 10 B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark experiments

  10. Calculation of fluence rate distributions in a pre design clinical facility for BNCT at the LFR

    International Nuclear Information System (INIS)

    Peeters, T.T.J.M.; Freudenreich, W.E.

    1995-12-01

    In a previous study [1], it was demonstrated that the creation of a thermal neutron facility for clinical BNCT in the LFR is feasible. Monte Carlo calculations had shown that the neutron fluence rates and gamma dose rates at the detector position of a model representing a first outline of a clinical facility met all requirements that are necessary for clinical BNCT. In order to gain more information about the neutron fluence rates at several positions, a second step is required. Calculations have been performed for the free beam and for a tumour bearing phantom at 5 cm and 10 cm distance from the irradiation window. Due to thermalization and back scattering, the thermal fluence rates in the tumour at 5 and 10 cm distance from the bismuth shield appeared to be approximately twice as high as the thermal fluence rates in the free beam at the corresponding positions of 5 to 6 cm and 10 to 11 cm from the irradiation window. (orig.)

  11. First clinical results from the EORTC phase I Trial ''postoperative treatment of glioblastoma with BNCT at the Petten irradiation facility''

    International Nuclear Information System (INIS)

    Sauerwein, W.; Hideghety, K.; Rassow, J.; Devries, M.J.; Goetz, C.; Paquis, P.; Grochulla, F.; Wolbers, J.G.; Haselsberger, K.; Turowski, B.; Moss, R.L.; Stecher-Rasmussen, F.; Touw, D.; Wiestler, O.D.; Frankhauser, H.; Gabel, D.

    2001-01-01

    Based on the pre-clinical work of the European Collaboration on Boron Neutron Capture Therapy a study protocol was prepared in 1995 to initiate Boron Neutron Capture Therapy (BNCT) in patients at the High Flux Reactor (HFR) in Petten. Bio-distribution and pharmacokinetics data of the boron drug Na 2 B 12 H 11 SH (BSH) as well as the radiobiological effects of BNCT with BSH in healthy brain tissue of dogs were considered in designing the strategy for this clinical Phase I trial. The primary goal of the radiation dose escalation study is the investigation of possible adverse events due to BNCT; i.e. to establish the dose limiting toxicity and the maximal tolerated dose. The treatment is delivered in 4 fractions at a defined average boron concentration in blood. Cohorts of 10 patients are treated per dose group. The starting dose was set at 80% of the dose at which neurological symptoms occurred in preclinical dog experiments following a single fraction. After an observation period of at least 6 months, the dose is increased by 10% for the next cohort if less then three severe side effects related to the treatment occurred. The results of the first cohort are presented here. The evaluated dose level can be considered safe. (author)

  12. First clinical results from the EORTC phase I Trial ''postoperative treatment of glioblastoma with BNCT at the Petten irradiation facility''

    Energy Technology Data Exchange (ETDEWEB)

    Sauerwein, W; Hideghety, K; Rassow, J [Department of Radiotherapy, University of Essen (Germany); Devries, M J [NDDO Oncology, Amsterdam (Netherlands); Goetz, C [Neurochirurgische Klinik, Klinikum Grosshadern Muenchen, Munich (Germany); Paquis, P [Dept. de Neurochirurgie, Hopital Pasteur, Nice (France); Grochulla, F [Klinik fuer Neurochirurgie, Zentralkrankenhaus Bremen (Germany); Wolbers, J G [Department of Neurosurgery, University Hospital ' ' Vrije Universiteit' ' , Amsterdam (Netherlands); Haselsberger, K [Klinik fuer Neurochirurgie, Karl-Franzens-Universitaet, Graz (Austria); Turowski, B [Institut fuer Neuroradiologie, Johann-Wolfgang-von-Goethe-Universitaet, Frankfurt (Germany); Moss, R L [HFR Unit, Joint Research Centre, European Commission, Petten (Netherlands); Stecher-Rasmussen, F [Nuclear Research and Consultancy Group NRG, Petten (Netherlands); Touw, D [Pharmacy, University/Academic Hospital ' ' Vrije Universiteit' ' , Amsterdam (Netherlands); Wiestler, O D [Department of Neuropathology, German Brain Tumour Reference Centre, Universitaetsklinikum Bonn (Germany); Frankhauser, H [Service de Neurochirurgie CHUV, Lausanne (Switzerland); Gabel, D [Chemistry Department, University of Bremen (Germany)

    2001-05-01

    Based on the pre-clinical work of the European Collaboration on Boron Neutron Capture Therapy a study protocol was prepared in 1995 to initiate Boron Neutron Capture Therapy (BNCT) in patients at the High Flux Reactor (HFR) in Petten. Bio-distribution and pharmacokinetics data of the boron drug Na{sub 2}B{sub 12}H{sub 11}SH (BSH) as well as the radiobiological effects of BNCT with BSH in healthy brain tissue of dogs were considered in designing the strategy for this clinical Phase I trial. The primary goal of the radiation dose escalation study is the investigation of possible adverse events due to BNCT; i.e. to establish the dose limiting toxicity and the maximal tolerated dose. The treatment is delivered in 4 fractions at a defined average boron concentration in blood. Cohorts of 10 patients are treated per dose group. The starting dose was set at 80% of the dose at which neurological symptoms occurred in preclinical dog experiments following a single fraction. After an observation period of at least 6 months, the dose is increased by 10% for the next cohort if less then three severe side effects related to the treatment occurred. The results of the first cohort are presented here. The evaluated dose level can be considered safe. (author)

  13. Neutron field characterization in the installation for BNCT study in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Carneiro Junior, Valdeci

    2008-01-01

    This work aims to characterize the mixed neutron and gamma field, in the sample irradiation position, in a research installation for Boron Neutron Capture Therapy (BNCT), in the IPEN IEA-R1 reactor. The BNCT technique has been studied as a safe and selective option in the treatment of resistant cancerigenous tumors or considered non-curable by the conventional techniques, for example, the Glioblastoma Multiform - a brain cancerigenous tumor. Neutron flux measurements were carried out: thermal, resonance and fast, as well as neutron and gamma rays doses, in the sample position, using activation foils detectors and thermoluminescent dosimeters. For the determination of the neutron spectrum and intensity, a set of different threshold activation foils and gold foils covered and uncovered with cadmium irradiated in the installation was used, analyzed by a high Pure Germanium semiconductor detector, coupled to an electronic system suitable for gamma spectrometry. The results were processed with the SAND-BP code. The doses due to gamma and neutron rays were determined using thermoluminescent dosimeters TLD 400 and TLD 700 sensitive to gamma and TLD 600, sensitive to neutrons. The TLDs were selected and used for obtaining the calibration curves - dosimeter answer versus dose - from each of the TLD three types, which were necessary to calculate the doses due to neutron and gamma, in the sample position. The radiation field, in the sample irradiation position, was characterized flux for thermal neutrons of 1.39.10 8 ± 0,12.10 8 n/cm 2 s the doses due to thermal neutrons are three times higher than those due to gamma radiation and confirm the reproducibility and consistency of the experimental findings obtained. Considering these results, the neutron field and gamma radiation showed to be appropriated for research in BNCT. (author)

  14. A new method to evaluate neutron spectra for bnct

    International Nuclear Information System (INIS)

    Martin Hernandez, Guido

    2001-01-01

    This paper deals with the development of a method to evaluate neutron spectra for BNCT. Physical dose deposition calculations for different neutron energies, ranging from thermal to fast, were performed. A matrix, containing dose for each energy and position in the beam center line was obtained. MCNP 4B and Snyder's head model were used. A simple computer code containing the matrix calculates the dose for each point in the beam center line depending on the input energy spectrum to be evaluated. The output of this program is the dose distribution in the brain and the dose gain, that is the ratio between dose to tumor and maximum dose to healthy tissue maximum

  15. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    Science.gov (United States)

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. In vitro studies of the cellular response to boron neutron capture therapy (BNCT) in thyroid carcinoma

    International Nuclear Information System (INIS)

    Rodriguez, C; Carpano, M; Perona, M; Thorp, S; Curotto, P; Pozzi, E; Casal, M; Juvenal, G; Pisarev, M; Dagrosa, A

    2012-01-01

    Background: Previously, we have started to study the mechanisms of DNA damage and repair induced by BNCT in thyroid carcinoma some years ago. We have shown different genotoxic patterns for tumor cells irradiated with gamma rays, neutrons alone or neutrons plus different compounds, boronophenylalanine (BPA) or α, β - dihydroxyethyl)-deutero-porphyrin IX (BOPP). In the present study we analyzed the expression of Ku70, Rad51 and Rad54 components of non homologous end-joing (NHEJ) and homologous recombination repair (HRR) pathways, respectively, induced by BNCT in human cells of thyroid carcinoma. Methods: A human cell line of follicular thyroid carcinoma (WRO) in exponential growth phase was distributed into the following groups: 1) Gamma Radiation, 2) Radiation with neutrons beam (NCT), 3) Radiation with n th in presence of BPA (BNCT). A control group for each treatment was added. The cells were irradiated in the thermal column facility of the RA-3 reactor (flux= 1.10 10 n/cm 2 sec) or with a source of 60 Co. The irradiations were performed during different lapses in order to obtain a total physical dose of 3 Gy (±10%). The mRNA expressions of Ku70, Rad 51 and Rad 54 were analysed by reverse transcription-polymerase chain reaction (RT-PCR) at different times post irradiation (2, 4, 6, 24 and 48 h). DNA damage was evaluated by immunofluorescence using an antibody against the phosphorylation of histone H2AX, which indicates double strand breaks in the DNA. Results: The expression of Rad51 increased at 2 h post-irradiation and it lasted until 6 h only in the neutron and neutron + BPA groups (p<0.05). Rad54 showed an up-regulation from 2 to 24 h in both groups irradiated with the neutron beam (with and without BPA) (p<0.05). On the other hand, Ku70 mRNA did not show a modification of its expression in the irradiated groups respect to the control group. Conclusion: these results would indicate an activation of the HRR pathway in the thyroid carcinoma cells treated by

  17. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    Science.gov (United States)

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Selective enhancement of boron accumulation with boron-entrapped water-in-oil-water emulsion in VX-2 rabbit hepatic cancer model for BNCT

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Higashi, Shushi; Ikushima, Ichiro

    2006-01-01

    Tumor cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10 B and thermal neutrons. It is necessary for effective BNCT therapy to accumulate 10 B atoms in the tumor cells without affecting adjacent healthy cells. Water-in-oil-water (WOW) emulsion was used as the carrier of anti-cancer agents on arterial injections in clinical cancer treatment. In this study, we prepared 10 BSH entrapped WOW emulsion for selective arterial infusion for the treatment of hepatocellular carcinoma. WOW emulsion was administrated by arterial injections via proper hepatic artery. The anti-tumor activity of the emulsion was compared with 10 BSH-Lipiodol mix emulsion or 10 BSH solutions on VX-2 rabbit hepatic tumor models. The 10 B concentrations in VX-2 tumor on delivery with WOW emulsion was superior to those by conventional lipiodol mix emulsion. Electro-microscopic figures of WOW emulsion delineated the accumulation of fat droplets of WOW emulsion in the tumor site, but there was no accumulation of fat droplets in lipiodol emulsion. These results indicate that 10 B entrapped WOW emulsion is most useful carrier for arterial delivery of boron agents on BNCT to cancer. (author)

  19. SPES-BNCT Project Beam Shaping Assembly. State of the Art

    International Nuclear Information System (INIS)

    Ceballos Sanchez, Cesar

    2007-01-01

    The SPES-BNCT project will exploit the intense proton beam provided by the RFQ (30mA, 5MeV), currently under construction at LNL, to yield a neutron source using the 9 Be(p,xn) nuclear reaction. The goal is to setup an accelerator-driven, thermal neutron beam facility, aimed at the Boron Neutron Capture experimental treatment of extended shallow skin melanoma. The neutron energy spectrum is shifted with a beam shaping assembly (BSA) surrounding the target. This device is fully designed with the Monte Carlo simulation code MCNPX, with the purpose of maximizing the thermal neutron component of the beam and focusing it on the irradiation area. (Author)

  20. Characterisation of the TAPIRO BNCT thermal facility

    Energy Technology Data Exchange (ETDEWEB)

    Rosi, G. [ENEA FIS-ION, CR Casaccia, Via Anguillarese 301, I-00060 Roma (Italy); Gambarini, G.; Colli, V.; Gay, S.; Scolari, L. [Dept. of Physics, Univ. of Milan, INFN, Via Celoria 16, I-20133 Milano (Italy); Fiorani, O.; Perrone, A. [ENEA FIS-ION, CR Casaccia, Via Anguillarese 301, I-00060 Roma (Italy); Nava, E. [ENEA FIS-NUC, Via Martiri di Monte Sole 4, I-40129 Bologna (Italy); Fasolo, F.; Visca, L.; Zanini, A. [INFN, Via Pietro Giuria 1, I-10125 Torino (Italy)

    2004-07-01

    Dosimetry and spectrometry measurements have been carried out in the thermal column of the research fast reactor RSV-TAPIRO (ENEA-Casaccia, Rome) in order to investigate its suitability for irradiation of cells or mice, with a view to research in the interests of boron neutron capture therapy (BNCT). The thermal column consists of a graphite moderator (40 cm thick) containing a lead shield (13 cm thick) in order to shield reactor background. The irradiation volume, inside this structure, has cubic shape (18 x 18 x 18 cm{sup 3}). Besides measurements of fluence and dose rates in air or in phantom performed with thermoluminescence dosemeters (TLDs) and using the activation technique, dose and fluence profiles have been generated using a method based on gel dosemeters analysed with optical imaging. To check the consistency of the results, spectrometry measurements in the same irradiation volume have been performed by means of bubble detectors. (authors)

  1. The results of a non-linear mathematical model for the kinetics of 10B after BPA-F infusion in BNCT

    International Nuclear Information System (INIS)

    Ryynaenen, P.; Savolainen, S.; Hiismaeki, P.; Kangasmaeki, A.

    2001-01-01

    The aim of this study was to create a model for the kinetics of 10 B in glioma patients after p-boronophenylalanine fructose complex (BPA-F) infusion in order to predict the 10 B concentration in blood during the neutron irradiations in BNCT. The more specific aim was to create a flexible model that would work with variable infusion duration and variable amounts of infused BRA, by forehand carrying out only 1 to 2 kinetic studies per different trials. Previously used bi-exponential fitting and open compartmental model are capable, but, however, heavy kinetic studies are needed before they are reliable enough. A model probe with a memory effect based on phenomenological findings was created. The model development was based on the data from 10 glioblastoma multiforme patients from the Brookhaven National Laboratory BNCT trials. These patients received i.v. 290 mg BPA/kg body weight as a fructose complex during two hours. Blood samples were collected during and after the infusion. The accuracy of the model was verified with distinctive fitting of 10 new glioma patient data from the Finnish BNCT-trials. The 10 B- concentration in whole blood samples was determined by ICP-AES method. In the study it is concluded that the constructed non-linear model is flexible and capable in describing the kinetics of 10 B concentration in blood after a single infusion of BPA-F. (author)

  2. Radiation field characterization of a BNCT research facility using Monte Carlo method - code MCNP-4B

    International Nuclear Information System (INIS)

    Hernandez, Antonio Carlos

    2002-01-01

    Boron Neutron Capture Therapy - BNCT - is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an Am Be neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these Becton studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluencyN T = 1,35x10 8 n/cm , a fast neutron dose of 5,86x10 -10 Gy/N T and a gamma ray dose of 8,30x10 -14 Gy/N T . (author)

  3. Mock-up experiment at Birmingham University for BNCT project of Osaka University – Neutron flux measurement with gold foil

    International Nuclear Information System (INIS)

    Tamaki, S.; Sakai, M.; Yoshihashi, S.; Manabe, M.; Zushi, N.; Murata, I.; Hoashi, E.; Kato, I.; Kuri, S.; Oshiro, S.; Nagasaki, M.; Horiike, H.

    2015-01-01

    Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error. - Highlights: • Accelerator based neutron source for BNCT is being developed in Osaka University. • Mock-up experiment was carried out at Birmingham University, UK. • Neutronics performance of our assembly was evaluated from gold foil activation. • Gold foil activation was determined by using HPGe detectors. • Validity of the neutronics design code system was confirmed.

  4. Microwave digestion techniques applied to determination of boron by ICP-AES in BNCT program; Digestion de matrices biologicas asistida por microondas para el analisis espectrometrico de boro en BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Silvia S; Di Santo, Norberto R; Garavaglia, Ricardo N; Pucci, Gladys N; Batistoni, Daniel A [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Quimica; Schwint, Amanda E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Radiobiologia

    1999-07-01

    Recently, boron neutron capture therapy (BNCT) has merged as an interesting option for the treatment of some kind of tumors where established therapies show no success. A molecular boronated species, enriched in {sup 10}B is administrated to the subject; it localizes in malignant tissues depending the kind of tumor and localization. Therefore, a very important fact in BNCT research is the detection of boron at trace or ultra trace levels precisely and accurately. This is extremely necessary as boronated species do localize in tumoral tissue and also localize in liver, kidney, spleen, skin, membranes. By this way, before testing a boronated species, it is mandatory to determine its biodistribution in a statistically meaning population, that is related with managing of a great number of samples. In the other hand, it is necessary to exactly predict when to begin the irradiation and to determine the magnitude of radiation to obtain the desired radiological dose for a specified mean boron concentration. This involves the determination of boron in whole blood, which is related with boron concentration in the tumor object of treatment. The methodology selected for the analysis of boron in whole blood and tissues must join certain characteristics: it must not be dependant of the chemical form of boron, it has to be fast and capable to determine boron accurately and precisely in a wide range of concentrations. The design and validation of experimental models involving animals in BNCT studies and the determination of boron in blood of animals and subjects upon treatment require reliable analytical procedures to determine boron quantitatively in those biologic materials. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) using pneumatic nebulization is one of the most promising methods for boron analysis, but the sample must be liquid and have low solid concentration. In our case, biological tissues and blood, it is mandatory to mineralize and/or dilute

  5. Time factor of BSH from intravenous infusion to neutron irradiation for BNCT in patients with glioblastoma

    International Nuclear Information System (INIS)

    Kageji, T.; Nagahiro, S.; Kitamura, K.; Nakagawa, Y.; Hatanaka, H.; Haritz, D.; Grochulla, F.; Haselsberger, K.; Gabel, D.

    2000-01-01

    The present report evaluates the time factor of BSH from infusion to irradiation in patients with glioblastoma as a cooperative study in Europe and Japan. For BNCT with BSH after intravenous infusion, this work confirms that the planned neutron irradiation after intravenous BSH infusion appears to be optimal around 12-19 hours after the infusion. (author)

  6. Design of a beam shaping assembly for an accelerator-based BNCT system

    International Nuclear Information System (INIS)

    Stichelbaut, F.; Forton, E.; Jongen, Y.

    2006-01-01

    A complete BNCT system based on a high-intensity proton accelerator is developed by the IBA company. The neutron beam is produced via the 7 Li(p,n) 7 Be reaction using a solid lithium target. The neutron energy spectrum is tailored with a beam shaping assembly surrounding the target. This device is the object of an extensive R and D project and is fully designed with the Monte Carlo simulation code MCNPX. The emphasis is put on the treatment quality, notably the radiation dose at the skin level, and the achievable neutron flux. (author)

  7. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Camillo, M.A.P.; Tomac Junior, U.

    1990-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na 2 10 B 12 H 11 SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author) [pt

  8. An accelerator-based Boron Neutron Capture Therapy (BNCT) facility based on the 7Li(p,n)7Be

    Science.gov (United States)

    Musacchio González, Elizabeth; Martín Hernández, Guido

    2017-09-01

    BNCT (Boron Neutron Capture Therapy) is a therapeutic modality used to irradiate tumors cells previously loaded with the stable isotope 10B, with thermal or epithermal neutrons. This technique is capable of delivering a high dose to the tumor cells while the healthy surrounding tissue receive a much lower dose depending on the 10B biodistribution. In this study, therapeutic gain and tumor dose per target power, as parameters to evaluate the treatment quality, were calculated. The common neutron-producing reaction 7Li(p,n)7Be for accelerator-based BNCT, having a reaction threshold of 1880.4 keV, was considered as the primary source of neutrons. Energies near the reaction threshold for deep-seated brain tumors were employed. These calculations were performed with the Monte Carlo N-Particle (MCNP) code. A simple but effective beam shaping assembly (BSA) was calculated producing a high therapeutic gain compared to previously proposed facilities with the same nuclear reaction.

  9. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  10. TIDBIT - the INEL database of BNCT information and treatment

    International Nuclear Information System (INIS)

    Mancuso, C.A.

    1995-01-01

    The INEL Database of BNCT Information and Treatment (TIDBIT) has been under development for several years. Late in 1993, a new software development team took over the project and did and assessment of the current implementation status, and determined that the user interface was unsatisfactory for the expected users and that the data structures were out of step with the current state of reality. The team evaluated several tools that would improve the user interface to make the system easier to use. Uniface turned out to be the product of choice. During 1994, TIDBIT got its name, underwent a complete change of appearance, had a major overhaul to the data structures that support the application, and system documentation was begun. A prototype of the system was demonstrated in September 1994

  11. Bystander effect-induced mutagenicity in HPRT locus of CHO cells following BNCT neutron irradiation: Characteristics of point mutations by sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kinashi, Yuko [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)], E-mail: kinashi@rri.kyoto-u.ac.jp; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)

    2009-07-15

    To investigate bystander mutagenic effects induced by alpha particles during boron neutron capture therapy (BNCT), we mixed cells that were electroporated with borocaptate sodium (BSH), which led to the accumulation of {sup 10}B inside the cells, with cells that did not contain the boron compound. BSH-containing cells were irradiated with {alpha} particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction, whereas cells without boron were only affected by the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. The frequency of mutations induced in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus was examined in Chinese hamster ovary (CHO) cells irradiated with neutrons (Kyoto University Research Reactor: 5 MW). Neutron irradiation of 1:1 mixtures of cells with and without BSH resulted in a survival fraction of 0.1, and the cells that did not contain BSH made up 99.4% of the surviving cell population. Using multiplex polymerase chain reactions (PCRs), molecular structural analysis indicated that most of the mutations induced by the bystander effect were point mutations and that the frequencies of total and partial deletions induced by the bystander effect were lower than those resulting from the {alpha} particles produced by the {sup 10}B(n,{alpha}){sup 7}Li reaction or the neutron beam from the {sup 1}H(n,{gamma}){sup 2}H and {sup 14}N(n,{rho}){sup 14}C reactions. The types of point mutations induced by the BNCT bystander effect were analyzed by cloning and sequencing methods. These mutations were comprised of 65.5% base substitutions, 27.5% deletions, and 7.0% insertions. Sequence analysis of base substitutions showed that transversions and transitions occurred in 64.7% and 35.3% of cases, respectively. G:C{yields}T:A transversion induced by 8-oxo-guanine in DNA occurred in 5.9% of base substitution mutants in the BNCT bystander group. The characteristic mutations seen in this group, induced by BNCT {alpha} particles

  12. Intracellular targeting of mercaptoundecahydrododecaborate (BSH) to malignant glioma by transferrin-PEG liposomes for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Doi, Atsushi; Miyatake, Shin-ichi; Iida, Kyouko

    2006-01-01

    Malignant glioma is one of the most difficult tumor to control with usual therapies. In our institute, we select boron neutron capture therapy (BNCT) as an adjuvant radiation therapy after surgical resection. This therapy requires the selective delivery of high concentration of 10 B to malignant tumor tissue. In this study, we focused on a tumor-targeting 10 B delivery system (BDS) for BNCT that uses transferrin-conjugated polyethylene-glycol liposome encapsulating BSH (TF-PEG liposome-BSH) and compared 10 B uptake of the tumor among BSH, PEG liposome-BSH and TF-PEG liposome-BSH. In vitro, we analyzed 10 B concentration of the cultured human U87Δ glioma cells incubated in medium containing 20 μg 10 B/ml derived from each BDS by inductively coupled plasma atomic emission spectrometry (ICP-AES). In vivo, human U87Δ glioma-bearing nude mice were administered with each BDS (35mg 10 B/kg) intravenously. We analyzed 10 B concentration of tumor, normal brain and blood by ICP-AES. The TF-PEG liposome-BSH showed higher absolute concentration more than the other BDS. Moreover, TF-PEG liposome-BSH decreased 10 B concentration in blood and normal tissue while it maintained high 10 B concentration in tumor tissue for a couple of days. This showed the TF-PEG liposome-BSH caused the selective delivery of high concentration of 10 B to malignant tumor tissue. The TF-PEG liposome-BSH is more potent BDS for BNCT to obtain absolute high 10 B concentration and good contrast between tumor and normal tissue than BSH and PEG liposome-BSH. (author)

  13. Microwave digestion techniques applied to determination of boron by ICP-AES in BNCT program

    International Nuclear Information System (INIS)

    Farias, Silvia S.; Di Santo, Norberto R.; Garavaglia, Ricardo N.; Pucci, Gladys N.; Batistoni, Daniel A.; Schwint, Amanda E.

    1999-01-01

    Recently, boron neutron capture therapy (BNCT) has merged as an interesting option for the treatment of some kind of tumors where established therapies show no success. A molecular boronated species, enriched in 10 B is administrated to the subject; it localizes in malignant tissues depending the kind of tumor and localization. Therefore, a very important fact in BNCT research is the detection of boron at trace or ultra trace levels precisely and accurately. This is extremely necessary as boronated species do localize in tumoral tissue and also localize in liver, kidney, spleen, skin, membranes. By this way, before testing a boronated species, it is mandatory to determine its biodistribution in a statistically meaning population, that is related with managing of a great number of samples. In the other hand, it is necessary to exactly predict when to begin the irradiation and to determine the magnitude of radiation to obtain the desired radiological dose for a specified mean boron concentration. This involves the determination of boron in whole blood, which is related with boron concentration in the tumor object of treatment. The methodology selected for the analysis of boron in whole blood and tissues must join certain characteristics: it must not be dependant of the chemical form of boron, it has to be fast and capable to determine boron accurately and precisely in a wide range of concentrations. The design and validation of experimental models involving animals in BNCT studies and the determination of boron in blood of animals and subjects upon treatment require reliable analytical procedures to determine boron quantitatively in those biologic materials. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) using pneumatic nebulization is one of the most promising methods for boron analysis, but the sample must be liquid and have low solid concentration. In our case, biological tissues and blood, it is mandatory to mineralize and/or dilute samples

  14. Monte Carlo simulation to study the doses in an accelerator BNCT treatment

    International Nuclear Information System (INIS)

    Burlon, Alejandro A.; Valda, Alejandro A.; Somacal, Hector R.; Kreiner, Andres J.; Minsky, Daniel M.

    2003-01-01

    In this work the 7 Li(p, n) 7 Be reaction has been studied as a neutron source for accelerator-based BNCT (Boron Neutron Capture Therapy). In order to optimize the design of the neutron production target and the beam shaping assembly, extensive MCNP simulations have been performed. These simulations include a thick Li metal target, a whole-body phantom, a moderator-reflector assembly (Al/AlF 3 as moderator and graphite as reflector) and the treatment room. The doses were evaluated for two proton bombarding energies of 1.92 MeV (near to the threshold of the reaction) and 2.3 MeV (near to the resonance of the reaction) and for three Al/ALF 3 moderator thicknesses (18, 26 and 34 cm). To assess the doses, a comparison using a Tumor Control Probability (TCP) model was done. In a second instance, the effect of the specific skin radiosensitivity (an RBE of 2.5 for the 10 B(n,α) 7 Li reaction) and a 10 B uptake of 17 ppm was considered for the scalp. Finally, the simulations show the advantage of irradiating with near-resonance-energy protons (2.3 MeV) because of the high neutron yield at this energy, leading to the lowest treatment times. Moreover, the 26 cm Al/AlF 3 moderator has shown the best performance among the studied cases. (author)

  15. Studies for the application of Boron neutron capture therapy (BNCT) to the treatment of differentiated thyroid cancer (CDT)

    International Nuclear Information System (INIS)

    Carpano, Marina; Thomasz, Lisa; Perona, Marina; Juvenal, Guillermo J.; Pisarev, Mario; Dagrosa, Maria A.; Nievas, Susana I.; Pozzi, Emiliano; Thorp, Silvia

    2009-01-01

    Boron neutron capture therapy (BNCT) is a high linear energy transfer (LET) radiotherapy for cancer, which it is based on the nuclear reaction that occurs when boron-10 that it is a non radioactive isotope of the natural elemental boron, is irradiated with low energy thermal neutrons to produce an alpha particle and a nucleus of lithium-7. Both particles have a range smaller than the diameter of a cell causing cell tumor death without significant damage to the surrounding normal tissues. In previous studies we have shown that BNCT can be a possibility for the treatment of undifferentiated thyroid cancer (UTC). However, more than 80 % of patients with thyroid neoplasm present differentiated carcinoma (CDT). These carcinomas are treated by surgery followed by therapy with 131 I and mostly these forms are well controlled. But in some patients recurrence of the tumor is observed. BNCT can be an alternative for these patients in who the tumor lost the capacity to concentrate iodide. The aim of these studies was to evaluate the possibility of treating differentiated thyroid cancer by BNCT. Materials and Methods: The human cell lines of follicular (WRO) and papillary carcinomas (TPC-1) were grown in RPMI and modified DMEM medium respectively. Both supplemented with 10 % of SFB. The cell line of thyroid rat, FRTL-5, used as control normal, was cultured in DMEM/F12. The uptakes of 125 I and p-borophenylalanine BPA (6.93mM) were studied. The intracellular boron concentration was measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) at 2 hr post incubation. The NIH strain of male nude mice, aged 6 to 8 weeks and weighing 20 to 25 g were implanted (s.c) in the back right flank with different concentrations of tumor cells. The size of the tumors was measured with a caliper twice or three times a week and the volume was calculated according the following formulae: A 2 x B/2 (were A is the width and B is the length). To evaluate the BPA uptake, animals

  16. Design of experiment existing parameter physics for supporting of Boron Neutron Capture Therapy (BNCT) method a t the piercing radial beam port of Kartini research reactor

    International Nuclear Information System (INIS)

    Indry Septiana Novitasari; Yosaphat Sumardi; Widarto

    2014-01-01

    The experiment existing parameters physics for supporting of in vivo and in vitro test facility of Boron Neutron Capture Therapy (BNCT) preliminary study at the piercing radial beam port has been done. The existing experiments is needed for determining that the parameter physics is fulfill the BNCT method requirement. To realize the existing experiment have been done by design analysis, methodology, calculation method and some procedure related with radiation safety analysis and environment. Preparation for existing experiment physics such as foil detector of Gold (Au) should be irradiated for 30 minute, irradiation instrument and procedure related with the experiment for radiation safety. (author)

  17. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    Science.gov (United States)

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  18. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and

  19. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    International Nuclear Information System (INIS)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-01-01

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  20. Synthesis of optically active dodecaborate-containing L-amino acids for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Kusaka, Shintaro [Department of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai (Japan); Hattori, Yoshihide, E-mail: y0shi_hattori@riast.osakafu-u.ac.jp [Department of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai (Japan); Uehara, Kouki; Asano, Tomoyuki [Stella Pharma Corporation, ORIX Kouraibashi Bldg. 5F 3-2-7 Kouraibashi, Chuo-ku, Osaka (Japan); Tanimori, Shinji; Kirihata, Mitsunori [Department of Bioscience and Informatics, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai (Japan)

    2011-12-15

    A convenient and simple synthetic method of dodecaboratethio-L-amino acid, a new class of tumor-seeking boron carrier for BNCT, was accomplished from S-cyanoethylthioundecahydro-closo-dodecaborate (S-cyanoethyl-{sup 10}BSH, [{sup 10}B{sub 12}H{sub 11}]{sup 2-}SCH{sub 2}CH{sub 2}CN) and bromo-L-{alpha}-amino acids by nearly one step S-alkylation. An improved synthesis of S-cyanoethyl-{sup 10}BSH, a key starting compound for S-alkylation, was also performed by Michael addition of {sup 10}BSH with acryronitrile in high yield. Four kinds of new dodecaboratethio-L-amino acids were obtained in optically pure form without the need for any optical resolution.

  1. Comparison of the radiobiological effects of Boron neutron capture therapy (BNCT) and conventional Gamma Radiation

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Carpano, Marina; Perona, Marina; Thomasz, Lisa; Juvenal, Guillermo J.; Pisarev, Mario; Pozzi, Emiliano; Thorp, Silvia

    2009-01-01

    BNCT is an experimental radiotherapeutic modality that uses the capacity of the isotope 10 B to capture thermal neutrons leading to the production of 4 He and 7 Li, particles with high linear energy transfer (LET). The aim was to evaluate and compare in vitro the mechanisms of response to the radiation arising of BNCT and conventional gamma therapy. We measured the survival cell fraction as a function of the total physical dose and analyzed the expression of p27/Kip1 and p53 by Western blotting in cells of colon cancer (ARO81-1). Exponentially growing cells were distributed into the following groups: 1) BPA (10 ppm 10 B) + neutrons; 2) BOPP (10 ppm 10 B) + neutrons; 3) neutrons alone; 4) gamma-rays. A control group without irradiation for each treatment was added. The cells were irradiated in the thermal neutron beam of the RA-3 (flux= 7.5 10 9 n/cm 2 sec) or with 60 Co (1Gy/min) during different times in order to obtain total physical dose between 1-5 Gy (±10 %). A decrease in the survival fraction as a function of the physical dose was observed for all the treatments. We also observed that neutrons and neutrons + BOPP did not differ significantly and that BPA was the more effective compound. Protein extracts of irradiated cells (3Gy) were isolated to 24 h and 48 h post radiation exposure. The irradiation with neutrons in presence of 10 BPA or 10 BOPP produced an increase of p53 at 24 h maintain until 48 h. On the contrary, in the groups irradiated with neutrons alone or gamma the peak was observed at 48 hr. The level of expression of p27/Kip1 showed a reduction of this protein in all the groups irradiated with neutrons (neutrons alone or neutrons plus boron compound), being more marked at 24 h. These preliminary results suggest different radiobiological response for high and low let radiation. Future studies will permit establish the role of cell cycle in the tumor radio sensibility to BNCT. (author)

  2. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    Science.gov (United States)

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. © 2013 Elsevier Ltd. All rights reserved.

  3. Conceptual Design of a Clinical BNCT Beam in an Adjacent Dry Cell of the Jozef Stefan Institute TRIGA Reactor

    International Nuclear Information System (INIS)

    Maucec, Marko

    2000-01-01

    The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation point, the efficiency of a fission plate with almost 1.5 kg of 20% enriched uranium and 2.3 kW of thermal power is investigated. With the same purpose in mind, the TRIGA reactor core setup is optimized, and standard fresh fuel elements are concentrated partly in the outermost ring of the core. Further, a detailed parametric study of the materials and dimensions for all the relevant parts of the irradiation facility is carried out. Some of the standard epithermal neutron filter/moderator materials, as well as 'pressed-only' low-density Al 2 O 3 and AlF 3 , are considered. The proposed version of the BNCT facility, with PbF 2 as the epithermal neutron filter/moderator, provides an epithermal neutron flux of ∼1.1 x 10 9 n/cm 2 .s, thus enabling patient irradiation times of nfast /φ epi -13 Gy.cm 2 /n and [overdot]D γ /φ epi -13 Gy.cm 2 /n), the in-air performances of the proposed beam are comparable to all existing epithermal BNCT facilities. The design presents an equally efficient alternative to the BNCT beams in TRIGA reactor thermal columns that are more commonly applied. The cavity of the dry cell, a former JSI TRIGA reactor spent-fuel storage facility, adjacent to the thermalizing column, could rather easily be rearranged into a suitable patient treatment room, which would substantially decrease the overall developmental costs

  4. Fractionated BNCT for locally recurrent head and neck cancer: Experience from a phase I/II clinical trial at Tsing Hua Open-Pool Reactor

    International Nuclear Information System (INIS)

    Wang, Ling-Wei; Chen, Yi-Wei; Ho, Ching-Yin; Hsueh Liu, Yen-Wan; Chou, Fong-In; Liu, Yuan-Hao; Liu, Hong-Ming; Peir, Jinn-Jer; Jiang, Shiang-Huei; Chang, Chi-Wei; Liu, Ching-Sheng; Wang, Shyh-Jen; Chu, Pen-Yuan; Yen, Sang-Hue

    2014-01-01

    To introduce our experience of treating locally and regionally recurrent head and neck cancer patients with BNCT at Tsing Hua Open-Pool Reactor in Taiwan, 12 patients (M/F=10/2, median age 55.5 Y/O) were enrolled and 11 received two fractions of treatment. Fractionated BNCT at 30-day interval with adaptive planning according to changed T/N ratios was feasible, effective and safe for selected recurrent head and neck cancer in this trial. - Highlights: • We treated 12 patients with recurrent Head and Neck (H and N) cancer after radical surgery and radiotherapy since 2010. • Four complete response (CR) and 3 partial response (PR) were found. Total response rate was 58%. • Two patients had local control longer than one year. • No grade 4 or higher toxicity was noted for both acute and chronic effects

  5. Measuring the stopping power of α particles in compact bone for BNCT

    Science.gov (United States)

    Provenzano, L.; Rodríguez, L. M.; Fregenal, D.; Bernardi, G.; Olivares, C.; Altieri, S.; Bortolussi, S.; González, S. J.

    2015-01-01

    The stopping power of α particles in thin films of decalcified sheep femur, in the range of 1.5 to 5.0 MeV incident energy, was measured by transmission of a backscattered beam from a heavy target. Additionally, the film elemental composition was determined by Rutherford Backscattering Spectrometry (RBS). These data will be used to measure boron concentration in thin films of bone using a spectrometry technique developed by the University of Pavia, since the concentration ratio between healthy tissue and tumor is of fundamental importance in Boron Neutron Capture Therapy (BNCT). The present experimental data are compared with numerical simulation results and with tabulated stopping power data of non-decalcified human bone.

  6. Meeting the challenge of homogenous boron targeting of heterogeneous tumors for effective boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Trivillin, Veronica A.; Itoiz, Maria E.; Rebagliati, J. Raul; Batistoni, Daniel; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.; Gonzalez, Beatriz N.

    2006-01-01

    BNCT is a tumor cell targeted radiation therapy. Inadequately boron targeted tumor populations jeopardize tumor control. Meeting the to date unresolved challenge of homogeneous targeting of heterogeneous tumors with effective boron carriers would contribute to therapeutic efficacy. The aim of the present study was to evaluate the degree of variation in boron content delivered by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and the combined administration of (BPA+GB-10) in different portions of tumor, precancerous tissue around tumor and normal pouch tissue in the hamster cheek pouch oral cancer model. Boron content was evaluated by ICP-AES. The degree of homogeneity in boron targeting was assessed in terms of the coefficient of variation ([S.D./Mean]x100) of boron values. Statistical analysis of the results was performed by one-way ANOVA and the least significant difference test. GB-10 and GB-10 plus BPA achieved respectively a statistically significant 1.8-fold and 3.3-fold increase in targeting homogeneity over BPA. The combined boron compound administration protocol contributes to homogeneous targeting of heterogeneous tumors and would increase therapeutic efficacy of BNCT by exposing all tumor populations to neutron capture reactions in boron. (author)

  7. L-DOPA Preloading Increases the Uptake of Borophenylalanine in C6 Glioma Rat Model: A New Strategy to Improve BNCT Efficacy

    International Nuclear Information System (INIS)

    Capuani, Silvia; Gili, Tommaso; Bozzali, Marco; Russo, Salvatore; Porcari, Paola; Cametti, Cesare; D'Amore, Emanuela; Colasanti, Marco; Venturini, Giorgio; Maraviglia, Bruno; Lazzarino, Giuseppe; Pastore, Francesco S.

    2008-01-01

    Purpose: Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on 10 B(n,α) 7 Li reaction, for the treatment of malignant gliomas. One of the main limitations for BNCT effectiveness is the insufficient intake of 10 B nuclei in the tumor cells. This work was aimed at investigating the use of L-DOPA as a putative enhancer for 10 B-drug 4-dihydroxy-borylphenylalanine (BPA) uptake in the C6-glioma model. The investigation was first performed in vitro and then extended to the animal model. Methods and Materials: BPA accumulation in C6-glioma cells was assessed using radiowave dielectric spectroscopy, with and without L-DOPA preloading. Two L-DOPA incubation times (2 and 4 hours) were investigated, and the corresponding effects on BPA accumulation were quantified. C6-glioma cells were also implanted in the brain of 32 rats, and tumor growth was monitored by magnetic resonance imaging. Rats were assigned to two experimental branches: (1) BPA administration; (2) BPA administration after pretreatment with L-DOPA. All animals were sacrificed, and assessments of BPA concentrations in tumor tissue, normal brain, and blood samples were performed using high-performance liquid chromatography. Results: L-DOPA preloading induced a massive increase of BPA concentration in C6-glioma cells only after a 4-hour incubation. In the animal model, L-DOPA pretreatment produced a significantly higher accumulation of BPA in tumor tissue but not in normal brain and blood samples. Conclusions: This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT. L-DOPA preloading effect is discussed in terms of membrane transport mechanisms

  8. Desain Beam Shaping Assembly (BSA berbasis D-D Neutron Generator 2,45 MeV untuk Uji Fasilitas BNCT

    Directory of Open Access Journals (Sweden)

    Desman P. Gulo

    2015-12-01

    Full Text Available Boron Neutron Capture Therapy (BNCT is one of the cancer treatments that are being developed in nowadays. In order to support BNCT treatment for cancer that exists in underneath skin like breast cancer, the facility needs a generator that is able to produce epithermal neutron. One of the generator that is able to produce neutron is D-D neutron generator with 2.45 MeV energy. Based on the calculation of this paper, we found that the total production of neutron per second (neutron yield from Neutron Generator (NG by PSTA-BATAN Yogyakarta is 2.55×1011 n/s. The energy and flux that we found is in the range of quick neutron. Thus, it needs to be moderated to the level of epithermal neutron which is located in the interval energy of 1 eV to 10 KeV with 109 n/cm2s flux. This number is the recommendation standard from IAEA. Beam Shaping Assembly (BSA is needed in order to moderate the quick neutron to the level of epithermal neutron. One part of BSA that has the responsibility in moderating the quick neutron to epithermal neutron is the moderator. The substance of moderator used in this paper is MgF2 and A1F3. The thickness of moderator has been set in in such a way by using MCNPX software in order to fulfill the standard of IAEA. As the result of optimizing BSA moderator, the data obtain epithermal flux with the total number of 4.64×108 n/cm2/s for both of moderators with the thickness of moderator up to 15 cm. At the end of this research, the number of epithermal flux does not follow the standard of IAEA. This is because the flux neutron that is being produced by NG is relatively small. In conclusion, the NG from PSTA-BATAN Yogyakarta is not ready to be used for the BNCT treatment facility for the underneath skin cancer like breast cancer.

  9. Biodistribution study with combined administration of BPA and BSH for BNCT in the hamster cheek pouch oral cancer model

    International Nuclear Information System (INIS)

    Garabalino, M A; Heber, E M; Monti Hughes, A; Pzzi, E C C; Molinari, A J; Niggg, D W; Bauer, W; Trivillin, V A; Schwint, A E

    2012-01-01

    We previously proved the therapeutic potential of the chemically non-selective boron compound decahydrodecaborate (GB-10) as a stand-alone boron carrier for BNCT in the hamster cheek pouch oral cancer model with no toxic effects in normal or precancerous tissue. Although GB-10 is not taken up selectively by oral tumor tissue, selective tumor lethality would result from selective aberrant tumor blood vessel damage. Furthermore, BNCT efficacy was enhanced when GB-10 and boronophenylalanine (BPA) were administered jointly. The fact that sodium mercaptoundecahydro-closo-dodecaborate (BSH) is being investigated clinically as a stand-alone boron agent for BNCT of brain tumors and in combination with BPA for recurrent head and neck malignancies makes it a particularly interesting boron compound to explore. Based on the working hypothesis that BSH would conceivably behave similarly to GB-10 in oral cancer, we previously performed biodistribution studies with BSH alone in the hamster cheek pouch oral cancer model. The aim of the present study was to perform biodistribution studies of BSH + BPA administered jointly in the hamster cheek pouch oral cancer model as a starting point to contribute to the knowledge of (BSH+BPA)-BNCT radiobiology and optimize therapeutic efficacy. The right cheek pouch of Syrian hamsters was subjected to topical administration of a carcinogen twice a week for 12 weeks. Once the exophytic tumors, i.e. squamous cell carcinomas, had developed, the animals were used for biodistribution studies with BSH + BPA. Three administration protocols with different proportions of each of the compounds were assessed: 1. BSH, 50 mg 10 B/kg, iv + BPA, 15.5 mg 10 B/kg, ip; 2. BSH, 34.5 mg 10 B/kg, iv + BPA, 31 mg 10 B/kg, ip; 3. BSH, 20 mg 10 B/kg, iv + BPA, 46.5 mg 10 B/kg, ip. Groups of animals were euthanized 4 h after the administration of BSH and 3 h after the administration of BPA. Samples of blood, tumor, precancerous and normal pouch and other tissues with

  10. A micro-PET/CT approach using O-(2-[{sup 18}F]fluoroethyl)-L-tyrosine in an experimental animal model of F98 glioma for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Menichetti, L., E-mail: luca.menichetti@ifc.cnr.it [CNR Institute of Clinical Physiology, Pisa (Italy); Petroni, D.; Panetta, D. [CNR Institute of Clinical Physiology, Pisa (Italy); Burchielli, S. [Fondazione CNR/Regione Toscana G. Monasterio, Pisa (Italy); Bortolussi, Silva [Dept. Theoretical and Nuclear Physics, University of Pavia, Pavia (Italy); Matteucci, M. [Scuola Superiore Sant' Anna, Pisa (Italy); Pascali, G.; Del Turco, S. [CNR Institute of Clinical Physiology, Pisa (Italy); Del Guerra, A. [Department of Physics, University of Pisa, Pisa (Italy); Altieri, S. [Dept. Theoretical and Nuclear Physics, University of Pavia, Pavia (Italy); Salvadori, P.A. [CNR Institute of Clinical Physiology, Pisa (Italy)

    2011-12-15

    The present study focuses on a micro-PET/CT application to be used for experimental Boron Neutron Capture Therapy (BNCT), which integrates, in the same frame, micro-CT derived anatomy and PET radiotracer distribution. Preliminary results have demonstrated that {sup 18}F-fluoroethyl-tyrosine (FET)/PET allows the identification of the extent of cerebral lesions in F98 tumor bearing rat. Neutron autoradiography and {alpha}-spectrometry on axial tissues slices confirmed the tumor localization and extraction, after the administration of fructose-boronophenylalanine (BPA). Therefore, FET-PET approach can be used to assess the transport, the net influx, and the accumulation of FET, as an aromatic amino acid analog of BPA, in experimental animal model. Coregistered micro-CT images allowed the accurate morphological localization of the radiotracer distribution and its potential use for experimental BNCT.

  11. Monte Carlo dose calculations for BNCT treatment of diffuse human lung tumours

    International Nuclear Information System (INIS)

    Altieri, S.; Bortolussi, S.; Bruschi, P.

    2006-01-01

    In order to test the possibility to apply BNCT in the core of diffuse lung tumours, dose distribution calculations were made. The simulations were performed with the Monte Carlo code MCNP.4c2, using the male computational phantom Adam, version 07/94. Volumes of interest were voxelized for the tally requests, and results were obtained for tissues with and without Boron. Different collimated neutron sources were tested in order to establish the proper energies, as well as single and multiple beams to maximize neutron flux uniformity inside the target organs. Flux and dose distributions are reported. The use of two opposite epithermal neutron collimated beams insures good levels of dose homogeneity inside the lungs, with a substantially lower radiation dose delivered to surrounding structures. (author)

  12. Stability of high-speed lithium sheet jets for the neutron source in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Nakagawa, Masamichi; Takahashi, Minoru; Aritomi, Masanori; Kobayashi, Toru

    2014-01-01

    The stability of high-speed liquid lithium sheet jets was analytically studied for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to realize the thin and high-speed plane sheet jets of liquid lithium in a high-vacuum as an accelerator target. Linear analysis approach is made to the stability on thin plane sheet jets of liquid lithium in a high-vacuum, and then our analytical results were compared with the previous experimental ones. We proved that the waves of surface tension on thin lithium sheet jets in a high-vacuum are of supercritical flows and neutral stable under about 17.4 m/s in flow velocity and that the fast non-dispersive anti-symmetric waves are more significant than the very slow dispersive symmetric waves. We also formulated the equation of shrinking angle in isosceles-triangularly or isosceles-trapezoidal shrinking sheet jets corresponding to the Mach angle of supersonic gas flows. This formula states universally the physical meaning of Weber number of sheet jets on the wave of surface tension in supercritical flows. We obtained satisfactory prospects (making choice of larger flow velocity U and larger thickness of sheet a) to materialize a liquid target of accelerator in BNCT. (author)

  13. Spectrum shaping assessment of accelerator-based fusion neutron sources to be used in BNCT treatment

    Science.gov (United States)

    Cerullo, N.; Esposito, J.; Daquino, G. G.

    2004-01-01

    Monte Carlo modelling of an irradiation facility, for boron neutron capture therapy (BNCT) application, using a set of advanced type, accelerator based, 3H(d,n) 4He (D-T) fusion neutron source device is presented. Some general issues concerning the design of a proper irradiation beam shaping assembly, based on very hard energy neutron source spectrum, are reviewed. The facility here proposed, which represents an interesting solution compared to the much more investigated Li or Be based accelerator driven neutron source could fulfil all the medical and safety requirements to be used by an hospital environment.

  14. Carborane derivative development for boron neutron capture therapy. Final report

    International Nuclear Information System (INIS)

    Barnum, Beverly A.; Yan Hao; Moore, Roger; Hawthorne, M. Frederick; Baum, Kurt

    1999-01-01

    Boron Neutron Capture Therapy [BNCT] is a binary method of cancer therapy based on the capture of neutrons by a boron-10 atom [ 10 B]. Cytotoxic 7 Li nuclei and α-particles are emitted, with a range in tissue of 9 and 5 microm, respectively, about one cell diameter. The major obstacle to clinically viable BNCT is the selective localization of 5-30 ppm 10 B in tumor cells required for effective therapy. A promising approach to BNCT is based on hydrophilic boron-rich oligomeric phosphate diesters, or ''trailers'' that have been shown to concentrate selectively in tumor tissue. Examples of these compounds were prepared previously at high cost using an automated DNA synthesizer. Direct synthesis methods are needed for the production of gram-scale quantities for further biological evaluation. The work accomplished as a result of the collaboration between Fluorochem, Inc. and UCLA demonstrates that short oligomers containing at least five carborane units with four phosphodiester linkages can be prepared in substantial quantities. This work was accomplished by the application of standard phosphoramidite coupling chemistry

  15. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design

    International Nuclear Information System (INIS)

    Lee, Pei-Yi; Jiang, Shiang-Huei; Liu, Yuan-Hao

    2014-01-01

    The 7 Li(p,xn) 7 Be nuclear reaction, based on the low-energy protons, could produce soft neutrons for accelerator-based boron neutron capture therapy (AB-BNCT). Based on the fact that the induced neutron field is relatively divergent, the relationship between the incident angle of proton beam and the neutron beam quality was evaluated in this study. To provide an intense epithermal neutron beam, a beam-shaping assembly (BSA) was designed. And a modified Snyder head phantom was used in the calculations for evaluating the dosimetric performance. From the calculated results, the intensity of epithermal neutrons increased with the increase in proton incident angle. Hence, either the irradiation time or the required proton current can be reduced. When the incident angle of 2.5-MeV proton beam is 120 deg., the required proton current is ∼13.3 mA for an irradiation time of half an hour. The results of this study show that the BSA designs can generate neutron beams with good intensity and penetrability. Using a 20-mA, 2.5-MeV proton beam as the source, the required irradiation time, to induce 60 RBE-Gy of maximum tumour dose, is less than half an hour in any proton beam alignments. On the premise that the dosimetric performances are similar, the intensity of epithermal neutrons can be increased by using non-collinear (e.g. 90 deg., 120 deg.) incident protons. Thus, either the irradiation time or the required proton current can be reduced. The use of 120 deg. BSA model shows the possibility to reduce the required proton current to ∼13.3 mA when the goal of irradiation time is 30 min. The decrease of required proton beam current certainly will make the use of lithium target much easier. In June 2013, a 5-MeV, 30-mA radio frequency quadruple (RFQ) accelerator for BNCT was built at INFN-LNL (Legnaro National Laboratories, Italy), which shows a possibility to build a suitable RFQ accelerator for the authors' design. In addition, a 2.5-MeV, 30-mA Tandem accelerator was

  16. Effective dose evaluation for BNCT treatment in the epithermal neutron beam at THOR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.N. [Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)] [Division of Health Physics, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Huang, C.K. [Institute of Nuclear Engineering and Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Tsai, W.C. [Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Liu, Y.H. [Nuclear Science and Technol. Develop. Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Jiang, S.H., E-mail: shjiang@mx.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)] [Institute of Nuclear Engineering and Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)

    2011-12-15

    This paper aims to evaluate the effective dose as well as equivalent doses of several organs of an adult hermaphrodite mathematical phantom according to the definition of ICRP Publication 60 for BNCT treatments of brain tumors in the epithermal neutron beam at THOR. The MCNP5 Monte Carlo code was used for the calculation of the average absorbed dose of each organ. The effective doses for a typical brain tumor treatment with a tumor treatment dose of 20 Gy-eq were evaluated to be 0.59 and 0.35 Sv for the LLAT and TOP irradiation geometries, respectively. In addition to the stochastic effect, it was found that it is also likely to produce deterministic effects, such as cataracts and depression of haematopoiesis.

  17. Labelled compounds of interest as antitumour agents. Pt. 4: Deuteration and tritiation of a nitroimidazole-carborane designed for BNCT

    International Nuclear Information System (INIS)

    Scobie, Martin; Bew, S.P.; Threadgill, M.D.

    1994-01-01

    Quenching the anion generated from a 2-(ω-carboranylalkyl)dithiane with 2 H 2 O at -78 o C and at 0 o C introduced deuterium exclusively at C-2 of the carborane. Extension of this model reaction to a bioreductively-targetted carborane allowed the synthesis of 2-[ 2 H]- and 2-[ 3 H]-isotopomers of a nitroimidazole-carborane which is of interest in boron neutron capture therapy (BNCT) of cancer. (author)

  18. Improvements at the biological shielding of BNCT research facility in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Souza, Gregorio Soares de

    2011-01-01

    The technique of neutron capture in boron is a promising technique in cancer treatment, it uses the high LET particles from the reaction 10 B (n, α) 7 Li to destroy cancer cells.The development of this technique began in the mid-'50s and even today it is the object of study and research in various centers around the world, Brazil has built a facility that aims to conduct research in BNCT, this facility is located next to irradiation channel number three at the research nuclear reactor IEA-R1 and has a biological shielding designed to meet the radiation protection standards. This biological shielding was developed to allow them to conduct experiments with the reactor at maximum power, so it is not necessary to turn on and off the reactor to irradiate samples. However, when the channel is opened for experiments the background radiation in the experiments salon increases and this background variation makes it impossible to perform measurements in a neutron diffraction research that utilizes the irradiation channel number six. This study aims to further improve the shielding in order to minimize the variation of background making it possible to perform the research facility in BNCT without interfering with the action of the research group of the irradiation channel number six. To reach this purpose, the code MCNP5, dosimeters and activation detectors were used to plan improvements in the biological shielding. It was calculated with the help of the code an improvement that can reduce the average heat flow in 71.2% ± 13 and verified experimentally a mean reduce of 70 ± 9% in dose due to thermal neutrons. (author)

  19. KURRI progress report 2004. April 2004 - March 2005

    International Nuclear Information System (INIS)

    2005-01-01

    The fiscal year 2004 was the 40-th anniversary of Kyoto University research Reactor (KUR) and also the 30-th anniversary of Kyoto University Critical Assembly (KUCA). The KUR and KUCA have been operated for 1,316 and 732 hours, respectively. Kyoto University Research Reactor Institute (KURRI) accepted 5,186 man-day researchers including students in total for their experiments in accordance with the joint use programs among Japanese universities and public research organizations, and for scientific meetings held at KURRI. Note here that, since the application of boron neutron capture therapy (BNCT) was expanded to the head and neck cancers in addition to the brain tumors and skin cancers, the number of patients treated with the BNCT was greatly increasing year by year. Number of clinical irradiations were 11 in FY2002, 36 in FY2003, and 54 in FY2004. The results of these activities are reported in this progress report. The total 153 research issues are categorized to the 10 topics as follows; (1) Slow Neutron Physics and Neutron Scattering includes the 8 issues as general researches. (2) Nuclear Physics and Nuclear Data includes the 15 issues for the project research and the 2 issues as general researches. (3) Reactor Physics and Reactor Engineering includes the 6 issues as general researches. (4) Material Science and Radiation Effects includes the 21 issues for the project research and the 21 issues as general researches. (5) Geochemistry and Environmental Science includes the 16 issues as general researches. (6) Life Science and Medical Science includes the 5 issues for the project research and the 14 issues as general researches. (7) Neutron Capture Therapy includes the 19 issues as general researches. (8) Neutron Radiography and Radiation Application includes the 9 issues for the project research and the 3 issues as general researches. (9) TRU and Nuclear Chemistry includes the 11 issues for the project research. (10) Health Physics and Waste Management includes

  20. Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Haapaniemi, Aaro, E-mail: aaro.haapaniemi@hus.fi [Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Kankaanranta, Leena [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Saat, Riste [Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Koivunoro, Hanna; Saarilahti, Kauko [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Mäkitie, Antti; Atula, Timo [Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Joensuu, Heikki [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland)

    2016-05-01

    Purpose: To investigate the safety and efficacy of boron neutron capture therapy (BNCT) as a larynx-preserving treatment option for patients with recurrent laryngeal cancer. Methods and Materials: Six patients with locally recurrent squamous cell laryngeal carcinoma and 3 patients with persistent laryngeal cancer after prior treatment were treated with BNCT at the FiR1 facility (Espoo, Finland) in 2006 to 2012. The patients had received prior radiation therapy with or without concomitant chemotherapy to a cumulative median dose of 66 Gy. The median tumor diameter was 2.9 cm (range, 1.4-10.9 cm) before BNCT. Boron neutron capture therapy was offered on a compassionate basis to patients who either refused laryngectomy (n=7) or had an inoperable tumor (n=2). Boronophenylalanine-fructose (400 mg/kg) was used as the boron carrier and was infused over 2 hours intravenously before neutron irradiation. Results: Six patients received BNCT once and 3 twice. The estimated average gross tumor volume dose ranged from 22 to 38 Gy (W) (mean; 29 Gy [W]). Six of the 8 evaluable patients responded to BNCT; 2 achieved complete and 4 partial response. One patient died early and was not evaluable for response. Most common side effects were stomatitis, fatigue, and oral pain. No life-threatening or grade 4 toxicity was observed. The median time to progression within the target volume was 6.6 months, and the median overall survival time 13.3 months after BNCT. One patient with complete response is alive and disease-free with a functioning larynx 60 months after BNCT. Conclusions: Boron neutron capture therapy given after prior external beam radiation therapy is well tolerated. Most patients responded to BNCT, but long-term survival with larynx preservation was infrequent owing to cancer progression. Selected patients with recurrent laryngeal cancer may benefit from BNCT.

  1. The status of Tsukuba BNCT trial: BPA-based boron neutron capture therapy combined with X-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T., E-mail: tetsu_tsukuba@yahoo.co.jp [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)] [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Nakai, K. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Nariai, T. [Department of Neurosurgery, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo (Japan); Kumada, H.; Okumura, T.; Mizumoto, M.; Tsuboi, K. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan); Zaboronok, A.; Ishikawa, E.; Aiyama, H.; Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba (Japan)

    2011-12-15

    The phase II trial has been prepared to assess the effectiveness of BPA (250 mg/kg)-based NCT combined with X-ray irradiation and temozolomide (75 mg/m{sup 2}) for the treatment of newly diagnosed GBM. BPA uptake is determined by {sup 18}F-BPA-PET and/or {sup 11}C-MET-PET, and a tumor with the lesion to normal ratio of 2 or more is indicated for BNCT. The maximum normal brain point dose prescribed was limited to 13.0 Gy or less. Primary end point is overall survival.

  2. Collimator and shielding design for boron neutron capture therapy (BNCT) facility at TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    Mohd Rafi Mohd Solleh; Abdul Aziz Tajuddin; Abdul Aziz Mohamed; Eid Mahmoud Eid Abdel Munem; Mohamad Hairie Rabir; Julia Abdul Karim; Yoshiaki, Kiyanagi

    2011-01-01

    The geometry of reactor core, thermal column, collimator and shielding system for BNCT application of TRIGA MARK II Reactor were simulated with MCNP5 code. Neutron particle lethargy and dose were calculated with MCNPX code. Neutron flux in a sample located at the end of collimator after normalized to measured value (Eid Mahmoud Eid Abdel Munem, 2007) at 1 MW power was 1.06 x 10 8 n/ cm 2 / s. According to IAEA (2001) flux of 1.00 x 10 9 n/ cm 2 / s requires three hours of treatment. Few modifications were needed to get higher flux. (Author)

  3. Discrimination of various contributions to the absorbed dose in BNCT: Fricke-gel imaging and intercomparison with other experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G. E-mail: grazia.gambarini@mi.infn.it; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosi, G.; Tinti, R

    2000-11-15

    A method is described for the 3D measurements of absorbed dose in a ferrous sulphate gel phantom, exposed in the thermal column of a nuclear reactor. The method, studied for Boron Neutron Capture Therapy (BNCT) purposes, allows absorbed dose imaging and profiling, with the separation of different contributions coming from different secondary radiations, generated from thermal neutrons. In fact, the biological effectiveness of the different radiations is different. Tests with conventional dosimeters were performed too.

  4. Neutron therapy coupling brachytherapy and boron neutron capture therapy (BNCT) techniques

    International Nuclear Information System (INIS)

    Chaves, Iara Ferreira.

    1994-12-01

    In the present dissertation, neutron radiation techniques applied into organs of the human body are investigated as oncologic radiation therapy. The proposal treatment consists on connecting two distinct techniques: Boron Neutron Capture Therapy (BNCT) and irradiation by discrete sources of neutrons, through the brachytherapy conception. Biological and radio-dosimetrical aspects of the two techniques are considered. Nuclear aspects are discussed, presenting the nuclear reactions occurred in tumoral region, and describing the forms of evaluating the dose curves. Methods for estimating radiation transmission are reviewed through the solution of the neutron transport equation, Monte Carlo methodology, and simplified analytical calculation based on diffusion equation and numerical integration. The last is computational developed and presented as a quickly way to neutron transport evaluation in homogeneous medium. The computational evaluation of the doses for distinct hypothetical situations is presented, applying the coupled techniques BNTC and brachytherapy as an possible oncologic treatment. (author). 78 refs., 61 figs., 21 tabs

  5. Development of an accelerator-based BNCT facility at the Berkeley Lab

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Bleuel, D.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Reginato, L.L.; Wells, R.P.

    1998-01-01

    An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the 7 Li(p,n) 7 Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals

  6. Liquid Li based neutron source for BNCT and science application.

    Science.gov (United States)

    Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S

    2015-12-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sodium borocaptate (BSH) for Boron Neutron Capture Therapy (BNCT) in the hamster cheek pouch oral cancer model: boron biodistribution at 9 post administration time-points

    International Nuclear Information System (INIS)

    Garabalino, M.A.; Heber, E.M.; Monti, Hughes A.; Molinari, A.J.; Pozzi, E.C.C.; Trivillin, V.A.; Schwint, Amanda E.

    2011-01-01

    The therapeutic success of Boron Neutron Capture Therapy (BNCT) depends centrally on boron concentration in tumor and healthy tissue. We previously demonstrated the therapeutic efficacy of boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) as boron carriers for BNCT in the hamster cheek pouch oral cancer model. Given the clinical relevance of sodium mercaptoundecahydro-closo-dodecaborate (BSH) as a boron carrier, the aim of the present study was to expand the ongoing BSH biodistribution studies in the hamster cheek pouch oral cancer model. In particular, we studied 3 additional post-administration time-points and increased the sample size corresponding to the time-points evaluated previously, to select more accurately the post-administration time at which neutron irradiation would potentially confer the greatest therapeutic advantage. BSH was dissolved in saline solution in anaerobic conditions to avoid the formation of the dimer BSSB and its oxides which are toxic. The solution was injected intravenously at a dose of 50 mg 10 B/kg (88 mg BSH / kg). Different groups of animals were killed humanely at 7, 8, and 10 h after administration of BSH. The sample size corresponding to the time-points 3, 4, 6, 9 and 12 h was increased. Samples of blood, tumor, precancerous tissue, normal pouch tissue, cheek mucosa, parotid gland, palate, skin, tongue, spinal cord marrow, brain, liver, kidney, spleen and lung were processed for boron measurement by Optic Emission Spectroscopy (ICP-OES). Boron concentration in tumor peaked to 24-34 ppm, 3-10 h post-administration of BSH, with a spread in values that resembled that previously reported in other experimental models and human subjects. The boron concentration ratios tumor/normal pouch tissue and tumor/blood ranged from 1.3 to 1.8. No selective tumor uptake was observed at any of the time points evaluated. The times post-administration of BSH that would be therapeutically most useful would be 5, 7 and 9 h. The

  8. Comparative study of the radiobiological effects induced on adherent vs suspended cells by BNCT, neutrons and gamma rays treatments

    International Nuclear Information System (INIS)

    Cansolino, L.; Clerici, A.M.; Zonta, C.; Dionigi, P.; Mazzini, G.; Di Liberto, R.; Altieri, S.; Ballarini, F.; Bortolussi, S.; Carante, M.P.; Ferrari, M.; González, S.J.; Postuma, I.; Protti, N.; Santa Cruz, G.A.; Ferrari, C.

    2015-01-01

    The present work is part of a preclinical in vitro study to assess the efficacy of BNCT applied to liver or lung coloncarcinoma metastases and to limb osteosarcoma. Adherent growing cell lines can be irradiated as adherent to the culture flasks or as cell suspensions, differences in radio-sensitivity of the two modalities of radiation exposure have been investigated. Dose related cell survival and cell cycle perturbation results evidenced that the radiosensitivity of adherent cells is higher than that of the suspended ones.

  9. Measurement of the (33)S(n,α) cross-section at n_TOF(CERN): Applications to BNCT.

    Science.gov (United States)

    Sabaté-Gilarte, Marta; Praena, Javier; Porras, Ignacio; Quesada, José Manuel; Mastinu, Pierfrancesco

    2016-01-01

    The main purpose of this work is to present a new (n,α) cross-section measurement for a stable isotope of sulfur, (33)S, in order to solve existing discrepancies. (33)S has been studied as a cooperating target for Boron Neutron Capture Therapy (BNCT) because of its large (n,α) cross-section in the epithermal neutron energy range, the most suitable one for BNCT. Although the most important evaluated databases, such as ENDF, do not show any resonances in the cross-section, experimental measurements which provided data from 10 keV to 1 MeV showed that the lowest-lying and strongest resonance of (33)S(n,α) cross-section occurs at 13.5 keV. Nevertheless, the set of resonance parameters that describe such resonance shows important discrepancies (more than a factor of 2) between them. A new measurement of the (33)S(n,α)(30)Si reaction cross-section was proposed to the ISOLDE and Neutron Time-of-Flight Experiments Committee of CERN. It was performed at n_TOF(CERN) in 2012 using MicroMegas detectors. In this work, we will present a brief overview of the experiment as well as preliminary results of the data analysis in the neutron energy range from thermal to 100 keV. These results will be taken into account to calculate the kerma-fluence factors corresponding to (33)S in addition to (10)B and those of a standard four-component ICRU tissue. MCNP simulations of the deposited dose, including our experimental data, shows an important kerma rate enhancement at the surface of the tissue, mainly due to the presence of (33)S.

  10. Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report

    Science.gov (United States)

    2016-04-01

    Exploiting Novel Radiation -Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report Distribution...assess the effects of ionizing radiation on at least three classes of electromagnetic materials. The proposed approach for radiation detection was...that was desired to be monitored remotely. Microwave or low millimeter wave electromagnetic radiation would be used to interrogate the device

  11. First evaluation of the biologic effectiveness factors of boron neutron capture therapy (BNCT) in a human colon carcinoma cell line.

    Science.gov (United States)

    Dagrosa, Maria Alejandra; Crivello, Martín; Perona, Marina; Thorp, Silvia; Santa Cruz, Gustavo Alberto; Pozzi, Emiliano; Casal, Mariana; Thomasz, Lisa; Cabrini, Romulo; Kahl, Steven; Juvenal, Guillermo Juan; Pisarev, Mario Alberto

    2011-01-01

    DNA lesions produced by boron neutron capture therapy (BNCT) and those produced by gamma radiation in a colon carcinoma cell line were analyzed. We have also derived the relative biologic effectiveness factor (RBE) of the neutron beam of the RA-3- Argentine nuclear reactor, and the compound biologic effectiveness (CBE) values for p-boronophenylalanine ((10)BPA) and for 2,4-bis (α,β-dihydroxyethyl)-deutero-porphyrin IX ((10)BOPP). Exponentially growing human colon carcinoma cells (ARO81-1) were distributed into the following groups: (1) BPA (10 ppm (10)B) + neutrons, (2) BOPP (10 ppm (10)B) + neutrons, (3) neutrons alone, and (4) gamma rays ((60)Co source at 1 Gy/min dose-rate). Different irradiation times were used to obtain total absorbed doses between 0.3 and 5 Gy (±10%) (thermal neutrons flux = 7.5 10(9) n/cm(2) sec). The frequency of micronucleated binucleated cells and the number of micronuclei per micronucleated binucleated cells showed a dose-dependent increase until approximately 2 Gy. The response to gamma rays was significantly lower than the response to the other treatments (p irradiations with neutrons alone and neutrons + BOPP showed curves that did not differ significantly from, and showed less DNA damage than, irradiation with neutrons + BPA. A decrease in the surviving fraction measured by 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay as a function of the absorbed dose was observed for all the treatments. The RBE and CBE factors calculated from cytokinesis block micronucleus (CBMN) and MTT assays were, respectively, the following: beam RBE: 4.4 ± 1.1 and 2.4 ± 0.6; CBE for BOPP: 8.0 ± 2.2 and 2.0 ± 1; CBE for BPA: 19.6 ± 3.7 and 3.5 ± 1.3. BNCT and gamma irradiations showed different genotoxic patterns. To our knowledge, these values represent the first experimental ones obtained for the RA-3 in a biologic model and could be useful for future experimental studies for the application of BNCT to colon carcinoma

  12. Early effects of boron neutron capture therapy on rat glioma models

    International Nuclear Information System (INIS)

    Nakagawa, N.; Akai, F.; Fukawa, N.; Taneda, M.; Ono, K.; Suzuki, M.

    2006-01-01

    Early effects of boron neutron capture therapy on malignant gliomas are characterized by reduction of the enhanced area regression of the peritumoral edema radiologically. The aim of this study is to investigate the early histological changes of tumors and inflammatory cells after BNCT in the rat brain. The rats were treated with BNCT using boronophenyialanine (BPA) 7 days after implantation of C6 glioma cells. The tumors were assessed their sizes and configurations with magnetic resonance imaging, then killed 4 days after BNCT. The mean tumor volumes were 39mm 3 in BNCT-treated group, and 138 mm 3 in the control group. In the histological examination, tumors of the BNCT group showed less pleomorphic appearance with atypical nuclei and mitotic figures, compared with the control group. Necrosis and edematous changes in the neuropile were negligible. There existed remnant tumors adjacent to the lateral ventricle. The reactions of the inflammatory cells were examined with ED-1 of macrophage marker. ED-1 positive cells and their processes were reduced in the marginal area of tumor in the BNCT group. BNCT reduce the tumor progression by suppression of the proliferation. Inhibition of the activated macrophages may reduce peritumoral edema in early phase. (author)

  13. Boron neutron capture therapy (BNCT). Recent aspect, a change from thermal neutron to epithermal neutron beam and a new protocol

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu

    1999-01-01

    Since 1968, One-hundred seventy three patients with glioblastoma (n=81), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumor (n=32) were treated by boron-neutron capture therapy (BNCT) using a combination of thermal neutron and BSH in 5 reactors (HTR n=13, JRR-3 n=1, MuITR n=98, KUR n=28, JRR-2 n=33). Out of 101 patients with glioma treated by BNCT under the recent protocol, 33 (10 glioblastoma, 14 anaplastic astrocytoma, 9 low grade astrocytoma) patients lived or have lived longer than 3 years. Nine of these 33 lived or have lived longer than 10 years. According to the retrospective analysis, the important factors related to the clinical results were tumor dose radiation dose and maximum radiation dose in thermal brain cortex. The result was not satisfied as it was expected. Then, we decided to introduce mixed beams which contain thermal neutron and epithermal neutron beams. KUR was reconstructed in 1996 and developed to be available to use mixed beams. Following the shutdown of the JRR-2, JRR-4 was renewed for medical use in 1998. Both reactors have capacity to yield thermal neutron beam, epithermal neutron beam and mixed beams. The development of the neutron source lead us to make a new protocol. (author)

  14. Study of a neutron producing target via the 7Li(p,n)7Be reaction near its energy threshold for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    Burlon, Alejandro; Kreiner, Andres J.; Debray, Mario E.; Stoliar, Pablo; Kesque, Jose M.; Naab, Fabian; Ozafran, Mabel J.; Schuff, Juan; Vazquez, Monica; Caraballo, Maria E.; Valda, Alejandro; Somacal, Hector; Davidson, Miguel; Davidson, Jorge

    2000-01-01

    In the framework of Accelerator Based BNCT (AB-BNCT) the 7 Li(p,n) 7 Be reaction near its energy threshold is one of the most promising. In this work a thick LiF target irradiated with a proton beam was studied as a neutron source. The 1.88-2.0 MeV proton beam was produced by the tandem accelerator TANDAR at CNEA's facilities in Buenos Aires. A water-filled phantom, containing a boron sample was irradiated with the resulting neutron beam. The boron neutron capture reaction produces a 0.478 MeV gamma ray in 94 % of the cases. The neutron yield was monitored by detecting this gamma ray using a germanium detector with an 'anti-Compton' shield. Moreover, the thermal neutron flux was evaluated at different depths inside the phantom using bare and Cd-covered gold foils. A maximum neutron thermal flux of 1.4 x 10 8 1/(cm 2 -s-mA) was obtained at 4.2 cm from the phantom surface. (author)

  15. Measurement of the 33S(n,α) cross-section at n_TOF(CERN): Applications to BNCT

    Science.gov (United States)

    Sabaté-Gilarte, Marta; Praena, Javier; Porras, Ignacio; Quesada, José Manuel; Mastinu, Pierfrancesco

    2016-01-01

    Aim The main purpose of this work is to present a new (n,α) cross-section measurement for a stable isotope of sulfur, 33S, in order to solve existing discrepancies. Background 33S has been studied as a cooperating target for Boron Neutron Capture Therapy (BNCT) because of its large (n,α) cross-section in the epithermal neutron energy range, the most suitable one for BNCT. Although the most important evaluated databases, such as ENDF, do not show any resonances in the cross-section, experimental measurements which provided data from 10 keV to 1 MeV showed that the lowest-lying and strongest resonance of 33S(n,α) cross-section occurs at 13.5 keV. Nevertheless, the set of resonance parameters that describe such resonance shows important discrepancies (more than a factor of 2) between them. Materials and methods A new measurement of the 33S(n,α)30Si reaction cross-section was proposed to the ISOLDE and Neutron Time-of-Flight Experiments Committee of CERN. It was performed at n_TOF(CERN) in 2012 using MicroMegas detectors. Results In this work, we will present a brief overview of the experiment as well as preliminary results of the data analysis in the neutron energy range from thermal to 100 keV. These results will be taken into account to calculate the kerma-fluence factors corresponding to 33S in addition to 10B and those of a standard four-component ICRU tissue. Conclusions MCNP simulations of the deposited dose, including our experimental data, shows an important kerma rate enhancement at the surface of the tissue, mainly due to the presence of 33S. PMID:26933393

  16. Depth-dose evaluation for lung and pancreas cancer treatment by BNCT using an epithermal neutron beam

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Fukushima, Yuji

    2000-01-01

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreas cancers using an epithermal neutron beam. The MCNP calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5x10 8 ncm -2 s -1 . The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT could be applied for both lung and pancreas cancer treatment. (author)

  17. Effects of secondary interactions on the dose calculation in treatments with Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Monteiro, E.

    2004-01-01

    The aimed of this work consists of evaluating the influence of the secondary contributions of dose (thermal neutrons dose, epithermal neutrons dose, fast neutrons dose and photon dose) in treatment planning with BNCT. MCNP4B Code was used to calculate RBE-Gy doses through the irradiation of the modified Snyder head head phantom.A reduction of the therapeutical gain of monoenergetic neutron beans was observed in non invasive treatments, provoked for the predominance of the fast neutron dose component in the skin, showing that the secondary contributions of dose can contribute more in the direction to raise the dose in the fabric healthy that in the tumor, thus reducing the treatment efficiency. (author)

  18. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.

    Science.gov (United States)

    Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori

    2014-06-01

    A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Experimental Studies of Boronophenylalanine ({sup 10}BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Carpano, Marina; Perona, Marina; Rodriguez, Carla [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A. [Department of Boron Neutron Capture Therapy, National Atomic Energy Commission, San Martín (Argentina); Brandizzi, Daniel; Cabrini, Romulo [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); School of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Pisarev, Mario [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires (Argentina); Juvenal, Guillermo Juan [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Dagrosa, Maria Alejandra, E-mail: dagrosa@cnea.gov.ar [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina)

    2015-10-01

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ({sup 10}BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10{sup 6} MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of {sup 10}B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R{sup 2} = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R{sup 2} = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT

  20. Final Technical Progress Report: Development of Low-Cost Suspension Heliostat; December 7, 2011 - December 6, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bender, W.

    2013-01-01

    Final technical progress report of SunShot Incubator Solaflect Energy. The project succeeded in demonstrating that the Solaflect Suspension Heliostat design is viable for large-scale CSP installations. Canting accuracy is acceptable and is continually improving as Solaflect improves its understanding of this design. Cost reduction initiatives were successful, and there are still many opportunities for further development and further cost reduction.

  1. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Castell, W.; Di Paolo, H.; Baldo, M.; Bergueiro, J.

    2011-01-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas.

  2. Study on high speed lithium jet for neutron source of boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mak, Michael; Stefanica, Jiri; Dostal, Vaclav; Zhao Wei

    2012-01-01

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively. (author)

  3. A sensitivity study on neutron flux variation due to 10B concentration in dose calculation for BNCT

    International Nuclear Information System (INIS)

    Jung, Sang Hoon

    2006-02-01

    The effects of inclusion of 10 B concentration on neutron flux and dose in dose calculation were studied. In order to provide the quantitative effects of inclusion of 10 B concentrations on depressions of neutron and photon flux and dose, the fluxes and doses with voxel head phantoms for various 10 B concentrations homogeneously distributed were calculated by using MCNPX simulations. A lithium target system and beam shaping assembly, which have been developed at the Hanyang University, were used as epithermal neutron beam. The calculation results show that the neutron flux at the center of the head phantom decreases by approximately 5.4% per 10 ppm of 10 B concentration in comparison with the neutron flux in the case of boron-free. It was also observed that the tissue dose at the center of the head phantom is depressed by approximately 4.7% per 10 ppm of the 10 B concentration and the tumor dose by approximately 5.3% per 10 ppm. According to depth of tumors, it was observed that the depressions of the doses in the tumors are ranged in 3.7 ∼ 9.2%. The dose calculations in the case of boron-free show that it is overestimated in comparison with the dose calculations in the cases of the inclusion of 10 B concentrations for the normal tissue and the tumors. Therefore, in dose calculation for BNCT, the depressions of neutron flux and dose should be considered. The results in this study are available to setting up the depression ratios which can be used for converting neutron and gamma fluxes and doses in phantom with boron free into the fluxes and doses in phantom with inclusion of 10 B concentrations in treatment. It is expected that the depression ratios is practicable to dose evaluation for BNCT

  4. BDTPS The BNCT Treatment Planning System jointly developed at DIMNP and JRC/IE

    CERN Document Server

    Daquino, G G; Mazzini, M; Moss, R; Muzi, L; International Workshop on "Neutron Capture Therapy: State of the art"

    2003-01-01

    The idea to couple the Treatment Planning System (TPS) to the information on the real boron distribution in the patient is the main added value of the new methodology set-up at DIMNP of University of Pisa, in collaboration with the JRC of Petten (NL). The methodology has been implemented in the new TPS, called BDTPS (Boron Distribution Treatment Planning System), which takes into account the actual boron distribution in the patient brain, while the standard TPS assumes a uniform boron distribution, absolutely far from the reality. Nowadays, Positron Emission Tomography (PET) is able to provide this in vivo information. The new TPS, based on the Monte Carlo technique, has been validated comparing the main BNCT parameters (thermal flux, boron dose, etc.) as measured during the irradiation of a special heterogeneous boron phantom (HEBOM), ad hoc designed, as calculated by the BDTPS and by the standard TPS SERA. An evident SERA overestimation of the thermal neutron flux, as well as the boron dose, has been detect...

  5. A study of computational dosimetry and boron biodistribution for ex – situ lung BNCT at RA-3 Reactor

    International Nuclear Information System (INIS)

    Garabalino, M.A.; Trivillin, V. A.; Monti Hughes, A.; Pozzi, E.C.C.; Thorp, S.; Curotto, P; Miller, M.; Santa Cruz, G.A.; Saint Martin, G.; Schwint, A.E.; González, S.J.; Farías, R.O; Portu, A.; Ferraris, S.; Santa María, J.; Lange, F.; Bortolussi, S.; Altieri, S.

    2013-01-01

    Within the context of the preclinical ex-situ BNCT Project for the treatment of diffuse lung metastases, we performed boron biodistribution studies in a sheep model and computational dosimetry studies in human lung to evaluate the potential therapeutic efficacy of the proposed technique. Herein we report preliminary data that supports the use of the sheep model as an adequate human surrogate in terms of boron kinetics and uptake in clinically relevant tissues. Furthermore, the estimation of the potential therapeutic efficacy of the proposed treatment in humans, based on boron uptake values in the large animal model, yields promising tumor control probability values even in the most conservative scenario considered. (author)

  6. BNCT of intracerebral melanoma. Enhanced survival and cure following Cereport mediated opening of the blood-brain barrier

    International Nuclear Information System (INIS)

    Barth, R.F.; Yang, W.; Bartus, R.T.; Rotaru, J.H.; Ferketich, A.K.; Moeschberger, M.L.; Nawrocky, M.M.; Coderre, J.A.

    2000-01-01

    Cereport is a bradykinin analogue that produces a transient, pharmacologically mediated opening of the blood-brain barrier (BBB). The present study was designed to determine if Cereport could enhance the delivery of BPA and the efficacy of BNCT in nude rats bearing intracerebral implants of the human MRA 27 melanoma. Animals that received intracarotid (i.c.) injection of Cereport and i.c. BPA had a mean survival time of 115 d compared to 82 d without Cereport, 42 d for i.v. BPA with Cereport and 31 d for irradiated controls. The combination of i.c. Cereport and BPA produced a 400% increase in the life span with 35% long-term survivors (>180 d). (author)

  7. Evaluation of neutron irradiation fields for BNCT by using absorbed dose in a phantom

    International Nuclear Information System (INIS)

    Aizawa, O.

    1993-01-01

    In a previous paper, the author defined the open-quotes irradiation timeclose quotes as the time of irradiation in which the maximum open-quotes total background doseclose quotes becomes 2,500 RBE-cGy. In this paper, he has modified the definition a little as the time of irradiation in which the maximum open-quotes lμg/g B-10 doseclose quotes becomes 3,000 RBE-cGy, because he assumed that normal tissue contained 1μg/g B-10. Moreover, he has modified the dose criteria for BNCT as follows: The open-quotes eye doseclose quotes, open-quotes total body doseclose quotes and open-quotes except-head doseclose quotes should be less that 200, 100 and 50 RBE-cGy, respectively. He has added one more criterion for BNCT that the thermal neutron fluence at the tumor position should be over 2.5x10 12 n/cm 2 at the open-quotes irradiation timeclose quotes. The distance from the core side to the irradiation port in the open-quotes old configurationclose quotes of the Musashi reactor (TRIGA-II, 100kW) was 160 cm. He is now planning to design an eccentric core and to move the reactor core nearer to the irradiation port, distance between the core side and the irradiation port to be 140, 130 and 120cm. The other assumptions used in this paper are as follows: (1) The B-10 concentrations in tumor are 30 and/or 10μg/g. (2) The depth of the tumor is 5.0 cm to 5.5 cm from the surface. (3) The RBE values used are 1.0 for all gamma rays and 2.3 for B 10 (n,α) reaction products. (4) The RBE values for neutrons are the following three cases: the first case is using 1.6 for all neutrons; the second one is using 3.2 for non-thermal neutrons and 1.6 for thermal neutrons; the third case is using 4.8 for fast neutrons, 3.2 for faster epithermal and epithermal neutrons, and 1.6 for thermal neutrons

  8. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  9. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-01-01

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  10. Design and optimization of a beam-shaping assembly (BSA) for BNCT based on a neutron generator located at CEADEN, Havana, Cuba

    International Nuclear Information System (INIS)

    Padilla Cabal, F.; Martin, G; Abrahantes, A.

    2007-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2 H(d;n) 3 He and 3 H(d;n) 4 He down to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as Fluental TM for the neutron spectrum shifting. A semispherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT. (Author)

  11. Design and optimization of a beam-shaping assembly (BSA) for BNCT based on a neutron generator located at CEADEN, Havana, Cuba

    International Nuclear Information System (INIS)

    Padilla Cabal, F.; Martin, G.; Abrahantes, A.

    2007-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2 H(d;n) 3 He and 3 H(d;n) 4 Hedown to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as Fluental TM for the neutron spectrum shifting. A semi spherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT. (Author)

  12. Spent fuel management plans for the FiR 1 Reactor

    International Nuclear Information System (INIS)

    Salmenhaara, S. E. J.

    2002-01-01

    The FiR 1-reactor, a 250 kW TRIGA reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). The BNCT work dominates the current utilization of the reactor: three days per week for BNCT purposes and only two days per week for other purposes such as the neutron activation analysis and isotope production. The final disposal site is situated in Olkiluoto, on the western coast of Finland. Olkiluoto is also one of the two nuclear power plant sites in Finland. In the new operating license of our reactor there is a special condition. We have to achieve a binding agreement between our Research Centre and either the domestic Nuclear Power Companies about the possibility to use the Olkiluoto final disposal facility for our spent fuel or US DOE about the return of our spent fuel back to USA. If we want to continue the reactor operation beyond the year 2006. the domestic final disposal is the only possibility. At the moment it seems to be reasonable to prepare to both possibilities: the domestic final disposal and the return to the USA offered by US DOE. Because the cost estimates of the both possibilities are on the same order of magnitude, the future of the reactor itself will decide, which of the spent fuel policies will be obeyed. In a couple of years' time it will be seen, if the funding of the reactor and the incomes from the BNCT treatments will cover the costs. If the BNCT and other irradiations develop satisfactorily, the reactor can be kept in operation beyond the year 2006 and the domestic final disposal will be implemented. If, however, there is still lack of money, there is no reason to continue the operation of the reactor and the choice of US DOE alternative is natural. (author)

  13. An automated method for breathing frequency determination for rat lung radiobiology in BNCT

    International Nuclear Information System (INIS)

    Kiger, J.L.; Coderre, J.A.; Kiger, W.S. III

    2006-01-01

    Whole-body plethysmography was used to the measure the breathing rate in rats as a functional indication of radiation-induced lung damage, either weekly or bi-weekly for a period of 180 days following thorax irradiations in a BNCT radiobiology study. A three-minute digital breathing signal was collected in each measurement. Software has been developed to automatically discriminate against large-amplitude noise due to animal movement. After segmenting the signal into consecutive, overlapping and circular blocks, the mean frequency spectrum of the processed signal was calculated using the Fast Fourier Transform (FFT). The breathing rate was defined as the primary frequency of the spectrum and the standard deviation was estimated using the bootstrap method. The mean standard deviation of all measurements in the data set (n=4269) was 2.4%. The improved accuracy with low standard deviation of the measurements ensures good sensitivity and a low threshold for detection of responding animals; breathing rates more than 20% (∼3 σ) above the control mean were considered responding. (author)

  14. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  16. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    International Nuclear Information System (INIS)

    Kabalka, G. W.

    2005-01-01

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharmacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCT agents that could be labeled with radioactive nuclides for the in vivo detection of boron

  17. Liquid Li based neutron source for BNCT and science application

    International Nuclear Information System (INIS)

    Horiike, H.; Murata, I.; Iida, T.; Yoshihashi, S.; Hoashi, E.; Kato, I.; Hashimoto, N.; Kuri, S.; Oshiro, S.

    2015-01-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of "7Li(p,n)"7Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. - Highlights: • Liquid lithium (Li) is a candidate material for a target of intense neutron source. • An accelerator based neutron source with p-liquid Li target for boron neutron capture therapy is under development in Osaka University, Japan. • In our system, the harmful radiation dose due to rays and fast neutrons will be suppressed very low. • The system performance are very promising as a state of art cancer treatment system. • The project is planned as a joint undertaking between industries and Osaka University.

  18. Employment of MCNP in the study of TLDS 600 and 700 seeking the implementation of radiation beam characterization of BNCT facility at IEA-R1; Emprego do MCNP no estudo dos TLDS 600 e 700 visando a implementacao da caracterizacao do feixe de irradiacao da instalacao de BNCT do IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, Tassio Antonio

    2013-07-01

    Boron Neutron Capture Therapy, BNCT, is a bimodal radiotherapy procedure for cancer treatment. Its useful energy comes from a nuclear reaction driven by impinging thermal neutron upon Boron 10 atoms. A BNCT research facility has been constructed in IPEN at the IEA-R1 reactor, to develop studies in this area. One of its prime experimental parameter is the beam dosimetry which is nowadays made by using activation foils, for neutron measurements, and TLD 400, for gamma dosimetry. For mixed field dosimetry, the International Commission on Radiation Units and Measurements, ICRU, recommends the use of pair of detectors with distinct responses to the field components. The TLD 600/ TLD 700 pair meets this criteria, as the amount of {sup 6}Li, a nuclide with high thermal neutron cross section, greatly differs in their composition. This work presents a series of experiments and simulations performed in order to implement the mixed field dosimetry based on the use of TLD 600/TLD 700 pair. It also intended to compare this mixed field dosimetric methodology to the one so far used by the BNCT research group of IPEN. The response of all TLDs were studied under irradiations in different irradiation fields and simulations, underwent by MCNP, were run in order to evaluate the dose contribution from each field component. Series of repeated irradiations under pure gamma field and mixed field neutron/gamma field showed differences in the TLD individual responses which led to the adoption of a Normalization Factor. It has allowed to overcome TLD selection. TLD responses due to different field components and spectra were studied. It has shown to be possible to evaluate the relative gamma/neutron fluxes from the relative responses observed in the two Regions of Interest, ROIs, from TLD 600 and TLD 700. It has also been possible to observe the TLD 700 response to neutron, which leads to a gamma dose overestimation when one follows the ICRU recommended mixed field dosimetric procedure. Dose

  19. A core laboratory offering full evaluation of new boron compounds. A service to the BNCT community

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Patel, H.; Palmer, M.R.; Lin, H.C.; Busse, P.M.; Harling, O.; Binns, P.J.; Riley, K.J.; Bernard, J.

    2000-01-01

    A joint project by the Beth Israel Deaconess Medical Center at Harvard Medical School and The Nuclear Reactor Laboratory of the Massachusetts Institute of Technology is proposed which would provide a core laboratory for the evaluation of new boron compounds. Federal agency funding has been applied for to support such a facility. The facility's evaluation of candidate boron compounds will include: quantitative cellular boron uptake; cell survival curve analysis (using a thermal neutron beam); small or large animal pharmacokinetic analysis; macro- and micro boron distribution analysis using high-resolution autoradiography, prompt gamma analysis and ICP-AES; small or large animal in vivo tumor control studies (using thermal or epithermal neutron beams); and pharmacological in vivo toxicity evaluation. The laboratory will include small and large animal surgical facilities and resources for additional boron compound chemistry as required by the evaluation procedure. This facility will be open to the BNCT research community. (author)

  20. Final/Progress Report for Instrumentation Grant

    International Nuclear Information System (INIS)

    None

    1997-01-01

    The major piece of equipment was a Furnace Model 1000 used during the Nitrate to Ammonia and Ceramic (NAC) process to sinter the ceramic final product. NAC is a new technology to immobilize liquid radioactive waste simulants. The grant also funded related control and measuring equipment

  1. Stratospheric tritium sampling. Final progress report

    International Nuclear Information System (INIS)

    Mason, A.S.; Oestlund, H.G.

    1985-09-01

    Stratospheric tritium sampling was part of Project Airstream (sponsored by the US Department of Energy) between 1975 and 1983. Data from the final deployment in November 1983 are reported here, and the results of the 9 years of effort are summarized. 9 refs., 2 figs., 2 tabs

  2. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-01

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity

  3. Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis.

    Science.gov (United States)

    Yardley, Denise A; Noguchi, Shinzaburo; Pritchard, Kathleen I; Burris, Howard A; Baselga, José; Gnant, Michael; Hortobagyi, Gabriel N; Campone, Mario; Pistilli, Barbara; Piccart, Martine; Melichar, Bohuslav; Petrakova, Katarina; Arena, Francis P; Erdkamp, Frans; Harb, Wael A; Feng, Wentao; Cahana, Ayelet; Taran, Tetiana; Lebwohl, David; Rugo, Hope S

    2013-10-01

    Effective treatments for hormone-receptor-positive (HR(+)) breast cancer (BC) following relapse/progression on nonsteroidal aromatase inhibitor (NSAI) therapy are needed. Initial Breast Cancer Trials of OraL EveROlimus-2 (BOLERO-2) trial data demonstrated that everolimus and exemestane significantly prolonged progression-free survival (PFS) versus placebo plus exemestane alone in this patient population. BOLERO-2 is a phase 3, double-blind, randomized, international trial comparing everolimus (10 mg/day) plus exemestane (25 mg/day) versus placebo plus exemestane in postmenopausal women with HR(+) advanced BC with recurrence/progression during or after NSAIs. The primary endpoint was PFS by local investigator review, and was confirmed by independent central radiology review. Overall survival, response rate, and clinical benefit rate were secondary endpoints. Final study results with median 18-month follow-up show that median PFS remained significantly longer with everolimus plus exemestane versus placebo plus exemestane [investigator review: 7.8 versus 3.2 months, respectively; hazard ratio = 0.45 (95% confidence interval 0.38-0.54); log-rank P NSAIs. These results further support the use of everolimus plus exemestane in this patient population. ClinicalTrials.gov #NCT00863655.

  4. Employment of MCNP in the study of TLDS 600 and 700 seeking the implementation of radiation beam characterization of BNCT facility at IEA-R1

    International Nuclear Information System (INIS)

    Cavalieri, Tassio Antonio

    2013-01-01

    Boron Neutron Capture Therapy, BNCT, is a bimodal radiotherapy procedure for cancer treatment. Its useful energy comes from a nuclear reaction driven by impinging thermal neutron upon Boron 10 atoms. A BNCT research facility has been constructed in IPEN at the IEA-R1 reactor, to develop studies in this area. One of its prime experimental parameter is the beam dosimetry which is nowadays made by using activation foils, for neutron measurements, and TLD 400, for gamma dosimetry. For mixed field dosimetry, the International Commission on Radiation Units and Measurements, ICRU, recommends the use of pair of detectors with distinct responses to the field components. The TLD 600/ TLD 700 pair meets this criteria, as the amount of 6 Li, a nuclide with high thermal neutron cross section, greatly differs in their composition. This work presents a series of experiments and simulations performed in order to implement the mixed field dosimetry based on the use of TLD 600/TLD 700 pair. It also intended to compare this mixed field dosimetric methodology to the one so far used by the BNCT research group of IPEN. The response of all TLDs were studied under irradiations in different irradiation fields and simulations, underwent by MCNP, were run in order to evaluate the dose contribution from each field component. Series of repeated irradiations under pure gamma field and mixed field neutron/gamma field showed differences in the TLD individual responses which led to the adoption of a Normalization Factor. It has allowed to overcome TLD selection. TLD responses due to different field components and spectra were studied. It has shown to be possible to evaluate the relative gamma/neutron fluxes from the relative responses observed in the two Regions of Interest, ROIs, from TLD 600 and TLD 700. It has also been possible to observe the TLD 700 response to neutron, which leads to a gamma dose overestimation when one follows the ICRU recommended mixed field dosimetric procedure. Dose

  5. Development of cancer therapy facility of HANARO and medical research in BNCT; development of the technique for boron concentration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Dong; Byun, Soo Hyun; Sun, Gwang Min; Kim, Suk Kwon; Kim, In Jung; Park, Chang Su [Seoul National University, Seoul (Korea)

    2002-03-01

    Objective and Necessity of the Project- Development of a boron concentration analysis facility used for BNCT. - Development of the technique for boron concentration analysis. Contents and Scopes of the Project - Construction of the boron concentration analysis facility based on PGAA. Estimation of the neutron beam characteristics. -Establishment of the technique for the boron concentration analysis. - Estimation of the reliability for the boron analysis. Results of the Project -Installation of the boron concentration analysis facility at Hanaro. - Neutron beam characteristics are the sample position (neutron flux : 7.9 x 10{sup 7} n/cm{sup 2}s, Cd-ratio : 266) Technique for the boron concentration analysis. - Boron detection sensitivity and limit (detection sensitivity : 2, 131 cps/mg-B, detection limit : 67 ng for 10,000 sec). 63 refs., 37 figs., 13 tabs. (Author)

  6. IRIS Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Carelli

    2003-11-03

    OAK-B135 This NERI project, originally started as the Secure Transportable Autonomous Light Water Reactor (STAR-LW) and currently known as the International Reactor Innovative and Secure (IRIS) project, had the objective of investigating a novel type of water-cooled reactor to satisfy the Generation IV goals: fuel cycle sustainability, enhanced reliability and safety, and improved economics. The research objectives over the three-year (1999-2002) program were as follows: First year: Assess various design alternatives and establish main characteristics of a point design; Second year: Perform feasibility and engineering assessment of the selected design solutions; Third year: Complete reactor design and performance evaluation, including cost assessment These objectives were fully attained and actually they served to launch IRIS as a full fledged project for eventual commercial deployment. The program did not terminate in 2002 at the end of the NERI program, and has just entered in its fifth year. This has been made possible by the IRIS project participants which have grown from the original four member, two-countries team to the current twenty members, nine countries consortium. All the consortium members work under their own funding and it is estimated that the value of their in-kind contributions over the life of the project has been of the order of $30M. Currently, approximately 100 people worldwide are involved in the project. A very important constituency of the IRIS project is the academia: 7 universities from four countries are members of the consortium and five more US universities are associated via parallel NERI programs. To date, 97 students have worked or are working on IRIS; 59 IRIS-related graduate theses have been prepared or are in preparation, and 41 of these students have already graduated with M.S. (33) or Ph.D. (8) degrees. This ''final'' report (final only as far as the NERI program is concerned) summarizes the work performed

  7. Evaluation of the characteristics of boron-dose enhancer (BDE) materials for BNCT using near threshold {sup 7}Li(p,n){sup 7}Be direct neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bengua, Gerard [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennann-gun, Osaka 590-0494 (Japan); Kobayashi, Tooru [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennann-gun, Osaka 590-0494 (Japan); Tanaka, Kenichi [Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Nakagawa, Yoshinobu [National Kagawa Children' s Hospital, Zentsuji-cho, Zentsuji, Kagawa 765-8501 (Japan)

    2004-03-07

    The characteristics of a number of candidate boron-dose enhancer (BDE) materials for boron neutron capture therapy (BNCT) using near threshold {sup 7}Li(p,n){sup 7}Be direct neutrons were evaluated based on the treatable protocol depth (TPD), defined in this paper. Simulation calculations were carried out by means of MCNP-4B transport code for candidate BDE materials, namely, (C{sub 2}H{sub 4}){sub n}, (C{sub 2}H{sub 3}F){sub n}, (C{sub 2}H{sub 2}F{sub 2}){sub n}, (C{sub 2}HF{sub 3}){sub n}, (C{sub 2}D{sub 4}){sub n}, (C{sub 2}F{sub 4}){sub n}, beryllium metal, graphite, D{sub 2}O and {sup 7}LiF. Dose protocols applied were those used for intra-operative BNCT treatment for brain tumour currently used in Japan. The maximum TPD (TPD{sub max}) for each BDE material was found to be between 4 cm and 5 cm in the order of (C{sub 2}H{sub 4}){sub n} < (C{sub 2}H{sub 3}F){sub n} < (C{sub 2}H{sub 2}F{sub 2}){sub n} < (C{sub 2}HF{sub 3}){sub n} < beryllium metal < (C{sub 2}D{sub 4}){sub n} < graphite < (C{sub 2}F{sub 4}){sub n} < D{sub 2}O < {sup 7}LiF. Based on the small and arbitrary variations in the TPD{sub max} for these materials, an explicit advantage of a candidate BDE material could not be established from the TPD{sub max} alone. The dependence of TPD on BDE thickness was found to be influenced by the type of BDE material. For materials with hydrogen, sharp variations in TPD were observed, while those without hydrogen exhibited more moderate fluctuations in TPD as the BDE thickness was varied. The BDE thickness corresponding to TPD{sub max} (BDE(TPD{sub max})) was also found to depend on the type of BDE material used. Thicker BDE(TPD{sub max}), obtained mostly for BDE materials without hydrogen, significantly reduced the dose rates within the phantom. The TPD{sub max}, the dependence of TPD on BDE thickness and the BDE (TPD{sub max}) were ascertained as appropriate optimization criteria in choosing suitable BDE materials for BNCT. Among the candidate BDE materials

  8. Dosimetric study of varying aperture-surface distance at the Finnish BNCT facility

    International Nuclear Information System (INIS)

    Uusi-Simola, Jouni; Seppaelae, Tiina; Nieminen, Katja; Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro; Kortesniemi, Mika; Savolainen, Sauli

    2006-01-01

    Comparison of experimental and calculated dosimetric values in a water phantom was performed at the Finnish BNCT facility at the FiR 1 research reactor. The purpose was to study the effect of changing aperture to surface distance (ASD) to radiation dose and to verify the accuracy of the treatment planning and to provide data for comparison of the methods. A magnesium ionisation chamber flushed with argon gas was used to measure absorbed photon dose rate. Diluted manganese (Mn) and gold (Au) foils and Mn wires were used to determine Mn and Au activation reaction rates. Computer simulations with both SERA and MCNP programs were used to independently calculate the corresponding values. Photon dose and activation reaction rate depth profiles at beam central axis an axial profiles at 2.5 and 6 cm depths were measured and calculated for 11 and 14 and 17 cm diameter apertures. Depth profiles for activation reaction rates were determined for the clinically used 11 and 14 cm diameter apertures for 0, 5, and 10 cm ASD. In addition, the optional 17 cm beam was characterised at 0 and 5 cm ASD. The beam intensity decreases by approximately 20% and 40% when ASD is increased to 5 cm or 10 cm, respectively. The shape of the 55 Mn activation reaction rate depth profile and photon depth radial profile did not vary more than 5% for the 14 cm beam when the ASD was increased from 0 cm to 10 cm. (author)

  9. The BNCT facility at the HFR Petten: Quality assurance for reactor facilities in clinical trials

    International Nuclear Information System (INIS)

    Moss, R.; Watkins, P.; Vroegindeweij, C.; Stecher-Rasmussen, F.; Huiskamp, R.; Ravensberg, K.; Appelman, K.; Sauerwein, W.; Hideghety, K.; Gabel, D.

    2001-01-01

    The first clinical trial in Europe of Boron Neutron Capture Therapy (BNCT) for the treatment of glioblastoma was opened in July 1997. The trial is a Phase I study with the principal aim to establish the maximum tolerated radiation dose and the dose limiting toxicity under defined conditions. It is the first time that a clinical application could be realised on a completely multi-national scale. The treatment takes place at the High Flux Reactor (HFR) in Petten, the Netherlands, is operated by an international team of experts under the leadership of a German radiotherapist, and treats patients coming from different European countries. It has therefore been necessary to create a very specialised organisation and contractual structure with the support of administrations from different countries, who had to find and adapt solutions within existing laws that had never foreseen such a situation. Furthermore, the treatment does not take place in an hospital environment and even more so, the facility is at a nuclear research reactor. Hence, special efforts were made on quality assurance, in order that the set-up at the facility and the personnel involved complied, as closely as possible, with similar practices in conventional radiotherapy departments. (author)

  10. A preliminary inter-centre comparison study for photon, thermal neutron and epithermal neutron responses of two pairs of ionisation chambers used for BNCT

    International Nuclear Information System (INIS)

    Roca, Antoaneta; Liu, Yuan-Hao; Wojnecki, Cecile; Green, Stuart; Nievaart, Sander; Ghani, Zamir; Moss, Ray

    2009-01-01

    The dual ionisation chamber technique is the recommended method for mixed field dosimetry of epithermal neutron beams. This paper presents initial data from an ongoing inter-comparison study involving two identical pairs of ionisation chambers used at the BNCT facilities of Petten, NL and of University of Birmingham, UK. The goal of this study is to evaluate the photon, thermal neutron and epithermal neutron responses of both pairs of TE(TE) (Exradin T2 type) and Mg(Ar) (Exradin M2 type) ionisation chambers in similar experimental conditions. At this stage, the work has been completed for the M2 type chambers and is intended to be completed for the T2 type chambers in the near future.

  11. Use of linear programming to obtain an optimum, multi-beam treatment plan in BNCT

    International Nuclear Information System (INIS)

    Nievaart, Sander; Moss, Ray; Sauerwein, Wolfgang; Wittig, Andrea

    2006-01-01

    For BNCT of melanoma metastases in the brain, it has been necessary to calculate the dose distributions in the patient for dozens of possible neutron beams and then to combine manually the different beams by individually weighting and adding them. This time consuming approach eventually gave the required treatment plan, which satisfied the prescription dose. However, by linear optimisation with the Simplex method, the optimum weights for a set of beams can be determined mathematically. The objective function to maximise is the minimum averaged physical boron dose in one certain lesion for every set of beams. The maximisation of this objective function is performed under the constraints of certain maximum and minimum dose limits in the organs at risk and lesions respectively and restricting the set of weighted beams to deliver an average total weighted dose of 7 Gy in the brain. After iteration, by using the constraint set for the minimum dose in the lesions as a variable and performed for all combinations of the neutron beams, the optimum beams and weights are found for each treatment. As a preliminary result, the total irradiation time decreased by more than 30%, which is advantageous regarding both the pharmacokinetics of the boron in the patient and patient comfort. (author)

  12. The current status of utilization of research reactors in China

    International Nuclear Information System (INIS)

    Luzheng, Yuan

    2004-01-01

    Seminars on utilization of research reactors were held to enhance experience exchanging among institutes and universities in China. The status of CARR (China Advanced Research Reactor) project is briefly described. The progress in BNCT program in China is introduced. (author)

  13. Radiation Transport Simulation for Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Ziegner, M.; Blaickner, M. [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Molecular Medicine, Muthgasse 11, 1190 Wien (Austria); Ziegner, M.; Khan, R.; Boeck, H. [Vienna University of Technology, Institute of Atomic and Subatomic Physics, Stadionallee 2, 1020 Wien (Austria); Bortolussi, S.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, National Institute of Nuclear Physics (INFN) Pavia Section, Pavia (Italy); Schmitz, T.; Hampel, G. [Nuclear Chemistry, University of Mainz, Fritz Strassmann Weg 2, 55099 Mainz (Germany)

    2011-07-01

    This work is part of a larger project initiated by the University of Mainz and aiming to use the university's TRIGA reactor to develop a treatment for liver metastases based on Boron Neutron Capture Therapy (BNCT). Diffuse distribution of cancerous cells within the organ makes complete resection difficult and the vicinity to radiosensitive organs impedes external irradiation. Therefore the method of 'autotransplantation', first established at the University of Pavia, is used. The liver is taken out of the body, irradiated in the thermal column of the reactor, therewith purged of metastases and then reimplanted. A highly precise dosimetry system is to be developed by means of measurements at the University of Mainz and computational calculations at the AIT. The stochastic MCNP-5 Monte Carlo-Code, developed by Los Alamos Laboratories, is applied. To verify the calculations of the flux and the absorbed dose in matter a number of measurements are performed irradiating different phantoms and liver sections in a 20cm x 20cm beam tube, which was created by removing graphite blocks from the thermal column of the reactor. The detector material consists of L- {alpha} -alanine pellets which are thought to be the most suitable because of their good tissue equivalence, small size and their wide response range. Another experiment focuses on the determination of the relative biological effectiveness (RBE-factor) of the neutron and photon dose for liver cells. Therefore cell culture plates with the cell medium enriched with {sup 157}Gd and {sup 10}B at different concentrations are irradiated. With regard to the alanine pellets MCNP-5 calculations give stable results. Nevertheless the absorbed dose is underestimated compared to the measurements, a phenomenon already observed in previous works. The cell culture calculations showed the enormous impact of the added isotopes with high thermal neutron cross sections, especially {sup 157}Gd, on the absorbed dose

  14. Establishment of optimal thermal neutron capture therapy for 5 types of human malignant melanoma

    International Nuclear Information System (INIS)

    Mishima, Yutaka

    1993-03-01

    A series of boron neutron capture therapy (BNCT) studies has already germinated in 1972, with a view to establishing the BNCT particularly suited for the treatment of various types of malignant melanoma, and has been succeeded by research teams comprised of multi-disciplinary members. Twelve patients (7 men and 5 women, aged from 50 to 85 years) with malignant melanoma have been treated with BNCT; among them, six patients were completely cured, four had extremely reduced tumors, and two were still in the clinical process. The present Progress Report is a compilation of 39 research presentations for the recent two years. In this report, three patients are described. Of these, one patient had deep-seated lesions in right and left lymph nodes. These lesions were cured by the use of D 2 O that allowed neutron beams to reach them. Application of positron emission tomography to the diagnosis of melanoma is a highlight in this Report. (N.K.)

  15. Radiological protection considerations during the treatment of glioblastoma patients by boron neutron capture therapy at the high flux reactor in Petten, The Netherlands

    International Nuclear Information System (INIS)

    Moss, R.L.; Rassow, J.; Finke, E.; Sauerwein, W.; Stecher-Rasmussen, F.

    2001-01-01

    A clinical trial of Boron Neutron Capture Therapy (BNCT) for glioblastoma patients has been in progress at the High Flux Reactor (HFR) at Petten since October 1997. The JRC (as licence holder of the HFR) must ensure that radiological protection measures are provided. The BNCT trial is a truly European trial, whereby the treatment takes place at a facility in the Netherlands under the responsibility of clinicians from Germany and patients are treated from several European countries. Consequently, radiological protection measures satisfy both German and Dutch laws. To respect both laws, a BNCT radioprotection committee was formed under the chairmanship of an independent radioprotection expert, with members representing all disciplines in the trial. A special nuance of BNCT is that the radiation is provided by a mixed neutron/gamma beam. The radiation dose to the patient is thus a complex mix due to neutrons, gammas and neutron capture in boron, nitrogen and hydrogen, which, amongst others, need to be correctly calculated in non-commercial and validated treatment planning codes. Furthermore, due to neutron activation, measurements on the patient are taken regularly after treatment. Further investigations along these lines include dose determination using TLDs and boron distribution measurements using on-line gamma ray spectroscopy. (author)

  16. Progressive Finland sees progress with nuclear projects

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, David [NucNet, Brussels (Belgium)

    2016-02-15

    The Finnish Hanhikivi-1 reactor project is firmly on track and a licence has been granted for construction of a final disposal facility for spent nuclear fuel - the first final repository in the world to enter the construction phase. Significant progress has been made with plans for Finland to build its sixth nuclear reactor unit at Hanhikivi. Fennovoima's licensing manager Janne Liuko said the company expects to receive the construction licence for the Generation III+ Hanhikivi-1 plant in late 2017. The application was submitted to the Finnish Ministry of Employment and the Economy in June 2015.

  17. Design of a thermal neutron field by 252Cf source for measurement of 10B concentrations in the blood samples for BNCT

    International Nuclear Information System (INIS)

    Naito, H.; Sakurai, Y.; Maruhashi, A.

    2006-01-01

    10 B concentrations in the blood samples for BNCT has been estimated due to amounts of prompt gamma rays from 10 B in the fields of thermal neutrons from a special guide tube attached to research reactor. A system using radioisotopes as the source of thermal neutron fields has advantages that are convenient and low cost because it doesn't need running of a reactor or an accelerator. The validity of 252 Cf as a neutron source for 10 B concentrations detection system was investigated. This system is composed of D 2 O moderator, Pb reflector/filter, C reflector, and LiF filter. A thermal neutron field with low background gamma-rays is obtained. A large source of 252 Cf is required to obtain a sufficient flux. (author)

  18. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Barth Rolf F

    2012-08-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH. In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger

  19. Current activities at the FiR 1 TRIGA reactor

    International Nuclear Information System (INIS)

    Salmenhaara, Seppo

    2002-01-01

    The FiR 1 -reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). The epithermal neutrons needed for the irradiation of brain tumor patients are produced from the fast fission neutrons by a moderator block consisting of Al+AlF 3 (FLUENTAL), which showed to be the optimum material for this purpose. Twenty-one patients have been treated since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization. The treatment organization has a close connection to the Helsinki University Central Hospital. The BNCT work dominates the current utilization of the reactor: three days per week for BNCT purposes and only two days per week for other purposes such as the neutron activation analysis and isotope production. In the near future the back end solutions of the spent fuel management will have a very important role in our activities. The Finnish Parliament ratified in May 2001 the Decision in Principle on the final disposal facility for spent fuel in Olkiluoto, on the western coast of Finland. There is a special condition in our operating license. We have now about two years' time to achieve a binding agreement between VTT and the Nuclear Power Plant Companies about the possibility to use the final disposal facility of the Nuclear Power Plants for our spent fuel. If this will not happen, we have to make the agreement with the USDOE with the well-known time limits. At the moment it seems to be reasonable to prepare for both spent fuel management possibilities: the domestic final disposal and the return to the USA offered by USDOE. Because the cost estimates of the both possibilities are on the same order of magnitude, the future of the reactor itself will determine, which of the spent fuel policies will be obeyed. In a couple of years' time it will be seen, if the funding of the reactor and the incomes from the BNC treatments will cover

  20. Functional and histological assessment of the radiobiology of normal rat lung in BNCT

    International Nuclear Information System (INIS)

    Kiger, J.L.; Riley, K.J.; Binns, P.J.; Harling, O.K.; Coderre, J.A.; Kiger, W.S. III; Patel, H.

    2006-01-01

    This study investigated the radiobiology and sensitivity of the normal rat lung to Boron Neutron Capture Therapy (BNCT) radiation. Rat thorax irradiations were carried out with x-rays or with neutrons in the presence or absence of p-boronophenylalanine (BPA). Lung damage were assessed functionally with breathing rate measurement up to 180 days after irradiation and then histologically. Breathing rates 20% (∼3 σ) above the control group (sham-irradiated rats) mean were considered as positive responses to lung radiation damage. Though most responding animals demonstrated radiation induced pneumonitis (≤110 days) as well as pulmonary fibrosis (>110 days), some animals receiving neutrons plus BPA showed only the latter. The breathing rate dose response data were fit using probit analysis. The ED 50 values measured for x-rays, neutron beam only, and neutrons plus BPA were 11.5±0.4 Gy, 9.2±0.5 Gy, and 6.7±0.4 Gy, respectively. The biological weighting factors for the neutron beam (n+γ), the thermal neutron dose component, and the 10 B dose component were determined to be 1.2±0.1, 2.2±0.4, and 2.3±0.3, respectively. The histological dose response curves were linear. Consistent with the functional assay, the weighting factors measured histologically were 1.2±0.1 for the thermal neutron beam and 1.9±0.2 for the 10 B dose component. (author)

  1. Organisation and management of the first clinical trial of BNCT in Europe (EORTC Protocol 11961)

    International Nuclear Information System (INIS)

    Sauerwein, W.; Rassow, J.; Hideghety, K.; Sack, H.; Moss, R.; Stecher-Rasmussen, F.; Wolbers, J.G.

    1999-01-01

    Boron Neutron Capture Therapy is based on the ability of the isotope 10 B to capture thermal neutrons and to disintegrate instantaneously producing high LET particles. The only neutron beam available in Europe for such a treatment is based at the European High Flux Reactor HFR at Petten (The Netherlands). The European Commission, owners of the reactor, decided that the potential benefit of the facility should be opened to all European citizens and therefore insisted on a multinational approach to perform the first clinical trial in Europe on BNCT. This precondition had to be respected as well as the national laws and regulations. Together with the Dutch authorities actions were undertaken to overcome the obvious legal problems. Furthermore, the clinical trial at Petten takes place in a nuclear research reactor, which apart from being conducted in a non-hospital environment, is per se known to be dangerous. It was therefore of the utmost importance that special attention is given to safety, beyond normal rules, and to the training of staff. In itself, the trial is an unusual Phase I study, introducing a new drug with a new irradiation modality, with really an unknown dose-effect relationship. This trial must follow optimal procedures, which underscore the quality and qualified manner of performance. (orig.)

  2. Hanford Site pollution prevention progress report; FINAL

    International Nuclear Information System (INIS)

    BETSCH, M.D.

    1999-01-01

    The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its contractors have a clear

  3. Comparison of the image-derived radioactivity and blood-sample radioactivity for estimating the clinical indicators of the efficacy of boron neutron capture therapy (BNCT): 4-borono-2-18F-fluoro-phenylalanine (FBPA) PET study.

    Science.gov (United States)

    Isohashi, Kayako; Shimosegawa, Eku; Naka, Sadahiro; Kanai, Yasukazu; Horitsugi, Genki; Mochida, Ikuko; Matsunaga, Keiko; Watabe, Tadashi; Kato, Hiroki; Tatsumi, Mitsuaki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT), positron emission tomography (PET) with 4-borono-2- 18 F-fluoro-phenylalanine (FBPA) is the only method to estimate an accumulation of 10 B to target tumor and surrounding normal tissue after administering 10 B carrier of L-paraboronophenylalanine and to search the indication of BNCT for individual patient. Absolute concentration of 10 B in tumor has been estimated by multiplying 10 B concentration in blood during BNCT by tumor to blood radioactivity (T/B) ratio derived from FBPA PET. However, the method to measure blood radioactivity either by blood sampling or image data has not been standardized. We compared image-derived blood radioactivity of FBPA with blood sampling data and studied appropriate timing and location for measuring image-derived blood counts. We obtained 7 repeated whole-body PET scans in five healthy subjects. Arterialized venous blood samples were obtained from the antecubital vein, heated in a heating blanket. Time-activity curves (TACs) of image-derived blood radioactivity were obtained using volumes of interest (VOIs) over ascending aorta, aortic arch, pulmonary artery, left and right ventricles, inferior vena cava, and abdominal aorta. Image-derived blood radioactivity was compared with those measured by blood sampling data in each location. Both the TACs of blood sampling radioactivity in each subject, and the TACs of image-derived blood radioactivity showed a peak within 5 min after the tracer injection, and promptly decreased soon thereafter. Linear relationship was found between blood sampling radioactivity and image-derived blood radioactivity in all the VOIs at any timing of data sampling (p radioactivity measured in the left and right ventricles 30 min after injection showed high correlation with blood radioactivity. Image-derived blood radioactivity was lower than blood sampling radioactivity data by 20 %. Reduction of blood radioactivity of FBPA in left ventricle after 30 min of FBPA

  4. High-Efficiency Nitride-Based Solid-State Lighting. Final Technical Progress Report

    International Nuclear Information System (INIS)

    Paul T. Fini; Shuji Nakamura

    2005-01-01

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 (micro)m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of ∼ 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light

  5. Response of the oral mucosa to porphyrin mediated boron neutron capture therapy

    International Nuclear Information System (INIS)

    Morris, G.M.

    2003-01-01

    Pre-clinical studies are now in progress to develop boron neutron capture therapy (BNCT) modalities for the treatment of head and neck carcinomas. BNCT is a bimodal therapy which involves the administration of a boron-10 enriched compound, that accumulates preferentially in tumours, prior to irradiation with low energy neutrons. These neutrons are captured by boron-10 atoms to produce a highly localised radiation exposure. More recently, it has been demonstrated that various boronated porphyrins can target a variety of tumours. Of the porphyrins evaluated to date, copper tetracarboranylphenyl porphyrin (CuTCPH) is a strong candidate for potential clinical evaluation. It has extremely high specificity for a variety of tumour models. Therapeutic efficacy of CuTCPH mediated BNCT has been demonstrated in pre-clinical studies using the murine EMT-6 carcinoma model. In the present investigation the response of the oral mucosa to CuTCPH mediated boron neutron capture (BNC) irradiation was assessed using a standard rat model (ventral tongue). Single exposure irradiation was carried out on the thermal neutron beam at the Brookhaven Medical Research Reactor, at 3 days after the final injection of the boronated porphyrin. The impact of CuTCPH mediated BNC irradiation on oral mucosa at therapeutically effective exposure times, assessed using the ventral tongue model, was minimal. This was primarily due to the fact that blood boron levels (from CuTCPH) were very low at the time of irradiation. Analysis of the dose-effect data for CuTCPH gave a compound biological effectiveness (CBE) factor of 2.5. It can be concluded that, although, the CBE factor (calculated using blood boron concentrations) was relatively high, CuTCPH mediated BNC irradiation should not cause significant damage at clinically relevant radiation doses. This is because blood boron levels would be very low at the time of irradiation

  6. Clinical potential of boron neutron capture therapy for locally recurrent inoperable previously irradiated head and neck cancer

    International Nuclear Information System (INIS)

    Lim, Diana; Quah, Daniel SC; Leech, Michelle; Marignol, Laure

    2015-01-01

    This review compares the safety and efficacy of boron neutron capture therapy (BNCT) in the treatment of previously irradiated, inoperable locoregional recurrent HNC patients and compares BNCT against the standard treatment of platinum-based chemotherapy. Our analysis of published clinical trials highlights efficacy of BNCT associated with mild side effects. However, the use of BNCT should be explored in stratified randomised trials. - Highlights: • BNCT can prolong median overall survival. • BNCT can be associated with severe adverse effects. • BNCT may be comparable to chemotherapy-based regimens. • BNCT may be comparable to re-irradiation techniques regimens in patients with low performance status.

  7. Application of 10BSH entrapped transferrin-PEG-liposome to boron neutron-capture therapy (BNCT) for solid tumor

    International Nuclear Information System (INIS)

    Maruyama, K.; Ishida, O.; Iwatsuru, M.; Yanagie, H.; Eriguchi, M.; Kobayashi, H.

    2000-01-01

    The successful treatment of cancer by BNCT requires the selective concentration of 10 B within malignant tumor cells. Intracellular targeting ability and cytotoxic effects of 10 B entrapped TF-PEG-liposomes, in which TF is covalently linked to the distal terminal of PEG chains on the external surface of PEG-liposomes, were examined in Colon 26 tumor-bearing mice. TF-PEG-liposomes readily bound to tumor cells in vivo, and were internalized by receptor-mediated endocytosis. 10 B-PEG-liposomes and 10 B-TF-PEG-liposomes showed prolonged residence time in the circulation and low RES uptake in tumor-bearing mice, resulting in enhanced extravasation of the liposomes into the solid tumor tissue and reached high level of 10 B content in tumor. After thermal neutron irradiation of mice injected with 10 B-PEG-liposomes or 10 B-TF-PEG-liposome, tumor growth was suppressed relative to controls. These results suggest that intravenous injection of 10 B TF-PEG-liposome can increase the intracellular retention of 10 B atoms, which were introduced by receptor mediated endocytosis after binding, causing tumor growth suppression in vivo upon thermal neutron irradiation. (author)

  8. Clinical treatment planning for subjects undergoing boron neutron capture therapy at Harvard-MIT

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Palmer, M.R.; Buse, P.M.

    2001-01-01

    Treatment planning is a crucial component of the Harvard-MIT boron neutron capture therapy (BNCT) clinical trials. Treatment planning can be divided into five stages: (1) pre-planning, based on CT and MRI scans obtained when the subject arrives at the hospital and on assumed boron-10 distribution parameters; (2) subject set-up, or simulation, in the MITR-II medical therapy room to determine the boundary conditions for possible set-up configurations; (3) re-planning, following the subject simulation; (4) final localization of the subject in the medical therapy room for BNCT; and (5) final post facto recalculation of the doses delivered based on firm knowledge of the blood boron-10 concentration profiles and the neutron flux histories from precise online monitoring. The computer-assisted treatment planning is done using a specially written BNCT treatment planning code called MacNCTPLAN. The code uses the Los Alamos National Laboratory's Monte Carlo n-particle radiation transport code MCNPv.4b as the dose calculation engine and advanced anatomical model simulation based on an automatic evaluation of CT scan data. Results are displayed as isodose contours and dose-volume histograms, the latter correlated precisely with corresponding anatomical CT or MRI image planes. Examples of typical treatment planning scenarios will be presented. (author)

  9. Impact of intra-arterial administration of boron compounds on dose-volume histograms in boron neutron capture therapy for recurrent head-and-neck tumors

    International Nuclear Information System (INIS)

    Suzuki, Minoru; Sakurai, Yoshinori; Nagata, Kenji; Kinashi, Yuko; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira; Kato, Ituro; Fuwa, Nobukazu; Hiratsuka, Junichi; Imahori, Yoshio

    2006-01-01

    Purpose: To analyze the dose-volume histogram (DVH) of head-and-neck tumors treated with boron neutron capture therapy (BNCT) and to determine the advantage of the intra-arterial (IA) route over the intravenous (IV) route as a drug delivery system for BNCT. Methods and Materials: Fifteen BNCTs for 12 patients with recurrent head-and-neck tumors were included in the present study. Eight irradiations were done after IV administration of boronophenylalanine and seven after IA administration. The maximal, mean, and minimal doses given to the gross tumor volume were assessed using a BNCT planning system. Results: The results are reported as median values with the interquartile range. In the IA group, the maximal, mean, and minimal dose given to the gross tumor volume was 68.7 Gy-Eq (range, 38.8-79.9), 45.0 Gy-Eq (range, 25.1-51.0), and 13.8 Gy-Eq (range, 4.8-25.3), respectively. In the IV group, the maximal, mean, and minimal dose given to the gross tumor volume was 24.2 Gy-Eq (range, 21.5-29.9), 16.4 Gy-Eq (range, 14.5-20.2), and 7.8 Gy-Eq (range, 6.8-9.5), respectively. Within 1-3 months after BNCT, the responses were assessed. Of the 6 patients in the IV group, 2 had a partial response, 3 no change, and 1 had progressive disease. Of 4 patients in the IA group, 1 achieved a complete response and 3 a partial response. Conclusion: Intra-arterial administration of boronophenylalanine is a promising drug delivery system for head-and-neck BNCT

  10. Comparison of three experimental protocols in pre clinical studies for thyroid cancer treatment using sodium butyrate in combination with boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Perona, M; Rodriguez, C; Carpano, M; Majdalani E; Nievas, S; Olivera, M; Pisarev, M; Cabrini, R; Juvenal, G; Dagrosa A

    2012-01-01

    Background: We have shown that boron neutron capture therapy (BNCT) could be an alternative for the treatment of poorly differentiated (PDTC) and undifferentiated thyroid carcinoma (UTC). However new strategies are being assayed in order to optimize its application. Histone de acetylase inhibitors (HDAC-I) like sodium butyrate (NaB), are emerging as a new class of chemotherapeutic agents which target the epigenome. Since histone hyper acetylation mediates changes in chromatin conformation, HDAC-I are involved in different epigenetically controlled activities like apoptosis, proliferation, cell differentiation, induction of cell cycle arrest and motility. The purpose of the present studies was to analyze different treatment regimens of combination of NaB and boronophenylalanine (BPA) uptake in animals bearing transplants of a human thyroid carcinoma Methods: NIH nude mice of 6-8 weeks were implanted (s.c.) with 10 6 of human follicular thyroid carcinoma cells (WRO). Three regimens were evaluated in 48 animals after 15 days when tumors had a size between 50 and 100 mm 3 . Group 1 (n=10): BPA and NaB (50 mM) via i.p. at a dose of 110 mg/kg b.w. 24 h before boron compound administration; group 2 (n=10): BPA and NaB 3.4% in the water ad libitum during a month after 15 days post-implantation; group 3 (n=10): BPA alone. In all the groups BPA was injected at a dose of 350 mg/Kg b.w. (i.p.) and the animals were sacrificed at 2 h post-administration. Boron measurements in tissues and blood were performed by ICP-OES. A control group without NaB (n=6) for each regimen was included. The tumor growth and the body weight were determined twice a week during a month. Results: The administration of NaB 3.4% during a month previous to BNCT did not modify the body weight of the mice and decreased the tumor growth compared to its control group (p<0.01). The biodistribution studies showed a tumor boron concentration of 32.6 ± 1.4 ppm for group 1 (NaB 50 mM plus BPA), of 16.9 ± 3.7 ppm

  11. Final Performance Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Houldin, Joseph [Delaware Valley Industrial Resource Center, Philadelphia, PA (United States); Saboor, Veronica [Delaware Valley Industrial Resource Center, Philadelphia, PA (United States)

    2016-03-30

    about assessing a company’s technical assets, broadening our view of the business to go beyond what they make or what NAICS code they have…to better understand their capacity, capability, and expertise, and to learn more about THEIR customers. Knowing more about the markets they serve can often provide insight into their level of technical knowledge and sophistication. Finally, in the spirit of realizing the intent of the Accelerator we strove to align and integrate the work and activities supported by the five funding agencies to leverage each effort. To that end, we include in the Integrated Work Plan a graphic that illustrates that integration. What follows is our summary report of the project, aggregated from prior reports.

  12. An optimum source neutron spectrum and holder shape for extra-corporal treatment of liver cancer by BNCT

    International Nuclear Information System (INIS)

    Nievaart, Sander; Moss, Ray; Sauerwein, Wolfgang; Malago, Massimo; Kloosterman, Jan Leen; Hagen, Tim van der; Dam, Hugo van

    2006-01-01

    In extra-corporal treatment of liver cancer by BNCT, it is desired to have an as homogeneous as possible thermal neutron field throughout the organ. Previous work has shown that when using an epithermal neutron beam, the shape of the holder in which the liver is placed is the critical factor. This study develops the notion further as to what is the optimum neutron spectrum to perform such treatments. In the design calculations, when using Monte Carlo techniques, it is shown that when the expected contributions of the source neutrons in every part of the liver is calculated, a linear optimization scheme such as the Simplex method results in a mix of thermal and epithermal source neutrons to get the highest homogeneity for the thermal neutron field. This optimisation method is demonstrated in 3 holder shapes: cuboid, cylindrical and spherical with each 3 volumes of 2, 4 and 6 litres. A 10 cm thick cuboid model, irradiated from both sides gives the highest homogeneity. The spherical (rotating) holder has the lowest homogeneity but the highest contribution of every source neutron to the thermal neutrons in the liver. This can be advantageous when using a relatively small sized neutron beam with a low strength. (author)

  13. The international dosimetry exchange for BNCT. A basis for pooling and collectively analyzing clinical results

    International Nuclear Information System (INIS)

    Riley, K.J.; Binns, P.J.; Harling, O.K.; Kiger, W.S. III; Seppaelae, T.; Savolainen, S.; Moss, R.; Marek, M.; Rezaei, A.

    2006-01-01

    An international collaboration was organized by the Massachusetts Institute of Technology (MIT) to undertake a dosimetry exchange for the eventual purpose of combining results from various clinical centers that employ different methods for measuring and prescribing absorbed dose in the mixed radiation fields used for neutron capture therapy. Treatment plans calculated at NCT centers in the Czech Republic, Finland, The Netherlands and Sweden were normalized to corresponding measurements performed by the MIT dosimetry group in each beam. More than half of the normalizations for individual absorbed dose components (photon, fast neutron, thermal neutron and boron) determined by comparing MIT measurements to the dose specified in treatment plans from the different centers were statistically significant and ranged from 8 to 400%. Each facility had at least one dose component that would require normalization for the specified doses to be accurately compared. These normalizations establish a technical basis to begin collectively analyzing treatment plans between the European and US centers. Simple but pertinent treatment parameters such as the maximum dose to brain can now be properly compared, once the clinical data is available. This could held to more precisely and quickly determine various dose-response relationships as for example those related to adverse events. Future efforts to determine dose normalization at other centers performing human studies as well as more sophisticated analyses using combined data from several centers should be guided by clearly defined clinical objectives with active participation from clinical BNCT experts. (author)

  14. Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Rasouli

    2012-09-01

    Full Text Available Introduction BNCT is an effective method to destroy brain tumoral cells while sparing the healthy tissues. The recommended flux for epithermal neutrons is 109 n/cm2s, which has the most effectiveness on deep-seated tumors. In this paper, it is indicated that using D-T neutron source and optimizing of Beam Shaping Assembly (BSA leads to treating brain tumors in a reasonable time where all IAEA recommended criteria are met. Materials and Methods The proposed BSA based on a D-T neutron generator consists of a neutron multiplier system, moderators, reflector, and collimator. The simulated Snyder head phantom is used to evaluate dose profiles in tissues due to the irradiation of designed beam. Monte Carlo Code, MCNP-4C, was used in order to perform these calculations.   Results The neutron beam associated with the designed and optimized BSA has an adequate epithermal flux at the beam port and neutron and gamma contaminations are removed as much as possible. Moreover, it was showed that increasing J/Φ, as a measure of beam directionality, leads to improvement of beam performance and survival of healthy tissues surrounding the tumor. Conclusion According to the simulation results, the proposed system based on D-T neutron source, which is suitable for in-hospital installations, satisfies all in-air parameters. Moreover, depth-dose curves investigate proper performance of designed beam in tissues. The results are comparable with the performances of other facilities.

  15. Accelerator-Based Boron Neutron Capture Therapy and the Development of a Dedicated Tandem-Electrostatic-Quadrupole

    International Nuclear Information System (INIS)

    Kreiner, A. J.; Di Paolo, H.; Burlon, A. A.; Valda, A. A.; Debray, M. E.; Somacal, H. R.; Minsky, D. M.; Kesque, J. M.; Giboudot, Y.; Levinas, P.; Fraiman, M.; Romeo, V.

    2007-01-01

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). Progress on an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. A 30 mA proton beam of 2.5 MeV are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p,n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. The first design and construction of an ESQ module is discussed and its electrostatic fields are investigated theoretically and experimentally. Also new beam transport calculations through the accelerator are presented

  16. Boron uptake measurements in metastatic tumours in rat lung

    International Nuclear Information System (INIS)

    Bortolussi, S.; Altieri, S.; Bruschi, P.

    2006-01-01

    Lung carcinoma is the leading cause of cancer mortality worldwide; despite the introduction over the last few years of new therapeutic agents, very little progress has been made in terms of survival, and the overall prognosis for these patients remains poor. For these reasons any efforts to find and validate new effective therapeutic procedures for lung cancer are very timely and essential. To study the possibility to apply BNCT in the cure of diffuse pulmonary tumours, we created a BNCT Lung Project in Pavia, supported by Ministry of Education, University and Research (MIUR), in which Physicists, Medical Doctors and Biologists are involved. The first steps were; 1. development of an animal model for Boron uptake measurements in healthy and tumour lung tissues; 2. evaluation of the possibility to treat patients with epithermal neutron beams (See S. Altieri et al., this Conference); 3. in-vitro study of BNCT efficacy (see A. Zonta et al.). Spatial Boron distribution by neutron radiography in lung metastases from Colon Adenocarcinoma is reported; furthermore we present preliminary results of Boron concentration measures in rat lung tissues. The measures were performed using alpha spectrometry in thin tissue samples. (author)

  17. 1985. Annual progress report

    International Nuclear Information System (INIS)

    1986-01-01

    This annual progress report of the CEA Protection and Nuclear Safety Institut outlines a description of the progress made in each sections of the Institut Research activities of the different departments include: reactor safety analysis, fuel cycle facilities analysis; and associated safety research programs (criticality, sites, transport ...), radioecology and environmental radioprotection techniques; data acquisition on radioactive waste storage sites; radiation effects on man, studies on radioprotection techniques; nuclear material security including security of facilities, security of nuclear material transport, and monitoring of nuclear material management; nuclear facility decommissioning; and finally the public information [fr

  18. Pilot clinical study of boron neutron capture therapy for recurrent hepatic cancer involving the intra-arterial injection of a 10BSH-containing WOW emulsion

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Higashi, Syushi; Seguchi, Koji; Ikushima, Ichiro; Fujihara, Mituteru; Nonaka, Yasumasa; Oyama, Kazuyuki; Maruyama, Syoji; Hatae, Ryo; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Tomoko; Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Narabayashi, Masaru; Kajiyama, Tetsuya; Maruhashi, Akira; Ono, Koji; Nakajima, Jun

    2014-01-01

    A 63-year-old man with multiple HCC in his left liver lobe was enrolled as the first patient in a pilot study of boron neutron capture therapy (BNCT) involving the selective intra-arterial infusion of a 10 BSH-containing water-in-oil-in-water emulsion ( 10 BSH-WOW). The size of the tumorous region remained stable during the 3 months after the BNCT. No adverse effects of the BNCT were observed. The present results show that 10 BSH-WOW can be used as novel intra-arterial boron carriers during BNCT for HCC. - Highlights: • We started the pilot clinical study of BNCT to recurrence hepatic cancer. • The tumor size was remained stable during 3 months after BNCT(SD). • No adverse effect as a result of BNCT was observed during follow-up period. • 10 B-containing WOW emulsion can be applied as a novel intra-arterial boron carrier for BNCT for HCC

  19. Early detection of emphysema progression

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Jacobs, Sander S A M; Lo, Pechin

    2010-01-01

    Emphysema is one of the most widespread diseases in subjects with smoking history. The gold standard method for estimating the severity of emphysema is a lung function test, such as forced expiratory volume in first second (FEV1). However, several clinical studies showed that chest CT scans offer...... more sensitive estimates of emphysema progression. The standard CT densitometric score of emphysema is the relative area of voxels below a threshold (RA). The RA score is a global measurement and reflects the overall emphysema progression. In this work, we propose a framework for estimation of local...... emphysema progression from longitudinal chest CT scans. First, images are registered to a common system of coordinates and then local image dissimilarities are computed in corresponding anatomical locations. Finally, the obtained dissimilarity representation is converted into a single emphysema progression...

  20. Boron-rich oligomers for BNCT

    International Nuclear Information System (INIS)

    Gula, M.; Perleberg, O.; Gabel, D.

    2000-01-01

    The synthesis of two BSH derivatives is described, which can be used for oligomerization in DNA-synthesizers. Synthesis pathways lead to final products in five and six steps, respectively. Because of chirality interesting results were expected. NMR-measurements confirm this expectation. Possible oligomers with high concentrations of boron can be attached to biomolecules. These oligomers can be explored with several imaging methods (EELS, PEM) to determine the lower detection limit of boron with these methods. (author)

  1. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    John Ross

    2003-04-30

    The Final Technical Report summarizes research accomplishments and Publications in the period of 5/1/99 to 4/30/03 done on the grant. Extensive progress was made in the period covered by this report in the areas of chemical kinetics of non-linear systems; spatial structures, reaction - diffusion systems, and thermodynamic and stochastic theory of electrochemical and general systems.

  2. Nuclear research with the electromagnetic probe. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    Meziani, Z.E.

    1994-10-01

    This is the final report on the research carried at Stanford University under contract DE-FG03-88ER40439. All the work accomplished under this grant is reported in the publications listed as part of the Principal Investigator bibliography at the end of this report. In the last few years our research was directed at some of the forefront questions in nuclear physics. We investigated the nuclear medium effects on the intrinsic properties of bound nucleons, specifically the ectromagnetic form factors. For these studies we performed a number of specialized electron scattering experiments with specific sensitivity to nuclear medium effects. At the next level of structure, elementary constituents of matter are quarks and gluons. Defining the energy regime where the quark-gluon description of nuclear systems becomes more relevant than the nucleon-meson description is of great importance in thoroughly understanding the nuclear structure. To explore this transition region, we studied the scaling region in the disintegration of the deuteron, the simplest nuclear system with high energy photons. Finally we focused on the investigation of the nucleon internal spin structure along with the test of the Bjoerken sum rule a fundamental sum rule of QCD.

  3. Nuclear research with the electromagnetic probe. Final progress report

    International Nuclear Information System (INIS)

    Meziani, Z.E.

    1994-10-01

    This is the final report on the research carried at Stanford University under contract DE-FG03-88ER40439. All the work accomplished under this grant is reported in the publications listed as part of the Principal Investigator bibliography at the end of this report. In the last few years our research was directed at some of the forefront questions in nuclear physics. We investigated the nuclear medium effects on the intrinsic properties of bound nucleons, specifically the ectromagnetic form factors. For these studies we performed a number of specialized electron scattering experiments with specific sensitivity to nuclear medium effects. At the next level of structure, elementary constituents of matter are quarks and gluons. Defining the energy regime where the quark-gluon description of nuclear systems becomes more relevant than the nucleon-meson description is of great importance in thoroughly understanding the nuclear structure. To explore this transition region, we studied the scaling region in the disintegration of the deuteron, the simplest nuclear system with high energy photons. Finally we focused on the investigation of the nucleon internal spin structure along with the test of the Bjoerken sum rule a fundamental sum rule of QCD

  4. DOSE EFFECT OF THE 33S(n,α) 30SI REACTION IN BNCT USING THE NEW n_TOF-CERN DATA.

    Science.gov (United States)

    Sabaté-Gilarte, M; Praena, J; Porras, I; Quesada, J M

    2017-09-23

    33S is a stable isotope of sulphur which is being studied as a potential cooperative target for Boron Neutron Capture Therapy (BNCT) in accelerator-based neutron sources because of its large (n,α) cross section in the epithermal neutron energy range. Previous measurements resolved the resonances with a discrepant description of the lowest-lying and strongest one (at 13.5 keV). However, the evaluations of the major databases do not include resonances, except EAF-2010 which shows smaller values in this range than the experimental data. Furthermore, the glaring lack of data below 10 keV down to thermal (25.3 meV) has motivated a new measurement at n_TOF at CERN in order to cover the whole energy range. The inclusion of this new 33S(n,α) cross section in Monte Carlo simulations provides a more accurate estimation of the deposited kerma rate in tissue due to the presence of 33S. The results of those simulations represent the goal of this work. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Ultraviolet irradiation of nucleic acids and related compounds. Final progress report

    International Nuclear Information System (INIS)

    Wang, S.Y.

    1976-01-01

    Progress is reported on the following research projects: photohydration of pyrimidine derivatives; thymine dimerization; uv-induced formation of pyrimidinyl radicals; formation of a coupled product by irradiation of 5-bromouracil derivatives; studies on pyrimidine adducts; molecular aggregates-puddle formation hypothesis of pyrimidine photodimerization; and topochemical studies of structures of dimers and of crystalline arrangements

  6. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    International Nuclear Information System (INIS)

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 10 8 n/cm 2 · s. The fast neutron and gamma radiation KERMA factors are 10 x 10 -11 cGy·cm 2 /n epi and 20 x 10 -11 cGy·cm 2 /n epi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power

  7. Medical, energetic, environmental applications

    International Nuclear Information System (INIS)

    2007-01-01

    The boron neutron capture therapy (BNCT) project at ENEA is mainly based on the TAPIRO experimental nuclear reactor and (more recently) also on the TRIGA reactor, both located at ENEA Casaccia. TAPIRO has two facilities: an epithermal column (EPIMED) constructed for research on deep tumours, such as glioblastoma, and a thermal column (HYTHOR) mainly used in collaboration with the Legnaro National Laboratory (LNL) of the National Institute of Nuclear Physics (INFN) and with the University of Padua for in vivo radiobiological studies and neutron microdosimetry. The feasibility of using the thermal column of the TRIGA reactor to treat explanted livers with BNCT is being studied. The collaboration with INFN Pavia and the University of Pavia on applying BNCT to lung tumours continued. In 2007 the final agreement from the Italian Agency for Environmental Protection and Technical Services (APAT) was obtained and the reactor operating conditions with the EPIMED facility were established. As described in the 2006 Progress Report, the epithermal neutron beam (neutron energy between 1 eV and 10 keV) entering the reactor hall has been shielded by a bunker of limited volume, appropriate for beam characterisation with the reactor operating at a maximum 10% of nominal power (5 kW). The use of nuclear power in space is technically feasible but, due to the remote risk of an accident at launch or in the event of an uncontrolled re-entry, it still remains politically unacceptable. Nevertheless, small and safe nuclear reactors could generate 30-60 kW of electrical power for a period of 10-15 years even in the case of a deep space mission, where conventional energy conversion devices are useless or inefficient. Furthermore, the standard space systems for electrical power generation (photoelectric conversion and radioactive thermal generator) are unable to sustain similar performances even in orbital conditions. A carefully designed nuclear reactor for space application could also be

  8. INEL BNCT Research Program Annual Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1994-08-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy Research Program for calendar year 1993. Contributions from all the principal investigators are included, covering chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, boron drug analysis), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (tissue and efficacy studies of small and large animal models). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented. Results of 21 spontaneous-tumor-bearing dogs that have been treated with boron neutron capture therapy at the Brookhaven National Laboratory are updated. Boron-containing drug purity verification is discussed in some detail. Advances in magnetic resonance imaging of boron in vivo are discussed. Several boron-carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Measurement of the epithermal-neutron flux of the Petten (The Netherlands) High Flux Reactor beam (HFB11B), and comparison to predictions are shown.

  9. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Faria Gaspar, P. de.

    1994-01-01

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  10. Progress on the SNS target station

    International Nuclear Information System (INIS)

    Carne, A.

    1983-01-01

    This review gives progress and modifications covering the last eighteen months, under the five broad areas of target, target assembly, control system, bulk shield and remote handling. Finally a discussion of additional facilities to the SNS is presented

  11. A new approach to dose estimation and in-phantom figure of merit measurement in BNCT by using artificial neural networks

    International Nuclear Information System (INIS)

    Ahangari, R.; Afarideh, H.

    2011-01-01

    Full text: In-phantom figures of merit of the radiobiological dose distribution are the main criteria for evaluation of the boron neutron capture therapy (BNCT) plan and neutron beam evaluation. Since in BNCT there are several reactions, which contribute to the total dose of the tissue, the calculation of the dose distribution is complicated and requires lengthy and time-consuming simulations. Any changes in the beam shaping assembly (BSA) design would lead to the change of the neutron/gamma spectrum at exit of therapeutic window. As a result of any changes in the beam spectrum, the dose distribution in the tissue will be altered; therefore, another set of lengthy and time-consuming simulations to recalculate the dose distribution would have to be performed. This study proposes a method that applies artificial neural network (ANN) for quick dose prediction in order to avoid lengthy calculations. This method allows us to estimate the depth-dose distribution and in-phantom figures of merit for any energy spectrum without performing a complete Monte Carlo code (MCNP) simulation. To train the ANNs for modeling the depth-dose distribution, this study used a database containing 500 simulations of the neutron depth-dose distribution and 280 simulations of the gamma depth-dose distribution. The calculations were carried out by the MCNP for various mono-energetic neutrons, ranging from thermal up to 10 MeV energy and 280 gamma energy group, ranging from 0.01 MeV up to 20 MeV, through the SNYDER head phantom which is located at the exit of the BSA. The trained ANN was capable of establishing a map between the neutron/gamma beam energy and the dose distribution in the phantom as an input and a response, respectively. The current method is founded upon the observation that the dose which is released by the beam of composite energy spectrum can be decomposing into the various energy components which make the neutron/gamma spectrum. Therefore, in this procedure the neutron

  12. Development of indigenous irradiator - current progress and challenges

    International Nuclear Information System (INIS)

    Anwar A Rahman; Mohd Arif Hamzah; Muhd Nor Atan; Aznor Hassan; Fadil Ismail; Julia A Karim; Rosli Darmawan

    2009-01-01

    The development of indigenous irradiator is one of Prototype Development Center main project to support Nuclear Malaysia services. Three (3) projects have been identified and currently the status is in final stage of design. There are some issues and challenges encountered, which delayed the project progress. The paper will discuss the current progress of development and challenges faced in designing the irradiator. (Author)

  13. Final disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kroebel, R [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Projekt Wiederaufarbeitung und Abfallbehandlung; Krause, H [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Abt. zur Behandlung Radioaktiver Abfaelle

    1978-08-01

    This paper discusses the final disposal possibilities for radioactive wastes in the Federal Republic of Germany and the related questions of waste conditioning, storage methods and safety. The programs in progress in neighbouring CEC countries and in the USA are also mentioned briefly. The autors conclude that the existing final disposal possibilities are sufficiently well known and safe, but that they could be improved still further by future development work. The residual hazard potential of radioactive wastes from fuel reprocessing after about 1000 years of storage is lower that of known inorganic core deposits.

  14. Final Progress Report for Collaborative Research: Aging of Black Carbon during Atmospheric Transport: Understanding Results from the DOE’s 2010 CARES and 2012 ClearfLo Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoleni, Claudio [Michigan Technological Univ., Houghton, MI (United States); Subramanian, R. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-08-31

    Over the course of this project, we have analyzed data and samples from the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the Clear air for London (ClearfLo) campaign, as well as conducted or participated in laboratory experiments designed to better understand black carbon mixing state and climate-relevant properties. The laboratory campaigns took place at the Pacific Northwest National Laboratory and Carnegie Mellon University to study various climate-relevant aerosol properties of different sources of soot mixing with secondary organic aerosol precursors. Results from some of these activities were summarized in the previous progress report. This final report presents the manuscripts that have been published (many in the period since the last progress report), lists presentations at different conferences based on grant-related activities, and presents some results that are likely to be submitted for publication in the near future.

  15. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  16. FINAL Progress Report DOE Grant DE-FG02-04ER15587

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, Charles Buddie [Univ. of Texas, Austin, TX (United States)

    2016-11-03

    Catalysis Program - Viviane Schwartz Program Manager This Final Report discusses several archival journal articles that have been published that present and discuss the results that were discovered through this DOE grant.

  17. 1984-85 ISN progress report

    International Nuclear Information System (INIS)

    1985-01-01

    This progress report ISN 1984-1985 deals with the following subjects: nuclear physics theory, peripheral and intermediate energy physics, characteristics of reaction mechanisms in heavy ion collisions, nuclear structure, fundamental interactions, experimental methods and new instrumentation, some interdisciplinary research activities and technical activities, the SARA cyclotron and finally, technology transfer and valorisation [fr

  18. The BNCT resistant fraction of cancer cells. An in vitro morphologic and cytofluorimetric study on a rat coloncarcinoma cell line

    International Nuclear Information System (INIS)

    Ferrari, C.; Clerici, A.M.; Mazzini, G.

    2006-01-01

    Given the high efficacy of the BNCT treatment, recurrences reasonably depends on the failure of a cell fraction to uptake and retain adequate levels of boronated compounds. Aim of this study is to identify, quantify and characterize the resistant cell fraction relative to the delivered boron concentration. Experiments were performed on the DHD/K12/TRb line by means of cytofluorimetric DNA analysis, plating efficiency and morphologic observations. Cells were incubated with p-boronophenylalanine (BPA) concentrations ranging from 10 to 40 ppm for 18 h. Following neutron exposure, cells were reseeded for subsequent morphologic observations, counting and DNA analysis. Samples of irradiated cells not BPA enriched and non-irradiated cells with and without boron were compared with them. After 24 hs there were no differences among the four conditions, in terms of number of recovered cells, morphology and cell cycle distribution. Starting from 48 hs and up to 7 days BPA irradiated cells showed growth in dimensions, important cell number reduction and multiclonal DNA profile worsening with time. After 9 days normally sized cell clones appeared confirming the presence of a resistant cell fraction able to restore the original cell population after 21 days. The incidence of surviving cells turned out to be in the range 0,026-0,05%. (author)

  19. Final report on progress of grant ''Few-nucleon systems in the laboratory, supernovae, and the cosmos''

    International Nuclear Information System (INIS)

    Phillips, Daniel R.

    2006-01-01

    In the past year I have pursued work in three different areas within the scope of my Department of Energy Outstanding Junior Investigator Award ''Few-nucleon systems in the laboratory, supernovae, and the cosmos''. The first, and main, focus of my research has been testing the usefulness of effective field theory (EFT) in describing Compton scattering for different targets: the proton, deuterium, and Helium-3. This has been where the bulk of my OJI effort has been dedicated in the past twelve months, and thus it is the longest section of this report. Secondly, I have been working on the application of EFT to the reaction π - d → γnn. Finally, I have also been involved in a non-EFT project: computing certain many-body effects which affect the neutrino cooling of neutron stars and supernovae. In what follows I first describe my work in each of these areas. I then discuss unexpended funds, and the students who have been supported under the aegis of this project, as well as listing publications, talks, etc. associated with this grant in 2004-05. This report describes progress made on research projects associated with my Department of Energy Outstanding Junior Investigator grant

  20. Spent fuel management - two alternatives at the FiR 1 reactor

    International Nuclear Information System (INIS)

    Salmenhaara, S.E.J.

    2001-01-01

    The FiR 1 -reactor, a 250 kW Triga reactor, has been in operation since 1962. The reactor with its subsystems has experienced a large renovation work in 1996-97. The main purpose of the upgrading was to install the new Boron Neutron Capture Therapy (BNCT) irradiation facility. The BNCT work dominates the current utilization of the reactor: four days per week for BNCT purposes and only one day per week for neutron activation analysis and isotope production. The Council of State (government) granted for the reactor a new operating license for twelve years starting from the beginning of the year 2000. There is however a special condition in the new license. We have to achieve a binding agreement between our Research Centre and the domestic Nuclear Power Plant Companies about the possibility to use the final disposal facility of the Nuclear Power Plants for our spent fuel, if we want to continue the reactor operation beyond the year 2006. In addition to the choosing of one of the spent fuel management alternatives the future of the reactor will also depend strongly on the development of the BNCT irradiations. If the number of patients per year increases fast enough and the irradiations of the patients will be economically justified, the operation of the reactor will continue independently of the closing of the USDOE alternative in 2006. Otherwise, if the number of patients will be low, the funding of the reactor will be probably stopped and the reactor will be shut down. (author)

  1. Enhanced tumor cell killing following BNCT with hyperosmotic mannitol-induced blood-brain barrier disruption and intracarotid injection of boronophenylalanine

    International Nuclear Information System (INIS)

    Hsieh, C.H.; Hwang, J.J.; Chen, F.D.; Liu, R.S.; Liu, H.M.; Hsueh, Y.W.; Kai, J.J.

    2006-01-01

    The delivery of boronophenylalanine (BPA) by means of intracarotid injection combined with opening the blood-brain barrier (BBB) have been shown significantly enhanced the tumor boron concentration and the survival time of glioma-bearing rats. However, no direct evidence demonstrates whether this treatment protocol can enhance the cell killing of tumor cells or infiltrating tumor cells and the magnitude of enhanced cell killing. The purpose of the present study was to determine if the tumor cell killing of boron neutron capture therapy could be enhanced by hyperosmotic mannitol-induced BBB disruption using BPA-Fr as the capture agent. F98 glioma-bearing rats were injected intravenously or intracarotidly with BPA at doses of 500 mg/kg body weight (b.w.) and with or without mannitol-induced hyperosmotic BBB disruption. The rats were irradiated with an epithermal neutron beam at the reactor of National Tsing-Hua University (THOR). After neutron beam irradiation, the rats were euthanized and the ipsilateral brains containing intracerebral F98 glioma were removed to perform in vivo/in vitro soft agar clonogenic assay. The results demonstrate BNCT with optimizing the delivery of BPA by means of intracarotid injection combined with opening the BBB by infusing a hyperosmotic solution of mannitol significantly enhanced the cell killing of tumor cells and infiltrating tumor cells, the tumor boron concentration and the boron ratio of tumor to normal brain tissues. (author)

  2. Biodistribution of a new boron compound for BNCT in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Kreimann, Erica L.; Itoiz, Maria E.; Schwint, Amanda E.; Miura, M.; Coderre, J.A.; Garavaglia, Ricardo; Batistoni, Daniel A.

    2000-01-01

    We have proposed and validated the HCP carcinogenesis model of oral cancer, a model that mimics spontaneous malignant transformation, for BNCT research in a separate study. We herein perform a biodistribution study of a lipophilic carborane-containing tetraphenylporphyrin, CuTCPH, in this model. This compound was previously tested in a model of mice bearing subcutaneously transplanted mammary carcinomas. In the present study CuTCPH was administered as a single i.p. injection at a dose of 32 μg/g b.w. (10 μg B/g b.w.) or as 4 i.p. injections over 2 days at a dose of 32 μg/g b.w. per injection. Blood (Bl) and tissue, i.e. tumor (T), precancerous tissue surrounding tumor (P), normal pouch (N), skin, tongue, cheek and palate mucosa, liver, spleen, parotid gland and brain were sampled 3, 6, 12, 24, 48 and 72 hs post-administration in the single dose protocol and 1-4 days after the last injection in the multidose protocol. Boron (B) analysis was performed by ICP-AES. The maximum ratio of B concentration for the single dose protocol was 32.7:1 for T:N and 31.8:1 for T:Bl. The B value in tumor reached a maximum of 43.8 ppm. However, the mean value of 16 ± 14.3 ppm fell short of therapeutically useful levels. The multidose protocol yielded maximum ratios of 53.33:1 for T:N and 3633.3:1 for T:Bl. The maximum absolute B value in tumor reached 106.40 ppm. The mean value in tumor 3 days post-administration was 68.02 ± 25.02. Absolute and relative maximum and average B values markedly exceeded the therapeutic threshold values. (author)

  3. Activity Progress report 1982-1985

    International Nuclear Information System (INIS)

    1986-01-01

    This reports gives a summary of all activities of the Elementary Particle Physics Department at Saclay between the beginning of 1982 and the end of 1985. The experiments in progress or in preparation are presented by subject. The main technical studies and achievements are also described. Finally lists of publications and information concerning Department organization are given [fr

  4. Boron neutron capture therapy as new treatment for clear cell sarcoma: Trial on different animal model

    International Nuclear Information System (INIS)

    Andoh, Tooru; Fujimoto, Takuya; Sudo, Tamotsu; Suzuki, Minoru; Sakurai, Yoshinori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Takeuchi, Tamotsu; Sonobe, Hiroshi; Epstein, Alan L.; Fukumori, Yoshinobu; Ono, Koji; Ichikawa, Hideki

    2014-01-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In our previous study, the tumor disappeared under boron neutron capture therapy (BNCT) on subcutaneously-transplanted CCS-bearing animals. In the present study, the tumor disappeared under this therapy on model mice intramuscularly implanted with three different human CCS cells. BNCT led to the suppression of tumor-growth in each of the different model mice, suggesting its potentiality as an alternative to, or integrative option for, the treatment of CCS. - Highlights: • BNCT with the use of L-BPA was applied for three human clear cell sarcoma (CCS) cell lines. • BNCT trial was performed on a newly established intramuscularly CCS-bearing animal model. • A significant decrease of the tumor-volume was seen by single BNCT with the use of L-BPA. • A multiple BNCT application would be required for controlling the growth of any residual tumors

  5. Research needs for neutron capture therapy

    International Nuclear Information System (INIS)

    1995-01-01

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted

  6. Making Progress: The Use of Multiple Progress Reports to Enhance Advertising Students' Media Plan Term Projects

    Science.gov (United States)

    Kritz, Gary H.; Lozada, Hector R.; Long, Mary M.

    2007-01-01

    Since the AACSB mandates that students demonstrate effective oral and written communication skills, it is imperative that business professors do what is necessary to improve such skills. The authors investigate whether the use of using multiple progress reports in an Advertising class project improves the final product. The data results show that…

  7. Nuclear Physics Laboratory, University of Colorado, Final Progress Report 14 February 2004

    International Nuclear Information System (INIS)

    Kinney, E.R.

    2004-01-01

    OAK-B135 The results and progress of research funded by DOE grant number DOE-FG03-95ER40913 at the University of Colorado at Boulder is described. Includes work performed at the HERMES experiment at DESY to study the quark structure of the nucleon and the hadronization process in nuclei, as well as hadronic reactions studied at LAMPF, KEK, and Fermilab

  8. Physical engineering and medical physics on boron neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori

    2011-01-01

    The contents of physical engineering and medical physics that support boron neutron capture therapy (BNCT) can be roughly classified to the four items, (1) neutron irradiation system, (2) development and improvement of dose assessment techniques, (3) development and improvement of dose planning system, and (4) quality assurance and quality control. This paper introduces the BNCT at Kyoto University Research Reactor Institute, with a focus on the basic physics of BNCT, thermal neutron irradiation and epithermal neutron irradiation, heavy water neutron irradiation facilities of KUR, and medical irradiation system of KUR. It also introduces the world's first BNCT clinical cyclotron irradiation system (C-BENS) of Kyoto University Research Reactor Institute, BNCT dose assessment techniques, dose planning system, and quality assurance and quality control. (A.O.)

  9. Improved Barriers to Turbine Engine Fragments: Final Annual Report

    National Research Council Canada - National Science Library

    Shockey, Donald

    2002-01-01

    This final annual technical report describes the progress rnade during year 4 of the SPI International Phase II effort to develop a computational capability for designing lightweight fragment barriers...

  10. The Michigan high-level radioactive waste program: Final technical progress report

    International Nuclear Information System (INIS)

    1987-01-01

    This report comprises the state of Michigan's final technical report on the location of a proposed high-level radioactive waste disposal site. Included are a list of Michigan's efforts to review the DOE proposal and a detailed report on the application of geographic information systems analysis techniques to the review process

  11. Biological dosimetry studies for boron neutron capture therapy at the RA-1 research reactor facility

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.; Castillo, Jorge

    2004-01-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminescent dosimeters to characterize the BNCT facility developed at the RA-1 research reactor operated by the National Atomic Energy Commission in Buenos Aires. Biological dosimetry was performed employing the hamster cheek pouch oral cancer model previously validated for BNCT studies by our group. Results indicate that the RA-1 neutron source produces useful dose rates for BNCT studies but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications. (author)

  12. Tandem-ESQ for Accelerator-Based BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Kwan, J.W.; Burlon, A.A.; Di Paolo, H.; Henestroza, E.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.

    2006-01-01

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase

  13. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia

    Science.gov (United States)

    Bortolussi, S.; Protti, N.; Ferrari, M.; Postuma, I.; Fatemi, S.; Prata, M.; Ballarini, F.; Carante, M. P.; Farias, R.; González, S. J.; Marrale, M.; Gallo, S.; Bartolotta, A.; Iacoviello, G.; Nigg, D.; Altieri, S.

    2018-01-01

    University of Pavia is equipped with a TRIGA Mark II research nuclear reactor, operating at a maximum steady state power of 250 kW. It has been used for many years to support Boron Neutron Capture Therapy (BNCT) research. An irradiation facility was constructed inside the thermal column of the reactor to produce a sufficient thermal neutron flux with low epithermal and fast neutron components, and low gamma dose. In this irradiation position, the liver of two patients affected by hepatic metastases from colon carcinoma were irradiated after borated drug administration. The facility is currently used for cell cultures and small animal irradiation. Measurements campaigns have been carried out, aimed at characterizing the neutron spectrum and the gamma dose component. The neutron spectrum has been measured by means of multifoil neutron activation spectrometry and a least squares unfolding algorithm; gamma dose was measured using alanine dosimeters. Results show that in a reference position the thermal neutron flux is (1.20 ± 0.03) ×1010 cm-2 s-1 when the reactor is working at the maximum power of 250 kW, with the epithermal and fast components, respectively, 2 and 3 orders of magnitude lower than the thermal component. The ratio of the gamma dose with respect to the thermal neutron fluence is 1.2 ×10-13 Gy/(n/cm2).

  14. Development of Career Progression Systems for Employees in the Foodservice Industry. Final Report.

    Science.gov (United States)

    National Restaurant Association, Chicago, IL.

    Firms representing four segments of the foodservice industry (institutional foodservice (9 jobs), commercial restaurants (19 jobs), hotel foodservice (100 jobs), and airline foodservice (10 jobs), participated in a career and training study to test the feasibility of designing and implementing career progression (c.p.) systems within these…

  15. Neutron capture therapy (NCT) and in-hospital neutron irradiator (IHNI) a new technology on binary targeting radiation therapy of cancer

    International Nuclear Information System (INIS)

    Zhou Yongmao

    2009-01-01

    BNCT is finally becoming 'a new option against cancer'. The difficulties for its development progress of that firstly is to improve the performance of boron compounds,secondly, it is the requirements of quantification and accuracy upon radiation dosimetry evaluation in clinical trials. Furthermore, that is long anticipation on hospital base neutron sources. It includes dedicated new NCT reactor, accelerator based neutron sources, and isotope source facilities. In addition to reactors, so far, the technology of other types of sources for clinical trials is not yet completely proven. The In-Hospital Neutron Irradiator specially designed for NCT, based on the MNSR successfully developed by China, can be installed inside or near the hospital and operated directly by doctors. The Irradiator has two neutron beams for respective treatment of the shallow and deep tumors. It is expected to initiate operation in the end of this year. It would provide a safe, low cost, and effective treatment tool for the NCT routine application in near future. (authors)

  16. Boron neutron capture therapy of ocular melanoma and intracranial glioma using p-boronophenylalanine

    International Nuclear Information System (INIS)

    Coderre, J.A.; Greenberg, D.; Micca, P.L.; Joel, D.D.; Saraf, S.; Packer, S.

    1990-01-01

    During conventional radiotherapy, the dose that can be delivered to the tumor is limited by the tolerance of the surrounding normal tissue within the treatment volume. Boron Neutron Capture Therapy (BNCT) represents a promising modality for selective tumor irradiation. The key to effective BNCT is selective localization of 10 B in the tumor. We have shown that the synthetic amino acid p-boronophenylalanine (BPA) will selectively deliver boron to melanomas and other tumors such as gliosarcomas and mammary carcinomas. Systemically delivered BPA may have general utility as a boron delivery agent for BNCT. In this paper, BNCT with BPA is used in treatment of experimentally induced gliosarcoma in rats and nonpigmented melanoma in rabbits. The tissue distribution of boron is described, as is response to the BNCT. 6 refs., 4 figs., 1 tab

  17. Final Progress Report: SPECT Assay of Radiolabeled Monoclonal Antibodies

    International Nuclear Information System (INIS)

    Jaszczak, Ronald J.

    2004-01-01

    During the past project period, we proposed to collaborate closely with DOE's Thomas Jefferson National Accelerator Facility (Jefferson Lab or JLab) to design a compact, ultra-high-resolution, high-sensitivity gamma camera for quantifying brain-tumor distributions of I-131. We also proposed to continue our on-going research in developing and evaluating pinhole collimation for quantitative ultra-high-resolution imaging of I-131-labeled MAbs. We have made excellent progress in accomplishing much of the research related to pinhole collimation. Many of the most significant results have been presented in peer-reviewed journal articles and conference proceedings. We have also made good progress in collaborating with JLab's Detector Group in developing a compact, ultra-high-resolution, gamma camera. A prototype I-131 imager was delivered to Duke on May 28, 2003. Our research results are summarized in the following sections. A. JLAB-DUKE DEDICATED BRAIN-TUMOR IMAGING SYSTEM A.1. Determination of Optimal Collimator Design During the current project period a prototype I-131 dedicated brain imager has been designed and built. Computer simulations and analysis of alternate designs were performed at Duke to determine an optimal collimator design. Collimator response was characterized by spatial resolution and sensitivity. Both geometric (non-penetrative) and penetrative sensitivities were considered in selecting an optimal collimator design. Based on these simulation results, two collimator designs were selected and built by external vendors. Initial imaging results were obtained using these collimators. B. INITIAL DEVELOPMENT OF SPECT RECONSTRUCTION SOFTWARE FOR JLAB-DUKE CAMERA B.1. Modeling Thick Septa and Collimator Holes: Geometrical-Phantom Study A geometrical phantom was designed to illuminate spatial resolution effects. The phantom includes a uniformly attenuating medium that consists of all voxels within an elliptical cylinder that is centered on the axis of rotation

  18. Chemical Profiles of Microalgae with Emphasis on Lipids: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J. R.; Tillett, D. M.; Suen, Y.; Hubbard, J.; Tornabene, T. G.

    1986-02-01

    This final report details progress during the third year of this subcontract. The overall objective of this subcontract was two fold: to provide the analytical capability required for selecting microalgae strains with high energy contents and to develop fundamental knowledge required for optimizing the energy yield from microalgae cultures. The progress made towards these objectives during this year is detailed in this report.

  19. Medical Applications of Gadolinium and/or Boron-Labeled Pharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J A; Spielvogel, B

    1997-10-01

    Boron neutron capture therapy (BNCT) is a binary treatment modality that can selectively irradiate tumor tissue. The key to effective BNCT is the preferential accumulation of 10B in the tumor relative to the surrounding normal tissues. A screening procedure was developed under this CRADA that is an improvement over previously reported techniques. This method was used to evaluate the two compounds produced by BBI, the amino acid p-boronophenylalanine (BPA)and the sulfhydryl boroane N2B12H11SH (BSH), for clinically useful accumulation in a panel of human tumor cell lines. BPA showed selective accumulation in: squamous cell carcinoma of the lung; small cell carcinoma of the lung; osteosarcoma; prostate carcinoma; and ovarian carcinoma. Of these it was decided to pursue application of BPA-based BNCT to lung tumors. BPA distribution in nude mice bearing subcutaneous human lung tumor xenografts showed very favorable results. At 3 hours post-injection, the tumor/blood boron concentration ratio was 5:1, the tumorflung ratio was 6:1. The treatment planning sofiware, already in use for the glioblastoma BNCT clinical trial underway at BNL, was used for simulation of a human lung tumor treatment using BNCT. Input data for this simulation included the nude mouse biodistribution data, human lung tumor CT geometry, and the same assumptions about relative biological effectiveness of the BNCT dose components currently in use for the human brain tumor trial. The results of this lung tumor simulation indicate significant sparing of normal lung compared to tumor. We conclude that the BBI product BPA has potential applications in BNCT of other tumor sites. BPA-based BNCT for human small cell carcinoma of the lung looks promising. Further studies into the radiation biology of the normal lung will be required prior to clinical BNCT for lung tumors.

  20. Photon iso-effective dose for cancer treatment with mixed field radiation based on dose-response assessment from human and an animal model: clinical application to boron neutron capture therapy for head and neck cancer

    Science.gov (United States)

    González, S. J.; Pozzi, E. C. C.; Monti Hughes, A.; Provenzano, L.; Koivunoro, H.; Carando, D. G.; Thorp, S. I.; Casal, M. R.; Bortolussi, S.; Trivillin, V. A.; Garabalino, M. A.; Curotto, P.; Heber, E. M.; Santa Cruz, G. A.; Kankaanranta, L.; Joensuu, H.; Schwint, A. E.

    2017-10-01

    Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson’s correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r  >  0.87 and p-values  >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed

  1. Photon iso-effective dose for cancer treatment with mixed field radiation based on dose-response assessment from human and an animal model: clinical application to boron neutron capture therapy for head and neck cancer.

    Science.gov (United States)

    González, S J; Pozzi, E C C; Monti Hughes, A; Provenzano, L; Koivunoro, H; Carando, D G; Thorp, S I; Casal, M R; Bortolussi, S; Trivillin, V A; Garabalino, M A; Curotto, P; Heber, E M; Santa Cruz, G A; Kankaanranta, L; Joensuu, H; Schwint, A E

    2017-10-03

    Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson's correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r  >  0.87 and p-values  >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed

  2. The Tourism–Development Nexus in sub-Saharan Africa: Progress ...

    African Journals Online (AJOL)

    The Tourism–Development Nexus in sub-Saharan Africa: Progress and Prospects. ... discussed concerning the impacts of differentiated kinds of tourism: tourism and ... finally, questions around tourism, climate change and the green economy.

  3. Pilot clinical study of boron neutron capture therapy for recurrent hepatic cancer involving the intra-arterial injection of a (10)BSH-containing WOW emulsion.

    Science.gov (United States)

    Yanagie, Hironobu; Higashi, Syushi; Seguchi, Koji; Ikushima, Ichiro; Fujihara, Mituteru; Nonaka, Yasumasa; Oyama, Kazuyuki; Maruyama, Syoji; Hatae, Ryo; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Tomoko; Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Narabayashi, Masaru; Kajiyama, Tetsuya; Maruhashi, Akira; Ono, Koji; Nakajima, Jun; Ono, Minoru; Takahashi, Hiroyuki; Eriguchi, Masazumi

    2014-06-01

    A 63-year-old man with multiple HCC in his left liver lobe was enrolled as the first patient in a pilot study of boron neutron capture therapy (BNCT) involving the selective intra-arterial infusion of a (10)BSH-containing water-in-oil-in-water emulsion ((10)BSH-WOW). The size of the tumorous region remained stable during the 3 months after the BNCT. No adverse effects of the BNCT were observed. The present results show that (10)BSH-WOW can be used as novel intra-arterial boron carriers during BNCT for HCC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A Phase 1 trial of intravenous boronophenylalanine-fructose complex in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Bergland, R.; Elowitz, E.; Chadha, M.; Coderre, J.A.; Joel, D.

    1996-01-01

    Boron neutron capture therapy (BNCT) of glioblastoma multiforme was initially performed at the Brookhaven National Laboratory in the early 1950's While this treatment for malignant brain tumors has continued in Japan, new worldwide interest has been stimulated by the development of new and more selective boron compounds. Boronophenylalanine (BPA) is a blood-brain barrier penetrating compound that has been used in BNCT of malignant melanomas. SPA has been employed experimentally in BNCT of rat gliosarcoma and has potential use in the treatment of human glioblastoma. As a preface to clinical BNCT trials, we studied the biodistribution of SPA in patients with glioblastoma

  5. Boron neutron capture therapy for the treatment of oral cancer in the hamster cheek pouch model

    International Nuclear Information System (INIS)

    Kreimann, Erica L.; Itoiz, Maria E.; Schwint, Amanda E.; Longhino, Juan; Blaumann, Herman; Calzetta, Osvaldo

    2003-01-01

    We have proposed and validated the hamster cheek pouch model of oral cancer for BNCT studies separately. We herein report the first evidence of the usefulness of BNCT for the treatment of oral cancer in an experimental model. We assessed the response of hamster cheek pouch tumors, precancerous tissue and normal oral tissue to BPA-mediated BNCT employing the thermalized epithermal beam of the RA-6 Reactor at the Bariloche Atomic Center. BNCT leads to complete remission by 15 days post-treatment in 78% of tumors and partial remission in a further 13% of tumors with virtually no damage to normal tissue. (author)

  6. Low-dose fractionated radiotherapy and concomitant chemotherapy for recurrent or progressive glioblastoma. Final report of a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, M.; Diletto, B.; Chiesa, S.; D' Agostino, G.R.; Gambacorta, M.A.; Ferro, M.; Valentini, V. [Catholic University of the Sacred Heart, Department of Radiation Oncology, Rome (Italy); Colosimo, C. [Catholic University of the Sacred Heart, Department of Radiology, Rome (Italy); Maira, G.; Anile, C. [Catholic University of the Sacred Heart, Department of Neurosurgery, Rome (Italy)

    2014-04-15

    Evaluated in this study were the feasibility and the efficacy of concurrent low dose fractionated radiotherapy (LD-FRT) and chemotherapy as palliative treatment for recurrent/progressive glioblastoma multiforme (GBM). Eligible patients had recurrent or progressive GBM, Karnofsky performance status ≥70, prior surgery, and standard radiochemotherapy treatment. Recurrence/progression disease during temozolomide (TMZ) received cisplatin (CDDP; 30 mg/m{sup 2} on days 1, 8, 15), fotemustine (FTM; 40 mg/m{sup 2} on days 2, 9, 16), and concurrent LD-FRT (0.3 Gy twice daily); recurrence/progression after 4 months from the end of adjuvant TMZ were treated by TMZ (150/200 mg/m{sup 2} on days 1-5) concomitant with LD-FRT (0.4 Gy twice daily). Primary endpoints were safety and toxicity. A total of 32 patients were enrolled. Hematologic toxicity G1-2 was observed in 18.7% of patients and G3-4 in 9.4%. One patient (3.1%) had complete response, 3 (9.4%) had partial response, 8 (25%) had stable disease for at least 8 weeks, while 20 patients (62.5%) experienced progressive disease. The clinical benefit was 37.5%. Median progression-free survival (PFS) and overall survival (OS) were 5 and 8 months, respectively. Survival rate at 12 months was of 27.8%. LD-FRT and chemotherapy for recurrent/progressive GBM have a good toxicity profile and clinical outcomes, even though further investigation of this novel palliative treatment approach is warranted. (orig.)

  7. Design and testing of a rotating, cooled device for extra-corporate treatment of liver cancer by BNCT in the epithermal neutron beam at the HFR Petten

    International Nuclear Information System (INIS)

    Moss, Ray; Nievaart, Sander; Pott, Lucien; Wittig, Andrea; Sauerwein, Wolfgang

    2006-01-01

    As part of the joint project on extra-corporal treatment of liver cancer by BNCT between JRC Petten and the University Hospital Essen, a facility has been designed and built to contain the liver during its irradiation treatment at the HFR Petten. The design consists of a rotating spheroid shaped PMMA holder, manufactured to open at the equator and closed by screwing together, surrounded by PMMA and graphite blocks. A validation exercise has been performed regarding both the nuclear conditions and the physical conditions. For the former, activation foil sets of Au, Cu and Mn, were irradiated at positions inside the liver holder filled with water, whilst a second measurement campaign has been performed using gel dosimetry. For the physical test, it is required to operate (rotate) the facility for up to 4 hours and to maintain the liver at approximately 4degC. The latter test was performed using 'cold gun sprays' that inject cold air near the liver holder. Both the nuclear and physical validation tests were performed successfully. (author)

  8. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

    Science.gov (United States)

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2012-12-01

    A feasibility study was conducted to design a beam shaping assembly for BNCT based on D-T neutron generator. The optimization of this configuration has been realized in different steps. This proposed system consists of metallic uranium as neutron multiplier, TiF(3) and Al(2)O(3) as moderators, Pb as reflector, Ni as shield and Li-Poly as collimator to guide neutrons toward the patient position. The in-air parameters recommended by IAEA were assessed for this proposed configuration without using any filters which enables us to have a high epithermal neutron flux at the beam port. Also a simulated Snyder head phantom was used to evaluate dose profiles due to the irradiation of designed beam. The dose evaluation results and depth-dose curves show that the neutron beam designed in this work is effective for deep-seated brain tumor treatments even with D-T neutron generator with a neutron yield of 2.4×10(12) n/s. The Monte Carlo Code MCNP-4C is used in order to perform these calculations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Final report for the 'Melt-Vessel Interactions' Project. European Union R and TD Program 4th Framework. MVI project final research report

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Dinh, T.N.; Nourgaliev, R.R.; Bui, V.A.; Green, J.; Kolb, G.; Karbojian, A.; Theerthan, S.A.; Gubaidulline, A.; Bonnet, J.M.; Rouge, S.; Narcoux, M.; Liegeois, A.; Turland, B.D.; Dobson, G.P.; Siccama, A.; Ikonen, K.; Parozzi, F.; Kolev, N.; Caira, M.

    1999-04-01

    The Melt Vessel Interaction (MVI) project is concerned with the consequences of the interactions that a core melt, generated during a postulated severe accident in a light water reactor, may have with the pressure vessel. In particular, the issues concerned with the failure of the vessel bottom head are the focus of the research. The specific objectives of the project are to obtain data and develop validated models, which could be applied to prototypic plants, and accident conditions, for resolution of issues related to the melt vessel interactions. The project work has been performed by nine partners having varied responsibility. The work included a large number of experiments, with simulant materials, whose observations and results are employed, respectively, to understand the physical mechanisms and to develop validated models. Applications to the prototypic geometry and conditions have also been performed. This report is volume 1 of the Final Report for the Project, in which a summary of the progress achieved in the experimental program is provided. We have, however, included some aspects of the modeling activities. Volume 2 of the Final report describes the progress achieved in the modeling program. The progress achieved in the experimental and modeling parts of the Project has led to the resolution of some of the issues of melt vessel interaction. Considerable progress was also achieved towards resolution of the remaining issues

  10. Final progress report

    International Nuclear Information System (INIS)

    Blann, M.

    1978-01-01

    A summary is given of the main contributions made under the subject contract. A list of publications resulting therefrom, conference addresses, and contributed papers is appended. Titles of Ph.D. theses, M.S. theses, and the names of students doing the work are also summarized

  11. Progressive taxation and the subjective well-being of nations.

    Science.gov (United States)

    Oishi, Shigehiro; Schimmack, Ulrich; Diener, Ed

    2012-01-01

    Using data from the Gallup World Poll, we examined whether progressive taxation is associated with increased levels of subjective well-being. Consistent with Rawls's theory of justice, our results showed that progressive taxation was positively associated with the subjective well-being of nations. However, the overall tax rate and government spending were not associated with the subjective well-being of nations. Furthermore, controlling for the wealth of nations and income inequality, we found that respondents living in a nation with more-progressive taxation evaluated their lives as closer to the best possible life and reported having more positive and less negative daily experiences than did respondents living in a nation with less-progressive taxation. Finally, we found that the association between more-progressive taxation and higher levels of subjective well-being was mediated by citizens' satisfaction with public goods, such as education and public transportation.

  12. A shielding design for an accelerator-based neutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, A.E.; Blue, T.E. E-mail: blue.1@osu.edu; Woollard, J.E

    2004-11-01

    Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a {sup 7}Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.

  13. Abiraterone acetate for patients with metastatic castration-resistant prostate cancer progressing after chemotherapy

    DEFF Research Database (Denmark)

    Sternberg, Cora N; Castellano, Daniel; Daugaard, Gedske

    2014-01-01

    , development of sustained side-effects, or abiraterone acetate becoming available in the respective country. The primary outcome was the number of adverse events arising during study treatment and within 30 days of discontinuation. Efficacy measures (time to prostate-specific antigen [PSA] progression and time......BACKGROUND: In the final analysis of the phase 3 COU-AA-301 study, abiraterone acetate plus prednisone significantly prolonged overall survival compared with prednisone alone in patients with metastatic castration-resistant prostate cancer progressing after chemotherapy. Here, we present the final...... analysis of an early-access protocol trial that was initiated after completion of COU-AA-301 to enable worldwide preapproval access to abiraterone acetate in patients with metastatic castration-resistant prostate cancer progressing after chemotherapy. METHODS: We did a multicentre, open-label, early...

  14. Experimental and Theoretical Progress on the GEM Theory

    Science.gov (United States)

    Brandenburg, J. E.

    This paper reports experimental and theoretical progress on the GEM unification theory. In theoretical progress, the derivation of the GEM theory using it in a fully covariant form is achieved based on the principle of self-cancellation of the ZPF EM stress-momentum tensor. This derivation reveals that the final Gravity-EM system obeys a Helmholtz-like equation resembling that governing sound propagation. Finally an improved derivation of the formula for the Newton Gravitation constant is shown, qresulting in the formula G = e2/(4πɛ0 me mp) α exp (-2 (α-.86/σ2…) = 6.673443 x10-11 N-m2 kg-2 that agrees with experimental values to 3 parts per 100,000. Experiments have found parity violating weight reductions in gyroscopes driven by rotating EM fields. These experiments appear to confirm gravity modification using electromagnetism predicted by the GEM theory through the Vacuum Bernoulli Equation.

  15. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    International Nuclear Information System (INIS)

    Wang, Peng; Zhen, Haining; Jiang, Xinbiao; Zhang, Wei; Cheng, Xin; Guo, Geng; Mao, Xinggang; Zhang, Xiang

    2010-01-01

    Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [ 60 Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [ 60 Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [ 60 Co] γ-rays; Group C included cells treated with 8 Gy of [ 60 Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [ 60 Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with

  16. Progress Report for Period Ending December 1961. Department of Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Tell, B [ed.

    1962-08-15

    This is the second Progress Report from the Department for Reactor Physics of Aktiebolaget Atomenergi, which is issued for the information of institutions and persons interested in the progress of the work. In this report the activities of the General Physics Section have been included, since this section nowadays belongs to the department. This is merely an informal progress report, and the results and data presented must be taken as preliminary. Final results will be submitted for publication either in the regular technical journals or as monographs in the series AE-reports.

  17. Improved methods for water shutoff. Final technical progress report, October 1, 1997--September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Seright, R.S.; Liang, J.T.; Schrader, R.; Hagstrom, J. II; Liu, J.; Wavrik, K.

    1998-10-01

    In the United States, more than 20 billion barrels of salt water are produced each year during oilfield operations. A tremendous economic incentive exists to reduce water production if that can be accomplished without significantly sacrificing hydrocarbon production. This three-year research project had three objectives. The first objective was to identify chemical blocking agents that will (a) during placement, flow readily through fractures without penetrating significantly into porous rock and with screening out or developing excessive pressure gradients and (b) at a predictable and controllable time, become immobile and resistant breakdown upon exposure to moderate to high pressure gradients. The second objective was to identify schemes that optimize placement of the above blocking agents. The third objective was to explain why gels and other chemical blocking agents reduce permeability to one phase (e.g., water) more than that to another phase (e.g., oil or gas). The authors also wanted to identify conditions that maximize this phenomenon. This project consisted of three tasks, each of which addressed one of the above objectives. This report describes work performed during the third and final period of the project. During this three-year project, they: (1) Developed a procedure and software for sizing gelant treatments in hydraulically fractured production wells; (2) Developed a method (based on interwell tracer results) to determine the potential for applying gel treatments in naturally fractured reservoirs; (3) Characterized gel properties during extrusion through fractures; (4) Developed a method to predict gel placement in naturally fractured reservoirs; (5) Made progress in elucidating the mechanism for why some gels can reduce permeability to water more than that to oil; (6) Demonstrated the limitations of using water/oil ratio diagnostic plots to distinguish between channeling and coning; and (7) Proposed a philosophy for diagnosing and attacking water

  18. Pituitary tumor evaluation

    International Nuclear Information System (INIS)

    Albertson, B.; Binney, S.

    1995-01-01

    This paper describes research on the following: the structure of 10 B 10 -ovine corticotropin releasing hormone and 10 B 10 -growth hormone releasing hormone; the BNCT effect on AtT-20 cell 10 B 10 -CRH incubations in vitro; BNCT effects on GH 4 C 1 cell 10 B 10 growth hormone releasing factor incubation in vitro; and competitive inhibition of AtT-20 cell BNCT effect

  19. Final report for the 'Melt-Vessel Interactions' Project. European Union R and TD Program 4th Framework. MVI project final research report

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Dinh, T.N.; Nourgaliev, R.R.; Bui, V.A.; Green, J.; Kolb, G.; Karbojian, A.; Theerthan, S.A.; Gubaidulline, A. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety; Helle, M.; Kymaelaeinen, O.; Tuomisto, H. [IVO Power Engineering Ltd., Vantaa (Finland); Bonnet, J.M.; Rouge, S.; Narcoux, M.; Liegeois, A. [CEA - Grenoble (France); Turland, B.D.; Dobson, G.P. [AEA Technology plc, Dorchester (United Kingdom); Siccama, A. [ECN Nuclear Research, Petten (Netherlands); Ikonen, K. [VTT Energy, Helsinki (Finland); Parozzi, F. [ENEL - SRI/PAM/GRA, Segrate, MI (Italy); Kolev, N. [Siemens AG, Erlangen (Germany); Caira, M. [Univ. of Roma (Italy)

    1999-04-01

    The Melt Vessel Interaction (MVI) project is concerned with the consequences of the interactions that a core melt, generated during a postulated severe accident in a light water reactor, may have with the pressure vessel. In particular, the issues concerned with the failure of the vessel bottom head are the focus of the research. The specific objectives of the project are to obtain data and develop validated models, which could be applied to prototypic plants, and accident conditions, for resolution of issues related to the melt vessel interactions. The project work has been performed by nine partners having varied responsibility. The work included a large number of experiments, with simulant materials, whose observations and results are employed, respectively, to understand the physical mechanisms and to develop validated models. Applications to the prototypic geometry and conditions have also been performed. This report is volume 1 of the Final Report for the Project, in which a summary of the progress achieved in the experimental program is provided. We have, however, included some aspects of the modeling activities. Volume 2 of the Final report describes the progress achieved in the modeling program. The progress achieved in the experimental and modeling parts of the Project has led to the resolution of some of the issues of melt vessel interaction. Considerable progress was also achieved towards resolution of the remaining issues.

  20. Boron Neutron Capture Therapy at European research reactors - Status and perspectives

    International Nuclear Information System (INIS)

    Moss, R.L.

    2004-01-01

    Over the last decade. there has been a significant revival in the development of Boron Neutron Capture Therapy (BNCT) as a treatment modality for curing cancerous tumours, especially glioblastoma multiforme and subcutaneous malignant melanoma. In 1987 a European Collaboration on BNCT was formed, with the prime task to identify suitable research reactors in Europe where BNCT could be applied. Due to reasons discussed in this paper, the HFR Petten was chosen as the test-bed for demonstrating BNCT. Currently, the European Collaboration is approaching the start of clinical trials, using epithermal neutrons and borocaptate sodium (BSH) as the 10 B delivery agent. The treatment is planned to start in the first half of 1996. The paper here presents an overview on the principle of BNCT, the requirements imposed on a research reactor in order to be considered for BNCT, and the perspectives for other European materials testing reactors. A brief summary on the current status of the work at Petten is given, including: the design, construction and characterisation of the epithermal neutron beam: performance and results of the healthy tissue tolerance study; the development of a treatment planning programme based on the Monte Carlo code MCNP; the design of an irradiation room; and on the clinical trials themselves. (author)

  1. Boron neutron capture therapy for recurrent oral cancer and metastasis of cervical lymph node

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y. [Department of Dentistry and Oral Surgery, Division of Medicine for Function and Morphology of Sensory Organs, Osaka Medical College, 2-7 Daigaku-machi Takatsuki City, Osaka (Japan)], E-mail: ora018@poh.osaka-med.ac.jp; Ariyoshi, Y.; Shimahara, M. [Department of Dentistry and Oral Surgery, Division of Medicine for Function and Morphology of Sensory Organs, Osaka Medical College, 2-7 Daigaku-machi Takatsuki City, Osaka (Japan); Miyatake, S.; Kawabata, S. [Department of Neurosurgery, Division of Surgery, Osaka Medical College, 2-7 Daigaku-machi Takatsuki City, Osaka (Japan); Ono, K.; Suzuki, M. [Particle Radiation Oncology Research Center, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan); Maruhashi, A. [Medical Physics, Department of Radiation Life Sciences, Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka (Japan)

    2009-07-15

    We treated 6 patients with recurrent oral cancer and metastasis to the cervical lymph nodes after conventional treatments in 5 and non-conventional in 1 using BNCT, and herein report our results. The clinical response in our patients ranged from CR to PD. In 5 cases, spontaneous pain decreased immediately after BNCT. Three of the 6 are alive at the time of writing and we found that BNCT contributed to QOL improvement in all.

  2. Annual progress report

    International Nuclear Information System (INIS)

    Russek, A.

    1975-06-01

    Progress has been made in calculation of cross-sections for dielectronic and radiative recombination when hot electrons are incident on partially stripped impurity ions. Calculations were completed for the cases of 1 keV and 10 keV electrons incident on ions of arbitrary Z with ionization state consistent with a 1 keV plasma temperature. It was found that dielectronic recombination dominates radiative recombination by a factor of 100 at 1 keV incident electron energy to a factor of 1000 at 10 keV incident electron energy. The work is now being extended to other plasma temperatures and is being improved by more accurate calculation of the matrix elements involved. Progress was also made in the calculation of accurate bremsstrahlung and higher order radiative processes which also occur when hot electrons are incident on partially stripped impurity ions. Formal expressions for the matrix elements have been obtained for cross-sections in a fully relativistic partial wave analysis for bremsstrahlung radiation both with and without electron excitation of the target ion. Final evaluation now awaits the evaluation of the relativistic radial integrals involved in these matrix elements. (U.S.)

  3. Progress on alternative energy resources

    Science.gov (United States)

    Couch, H. T.

    1982-03-01

    Progress in the year 1981 toward the development of energy systems suitable for replacing petroleum products combustion and growing in use to fulfill a near term expansion in energy use is reviewed. Coal is noted to be a potentially heavy pollution source, and the presence of environmentally acceptable methods of use such as fluidized-bed combustion and gasification and liquefaction reached the prototype stage in 1981, MHD power generation was achieved in two U.S. plants, with severe corrosion problems remaining unsolved for the electrodes. Solar flat plate collectors sales amounted to 20 million sq ft in 1981, and solar thermal electric conversion systems with central receivers neared completion. Solar cells are progressing toward DOE goals of $.70/peak W by 1986, while wind energy conversion sales were 2000 machines in 1981, and the industry is regarded as maturing. Finally, geothermal, OTEC, and fusion systems are reviewed.

  4. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model

    Energy Technology Data Exchange (ETDEWEB)

    A. Monti Hughes; ECC Pozzi; S. Thorp; M. A. Garabalino; R. O. Farias; S. J. Gonzalez; E. M. Heber; M. E. Itoiz; R. F. Aromando; A. J. Molinari; M. Miller; D. W. Nigg; P. Curotto; V. A. Trivillin; A. E. Schwint

    2013-11-01

    Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model.

  5. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G. W.

    2005-06-28

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharamacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCTagents that could be labeled with radioactive nuclides for the in vivo detection of boron.

  6. Effect of the p53 gene status on the sensitivity of oral squamous cell carcinoma cells to boron neutron capture therapy

    International Nuclear Information System (INIS)

    Fujita, Y.; Kamida, A.; Kato, I.; Yura, Y.; Ono, K.; Suzuki, M.; Sakurai, Y.; Ohnishi, T.; Ohnishi, K.

    2006-01-01

    The role of the p53 gene in the sensitivity of oral squamous cell carcinoma (SCC) to boron neutron capture therapy (BNCT) had not been studied. We examined the effect of boronophenylalanine (BPA)-mediated BNCT on oral SCC cells showing either wild-type p53 (SAS/neo) or mutated-type p53 (SAS/mp53). Survival ratio of cells was determined by colony formation. Cell viability was measured by MTT assay. Apoptotic cells were evaluated by flow cytometric analysis and nuclear DNA staining. When SAS/neo and SAS/mp53 cells were subjected to BNCT, more suppressive effects on colony formation and cell viability were observed in SAS/neo cells as compared with SAS/mp53. The proportion of apoptotic cells with DNA fragmentation was also increased in the cells with functional p53. These results suggest that oral SCC cells with mutated p53 cells are more resistant to BNCT than those with wild-type p53. BNCT must inhibit oral SCC cells in p53-dependent and p53-independent mechanisms. (author)

  7. Perspectives of boron-neutron capture therapy of malignant brain tumors

    Science.gov (United States)

    Kanygin, V. V.; Kichigin, A. I.; Krivoshapkin, A. L.; Taskaev, S. Yu.

    2017-09-01

    Boron neutron capture therapy (BNCT) is characterized by a selective effect directly on the cells of malignant tumors. The carried out research showed the perspective of the given kind of therapy concerning malignant tumors of the brain. However, the introduction of BNCT into clinical practice is hampered by the lack of a single protocol for the treatment of patients and the difficulty in using nuclear reactors to produce a neutron beam. This problem can be solved by using a compact accelerator as a source of neutrons, with the possibility of installation in a medical institution. Such a neutron accelerator for BNCT was developed at Budker Institute of Nuclear Physics, Novosibirsk. A neutron beam was obtained on this accelerator, which fully complies with the requirements of BNCT, as confirmed by studies on cell cultures and experiments with laboratory animals. The conducted experiments showed the relative safety of the method with the absence of negative effects on cell cultures and living organisms, and also confirmed the effectiveness of BNCT for malignant brain tumors.

  8. The application of SHIELD-HIT12A computer code to calculate of absorption dose for in vitro and in vivo test in BNCT

    International Nuclear Information System (INIS)

    Yohannes Sardjono; Hamidatul Faqqiyyah; Niels Bassler

    2014-01-01

    The projection of world population growth and increased longevity are leading to a rapid increase in the total number of middle-aged and older adults, with a corresponding increase in the number of deaths caused by non communicable diseases. It is projected that the annual number of deaths due to cardiovascular disease will increase from 17 million in 2008 to 25 million in 2030 with annual cancer deaths increasing from 7.6 million to 13 million. Boron Neutron Capture Therapy is a therapy that utilizes the absorption interaction of Boron-10 with thermal neutron and become He-4 particle and located in cell target and very short half life gamma emission. Studies were carried out to dose distribution in HER-2+ breast cancer therapy by Boron Neutron Capture Therapy (BNCT) using SHIELD Heavy Ion Therapy (HIT12A) T program. The Monte Carlo particle transport code SHIELD-HIT1 is designed to precisely simulate therapeutic beams of protons and ions in biological tissue relevant for ion beam cancer therapy. SHIELD-HIT (Heavy Ion Therapy) evolved from the common SHIELD code that models interactions of hadrons and atomic nuclei in complex extended targets in the energy range up to 1 TeV/nucleon. Through this computer code can be applied to calculate of absorption dose in cell target. (author)

  9. IRIS International Reactor Innovative and Secure Final Technical Progress Report

    International Nuclear Information System (INIS)

    Carelli, M.D.

    2003-01-01

    OAK-B135 This NERI project, originally started as the Secure Transportable Autonomous Light Water Reactor (STAR-LW) and currently known as the International Reactor Innovative and Secure (IRIS) project, had the objective of investigating a novel type of water-cooled reactor to satisfy the Generation IV goals: fuel cycle sustainability, enhanced reliability and safety, and improved economics. The research objectives over the three-year (1999-2002) program were as follows: First year: Assess various design alternatives and establish main characteristics of a point design; Second year: Perform feasibility and engineering assessment of the selected design solutions; Third year: Complete reactor design and performance evaluation, including cost assessment These objectives were fully attained and actually they served to launch IRIS as a full fledged project for eventual commercial deployment. The program did not terminate in 2002 at the end of the NERI program, and has just entered in its fifth year. This has been made possible by the IRIS project participants which have grown from the original four member, two-countries team to the current twenty members, nine countries consortium. All the consortium members work under their own funding and it is estimated that the value of their in-kind contributions over the life of the project has been of the order of $30M. Currently, approximately 100 people worldwide are involved in the project. A very important constituency of the IRIS project is the academia: 7 universities from four countries are members of the consortium and five more US universities are associated via parallel NERI programs. To date, 97 students have worked or are working on IRIS; 59 IRIS-related graduate theses have been prepared or are in preparation, and 41 of these students have already graduated with M.S. (33) or Ph.D. (8) degrees. This ''final'' report (final only as far as the NERI program is concerned) summarizes the work performed in the first four

  10. Inhibition of tumor growth in a glioma model treated with boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goodman, J.H.; McGregor, J.M.; Clendenon, N.R.; Gahbauer, R.A.; Barth, R.F.; Soloway, A.H.; Fairchild, R.G.

    1990-01-01

    This investigation attempts to determine whether increased survival time seen when the F98 glioma model is treated with boron neutron capture therapy (BNCT) is a result of inhibition of tumor growth caused by radiation-induced alterations in endothelial cells and normal tissue components. This indirect effect of radiation has been called the tumor bed effect. A series of tumor-bearing rats was studied, using a standardized investigational BNCT protocol consisting of 50 mg/kg of Na2B12H11SH injected intravenously 14 to 17 hours before neutron irradiation at 4 x 10(12) n/cm2. Ten rats, serving as controls, received no treatment either before or after tumor implantation. A second group of 10 rats was treated with BNCT 4 days before tumor implantation; these animals received no further treatment. The remaining group of 10 rats received no pretreatment but was treated with BNCT 10 days after implantation. Histological and ultrastructural analyses were performed in 2 animals from each group 17 days after implantation. Survival times of the untreated control animals (mean, 25.8 days) did not differ statistically from the survival times of the rats in the pretreated group (mean, 25.5 days). The rats treated with BNCT after implantation survived significantly longer (P less than 0.02; mean, 33.2 days) than the controls and the preirradiated animals. Tumor size indices calculated from measurements taken at the time of death were similar in all groups. These results indicate that, with this tumor model, BNCT does not cause a tumor bed effect in cerebral tissue. The therapeutic gains observed with BNCT result from direct effects on tumor cells or on the peritumoral neovascularity

  11. Effects of employing a 10B-carrier and manipulating intratumour hypoxia on local tumour response and lung metastatic potential in boron neutron capture therapy

    Science.gov (United States)

    Masunaga, S; Sakurai, Y; Tanaka, H; Suzuki, M; Liu, Y; Kondo, N; Maruhashi, A; Kinashi, Y; Ono, K

    2012-01-01

    Objectives To evaluate the effects of employing a 10B-carrier and manipulating intratumour hypoxia on local tumour response and lung metastatic potential in boron neutron capture therapy (BNCT) by measuring the response of intratumour quiescent (Q) cells. Methods B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2′-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumours received reactor thermal neutron beam irradiation following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)] in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumour-bearing mice, macroscopic lung metastases were enumerated 17 days after irradiation. Results BPA-BNCT increased the sensitivity of the total tumour cell population more than BSH-BNCT. However, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. With or without a 10B–carrier, MTH enhanced the sensitivity of the Q cell population. Without irradiation, nicotinamide treatment decreased the number of lung metastases. With irradiation, BPA-BNCT, especially in combination with nicotinamide treatment, showed the potential to reduce the number of metastases more than BSH-BNCT. Conclusion BSH-BNCT in combination with MTH improves local tumour control, while BPA-BNCT in combination with nicotinamide may reduce the number of lung metastases. PMID:22391496

  12. Progress of ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: Kimihiro.Ioki@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Bayon, A. [F4E, c/ Josep Pla, No. 2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC “Sintez”, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector 25, Gandhinagar 382025 (India); Preble, J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others

    2013-10-15

    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure.

  13. Progress of ITER vacuum vessel

    International Nuclear Information System (INIS)

    Ioki, K.; Bayon, A.; Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B.; Kim, B.C.; Kuzmin, E.; Le Barbier, R.; Martinez, J.-M.; Pathak, H.; Preble, J.; Sa, J.W.; Terasawa, A.; Utin, Yu.

    2013-01-01

    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure

  14. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    OpenAIRE

    Wang, Peng; Zhen, Haining; Jiang, Xinbiao; Zhang, Wei; Cheng, Xin; Guo, Geng; Mao, Xinggang; Zhang, Xiang

    2010-01-01

    Abstract Background Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical Un...

  15. Ultrastructural changes in tumor cells following boron neutron capture therapy

    International Nuclear Information System (INIS)

    Barkla, D.H.; Brown, J.K.; Meriaty, H.; Allen, B.J.

    1992-01-01

    In a previous study the authors reported on morphological changes in two human melanoma cell lines treated with 10 B-phenylalanine(BPA) and Boron Neutron Capture Therapy(BNCT). The present study describes morphological changes in melanoma and glioma cell lines treated with boron-tetraphenyl porphyrin(BTPP) and BNCT. Porphyrin compounds are selectively taken up by tumor cells and have been used clinically in phototherapy treatment of cancer patients. Boronated porphyrins show good potential as therapeutic agents in BNCT treatment of human cancer patients

  16. Developments in boron magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Schweizer, M.

    1995-01-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain

  17. Creating a dashboard to track progress toward IOM recommendations for the future of nursing.

    Science.gov (United States)

    Spetz, Joanne; Bates, Timothy; Chu, Lela; Lin, Jessica; Fishman, Nancy W; Melichar, Lori

    2013-01-01

    This article explains the process used to identify and develop a set of data used to track national progress toward the recommendations of the Institute of Medicine Committee for the Future of Nursing. The data are presented in a dashboard format to visually summarize information and quickly measure progress. The approach selected by the research team is outlined, the criteria for selecting candidate metrics are detailed, the process for seeking external guidance is described, and the final dashboard measures are presented. Finally, the methods for data collection for each metric are explicated, to guide states and local regions in the collection of their own data.

  18. Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes - FY-98 Final Report for LDRD 2349

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, Glen Frank; Nelson, Lee Orville; Grandy, Jon Drue; Zuck, Larry Douglas; Kong, Peter Chuen Sun; Anderson, Gail

    1999-08-01

    The purpose of LDRD #2349, Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes, was to develop a set of tools that would allow the user to, based on the chemical composition of a waste stream to be immobilized, predict the durability (leach behavior) of the final waste form and the phase assemblages present in the final waste form. The objectives of the project were: • investigation, testing and selection of thermochemical code • development of auxiliary thermochemical database • synthesis of materials for leach testing • collection of leach data • using leach data for leach model development • thermochemical modeling The progress toward completion of these objectives and a discussion of work that needs to be completed to arrive at a logical finishing point for this project will be presented.

  19. Models for estimation of the 10B concentration after BPA-fructose complex infusion in patients during epithermal neutron irradiation in BNCT

    International Nuclear Information System (INIS)

    Ryynaenen, Paeivi M.; Kortesniemi, Mika; Coderre, Jeffrey A.; Diaz, Aidnag Z.; Hiismaeki, Pekka; Savolainen, Sauli E.

    2000-01-01

    Purpose: To create simple and reliable models for clinical practice for estimating the blood 10 B time-concentration curve after p-boronophenylalanine fructose complex (BPA-F) infusion in patients during neutron irradiation in boron neutron capture therapy (BNCT). Methods and Materials: BPA-F (290 mg BPA/kg body weight) was infused i.v. during two hours to 10 glioblastoma multiforme patients. Blood samples were collected during and after the infusion. Compartmental models and bi-exponential function fit were constructed based on the 10 B blood time-concentration curve. The constructed models were tested with data from six additional patients who received various amounts of infused BPA-F and data from one patient who received a one-hour infusion of 170 mg BPA/kg body weight. Results: The resulting open two-compartment model and bi-exponential function estimate the clearance of 10 B after 290 mg BPA/kg body weight infusion from the blood with satisfactory accuracy during the first irradiation field (1 ppm, i.e., 7%). The accuracy of the two models in predicting the clearance of 10 B during the second irradiation field are for two-compartment model 1.0 ppm (8%) and 0.2 ppm (2%) for bi-exponential function. The models predict the average blood 10 B concentration with an increasing accuracy as more data points are available during the treatment. Conclusion: By combining the two models, a robust and practical modeling tool is created for the estimation of the 10 B concentration in blood after BPA-F infusion

  20. Design progress of the ITER vacuum vessel sectors and port structures

    International Nuclear Information System (INIS)

    Utin, Yu.; Ioki, K.; Alekseev, A.; Bachmann, Ch.; Cho, S.; Chuyanov, V.; Jones, L.; Kuzmin, E.; Morimoto, M.; Nakahira, M.; Sannazzaro, G.

    2007-01-01

    Recent progress of the ITER vacuum vessel (VV) design is presented. As the ITER construction phase approaches, the VV design has been improved and developed in more detail with the focus on better performance, improved manufacture and reduced cost. Based on achievements of manufacturing studies, design improvement of the typical VV Sector (no. 1) has been nearly finalized. Design improvement of other sectors is in progress-in particular, of the VV Sectors no. 2 and no. 3 which interface with tangential ports for the neutral beam (NB) injection. For all sectors, the concept for the in-wall shielding has progressed and developed in more detail. The design progress of the VV sectors has been accompanied by the progress of the port structures. In particular, design of the NB ports was advanced with the focus on the beam-facing components to handle the heat input of the neutral beams. Structural analyses have been performed to validate all design improvements

  1. Beyond Therapy Dogs: Coordinating Large-Scale Finals Week Activities

    Science.gov (United States)

    Flynn, Holly

    2017-01-01

    Finals week activities have become increasingly popular in academic libraries in the last few years, but what is a library to do when it is not allowed to have therapy dogs? This column examines a progression of increasingly popular activities at Michigan State University Libraries. Included is an assessment of what makes them popular, our…

  2. Comparison of quality assurance for performance and safety characteristics of the facility for Boron Neutron Capture therapy in Petten/NL with medical electron accelerators

    International Nuclear Information System (INIS)

    Rassow, Juergen; Stecher-Rasmussen, Finn; Voorbraak, Wim; Moss, Ray; Vroegindeweij, Corine; Hideghety, Katalin; Sauerwein, Wolfgang

    2001-01-01

    Background and purpose: The European Council Directive on health protection 97/43/EURATOM requires radiotherapy quality assurance programmes for performance and safety characteristics including acceptance and repeated tests. For Boron Neutron Capture therapy (BNCT) at the High Flux Reactor (HFR) in Petten/NL such a programme has been developed on the basis of IEC publications for medical electron accelerators. Results: The fundamental differences of clinical dosimetry for medical electron accelerators and BNCT are presented and the order of magnitude of dose components and their stability and that of the main other influencing parameter 10 B concentration for BNCT patient treatments. A comparison is given for requirements for accelerators and BNCT units indicating items which are not transferable, equal or additional. Preliminary results of in vivo measurements done with a set of 55 Mn, 63 Cu and 197 Au activation foils for all single fields for the four fractions at all 15 treated patients show with <±4% up to now a worse reproducibility than the used dose monitoring systems (±1.5%) caused by influence of hair position on the foil-skull distance. Conclusions: Despite the more complex clinical dosimetry (because of four relevant dose components, partly of different linear energy transfer (LET)) BNCT can be regulated following the principles of quality assurance procedures for therapy with medical electron accelerators. The reproducibility of applied neutron fluence (proportional to absorbed doses) and the main safety aspects are equal for all teletherapy methods including BNCT

  3. Biomedical Computing Technology Information Center (BCTIC): Final progress report, March 1, 1986-September 30, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    During this time, BCTIC packaged and disseminated computing technology and honored all requests made before September 1, 1986. The final month of operation was devoted to completing code requests, returning submitted codes, and sending out notices of BCTIC's termination of services on September 30th. Final BCTIC library listings were distributed to members of the active mailing list. Also included in the library listing are names and addresses of program authors and contributors in order that users may have continued support of their programs. The BCTIC library list is attached

  4. Reactor beam calculations to determine optimum delivery of epithermal neutrons for treatment of brain tumors

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Nigg, D.W.; Capala, J.

    1997-01-01

    Studies were performed to assess theoretical tumor control probability (TCP) for brain-tumor treatment with boron neutron capture therapy (BNCT) using epithermal neutron sources from reactors. The existing epithermal-neutron beams at the Brookhaven Medical Research Reactor Facility (BMRR), the Petten High Flux Reactor Facility (HWR) and the Finnish Research Reactor 1 (FIR1) have been analyzed and characterized using common analytical and measurement methods allowing for this inter-comparison. Each of these three facilities is unique and each offers an advantage in some aspect of BNCT, but none of these existing facilities excel in all neutron-beam attributes as related to BNCT. A comparison is therefore also shown for a near-optimum reactor beam which does not currently exist but which would be feasible with existing technology. This hypothetical beam is designated BNCT-1 and has a spectrum similar to the FIR-1, the mono-directionality of the HFR and the intensity of the BMRR. A beam very similar to the BNCT-1 could perhaps be achieved with modification of the BMRR, HFR, or FIR, and could certainly be realized in a new facility with today's technology

  5. Antitumor potential induction and free radicals production in melanoma cells by Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, F. [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)] [Faculty of Medicine, University of Sao Paulo, 455 Doutor Arnaldo Avenue, Sao Paulo (Brazil); Coelho, P.R.P.; Muniz, R.O.R.; Souza, G.S. [Institute for Nuclear and Energy Research, 2242 Lineu Prestes Avenue, Sao Paulo (Brazil); Arruda-Neto, J. [Physics Institute, University of Sao Paulo, 187 Matao Street, Sao Paulo (Brazil)] [FESP, Sao Paulo Engineering School, 5520 Nove de Julho Avenue, Sao Paulo (Brazil); Maria, Durvanei A., E-mail: durvaneiaugusto@yahoo.com.br [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)

    2011-12-15

    Antiproliferative and oxidative damage effects occurring in Boron Neutron Capture Therapy (BNCT) in normal fibroblasts and melanoma cell lines were analyzed. Melanoma cells and normal fibroblasts were treated with different concentrations of Boronophenylalanine and irradiated with thermal neutron flux. The cellular viability and the oxidative stress were determined. BNCT induced free radicals production and proliferative potential inhibition in melanoma cells. Therefore, this therapeutic technique could be considered efficient to inhibit growth of melanoma with minimal effects on normal tissues. - Highlights: Black-Right-Pointing-Pointer Boron Neutron Capture Therapy (BNCT) induces melanoma cell death. Black-Right-Pointing-Pointer BNCT stimulates free radicals production and proliferative inhibition in melanoma cells. Black-Right-Pointing-Pointer It produces tumor membrane degeneration and destruction with apoptotic bodies formation. Black-Right-Pointing-Pointer This therapy damages tumor cells selectively, with minimum effects on normal adjacent tissue.

  6. Progress risk assessment of oral premalignant lesions with saliva miRNA analysis

    International Nuclear Information System (INIS)

    Yang, Ya; Li, Yue-xiu; Yang, Xi; Jiang, Long; Zhou, Zuo-jun; Zhu, Ya-qin

    2013-01-01

    Oral cancer develops through multi-stages: from normal to mild (low grade) dysplasia (LGD), moderate dysplasia, and severe (high grade) dysplasia (HGD), to carcinoma in situ (CIS) and finally invasive oral squamous cell carcinomas (OSCC). Clinical and histological assessments are not reliable in predicting which precursor lesions will progress. The aim of this study was to assess the potential of a noninvasive approach to assess progress risk of oral precancerous lesions. We first used microRNA microarray to profile progressing LGD oral premaligant lesions (OPLs) from non-progressing LGD OPLs in order to explore the possible microRNAs deregulated in low grade OPLs which later progressed to HGD or OSCC. We then used RT-qPCR to detect miRNA targets from the microarray results in saliva samples of these patients. We identified a specific miRNA signature that is aberrantly expressed in progressing oral LGD leukoplakias. Similar expression patterns were detected in saliva samples from these patients. These results show promise for using saliva miRNA signature for monitoring of cancer precursor lesions and early detection of disease progression

  7. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    Science.gov (United States)

    Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

  8. KURRI progress report 2011. April 2011 - March 2012

    International Nuclear Information System (INIS)

    2012-01-01

    In FY2011, the third year of the second 6-year mid-term program for KURRI, the KUR reactor was operated for 1184 hrs, while the KUCA had been operated for 917 hrs. The research activities cover various fields of nuclear science and technology, material science, radiation life science and radiation medical science. 'Technology development for ADSR (accelerator driven sub-critical reactor) by using an FFAG (Fixed Field Alternating Gradient) accelerator' was started in FY2002 and the world's first ADSR experiment had been successfully conducted with the combination of the KUCA and the FFAG accelerator. Extensive efforts were being devoted to optimize the 150 MeV proton beam parameters for the ADSR experiment and the related studies including development of target materials were being promoted. Also, preliminary experiments were being performed for clinical trial of the BNCT (boron neutron capture therapy) using a cyclotron neutron generator, based on the successful clinical studies using the KUR where 62 patients had been treated. The results of research activities including these activities were reported in this progress report as annual summary of experimental research activities, which included research and investigations performed under the 'Joint use program' for Japanese universities, while state of research divisions and laboratories, and operation and development of facilities were updated. Project research was on trace elemental analysis using research reactor, deuterium exchangers in the biological macromolecules for a neutron analysis, analyzing tumor microenvironment and exploiting its characteristics for controlling malignant solid tumors, radiation safety control at accelerator facilities, new application development using the characteristics of the particles from the neutron capture reaction, origin of radiation carcinogenesis is not DNA damage, irradiation effects on microstructural evolution in materials irradiated by particles with high energy

  9. Advanced Fuel Cycle Initiative University Fellowship Program. Final Progress Report

    International Nuclear Information System (INIS)

    Dixon, Cathy

    2012-01-01

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missions in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.

  10. Progress report 1986-1987 Department of Physics

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report 1986-1987 deals with the first two years operation of the TANDAR electrostatic accelerator and also describes the research work in the following fields: nuclear physics (nuclear structure, nuclear reactions, intermediate energies, applied nuclear physics); solid state physics (crystallography and phase transitions, Mossbauer spectroscopy, condensed matter theory, crystals growth, instrumentation); atomic physics and computational physics. Finally, the staff, a list of publications and activities related to international agencies is included [es

  11. Hydrologic resources management program, FY 1998 progress report; FINAL

    International Nuclear Information System (INIS)

    Benedict, F.C.; Criss, R.E.; Davisson, M.L.; Eaton, G.F.; Hudson, G.B.; Kenneally, J.M.; Rose, T.P.; Smith, D.

    1999-01-01

    This report presents the results from FY 1998 technical studies conducted by Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) project. The HRMP is sponsored by Defense Programs (DP) of the U.S. Department of Energy, Nevada Operations Office (DOE/NV), and supports DP operations at the Nevada Test Site (NTS) through studies of radiochemistry and resource management related to the defense programs mission. Other participating organizations include the Los Alamos National Laboratory (LANL), the United States Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the United States Environmental Protection Agency (EPA), and Bechtel-Nevada (BN). The UGTA project is an Environmental Management (EM) activity of DOE/NV that supports a Federal Facilities Agreement and Consent Order between the Department of Energy, the Department of Defense, and the State of Nevada. UGTA's primary function is to address the legacy release of hazardous constituents at the Nevada Test Site, the Tonopah Test Range, and off-Nevada Test Site underground nuclear testing areas. Participating contractors include LLNL (Earth and Environmental Sciences Directorate, Analytical and Nuclear Chemistry Division), LANL, DRI, USGS, BN, HSI-GeoTrans, and IT Corporation. The FY 1998 HRMP and UGTA annual progress report follows the organization and contents of our FY 1997 report (Smith et al., 1998), and includes our results from CY 1997-1998 technical studies of radionuclide migration and isotope hydrology at the Nevada Test Site. During FY 1998, LLNL continued its efforts under the HRMP to pursue a technical agenda relevant to the science-based stockpile stewardship program at DOE/NV. Support to UGTA in FY 1998 included efforts to quantitatively define the radionuclide source term residual from underground nuclear weapons testing and the derivative solution, or hydrologic source

  12. Design and development of progressive tool for manufacturing washer

    Science.gov (United States)

    Annigeri, Ulhas K.; Raghavendra Ravi Kiran, K.; Deepthi, Y. P.

    2017-07-01

    In a progressive tool the raw material is worked at different station to finally fabricate the component. A progressive tool is a lucrative tool for mass production of components. A lot of automobile and other transport industries develop progressive tool for the production of components. The design of tool involves lot of planning and the same amount of skill of process planning is required in the fabrication of the tool. The design also involves use of thumb rules and standard elements as per experience gained in practice. Manufacturing the press tool is a laborious task as special jigs and fixtures have to be designed for the purpose. Assembly of all the press tool elements is another task where use of accurate measuring instruments for alignment of various tool elements is important. In the present study, design and fabrication of progressive press tool for production of washer has been developed and the press tool has been tried out on a mechanical type of press. The components produced are to dimensions.

  13. Biobehavioral Influences on Cancer Progression

    Science.gov (United States)

    Costanzo, Erin S.; Sood, Anil K.; Lutgendorf, Susan K.

    2010-01-01

    Synopsis This review focuses on the contributions of stress-related behavioral factors to cancer growth and metastasis and the biobehavioral mechanisms underlying these relationships. We describe behavioral factors that are important in modulation of the stress response and the pivotal role of neuroendocrine regulation in the downstream alteration of physiological pathways relevant to cancer control, including the cellular immune response, inflammation, and tumor angiogenesis, invasion, and cell-signaling pathways. Consequences for cancer progression and metastasis, as well as quality of life, are delineated. Finally, behavioral and pharmacological interventions for cancer patients with the potential to alter these biobehavioral pathways are discussed. PMID:21094927

  14. [Progress in molecular biology of a semi-mangrove, Millettia pinnata].

    Science.gov (United States)

    Huang, Jianzi; Zhang, Wanke; Huang, Rongfeng; Zheng, Yizhi

    2015-04-01

    Millettia pinnata L. is a leguminous tree with great potential in biodiesel applications and also a typical semi-mangrove. In this review, we presented several aspects about the recent research progress in molecular biology of M. pinnata. We descrived several types of molecular markers used to assess the genetic diversity and phylogeny of this species, genome and transcriptome analyses based on high-throughput sequencing platform accomplished for this species, and several gene and genomic sequences of this species isolated for further research. Finally, based on the current research progress, we proposed some orientations for future molecular biology research on M. pinnata.

  15. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 35

    Energy Technology Data Exchange (ETDEWEB)

    1986-10-29

    Efforts are reported on the installation and checkout of cyclotron components which had been previously fabricated. Final integration of subsystems and major systems leading to internal beam tests is reported near completion. Progress is reported in relation to control system components, focus and steering magnet design, and rf system testing. (LEW)

  16. Proton magnetic resonance spectroscopy of a boron neutron capture therapy 10B-carrier, L-p-boronophenylalanine-fructose complex

    Energy Technology Data Exchange (ETDEWEB)

    Timonen, M.

    2010-07-01

    progressing GBM or anaplastic astrocytoma gradus III, and two patients had head and neck cancer. For nine patients (patients 1-9), MRS/MRSI was performed 70-140 min after the second irradiation field, and for one patient (patient 10), the MRSI study began 11 min before the end of the BPA-F infusion and ended 6 min after the end of the infusion. In comparison, single voxel MRS was performed before BNCT, for two patients (patients 3 and 9), and for one patient (patient 9), MRSI was performed one month after treatment. For one patient (patient 10), MRSI was performed four days before infusion. Signals from the tumour spectrum aromatic region were detected on the day of BNCT in three patients, indicating that in favourable cases, it is possible to detect BPA in vivo in the patient's brain after BNCT treatment or at the end of BPA-F infusion. However, because the shape and position of the detected signals did not exactly match the BPA spectrum detected in the in vitro conditions, assignment of BPA is difficult. The opportunity to perform MRS immediately after the end of BPA-F infusion for more patients is necessary to evaluate the suitability of 1H MRS for BPA detection or quantification for treatment planning purposes. However, it could be possible to use MRSI as criteria in selecting patients for BNCT. (orig.)

  17. Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang; R.C. Greenlund

    2002-12-31

    Michigan Technological University has demonstrated major inroads in establishing the viability of utilizing aluminum smelting by-product waste materials in lightweight concrete product applications. The research identified key elements of producing various forms of lightweight concrete products through utilizing various procedures and mixture components with the by-product materials. A process was developed through pilot plant testing that results in additional aluminum recovery at finer sizes, a clean returnable salt product through spray drying technology, and a low-salt-content oxide product with enough aluminum metal content that it can be used to form lightweight cementitious mixtures. Having three distinct products aids in generating favorable process economics. Revenue projections from aluminum recovery and salt recovery are enough to cover processing costs and create a cost-free oxide product to market for lightweight concrete applications. This supply side commercialization strategy offers aluminum by-product recyclers a potentially no cost product, which has been demonstrated through this project to create desirable and marketable lightweight concrete products of various forms. Environmental benefits to the public are tremendous. At best, all dross and salt cake materials have the potential to be completely recycled and utilized. At worst, disposal sites would see a reduced amount of material: a post processed oxide product with little salt and no hydrogen sulfide or ammonia gas generating capability, which, if isolated from high alkali conditions, would pose no reactivity concerns. The US aluminum industry has historically, along with the steel industry, been a leader in recycling metal. The findings from this project, increased metal recovery, improved salt recycling, and demonstrated end uses for oxide residues, will go a long way in helping the aluminum industry obtain 100% material utilization and zero discharge.

  18. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  19. SERA: Simulation Environment for Radiotherapy Applications - Users Manual Version 1CO

    International Nuclear Information System (INIS)

    Venhuizen, James Robert; Wessol, Daniel Edward; Wemple, Charles Alan; Wheeler, Floyd J; Harkin, G. J.; Frandsen, M. W.; Albright, C. L.; Cohen, M.T.; Rossmeier, M.; Cogliati, J.J.

    2002-01-01

    This document is the user manual for the Simulation Environment for Radiotherapy Applications (SERA) software program developed for boron-neutron capture therapy (BNCT) patient treatment planning by researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) and students and faculty at Montana State University (MSU) Computer Science Department. This manual corresponds to the final release of the program, Version 1C0, developed to run under the RedHat Linux Operating System (version 7.2 or newer) or the Solaris Operating System (version 2.6 or newer). SERA is a suite of command line or interactively launched software modules, including graphical, geometric reconstruction, and execution interface modules for developing BNCT treatment plans. The program allows the user to develop geometric models of the patient as derived from Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images, perform dose computation for these geometric models, and display the computed doses on overlays of the original images as three dimensional representations. This manual provides a guide to the practical use of SERA, but is not an exhaustive treatment of each feature of the code

  20. SERA: Simulation Environment for Radiotherapy Applications - Users Manual Version 1CO

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert; Wessol, Daniel Edward; Wemple, Charles Alan; Wheeler, Floyd J; Harkin, G. J.; Frandsen, M. W.; Albright, C. L.; Cohen, M.T.; Rossmeier, M.; Cogliati, J.J.

    2002-06-01

    This document is the user manual for the Simulation Environment for Radiotherapy Applications (SERA) software program developed for boron-neutron capture therapy (BNCT) patient treatment planning by researchers at the Idaho National Engineering and Environmental Laboratory (INEEL) and students and faculty at Montana State University (MSU) Computer Science Department. This manual corresponds to the final release of the program, Version 1C0, developed to run under the RedHat Linux Operating System (version 7.2 or newer) or the Solaris™ Operating System (version 2.6 or newer). SERA is a suite of command line or interactively launched software modules, including graphical, geometric reconstruction, and execution interface modules for developing BNCT treatment plans. The program allows the user to develop geometric models of the patient as derived from Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images, perform dose computation for these geometric models, and display the computed doses on overlays of the original images as three dimensional representations. This manual provides a guide to the practical use of SERA, but is not an exhaustive treatment of each feature of the code.

  1. Does lowering cholesterol have an impact on the progression of aortic stenosis?

    DEFF Research Database (Denmark)

    Greve, A.M.; Wachtell, K.

    2008-01-01

    reviews the pathophysiological mechanisms of calcific AS, reviews current clinical trials of statin use in aortic stenosis and reports on on-going trials, evaluating whether cholesterol lowering therapy can slow disease progression in different populations. Finally, we review if computerized tomography...

  2. Boron Neutron Capture Therapy (BCNT) for the Treatment of Liver Metastases: Biodistribution Studies of Boron Compounds in an Experimental Model

    Energy Technology Data Exchange (ETDEWEB)

    Marcela A. Garabalino; Andrea Monti Hughes; Ana J. Molinari; Elisa M. Heber; Emiliano C. C. Pozzi; Maria E. Itoiz; Veronica A. Trivillin; Amanda E. Schwint; Jorge E. Cardoso; Lucas L. Colombo; Susana Nievas; David W. Nigg; Romina F. Aromando

    2011-03-01

    Abstract We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of 10B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B10H10), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.

  3. Tc-99m-bicisate (ECD)-brain-SPECT in rapidly progressive dementia

    International Nuclear Information System (INIS)

    Marienhagen, J.; Eilles, C.; Weingaertner, U.; Blaha, L.; Zerr, I.; Poser, S.

    1999-01-01

    We present a 61-year-old male patient with progressive dementia. A brain SPECT with Tc-99m-bicisate was performed for confirmation of clinically suspected Alzheimer-dementia. At the time of the SPECT-investigation marked apraxia and aphasia besides severe dementia were present. Electrophysiological as well as anatomical neuroimaging findings showed non-diagnostic alterations. SPECT revealed distinct perfusion defects, which made Alzheimer Dementia unlikely. The further course of the patient was determined by rapidly progressive deterioration with development of akinetic mutism. Thereafter, increased levels of neuron-specific enolase as well as 14-3-3 proteins were found in the cerebro-spinal fluid (CSF). The patient finally died with signs of cerebral decortication. Due to the clinical course and the CSF-findings the patient's final diagnosis was Creutzfeld-Jakob-disease, nevertheless no autopsy was performed. The presented case report underscores the clinical utility of perfusion brain SPECT in the differential diagnosis of dementias. (orig.) [de

  4. Progress of JPDR decommissioning project

    International Nuclear Information System (INIS)

    Kiyota, M.; Yanagihara, S.

    1995-01-01

    The Japan Power Demonstration Reactor (JPDR) decommissioning project is progressively achieving its final goal; the project will be finished by March 1996 to release the JPDR's site into unrestricted use in a green field condition. The new techniques which developed or improved in R and D, the first phase of this program, have been successfully applied to the actual dismantling activities. Some decommissioning wastes have been managed as the first case of onsite shallow land burial based on the new regulatory frame of radioactive waste management. The experiences and the data obtained from the JPDR dismantling activities are expected to contribute to future decommissioning of commercial nuclear power plants. (author)

  5. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  6. [Specificities of the logopenic variant of primary progressive aphasia].

    Science.gov (United States)

    Magnin, E; Teichmann, M; Martinaud, O; Moreaud, O; Ryff, I; Belliard, S; Pariente, J; Moulin, T; Vandel, P; Démonet, J-F

    2015-01-01

    The logopenic variant of primary progressive aphasia is a syndrome with neuropsychological and linguistic specificities, including phonological loop impairment for which diagnosis is currently mainly based on the exclusion of the two other variants, semantic and nonfluent/agrammatic primary progressive aphasia. The syndrome may be underdiagnosed due (1) to mild language difficulties during the early stages of the disease or (2) to being mistaken for mild cognitive impairment or Alzheimer's disease when the evaluation of episodic memory is based on verbal material and (3) finally, it is not uncommon that the disorders are attributed to psychiatric co-morbidities such as, for example, anxiety. Moreover, compared to other variants of primary progressive aphasia, brain abnormalities are different. The left temporoparietal junction is initially affected. Neuropathology and biomarkers (cerebrospinal fluid, molecular amyloid nuclear imaging) frequently reveal Alzheimer's disease. Consequently this variant of primary progressive aphasia does not fall under the traditional concept of frontotemporal lobar degeneration. These distinctive features highlight the utility of correct diagnosis, classification, and use of biomarkers to show the neuropathological processes underlying logopenic primary progressive aphasia. The logopenic variant of primary progressive aphasia is a specific form of Alzheimer's disease frequently presenting a rapid decline; specific linguistic therapies are needed. Further investigation of this syndrome is needed to refine screening, improve diagnostic criteria and better understand the epidemiology and the biological mechanisms involved. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Experimental Program Final Technical Progress Report: 15 February 2007 to 30 September 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Edward R. [University of Colorado, Boulder, CO

    2014-09-12

    This is the final technical report of the grant DE-FG02-04ER41301 to the University of Colorado at Boulder entitled "Intermediate Energy Nuclear Physics" and describes the results of our funded activities during the period 15 February 2007 to 30 September 2012. These activities were primarily carried out at Fermilab, RHIC, and the German lab DESY. Significant advances in these experiments were carried out by members of the Colorado group and are described in detail.

  8. Superplastic forming and diffusion bonding: Progress and trends

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li

    2015-01-01

    Full Text Available This paper summarized recent progress in metal superplasticity and the application of Superplastic Forming/Diffusion Bonding (SPF/DB or SPF/Welding in typical structures. Various aerospace components such as three dimensional lattice structures made by SPF/DB have been demonstrated. In addition, some newly developed technologies, such as melt droplet spreading/thermo-mechanical forming (MDS/TMF, were also included. Finally, the future potential of SPF/DB technology was predicted.

  9. A critical assessment of boron target compounds for boron neutron capture therapy.

    Science.gov (United States)

    Hawthorne, M Frederick; Lee, Mark W

    2003-01-01

    Boron neutron capture therapy (BNCT) has undergone dramatic developments since its inception by Locher in 1936 and the development of nuclear energy during World War II. The ensuing Cold War spawned the entirely new field of polyhedral borane chemistry, rapid advances in nuclear reactor technology and a corresponding increase in the number to reactors potentially available for BNCT. This effort has been largely oriented toward the eradication of glioblastoma multiforme (GBM) and melanoma with reduced interest in other types of malignancies. The design and synthesis of boron-10 target compounds needed for BNCT was not channeled to those types of compounds specifically required for GBM or melanoma. Consequently, a number of potentially useful boron agents are known which have not been biologically evaluated beyond a cursory examination and only three boron-10 enriched target species are approved for human use following their Investigational New Drug classification by the US Food and Drug Administration; BSH, BPA and GB-10. All ongoing clinical trials with GBM and melanoma are necessarily conducted with one of these three species and most often with BPA. The further development of BNCT is presently stalled by the absence of strong support for advanced compound evaluation and compound discovery driven by recent advances in biology and chemistry. A rigorous demonstration of BNCT efficacy surpassing that of currently available protocols has yet to be achieved. This article discusses the past history of compound development, contemporary problems such as compound classification and those problems which impede future advances. The latter include means for biological evaluation of new (and existing) boron target candidates at all stages of their development and the large-scale synthesis of boron target species for clinical trials and beyond. The future of BNCT is bright if latitude is given to the choice of clinical disease to be treated and if a recognized study

  10. Progress Toward Heavy Ion IFE

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, B.G.; Waldron, W.L.; Sabbi, G.L.; Callahan-Miller, D.A.; Peterson, P.F.; Goodin, D.T.

    2002-01-01

    Successful development of Heavy Ion Fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy ion targets indicates that high gain (60-130) may be possible with a -3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLEE-II design, which uses an array of flibe jets to protect chamber structures from x-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLEE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HE. A target injector experiment capable of > 5 Hz operation has been designed and construction will start in 2002. Methods for mass production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed

  11. Progress toward heavy-ion IFE

    International Nuclear Information System (INIS)

    Meier, W.R.; Logan, B.G.; Waldron, W.L.; Sabbi, G.-L.; Callahan, D.A.; Peterson, P.F.; Goodin, D.T.

    2002-01-01

    Successful development of heavy-ion fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy-ion targets indicates that high gain (60-130) may be possible with a ∼3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy-ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLIFE-II design, which uses an array of flibe jets to protect chamber structures from X-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLIFE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HIF. A target injector experiment capable of >5 Hz operation has been designed and construction will start in 2002. Methods for mass-production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed

  12. A physical and engineering study on the irradiation techniques in neutron capture therapy aiming for wider application

    International Nuclear Information System (INIS)

    Sakurai, Y.; Ono, K.; Suzuki, M.; Katoh, I.; Miyatake, S.-I.; Yanagie, H.

    2003-01-01

    The solo-irradiation of thermal neutrons has been applied for brain cancer and malignant melanoma in the boron neutron capture therapy (BNCT) at the medical irradiation facility of Kyoto University Reactor (KUR), from the first clinical trial in 1974. In 1997, after the facility remodeling, the application of the mix-irradiation of thermal and epi-thermal neutrons was started, and the depth dose distribution for brain cancer has been improved in some degree. In 2001, the solo-irradiation of epi-thermal neutrons also started. It is specially mentioned that the application to oral cancers started at the same time. The BNCT clinical trial using epi-thermal neutron irradiation at KUR, amounts to twelve as of March 2003. The seven trials; more than a half of the total trials, are for oral cancers. From this fact, we think that the wider application to the other cancers is required for the future prosperity of BNCT. The cancers applied for BNCT in KUR at the present time, are brain cancer, melanoma and oral cancers, as mentioned above. The cancers, expected to be applied in near future, are liver cancer, pancreas cancer, lung cancer, tongue cancer, breast cancer, etc.. Any cancer is almost incurable by the other therapy including the other radiation therapy. In the wider application of BNCT to these cancers, the dose-distribution control suitable to each cancer and/or each part, is important. The introduction of multi-directional and/or multi-divisional irradiation is also needed. Here, a physical and engineering study using two-dimensional transport calculation and three-dimensional Monte-Carlo simulation for the irradiation techniques in BNCT aiming for wider application is reported

  13. Experimental and Theoretical Progress of Linear Collider Final Focus Design and ATF2 Facility

    CERN Document Server

    Seryi, Andrei; Zimmermann, Frank; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Terunuma, Nobuhiro; Urakawa, Junji; White, Glen; Woodley, Mark; Angal-Kalinin, Deepa

    2014-01-01

    In this brief overview we will reflect on the process of the design of the linear collider (LC) final focus (FF) optics, and will also describe the theoretical and experimental efforts on design and practical realisation of a prototype of the LC FF optics implemented in the ATF2 facility at KEK, Japan, presently being commissioned and operated.

  14. High energy experimental physics. Progress report and renewal proposal

    International Nuclear Information System (INIS)

    Rosen, J.; Miller, D.

    1985-01-01

    Technical progress is summarized for activities in these areas: study of charm particle production in hadronic collisions (data analysis); large-aperture multiparticle spectrometer; TEV I debuncher ring profile monitor; beta source monochromatizer; final reduction of data from pp and p anti p elastic scattering; high energy elastic scattering and cross section review; consequences of the Auberson-Kinoshita-Martin theorem for the nuclear slope parameter; planning and final design of the elastic scattering and total cross section experiment at the Tevatron Collider; a D-zero pp project and photoproduction experiment; lepton production in heavy-ion collisions; prompt gamma and massive lepton-pair production apparatus; and spin physics with the Fermilab polarized beam facility

  15. Possible alternation of the blood-brain barrier by boron-neutron capture therapy

    International Nuclear Information System (INIS)

    Hatanaka, H.; Moritani, M.; Camillo, M.

    1991-01-01

    In the course of re-assessment of boron-neutron capture therapy (BNCT) for malignant brain tumors, fractionation of neutron irradiation has been proposed. The authors have used BNCT with a single fraction technique during the past 21 years and now decided to study some effects of fractionation. Twenty-two healthy mouse brains were irradiated with thermal neutrons after boron-10 injection (mercaptoundecahydrododecaborate). A second dose of boron-10 was administered and its uptake in the boron-neutron-capture-irradiated brains was determined. A tendency towards increased boron uptake in the moderately BNCT-treated brains was noticed, which may result in increased brain damage if fractionated neutron irradiation is used. (orig.)

  16. Intracellular uptake of 123I-boronophenylalanine-fructose

    International Nuclear Information System (INIS)

    Woo, K. S.; Choi, T. H.; Choi, C. Y.; Jung, W. S.; Lim, S. J.; Lee, S. J.; Lim, S. M.

    1999-01-01

    Boronophenylalanine (BPA) has been used in malignant glioma or melanoma uptake for BNCT. We labeled BPA with 123 I for in vivo quantitation of BPA in BNCT, and tumor imaging with gamma camera. We investigated the amino acid BPA as a boron delivery agent fro BNCT. As the free amino acid, BPA has a limited solubility at physiological pH, which makes it unsuitable for IV or IP injection. Recent studies of the chemistry of BPA have yielded a method of solubilizing BPA at neutral pH using fructose, a common fruit sugar. The use of BPA-fructose has significantly improved high uptake compared to BPA alone in melanoma

  17. Boron-11 MRI and MRS of intact animals infused with a boron neutron capture agent

    International Nuclear Information System (INIS)

    Kabalka, G.W.; Davis, M.; Bendel, P.

    1988-01-01

    Boron neutron capture therapy (BNCT) depends on the delivery of boron-containing drugs to a targeted lesion. Currently, the verification and quantification of in vivo boron content is a difficult problem. Boron-11 spectroscopy was utilized to confirm the presence of a dimeric sulfhydryl dodecaborane BNCT agent contained in an intact animal. Spectroscopy experiments revealed that the decay time of transverse magnetization of the boron-11 spins was less than 1 ms which precluded the use of a 2DFT imaging protocol. A back-projection protocol was developed and utilized to generate the first boron-11 image of a BNCT agent in the liver of an intact Fisher 344 rat

  18. Metaheuristics progress as real problem solvers

    CERN Document Server

    Nonobe, Koji; Yagiura, Mutsunori

    2005-01-01

    Metaheuristics: Progress as Real Problem Solvers is a peer-reviewed volume of eighteen current, cutting-edge papers by leading researchers in the field. Included are an invited paper by F. Glover and G. Kochenberger, which discusses the concept of Metaheuristic agent processes, and a tutorial paper by M.G.C. Resende and C.C. Ribeiro discussing GRASP with path-relinking. Other papers discuss problem-solving approaches to timetabling, automated planograms, elevators, space allocation, shift design, cutting stock, flexible shop scheduling, colorectal cancer and cartography. A final group of methodology papers clarify various aspects of Metaheuristics from the computational view point.

  19. Progression og innovation – hvordan kan de to begreber berige hinanden og universitetsundervisning?

    DEFF Research Database (Denmark)

    Jensen, Tine Lynfort

    2014-01-01

    berige hinanden på universiteterne generelt. In the article, the concepts of innovation and progression are linked to one another based on the author’s experiences with teaching innovation to humanistic students. In particular, there is a focus on competency assessment as a foundation...... bidrager til progressionen i undervisningsforløb. Der præsenteres en udviklet model med afsæt i denne form for undervisning, hvor progressionsbegrebet søges forstået og forklaret på tre niveauer. Slutteligt diskuteres, hvorledes innovation og progression som begreber og som undervisningsaktiviteter kan...... for this interrelation as the student’s awareness of their own resources contributes to progression in courses of study. A newly developed model is presented in the article. The concept of progression is understood and explained in the context of innovation teaching at three levels. Finally, it is discussed how...

  20. What is the Integral in Integral Education? From Progressive Pedagogy to Integral Pedagogy

    Directory of Open Access Journals (Sweden)

    Tom Murray

    2009-06-01

    Full Text Available Integrally-informed educational approaches have much in common withprogressive (including reform, alternative, holistic, and transformative approaches, andshare many of the same values. One function of the integral approach is to provide anoverarching model within which to coordinate different progressive methods. Thoughintegral adds much more than that, descriptions of integral education sometimes soundlike progressive educational principles recast with new terminology. This essay attemptsto clarify what the integral approach adds over and above progressive educationaltheories. After an overview of progressive pedagogical principles, the integral approachis discussed in terms of integral as a model, a method, a community, and a developmentalstage. Integral as a type of consciousness or developmental level is elaborated upon asconsisting of construct-awareness, ego-awareness, relational-awareness, and systemawareness,all important to the educational process. Finally, challenges and supportsystems for realizing integral education are discussed.

  1. Does More Progressive Tax Make Tax Discipline Weaker?

    OpenAIRE

    Tatiana Damjanovic

    2005-01-01

    This paper investigates the relationship between the disparity in tax base and tax collection. I address the tax collection problem with traditional industrial organization approach. Thus, I model the "tax minimization" industry where the supplier helps taxpayers to avoid their tax liability. I find that lower income inequality as well as a less progressive tax code may result in a smaller number of tax payers committing to their tax duties. Finally, I question the reduction in the highest ta...

  2. PEMODELAN KOLIMATOR DI RADIAL BEAM PORT REAKTOR KARTINI UNTUK BORON NEUTRON CAPTURE THERAPY

    Directory of Open Access Journals (Sweden)

    Bemby Yulio Vallenry

    2015-03-01

    Full Text Available Salah satu metode terapi kanker adalah Boron Neutron Capture Therapy (BNCT. BNCT memanfaatkan tangkapan neutron oleh 10B yang terendapkan pada sel kanker. Keunggulan BNCT dibandingkan dengan terapi radiasi lainnya adalah tingkat selektivitas yang tinggi karena tingkatannya adalah sel. Pada penelitian ini dilakukan pemodelan kolimator di radial beamport reaktor Kartini sebagai dasar pemilihan material dan manufature kolimator sebagai sumber neutron untuk BNCT. Pemodelan ini dilakukan dengan simulasi menggunakan perangkat lunak Monte Carlo N-Particle versi 5 (MCNP 5. MCNP 5 adalah suatu paket program untuk memodelkan sekaligus menghitung masalah transpor partikel dengan mengikuti sejarah hidup neutron semenjak lahir, bertranspor pada bahan hingga akhirnya hilang karena mengalami reaksi penyerapan atau keluar dari sistem. Pemodelan ini menggunakan variasi material dan ukurannya agar menghasilkan nilai dari tiap parameter-parameter yang sesuai dengan rekomendasi I International Atomic Energy Agency (IAEA untuk BNCT, yaitu fluks neutron epitermal (Фepi > 9 n.cm-2.s-1, rasio antara laju dosis neutron cepat dan fluks neutron epitermal (Ḋf/Фepi 0,7. Berdasarkan hasil optimasi dari pemodelan ini, material dan ukuran penyusun kolimator yang didapatkan yaitu 0,75 cm Ni sebagai dinding kolimator, 22 cm Al sebagai moderator dan 4,5 cm Bi sebagai perisai gamma. Keluaran berkas radiasi yang dihasilkan dari pemodelan kolimator radial beamport yaitu Фepi = 5,25 x 106 n.cm-2s-1, Ḋf/Фepi =1,17 x 10-13 Gy.cm2.n-1, Ḋγ/Фepi = 1,70 x 10-12 Gy.cm2.n-1, Фth/Фepi = 1,51 dan J/Фepi = 0,731. Berdasarkan penelitian ini, hasil optimasi 5 parameter sebagai persyaratan kolimator untuk BNCT yang keluar dari radial beam port tidak sepenuhnya memenuhi kriteria yang direkomendasikan oleh IAEA sehingga perlu dilakukan penelitian lebih lanjut agar tercapainya persyaratan IAEA. Kata kunci: BNCT, radial beamport, MCNP 5, kolimator   One of the cancer therapy methods is

  3. Boron neutron capture therapy for children with malignant brain tumor

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Komatsu, Hisao; Kageji, Teruyoshi; Tsuji, Fumio; Matsumoto, Keizo; Kitamura, Katsuji; Hatanaka, Hiroshi; Minobe, Takashi.

    1993-01-01

    Among the 131 cases with brain tumors treated by boron-neutron capture therapy (BNCT), seventeen were children. Eight supratentorial tumors included five astrocytomas(grade 2-4), two primitive neuroectodermal tumors (PNET) and one rhabdomyosarcoma. Seven pontine tumors included one astrocytoma, one PNET and 5 unverified gliomas. Two cerebellar tumors (PNET and astrocytoma) were also treated. All pontine tumors showed remarkable decrease in size after BNCT. However, most of them showed regrowth of the tumors because the neutrons were insufficient due to the depth. Four cases with cerebral tumor died of remote cell dissemination, although they all responded to BNCT. One of them survived 7 years after repeated BNCTs. An 11 years old girl with a large astrocytoma in the right frontal lobe has lived more than 11 years and is now a draftswoman at a civil engineering company after graduating from a technical college. An 8 years old girl with an astrocytoma in the left occipital lobe has no recurrence of the tumor for 2 years and attends on elementary school without mental and physical problems. Two children (one year old girl and four years old boy) with cerebellar tumors have shown showed an excellent growth after BNCT and had no neurological deficits. Mental and physical development in patients treated by BNCT is usually better than that in patients treated by conventional radiotherapy. (author)

  4. The final checkpoint. Cancer as an adaptive evolutionary mechanism

    Directory of Open Access Journals (Sweden)

    Rumena Petkova

    2016-05-01

    Full Text Available The mechanisms for identification of DNA damage and repair usually manage DNA damage very efficiently. If damaged cells manage to bypass the checkpoints where the integrity of the genome is assessed and the decisions whether to proceed with the cell cycle are made, they may evade the imperative to stop dividing and to die. As a result, cancer may develop. Warding off the potential sequence-altering effects of DNA damage during the life of the individual or the existence span of the species is controlled by a set of larger checkpoints acting on a progressively increasing scale, from systematic removal of damaged cells from the proliferative pool by means of repair of DNA damage/programmed cell death through ageing to, finally, cancer. They serve different purposes and act at different levels of the life cycle, safeguarding the integrity of the genetic backup of the individual, the genetic diversity of the population, and, finally, the survival of the species and of life on Earth. In the light of the theory that cancer is the final checkpoint or the nature's manner to prevent complex organisms from living forever at the expense of genetic stagnation, the eventual failure of modern anti-cancer treatments is only to be expected. Nevertheless, the medicine of today and the near future has enough potential to slow down the progression to terminal cancer so that the life expectancy and the quality of life of cancer-affected individuals may be comparable to those of healthy aged individuals.

  5. Current utilization and long term strategy of the Finnish TRIGA research reactor FiR 1

    International Nuclear Information System (INIS)

    Auterinen, Iiro; Salmenhaara, Seppo

    2008-01-01

    FiR 1 (TRIGA Mark II, 250 kW) has an important international role in the development of boron neutron capture therapy (BNCT) for cancer. The safety and efficacy of BNCT is studied for several different cancers: - primary glioblastoma, a highly malignant brain tumour (since 1999); - recurrent glioblastoma or anaplastic astrocytoma (since 2001); - recurrent inoperable head and neck carcinoma (since 2003). It is one of the few facilities in the world providing this kind of treatments. The successes in the BNCT development have now created a demand for these treatments, although they are given on an experimental basis. Well over 100 patients treated now since May 1999: - at least 1 patient irradiation / week, often 2 (Tuesday and Thursday) - patients are referred to BNCT-treatments from several hospitals, also outside research protocols; - the hospitals pay for the treatment. The FiR 1 reactor has proven to be a reliable neutron source for the BNCT treatments; no patient irradiations have been cancelled because of a failure of the reactor. The BNCT facility has become a center of extensive academic research especially in medical physics. Nuclear education and training continue to play also a role at FiR 1 in the form of university courses and training of nuclear industry personnel. FiR 1 is one of the two sources in Scandinavia for short lived radioisotopes used in tracer studies in industry. The main isotope produced is Br-82 in the form of either KBr or ethylene bromide. Other typical isotopes are Na-24, Ar-41, La-140. The isotopes are used mainly in tracer studies in industry (Indmeas Inc., Finland). Typical activity of one irradiated Br-sample is 20 - 80 GBq; total activity produced in one year is over 3 TBq; the reactor operating time needed for the isotope production is one or two days per week. Accelerator based neutron sources are developed for BNCT. The prospect is that when BNCT will achieve a status of a fully accepted and efficient treatment modality for

  6. Progression of trunk imbalance in adolescent idiopathic scoliosis with a thoracolumbar/lumbar curve: is it predictable at the initial visit?

    Science.gov (United States)

    Hwang, Chang Ju; Lee, Choon Sung; Lee, Dong-Ho; Cho, Jae Hwan

    2017-11-01

    OBJECTIVE Progression of trunk imbalance is an important finding during follow-up of patients with adolescent idiopathic scoliosis (AIS). Nevertheless, no factors that predict progression of trunk imbalance have been identified. The purpose of this study was to identify parameters that predict progression of trunk imbalance in cases of AIS with a structural thoracolumbar/lumbar (TL/L) curve. METHODS This study included 105 patients with AIS and a structural TL/L curve who were followed up at an outpatient clinic. Patients with trunk imbalance (trunk shift ≥ 20 mm) at the initial visit were excluded. All patients were followed up for more than 2 years. Patients were divided into the following groups according to progression of trunk imbalance: 1) Group P, trunk shift ≥ 20 mm at the final visit and degree of progression ≥ 10 mm; and 2) Group NP, trunk shift imbalance with progression ≥ 10 mm at the final visit (Group P). Multivariate logistic regression analysis identified a lower Risser grade (p = 0.002) and a greater initial AVR (p = 0.020) as predictors of progressive trunk imbalance. A change in LEV tilt during follow-up was associated with trunk imbalance (p = 0.001). CONCLUSIONS Risser grade and AVR measured at the initial visit may predict progression of trunk imbalance. Surgeons should consider the risk of progressive trunk imbalance if patients show skeletal immaturity and a greater AVR at the initial visit.

  7. Progress Report on the Construction of SOLEIL

    CERN Document Server

    Level, Marie Paule; Brunelle, Pascale; Chaput, Roger; Dael, Antoine; Denard, Jean-Claude; Filhol, Jean-Marc; Godefroy, Jean-Marie; Herbeaux, Christian; Le Roux, V; Marchand, Patrick; Nadji, Amor; Nadolski, Laurent S; Nagaoka, Ryutaro; Tordeux, M A

    2005-01-01

    This paper reports the progress achieved in the construction of the accelerators of SOLEIL. Started in January 2002, the construction comes near to its end and the installation of the equipment on the site has begun from September 2004 and shall be completed within one year. The progress on the LINAC and Booster are reported separately, therefore this paper will focus more particularly on the Storage Ring: Dedicated measuring benches have been built to perform the magnetic measurements on all the magnets and the results of measurements have been analysed in term of particle dynamics behaviour in order to prepare the operating point for the commissioning. The status of innovative developments engaged from the beginning as super-conducting RF cavities, NEG coated vacuum chambers and BPMs digital electronics will be described. The construction of the first 6 insertion devices is also well advanced and will be reported. Finally, the machine impedance budget was further evaluated with consequently, still some modi...

  8. Emerging drugs for primary progressive multiple sclerosis.

    Science.gov (United States)

    Narayan, Ram Narendra; Forsthuber, Thomas; Stüve, Olaf

    2018-04-24

    The identification of effective therapies for progressive forms of multiple sclerosis (MS) has remains a priority and challenge for the global MS community. Despite a few proposed mechanisms, a more complete understanding of the mechanisms involved in the pathogenesis of these MS phenotypes, animal models that incorporate these pathogenic characteristics, novel trial designs, drug repurposing strategies, and new models of collaboration between clinical and basic science personnel may be required in identifying effective therapies. Areas covered: Here, we review the current knowledge on putative pathogenic mechanisms in primary progressive MS (PPMS). Also, the rationale and outcomes of key phase II or III trial initiatives in PPMS are summarized. Future perspectives are outlined. Expert opinion: The recent approval of ocrelizumab is a major milestone forward in the therapy of PPMS. One reason for success of this drug is appropriate patient selection. The ultimate goal in PPMS therapy should be the reversal of disability, and the arrest of disease progression. Our current understanding of PPMS suggests that a combination of immune-modulatory, myelin-restorative, and neuro-regenerative therapies particularly early in the disease course would be a reasonable strategy. Finally, selection of appropriate patients, selection of appropriate outcomes and monitoring therapy is again crucial for success of therapeutic strategies.

  9. {sup 1}H and {sup 10}B NMR and MRI investigation of boron- and gadolinium-boron compounds in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, M., E-mail: marco.bonora@unipv.it [Physics Department ' A. Volta' , University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [CNISM Unit (Italy); Corti, M.; Borsa, F. [Physics Department ' A. Volta' , University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [CNISM Unit (Italy); Bortolussi, S.; Protti, N.; Santoro, D.; Stella, S.; Altieri, S. [Nuclear and Theoretical Physics Department, University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [INFN Pavia (Italy); Zonta, C.; Clerici, A.M.; Cansolino, L.; Ferrari, C.; Dionigi, P. [Surgical Sciences Department, Experimental Surgery Laboratory, University of Pavia, Pavia (Italy); Porta, A.; Zanoni, G.; Vidari, G. [Organic Chemistry Department, University of Pavia, Via Taramelli 10, 27100 Pavia (Italy)

    2011-12-15

    {sup 10}B molecular compounds suitable for Boron Neutron Capture Therapy (BNCT) are tagged with a Gd(III) paramagnetic ion. The newly synthesized molecule, Gd-BPA, is investigated as contrast agent in Magnetic Resonance Imaging (MRI) with the final aim of mapping the boron distribution in tissues. Preliminary Nuclear Magnetic Resonance (NMR) measurements, which include {sup 1}H and {sup 10}B relaxometry in animal tissues, proton relaxivity of the paramagnetic Gd-BPA molecule in water and its absorption in tumoral living cells, are reported.

  10. Heavy-ion-fusion-science: summary of US progress

    International Nuclear Information System (INIS)

    Yu, S.S.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Grote, D.P.; Henestroza, E.; Kaganovich, I.D.; Covo, M. Kireeff; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Lund, S.M.; Molvik, A.W.; Olson, C.L.; Qin, H.; Roy, P.K.; Sefkow, A.; Seidl, P.A.; Startsev, E.A.; Vay, J-L.; Waldron, W.L.; Welch, D.R.

    2007-01-01

    Over the past two years noteworthy experimental and theoretical progress has been made towards the top-level scientific question for the US programme on heavy-ion-fusion-science and high energy density physics: 'How can heavy-ion beams be compressed to the high intensity required to create high energy density matter and fusion conditions?' New results in transverse and longitudinal beam compression, high-brightness transport and beam acceleration will be reported. Central to this campaign is final beam compression. With a neutralizing plasma, we demonstrated transverse beam compression by an areal factor of over 100 and longitudinal compression by a factor of > 50. We also report on the first demonstration of simultaneous transverse and longitudinal beam compression in plasma. High beam brightness is key to high intensity on target, and detailed experimental and theoretical studies on the effect of secondary electrons on beam brightness degradation are reported. A new accelerator concept for near-term low-cost target heating experiments was invented, and the predicted beam dynamics validated experimentally. We show how these scientific campaigns have created new opportunities for interesting target experiments in the warm dense matter regime. Finally, we summarize progress towards heavy-ion fusion, including the demonstration of a compact driver-size high-brightness ion injector. For all components of our high intensity campaign, the new results have been obtained via tightly coupled efforts in experiments, simulations and theory

  11. Recent Progress on Data-Based Optimization for Mineral Processing Plants

    Directory of Open Access Journals (Sweden)

    Jinliang Ding

    2017-04-01

    Full Text Available In the globalized market environment, increasingly significant economic and environmental factors within complex industrial plants impose importance on the optimization of global production indices; such optimization includes improvements in production efficiency, product quality, and yield, along with reductions of energy and resource usage. This paper briefly overviews recent progress in data-driven hybrid intelligence optimization methods and technologies in improving the performance of global production indices in mineral processing. First, we provide the problem description. Next, we summarize recent progress in data-based optimization for mineral processing plants. This optimization consists of four layers: optimization of the target values for monthly global production indices, optimization of the target values for daily global production indices, optimization of the target values for operational indices, and automation systems for unit processes. We briefly overview recent progress in each of the different layers. Finally, we point out opportunities for future works in data-based optimization for mineral processing plants.

  12. Polarizing matter and antimatter: A new method. Final report

    International Nuclear Information System (INIS)

    Onel, Y.

    1994-12-01

    Several years ago a self-polarization effect for stored (anti-)protons and ions was investigated theoretically. The effect is based on the well-known Stern-Gerlach effect in gradient fields. The aim of the ongoing measurements at the Indiana University Cyclotron Facility (IUCF) is to verify experimentally the various assumptions on which this effect is based. The final goal is to demonstrate this new polarization effect. The proposed effect could be a powerful tool to produce polarized stored hadron beams both in the low-energy range and at SSC and LHC energies. In this progress report the authors will describe the progress in three parts: (A) experimental work at IUCF Cooler Ring; (B) the extensive computer simulations of the spin stability for the IUCF Cooler Ring; and (C) theoretical studies

  13. The radiobiology of boron neutron capture therapy: Are ''photon-equivalent'' doses really photon-equivalent?

    International Nuclear Information System (INIS)

    Coderre, J.A.; Diaz, A.Z.; Ma, R.

    2001-01-01

    Boron neutron capture therapy (BNCT) produces a mixture of radiation dose components. The high-linear energy transfer (LET) particles are more damaging in tissue than equal doses of low-LET radiation. Each of the high-LET components can multiplied by an experimentally determined factor to adjust for the increased biological effectiveness and the resulting sum expressed in photon-equivalent units (Gy-Eq). BNCT doses in photon-equivalent units are based on a number of assumptions. It may be possible to test the validity of these assumptions and the accuracy of the calculated BNCT doses by 1) comparing the effects of BNCT in other animal or biological models where the effects of photon radiation are known, or 2) if there are endpoints reached in the BNCT dose escalation clinical trials that can be related to the known response to photons of the tissue in question. The calculated Gy-Eq BNCT doses delivered to dogs and to humans with BPA and the epithermal neutron beam of the Brookhaven Medical Research Reactor were compared to expected responses to photon irradiation. The data indicate that Gy-Eq doses in brain may be underestimated. Doses to skin are consistent with the expected response to photons. Gy-Eq doses to tumor are significantly overestimated. A model system of cells in culture irradiated at various depths in a lucite phantom using the epithermal beam is under development. Preliminary data indicate that this approach can be used to detect differences in the relative biological effectiveness of the beam. The rat 9L gliosarcoma cell survival data was converted to photon-equivalent doses using the same factors assumed in the clinical studies. The results superimposed on the survival curve derived from irradiation with Cs-137 photons indicating the potential utility of this model system. (author)

  14. Tumor cell killing effect of boronated dipeptide. Boromethylglycylphenylalanine on boron neutron capture therapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Takagaki, Masao; Ono, Koji; Masunaga, Shinichiro; Kinashi, Yuko; Kobayashi, Toru; Oda, Yoshifumi; Kikuchi, Haruhiko; Spielvogel, B.F.

    1994-01-01

    The killing effect of Boron Neutron Capture Therapy; BNCT, is dependant on the boron concentration ratio of tumor to normal brain (T/N ratio), and also that of tumor to blood (T/B ratio). The clinical boron carrier of boro-captate (BSH) showed the large T/N ratio of ca. 8, however the T/B ratio was around 1, which indicated nonselective accumulation into tumor. Indeed high boron concentration of blood restrict the neutron irradiation dose in order to circumvent the normal endothelial damage, especially in the case of deeply seated tumor. Phenylalanine analogue of para borono-phenylalanine (BPA) is an effective boron carrier on BNCT for malignant melanoma. For the BNCT on brain tumors, however, BPA concentration in normal brain was reported to be intolerably high. In order to improve the T/N ratio of BPA in brain, therefore, a dipeptide of boromethylglycylphenylalanine (BMGP) was synthesized deriving from trimethylglycine conjugated with BPA. It is expected to be selectively accumulated into tumor with little uptake into normal brain. Because a dipeptide might not pass through the normal blood brain barrier (BBB). Its killing effect on cultured glioma cell, T98G, and its distribution in rat brain bearing 9L glioma have been investigated in this paper. The BNCT effect of BMGP on cultured cells was nearly triple in comparison with DL-BPA. The neutron dose yielding 1% survival ratio were 7x10 12 nvt for BMGP and 2x10 13 nvt for BPA respectively on BNCT after boron loading for 16 hrs in the same B-10 concentration of 20ppm. Quantitative study of boron concentration via the α-auto radiography and the prompt gamma ray assay on 9L brain tumor rats revealed that T/N ratio and T/B ratio are 12.0 and 3.0 respectively. Those values are excellent for BNCT use. (author)

  15. Effect of bevacizumab combined with boron neutron capture therapy on local tumor response and lung metastasis

    Science.gov (United States)

    MASUNAGA, SHIN-ICHIRO; SAKURAI, YOSHINORI; TANO, KEIZO; TANAKA, HIROKI; SUZUKI, MINORU; KONDO, NATSUKO; NARABAYASHI, MASARU; WATANABE, TSUBASA; NAKAGAWA, YOSUKE; MARUHASHI, AKIRA; ONO, KOJI

    2014-01-01

    The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide. PMID:24944637

  16. Model-based setup assistant for progressive tools

    Science.gov (United States)

    Springer, Robert; Gräler, Manuel; Homberg, Werner; Henke, Christian; Trächtler, Ansgar

    2018-05-01

    In the field of production systems, globalization and technological progress lead to increasing requirements regarding part quality, delivery time and costs. Hence, today's production is challenged much more than a few years ago: it has to be very flexible and produce economically small batch sizes to satisfy consumer's demands and avoid unnecessary stock. Furthermore, a trend towards increasing functional integration continues to lead to an ongoing miniaturization of sheet metal components. In the industry of electric connectivity for example, the miniaturized connectors are manufactured by progressive tools, which are usually used for very large batches. These tools are installed in mechanical presses and then set up by a technician, who has to manually adjust a wide range of punch-bending operations. Disturbances like material thickness, temperatures, lubrication or tool wear complicate the setup procedure. In prospect of the increasing demand of production flexibility, this time-consuming process has to be handled more and more often. In this paper, a new approach for a model-based setup assistant is proposed as a solution, which is exemplarily applied in combination with a progressive tool. First, progressive tools, more specifically, their setup process is described and based on that, the challenges are pointed out. As a result, a systematic process to set up the machines is introduced. Following, the process is investigated with an FE-Analysis regarding the effects of the disturbances. In the next step, design of experiments is used to systematically develop a regression model of the system's behaviour. This model is integrated within an optimization in order to calculate optimal machine parameters and the following necessary adjustment of the progressive tool due to the disturbances. Finally, the assistant is tested in a production environment and the results are discussed.

  17. Development of local radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Lim, Sang Moo; Choi, Chang Woon; Chai, Jong Su; Kim, Eun Hee; Kim, Mi Sook; Yoo, Seong Yul; Cho, Chul Koo; Lee, Yong Sik; Lee, Hyun Moo

    1999-04-01

    The major limitations of radiation therapy for cancer are the low effectiveness of low LET and inevitable normal tissue damage. Boron Neutron Capture Therapy (BNCT) is a form of potent radiation therapy using Boron-10 having a high propensityof capturing theraml neutrons from nuclear reactor and reacting with a prompt nuclear reaction. Photodynamic therapy is a similiar treatment of modality to BNCT using tumor-seeking photosenistizer and LASER beam. If Boron-10 and photosensitizers are introduced selectively into tumor cells, it is theoretically possible to destroy the tumor and to spare the surrounding normal tissue. Therefore, BNCT and PDT will be new potent treatment modalities in the next century. In this project, we performed PDT in the patients with bladder cancers, oropharyngeal cancer, and skin cancers. Also we developed I-BPA, new porphyrin compounds, methods for estimation of radiobiological effect of neutron beam, and superficial animal brain tumor model. Furthermore, we prepared preclinical procedures for clinical application of BNCT, such as the macro- and microscopic dosimetry, obtaining thermal neutron flux from device used for fast neutron production in KCCH have been performed.

  18. Development of local radiation therapy

    International Nuclear Information System (INIS)

    Lee, Seung Hoon; Lim, Sang Moo; Choi, Chang Woon; Chai, Jong Su; Kim, Eun Hee; Kim, Mi Sook; Yoo, Seong Yul; Cho, Chul Koo; Lee, Yong Sik; Lee, Hyun Moo

    1999-04-01

    The major limitations of radiation therapy for cancer are the low effectiveness of low LET and inevitable normal tissue damage. Boron Neutron Capture Therapy (BNCT) is a form of potent radiation therapy using Boron-10 having a high propensityof capturing theraml neutrons from nuclear reactor and reacting with a prompt nuclear reaction. Photodynamic therapy is a similiar treatment of modality to BNCT using tumor-seeking photosenistizer and LASER beam. If Boron-10 and photosensitizers are introduced selectively into tumor cells, it is theoretically possible to destroy the tumor and to spare the surrounding normal tissue. Therefore, BNCT and PDT will be new potent treatment modalities in the next century. In this project, we performed PDT in the patients with bladder cancers, oropharyngeal cancer, and skin cancers. Also we developed I-BPA, new porphyrin compounds, methods for estimation of radiobiological effect of neutron beam, and superficial animal brain tumor model. Furthermore, we prepared preclinical procedures for clinical application of BNCT, such as the macro- and microscopic dosimetry, obtaining thermal neutron flux from device used for fast neutron production in KCCH have been performed

  19. The spectrum of progressive derecho formation environments

    Science.gov (United States)

    Guastini, Corey T.

    Progressive derechos are severe mesoscale convective systems that often form east of the Rocky Mountains during the warm season (May--August) and cause, by definition, straight-line wind damage along paths upwards of 400 km long. This study develops a subjective, seven-category classification scheme that spans the spectrum of progressive derecho formation environments from those dominated by robust upper-level ridges to those characterized by vigorous upper-level troughs. A climatology of 256 progressive derecho events is created for 1996--2013 and is categorized according to the developed classification scheme. Derecho initiation-relative composites are constructed for each of the seven groups using 0.5° Climate Forecast System Reanalysis data to document the environmental characteristics unique to each group as well as those shared among them. Finally, two in-depth case studies and five cursory case studies provide examples of the seven categories and reveal important nuances in mesoscale dynamic and thermodynamic structure inherent to all derecho cases. Results of the climatology show progressive derecho activity increases from 1 May through 1 July before decreasing again through the end of August and follows a northward trend in latitude from 1 May through 1 August before shifting slightly southward through the end of the warm season. Upslope flow in the vicinity of the Rocky Mountains initiates 28 percent of progressive derechos, upper-level troughs initiate 20 percent, 47 percent form in benign synoptic environments, and 5 percent are unclassifiable. Composite results show all progressive derecho initiation environments are marked by a long axis of instability caused by the overlap of high atmospheric moisture content and steep midlevel lapse rates, but the relative positions and strengths of upper-level troughs and ridges are crucial in determining how the instability axis develops and what its orientation in space will be. Case studies reveal instability

  20. Muon collider progress

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J. FNAL

    1998-08-01

    Recent progress in the study of muon colliders is presented. An international collaboration consisting of over 100 individuals is involved in calculations and experiments to demonstrate the feasibility of this new type of lepton collider. Theoretical efforts are now concentrated on low-energy colliders in the 100 to 500 GeV center-of-mass energy range. Credible machine designs are emerging for much of a hypothetical complex from proton source to the final collider. Ionization cooling has been the most difficult part of the concept, and more powerful simulation tools are now in place to develop workable schemes. A collaboration proposal for a muon cooling experiment has been presented to the Fermilab Physics Advisory Committee, and a proposal for a targetry and pion collection channel experiment at Brookhaven National Laboratory is in preparation. Initial proton bunching and space-charge compensation experiments at existing hadron facilities have occurred to demonstrate proton driver feasibility.