WorldWideScience

Sample records for bnct filter optimization

  1. Optimal filtering

    CERN Document Server

    Anderson, Brian D O

    2005-01-01

    This graduate-level text augments and extends beyond undergraduate studies of signal processing, particularly in regard to communication systems and digital filtering theory. Vital for students in the fields of control and communications, its contents are also relevant to students in such diverse areas as statistics, economics, bioengineering, and operations research.Topics include filtering, linear systems, and estimation; the discrete-time Kalman filter; time-invariant filters; properties of Kalman filters; computational aspects; and smoothing of discrete-time signals. Additional subjects e

  2. Filter/moderator system for a BNCT beam of epithermal neutrons at nuclear reactor MARIA

    Science.gov (United States)

    Tyminska, Katarzyna

    2009-01-01

    Boron Neutron Capture Therapy is a very promising form of cancer therapy, consisting in irradiating a stable isotope of boron (10B) concentrated in tumor cells with a low energy neutron beam. This technique makes it possible to destroy tumor cells, leaving healthy tissues practically unaffected. In order to carry out the therapy in the proper way, the proper range of the neutron beam energy has to be chosen. In this paper we present a filter/moderator system modeled with MCNP code in order to obtain an epithermal neutron beam for BNCT post at MARIA reactor in Swierk.

  3. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, M. [National Radiation Protection Department - NRPD, Atomic Energy Organization of Iran - AEOI, Tehran (Iran, Islamic Republic of); End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Kasesaz, Y.; Khalafi, H.; Shayesteh, M. [Radiation Application School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  4. The filter/moderator arrangement-optimisation for the boron-neutron capture therapy (BNCT).

    Science.gov (United States)

    Tracz, G; Dabkowski, L; Dworak, D; Pytel, K; Woźnicka, U

    2004-01-01

    The paper presents results of the numerical modelling of the fission-converter-based epithermal neutron source designed for the boron neutron capture therapy (BNCT) facility to be located at the Polish research nuclear reactor MARIA at Swierk. The unique design of the fission converter has been proposed due to a specific geometrical surrounding of the reactor. The filter/moderator arrangement has been optimised to moderate fission neutrons to epithermal energies and to remove both fast neutrons and photons from the therapeutic beam. The selected filter/moderator set-up ensures both high epithermal neutron flux and suitably low level of beam contamination. Photons originating from the reactor core are almost eliminated what is the exceptional advantage of the proposed design. It yields one order of magnitude lower gamma radiation dose than the maximum allowed dose in such a type of therapeutic facility. The MCNP code has been used for the computations.

  5. Neutron beam optimization based on a 7Li(p,n)7Be reaction for treatment of deep-seated brain tumors by BNCT

    Science.gov (United States)

    Zahra Ahmadi, Ganjeh; S. Farhad, Masoudi

    2014-10-01

    Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy (BNCT) is investigated using a 7Li(p,n)7Be reaction. Design and optimization have been carried out for the target, cooling system, moderator, filter, reflector, and collimator to achieve a high flux of epithermal neutron and satisfy the IAEA criteria. Also, the performance of the designed beam in tissue is assessed by using a simulated Snyder head phantom. The results show that the optimization of the collimator and reflector is critical to finding the best neutron beam based on the 7Li(p,n)7Be reaction. Our designed beam has 2.49×109n/cm2s epithermal neutron flux and is suitable for BNCT of deep-seated brain tumors.

  6. Design and optimization of neutron beam for the treatment of deep brain tumors by BNCT with Reducing damage to skin

    Directory of Open Access Journals (Sweden)

    Zahra Ahmadi Ganjeh

    2017-05-01

    Full Text Available Boron neutron capture therapy (BNCT is an effective method for treatment of deep seated brain tumors. This method consists of two stages: injection of boron compound in the patient body, and then irradiation of the region tumors with the neutron beam. It allows for delivery of high linear energy transfer (LET radiation (particles 4He and 7Li nuclei to tumors at the cellular level whilst avoiding unnecessary dose deposition to healthy tissue. The proper neutron energies for BNCT is 1eV–10keV, namely epithermal energy range. Neutrons can slow down to the thermal energies via passing through the different tissue before reaching the tumor. Neutrons with higher or lower energies and &gamma-radiation are extremely undesirable and should be avoided as much as possible of the spectrum. Therefore, a good spectrum shaping is an essential requirement for BNCT. The following neutron-producing charged particles reactions are considered mainly for use in accelerator based neutron capture therapy: 7Li(p,n7Be, 9Be(p,n9B, 9Be(d,n10B and 13C(d,n13N. The 7Li(p,n7Be reaction is excellent for producing neutron. Neutrons from this reaction have a relatively narrow energy spectrum which requires less moderation than those generated from other reactions. In this paper, we investigate the feasibility of using 7Li(p,n7Be reaction with irradiation of 2.5MeV-20mA proton beam for neutron production in order to treatment deep seated brain tumors. the serious drawback of this source is the low melting point of Li target (180 °C and its low thermal conductivity (84.7 W/m °k. To overcome this problem, a cooling system was optimized and a beam shaping assembly (BSA was proposed for decreasing of the flux of fast neutrons (E>10 keV. The proposed BSA based on 7Li(p,n7Be reaction contains: BeO as moderator, graphite as reflector, Cd as thermal neutron filter and BeO as collimator. Our results show 1.08×109 n/cm2s epithermal neutron flux at the beam port of the proposed BSA

  7. The optimization study of Bonner sphere in the epi-thermal neutron irradiation field for BNCT.

    Science.gov (United States)

    Ueda, H; Tanaka, H; Maruhashi, A; Ono, K; Sakurai, Y

    2011-12-01

    The optimization study on the Bonner sphere in the epi-thermal neutron irradiation field for BNCT was done for the moderator material, moderator size, and activation foils as a neutron detector in the sphere. The saturated activity for the activation foil was obtained from the calculated response, and the effective energy range for each Bonner sphere was determined from the saturated activity. We can see that boric acid solution moderator is suitable for the spectrum measurement of a epi-thermal neutron irradiation field.

  8. Filters in topology optimization

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    In this article, a modified (``filtered'') version of the minimum compliance topology optimization problem is studied. The direct dependence of the material properties on its pointwise density is replaced by a regularization of the density field using a convolution operator. In this setting...... it is possible to establish the existence of solutions. Moreover, convergence of an approximation by means of finite elements can be obtained. This is illustrated through some numerical experiments. The ``filtering'' technique is also shown to cope with two important numerical problems in topology optimization...

  9. Filters in topology optimization

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    In this article, a modified (``filtered'') version of the minimum compliance topology optimization problem is studied. The direct dependence of the material properties on its pointwise density is replaced by a regularization of the density field using a convolution operator. In this setting...... it is possible to establish the existence of solutions. Moreover, convergence of an approximation by means of finite elements can be obtained. This is illustrated through some numerical experiments. The ``filtering'' technique is also shown to cope with two important numerical problems in topology optimization...

  10. AB-BNCT beam shaping assembly based on {sup 7}Li(p,n){sup 7}Be reaction optimization

    Energy Technology Data Exchange (ETDEWEB)

    Minsky, D.M., E-mail: minsky@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)] [CONICET, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)] [CONICET, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)

    2011-12-15

    A numerical optimization of a Beam Shaping Assembly (BSA) for Accelerator Based-Boron Neutron Capture Therapy (AB-BNCT) has been performed. The reaction {sup 7}Li(p,n){sup 7}Be has been considered using a proton beam on a lithium fluoride target. Proton energy and the dimensions of a simple BSA geometry have been varied to obtain a set of different configurations. The optimal configuration of this set is shown.

  11. Spectral performance of a composite single-crystal filtered thermal neutron beam for BNCT research at the University of Missouri.

    Science.gov (United States)

    Brockman, J; Nigg, D W; Hawthorne, M F; McKibben, C

    2009-07-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron fluxes produced at the irradiation location are 9.6 x 10(8) and 8.8 x 10(8)neutrons/cm(2)s, respectively. Calculated and measured cadmium ratios (Au foils) are 217 and 132. These results indicate a well-thermalized neutron spectrum with sufficient thermal neutron flux for a variety of small animal BNCT studies.

  12. An optimized neutron-beam shaping assembly for accelerator-based BNCT.

    Science.gov (United States)

    Burlon, A A; Kreiner, A J; Valda, A A; Minsky, D M

    2004-11-01

    Different materials and proton beam energies have been studied in order to search for an optimized neutron production target and beam shaping assembly for accelerator-based BNCT. The solution proposed in this work consists of successive stacks of Al, polytetrafluoroethylene, commercially known as Teflon, and LiF as moderator and neutron absorber, and Pb as reflector. This assembly is easy to build and its cost is relatively low. An exhaustive Monte Carlo simulation study has been performed evaluating the doses delivered to a Snyder model head phantom by a neutron production Li-metal target based on the (7)Li(p,n)(7)Be reaction for proton bombarding energies of 1.92, 2.0, 2.3 and 2.5 MeV. Three moderator thicknesses have been studied and the figures of merit show the advantage of irradiating with near-resonance-energy protons (2.3 MeV) because of the relatively high neutron yield at this energy, which at the same time keeps the fast neutron healthy tissue dose limited and leads to the lowest treatment times. A moderator of 34 cm length has shown the best performance among the studied cases.

  13. An optimized neutron-beam shaping assembly for accelerator-based BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Burlon, A.A. E-mail: burlon@tandar.cnea.gov.ar; Kreiner, A.J.; Valda, A.A.; Minsky, D.M

    2004-11-01

    Different materials and proton beam energies have been studied in order to search for an optimized neutron production target and beam shaping assembly for accelerator-based BNCT. The solution proposed in this work consists of successive stacks of Al, polytetrafluoroethylene, commercially known as Teflon[reg ], and LiF as moderator and neutron absorber, and Pb as reflector. This assembly is easy to build and its cost is relatively low. An exhaustive Monte Carlo simulation study has been performed evaluating the doses delivered to a Snyder model head phantom by a neutron production Li-metal target based on the {sup 7}Li(p,n){sup 7}Be reaction for proton bombarding energies of 1.92, 2.0, 2.3 and 2.5 MeV. Three moderator thicknesses have been studied and the figures of merit show the advantage of irradiating with near-resonance-energy protons (2.3 MeV) because of the relatively high neutron yield at this energy, which at the same time keeps the fast neutron healthy tissue dose limited and leads to the lowest treatment times. A moderator of 34 cm length has shown the best performance among the studied cases.

  14. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Science.gov (United States)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  15. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.; Redondo, J.; Baudat, P-A. [Institut de Physique Appliquee, Ecole Polytechnique Federale, Lausanne (Switzerland)] [and others

    1998-10-07

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of {sup 10}B in tumour cells after injection of a boron compound (in our case B{sub 12}H{sub 11}SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  16. Optimization of the irradiation beam in the BNCT research facility at IEA-R1 reactor; Otimizacao do feixe de irradiacao na instalacao para estudos em BNCT junto ao reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Vinicius Alexandre de

    2014-07-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapeutic technique for the treatment of some types of cancer whose useful energy comes from a nuclear reaction that occurs when thermal neutron impinges upon a Boron-10 atom. In Brazil there is a research facility built along the beam hole number 3 of the IEA-R1 research reactor at IPEN, which was designed to perform BNCT research experiments. For a good performance of the technique, the irradiation beam should be mostly composed of thermal neutrons with a minimum as possible gamma and above thermal neutron components. This work aims to monitor and evaluate the irradiation beam on the sample irradiation position through the use of activation detectors (activation foils) and also to propose, through simulation using the radiation transport code, MCNP, new sets of moderators and filters which shall deliver better irradiation fields at the irradiation sample position In this work, a simulation methodology, based on a MCNP card, known as wwg (weight window generation) was studied, and the neutron energy spectrum has been experimentally discriminated at 5 energy ranges by using a new set o activation foils. It also has been concluded that the BNCT research facility has the required thermal neutron flux to perform studies in the area and it has a great potential for improvement for tailoring the irradiation field. (author)

  17. Optimization of integrated polarization filters

    CERN Document Server

    Gagnon, Denis; Déziel, Jean-Luc; Dubé, Louis J

    2014-01-01

    This study reports on the design of small footprint, integrated polarization filters based on engineered photonic lattices. Using a rods-in-air lattice as a basis for a TE filter and a holes-in-slab lattice for the analogous TM filter, we are able to maximize the degree of polarization of the output beams up to 98 % with a transmission efficiency greater than 75 %. The proposed designs allow not only for logical polarization filtering, but can also be tailored to output an arbitrary transverse beam profile. The lattice configurations are found using a recently proposed parallel tabu search algorithm for combinatorial optimization problems in integrated photonics.

  18. Optimization of the irradiation beam in the bnct research facility at IEA-R1 reactor

    OpenAIRE

    Vinicius Alexandre de Castro

    2015-01-01

    A Terapia por Captura de Nêutrons pelo Boro (BNCT) é uma técnica radioterapêutica, que visa o tratamento de alguns tipos de câncer, em que sua energia útil é proveniente da reação nuclear promovida pela incidência de nêutrons térmicos no isótopo de 10B. No Brasil existe uma instalação, localizada junto ao canal de irradiação número 3 do Reator de Pesquisas IEA-R1 do IPEN, que foi projetada para o desenvolvimento de pesquisas em BNCT. Para uma aplicação adequada da técnica é necessário que o f...

  19. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

    Science.gov (United States)

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2012-12-01

    A feasibility study was conducted to design a beam shaping assembly for BNCT based on D-T neutron generator. The optimization of this configuration has been realized in different steps. This proposed system consists of metallic uranium as neutron multiplier, TiF(3) and Al(2)O(3) as moderators, Pb as reflector, Ni as shield and Li-Poly as collimator to guide neutrons toward the patient position. The in-air parameters recommended by IAEA were assessed for this proposed configuration without using any filters which enables us to have a high epithermal neutron flux at the beam port. Also a simulated Snyder head phantom was used to evaluate dose profiles due to the irradiation of designed beam. The dose evaluation results and depth-dose curves show that the neutron beam designed in this work is effective for deep-seated brain tumor treatments even with D-T neutron generator with a neutron yield of 2.4×10(12) n/s. The Monte Carlo Code MCNP-4C is used in order to perform these calculations.

  20. Optimal Nonlinear Filter for INS Alignment

    Institute of Scientific and Technical Information of China (English)

    赵瑞; 顾启泰

    2002-01-01

    All the methods to handle the inertial navigation system (INS) alignment were sub-optimal in the past. In this paper, particle filtering (PF) as an optimal method is used for solving the problem of INS alignment. A sub-optimal two-step filtering algorithm is presented to improve the real-time performance of PF. The approach combines particle filtering with Kalman filtering (KF). Simulation results illustrate the superior performance of these approaches when compared with extended Kalman filtering (EKF).

  1. Clinical Requirements and Accelerator Concepts for BNCT

    Science.gov (United States)

    Ludewigt, Bernhard A.

    1997-05-01

    Accelerator-driven epithermal neutron sources are an attractive alternative to nuclear reactors for Boron Neutron Capture Therapy (BNCT). In BNCT the goal of delivering a sufficient dose to the tumor without exceeding the dose limits of the surrounding normal tissues is achieved by administering a ^10B-containing compound which is selectively taken up in the tumor cells. Subsequent irradiation with epithermal neutrons leads to the release of short ranged (neutron-capture reaction. By carefully shaping the neutron spectrum the background dose, partially due to recoil protons and external gamma radiation, can be minimized and the depth dose distribution optimized. Excellent epithermal neutron beams for BNCT can be produced by bombarding a Li-target with a high current proton beam at energies ranging from the (p,n) reaction threshold to 2.5 MeV and subsequent moderation and filtering of the primary neutrons. In comparison the use of Be-targets and higher proton or deuteron energies, up to 20 MeV, leads to higher neutron yields but also to higher primary neutron energies requiring more moderation and resulting in less desirable neutron spectra. Accelerator options for possible neutron sources include dc-accelerators, RFQs, LINACs and cyclotrons. An electrostatic quadrupole (ESQ) accelerator has been chosen to provide a 2.5 MeV proton beam for the BNCT facility currently being designed at LBNL. An ESQ-accelerator is ideally suited to provide the high beam currents which are desired for producing high quality neutron beams for BNCT treatments. A novel power supply based on the air-coupled transformer concept is under development. It will enable the accelerator to deliver proton beam currents up to about 50 mA. A Li-target has been designed which can handle beam power in excess of 50 kW establishing the practicability of this approach. Monte Carlo simulation studies have shown that at a proton beam current of 20 mA high quality treatments for brain tumors can be delivered

  2. Topology optimization of microwave waveguide filters

    CERN Document Server

    Aage, Niels

    2016-01-01

    We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap optimization for the desired filter characteristics. This is illustrated through numerical experiments and comparison to a standard band pass filter design. It is seen that the carefully optimized topologies can sharpen the filter characteristics and improve performance. Furthermore, the obtained designs share little resemblance to standard filter layouts and hence the proposed design method offers a new design tool in microwave engineering.

  3. Satisfactory Optimization Design of IIR Digital Filters

    Institute of Scientific and Technical Information of China (English)

    Jin Weidong; Zhang Gexiang; Zhao Duo

    2005-01-01

    A new method called satisfactory optimization method is proposed to design IIR (Infinite Impulse Response) digital filters, and the satisfactory optimization model is presented. The detailed algorithm of designing IIR digital filters using satisfactory optimization method is described. By using quantum genetic algorithm characterized by rapid convergence and good global search capability, the satisfying solutions are achieved in the experiment of designing lowpass and bandpass IIR digital filters. Experimental results show that the performances of IIR filters designed by the introduced method are better than those by traditional methods.

  4. Model based optimization of EMC input filters

    Energy Technology Data Exchange (ETDEWEB)

    Raggl, K; Kolar, J. W. [Swiss Federal Institute of Technology, Power Electronic Systems Laboratory, Zuerich (Switzerland); Nussbaumer, T. [Levitronix GmbH, Zuerich (Switzerland)

    2008-07-01

    Input filters of power converters for compliance with regulatory electromagnetic compatibility (EMC) standards are often over-dimensioned in practice due to a non-optimal selection of number of filter stages and/or the lack of solid volumetric models of the inductor cores. This paper presents a systematic filter design approach based on a specific filter attenuation requirement and volumetric component parameters. It is shown that a minimal volume can be found for a certain optimal number of filter stages for both the differential mode (DM) and common mode (CM) filter. The considerations are carried out exemplarily for an EMC input filter of a single phase power converter for the power levels of 100 W, 300 W, and 500 W. (author)

  5. A Controlled Particle Filter for Global Optimization

    OpenAIRE

    Zhang, Chi; Taghvaei, Amirhossein; Mehta, Prashant G.

    2017-01-01

    A particle filter is introduced to numerically approximate a solution of the global optimization problem. The theoretical significance of this work comes from its variational aspects: (i) the proposed particle filter is a controlled interacting particle system where the control input represents the solution of a mean-field type optimal control problem; and (ii) the associated density transport is shown to be a gradient flow (steepest descent) for the optimal value function, with respect to th...

  6. Preliminary modeling of BNCT beam tube on IRT in Sofia.

    Science.gov (United States)

    Belousov, S; Ilieva, K

    2009-07-01

    The technical design of the research reactor IRT in Sofia is in progress. It includes an arrangement for a BNCT facility for tumor treatment. Modeling of geometry and material composition of filter/collimator for the BNCT beam tube on IRT has been carried out following the beam tube configuration of the Massachusetts Institute of Technology Reactor [Harling et al., 2002. The fission converter-based epithermal neutron irradiation facility at the Massachusetts Institute of Technology Reactor. Nucl. Sci. Eng. 140, 223-240.] and taking into account an ability to include the tube into the IRT reactor geometry. The results of neutron and gamma transport calculations performed for the model have shown that the facility will be able to supply an epithermal neutron flux of about 5 x 10(9) n cm(-2)s(-1), with low contamination from fast neutrons and gamma rays that would be among the best facilities currently available. An optimiziation study has been performed for the beam collimator, following similar studies for the TAPIRO research reactor in Italy. [Nava et al., 2005. Monte Carlo optimization of a BNCT facility for treating brain gliomas at the TAPIRO reactor. Radiat. Prot. Dosim. 116 (1-4), 475-481.].

  7. Automatic Target Detection by Optimal Morphological Filters

    Institute of Scientific and Technical Information of China (English)

    YU Nong(余农); WU Hao(吴昊); WU ChangYong(吴常泳); LI YuShu(李予蜀)

    2003-01-01

    It is widely accepted that the design of morphological filters, which are optimal in some sense, is a difficult task. In this paper a novel method for optimal learning of morphological filtering parameters (Genetic training algorithm for morphological filters, GTAMF) is presented.GTAMF adopts new crossover and mutation operators called the curved cylinder crossover and master-slave mutation to achieve optimal filtering parameters in a global searching. Experimental results show that this method is practical, easy to extend, and markedly improves the performances of morphological filters. The operation of a morphological filter can be divided into two basic problems including morphological operation and structuring element (SE) selection. The rules for morphological operations are predefined so that the filter's properties depend merely on the selection of SE. By means of adaptive optimization training, structuring elements possess the shape and structural characteristics of image targets, and give specific information to SE. Morphological filters formed in this way become certainly intelligent and can provide good filtering results and robust adaptability to image targets with clutter background.

  8. Post-processing of Monte Carlo simulations for rapid BNCT source optimization studies

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; Vujic, J.

    2000-10-01

    A great advantage of some neutron sources, such as accelerator-produced sources, is that they can be tuned to produce different spectra. Unfortunately, optimization studies are often time-consuming and difficult, as they require a lengthy Monte Carlo simulation for each source. When multiple characteristics, such as energy, angle, and spatial distribution of a neutron beam are allowed to vary, an overwhelming number of simulations may be required. Many optimization studies, therefore, suffer from a small number of datapoints, restrictive treatment conditions, or poor statistics. By scoring pertinent information from every particle tally in a Monte Carlo simulation, then applying appropriate source variable weight factors in a post-processing algorithm, a single simulation can be used to model any number of multiple sources. Through this method, the response to a new source can be modeled in minutes or seconds, rather than hours or days, allowing for the analysis of truly variable source conditions of much greater resolution than is normally possible when a new simulation must be run for each datapoint in a study. This method has been benchmarked and used to recreate optimization studies in a small fraction of the time spent in the original studies.

  9. Topology optimization of microwave waveguide filters

    DEFF Research Database (Denmark)

    Aage, Niels; Johansen, Villads Egede

    2017-01-01

    We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap optimizat......We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap...... little resemblance to standard filter layouts and hence the proposed design method offers a new design tool in microwave engineering....

  10. Optimization of the photoneutron target geometry for e-accelerator based BNCT.

    Science.gov (United States)

    Chegeni, Nahid; Pur, Saleh Boveiry; Razmjoo, Sasan; Hoseini, Seydeh Khadijed

    2017-06-01

    Today, electron accelerators are taken into consideration as photoneutron sources. Therefore, for maximum production of epithermal neutron flux, designing a photoneutron target is of significant importance. In this paper, the effect of thickness and geometric shape of a photoneutron target on neutron output were investigated. In this study, a pencil photon source with 13, 15, 18, 20 and 25 MeV energies and a diameter of 2 mm was investigated using Monte Carlo simulation method using MCNP code. To optimize the design of the photoneutron target, the tungsten target with various geometries and thicknesses was investigated. The maximum neutron flux produced for all target geometries and thicknesses occurred at neutron energy peak of around 0.46 MeV. As the thickness increased to 2 cm, neutron flux increased and then a decreasing trend was observed. For various geometrical shapes, the determining factor in photoneutron output was the effective target thickness in the photon interaction path that increased by the increase in the area of interaction. Another factor was the angle of the photon's incidence with the target surface that resulted in a significant decrease in photoneutron output in cone-shaped targets. Three factors including the total neutron flux, neutrons energy spectrum, and convergence of neutrons plays an important role in the selection of geometry and shape of the target that should be investigated considering beam shaping assembly (BSA) shape.

  11. Discrete stochastic processes and optimal filtering

    CERN Document Server

    Bertein, Jean-Claude

    2012-01-01

    Optimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which ar

  12. Optimal Filtering of Malicious IP Sources

    CERN Document Server

    Soldo, Fabio; Argyraki, Katerina

    2008-01-01

    How can we protect the network infrastructure from malicious traffic, such as scanning, malicious code propagation, and distributed denial-of-service (DDoS) attacks? One mechanism for blocking malicious traffic is filtering: access control lists (ACLs) can selectively block traffic based on fields of the IP header. Filters (ACLs) are already available in the routers today but are a scarce resource because they are stored in the expensive ternary content addressable memory (TCAM). In this paper, we develop, for the first time, a framework for studying filter selection as a resource allocation problem. Within this framework, we study five practical cases of source address/prefix filtering, which correspond to different attack scenarios and operator's policies. We show that filter selection optimization leads to novel variations of the multidimensional knapsack problem and we design optimal, yet computationally efficient, algorithms to solve them. We also evaluate our approach using data from Dshield.org and dem...

  13. Optimal Multiobjective Design of Digital Filters Using Taguchi Optimization Technique

    Science.gov (United States)

    Ouadi, Abderrahmane; Bentarzi, Hamid; Recioui, Abdelmadjid

    2014-01-01

    The multiobjective design of digital filters using the powerful Taguchi optimization technique is considered in this paper. This relatively new optimization tool has been recently introduced to the field of engineering and is based on orthogonal arrays. It is characterized by its robustness, immunity to local optima trapping, relative fast convergence and ease of implementation. The objectives of filter design include matching some desired frequency response while having minimum linear phase; hence, reducing the time response. The results demonstrate that the proposed problem solving approach blended with the use of the Taguchi optimization technique produced filters that fulfill the desired characteristics and are of practical use.

  14. Refurbishment of existing research reactors for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.E.; Gessaghi, V. [INVAP S.E., de Bariloche (Argentina)

    1997-12-01

    Some research reactors have been selected for the development of boron neutron capture therapy (BNCT) in the United States like the Massachusetts Institute of Technology research reactor, the University of Missouri research reactor 2 or the Brookhaven Medical Research Reactor, among others. These reactors have received excellent analyses and designs to accommodate extremely optimized beam shaping assemblies (BSAs) for the proper tuning of neutron spectra and absorption of undesired particles such as photons and fast neutrons. Due to the importance of BNCT in these facilities, the physicists and engineers have used many degrees of freedom for the optimization process.

  15. Desensitized Optimal Filtering and Sensor Fusion Toolkit

    Science.gov (United States)

    Karlgaard, Christopher D.

    2015-01-01

    Analytical Mechanics Associates, Inc., has developed a software toolkit that filters and processes navigational data from multiple sensor sources. A key component of the toolkit is a trajectory optimization technique that reduces the sensitivity of Kalman filters with respect to model parameter uncertainties. The sensor fusion toolkit also integrates recent advances in adaptive Kalman and sigma-point filters for non-Gaussian problems with error statistics. This Phase II effort provides new filtering and sensor fusion techniques in a convenient package that can be used as a stand-alone application for ground support and/or onboard use. Its modular architecture enables ready integration with existing tools. A suite of sensor models and noise distribution as well as Monte Carlo analysis capability are included to enable statistical performance evaluations.

  16. Desensitized Optimal Filtering and Sensor Fusion Tool Kit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Research on desensitized optimal filtering techniques and a navigation and sensor fusion tool kit using advanced filtering techniques is proposed. Research focuses...

  17. Outbound SPIT Filter with Optimal Performance Guarantees

    CERN Document Server

    Jung, Tobias; Nassar, Mohamed; Ernst, Damien; Leduc, Guy

    2012-01-01

    This paper presents a formal framework for identifying and filtering SPIT calls (SPam in Internet Telephony) in an outbound scenario with provable optimal performance. In so doing, our work is largely different from related previous work: our goal is to rigorously formalize the problem in terms of mathematical decision theory, find the optimal solution to the problem, and derive concrete bounds for its expected loss (number of mistakes the SPIT filter will make in the worst case). This goal is achieved by considering an abstracted scenario amenable to theoretical analysis, namely SPIT detection in an outbound scenario with pure sources. Our methodology is to first define the cost of making an error (false positive and false negative), apply Wald's sequential probability ratio test to the individual sources, and then determine analytically error probabilities such that the resulting expected loss is minimized. The benefits of our approach are: (1) the method is optimal (in a sense defined in the paper); (2) th...

  18. On filter boundary conditions in topology optimization

    DEFF Research Database (Denmark)

    Clausen, Anders; Andreassen, Erik

    2017-01-01

    we define three requirements that boundary conditions must fulfill in order to eliminate boundary effects. Previously suggested approaches are briefly reviewed in the light of these requirements. A new approach referred to as the “domain extension approach” is suggested. It effectively eliminates......Most research papers on topology optimization involve filters for regularization. Typically, boundary effects from the filters are ignored. Despite significant drawbacks the inappropriate homogeneous Neumann boundary conditions are used, probably because they are trivial to implement. In this paper...

  19. When "Optimal Filtering" Isn't

    CERN Document Server

    Fowler, J W; Doriese, W B; Hays-Wehle, J; Joe, Y -I; Morgan, K M; O'Neil, G C; Reintsema, C D; Schmidt, D R; Ullom, J N; Swetz, D S

    2016-01-01

    The so-called "optimal filter" analysis of a microcalorimeter's x-ray pulses is statistically optimal only if all pulses have the same shape, regardless of energy. The shapes of pulses from a nonlinear detector can and do depend on the pulse energy, however. A pulse-fitting procedure that we call "tangent filtering" accounts for the energy dependence of the shape and should therefore achieve superior energy resolution. We take a geometric view of the pulse-fitting problem and give expressions to predict how much the energy resolution stands to benefit from such a procedure. We also demonstrate the method with a case study of K-line fluorescence from several 3d transition metals. The method improves the resolution from 4.9 eV to 4.2 eV at the Cu K$\\alpha$ line (8.0keV).

  20. FUZZY OPTIMIZATION USING EXTENDED KALMAN FILTER

    Directory of Open Access Journals (Sweden)

    M.DIVYA

    2013-01-01

    Full Text Available Fuzzy Logic is based on the idea that in fuzzy sets each element in the set can assume a value from 0 to 1, not only 0 or 1, as in crisp set theory. The degree of membership function is defined as the gradation in the extent to which an element is belonging to the relevant sets. Optimizing the membership functions of a fuzzy system can be viewed as a system identification problem for nonlinear dynamic system. In this paper two input and one output fuzzy controller is designed for the dynamic process of aircraft. The addition of an EKF in the feedback loop improved the system response by blocking possible effects of measurement error based on Predictor-Corrector algorithm. An Extended Kalman Filter approach to optimize the membership functions of the inputs and outputs of the fuzzy controller. The performance of the fuzzy system before and after the optimization are compared, as well as the membership functions.

  1. Optimization of the geometry and composition of a neutron system for treatment by Boron Neutron Capture Therapy

    OpenAIRE

    2015-01-01

    Background: In the field of the treatment by Boron Neutron Capture Therapy (BNCT), an optimized neutron system was proposed. This study (simulation) was conducted to optimize the geometry and composition of neutron system and increase the epithermal neutron flux for the treatment of deep tumors is performed. Materials and Methods: A neutron system for BNCT was proposed. The system included 252Cf neutron source, neutron moderator/reflector arrangement, filter and concrete. To capture fast ...

  2. GNSS data filtering optimization for ionospheric observation

    Science.gov (United States)

    D'Angelo, G.; Spogli, L.; Cesaroni, C.; Sgrigna, V.; Alfonsi, L.; Aquino, M. H. O.

    2015-12-01

    In the last years, the use of GNSS (Global Navigation Satellite Systems) data has been gradually increasing, for both scientific studies and technological applications. High-rate GNSS data, able to generate and output 50-Hz phase and amplitude samples, are commonly used to study electron density irregularities within the ionosphere. Ionospheric irregularities may cause scintillations, which are rapid and random fluctuations of the phase and the amplitude of the received GNSS signals. For scintillation analysis, usually, GNSS signals observed at an elevation angle lower than an arbitrary threshold (usually 15°, 20° or 30°) are filtered out, to remove the possible error sources due to the local environment where the receiver is deployed. Indeed, the signal scattered by the environment surrounding the receiver could mimic ionospheric scintillation, because buildings, trees, etc. might create diffusion, diffraction and reflection. Although widely adopted, the elevation angle threshold has some downsides, as it may under or overestimate the actual impact of multipath due to local environment. Certainly, an incorrect selection of the field of view spanned by the GNSS antenna may lead to the misidentification of scintillation events at low elevation angles. With the aim to tackle the non-ionospheric effects induced by multipath at ground, in this paper we introduce a filtering technique, termed SOLIDIFY (Standalone OutLiers IDentIfication Filtering analYsis technique), aiming at excluding the multipath sources of non-ionospheric origin to improve the quality of the information obtained by the GNSS signal in a given site. SOLIDIFY is a statistical filtering technique based on the signal quality parameters measured by scintillation receivers. The technique is applied and optimized on the data acquired by a scintillation receiver located at the Istituto Nazionale di Geofisica e Vulcanologia, in Rome. The results of the exercise show that, in the considered case of a noisy

  3. INEL BNCT Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-08-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for August 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  4. On optimal filtering of measured Mueller matrices

    CERN Document Server

    Gil, Jose J

    2016-01-01

    While any two-dimensional mixed state of polarization of light can be represented by a combination of a pure state and a fully random state, any Mueller matrix can be represented by a convex combination of a pure component and three additional components whose randomness is scaled in a proper and objective way. Such characteristic decomposition constitutes the appropriate framework for the characterization of the polarimetric randomness of the system represented by a given Mueller matrix, and provides appropriate criteria for the optimal filtering of noise in experimental polarimetry.

  5. BNCT-RTPE: BNCT radiation treatment planning environment

    Energy Technology Data Exchange (ETDEWEB)

    Wessol, D.E.; Wheeler, F.J. [Idaho National Engineering Lab., Idaho Fall, ID (United States); Babcock, R.S. [and others

    1995-11-01

    Several improvements have been developed for the BNCT radiation treatment planning environment (BNCT-Rtpe) during 1994. These improvements have been incorporated into Version 1.0 of BNCT-Rtpe which is currently installed at the INEL, BNL, Japanese Research Center (JRC), and Finland`s Technical Research Center. Platforms supported by this software include Hewlett-Packard (HP), SUN, International Business Machines (IBM), and Silicon Graphics Incorporated (SGI). A draft version of the BNCT-Rtpe user manual is available. Version 1.1 of BNCT-Rtpe is scheduled for release in March 1995. It is anticipated that Version 2.x of BNCT-Rtpe, which includes the nonproprietary NURBS library and data structures, will be released in September 1995.

  6. Boron neutron capture therapy (BNCT) in Finland: technological and physical prospects after 20 years of experiences.

    Science.gov (United States)

    Savolainen, Sauli; Kortesniemi, Mika; Timonen, Marjut; Reijonen, Vappu; Kuusela, Linda; Uusi-Simola, Jouni; Salli, Eero; Koivunoro, Hanna; Seppälä, Tiina; Lönnroth, Nadja; Välimäki, Petteri; Hyvönen, Heini; Kotiluoto, Petri; Serén, Tom; Kuronen, Antti; Heikkinen, Sami; Kosunen, Antti; Auterinen, Iiro

    2013-05-01

    Boron Neutron Capture Therapy (BNCT) is a binary radiotherapy method developed to treat patients with certain malignant tumours. To date, over 300 treatments have been carried out at the Finnish BNCT facility in various on-going and past clinical trials. In this technical review, we discuss our research work in the field of medical physics to form the groundwork for the Finnish BNCT patient treatments, as well as the possibilities to further develop and optimize the method in the future. Accordingly, the following aspects are described: neutron sources, beam dosimetry, treatment planning, boron imaging and determination, and finally the possibilities to detect the efficacy and effects of BNCT on patients.

  7. Linearity optimization of edge filter demodulators in FBGs

    Science.gov (United States)

    Li, Dong-Sheng; Sui, Qing-Mei; Cao, Yu-Qiang

    2008-05-01

    A kind of electric circuit is improved to optimize the linearity of edge filter demodulators in FBGs. By using a logarithm amplifier and an extraction operation, the linear range of optimized edge filter demodulators has been broadened effectively, and the requirement of optical filter’s linear range has been reduced. Theoretical analyses and the simulation results indicated that the linear range of optimized edge filter demodulator’s covers the whole transition region of the edge filter, while a strict linearity of the optical filter is not necessary.

  8. Optimized object tracking technique using Kalman filter

    Directory of Open Access Journals (Sweden)

    Liana Ellen Taylor

    2016-07-01

    Full Text Available This paper focused on the design of an optimized object tracking technique which would minimize the processing time required in the object detection process while maintaining accuracy in detecting the desired moving object in a cluttered scene. A Kalman filter based cropped image is used for the image detection process as the processing time is significantly less to detect the object when a search window is used that is smaller than the entire video frame. This technique was tested with various sizes of the window in the cropping process. MATLAB® was used to design and test the proposed method. This paper found that using a cropped image with 2.16 multiplied by the largest dimension of the object resulted in significantly faster processing time while still providing a high success rate of detection and a detected center of the object that was reasonably close to the actual center.

  9. INEL BNCT Research Program annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1995-11-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. Topology Optimization - Improved Checker-Board Filtering With Sharp Contours

    DEFF Research Database (Denmark)

    Pedersen, Christian Gejl; Lund, Jeppe Jessen; Damkilde, Lars

    2006-01-01

    In topology optimization it is mandatory to use a filtering technique in order to prevent checker-boarder solutions. The paper examines a new filtering principle and demonstrates an improved sharpness in the contours. This was not realized in the original proposal of the filter. Furthermore...

  11. Optimized multichannel decomposition for texture segmentation using Gabor filter bank

    Science.gov (United States)

    Nezamoddini-Kachouie, Nezamoddin; Alirezaie, Javad

    2004-05-01

    Texture segmentation and analysis is an important aspect of pattern recognition and digital image processing. Previous approaches to texture analysis and segmentation perform multi-channel filtering by applying a set of filters to the image. In this paper we describe a texture segmentation algorithm based on multi-channel filtering that is optimized using diagonal high frequency residual. Gabor band pass filters with different radial spatial frequencies and different orientations have optimum resolution in time and frequency domain. The image is decomposed by a set of Gabor filters into a number of filtered images; each one contains variation of intensity on a sub-band frequency and orientation. The features extracted by Gabor filters have been applied for image segmentation and analysis. There are some important considerations about filter parameters and filter bank coverage in frequency domain. This filter bank does not completely cover the corners of the frequency domain along the diagonals. In our method we optimize the spatial implementation for the Gabor filter bank considering the diagonal high frequency residual. Segmentation is accomplished by a feedforward backpropagation multi-layer perceptron that is trained by optimized extracted features. After MLP is trained the input image is segmented and each pixel is assigned to the proper class.

  12. A Low Cost Structurally Optimized Design for Diverse Filter Types.

    Science.gov (United States)

    Kazmi, Majida; Aziz, Arshad; Akhtar, Pervez; Ikram, Nassar

    2016-01-01

    A wide range of image processing applications deploys two dimensional (2D)-filters for performing diversified tasks such as image enhancement, edge detection, noise suppression, multi scale decomposition and compression etc. All of these tasks require multiple type of 2D-filters simultaneously to acquire the desired results. The resource hungry conventional approach is not a viable option for implementing these computationally intensive 2D-filters especially in a resource constraint environment. Thus it calls for optimized solutions. Mostly the optimization of these filters are based on exploiting structural properties. A common shortcoming of all previously reported optimized approaches is their restricted applicability only for a specific filter type. These narrow scoped solutions completely disregard the versatility attribute of advanced image processing applications and in turn offset their effectiveness while implementing a complete application. This paper presents an efficient framework which exploits the structural properties of 2D-filters for effectually reducing its computational cost along with an added advantage of versatility for supporting diverse filter types. A composite symmetric filter structure is introduced which exploits the identities of quadrant and circular T-symmetries in two distinct filter regions simultaneously. These T-symmetries effectually reduce the number of filter coefficients and consequently its multipliers count. The proposed framework at the same time empowers this composite filter structure with additional capabilities of realizing all of its Ψ-symmetry based subtypes and also its special asymmetric filters case. The two-fold optimized framework thus reduces filter computational cost up to 75% as compared to the conventional approach as well as its versatility attribute not only supports diverse filter types but also offers further cost reduction via resource sharing for sequential implementation of diversified image

  13. A hybrid method for optimization of the adaptive Goldstein filter

    Science.gov (United States)

    Jiang, Mi; Ding, Xiaoli; Tian, Xin; Malhotra, Rakesh; Kong, Weixue

    2014-12-01

    The Goldstein filter is a well-known filter for interferometric filtering in the frequency domain. The main parameter of this filter, alpha, is set as a power of the filtering function. Depending on it, considered areas are strongly or weakly filtered. Several variants have been developed to adaptively determine alpha using different indicators such as the coherence, and phase standard deviation. The common objective of these methods is to prevent areas with low noise from being over filtered while simultaneously allowing stronger filtering over areas with high noise. However, the estimators of these indicators are biased in the real world and the optimal model to accurately determine the functional relationship between the indicators and alpha is also not clear. As a result, the filter always under- or over-filters and is rarely correct. The study presented in this paper aims to achieve accurate alpha estimation by correcting the biased estimator using homogeneous pixel selection and bootstrapping algorithms, and by developing an optimal nonlinear model to determine alpha. In addition, an iteration is also merged into the filtering procedure to suppress the high noise over incoherent areas. The experimental results from synthetic and real data show that the new filter works well under a variety of conditions and offers better and more reliable performance when compared to existing approaches.

  14. Non-linear DSGE Models and The Optimized Particle Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper improves the accuracy and speed of particle filtering for non-linear DSGE models with potentially non-normal shocks. This is done by introducing a new proposal distribution which i) incorporates information from new observables and ii) has a small optimization step that minimizes...... the distance to the optimal proposal distribution. A particle filter with this proposal distribution is shown to deliver a high level of accuracy even with relatively few particles, and this filter is therefore much more efficient than the standard particle filter....

  15. Optimal filter bandwidth for pulse oximetry

    Science.gov (United States)

    Stuban, Norbert; Niwayama, Masatsugu

    2012-10-01

    Pulse oximeters contain one or more signal filtering stages between the photodiode and microcontroller. These filters are responsible for removing the noise while retaining the useful frequency components of the signal, thus improving the signal-to-noise ratio. The corner frequencies of these filters affect not only the noise level, but also the shape of the pulse signal. Narrow filter bandwidth effectively suppresses the noise; however, at the same time, it distorts the useful signal components by decreasing the harmonic content. In this paper, we investigated the influence of the filter bandwidth on the accuracy of pulse oximeters. We used a pulse oximeter tester device to produce stable, repetitive pulse waves with digitally adjustable R ratio and heart rate. We built a pulse oximeter and attached it to the tester device. The pulse oximeter digitized the current of its photodiode directly, without any analog signal conditioning. We varied the corner frequency of the low-pass filter in the pulse oximeter in the range of 0.66-15 Hz by software. For the tester device, the R ratio was set to R = 1.00, and the R ratio deviation measured by the pulse oximeter was monitored as a function of the corner frequency of the low-pass filter. The results revealed that lowering the corner frequency of the low-pass filter did not decrease the accuracy of the oxygen level measurements. The lowest possible value of the corner frequency of the low-pass filter is the fundamental frequency of the pulse signal. We concluded that the harmonics of the pulse signal do not contribute to the accuracy of pulse oximetry. The results achieved by the pulse oximeter tester were verified by human experiments, performed on five healthy subjects. The results of the human measurements confirmed that filtering out the harmonics of the pulse signal does not degrade the accuracy of pulse oximetry.

  16. Practice Utilization of Algorithms for Analog Filter Group Delay Optimization

    Directory of Open Access Journals (Sweden)

    K. Hajek

    2007-04-01

    Full Text Available This contribution deals with an application of three different algorithms which optimize a group delay of analog filters. One of them is a part of the professional circuit simulator Micro Cap 7 and the others two original algorithms are developed in the MATLAB environment. An all-pass network is used to optimize the group delay of an arbitrary analog filter. Introduced algorithms look for an optimal order and optimal coefficients of an all-pass network transfer function. Theoretical foundations are introduced and all algorithms are tested using the optimization of testing analog filter. The optimization is always run three times because the second, third and fourth-order all-pass network is used. An equalization of the original group delay is a main objective of these optimizations. All outputs of all algorithms are critically evaluated and also described.

  17. Optimal Source-Based Filtering of Malicious Traffic

    CERN Document Server

    Soldo, Fabio; Markopoulou, Athina

    2010-01-01

    In this paper, we consider the problem of blocking malicious traffic on the Internet, via source-based filtering. In particular, we consider filtering via access control lists (ACLs): these are already available at the routers today but are a scarce resource because they are stored in the expensive ternary content addressable memory (TCAM). Aggregation (by filtering source prefixes instead of individual IP addresses) helps reduce the number of filters, but comes also at the cost of blocking legitimate traffic originating from the filtered prefixes. We show how to optimally choose which source prefixes to filter, for a variety of realistic attack scenarios and operators' policies. In each scenario, we design optimal, yet computationally efficient, algorithms. Using logs from Dshield.org, we evaluate the algorithms and demonstrate that they bring significant benefit in practice.

  18. An Optimal Transport Formulation of the Linear Feedback Particle Filter

    OpenAIRE

    Taghvaei, Amirhossein; Mehta, Prashant G.

    2015-01-01

    Feedback particle filter (FPF) is an algorithm to numerically approximate the solution of the nonlinear filtering problem in continuous time. The algorithm implements a feedback control law for a system of particles such that the empirical distribution of particles approximates the posterior distribution. However, it has been noted in the literature that the feedback control law is not unique. To find a unique control law, the filtering task is formulated here as an optimal transportation pro...

  19. Optimal multihump filter for photometric redshifts

    OpenAIRE

    Budavari, Tamas; Szalay, Alexander S.; Csabai, Istvan; Connolly, Andrew J.; Tsvetanov, Zlatan

    2001-01-01

    We propose a novel type filter for multicolor imaging to improve on the photometric redshift estimation of galaxies. An extra filter - specific to a certain photometric system - may be utilized with high efficiency. We present a case study of the Hubble Space Telescope's Advanced Camera for Surveys and show that one extra exposure could cut down the mean square error on photometric redshifts by 34% over the z

  20. Optimization-based particle filter for state and parameter estimation

    Institute of Scientific and Technical Information of China (English)

    Li Fu; Qi Fei; Shi Guangming; Zhang Li

    2009-01-01

    In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle filter design. In order to improve the approximation of posterior distribution, this paper provides an optimization-based algorithm (the steepest descent method) to generate the proposal distribution and then sample particles from the distribution. This algorithm is applied in 1-D case, and the simulation results show that the proposed particle filter performs better than the extended Kalman filter (EKF), the standard particle filter (PF), the extended Kalman particle filter (PF-EKF) and the unscented particle filter (UPF) both in efficiency and in estimation precision.

  1. Desensitized Optimal Filtering and Sensor Fusion Tool Kit Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop desensitized optimal filtering techniques and to implement these algorithms in a navigation and sensor fusion tool kit. These proposed...

  2. Optimization of a neutron production target and a beam shaping assembly based on the 7Li( p, n) 7Be reaction for BNCT

    Science.gov (United States)

    Burlon, A. A.; Kreiner, A. J.; Valda, A. A.; Minsky, D. M.; Somacal, H. R.; Debray, M. E.; Stoliar, P.

    2005-02-01

    In this work a thick LiF target was studied through the 7Li( p, n) 7Be reaction as a neutron source for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) to provide a testing ground for numerical simulations aimed at producing an optimized neutron production target and beam shaping assembly design. Proton beams in the 1.88-2.0 MeV energy range were produced with the tandem accelerator TANDAR ( TANDem ARgentino) at the Comisión Nacional de Energía Atómica (CNEA) in Buenos Aires, Argentina. A cylindrical water-filled head-phantom, containing a boric acid sample, was irradiated to study the resulting neutron flux. The dose deposited in the boric acid sample was inferred through the Compton-suppressed detection of the gamma radiation produced from the 10B( n, αγ) 7Li capture reaction. The thermal neutron flux was evaluated using bare and Cd-covered activation gold foils. In all cases, Monte Carlo simulations have been done showing good agreement with the experimental results. Extensive MCNP simulation trials have then been performed after the preliminary calculation tool validation in order to optimize a neutron beam shaping assembly. These simulations include a thick Li metal target (instead of LiF), a whole-body phantom, two different moderator-reflector assemblies (Al/AlF 3/LiF, Fluental ®, as moderator and lead as reflector and a combination of Al, PTFE (polytetrafluoroethylene) and LiF as moderator and lead as reflector) and the treatment room. The doses were evaluated for proton bombarding energies of 1.92 MeV (near to the threshold of the reaction), 2.0 MeV, 2.3 MeV (near the reaction resonance) and 2.5 MeV, and for three Fluental ® and Al/PTFE/LiF moderator thicknesses (18, 26 and 34 cm). In a later instance, the effect of the specific skin radiosensitivity (an RBE of 2.5 for the 10B( n, α) 7Li reaction) and a 10B uptake 50% greater than the healthy tissue one, was considered for the scalp. To evaluate the doses in the phantom, a comparison of

  3. Optimizing internal structure of membrane filters

    Science.gov (United States)

    Cummings, Linda; Sanaei, Pejman

    2016-11-01

    Membrane filters are in widespread use, and manufacturers have considerable interest in improving their performance, in terms of particle retention properties, and total throughput over the filter lifetime. In this regard, it has long been known that membrane properties should not be uniform over the membrane depth; rather, membrane permeability should decrease in the direction of flow. While much research effort has been focused on investigating favorable membrane permeability gradients, this work has been largely empirical in nature. We present a simple, first-principles model for flow through and fouling of a membrane filter, accounting for permeability gradients via variable pore size. Our model accounts for two fouling modes: sieving; and particle adsorption within pores. For filtration driven by a fixed pressure drop, flux through the membrane eventually goes to zero, as fouling occurs and pores close. We address issues of filter performance as the internal pore structure is varied, by comparing the total throughput obtained with equal-resistance membranes. Within certain classes of pore profiles we are able to find the optimum pore profile that maximizes total throughput over the filter lifetime, while maintaining acceptable particle removal from the feed. Partial support from NSF DMS 1261596 is gratefully acknowledged.

  4. INEL BNCT Research Program annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.

  5. Optimal Sensor Decision Based on Particle Filter

    Institute of Scientific and Technical Information of China (English)

    XU Meng; WANG Hong-wei; HU Shi-qiang

    2006-01-01

    A novel infrared and radar synergistic tracking algorithm, which is based on the idea of closed loop control, and target's motion model identification and particle filter approach, was put forward. In order to improve the observability and filtering divergence of infrared search and tracking, the unscented Kalman filter algorithm that has stronger ability of non-linear approximation was adopted. The polynomial and least square method based on radar and IRST measurements to identify the parameters of the model was proposed, and a "pseudo sensor" was suggested to estimate the target position according to the identified model even if the radar is turned off. At last,the average Kullback-Leibler discrimination distance based on particle filter was used to measure the tracking performance, based on tracking performance and fuzzy stochastic decision, the idea of closed loop was used to retrieve the module parameter of "pseudo sensor". The experimental result indicates that the algorithm can not only limit the radar activity effectively but also keep the tracking accuracy of active/passive system well.

  6. Optimal Sharpening of Compensated Comb Decimation Filters: Analysis and Design

    Directory of Open Access Journals (Sweden)

    David Ernesto Troncoso Romero

    2014-01-01

    Full Text Available Comb filters are a class of low-complexity filters especially useful for multistage decimation processes. However, the magnitude response of comb filters presents a droop in the passband region and low stopband attenuation, which is undesirable in many applications. In this work, it is shown that, for stringent magnitude specifications, sharpening compensated comb filters requires a lower-degree sharpening polynomial compared to sharpening comb filters without compensation, resulting in a solution with lower computational complexity. Using a simple three-addition compensator and an optimization-based derivation of sharpening polynomials, we introduce an effective low-complexity filtering scheme. Design examples are presented in order to show the performance improvement in terms of passband distortion and selectivity compared to other methods based on the traditional Kaiser-Hamming sharpening and the Chebyshev sharpening techniques recently introduced in the literature.

  7. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  8. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.

    Science.gov (United States)

    Kasesaz, Y; Khalafi, H; Rahmani, F

    2013-12-01

    Optimization of the Beam Shaping Assembly (BSA) has been performed using the MCNP4C Monte Carlo code to shape the 2.45 MeV neutrons that are produced in the D-D neutron generator. Optimal design of the BSA has been chosen by considering in-air figures of merit (FOM) which consists of 70 cm Fluental as a moderator, 30 cm Pb as a reflector, 2mm (6)Li as a thermal neutron filter and 2mm Pb as a gamma filter. The neutron beam can be evaluated by in-phantom parameters, from which therapeutic gain can be derived. Direct evaluation of both set of FOMs (in-air and in-phantom) is very time consuming. In this paper a Response Matrix (RM) method has been suggested to reduce the computing time. This method is based on considering the neutron spectrum at the beam exit and calculating contribution of various dose components in phantom to calculate the Response Matrix. Results show good agreement between direct calculation and the RM method.

  9. Optimal Filtering in Pilot-Aided Carrier Recovery

    Directory of Open Access Journals (Sweden)

    Arnaldo Spalvieri

    2009-01-01

    Full Text Available The paper deals with carrier recovery based on pilot symbols in single-carrier systems. Wiener's method is used to determine the optimal unconstrained filter in estimation of phase noise assuming that a sequence of equally spaced pilot symbols is available. Our analysis allows to capture two effects that are not considered in the existing literature: the impact of aliasing due to sampling of the phase noise sequence at the pilot rate and the cyclostationary nature of the estimate hence of its performance. Experimental results are derived also for the case, where the filter is constrained to the cascade of two moving averages. These results show that, in the considered example, the mean-square phase error of the constrained filter is within 0.35 dB from the MSE of the optimal filter.

  10. Design and performance optimization of fiber optic adaptive filters.

    Science.gov (United States)

    Paparao, P; Ghosh, A; Allen, S D

    1991-05-10

    There is a great need for easy-to-fabricate and versatile fiber optic signal processing systems in which optical fibers are used for the delay and storage of wideband guided lightwave signals. We describe the design of the least-mean-square algorithm-based fiber optic adaptive filters for processing guided lightwave signals in real time. Fiber optic adaptive filters can learn to change their parameters or to process a set of characteristics of the input signal. In our realization we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in the processing speed, parallelism, and interconnection. Many schemes for optical adaptive filtering of electronic signals are available in the literature. The new optical adaptive filters described in this paper are for optical processing of guided lightwave signals, not electronic signals. We analyzed the convergence or learning characteristics of the adaptive filtering process as a function of the filter parameters and the fiber optic hardware errors. From this analysis we found that the effects of the optical round-off errors and noise can be reduced, and the learning speed can be comparatively increased in our design through an optimal selection of the filter parameters. A general knowledge of the fiber optic hardware, the statistics of the lightwave signal, and the desired goal of the adaptive processing are enough for this optimum selection of the parameters. Detailed computer simulations validate the theoretical results of performance optimization.

  11. Fuel cell cathode air filters: Methodologies for design and optimization

    Science.gov (United States)

    Kennedy, Daniel M.; Cahela, Donald R.; Zhu, Wenhua H.; Westrom, Kenneth C.; Nelms, R. Mark; Tatarchuk, Bruce J.

    Proton exchange membrane (PEM) fuel cells experience performance degradation, such as reduction in efficiency and life, as a result of poisoning of platinum catalysts by airborne contaminants. Research on these contaminant effects suggests that the best possible solution to allowing fuel cells to operate in contaminated environments is by filtration of the harmful contaminants from the cathode air. A cathode air filter design methodology was created that connects properties of cathode air stream, filter design options, and filter footprint, to a set of adsorptive filter parameters that must be optimized to efficiently operate the fuel cell. Filter optimization requires a study of the trade off between two causal factors of power loss: first, a reduction in power production due to poisoning of the platinum catalyst by chemical contaminants and second, an increase in power requirements to operate the air compressor with a larger pressure drop from additional contaminant filtration. The design methodology was successfully applied to a 1.2 kW fuel cell using a programmable algorithm and predictions were made about the relationships between inlet concentration, breakthrough time, filter design, pressure drop, and compressor power requirements.

  12. Design of Optimal Quincunx Filter Banks for Image Coding

    Directory of Open Access Journals (Sweden)

    Wu-Sheng Lu

    2007-01-01

    Full Text Available Two new optimization-based methods are proposed for the design of high-performance quincunx filter banks for the application of image coding. These new techniques are used to build linear-phase finite-length-impulse-response (FIR perfect-reconstruction (PR systems with high coding gain, good frequency selectivity, and certain prescribed vanishing-moment properties. A parametrization of quincunx filter banks based on the lifting framework is employed to structurally impose the PR and linear-phase conditions. Then, the coding gain is maximized subject to a set of constraints on vanishing moments and frequency selectivity. Examples of filter banks designed using the newly proposed methods are presented and shown to be highly effective for image coding. In particular, our new optimal designs are shown to outperform three previously proposed quincunx filter banks in 72% to 95% of our experimental test cases. Moreover, in some limited cases, our optimal designs are even able to outperform the well-known (separable 9/7 filter bank (from the JPEG-2000 standard.

  13. Optimized digital filtering techniques for radiation detection with HPGe detectors

    CERN Document Server

    Salathe, M

    2015-01-01

    This paper describes state-of-the-art digital filtering techniques that are part of the tool kit GEANA which is used as a fast automatic data validation tool for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: the pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated using a 762 g high purity germanium detector that measures gamma-ray lines from radioactive sources in an energy range between 59 and 2615 keV. The modified cusp filter was found to be most optimal for individual gamma-ray lines. Furthermore, it was observed, that even though, the shaping time that minimizes the energy resolution is energy dependent, the loss in resolution by using a constant shaping time over the entire energy range is small, i.e. less than 32 eV for the pseudo-Gaussian filter. This together with good energy resolutions, e.g. 1.59 keV at 1333 keV, this ...

  14. Optimal filtering in multipulse sequences for nuclear quadrupole resonance detection

    Science.gov (United States)

    Osokin, D. Ya.; Khusnutdinov, R. R.; Mozzhukhin, G. V.; Rameev, B. Z.

    2014-05-01

    The application of the multipulse sequences in nuclear quadrupole resonance (NQR) detection of explosive and narcotic substances has been studied. Various approaches to increase the signal to noise ratio (SNR) of signal detection are considered. We discussed two modifications of the phase-alternated multiple-pulse sequence (PAMS): the 180° pulse sequence with a preparatory pulse and the 90° pulse sequence. The advantages of optimal filtering to detect NQR in the case of the coherent steady-state precession have been analyzed. It has been shown that this technique is effective in filtering high-frequency and low-frequency noise and increasing the reliability of NQR detection. Our analysis also shows the PAMS with 180° pulses is more effective than PSL sequence from point of view of the application of optimal filtering procedure to the steady-state NQR signal.

  15. An Ant Colony Optimization Algorithm for Microwave Corrugated Filters Design

    Directory of Open Access Journals (Sweden)

    Ivan A. Mantilla-Gaviria

    2013-01-01

    Full Text Available A practical and useful application of the Ant Colony Optimization (ACO method for microwave corrugated filter design is shown. The classical, general purpose ACO method is adapted to deal with the microwave filter design problem. The design strategy used in this paper is an iterative procedure based on the use of an optimization method along with an electromagnetic simulator. The designs of high-pass and band-pass microwave rectangular waveguide filters working in the C-band and X-band, respectively, for communication applications, are shown. The average convergence performance of the ACO method is characterized by means of Monte Carlo simulations and compared with that obtained with the well-known Genetic Algorithm (GA. The overall performance, for the simulations presented herein, of the ACO is found to be better than that of the GA.

  16. Gravitation search algorithm: Application to the optimal IIR filter design

    Directory of Open Access Journals (Sweden)

    Suman Kumar Saha

    2014-01-01

    Full Text Available This paper presents a global heuristic search optimization technique known as Gravitation Search Algorithm (GSA for the design of 8th order Infinite Impulse Response (IIR, low pass (LP, high pass (HP, band pass (BP and band stop (BS filters considering various non-linear characteristics of the filter design problems. This paper also adopts a novel fitness function in order to improve the stop band attenuation to a great extent. In GSA, law of gravity and mass interactions among different particles are adopted for handling the non-linear IIR filter design optimization problem. In this optimization technique, searcher agents are the collection of masses and interactions among them are governed by the Newtonian gravity and the laws of motion. The performances of the GSA based IIR filter designs have proven to be superior as compared to those obtained by real coded genetic algorithm (RGA and standard Particle Swarm Optimization (PSO. Extensive simulation results affirm that the proposed approach using GSA outperforms over its counterparts not only in terms of quality output, i.e., sharpness at cut-off, smaller pass band ripple, higher stop band attenuation, but also the fastest convergence speed with assured stability.

  17. OPTIMAL WAVELET FILTER DESIGN FOR REMOTE SENSING IMAGE COMPRESSION

    Institute of Scientific and Technical Information of China (English)

    Yang Guoan; Zheng Nanning; Guo Shugang

    2007-01-01

    A new approach for designing the Biorthogonal Wavelet Filter Bank (BWFB) for the purpose of image compression is presented in this letter. The approach is decomposed into two steps.First, an optimal filter bank is designed in theoretical sense based on Vaidyanathan's coding gain criterion in SubBand Coding (SBC) system. Then the above filter bank is optimized based on the criterion of Peak Signal-to-Noise Ratio (PSNR) in JPEG2000 image compression system, resulting in a BWFB in practical application sense. With the approach, a series of BWFB for a specific class of applications related to image compression, such as remote sensing images, can be fast designed. Here,new 5/3 BWFB and 9/7 BWFB are presented based on the above approach for the remote sensing image compression applications. Experiments show that the two filter banks are equally performed with respect to CDF 9/7 and LT 5/3 filter in JPEG2000 standard; at the same time, the coefficients and the lifting parameters of the lifting scheme are all rational, which bring the computational advantage, and the ease for VLSI implementation.

  18. Optimization of Dynamic Range of Cascade Filter Realization

    Directory of Open Access Journals (Sweden)

    J. Hospodka

    2006-09-01

    Full Text Available This paper deals with a dynamic range optimization procedure for active filters based on the cascade realization. Dynamic characteristics of the cascade filter depend on many factors, mainly on pole-zero pairing, section ordering and gain assignment. Just the procedure for an optimal gain assignment for particular biquadratic sections is discussed in this paper. The input parameters of the procedure are parameters of particular biquads i.e. pole frequency ω0, quality factor Q, eventually zero frequency ωn for elliptic section and the transfer function type of the section. The gain is distributed so that output signal limitation of particular biquads occurs for the same level of the filter input signal. The procedure is versatile - can be used for analog as well as for digital filters with the cascade structure. The presented algorithm is fully universal (does not suppose any simplification. It has been used in Syntfil package for the filter design in the mathematical program Maple.

  19. Optimized Paraunitary Filter Banks for Time-Frequency Channel Diagonalization

    Directory of Open Access Journals (Sweden)

    Ju Ziyang

    2010-01-01

    Full Text Available We adopt the concept of channel diagonalization to time-frequency signal expansions obtained by DFT filter banks. As a generalization of the frequency domain channel representation used by conventional orthogonal frequency-division multiplexing receivers, the time-frequency domain channel diagonalization can be applied to time-variant channels and aperiodic signals. An inherent error in the case of doubly dispersive channels can be limited by choosing adequate windows underlying the filter banks. We derive a formula for the mean-squared sample error in the case of wide-sense stationary uncorrelated scattering (WSSUS channels, which serves as objective function in the window optimization. Furthermore, an enhanced scheme for the parameterization of tight Gabor frames enables us to constrain the window in order to define paraunitary filter banks. We show that the design of windows optimized for WSSUS channels with known statistical properties can be formulated as a convex optimization problem. The performance of the resulting windows is investigated under different channel conditions, for different oversampling factors, and compared against the performance of alternative windows. Finally, a generic matched filter receiver incorporating the proposed channel diagonalization is discussed which may be essential for future reconfigurable radio systems.

  20. Optimized Paraunitary Filter Banks for Time-Frequency Channel Diagonalization

    Science.gov (United States)

    Ju, Ziyang; Hunziker, Thomas; Dahlhaus, Dirk

    2010-12-01

    We adopt the concept of channel diagonalization to time-frequency signal expansions obtained by DFT filter banks. As a generalization of the frequency domain channel representation used by conventional orthogonal frequency-division multiplexing receivers, the time-frequency domain channel diagonalization can be applied to time-variant channels and aperiodic signals. An inherent error in the case of doubly dispersive channels can be limited by choosing adequate windows underlying the filter banks. We derive a formula for the mean-squared sample error in the case of wide-sense stationary uncorrelated scattering (WSSUS) channels, which serves as objective function in the window optimization. Furthermore, an enhanced scheme for the parameterization of tight Gabor frames enables us to constrain the window in order to define paraunitary filter banks. We show that the design of windows optimized for WSSUS channels with known statistical properties can be formulated as a convex optimization problem. The performance of the resulting windows is investigated under different channel conditions, for different oversampling factors, and compared against the performance of alternative windows. Finally, a generic matched filter receiver incorporating the proposed channel diagonalization is discussed which may be essential for future reconfigurable radio systems.

  1. Dual Adaptive Filtering by Optimal Projection Applied to Filter Muscle Artifacts on EEG and Comparative Study

    Directory of Open Access Journals (Sweden)

    Samuel Boudet

    2014-01-01

    Full Text Available Muscle artifacts constitute one of the major problems in electroencephalogram (EEG examinations, particularly for the diagnosis of epilepsy, where pathological rhythms occur within the same frequency bands as those of artifacts. This paper proposes to use the method dual adaptive filtering by optimal projection (DAFOP to automatically remove artifacts while preserving true cerebral signals. DAFOP is a two-step method. The first step consists in applying the common spatial pattern (CSP method to two frequency windows to identify the slowest components which will be considered as cerebral sources. The two frequency windows are defined by optimizing convolutional filters. The second step consists in using a regression method to reconstruct the signal independently within various frequency windows. This method was evaluated by two neurologists on a selection of 114 pages with muscle artifacts, from 20 clinical recordings of awake and sleeping adults, subject to pathological signals and epileptic seizures. A blind comparison was then conducted with the canonical correlation analysis (CCA method and conventional low-pass filtering at 30 Hz. The filtering rate was 84.3% for muscle artifacts with a 6.4% reduction of cerebral signals even for the fastest waves. DAFOP was found to be significantly more efficient than CCA and 30 Hz filters. The DAFOP method is fast and automatic and can be easily used in clinical EEG recordings.

  2. Optimal noise filtering in the chemotactic response of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Burton W Andrews

    2006-11-01

    Full Text Available Information-carrying signals in the real world are often obscured by noise. A challenge for any system is to filter the signal from the corrupting noise. This task is particularly acute for the signal transduction network that mediates bacterial chemotaxis, because the signals are subtle, the noise arising from stochastic fluctuations is substantial, and the system is effectively acting as a differentiator which amplifies noise. Here, we investigated the filtering properties of this biological system. Through simulation, we first show that the cutoff frequency has a dramatic effect on the chemotactic efficiency of the cell. Then, using a mathematical model to describe the signal, noise, and system, we formulated and solved an optimal filtering problem to determine the cutoff frequency that bests separates the low-frequency signal from the high-frequency noise. There was good agreement between the theory, simulations, and published experimental data. Finally, we propose that an elegant implementation of the optimal filter in combination with a differentiator can be achieved via an integral control system. This paper furnishes a simple quantitative framework for interpreting many of the key notions about bacterial chemotaxis, and, more generally, it highlights the constraints on biological systems imposed by noise.

  3. Image Filtering using All Neighbor Directional Weighted Pixels: Optimization using Particle Swarm Optimization

    CERN Document Server

    Mandal, J K

    2012-01-01

    In this paper a novel approach for de noising images corrupted by random valued impulses has been proposed. Noise suppression is done in two steps. The detection of noisy pixels is done using all neighbor directional weighted pixels (ANDWP) in the 5 x 5 window. The filtering scheme is based on minimum variance of the four directional pixels. In this approach, relatively recent category of stochastic global optimization technique i.e., particle swarm optimization (PSO) has also been used for searching the parameters of detection and filtering operators required for optimal performance. Results obtained shows better de noising and preservation of fine details for highly corrupted images.

  4. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase 1/2 clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra, alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  5. ANALYSIS OF ACCELERATOR BASED NEUTRON SPECTRA FOR BNCT USING PROTON RECOIL SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI,L.; LUDEWIG,H.; POWELL,J.R.; RAPARIA,D.; ALESSI,J.G.; LOWENSTEIN,D.I.

    1998-11-06

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  6. Treatment Planning Systems for BNCT Requirements and Peculiarities

    CERN Document Server

    Daquino, G G

    2003-01-01

    The main requirements and peculiarities expected from the BNCT-oriented treatment planning system (TPS) are summarized in this paper. The TPS is a software, which can be integrated or composed by several auxiliary programs. It plays important roles inside the whole treatment planning of the patient's organ in BNCT. However, the main goal is the simulation of the irradiation, in order to obtain the optimal configuration, in terms of neutron spectrum, patient positioning and dose distribution in the tumour and healthy tissues. The presence of neutrons increases the level of complexity, because much more nuclear reactions need to be monitored and properly calculated during the simulation of the patient's treatment. To this purposes several 3D geometry reconstruction techniques, generally based on the CT scanning data, are implemented and Monte Carlo codes are normally used. The TPSs are expected to show also the results (basically doses and fluences) in a proper format, such as isocurves (or isosurfaces) along t...

  7. The optimal filtering of a class of dynamic multiscale systems

    Institute of Scientific and Technical Information of China (English)

    PAN Quan; ZHANG Lei; CUI Peiling; ZHANG Hongcai

    2004-01-01

    This paper discusses the optimal filtering of a class of dynamic multiscale systems (DMS), which are observed independently by several sensors distributed at different resolution spaces. The system is subject to known dynamic system model. The resolution and sampling frequencies of the sensors are supposed to decrease by a factor of two. By using the Haar wavelet transform to link the state nodes at each of the scales within a time block, a discrete-time model of this class of multiscale systems is given, and the conditions for applying Kalman filtering are proven. Based on the linear time-invariant system, the controllability and observability of the system and the stability of the Kalman filtering is studied, and a theorem is given. It is proved that the Kalman filter is stable if only the system is controllable and observable at the finest scale. Finally, a constant-velocity process is used to obtain insight into the efficiencies offered by our model and algorithm.

  8. Boron biodistribution for BNCT in the hamster cheek pouch oral cancer model: combined administration of BSH and BPA.

    Science.gov (United States)

    Garabalino, Marcela A; Heber, Elisa M; Monti Hughes, Andrea; Pozzi, Emiliano C C; Molinari, Ana J; Nigg, David W; Bauer, William; Trivillin, Verónica A; Schwint, Amanda E

    2014-06-01

    Sodium mercaptoundecahydro-closo-dodecaborate (BSH) is being investigated clinically for BNCT. We examined the biodistribution of BSH and BPA administered jointly in different proportions in the hamster cheek pouch oral cancer model. The 3 assayed protocols were non-toxic, and showed preferential tumor boron uptake versus precancerous and normal tissue and therapeutic tumor boron concentration values (70-85ppm). All 3 protocols warrant assessment in BNCT studies to contribute to the knowledge of (BSH+BPA)-BNCT radiobiology for head and neck cancer and optimize therapeutic efficacy.

  9. OPTIMAL TARGET TRAJECTORY ESTIMATION AND FILTERING USING NETWORKED SENSORS

    Institute of Scientific and Technical Information of China (English)

    Jiangping HU; Xiaoming HU

    2008-01-01

    Target tracking using distributed sensor network is in general a challenging problem because it always needs to deal with real-time processing of noisy information. In this paper the problem of using nonlinear sensors such as distance and direction sensors for estimating a moving target is studied.The problem is formulated as a prudent design of nonlinear filters for a linear system subject to noisy nonlinear measurements and partially unknown input, which is generated by an exogenous system.In the worst case where the input is completely unknown, the exogenous dynamics is reduced to the random walk model. It can be shown that the nonlinear filter will have optimal convergence if the number of the sensors are large enough and the convergence rate will be highly improved if the sensors are deployed appropriately. This actually raises an interesting issue on active sensing: how to optimally move the sensors if they are considered as mobile multi-agent systems? Finally, a simulation example is given to illustrate and validate the construction of our filter.

  10. Consensus+Innovations Distributed Kalman Filter With Optimized Gains

    Science.gov (United States)

    Das, Subhro; Moura, Jose M. F.

    2017-01-01

    In this paper, we address the distributed filtering and prediction of time-varying random fields represented by linear time-invariant (LTI) dynamical systems. The field is observed by a sparsely connected network of agents/sensors collaborating among themselves. We develop a Kalman filter type consensus+innovations distributed linear estimator of the dynamic field termed as Consensus+Innovations Kalman Filter. We analyze the convergence properties of this distributed estimator. We prove that the mean-squared error of the estimator asymptotically converges if the degree of instability of the field dynamics is within a pre-specified threshold defined as tracking capacity of the estimator. The tracking capacity is a function of the local observation models and the agent communication network. We design the optimal consensus and innovation gain matrices yielding distributed estimates with minimized mean-squared error. Through numerical evaluations, we show that, the distributed estimator with optimal gains converges faster and with approximately 3dB better mean-squared error performance than previous distributed estimators.

  11. Improved Rao-Blackwellized Particle Filter by Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Zeng-Shun Zhao

    2013-01-01

    Full Text Available The Rao-Blackwellized particle filter (RBPF algorithm usually has better performance than the traditional particle filter (PF by utilizing conditional dependency relationships between parts of the state variables to estimate. By doing so, RBPF could not only improve the estimation precision but also reduce the overall computational complexity. However, the computational burden is still too high for many real-time applications. To improve the efficiency of RBPF, the particle swarm optimization (PSO is applied to drive all the particles to the regions where their likelihoods are high in the nonlinear area. So only a small number of particles are needed to participate in the required computation. The experimental results demonstrate that this novel algorithm is more efficient than the standard RBPF.

  12. Biodistribution of sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) in an oral cancer model.

    Science.gov (United States)

    Garabalino, Marcela A; Heber, Elisa M; Monti Hughes, Andrea; González, Sara J; Molinari, Ana J; Pozzi, Emiliano C C; Nievas, Susana; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Bauer, William; Trivillin, Verónica A; Schwint, Amanda E

    2013-08-01

    Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹⁰B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg ¹⁰B/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.

  13. Optimizing Fungal DNA Extraction Methods from Aerosol Filters

    Science.gov (United States)

    Jimenez, G.; Mescioglu, E.; Paytan, A.

    2016-12-01

    Fungi and fungal spores can be picked up from terrestrial ecosystems, transported long distances, and deposited into marine ecosystems. It is important to study dust-borne fungal communities, because they can stay viable and effect the ambient microbial populations, which are key players in biogeochemical cycles. One of the challenges of studying dust-borne fungal populations is that aerosol samples contain low biomass, making extracting good quality DNA very difficult. The aim of this project was to increase DNA yield by optimizing DNA extraction methods. We tested aerosol samples collected from Haifa, Israel (polycarbonate filter), Monterey Bay, CA (quartz filter) and Bermuda (quartz filter). Using the Qiagen DNeasy Plant Kit, we tested the effect of altering bead beating times and incubation times, adding three freeze and thaw steps, initially washing the filters with buffers for various lengths of time before using the kit, and adding a step with 30 minutes of sonication in 65C water. Adding three freeze/thaw steps, adding a sonication step, washing with a phosphate buffered saline overnight, and increasing incubation time to two hours, in that order, resulted in the highest increase in DNA for samples from Israel (polycarbonate). DNA yield of samples from Monterey (quart filter) increased about 5 times when washing with buffers overnight (phosphate buffered saline and potassium phophate buffer), adding a sonication step, and adding three freeze and thaw steps. Samples collected in Bermuda (quartz filter) had the highest increase in DNA yield from increasing incubation to 2 hours, increasing bead beating time to 6 minutes, and washing with buffers overnight (phosphate buffered saline and potassium phophate buffer). Our results show that DNA yield can be increased by altering various steps of the Qiagen DNeasy Plant Kit protocol, but different types of filters collected at different sites respond differently to alterations. These results can be used as

  14. Design of optimal binary phase and amplitude filters for maximization of correlation peak sharpness

    Science.gov (United States)

    Downie, John D.

    1991-01-01

    Current binary-phase filters used for optical correlation are usually assumed to have uniform amplitude transmission. Here, a new type of filter is studied, the binary-phase-and-amplitude filter. If binary phase values of 0 and pi are assumed, the amplitude transmittance values of this type of filter can be optimized to maximize the peak sharpness. For a polarization-encoded binary-phase filter this can be translated into optimization of the rotation angle of the output polarizer following the filter-spatial-light modulator. An analytic expression is presented for the optimum polarizer angle and thus for the optimum binary-phase-and-amplitude filter design.

  15. Optimal subband Kalman filter for normal and oesophageal speech enhancement.

    Science.gov (United States)

    Ishaq, Rizwan; García Zapirain, Begoña

    2014-01-01

    This paper presents the single channel speech enhancement system using subband Kalman filtering by estimating optimal Autoregressive (AR) coefficients and variance for speech and noise, using Weighted Linear Prediction (WLP) and Noise Weighting Function (NWF). The system is applied for normal and Oesophageal speech signals. The method is evaluated by Perceptual Evaluation of Speech Quality (PESQ) score and Signal to Noise Ratio (SNR) improvement for normal speech and Harmonic to Noise Ratio (HNR) for Oesophageal Speech (OES). Compared with previous systems, the normal speech indicates 30% increase in PESQ score, 4 dB SNR improvement and OES shows 3 dB HNR improvement.

  16. Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction.

    Science.gov (United States)

    Muruganantham, Arrchana; Tan, Kay Chen; Vadakkepat, Prahlad

    2016-12-01

    Evolutionary algorithms are effective in solving static multiobjective optimization problems resulting in the emergence of a number of state-of-the-art multiobjective evolutionary algorithms (MOEAs). Nevertheless, the interest in applying them to solve dynamic multiobjective optimization problems has only been tepid. Benchmark problems, appropriate performance metrics, as well as efficient algorithms are required to further the research in this field. One or more objectives may change with time in dynamic optimization problems. The optimization algorithm must be able to track the moving optima efficiently. A prediction model can learn the patterns from past experience and predict future changes. In this paper, a new dynamic MOEA using Kalman filter (KF) predictions in decision space is proposed to solve the aforementioned problems. The predictions help to guide the search toward the changed optima, thereby accelerating convergence. A scoring scheme is devised to hybridize the KF prediction with a random reinitialization method. Experimental results and performance comparisons with other state-of-the-art algorithms demonstrate that the proposed algorithm is capable of significantly improving the dynamic optimization performance.

  17. Gabor Filter Optimization Design for Iris Texture Analysis

    Institute of Scientific and Technical Information of China (English)

    Tao Xu; Xing Ming; Xiaoguang Yang

    2004-01-01

    This paper deals with an optimization design method for the Gabor filters based on the analysis of an iris texture model. By means of analyzing the properties of an iris texture image, the energy distribution regularity of the iris texture image measured by the average power spectrum density is exploited, and the theoretical ranges of the efficient valued frequency and orientation parameters can also be deduced. The analysis shows that the energy distribution of the iris texture is generally centralized around lower frequencies in the spatial frequency domain. Accordingly, an iterative algorithm is designed to optimize the Gabor parameter field. The experimental results indicate the validity of the theory and efficiency of the algorithm.

  18. Stochastic simulation and robust design optimization of integrated photonic filters

    Directory of Open Access Journals (Sweden)

    Weng Tsui-Wei

    2017-01-01

    Full Text Available Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%–35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.

  19. Local Optimality of User Choices and Collaborative Competitive Filtering

    CERN Document Server

    Yang, Shuang Hong

    2010-01-01

    We describe a novel framework for learning recommender models for recommendation systems, which views user-system-item interactions as an opportunity give-and-take process, and encodes both "collaboration" and "competition" mechanisms underlying the interaction. The proposed framework leverages the latent factor models of collaborative filtering to encode "collaboration" (via factor sharing); and in the meanwhile, it utilizes a type of objectives that implies local optimality of user choices to encode "competition". Specifically, it takes into account both the revenue and the opportunity cost of each user decision; and, by optimizing a new objective that are analogous to the economic profit, it encourages that every opportunity being taken by a user be locally the best among the opportunities being offered to him/her. Such competition among candidates opportunities imposes stronger supervision and in turn leads to better generalization to unseen interactions. Empirical results indicates that the collaborative...

  20. An optimal nonorthogonal separation of the anisotropic Gaussian convolution filter.

    Science.gov (United States)

    Lampert, Christoph H; Wirjadi, Oliver

    2006-11-01

    We give an analytical and geometrical treatment of what it means to separate a Gaussian kernel along arbitrary axes in R(n), and we present a separation scheme that allows us to efficiently implement anisotropic Gaussian convolution filters for data of arbitrary dimensionality. Based on our previous analysis we show that this scheme is optimal with regard to the number of memory accesses and interpolation operations needed. The proposed method relies on nonorthogonal convolution axes and works completely in image space. Thus, it avoids the need for a fast Fourier transform (FFT)-subroutine. Depending on the accuracy and speed requirements, different interpolation schemes and methods to implement the one-dimensional Gaussian (finite impulse response and infinite impulse response) can be integrated. Special emphasis is put on analyzing the performance and accuracy of the new method. In particular, we show that without any special optimization of the source code, it can perform anisotropic Gaussian filtering faster than methods relying on the FFT.

  1. Optimized Multichannel Filter Bank with Flat Frequency Response for Texture Segmentation

    Science.gov (United States)

    Kachouie, Nezamoddin N.; Alirezaie, Javad

    2005-12-01

    Previous approaches to texture analysis and segmentation use multichannel filtering by applying a set of filters in the frequency domain or a set of masks in the spatial domain. This paper presents two new texture segmentation algorithms based on multichannel filtering in conjunction with neural networks for feature extraction and segmentation. The features extracted by Gabor filters have been applied for image segmentation and analysis. Suitable choices of filter parameters and filter bank coverage in the frequency domain to optimize the filters are discussed. Here we introduce two methods to optimize Gabor filter bank. First, a Gabor filter bank with a flat response is implemented and the optimal feature dimension is extracted by competitive networks. Second, a subset of Gabor filter bank is selected to compose the best discriminative filters, so that each filter in this small set can discriminate a pair of textures in a given image. In both approaches, multilayer perceptrons are employed to segment the extracted features. The comparisons of segmentation results generated using the proposed methods and previous research using Gabor, discrete cosine transform (DCT), and Laws filters are presented. Finally, the segmentation results generated by applying the optimized filter banks to textured images are presented and discussed.

  2. Optimized Multichannel Filter Bank with Flat Frequency Response for Texture Segmentation

    Directory of Open Access Journals (Sweden)

    Kachouie Nezamoddin N

    2005-01-01

    Full Text Available Previous approaches to texture analysis and segmentation use multichannel filtering by applying a set of filters in the frequency domain or a set of masks in the spatial domain. This paper presents two new texture segmentation algorithms based on multichannel filtering in conjunction with neural networks for feature extraction and segmentation. The features extracted by Gabor filters have been applied for image segmentation and analysis. Suitable choices of filter parameters and filter bank coverage in the frequency domain to optimize the filters are discussed. Here we introduce two methods to optimize Gabor filter bank. First, a Gabor filter bank with a flat response is implemented and the optimal feature dimension is extracted by competitive networks. Second, a subset of Gabor filter bank is selected to compose the best discriminative filters, so that each filter in this small set can discriminate a pair of textures in a given image. In both approaches, multilayer perceptrons are employed to segment the extracted features. The comparisons of segmentation results generated using the proposed methods and previous research using Gabor, discrete cosine transform (DCT, and Laws filters are presented. Finally, the segmentation results generated by applying the optimized filter banks to textured images are presented and discussed.

  3. Intelligent Optimize Design of LCL Filter for Three-Phase Voltage-Source PWM Rectifier

    DEFF Research Database (Denmark)

    Sun, Wei; Chen, Zhe; Wu, Xiaojie

    2009-01-01

    Compared to traditional L filter, a LCL filter is more effective on reducing harmonic distortion at switch frequency. So it is important to choose the LCL filter parameters to achieve good filtering effect. This paper introduces some traditional design methods. Design of a LCL filter by genetic...... algorithm (GA) and particle swam optimization (PSO) are presented in this paper and comparison of the two intelligent optimization. Simulation result and calculate data are provided to prove that intelligent optimization are more effective and simple than traditional methods....

  4. Investigating a multi-purpose target for electron linac based photoneutron sources for BNCT of deep-seated tumors

    Energy Technology Data Exchange (ETDEWEB)

    Masoudi, S. Farhad, E-mail: masoudi@kntu.ac.ir; Rasouli, Fatemeh S.

    2015-08-01

    Recent studies in BNCT have focused on investigating appropriate neutron sources as alternatives for nuclear reactors. As the most prominent facilities, the electron linac based photoneutron sources benefit from two consecutive reactions, (e, γ) and (γ, n). The photoneutron sources designed so far are composed of bipartite targets which involve practical problems and are far from the objective of achieving an optimized neutron source. This simulation study deals with designing a compact, optimized, and geometrically simple target for a photoneutron source based on an electron linac. Based on a set of MCNPX simulations, tungsten is found to have the potential of utilizing as both photon converter and photoneutron target. Besides, it is shown that an optimized dimension for such a target slows-down the produced neutrons toward the desired energy range while keeping them economy, which makes achieving the recommended criteria for BNCT of deep-tumors more available. This multi-purpose target does not involve complicated designing, and can be considered as a significant step toward finding application of photoneutron sources for in-hospital treatments. In order to shape the neutron beam emitted from such a target, the beam is planned to pass through an optimized arrangement of materials composed of moderators, filters, reflector, and collimator. By assessment with the recommended in-air parameters, it is shown that the designed beam provides high intensity of desired neutrons, as well as low background contamination. The last section of this study is devoted to investigate the performance of the resultant beam in deep tissue. A typical simulated liver tumor, located within a phantom of human body, was subjected to the irradiation of the designed spectrum. The dosimetric results, including evaluated depth-dose curves and carried out in-phantom parameters show that the proposed configuration establishes acceptable agreement between the appropriate neutron intensity, and

  5. Robust Pitch Estimation Using an Optimal Filter on Frequency Estimates

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2014-01-01

    In many scenarios, a periodic signal of interest is often contaminated by different types of noise that may render many existing pitch estimation methods suboptimal, e.g., due to an incorrect white Gaussian noise assumption. In this paper, a method is established to estimate the pitch...... against different noise situations. The simulation results confirm that the proposed MVDR method outperforms the state-of-the-art weighted least squares (WLS) pitch estimator in colored noise and has robust pitch estimates against missing harmonics in some time-frames....... of such signals from unconstrained frequency estimates (UFEs). A minimum variance distortionless response (MVDR) method is proposed as an optimal solution to minimize the variance of UFEs considering the constraint of integer harmonics. The MVDR filter is designed based on noise statistics making it robust...

  6. Design of an epithermal column for BNCT based on D D fusion neutron facility

    Science.gov (United States)

    Durisi, E.; Zanini, A.; Manfredotti, C.; Palamara, F.; Sarotto, M.; Visca, L.; Nastasi, U.

    2007-05-01

    Boron Neutron Capture Therapy (BNCT) is currently performed on patients at nuclear reactors. At the same time the international BNCT community is engaged in the development of alternative facilities for in-hospital treatments. This paper investigates the potential of a novel high-output D-D neutron generator, developed at Lawrence Berkeley National Laboratory (CA, USA), for BNCT. The simulation code MCNP-4C is used to realize an accurate study of the epithermal column in view of the treatment of deep tumours. Different materials and Beam Shaping Assemblies (BSA) are investigated and an optimized configuration is proposed. The neutron beam quality is defined by the standard free beam parameters, calculated averaging over the collimator aperture. The results are discussed and compared with the performances of other facilities.

  7. DEVELOPMENT OF OPTIMAL FILTERS OBTAINED THROUGH CONVOLUTION METHODS, USED FOR FINGERPRINT IMAGE ENHANCEMENT AND RESTORATION

    Directory of Open Access Journals (Sweden)

    Cătălin LUPU

    2014-12-01

    Full Text Available This article presents the development of optimal filters through covolution methods, necessary for restoring, correcting and improving fingerprints acquired from a sensor, able to provide the most ideal image in the output. After the image was binarized and equalized, Canny filter is applied in order to: eliminate the noise (filtering the image with a Gaussian filter, non-maxima suppression, module gradient adaptive binarization and extension edge points edges by hysteresis. The resulting image after applying Canny filter is not ideal. It is possible that the result will be an image with very fragmented edges and many pores in ridge. For the resulting image, a bank of convolution filters are applied one after another (Kirsch, Laplace, Roberts, Prewitt, Sobel, Frei-Chen, averaging convolution filter, circular convolution filter, lapacian convolution filter, gaussian convolution filter, LoG convolution filter, DoG, inverted filters, Wiener, the filter of ”equalization of the power spectrum” (intermediary filter between the Wiener filter and the inverted filter, the geometrical average filter , etc. with different features.

  8. Simultaneous Learning and Filtering without Delusions: A Bayes-Optimal Derivation of Combining Predictive Inference and AdaptiveFiltering

    Directory of Open Access Journals (Sweden)

    Jan eKneissler

    2015-04-01

    Full Text Available Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF. PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than ten-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.

  9. Bnct

    Science.gov (United States)

    Rossi, F.; Ono, K.; Suzuki, M.; Tanaka, H.; Morigi, M. P.

    The purpose of this work is to analyze dose distribution inside tissues. To do this, we performed some MCNP simulations using the neutron flux obtained from the Kyoto University Reactor. We have tried to analyze the behavior of neutrons in different types of tissues in relation to their depth. We have found that the value of dose from neutron interaction with 10B depends not only on 10B concentration inside the tissues (a higher concentration produces a higher dose), but also on the tissue density. In fact, tissues with a density considerably different from that of water receive a lower dose. Another dose contribution is given by the presence of 14N inside tissues: this dose contribution is lower compared with the previous one; it is influenced both by the tissue density and the percentage of nitrogen inside the tissue. Finally, the delivered dose decreases very quickly after a depth of about 4 cm, which implies that boron neutron capture therapy is not an effective therapy for the deepest tumors. However, there are some factors that can be taken into account to reach the deepest zone.

  10. Optimal reconstruction of natural images by small sets of Gabor filters

    NARCIS (Netherlands)

    Van Deemter, JH; Cristobal, G

    1998-01-01

    Images can be reconstructed after being filtered by a Gaussian and a few Gabor filters. Several search methods for the filter parameters for a (near) optimal reconstruction are examined. At first, the search is performed on a 1-D signal which satisfies the radial spectrum of the average of natural i

  11. A novel optimized LCL-filter designing method for grid connected converter

    DEFF Research Database (Denmark)

    Guohong, Zeng; Rasmussen, Tonny Wederberg; Teodorescu, Remus

    2010-01-01

    capacity of all filter components, with clear physical meaning of minimum cost and volume, a set of optimal values of attenuation ratio and inductancesplit- ratio is obtained for deciding all LCL-filter parameters. With this method, filter overall capacity can be minimized while the grid limit of switching......This paper presents a new LCL-filters optimized designing method for grid connected voltage source converter. This method is based on the analysis of converter output voltage components and inherent relations among LCL-filter parameters. By introducing an optimizing index of equivalent total...... frequency distortion is fulfilled. Compared to the existing methods, the proposed method contains only four steps without try-and-error process, so it is efficient and easy to implement. Simulation results of a 50kVA grid-connected inverter with two sets of LCL-filter parameters under different optimizing...

  12. DEVELOPMENT OF OPTIMAL FILTERS OBTAINED THROUGH CONVOLUTION METHODS, USED FOR FINGERPRINT IMAGE ENHANCEMENT AND RESTORATION

    OpenAIRE

    Cătălin LUPU

    2014-01-01

    This article presents the development of optimal filters through covolution methods, necessary for restoring, correcting and improving fingerprints acquired from a sensor, able to provide the most ideal image in the output. After the image was binarized and equalized, Canny filter is applied in order to: eliminate the noise (filtering the image with a Gaussian filter), non-maxima suppression, module gradient adaptive binarization and extension edge points edges by hysteresis. The resulting i...

  13. DEVELOPMENT OF OPTIMAL FILTERS OBTAINED THROUGH CONVOLUTION METHODS, USED FOR FINGERPRINT IMAGE ENHANCEMENT AND RESTORATION

    OpenAIRE

    Cătălin LUPU

    2014-01-01

    This article presents the development of optimal filters through covolution methods, necessary for restoring, correcting and improving fingerprints acquired from a sensor, able to provide the most ideal image in the output. After the image was binarized and equalized, Canny filter is applied in order to: eliminate the noise (filtering the image with a Gaussian filter), non-maxima suppression, module gradient adaptive binarization and extension edge points edges by hysteresis. The resulting i...

  14. Optimal design of multichannel fiber Bragg grating filters using Pareto multi-objective optimization algorithm

    Science.gov (United States)

    Chen, Jing; Liu, Tundong; Jiang, Hao

    2016-01-01

    A Pareto-based multi-objective optimization approach is proposed to design multichannel FBG filters. Instead of defining a single optimal objective, the proposed method establishes the multi-objective model by taking two design objectives into account, which are minimizing the maximum index modulation and minimizing the mean dispersion error. To address this optimization problem, we develop a two-stage evolutionary computation approach integrating an elitist non-dominated sorting genetic algorithm (NSGA-II) and technique for order preference by similarity to ideal solution (TOPSIS). NSGA-II is utilized to search for the candidate solutions in terms of both objectives. The obtained results are provided as Pareto front. Subsequently, the best compromise solution is determined by the TOPSIS method from the Pareto front according to the decision maker's preference. The design results show that the proposed approach yields a remarkable reduction of the maximum index modulation and the performance of dispersion spectra of the designed filter can be optimized simultaneously.

  15. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    Science.gov (United States)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  16. BNCT Technology Development on HANARO Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ki Jung; Park, Kyung Bae; Whang, Seung Ryul; Kim, Myong Seop

    2007-06-15

    So as to establish the biological effects of BNCT in the HANARO Reactor, biological damages in cells and animals with treatment of boron/neutron were investigated. And 124I-BPA animal PET image, analysis technology of the boron contents in the mouse tissues by ICP-AES was established. A Standard clinical protocol, a toxicity evaluation report and an efficacy investigation report of BNCT has been developed. Based on these data, the primary permission of clinical application was acquired through IRB of our hospital. Three cases of pre-clinical experiment for boron distribution and two cases of medium-sized animal simulation experiment using cat with verifying for 2 months after BNCT was performed and so the clinical demonstration with a patient was prepared. Also neutron flux, fast neutron flux and gamma ray dose of BNCT facility were calculated and these data will be utilized good informations for clinical trials and further BNCT research. For the new synthesis of a boron compound, o-carboranyl ethylamine, o-carboranylenepiperidine, o-carboranyl-THIQ and o-carboranyl-s-triazine derivatives were synthesized. Among them, boron uptake in the cancer cell of the triazine derivative was about 25 times than that of BPA and so these three synthesized methods of new boron compounds were patented.

  17. Optimal adaptive normalized matched filter for large antenna arrays

    KAUST Repository

    Kammoun, Abla

    2016-09-13

    This paper focuses on the problem of detecting a target in the presence of a compound Gaussian clutter with unknown statistics. To this end, we focus on the design of the adaptive normalized matched filter (ANMF) detector which uses the regularized Tyler estimator (RTE) built from N-dimensional observations x, · · ·, x in order to estimate the clutter covariance matrix. The choice for the RTE is motivated by its possessing two major attributes: first its resilience to the presence of outliers, and second its regularization parameter that makes it more suitable to handle the scarcity in observations. In order to facilitate the design of the ANMF detector, we consider the regime in which n and N are both large. This allows us to derive closed-form expressions for the asymptotic false alarm and detection probabilities. Based on these expressions, we propose an asymptotically optimal setting for the regularization parameter of the RTE that maximizes the asymptotic detection probability while keeping the asymptotic false alarm probability below a certain threshold. Numerical results are provided in order to illustrate the gain of the proposed detector over a recently proposed setting of the regularization parameter.

  18. The Optimization of a Microfluidic CTC Filtering Chip by Simulation

    Directory of Open Access Journals (Sweden)

    Huan Li

    2017-03-01

    Full Text Available The detection and separation of circulating tumor cells (CTCs are crucial in early cancer diagnosis and cancer prognosis. Filtration through a thin film is one of the size and deformability based separation methods, which can isolate rare CTCs from the peripheral blood of cancer patients regardless of their heterogeneity. In this paper, volume of fluid (VOF multiphase flow models are employed to clarify the cells’ filtering processes. The cells may deform significantly when they enter a channel constriction, which will induce cell membrane stress and damage if the area strain is larger than the critical value. Therefore, the cellular damage criterion characterized by membrane area strain is presented in our model, i.e., the lysis limit of the lipid bilayer is taken as the critical area strain. Under this criterion, we discover that the microfilters with slit-shaped pores do less damage to cells than those with circular pores. The influence of contact angle between the microfilters and blood cells on cellular injury is also discussed. Moreover, the optimal film thickness and flux in our simulations are obtained as 0.5 μm and 0.375 mm/s, respectively. These findings will provide constructive guidance for the improvement of next generation microfilters with higher throughput and less cellular damage.

  19. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-04-02

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.

  20. A Low Cost Structurally Optimized Design for Diverse Filter Types

    OpenAIRE

    Kazmi, Majida; Aziz, Arshad; AKHTAR, Pervez; Ikram, Nassar

    2016-01-01

    A wide range of image processing applications deploys two dimensional (2D)-filters for performing diversified tasks such as image enhancement, edge detection, noise suppression, multi scale decomposition and compression etc. All of these tasks require multiple type of 2D-filters simultaneously to acquire the desired results. The resource hungry conventional approach is not a viable option for implementing these computationally intensive 2D-filters especially in a resource constraint environme...

  1. Teaching-learning-based Optimization Algorithm for Parameter Identification in the Design of IIR Filters

    Science.gov (United States)

    Singh, R.; Verma, H. K.

    2013-12-01

    This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.

  2. AN ADAPTIVE OPTIMAL KALMAN FILTER FOR STOCHASTIC VIBRATION CONTROL SYSTEM WITH UNKNOWN NOISE VARIANCES

    Institute of Scientific and Technical Information of China (English)

    Li Shu; Zhuo Jiashou; Ren Qingwen

    2000-01-01

    In this paper, an optimal criterion is presented for adaptive Kalman filter in a control sys tem with unknown variances of stochastic vibration by constructing a function of noise variances and minimizing the function. We solve the model and measure variances by using DFP optimal method to guarantee the results of Kalman filter to be optimized. Finally, the control of vibration can be implemented by LQG method.

  3. Behavioral model for common mode filter and performance optimization aspects

    NARCIS (Netherlands)

    Roc'h, A.; Bergsma, H.; Bergsma, J.G.; Leferink, Frank Bernardus Johannes

    2008-01-01

    A well designed common mode filter for motor drive application can significantly improve the level of electromagnetic interference generated by the cable and the motor housing. The subsequent design of this filter is strongly dependent on the actual in situ parameters of the motor drive and often

  4. Optease vena cava filter optimal indwelling time and retrievability.

    Science.gov (United States)

    Rimon, Uri; Bensaid, Paul; Golan, Gil; Garniek, Alexander; Khaitovich, Boris; Dotan, Zohar; Konen, Eli

    2011-06-01

    The purpose of this study was to assess the indwelling time and retrievability of the Optease IVC filter. Between 2002 and 2009, a total of 811 Optease filters were inserted: 382 for prophylaxis in multitrauma patients and 429 for patients with venous thromboembolic (VTE) disease. In 139 patients [97 men and 42 women; mean age, 36 (range, 17-82) years], filter retrieval was attempted. They were divided into two groups to compare change in retrieval policy during the years: group A, 60 patients with filter retrievals performed before December 31 2006; and group B, 79 patients with filter retrievals from January 2007 to October 2009. A total of 128 filters were successfully removed (57 in group A, and 71 in group B). The mean filter indwelling time in the study group was 25 (range, 3-122) days. In group A the mean indwelling time was 18 (range, 7-55) days and in group B 31 days (range, 8-122). There were 11 retrieval failures: 4 for inability to engage the filter hook and 7 for inability to sheathe the filter due to intimal overgrowth. The mean indwelling time of group A retrieval failures was 16 (range, 15-18) days and in group B 54 (range, 17-122) days. Mean fluoroscopy time for successful retrieval was 3.5 (range, 1-16.6) min and for retrieval failures 25.2 (range, 7.2-62) min. Attempts to retrieve the Optease filter can be performed up to 60 days, but more failures will be encountered with this approach.

  5. Optimization of the reconstruction and anti-aliasing filter in a Wiener filter system

    NARCIS (Netherlands)

    Wesselink, J.M.; Berkhoff, A.P.

    2006-01-01

    This paper discusses the influence of the reconstruction and anti-aliasing filters on the performance of a digital implementation of a Wiener filter for active noise control. The overall impact will be studied in combination with a multi-rate system approach. A reconstruction and anti-aliasing filte

  6. Optimizing nitrification in biological rapid sand filters: Diagnosing and supplementing micronutrients needed for proper filter performance

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Wagner, Florian Benedikt; Boe-Hansen, Rasmus

    Nitrification is an important biological process commonly used in biological drinking water filters to remove ammonium from drinking water. Recent research has shown that a lack of micronutrients could be limiting the performance of these filters. Because nitrification is a biological process, ca...... to be an important diagnostic tool that could decrease regulatory hurdles, and save time and money....

  7. Optimization of the reconstruction and anti-aliasing filter in a wiener filter system

    NARCIS (Netherlands)

    Wesselink, J.M.; Berkhoff, A.P.

    2006-01-01

    This paper discusses the influence of the reconstruction and anti-aliasing filters on the performance of a digital implementation of a Wiener filter for active noise control. The overall impact will be studied in combination with a multi-rate system approach. A reconstruction and anti-aliasing filte

  8. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-19

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity.

  9. Optimized digital filtering techniques for radiation detection with HPGe detectors

    Science.gov (United States)

    Salathe, Marco; Kihm, Thomas

    2016-02-01

    This paper describes state-of-the-art digital filtering techniques that are part of GEANA, an automatic data analysis software used for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: a pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated with a 762 g Broad Energy Germanium (BEGe) detector, produced by Canberra, that measures γ-ray lines from radioactive sources in an energy range between 59.5 and 2614.5 keV. At 1332.5 keV, together with the ballistic deficit correction method, all filters produce a comparable energy resolution of ~1.61 keV FWHM. This value is superior to those measured by the manufacturer and those found in publications with detectors of a similar design and mass. At 59.5 keV, the modified cusp filter without a ballistic deficit correction produced the best result, with an energy resolution of 0.46 keV. It is observed that the loss in resolution by using a constant shaping time over the entire energy range is small when using the ballistic deficit correction method.

  10. Topology optimization of pulse shaping filters using the Hilbert transform envelope extraction

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Matzen, René; Elesin, Yuriy

    2011-01-01

    Time domain topology optimization is applied to design pulse shaping filters. The objective function depends on the pulse envelope, which is extracted by utilizing the Hilbert transform. The gradients with respect to the topology optimization variables are derived, and the optimization methodology...

  11. Stochastic Optimal Estimation with Fuzzy Random Variables and Fuzzy Kalman Filtering

    Institute of Scientific and Technical Information of China (English)

    FENG Yu-hu

    2005-01-01

    By constructing a mean-square performance index in the case of fuzzy random variable, the optimal estimation theorem for unknown fuzzy state using the fuzzy observation data are given. The state and output of linear discrete-time dynamic fuzzy system with Gaussian noise are Gaussian fuzzy random variable sequences. An approach to fuzzy Kalman filtering is discussed. Fuzzy Kalman filtering contains two parts: a real-valued non-random recurrence equation and the standard Kalman filtering.

  12. A digital filter optimization method for low power digital wireless communication system

    OpenAIRE

    Tarumi, Kousuke; Tsujimoto, Taizo; Yasuura, Hiroto

    2003-01-01

    In this paper, we introduce a design method for a low power digital baseband processing circuit. In particular, we focus on a digital FIR(Finite Impulse Response) filter that is a part of the digital baseband processing. Because the digital filter contains large power consuming components, such as adders and multipliers. We propose a design method to reduce power consumption of the digital FIR filter circuit by optimizing bitwidth of inputs of the mutipliers and the adders. We found that the ...

  13. INEL BNCT Program: Volume 5, No. 9

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-01-01

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  14. Optimal Filter Estimation for Lucas-Kanade Optical Flow

    Directory of Open Access Journals (Sweden)

    Remus Brad

    2012-09-01

    Full Text Available Optical flow algorithms offer a way to estimate motion from a sequence of images. The computation of optical flow plays a key-role in several computer vision applications, including motion detection and segmentation, frame interpolation, three-dimensional scene reconstruction, robot navigation and video compression. In the case of gradient based optical flow implementation, the pre-filtering step plays a vital role, not only for accurate computation of optical flow, but also for the improvement of performance. Generally, in optical flow computation, filtering is used at the initial level on original input images and afterwards, the images are resized. In this paper, we propose an image filtering approach as a pre-processing step for the Lucas-Kanade pyramidal optical flow algorithm. Based on a study of different types of filtering methods and applied on the Iterative Refined Lucas-Kanade, we have concluded on the best filtering practice. As the Gaussian smoothing filter was selected, an empirical approach for the Gaussian variance estimation was introduced. Tested on the Middlebury image sequences, a correlation between the image intensity value and the standard deviation value of the Gaussian function was established. Finally, we have found that our selection method offers a better performance for the Lucas-Kanade optical flow algorithm.

  15. Optimal design and verification of temporal and spatial filters using second-order cone programming approach

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Temporal filters and spatial filters are widely used in many areas of signal processing. A number of optimal design criteria to these problems are available in the literature. Various computational techniques are also presented to optimize these criteria chosen. There are many drawbacks in these methods. In this paper, we introduce a unified framework for optimal design of temporal and spatial filters. Most of the optimal design problems of FIR filters and beamformers are included in the framework. It is shown that all the design problems can be reformulated as convex optimization form as the second-order cone programming (SOCP) and solved efficiently via the well-established interior point methods. The main advantage of our SOCP approach as compared with earlier approaches is that it can include most of the existing methods as its special cases, which leads to more flexible designs. Furthermore, the SOCP approach can optimize multiple required performance measures, which is the drawback of earlier approaches. The SOCP approach is also developed to optimally design temporal and spatial two-dimensional filter and spatial matrix filter. Numerical results demonstrate the effectiveness of the proposed approach.

  16. Optimal design and performance verification of a broadband waveguide filter using ANN-GA algorithm

    Directory of Open Access Journals (Sweden)

    Manidipa Nath

    2013-09-01

    Full Text Available In this work design and optimization of EBGstructure having multiple dielectric posts uniformly placed insidea rectangular waveguide is done to extract filter responses.Frequency response of BPF configuration using trained ANNmodel of multipost rectangular waveguide are studied andoptimized using GA. The geometrical and positional dimensionof post parameters are varied in accordance to the requirementof reflectance and transmittance of the filter.

  17. New optimal design method for trap damping sections in grid-connected LCL filters

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede;

    2014-01-01

    A straightforward method is proposed in this paper to optimally design the damping sections of the LCL or LCL plus trap filters. The proposed method simplifies the iterative design procedure of the overall filter while ensuring minimum resonance peaking and smaller capacitor than otherwise would ...

  18. A FILTER-TRUST-REGION METHOD FOR LC1 UNCONSTRAINED OPTIMIZATION AND ITS GLOBAL CONVERGENCE

    Institute of Scientific and Technical Information of China (English)

    Zhenghao Yang; Wenyu Sun; Chuangyin Dang

    2008-01-01

    In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative.We establish the global convergence of the algorithm under reasonable assumptions.

  19. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  20. Optimization of H sup - output in a magnetically filtered multicusp source

    Energy Technology Data Exchange (ETDEWEB)

    Hosoda, Masayuki; Tanebe, Tomoaki; Naitou, Hirosi; Fukumasa, Osamu (Yamaguchi Univ. (Japan))

    1991-10-01

    On optimization of the volume production type H{sup -} ion source, the effects of both the magnetic filter position and the plasma grid bias voltage for H{sup -} output have been investigated experimentally. It is found that the H{sup -} output can be enhanced by optimizing the magnetic filter position, or the bias voltage of plasma grid. It is also confirmed that these phenomena correlate strongly with the variations of plasma parameters in the extraction region. (author).

  1. Design Optimization of Diesel Particulate Filter Using CFD

    Directory of Open Access Journals (Sweden)

    Mr. Y. Rajasekhar Reddy

    2015-12-01

    Full Text Available The diesel particulate filter (DPF is a device designed to remove diesel particulate matter or soot from the exhaust gas of a diesel engine. A series of tests have been performed on a downscaled DPF prototype. This prototype had high filtration efficiency. Then the next step is to study the soot and ash handling capacity of DPF system and perform tests on a full-scale prototype. In order to move forward to the next step the functionality of the filter should be investigated. Moreover, a complete model of flow inside the filter can help parameter investigation on both downscale and full-scale prototype. Building up a CFD model using fluent which is capable to simulate the flow through all channels and porous media of the filter plates and tuning the pressure drop parameters for all steps of filtration from clean filter to dirty one are the main achievements of this project. CFD results have been tuned by using experimental data of filtration tests.

  2. Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization

    DEFF Research Database (Denmark)

    Yang, Lirong; Lavrinenko, Andrei; Hvam, Jørn Märcher

    2009-01-01

    Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems.......Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems....

  3. Optimized filtering of regional and teleseismic seismograms: results of maximizing SNR measurements from the wavelet transform and filter banks

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R.R.; Schultz, C.; Dowla, F.

    1997-07-15

    Development of a worldwide network to monitor seismic activity requires deployment of seismic sensors in areas which have not been well studied or may have from available recordings. Development and testing of detection and discrimination algorithms requires a robust representative set of calibrated seismic events for a given region. Utilizing events with poor signal-to-noise (SNR) can add significant numbers to usable data sets, but these events must first be adequately filtered. Source and path effects can make this a difficult task as filtering demands are highly varied as a function of distance, event magnitude, bearing, depth etc. For a given region, conventional methods of filter selection can be quite subjective and may require intensive analysis of many events. In addition, filter parameters are often overly generalized or contain complicated switching. We have developed a method to provide an optimized filter for any regional or teleseismically recorded event. Recorded seismic signals contain arrival energy which is localized in frequency and time. Localized temporal signals whose frequency content is different from the frequency content of the pre-arrival record are identified using rms power measurements. The method is based on the decomposition of a time series into a set of time series signals or scales. Each scale represents a time-frequency band with a constant Q. SNR is calculated for a pre-event noise window and for a window estimated to contain the arrival. Scales with high SNR are used to indicate the band pass limits for the optimized filter.The results offer a significant improvement in SNR particularly for low SNR events. Our method provides a straightforward, optimized filter which can be immediately applied to unknown regions as knowledge of the geophysical characteristics is not required. The filtered signals can be used to map the seismic frequency response of a region and may provide improvements in travel-time picking, bearing estimation

  4. Epithermal neutron beam for BNCT research at the Washington State University TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Venhuizen, J.R.; Wheeler, F.J.; Wemple, C.A. [Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (United States); Tripard, G.E.; Gavin, P.R. [Washington State University, Pullman, WA (United States)

    2000-10-01

    A new epithermal-neutron beam facility for BNCT (Boron Neutron Capture Therapy) research and boronated agent screening in animal models is in the final stages of construction at Washington State University (WSU). A key distinguishing feature of the design is the incorporation of a new, high-efficiency, neutron moderating and filtering material, Fluental, developed by the Technical Research Centre of Finland. An additional key feature is the provision for adjustable filter-moderator thickness to systematically explore the radiobiological consequences of increasing the fast-neutron contamination above the nominal value associated with the baseline system. (author)

  5. Preliminary evaluations of the undesirable patient dose from a BNCT treatment at the ENEA-TAPIRO reactor.

    Science.gov (United States)

    Ferrari, P; Gualdrini, G; Nava, E; Burn, K W

    2007-01-01

    Boron neutron capture therapy (BNCT) is an experimental technique for the treatment of certain kinds of tumors. Research in BNCT is performed utilizing both thermal and epithermal neutron beams. Epithermal neutrons (0.4 eV-10 keV) penetrate more deeply into tissue and are thus used in non-superficial clinical applications such as the brain glioma. In the last few years, the fast reactor TAPIRO (ENEA-Casaccia Rome) has been employed as a neutron source for research into BNCT applications. Recently, an 'epithermal therapeutic column' has been designed and its construction has been completed. The Monte Carlo code MCNPX was employed to optimize the design of the column and to evaluate the dose profiles and the therapeutic parameters in the cranium of the anthropomorphic phantom ADAM. In the same context, some preliminary evaluations of the undesirable doses to the patient were performed with MCNPX. A hermaphrodite phantom derived from ADAM and EVA was employed to evaluate the energy deposition in some organs during a standard BNCT treatment. The total dose consists of the contributions from the primary neutron beam, the neutron interactions with boron and the neutron induced photons generated in the epithermal column structures and in the patient's tissues. The paper summarizes the computational procedure and provides a general dosimetric framework of the patient radiological protection aspects related to a BNCT treatment scenario at the TAPIRO reactor.

  6. Filters in topology optimization based on Helmholtz‐type differential equations

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Sigmund, Ole

    2011-01-01

    The aim of this paper is to apply a Helmholtz‐type partial differential equation as an alternative to standard density filtering in topology optimization problems. Previously, this approach has been successfully applied as a sensitivity filter. The usual filtering techniques in topology optimizat......The aim of this paper is to apply a Helmholtz‐type partial differential equation as an alternative to standard density filtering in topology optimization problems. Previously, this approach has been successfully applied as a sensitivity filter. The usual filtering techniques in topology...... optimization require information about the neighbor cells, which is difficult to obtain for fine meshes or complex domains and geometries. The complexity of the problem increases further in parallel computing, when the design domain is decomposed into multiple non‐overlapping partitions. Obtaining information...... from the neighbor subdomains is an expensive operation. The proposed filter technique requires only mesh information necessary for the finite element discretization of the problem. The main idea is to define the filtered variable implicitly as a solution of a Helmholtz‐type differential equation...

  7. Big Bang–Big Crunch Optimization Algorithm for Linear Phase Fir Digital Filter Design

    Directory of Open Access Journals (Sweden)

    Ms. Rashmi Singh Dr. H. K. Verma

    2012-02-01

    Full Text Available The Big Bang–Big Crunch (BB–BC optimization algorithm is a new optimization method that relies on the Big Bang and Big Crunch theory, one of the theories of the evolution of the universe. In this paper, a Big Bang–Big Crunch algorithm has been used here for the design of linear phase finite impulse response (FIR filters. Here the experimented fitness function based on the mean squared error between the actual and the ideal filter response. This paper presents the plot of magnitude response of FIR filters and error graph. The BB-BC seems to be promising tool for FIR filter design especially in a dynamic environment where filter coefficients have to be adapted and fast convergence is of importance.

  8. Multivariable frequency response methods for optimal Kalman-Bucy filters with applications to radar tracking systems

    Science.gov (United States)

    Arcasoy, C. C.

    1992-11-01

    The problem of multi-output, infinite-time, linear time-invariant optimal Kalman-Bucy filter both in continuous and discrete-time cases in frequency domain is addressed. A simple new algorithm is given for the analytical solution to the steady-state gain of the optimum filter based on a transfer function approach. The algorithm is based on spectral factorization of observed spectral density matrix of the filter which generates directly the return-difference matrix of the optimal filter. The method is more direct than by algebraic Riccati equation solution and can easily be implemented on digital computer. The design procedure is illustrated by examples and closed-form solution of ECV and ECA radar tracking filters are considered as an application of the method.

  9. Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters.

    Science.gov (United States)

    Luo, Yuan; Gelsinger, Paul J; Barton, Jennifer K; Barbastathis, George; Kostuk, Raymond K

    2008-03-15

    Holographic gratings formed in thick phenanthrenquinone- (PQ-) doped poly(methyl methacrylate) (PMMA) can be made to have narrowband spectral and spatial transmittance filtering properties. We present the design and performance of angle-multiplexed holographic filters formed in PQ-PMMA at 488 nm and reconstructed with a LED operated at approximately 630 nm. The dark delay time between exposure and the preillumination exposure of the polymer prior to exposure of the holographic area are varied to optimize the diffraction efficiency of multiplexed holographic filters. The resultant holographic filters can enhance the performance of four-dimensional spatial-spectral imaging systems. The optimized filters are used to simultaneously sample spatial and spectral information at five different depths separated by 50 microm within biological tissue samples.

  10. Noise Reduction with Optimal Variable Span Linear Filters

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2016-01-01

    of eigenvectors stemming from a joint diagonalization of the covariance matrices of the signal of interest and the noise. The resulting filters are flexible in that it is possible to trade off distortion of the desired signal for improved noise reduction. This tradeoff is controlled by the number of eigenvectors...

  11. Automatic parameter optimization in epsilon-filter for acoustical signal processing utilizing correlation coefficient.

    Science.gov (United States)

    Abe, Tomomi; Hashimoto, Shuji; Matsumoto, Mitsuharu

    2010-02-01

    epsilon-filter can reduce most kinds of noise from a single-channel noisy signal while preserving signals that vary drastically such as speech signals. It can reduce not only stationary noise but also nonstationary noise. However, it has some parameters whose values are set empirically. So far, there have been few studies to evaluate the appropriateness of the parameter settings for epsilon-filter. This paper employs the correlation coefficient of the filter output and the difference between the filter input and output as the evaluation function of the parameter setting. This paper also describes the algorithm to set the optimal parameter value of epsilon-filter automatically. To evaluate the adequateness of the obtained parameter, the mean absolute error is calculated. The experimental results show that the adequate parameter in epsilon-filter can be obtained automatically by using the proposed method.

  12. Optimization of optical filter using triple coupler ring resonators structure based on polyimide substrate

    Science.gov (United States)

    Mahmudin, D.; Estu, T. T.; Fathnan, A. A.; Maulana, Y. Y.; Daud, P.; Sugandhi, G.; Wijayanto, Y. N.

    2016-11-01

    Optical filter is very important components in WDM network. MRR is a basic structure to design the optical filter because of easy to design for improving its performance. This paper discusses an innovative structure of the MRR, which is Triple Coupler Ring Resonators (TCRR) for optical filter applications. Values of width between bus and ring and values of radius of the ring in the structure TCRR were analyzed and optimized for several variations for obtaining coupling coefficient values. Therefore, wide Free Spectral Range (FSR) and high crosstalk suppression bandwidth can be obtained. As results, at the optimized width of gap of 100 nm and the optimized radiation of 8 μm, FSR of 2.85 THz and crosstalk suppression bandwidth of 60 GHz were achieved. Based on the results, this structure can be used for filtering optical signals in optical fiber communication.

  13. The Optimization of a Microfluidic CTC Filtering Chip by Simulation

    OpenAIRE

    Huan Li; Jianfeng Chen; Wenqiang Du; Youjun Xia; Depei Wang; Gang Zhao; Jiaru Chu

    2017-01-01

    The detection and separation of circulating tumor cells (CTCs) are crucial in early cancer diagnosis and cancer prognosis. Filtration through a thin film is one of the size and deformability based separation methods, which can isolate rare CTCs from the peripheral blood of cancer patients regardless of their heterogeneity. In this paper, volume of fluid (VOF) multiphase flow models are employed to clarify the cells’ filtering processes. The cells may deform significantly when they enter a cha...

  14. Tap-length optimization of adaptive filters used in stereophonic acoustic echo cancellation

    DEFF Research Database (Denmark)

    Kar, Asutosh; Swamy, M.N.S.

    2017-01-01

    of acoustic echo paths. The tap-length optimization is applied to a single long adaptive filter with thousands of coefficients to decrease the total number of weights, which in turn reduces the computational load. To further increase the convergence rate, the proposed tap-length-optimization algorithm...

  15. An Accelerator Neutron Source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  16. Characterisation of the TAPIRO BNCT epithermal facility.

    Science.gov (United States)

    Burn, K W; Colli, V; Curzio, G; d'Errico, F; Gambarini, G; Rosi, G; Scolari, L

    2004-01-01

    A collimated epithermal beam for boron neutron capture therapy (BNCT) research has been designed and built at the TAPIRO fast research reactor. A complete experimental characterisation of the radiation field in the irradiation chamber has been performed, to verify agreement with IAEA requirements. Slow neutron fluxes have been measured by means of an activation technique and with thermoluminescent detectors (TLDs). The fast neutron dose has been determined with gel dosemeters, while the fast neutron spectrum has been acquired by means of a neutron spectrometer based on superheated drop detectors. The gamma-dose has been measured with gel dosemeters and TLDs. For an independent verification of the experimental results, fluxes, doses and neutron spectra have been calculated with Monte Carlo simulations using the codes MCNP4B and MCNPX_2.1.5 with the direct statistical approach (DSA). The results obtained confirm that the epithermal beams achievable at TAPIRO are of suitable quality for BNCT purposes.

  17. No suitable precise or optimized epidemiologic search filters were available for bibliographic databases.

    Science.gov (United States)

    Waffenschmidt, Siw; Hermanns, Tatjana; Gerber-Grote, Andreas; Mostardt, Sarah

    2017-02-01

    To determine a suitable approach to a systematic search for epidemiologic publications in bibliographic databases. For this purpose, suitable sensitive, precise, and optimized filters were to be selected for MEDLINE searches. In addition, the relevance of bibliographic databases was determined. Epidemiologic systematic reviews (SRs) retrieved in a systematic search and company dossiers were screened to identify epidemiologic publications (primary studies and SRs) published since 2007. These publications were used to generate a test and validation set. Furthermore, each SR's search strategy was reviewed, and epidemiologic filters were extracted. The search syntaxes were validated using the relative recall method. The test set comprises 729 relevant epidemiologic publications, of which 566 were MEDLINE-indexed. About 27 epidemiologic filters were extracted. One suitable sensitive filter was identified (Larney et al. 2013: 95.94% sensitivity). Precision was presumably underestimated so that no precise or optimized filters can be recommended. About 77.64% of the publications were found in MEDLINE. There is currently no suitable approach to conducting efficient systematic searches for epidemiologic publications in bibliographic databases. The filter by Larney et al. (2013) can be used for sensitive MEDLINE searches. No robust conclusions can be drawn on precise or optimized filters. Additional search approaches should be considered. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, M.S., E-mail: herrera@tandar.cnea.gov.ar [Comision Nacional de Energia Atomica, CNEA, Av. Gral. Paz 1499, San Martin (Argentina)] [Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET, Av. Rivadavia 191, Buenos Aires (Argentina)] [Universidad Nacional de San Martin, UNSAM, Av. 25 de Mayo y Francia Buenos Aires (Argentina); Gonzalez, S.J. [Comision Nacional de Energia Atomica, CNEA, Av. Gral. Paz 1499, San Martin (Argentina)] [Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET, Av. Rivadavia 191, Buenos Aires (Argentina); Burlon, A.A. [Comision Nacional de Energia Atomica, CNEA, Av. Gral. Paz 1499, San Martin (Argentina)] [Universidad Nacional de San Martin, UNSAM, Av. 25 de Mayo y Francia Buenos Aires (Argentina); Minsky, D.M.; Kreiner, A.J. [Comision Nacional de Energia Atomica, CNEA, Av. Gral. Paz 1499, San Martin (Argentina)] [Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET, Av. Rivadavia 191, Buenos Aires (Argentina)] [Universidad Nacional de San Martin, UNSAM, Av. 25 de Mayo y Francia Buenos Aires (Argentina)

    2011-12-15

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma.

  19. In-plane Material Filters for the Discrete Material Optimization Method

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    This paper presents in-plane material filters for the Discrete Material Optimization method used for optimizing laminated composite structures. The filters make it possible for engineers to specify a minimum length scale which governs the minimum size of areas with constant material continuity....... Consequently, engineers can target the available production methods, and thereby increase its manufacturability while the optimizer is free to determine which material to apply together with an optimum location, shape, and size of these areas with constant material continuity. By doing so, engineers no longer...... have to group elements together in so-called patches, so to statically impose a minimum length scale. The proposed method imposes the minimum length scale through a standard density filter known from topology optimization of isotropic materials. This minimum length scale is generally referred...

  20. Linear adaptive noise-reduction filters for tomographic imaging: Optimizing for minimum mean square error

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Winston Y. [Univ. of California, Berkeley, CA (United States)

    1993-04-01

    This thesis solves the problem of finding the optimal linear noise-reduction filter for linear tomographic image reconstruction. The optimization is data dependent and results in minimizing the mean-square error of the reconstructed image. The error is defined as the difference between the result and the best possible reconstruction. Applications for the optimal filter include reconstructions of positron emission tomographic (PET), X-ray computed tomographic, single-photon emission tomographic, and nuclear magnetic resonance imaging. Using high resolution PET as an example, the optimal filter is derived and presented for the convolution backprojection, Moore-Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Simulations and experimental results are presented for the convolution backprojection method.

  1. Two-Dimensional IIR Filter Design Using Simulated Annealing Based Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Supriya Dhabal

    2014-01-01

    Full Text Available We present a novel hybrid algorithm based on particle swarm optimization (PSO and simulated annealing (SA for the design of two-dimensional recursive digital filters. The proposed method, known as SA-PSO, integrates the global search ability of PSO with the local search ability of SA and offsets the weakness of each other. The acceptance criterion of Metropolis is included in the basic algorithm of PSO to increase the swarm’s diversity by accepting sometimes weaker solutions also. The experimental results reveal that the performance of the optimal filter designed by the proposed SA-PSO method is improved. Further, the convergence behavior as well as optimization accuracy of proposed method has been improved significantly and computational time is also reduced. In addition, the proposed SA-PSO method also produces the best optimal solution with lower mean and variance which indicates that the algorithm can be used more efficiently in realizing two-dimensional digital filters.

  2. New hybrid genetic particle swarm optimization algorithm to design multi-zone binary filter.

    Science.gov (United States)

    Lin, Jie; Zhao, Hongyang; Ma, Yuan; Tan, Jiubin; Jin, Peng

    2016-05-16

    The binary phase filters have been used to achieve an optical needle with small lateral size. Designing a binary phase filter is still a scientific challenge in such fields. In this paper, a hybrid genetic particle swarm optimization (HGPSO) algorithm is proposed to design the binary phase filter. The HGPSO algorithm includes self-adaptive parameters, recombination and mutation operations that originated from the genetic algorithm. Based on the benchmark test, the HGPSO algorithm has achieved global optimization and fast convergence. In an easy-to-perform optimizing procedure, the iteration number of HGPSO is decreased to about a quarter of the original particle swarm optimization process. A multi-zone binary phase filter is designed by using the HGPSO. The long depth of focus and high resolution are achieved simultaneously, where the depth of focus and focal spot transverse size are 6.05λ and 0.41λ, respectively. Therefore, the proposed HGPSO can be applied to the optimization of filter with multiple parameters.

  3. Concept of a BNCT line with in-pool fission converter at MARIA reactor in Swierk

    Science.gov (United States)

    Pytel, Krzysztof; Andrzejewski, Krzysztof; Golnik, Natalia; Osko, Jakub

    2009-01-01

    BNCT facility in the Institute of Atomic Energy in Otwock-Swierk is under construction at the horizontal channel H2 of the research reactor MARIA. Measurements of the neutron energy spectrum performed at the front of the H2 experimental channel, have shown that flux of epithermal neutrons (above 10 keV) at the BNCT irradiation port was below 109 n cm-2 s-1 i.e. it was too low to be directly used for the BNCT treatment. Therefore, a fission converter will be placed between the reactor core and the periphery of the graphite reflector of MARIA reactor. The uranium converter will be powered by the densely packed EK-10 fuel elements with 10% enrichment. Preliminary calculations have shown that the total neutron flux in the converter will be about 1013 n cm-2 s-1 and flux of epithermal neutrons at the entrance to the filter/moderator of the beam will be about 2·1013 n cm-2 s-1.

  4. Design of Maximally Flat FIR Filters Based on Explicit Formulas Combined with Optimization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A maximally flat FIR filter design method based on explicit formulas combined with simulated annealing and random search was presented. Utilizing the explicit formulas to calculate the initial values, the finite-word-length FIR filter design problem was converted into optimization of the filter coefficients. An optimization method combined with local discrete random search and simulated annealing was proposed, with the result of optimum solution in the sense of Chebyshev approximation. The proposed method can simplify the design process of FIR filter and reduce the calculation burden. The simulation result indicates that the proposed method is superior to the traditional round off method and can reduce the value of the objective function to 41%-74%.

  5. Automation of Optimized Gabor Filter Parameter Selection for Road Cracks Detection

    Directory of Open Access Journals (Sweden)

    Haris Ahmad Khan

    2016-03-01

    Full Text Available Automated systems for road crack detection are extremely important in road maintenance for vehicle safety and traveler’s comfort. Emerging cracks in roads need to be detected and accordingly repaired as early as possible to avoid further damage thus reducing rehabilitation cost. In this paper, a robust method for Gabor filter parameters optimization for automatic road crack detection is discussed. Gabor filter has been used in previous literature for similar applications. However, there is a need for automatic selection of optimized Gabor filter parameters due to variation in texture of roads and cracks. The problem of change of background, which in fact is road texture, is addressed through a learning process by using synthetic road crack generation for Gabor filter parameter tuning. Tuned parameters are then tested on real cracks and a thorough quantitative analysis is performed for performance evaluation.

  6. AN ITERATIVE ALGORITHM FOR OPTIMAL DESIGN OF NON-FREQUENCY-SELECTIVE FIR DIGITAL FILTERS

    Institute of Scientific and Technical Information of China (English)

    Duan Miyi; Sun Chunlai; Liu Xin; Tian Xinguang

    2008-01-01

    This paper proposes a novel iterative algorithm for optimal design of non-frequency-se-lective Finite Impulse Response (FIR) digital filters based on the windowing method. Different from the traditional optimization concept of adjusting the window or the filter order in the windowing design of an FIR digital filter,the key idea of the algorithm is minimizing the approximation error by succes-sively modifying the design result through an iterative procedure under the condition of a fixed window length. In the iterative procedure,the known deviation of the designed frequency response in each iteration from the ideal frequency response is used as a reference for the next iteration. Because the approximation error can be specified variably,the algorithm is applicable for the design of FIR digital filters with different technical requirements in the frequency domain. A design example is employed to illustrate the efficiency of the algorithm.

  7. Optimal filtering for uncertain systems with stochastic nonlinearities, correlated noises and missing measurements

    Institute of Scientific and Technical Information of China (English)

    Shuo Zhang,Yan Zhao,Min Li,; Jianhui Zhao

    2015-01-01

    The global y optimal recursive filtering problem is stu-died for a class of systems with random parameter matrices, stochastic nonlinearities, correlated noises and missing measure-ments. The stochastic nonlinearities are presented in the system model to reflect multiplicative random disturbances, and the addi-tive noises, process noise and measurement noise, are assumed to be one-step autocorrelated as wel as two-step cross-correlated. A series of random variables is introduced as the missing rates governing the intermittent measurement losses caused by un-favorable network conditions. The aim of the addressed filtering problem is to design an optimal recursive filter for the uncertain systems based on an innovation approach such that the filtering error is global y minimized at each sampling time. A numerical simulation example is provided to il ustrate the effectiveness and applicability of the proposed algorithm.

  8. Comparative analysis of zero aliasing logarithmic mapped optimal trade-off correlation filter

    Science.gov (United States)

    Tehsin, Sara; Rehman, Saad; Bilal, Ahmed; Chaudry, Qaiser; Saeed, Omer; Abbas, Muhammad; Young, Rupert

    2017-05-01

    Correlation filters are a well established means for target recognition tasks. However, the unintentional effect of circular correlation has a negative influence on the performance of correlation filters as they are implemented in frequency domain. The effects of aliasing are minimized by introducing zero aliasing constraints in the template and test image. In this paper, the comparative analysis of logarithmic zero aliasing optimal trade off correlation filters has been carried out for different types of target distortions. The zero aliasing Maximum Average Correlation Height (MACH) filter has been identified as the best choice based on our research for achieving enhanced results in the presence of any type of variance which are discussed in results section. The reformulation of the MACH expressions with zero aliasing has been made to demonstrate the achievable enhancement to the logarithmic MACH filter in target detection applications.

  9. Optimal configurations of filter cavity in future gravitational-wave detectors

    CERN Document Server

    Khalili, Farit Ya

    2010-01-01

    Sensitivity of future laser interferometric gravitational-wave detectors can be improved using squeezed light with frequency-dependent squeeze angle and/or amplitude, which can be created using additional so-called filter cavities. Here we compare performances of several variants of this scheme, proposed during last years, assuming the case of a single relatively short (tens of meters) filter cavity suitable for implementation already during the life cycle of the second generation detectors, like Advanced LIGO. Using numerical optimization, we show that the phase filtering scheme proposed by Kimble et al [Phys.Rev.D 65, 022002 (2001)] looks as the best candidate for this scenario.

  10. Design, optimization and fabrication of an optical mode filter for integrated optics.

    Science.gov (United States)

    Magnin, Vincent; Zegaoui, Malek; Harari, Joseph; François, Marc; Decoster, Didier

    2009-04-27

    We present the design, optimization, fabrication and characterization of an optical mode filter, which attenuates the snaking behavior of light caused by a lateral misalignment of the input optical fiber relative to an optical circuit. The mode filter is realized as a bottleneck section inserted in an optical waveguide in front of a branching element. It is designed with Bézier curves. Its effect, which depends on the optical state of polarization, is experimentally demonstrated by investigating the equilibrium of an optical splitter, which is greatly improved however only in TM mode. The measured optical losses induced by the filter are 0.28 dB.

  11. Optimal Fusion Filtering in Multisensor Stochastic Systems with Missing Measurements and Correlated Noises

    Directory of Open Access Journals (Sweden)

    R. Caballero-Águila

    2013-01-01

    and each sensor noise are two-step cross-correlated. Under these assumptions and by an innovation approach, recursive algorithms for the optimal linear filter are derived by using the two basic estimation fusion structures; more specifically, both centralized and distributed fusion estimation algorithms are proposed. The accuracy of these estimators is measured by their error covariance matrices, which allow us to compare their performance in a numerical simulation example that illustrates the feasibility of the proposed filtering algorithms and shows a comparison with other existing filters.

  12. Dynamic Optimization of Feedforward Automatic Gauge Control Based on Extended Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    YANG Bin-hu; YANG Wei-dong; CHEN Lian-gui; QU Lei

    2008-01-01

    Automatic gauge control is an essentially nonlinear process varying with time delay, and stochastically varying input and process noise always influence the target gauge control accuracy. To improve the control capability of feedforward automatic gauge control, Kalman filter was employed to filter the noise signal transferred from one stand to another. The linearized matrix that the Kalman filter algorithm needed was concluded; thus, the feedforward automatic gauge control architecture was dynamically optimized. The theoretical analyses and simulation show that the proposed algorithm is reasonable and effective.

  13. Reliability-Oriented Optimization of the LC Filter Design of a Buck DC-DC Converter

    DEFF Research Database (Denmark)

    Liu, Yi; Huang, Meng; Wang, Huai

    2017-01-01

    Lifetime is an important performance factor in the reliable operation of power converters. However, the state-of-the-art LC filter design of a buck DC-DC converter is limited to the specifications of voltage and current ripples and constrains in power density and cost without reliability...... considerations. This paper proposes a method to optimize the design of the LC filters from a reliability perspective, besides other considerations. An enhanced model is derived to quantify the lifetime of the capacitor in the filter considering the electro-thermal stress on it. Furthermore, the influence...

  14. Optimal Divergence-Free Hatch Filter for GNSS Single-Frequency Measurement

    Directory of Open Access Journals (Sweden)

    Byungwoon Park

    2017-02-01

    Full Text Available The Hatch filter is a code-smoothing technique that uses the variation of the carrier phase. It can effectively reduce the noise of a pseudo-range with a very simple filter construction, but it occasionally causes an ionosphere-induced error for low-lying satellites. Herein, we propose an optimal single-frequency (SF divergence-free Hatch filter that uses a satellite-based augmentation system (SBAS message to reduce the ionospheric divergence and applies the optimal smoothing constant for its smoothing window width. According to the data-processing results, the overall performance of the proposed filter is comparable to that of the dual frequency (DF divergence-free Hatch filter. Moreover, it can reduce the horizontal error of 57 cm to 37 cm and improve the vertical accuracy of the conventional Hatch filter by 25%. Considering that SF receivers dominate the global navigation satellite system (GNSS market and that most of these receivers include the SBAS function, the filter suggested in this paper is of great value in that it can make the differential GPS (DGPS performance of the low-cost SF receivers comparable to that of DF receivers.

  15. Optimal Divergence-Free Hatch Filter for GNSS Single-Frequency Measurement

    Science.gov (United States)

    Park, Byungwoon; Lim, Cheolsoon; Yun, Youngsun; Kim, Euiho; Kee, Changdon

    2017-01-01

    The Hatch filter is a code-smoothing technique that uses the variation of the carrier phase. It can effectively reduce the noise of a pseudo-range with a very simple filter construction, but it occasionally causes an ionosphere-induced error for low-lying satellites. Herein, we propose an optimal single-frequency (SF) divergence-free Hatch filter that uses a satellite-based augmentation system (SBAS) message to reduce the ionospheric divergence and applies the optimal smoothing constant for its smoothing window width. According to the data-processing results, the overall performance of the proposed filter is comparable to that of the dual frequency (DF) divergence-free Hatch filter. Moreover, it can reduce the horizontal error of 57 cm to 37 cm and improve the vertical accuracy of the conventional Hatch filter by 25%. Considering that SF receivers dominate the global navigation satellite system (GNSS) market and that most of these receivers include the SBAS function, the filter suggested in this paper is of great value in that it can make the differential GPS (DGPS) performance of the low-cost SF receivers comparable to that of DF receivers. PMID:28245584

  16. Optimal Divergence-Free Hatch Filter for GNSS Single-Frequency Measurement.

    Science.gov (United States)

    Park, Byungwoon; Lim, Cheolsoon; Yun, Youngsun; Kim, Euiho; Kee, Changdon

    2017-02-24

    The Hatch filter is a code-smoothing technique that uses the variation of the carrier phase. It can effectively reduce the noise of a pseudo-range with a very simple filter construction, but it occasionally causes an ionosphere-induced error for low-lying satellites. Herein, we propose an optimal single-frequency (SF) divergence-free Hatch filter that uses a satellite-based augmentation system (SBAS) message to reduce the ionospheric divergence and applies the optimal smoothing constant for its smoothing window width. According to the data-processing results, the overall performance of the proposed filter is comparable to that of the dual frequency (DF) divergence-free Hatch filter. Moreover, it can reduce the horizontal error of 57 cm to 37 cm and improve the vertical accuracy of the conventional Hatch filter by 25%. Considering that SF receivers dominate the global navigation satellite system (GNSS) market and that most of these receivers include the SBAS function, the filter suggested in this paper is of great value in that it can make the differential GPS (DGPS) performance of the low-cost SF receivers comparable to that of DF receivers.

  17. Optimal design study of high order FIR digital filters based on neural network algorithm

    Institute of Scientific and Technical Information of China (English)

    王小华; 何怡刚

    2004-01-01

    An optimal design approach of high order FIR digital filter is developed based on the algorithm of neural networks with cosine basis function . The main idea is to minimize the sum of the square errors between the amplitude response of the desired FIR filter and that of the designed by training the weights of neural networks, then obtains the impulse response of FIR digital filter . The convergence theorem of the neural networks algorithm is presented and proved,and the optimal design method is introduced by designing four kinds of FIR digital filters , i.e., low-pass, high-pass,bandpass , and band-stop FIR digital filter. The results of the amplitude responses show that attenuation in stop-bands is more than 60 dB with no ripple and pulse existing in pass-bands, and cutoff frequency of passband and stop-band is easily controlled precisely . The presented optimal design approach of high order FIR digital filter is significantly effective.

  18. FPGA Implementation of Optimal Filtering Algorithm for TileCal ROD System

    CERN Document Server

    Torres, J; Castillo, V; Cuenca, C; Ferrer, A; Fullana, E; González, V; Higón, E; Poveda, J; Ruiz-Martinez, A; Salvachúa, B; Sanchis, E; Solans, C; Valero, A; Valls, J A

    2008-01-01

    Traditionally, Optimal Filtering Algorithm has been implemented using general purpose programmable DSP chips. Alternatively, new FPGAs provide a highly adaptable and flexible system to develop this algorithm. TileCal ROD is a multi-channel system, where similar data arrives at very high sampling rates and is subject to simultaneous tasks. It include different FPGAs with high I/O and with parallel structures that provide a benefit at a data analysis. The Optical Multiplexer Board is one of the elements presents in TileCal ROD System. It has FPGAs devices that present an ideal platform for implementing Optimal Filtering Algorithm. Actually this algorithm is performing in the DSPs included at ROD Motherboard. This work presents an alternative to implement Optimal Filtering Algorithm.

  19. Design of epithermal neutron beam for clinical BNCT treatment at Slovenian TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maucec, Marko [Jozef Stefan Institute, Reactor Physics Division, Lubljana (Slovenia). E-mail: marko.mauce@ijs.si

    1999-07-01

    The Monte Carlo feasibility study of development of epithermal neutron beam for BNCT clinical trials on Jozef Stefan Institute (JSI) TRIGA reactor is presented. The investigation of the possible use of fission converter for the purpose of enhancement of neutron beam, as well as the set-up of TRIGA reactor core is performed. The optimization of the irradiation facility components is carried out and the configuration with the most favorable cost/performance ratio is proposed. The simulation results prove that a BNCT irradiation facility with performances, comparable to existing beams throughout the world, could be installed in the thermalizing column of the TRIGA reactor, quite suitable for the clinical treatments of human patients. (author)

  20. Designing of the 14 MeV neutron moderator for BNCT

    Institute of Scientific and Technical Information of China (English)

    CHENG Dao-Wen; LU Jing-Bin; YANG Dong; LIU Yu-Min; WANG Hui-Dong; MA Ke-Yan

    2012-01-01

    In boron neutron capture therapy (BNCT),the ratio of the fast neutron flux to the neutron flux in the tumor (RFNT) must be less than 3%.If a D-T neutron generator is used in BNCT,the 14 MeV neutron moderator must be optimized to reduce the RFNT.Based on the neutron moderation theory and the simulation results,tungsten,lead and diamond were used to moderate the 14 MeV neutrons.Satisfying RFNT of less than 3%,the maximum neutron flux in the tumor was achieved with a three-layer moderator comprised of a 3 cm thick tungsten layer,a 14 cm thick lead layer and a 21 cm thick diamond layer.

  1. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    Science.gov (United States)

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications.

  2. Inverse Problem of Air Filtration of Nanoparticles: Optimal Quality Factors of Fibrous Filters

    Directory of Open Access Journals (Sweden)

    Dahua Shou

    2015-01-01

    Full Text Available Application of nanofibers has become an emerging approach to enhance filtration efficiency, but questions arise about the decrease in Quality factor (QF for certain particles due to the rapidly increasing pressure drop. In this paper, we theoretically investigate the QF of dual-layer filters for filtration of monodisperse and polydisperse nanoparticles. The inverse problem of air filtration, as defined in this work, consists in determining the optimal construction of the two-layer fibrous filter with the maximum QF. In comparison to a single-layer substrate, improved QF values for dual-layer filters are found when a second layer with proper structural parameters is added. The influences of solidity, fiber diameter, filter thickness, face velocity, and particle size on the optimization of QF are studied. The maximum QF values for realistic polydisperse particles with a lognormal size distribution are also found. Furthermore, we propose a modified QF (MQF accounting for the effects of energy cost and flow velocity, which are significant in certain operations. The optimal MQF of the dual-layer filter is found to be over twice that of the first layer. This work provides a quick tool for designing and optimizing fibrous structures with better performance for the air filtration of specific nanoparticles.

  3. A toolkit for epithermal neutron beam characterisation in BNCT.

    Science.gov (United States)

    Auterinen, Iiro; Serén, Tom; Uusi-Simola, Jouni; Kosunen, Antti; Savolainen, Sauli

    2004-01-01

    Methods for dosimetry of epithermal neutron beams used in boron neutron capture therapy (BNCT) have been developed and utilised within the Finnish BNCT project as well as within a European project for a code of practise for the dosimetry of BNCT. One outcome has been a travelling toolkit for BNCT dosimetry. It consists of activation detectors and ionisation chambers. The free-beam neutron spectrum is measured with a set of activation foils of different isotopes irradiated both in a Cd-capsule and without it. Neutron flux (thermal and epithermal) distribution in phantoms is measured using activation of Mn and Au foils, and Cu wire. Ionisation chamber (IC) measurements are performed both in-free-beam and in-phantom for determination of the neutron and gamma dose components. This toolkit has also been used at other BNCT facilities in Europe, the USA, Argentina and Japan.

  4. Optimal fractional delay-IIR filter design using cuckoo search algorithm.

    Science.gov (United States)

    Kumar, Manjeet; Rawat, Tarun Kumar

    2015-11-01

    This paper applied a novel global meta-heuristic optimization algorithm, cuckoo search algorithm (CSA) to determine optimal coefficients of a fractional delay-infinite impulse response (FD-IIR) filter and trying to meet the ideal frequency response characteristics. Since fractional delay-IIR filter design is a multi-modal optimization problem, it cannot be computed efficiently using conventional gradient based optimization techniques. A weighted least square (WLS) based fitness function is used to improve the performance to a great extent. FD-IIR filters of different orders have been designed using the CSA. The simulation results of the proposed CSA based approach have been compared to those of well accepted evolutionary algorithms like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The performance of the CSA based FD-IIR filter is superior to those obtained by GA and PSO. The simulation and statistical results affirm that the proposed approach using CSA outperforms GA and PSO, not only in the convergence rate but also in optimal performance of the designed FD-IIR filter (i.e., smaller magnitude error, smaller phase error, higher percentage improvement in magnitude and phase error, fast convergence rate). The absolute magnitude and phase error obtained for the designed 5th order FD-IIR filter are as low as 0.0037 and 0.0046, respectively. The percentage improvement in magnitude error for CSA based 5th order FD-IIR design with respect to GA and PSO are 80.93% and 74.83% respectively, and phase error are 76.04% and 71.25%, respectively.

  5. Optimal Filtering Algorithm for Stochastic 2-D FMM Ⅱ with Multiplicative Noise

    Institute of Scientific and Technical Information of China (English)

    CHU Dongsheng; LIANG Meng; SHI Xin; ZHANG Ling

    2004-01-01

    A stochastic two-dimensional Fornasini-Marchesini's Model Ⅱ (2-D FMM Ⅱ) with multiplicative noise is given,and a filtering algorithm for this model, which is optimal in the sense of linear minimum-variance, is developed. The stochastic 2-D FMM Ⅱ with multiplicative noise can be reduced to a 1-D model, and the proposed optimal filtering algorithm for the stochastic 2-D FMM Ⅱ with multiplicative noise is obtained by using the state estimation theory of 1-D systems. An example is given to illustrate the validity of this algorithm.

  6. Optimizing the optical field distribution of solid immersion lens system by a continuous phase filter

    Institute of Scientific and Technical Information of China (English)

    Xuehua Ye; Yaoju Zhang; Junfeng Chen

    2007-01-01

    In solid immersion lens (SIL) microscopy systems with high numerical aperture (NA), there always exists the aberration produced by Fresnel effects at the interface between SIL and the sample. This aberration may cause the degradation of the image of sample. We design a continuous phase filter and optimize the optical field distribution of SIL system. The numerical results show that when the continuous phase filter is used, the field distribution of SIL system can be optimized, and the focal depth and intensity of transmitted light can be increased. At the same time, the intensity of side-lobe and the resolution are kept almost unchanged.

  7. Optimizing Cost of Continuous Overlapping Queries over Data Streams by Filter Adaption

    KAUST Repository

    Xie, Qing

    2016-01-12

    The problem we aim to address is the optimization of cost management for executing multiple continuous queries on data streams, where each query is defined by several filters, each of which monitors certain status of the data stream. Specially the filter can be shared by different queries and expensive to evaluate. The conventional objective for such a problem is to minimize the overall execution cost to solve all queries, by planning the order of filter evaluation in shared strategy. However, in streaming scenario, the characteristics of data items may change in process, which can bring some uncertainty to the outcome of individual filter evaluation, and affect the plan of query execution as well as the overall execution cost. In our work, considering the influence of the uncertain variation of data characteristics, we propose a framework to deal with the dynamic adjustment of filter ordering for query execution on data stream, and focus on the issues of cost management. By incrementally monitoring and analyzing the results of filter evaluation, our proposed approach can be effectively adaptive to the varied stream behavior and adjust the optimal ordering of filter evaluation, so as to optimize the execution cost. In order to achieve satisfactory performance and efficiency, we also discuss the trade-off between the adaptivity of our framework and the overhead incurred by filter adaption. The experimental results on synthetic and two real data sets (traffic and multimedia) show that our framework can effectively reduce and balance the overall query execution cost and keep high adaptivity in streaming scenario.

  8. Adaptive Conflict-Free Optimization of Rule Sets for Network Security Packet Filtering Devices

    Directory of Open Access Journals (Sweden)

    Andrea Baiocchi

    2015-01-01

    Full Text Available Packet filtering and processing rules management in firewalls and security gateways has become commonplace in increasingly complex networks. On one side there is a need to maintain the logic of high level policies, which requires administrators to implement and update a large amount of filtering rules while keeping them conflict-free, that is, avoiding security inconsistencies. On the other side, traffic adaptive optimization of large rule lists is useful for general purpose computers used as filtering devices, without specific designed hardware, to face growing link speeds and to harden filtering devices against DoS and DDoS attacks. Our work joins the two issues in an innovative way and defines a traffic adaptive algorithm to find conflict-free optimized rule sets, by relying on information gathered with traffic logs. The proposed approach suits current technology architectures and exploits available features, like traffic log databases, to minimize the impact of ACO development on the packet filtering devices. We demonstrate the benefit entailed by the proposed algorithm through measurements on a test bed made up of real-life, commercial packet filtering devices.

  9. A training framework for stack and Boolean filtering-fast optimal design procedures and robustness case study.

    Science.gov (United States)

    Tabus, I; Petrescu, D; Gabbouj, M

    1996-01-01

    A training framework is developed in this paper to design optimal nonlinear filters for various signal and image processing tasks. The targeted families of nonlinear filters are the Boolean filters and stack filters. The main merit of this framework at the implementation level is perhaps the absence of constraining models, making it nearly universal in terms of application areas. We develop fast procedures to design optimal or close to optimal filters, based on some representative training set. Furthermore, the training framework shows explicitly the essential part of the initial specification and how it affects the resulting optimal solution. Symmetry constraints are imposed on the data and, consequently, on the resulting optimal solutions for improved performance and ease of implementation. The case study is dedicated to natural images. The properties of optimal Boolean and stack filters, when the desired signal in the training set is the image of a natural scene, are analyzed. Specifically, the effect of changing the desired signal (using various natural images) and the characteristics of the noise (the probability distribution function, the mean, and the variance) is analyzed. Elaborate experimental conditions were selected to investigate the robustness of the optimal solutions using a sensitivity measure computed on data sets. A remarkably low sensitivity and, consequently, a good generalization power of Boolean and stack filters are revealed. Boolean-based filters are thus shown to be not only suitable for image restoration but also robust, making it possible to build libraries of "optimal" filters, which are suitable for a set of applications.

  10. Swarm Intelligence for Optimizing Hybridized Smoothing Filter in Image Edge Enhancement

    Science.gov (United States)

    Rao, B. Tirumala; Dehuri, S.; Dileep, M.; Vindhya, A.

    In this modern era, image transmission and processing plays a major role. It would be impossible to retrieve information from satellite and medical images without the help of image processing techniques. Edge enhancement is an image processing step that enhances the edge contrast of an image or video in an attempt to improve its acutance. Edges are the representations of the discontinuities of image intensity functions. For processing these discontinuities in an image, a good edge enhancement technique is essential. The proposed work uses a new idea for edge enhancement using hybridized smoothening filters and we introduce a promising technique of obtaining best hybrid filter using swarm algorithms (Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)) to search for an optimal sequence of filters from among a set of rather simple, representative image processing filters. This paper deals with the analysis of the swarm intelligence techniques through the combination of hybrid filters generated by these algorithms for image edge enhancement.

  11. Performance of swarm based optimization techniques for designing digital FIR filter: A comparative study

    Directory of Open Access Journals (Sweden)

    I. Sharma

    2016-09-01

    Full Text Available In this paper, a linear phase FIR filter is designed through recently proposed nature inspired optimization algorithm known as Cuckoo search (CS. A comparative study of Cuckoo search (CS, particle swarm optimization (PSO and artificial bee colony (ABC nature inspired optimization methods in the field of linear phase FIR filter design is also presented. For this purpose, an improved L1 weighted error function is formulated in frequency domain, and minimized through CS, PSO and ABC respectively. The error or objective function has a controlling parameter wt which controls the amount of ripple in the desired band of frequency. The performance of FIR filter is examined through three key parameters; Maximum Pass Band Ripple (MPR, Maximum Stopband Ripple (MSR and Stopband Attenuation (As. Comparative study and the simulation results reveal that the designed filter with CS gives better performance in terms of Maximum Stopband Ripple (MSR, and Stopband Attenuation (As for low order filter design, and for higher order it also gives better performance in term of Maximum Passband Ripple (MPR. Superiority of the proposed technique is also shown through comparison with other recently proposed methods.

  12. Frequency invariant beamforming via optimal array pattern synthesis and FIR filters design

    Institute of Scientific and Technical Information of China (English)

    YAN Shefeng; MA Yuanliang

    2005-01-01

    An approach to designing time domain broadband frequency invariant beamformer via optimal array pattern synthesis and optimal FIR filters design is proposed. First, the working frequency band is decomposed into a number of narrow band frequency bins. The array weights at each frequency bin are designed via optimal array pattern synthesis methods to insure that the synthesized pattern approximates the desired one within the mainlobe area.Then, a bank of FIR filters corresponding to the input channels are designed to provide the frequency responses that approximate the array weights in the working frequency band for each sensor. Finally, each sensor feeds a FIR filter and the filter outputs are summed to produce the beam output time series. Both array pattern synthesis and FIR filters design problems are formulated as the second-order cone programming (SOCP), which can be easily solved using well-developed interior-point methods. Results of computer simulations and lake-experiment for a twelve-element semicircular array demonstrate satisfactory performance of the proposed approach.

  13. Non-dominated sorting genetic algorithm in optimizing ninth order multiple feedback Chebyshev low pass filter

    Science.gov (United States)

    Lim, Wei Jer; Neoh, Siew Chin; Norizan, Mohd Natashah; Mohamad, Ili Salwani

    2015-05-01

    Optimization for complex circuit design often requires large amount of manpower and computational resources. In order to optimize circuit performance, it is critical not only for circuit designers to adjust the component value but also to fulfill objectives such as gain, cutoff frequency, ripple and etc. This paper proposes Non-dominated Sorting Genetic Algorithm II (NSGA-II) to optimize a ninth order multiple feedback Chebyshev low pass filter. Multi-objective Pareto-Based optimization is involved whereby the research aims to obtain the best trade-off for minimizing the pass-band ripple, maximizing the output gain and achieving the targeted cut-off frequency. The developed NSGA-II algorithm is executed on the NGSPICE circuit simulator to assess the filter performance. Overall results show satisfactory in the achievements of the required design specifications.

  14. Carborane-containing metalloporphyrins for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Michiko; Joel, D.D.; Nawrocky, M.M.; Micca, P.L. [and others

    1996-12-31

    For BNCT of malignant brain tumors, it is crucial that there be relatively high boron concentrations in tumor compared with normal tissues within the neutron-irradiated treatment volume. Fairchild and Bond estimated that major advances in BNCT should be possible if ratios of {sup 10}B concentrations in tumor to those in normal tissue (e.g. brain and blood) were at least 5: 1. Given that the only current boron carrier being tested clinically in the U.S., p-boronophenyl-alanine[BPA], yields tumor blood and tumor brain ratios of about 3:1, the criteria for new boronated compounds should be to at least match these ratios and maintain tumor boron concentrations greater than 30 {mu}g B/g. Although previously tested boronated porphyrins have not only matched but surpassed these ratios, it was at a cost of greater toxicity. Chemical and hematological assays of blood analytes; showed marked thrombocytopenia, a decrease to about one-tenth the normal concentration of platelets circulating in the blood, in addition to abnormalities in concentrations of circulating enzymes, that indicated liver toxicity. The physical appearance and behavior of the affected mice were different from those of mice injected with solvent only. Although thrombocytopenia and other toxic effects had disappeared after a few days, previously tested porphyrins would not be safe to infuse into patients for BNCT of potentially hemorrhagic malignant tumors in the brain such as glioblastoma multiforme and metastatic melanoma. We synthesized a different boronated porphyrin, tetracarboranylphenylporphyrin, [TCP] and inserted nickel, copper, or manganese into its coordination center. Biological studies of NiTCP in mice and of CuTCP in rats show that these compounds elicit little or no toxicity when given at potentially therapeutic doses.

  15. Performance optimization of total momentum filtering double-resonance energy selective electron heat pump

    Science.gov (United States)

    Ding, Ze-Min; Chen, Lin-Gen; Ge, Yan-Lin; Sun, Feng-Rui

    2016-04-01

    A theoretical model for energy selective electron (ESE) heat pumps operating with two-dimensional electron reservoirs is established in this study. In this model, a double-resonance energy filter operating with a total momentum filtering mechanism is considered for the transmission of electrons. The optimal thermodynamic performance of the ESE heat pump devices is also investigated. Numerical calculations show that the heating load of the device with two resonances is larger, whereas the coefficient of performance (COP) is lower than the ESE heat pump when considering a single-resonance filter. The performance characteristics of the ESE heat pumps in the total momentum filtering condition are generally superior to those with a conventional filtering mechanism. In particular, the performance characteristics of the ESE heat pumps considering a conventional filtering mechanism are vastly different from those of a device with total momentum filtering, which is induced by extra electron momentum in addition to the horizontal direction. Parameters such as resonance width and energy spacing are found to be associated with the performance of the electron system.

  16. Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation

    Directory of Open Access Journals (Sweden)

    B. Shank

    2014-11-01

    Full Text Available We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs connected to quasiparticle (qp traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.

  17. Nonlinear Optimal Filter Technique For Analyzing Energy Depositions In TES Sensors Driven Into Saturation

    CERN Document Server

    Shank, B; Cabrera, B; Kreikebaum, J M; Moffatt, R; Redl, P; Young, B A; Brink, P L; Cherry, M; Tomada, A

    2014-01-01

    We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs) connected to quasiparticle (qp) traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search) Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.

  18. Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, K.

    1966-07-15

    For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used.

  19. Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function

    Institute of Scientific and Technical Information of China (English)

    Hong-Ling Ye; Wei-Wei Wang; Ning Chen; Yun-Kang Sui

    2016-01-01

    In this paper, a model of topology optimization with linear buckling constraints is established based on an independent and continuous mapping method to minimize the plate/shell structure weight. A composite exponential function (CEF) is selected as filtering functions for element weight, the element stiffness matrix and the element geomet-ric stiffness matrix, which recognize the design variables, and to implement the changing process of design variables from“discrete”to“continuous”and back to“discrete”. The buck-ling constraints are approximated as explicit formulations based on the Taylor expansion and the filtering function. The optimization model is transformed to dual programming and solved by the dual sequence quadratic programming algo-rithm. Finally, three numerical examples with power function and CEF as filter function are analyzed and discussed to demonstrate the feasibility and efficiency of the proposed method.

  20. A neural network-based optimal spatial filter design method for motor imagery classification.

    Directory of Open Access Journals (Sweden)

    Ayhan Yuksel

    Full Text Available In this study, a novel spatial filter design method is introduced. Spatial filtering is an important processing step for feature extraction in motor imagery-based brain-computer interfaces. This paper introduces a new motor imagery signal classification method combined with spatial filter optimization. We simultaneously train the spatial filter and the classifier using a neural network approach. The proposed spatial filter network (SFN is composed of two layers: a spatial filtering layer and a classifier layer. These two layers are linked to each other with non-linear mapping functions. The proposed method addresses two shortcomings of the common spatial patterns (CSP algorithm. First, CSP aims to maximize the between-classes variance while ignoring the minimization of within-classes variances. Consequently, the features obtained using the CSP method may have large within-classes variances. Second, the maximizing optimization function of CSP increases the classification accuracy indirectly because an independent classifier is used after the CSP method. With SFN, we aimed to maximize the between-classes variance while minimizing within-classes variances and simultaneously optimizing the spatial filter and the classifier. To classify motor imagery EEG signals, we modified the well-known feed-forward structure and derived forward and backward equations that correspond to the proposed structure. We tested our algorithm on simple toy data. Then, we compared the SFN with conventional CSP and its multi-class version, called one-versus-rest CSP, on two data sets from BCI competition III. The evaluation results demonstrate that SFN is a good alternative for classifying motor imagery EEG signals with increased classification accuracy.

  1. A Temperature-to-Digital Converter Based on an Optimized Electrothermal Filter

    NARCIS (Netherlands)

    Kashmiri, S.M.; Xia, S.; Makinwa, K.A.A.

    2009-01-01

    This paper describes the design of a CMOS temperature-to-digital converter (TDC). It operates by measuring the temperature-dependent phase shift of an electrothermal filter (ETF). Compared to previous work, this TDC employs an ETF whose layout has been optimized to minimize the thermal phase spread

  2. Investigating a cyclotron HM-30 based neutron source for BNCT of deep-seated tumors by using shifting method

    Science.gov (United States)

    Suharyana; Riyatun; Octaviana, E. F.

    2016-11-01

    We have successfully proposed a simulation of a neutron beam-shaping assembly using MCNPX Code. This simulation study deals with designing a compact, optimized, and geometrically simple beam shaping assembly for a neutron source based on a proton cyclotron for BNCT purpose. Shifting method was applied in order to lower the fast neutron energy to the epithermal energy range by choosing appropriate materials. Based on a set of MCNPX simulations, it has been found that the best materials for beam shaping assembly are 3 cm Ni layered with 7 cm Pb as the reflector and 13 cm AlF3 the moderator. Our proposed beam shaping assembly configuration satisfies 2 of 5 of the IAEA criteria, namely the epithermal neutron flux 1.25 × 109 n.cm-2 s-1 and the gamma dose over the epithermal neutron flux is 0.18×10 -13 Gy.cm 2 n -1. However, the ratio of the fast neutron dose rate over neutron epithermal flux is still too high. We recommended that the shifting method must be accompanied by the filter method to reduce the fast neutron flux.

  3. American brain tumor patients treated with BNCT in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-11-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.

  4. An accelerator-based epithermal photoneutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Mitchell, H.E.; Harker, Y.D.; Yoon, W.Y. [and others

    1995-11-01

    Therapeutically-useful epithermal-neutron beams for BNCT are currently generated by nuclear reactors. Various accelerator-based neutron sources for BNCT have been proposed and some low intensity prototypes of such sources, generally featuring the use of proton beams and beryllium or lithium targets have been constructed. This paper describes an alternate approach to the realization of a clinically useful accelerator-based source of epithermal neutrons for BNCT that reconciles the often conflicting objectives of target cooling, neutron beam intensity, and neutron beam spectral purity via a two stage photoneutron production process.

  5. Linear variable filter optimization for emergency response chemical detection and discrimination

    Science.gov (United States)

    Shen, Sylvia S.; Lewis, Paul E.

    2010-08-01

    Linear variable filter design and fabrication for LWIR is now commercially available for use in the development of remote sensing systems. The linear variable filter is attached directly to the cold shield of the focal plane array. The resulting compact spectrometer assemblies are completely contained in the Dewar system. This approach eliminates many of the wavelength calibration problems associated with current prism and grating systems and also facilitates the cost effective design and fabrication of aerial sensing systems for specific applications. This paper describes a study that was conducted with the following three objectives: 1) Determine if a multi-channel linear-variable-filter-based line scanner system can be used to discriminate a set of chemical vapors that represent a high probability of occurrence during a typical emergency response chemical incident; 2) Determine which multi-channel linear variable filter design is optimal; and 3) Determine the acceptable instrument noise equivalent spectral radiance for this application. A companion paper describes a separate study that was conducted to determine the concentration levels at which detection and discrimination can be achieved for the various chemicals based on the optimal filter design under various degrees of imperfect atmospheric correction.

  6. Comparison of Kalman filter and optimal smoother estimates of spacecraft attitude

    Science.gov (United States)

    Sedlak, J.

    1994-01-01

    Given a valid system model and adequate observability, a Kalman filter will converge toward the true system state with error statistics given by the estimated error covariance matrix. The errors generally do not continue to decrease. Rather, a balance is reached between the gain of information from new measurements and the loss of information during propagation. The errors can be further reduced, however, by a second pass through the data with an optimal smoother. This algorithm obtains the optimally weighted average of forward and backward propagating Kalman filters. It roughly halves the error covariance by including future as well as past measurements in each estimate. This paper investigates whether such benefits actually accrue in the application of an optimal smoother to spacecraft attitude determination. Tests are performed both with actual spacecraft data from the Extreme Ultraviolet Explorer (EUVE) and with simulated data for which the true state vector and noise statistics are exactly known.

  7. Optimization of Filter by using Support Vector Regression Machine with Cuckoo Search Algorithm

    Directory of Open Access Journals (Sweden)

    M. İlarslan

    2014-09-01

    Full Text Available Herein, a new methodology using a 3D Electromagnetic (EM simulator-based Support Vector Regression Machine (SVRM models of base elements is presented for band-pass filter (BPF design. SVRM models of elements, which are as fast as analytical equations and as accurate as a 3D EM simulator, are employed in a simple and efficient Cuckoo Search Algorithm (CSA to optimize an ultra-wideband (UWB microstrip BPF. CSA performance is verified by comparing it with other Meta-Heuristics such as Genetic Algorithm (GA and Particle Swarm Optimization (PSO. As an example of the proposed design methodology, an UWB BPF that operates between the frequencies of 3.1 GHz and 10.6 GHz is designed, fabricated and measured. The simulation and measurement results indicate in conclusion the superior performance of this optimization methodology in terms of improved filter response characteristics like return loss, insertion loss, harmonic suppression and group delay.

  8. Optimization of spectrally selective Si/SiO2 based filters for thermophotovoltaic devices

    Science.gov (United States)

    Khosroshahi, Farhad Kazemi; Ertürk, Hakan; Pınar Mengüç, M.

    2017-08-01

    Design of a spectrally selective filter based on one-dimensional Si/SiO2 layers is considered for improved performance of thermo-photovoltaic devices. Spectrally selective filters transmit only the convertible radiation from the emitter as non-convertible radiation leads to a reduction in cell efficiency due to heating. The presented Si/SiO2 based filter concept reflects the major part of the undesired range back to the emitter to minimize energy required for the process and it is adaptable to different types of cells and emitters with different temperatures since its cut-off wavelength can be tuned. While this study mainly focuses on InGaSb based thermo-photovoltaic cell, Si, GaSb, and Ga0.78In0.22As0.19Sb0.81 based cells are also examined. Transmittance of the structure is predicted by rigorous coupled wave approach. Genetic algorithm, which is a global optimization method, is used to find the best possible filter structure by considering the overall efficiency as an objective function that is maximized. The simulations show that significant enhancement in the overall system and device efficiency is possible by using such filters with TPV devices. The methodology described in this paper allows for an improved filter design procedure for selected applications.

  9. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems

    Directory of Open Access Journals (Sweden)

    Shaoxing Hu

    2015-11-01

    Full Text Available Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted “useful” data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.

  10. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems.

    Science.gov (United States)

    Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu

    2015-11-11

    Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.

  11. Design Optimization of Vena Cava Filters: An application to dual filtration devices

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M A; Wang, S L; Diachin, D P

    2009-12-03

    Pulmonary embolism (PE) is a significant medical problem that results in over 300,000 fatalities per year. A common preventative treatment for PE is the insertion of a metallic filter into the inferior vena cava that traps thrombi before they reach the lungs. The goal of this work is to use methods of mathematical modeling and design optimization to determine the configuration of trapped thrombi that minimizes the hemodynamic disruption. The resulting configuration has implications for constructing an optimally designed vena cava filter. Computational fluid dynamics is coupled with a nonlinear optimization algorithm to determine the optimal configuration of trapped model thrombus in the inferior vena cava. The location and shape of the thrombus are parameterized, and an objective function, based on wall shear stresses, determines the worthiness of a given configuration. The methods are fully automated and demonstrate the capabilities of a design optimization framework that is broadly applicable. Changes to thrombus location and shape alter the velocity contours and wall shear stress profiles significantly. For vena cava filters that trap two thrombi simultaneously, the undesirable flow dynamics past one thrombus can be mitigated by leveraging the flow past the other thrombus. Streamlining the shape of thrombus trapped along the cava wall reduces the disruption to the flow, but increases the area exposed to abnormal wall shear stress. Computer-based design optimization is a useful tool for developing vena cava filters. Characterizing and parameterizing the design requirements and constraints is essential for constructing devices that address clinical complications. In addition, formulating a well-defined objective function that quantifies clinical risks and benefits is needed for designing devices that are clinically viable.

  12. Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications

    DEFF Research Database (Denmark)

    Beres, Remus Narcis; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    design procedures, the proposed method simplifies the iterative design of the overall filter while ensuring the minimum resonance peak with a lower damping capacitor and a lower rated resistor. It is shown that there is only one optimal value of the damping resistor or quality factor to achieve a minimum......Harmonic stability problems caused by the resonance of high-order filters in power electronic systems are ever increasing. The use of passive damping does provide a robust solution to address these issues, but at the price of reduced efficiency due to the presence of additional passive components...

  13. Joint state and parameter estimation in particle filtering and stochastic optimization

    Institute of Scientific and Technical Information of China (English)

    Xiaojun YANG; Keyi XING; Kunlin SHI; Quan PAN

    2008-01-01

    In this paper,an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown static parameters based on combination of particle filtering and Simultaneous Perturbation Stochastic Approximation(SPSA)technique.The estimations of parameters are obtained by maximum-likelihood estimation and sampling within particle filtering framework,and the SPSA is used for stochastic optimization and to approximate the gradient of the cost function.The proposed algorithm achieves combined estimation of dynamic state and static parameters of nonlinear systerns.Simulation result demonstrates the feasibility and efficiency of the proposed algorithm.

  14. A Filter-Based Uniform Algorithm for Optimizing Top-k Query in Distributed Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhibin; YAO Lan; YANG Xiaochun; LI Binyang; YU Ge

    2006-01-01

    In this paper we propose a Filter-based Uniform Algorithm (FbUA) for optimizing top-k query in distributed networks, which has been a topic of much recent interest.The basic idea of FbUA is to set a filter at each node to prevent it from sending out the data with little chance to contribute to the top-k result.FbUA can gain exact answers to top-k query through two phrases of round-trip communications between query station and participant nodes.The experiment results show that FbUA reduces network bandwidth consumption dramatically.

  15. A New Mutated Quantum-Behaved Particle Swarm Optimizer for Digital IIR Filter Design

    Directory of Open Access Journals (Sweden)

    Wenbo Xu

    2009-01-01

    Full Text Available Adaptive infinite impulse response (IIR filters have shown their worth in a wide range of practical applications. Because the error surface of IIR filters is multimodal in most cases, global optimization techniques are required for avoiding local minima. In this paper, we employ a global optimization algorithm, Quantum-behaved particle swarm optimization (QPSO that was proposed by us previously, and its mutated version in the design of digital IIR filter. The mechanism in QPSO is based on the quantum behaviour of particles in a potential well and particle swarm optimization (PSO algorithm. QPSO is characterized by fast convergence, good search ability, and easy implementation. The mutated QPSO (MuQPSO is proposed in this paper by using a random vector in QPSO to increase the randomness and to enhance the global search ability. Experimental results on three examples show that QPSO and MuQPSO are superior to genetic algorithm (GA, differential evolution (DE algorithm, and PSO algorithm in quality, convergence speed, and robustness.

  16. Interlaced optimal-REQUEST and unscented Kalman filtering for attitude determination

    Institute of Scientific and Technical Information of China (English)

    Quan Wei; Xu Liang; Zhang Huijuan; Fang Jiancheng

    2013-01-01

    Aimed at low accuracy of attitude determination because of using low-cost components which may result in non-linearity in integrated attitude determination systems,a novel attitude determination algorithm using vector observations and gyro measurements is presented.The various features of the unscented Kalman filter (UKF) and optimal-REQUEST (quaternion estimator) algorithms are introduced for attitude determination.An interlaced filtering method is presented for the attitude determination of nano-spacecraft by setting the quaternion as the attitude representation,using the UKF and optimal-REQUEST to estimate the gyro drifts and the quaternion,respectively.The optimal-REQUEST and UKF are not isolated from each other.When the optimal-REQUEST algorithm estimates the attitude quaternion,the gyro drifts are estimated by the UKF algorithm synchronously by using the estimated attitude quaternion.Furthermore,the speed of attitude determination is improved by setting the state dimension to three.Experimental results show that the presented method has higher performance in attitude determination compared to the UKF algorithm and the traditional interlaced filtering method and can estimate the gyro drifts quickly.

  17. Design of FIR Filters with Discrete Coefficients using Ant Colony Optimization

    Science.gov (United States)

    Tsutsumi, Shuntaro; Suyama, Kenji

    In this paper, we propose a new design method for linear phase FIR (Finite Impulse Response) filters with discrete coefficients. In a hardware implementation, filter coefficients must be represented as discrete values. The design problem of digital filters with discrete coefficients is formulated as the integer programming problem. Then, an enormous amount of computational time is required to solve the problem in a strict solver. Recently, ACO (Ant Colony Optimization) which is one heuristic approach, is used widely for solving combinational problem like the traveling salesman problem. In our method, we formulate the design problem as the 0-1 integer programming problem and solve it by using the ACO. Several design examples are shown to present effectiveness of the proposed method.

  18. Improved Relative-Entropy Method for Eccentricity Filtering in Roundness Measurement Based on Information Optimization

    Directory of Open Access Journals (Sweden)

    Xintao Xia

    2013-05-01

    Full Text Available In this study, we propose the improved relative-entropy of the ideal circle function to the measured information of the radius error of the workpiece surface to make an eccentricity filtering in roundness measurement. Along with a correct assessment for the parameters of the eccentricity filtering, the extracted information from the measured information is obtained by the minimization of the improved relative-entropy. The case studies show that the information optimization is characterized by decreasing the improved relative-entropy, the extracted information almost coincides with the real information, the improved relative-entropy has a strong immunity to the stochastic disturbance of the rough work piece-surface and the increase of the minimum of the improved relative-entropy counteracts the effect of the stochastic disturbance on the assessment for parameters in eccentricity filtering.

  19. Instantaneous Power Theory with Fourier and Optimal Predictive Controller Design for Shunt Active Power Filter

    Directory of Open Access Journals (Sweden)

    Suksan Tiyarachakun

    2014-01-01

    Full Text Available This paper presents a novel harmonic identification algorithm of shunt active power filter for balanced and unbalanced three-phase systems based on the instantaneous power theory called instantaneous power theory with Fourier. Moreover, the optimal design of predictive current controller using an artificial intelligence technique called adaptive Tabu search is also proposed in the paper. These enhancements of the identification and current control parts are the aim of the good performance for shunt active power filter. The good results for harmonic mitigation using the proposed ideas in the paper are confirmed by the intensive simulation using SPS in SIMULINK. The simulation results show that the enhanced shunt active power filter can provide the minimum %THD (Total Harmonic Distortion of source currents and unity power factor after compensation. In addition, the %THD also follows the IEEE Std.519-1992.

  20. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters.

    Science.gov (United States)

    Vorobjev, Ivan A; Buchholz, Kathrin; Prabhat, Prashant; Ketman, Kenneth; Egan, Elizabeth S; Marti, Matthias; Duraisingh, Manoj T; Barteneva, Natasha S

    2012-09-05

    Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene

  1. Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters

    Directory of Open Access Journals (Sweden)

    Vorobjev Ivan A

    2012-09-01

    Full Text Available Abstract Background Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP labelling is complicated by autofluorescence (AF of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Methods Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. Results A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP, AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Discussion Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis

  2. Design and Realization of Software for Guard Against DDoS Based on Self-Similar and Optimization Filter

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper proposes a distributed denial-of-service attack detection method based on self similar and wavelet analysis. This method adopts an optimized transmission control protocol cookie technology for filter optimization in order to accurately detect and efficiently filter the traffic of distributed denial-of-service attack. This paper presents the design of our software, and describes all important algorithms of detection and filtering. Experimental results showed that our method has only a low delay to detect abnormal traffic of distributed denial-of-service attacks, and with a high percentage of filtering.

  3. Quality classification of wooden surfaces using Gabor filters and genetic feature optimization

    Science.gov (United States)

    Poelzleitner, Wolfgang; Schwingskakl, Gert

    1999-08-01

    We apply a model of texture segmentation using multiple spatially and spectrally localized filters, known as Gabor filters, to the analysis of texture and effect regions found on wooden boards. Specifically we present a method to find an optimal set of parameters for a given 2D object detection method. The method uses banks of Gabor filters to limit the rang of spatial frequencies, where mutually distinct textures differ significantly in their dominant characterizing frequencies. By encoding images into multiple narrow spatial frequency and orientation channels a local classification of texture regions can be achieved. Unlike other methods applying Gabor filters, we do not use a full Gabor transform, but use feature selection techniques to maximize discrimination. The selection method uses a genetic algorithm to optimize various parameters of the system including Gabor weights, and the parameters of morphological pre-processing. We demonstrate the applicability of the method to the task of classifying wooden textures, and report experimental results using the proposed method.

  4. Retinal Image Denoising via Bilateral Filter with a Spatial Kernel of Optimally Oriented Line Spread Function

    Science.gov (United States)

    He, Yunlong; Zhao, Yanna; Ren, Yanju; Gee, James

    2017-01-01

    Filtering belongs to the most fundamental operations of retinal image processing and for which the value of the filtered image at a given location is a function of the values in a local window centered at this location. However, preserving thin retinal vessels during the filtering process is challenging due to vessels' small area and weak contrast compared to background, caused by the limited resolution of imaging and less blood flow in the vessel. In this paper, we present a novel retinal image denoising approach which is able to preserve the details of retinal vessels while effectively eliminating image noise. Specifically, our approach is carried out by determining an optimal spatial kernel for the bilateral filter, which is represented by a line spread function with an orientation and scale adjusted adaptively to the local vessel structure. Moreover, this approach can also be served as a preprocessing tool for improving the accuracy of the vessel detection technique. Experimental results show the superiority of our approach over state-of-the-art image denoising techniques such as the bilateral filter. PMID:28261320

  5. INEL BNCT research program: Annual report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented.

  6. Characterisation of the TAPIRO BNCT thermal facility.

    Science.gov (United States)

    Rosi, G; Gambarini, G; Colli, V; Gay, S; Scolari, L; Fiorani, O; Perrone, A; Nava, E; Fasolo, F; Visca, L; Zanini, A

    2004-01-01

    Dosimetry and spectrometry measurements have been carried out in the thermal column of the research fast reactor RSV-TAPIRO (ENEA-Casaccia, Rome) in order to investigate its suitability for irradiation of cells or mice, with a view to research in the interests of boron neutron capture therapy (BNCT). The thermal column consists of a graphite moderator (40 cm thick) containing a lead shield (13 cm thick) in order to shield reactor background. The irradiation volume, inside this structure, has cubic shape (18 x 18 x 18 cm3). Besides measurements of fluence and dose rates in air or in phantom performed with thermoluminescence dosemeters (TLDs) and using the activation technique, dose and fluence profiles have been generated using a method based on gel dosemeters analysed with optical imaging. To check the consistency of the results, spectrometry measurements in the same irradiation volume have been performed by means of bubble detectors.

  7. An improvement direction for filter selection techniques using information theory measures and quadratic optimization

    Directory of Open Access Journals (Sweden)

    Waad Bouaguel

    2012-08-01

    Full Text Available Filter selection techniques are known for their simplicity and efficiency. However this kind of methods doesn’t take into consideration the features inter-redundancy. Consequently the un-removed redundant features remain in the final classification model, giving lower generalization performance. In this paper we propose to use a mathematical optimization method that reduces inter-features redundancy and maximize relevance between each feature and the target variable.

  8. Flat-top Drop Filter based on a Single Topology Optimized Photonic Crystal Cavity

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Guan, Xiaowei

    2015-01-01

    Outperforming conventional design concepts, a flat-top drop filter has been designed byapplying 3D topology optimization to a single waveguide-coupled L3 photonic crystal cavity.Measurements on the design fabricated in silicon-on-insulator material reveal that the pass-band ofthe drop channel...... is flat within 0.44 dB over a wavelength range of 9.7 nm with an insertion losslower than 0.85 dB....

  9. Multi-Material and Thickness Optimization Utilizing Casting Filters for Laminated Composite Structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2013-01-01

    This extended abstract presents a new parameterization for performing discrete material and thickness optimization of laminated composite structures. The parameterization is based on the work by Sørensen and Lund 2013, where we present a reformulation of the original parameterization....... The reformulation eliminates the need for having explicit constraint for ensuring that intermediate void does not appear in between layers of the laminate. This is achieved by utilizing a filtering technique known as a casting constraint from traditional topology optimization with isotropic materials....

  10. Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy

    Science.gov (United States)

    Wang, Ke; Qiu, Ping

    2015-05-01

    Tunable optical solitons generated by soliton self-frequency shift (SSFS) have become valuable tools for multiphoton microscopy (MPM). Recent progress in MPM using 1700 nm excitation enabled visualizing subcortical structures in mouse brain in vivo for the first time. Such an excitation source can be readily obtained by SSFS in a large effective-mode-area photonic crystal rod with a 1550-nm fiber femtosecond laser. A longpass filter was typically used to isolate the soliton from the residual in order to avoid excessive energy deposit on the sample, which ultimately leads to optical damage. However, since the soliton was not cleanly separated from the residual, the criterion for choosing the optimal filtering wavelength is lacking. Here, we propose maximizing the ratio between the multiphoton signal and the n'th power of the excitation pulse energy as a criterion for optimal spectral filtering in SSFS when the soliton shows dramatic overlapping with the residual. This optimization is based on the most efficient signal generation and entirely depends on physical quantities that can be easily measured experimentally. Its application to MPM may reduce tissue damage, while maintaining high signal levels for efficient deep penetration.

  11. Creation of an iOS and Android Mobile Application for Inferior Vena Cava (IVC) Filters: A Powerful Tool to Optimize Care of Patients with IVC Filters.

    Science.gov (United States)

    Deso, Steven E; Idakoji, Ibrahim A; Muelly, Michael C; Kuo, William T

    2016-06-01

    Owing to a myriad of inferior vena cava (IVC) filter types and their potential complications, rapid and correct identification may be challenging when encountered on routine imaging. The authors aimed to develop an interactive mobile application that allows recognition of all IVC filters and related complications, to optimize the care of patients with indwelling IVC filters. The FDA Premarket Notification Database was queried from 1980 to 2014 to identify all IVC filter types in the United States. An electronic search was then performed on MEDLINE and the FDA MAUDE database to identify all reported complications associated with each device. High-resolution photos were taken of each filter type and corresponding computed tomographic and fluoroscopic images were obtained from an institutional review board-approved IVC filter registry. A wireframe and storyboard were created, and software was developed using HTML5/CSS compliant code. The software was deployed using PhoneGap (Adobe, San Jose, CA), and the prototype was tested and refined. Twenty-three IVC filter types were identified for inclusion. Safety data from FDA MAUDE and 72 relevant peer-reviewed studies were acquired, and complication rates for each filter type were highlighted in the application. Digital photos, fluoroscopic images, and CT DICOM files were seamlessly incorporated. All data were succinctly organized electronically, and the software was successfully deployed into Android (Google, Mountain View, CA) and iOS (Apple, Cupertino, CA) platforms. A powerful electronic mobile application was successfully created to allow rapid identification of all IVC filter types and related complications. This application may be used to optimize the care of patients with IVC filters.

  12. Optimization of interference filters with genetic algorithms applied to silver-based heat mirrors.

    Science.gov (United States)

    Eisenhammer, T; Lazarov, M; Leutbecher, M; Schöffel, U; Sizmann, R

    1993-11-01

    In the optimization of multilayer stacks for various optical filtering purposes not only the thicknesses of the thin films are to be optimized, but also the sequence of materials. Materials with very different optical properties, such as metals and dielectrics, may be combined. A genetic algorithm is introduced to search for the optimal sequence of materials along with their optical thicknesses. This procedure is applied to a heat mirror in combination with a blackbody absorber for thermal solar energy applications at elevated temperatures (250 °C). The heat mirror is based on silver films with antireflective dielectric layers. Seven dielectrics have been considered. For a five-layer stack the sequence (TiO(2)/Ag/TiO(2)/Ag/Y(2)O(3)) is found to be optimal.

  13. Optimal design of FIR high pass filter based on L1 error approximation using real coded genetic algorithm

    Directory of Open Access Journals (Sweden)

    Apoorva Aggarwal

    2015-12-01

    Full Text Available In this paper, an optimal design of linear phase digital finite impulse response (FIR highpass (HP filter using the L1-norm based real-coded genetic algorithm (RCGA is investigated. A novel fitness function based on L1 norm is adopted to enhance the design accuracy. Optimized filter coefficients are obtained by defining the filter objective function in L1 sense using RCGA. Simulation analysis unveils that the performance of the RCGA adopting this fitness function is better in terms of signal attenuation ability of the filter, flatter passband and the convergence rate. Observations are made on the percentage improvement of this algorithm over the gradient-based L1 optimization approach on various factors by a large amount. It is concluded that RCGA leads to the best solution under specified parameters for the FIR filter design on account of slight unnoticeable higher transition width.

  14. Optimization of a filter-lysis protocol to purify rat testicular homogenates for automated spermatid counting.

    Science.gov (United States)

    Pacheco, Sara E; Anderson, Linnea M; Boekelheide, Kim

    2012-01-01

    Quantifying testicular homogenization-resistant spermatid heads (HRSH) is a powerful indicator of spermatogenesis. These counts have traditionally been performed manually using a hemocytometer, but this method can be time consuming and biased. We aimed to develop a protocol to reduce debris for the application of automated counting, which would allow for efficient and unbiased quantification of rat HRSH. We developed a filter-lysis protocol that effectively removes debris from rat testicular homogenates. After filtering and lysing the homogenates, we found no statistical differences between manual (classic and filter-lysis) and automated (filter-lysis) counts using 1-way analysis of variance with Bonferroni's multiple comparison test. In addition, Pearson's correlation coefficients were calculated to compare the counting methods, and there was a strong correlation between the classic manual counts and the filter-lysis manual (r = 0.85, P = .002) and the filter-lysis automated (r = 0.89, P = .0005) counts. We also tested the utility of the automated method in a low-dose exposure model known to decrease HRSH. Adult Fischer 344 rats exposed to 0.33% 2,5-hexanedione in the drinking water for 12 weeks demonstrated decreased body (P = .02) and testes (P = .002) weights. In addition, there was a significant reduction in the number of HRSH per testis (P = .002) when compared to controls. A filterlysis protocol was optimized to purify rat testicular homogenates for automated HRSH counts. Automated counting systems yield unbiased data and can be applied to detect changes in the testis after low-dose toxicant exposure.

  15. Design of two-channel filter bank using nature inspired optimization based fractional derivative constraints.

    Science.gov (United States)

    Kuldeep, B; Singh, V K; Kumar, A; Singh, G K

    2015-01-01

    In this article, a novel approach for 2-channel linear phase quadrature mirror filter (QMF) bank design based on a hybrid of gradient based optimization and optimization of fractional derivative constraints is introduced. For the purpose of this work, recently proposed nature inspired optimization techniques such as cuckoo search (CS), modified cuckoo search (MCS) and wind driven optimization (WDO) are explored for the design of QMF bank. 2-Channel QMF is also designed with particle swarm optimization (PSO) and artificial bee colony (ABC) nature inspired optimization techniques. The design problem is formulated in frequency domain as sum of L2 norm of error in passband, stopband and transition band at quadrature frequency. The contribution of this work is the novel hybrid combination of gradient based optimization (Lagrange multiplier method) and nature inspired optimization (CS, MCS, WDO, PSO and ABC) and its usage for optimizing the design problem. Performance of the proposed method is evaluated by passband error (ϕp), stopband error (ϕs), transition band error (ϕt), peak reconstruction error (PRE), stopband attenuation (As) and computational time. The design examples illustrate the ingenuity of the proposed method. Results are also compared with the other existing algorithms, and it was found that the proposed method gives best result in terms of peak reconstruction error and transition band error while it is comparable in terms of passband and stopband error. Results show that the proposed method is successful for both lower and higher order 2-channel QMF bank design. A comparative study of various nature inspired optimization techniques is also presented, and the study singles out CS as a best QMF optimization technique. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Optimal Numerical Schemes for Time Accurate Compressible Large Eddy Simulations: Comparison of Artificial Dissipation and Filtering Schemes

    Science.gov (United States)

    2014-11-01

    for Time Accurate Compressible Large Eddy Simulations : Comparison of Artificial Dissipation and Filtering Schemes 5b. GRANT NUMBER 5c. PROGRAM...Optimal Numerical Schemes for Time Accurate Compressible Large Eddy Simulations : Comparison of Artificial Dissipation and Filtering Schemes 67th

  17. [Characteristic wavelength variable optimization of near-infrared spectroscopy based on Kalman filtering].

    Science.gov (United States)

    Wang, Li-Qi; Ge, Hui-Fang; Li, Gui-Bin; Yu, Dian-Yu; Hu, Li-Zhi; Jiang, Lian-Zhou

    2014-04-01

    Combining classical Kalman filter with NIR analysis technology, a new method of characteristic wavelength variable selection, namely Kalman filtering method, is presented. The principle of Kalman filter for selecting optimal wavelength variable was analyzed. The wavelength selection algorithm was designed and applied to NIR detection of soybean oil acid value. First, the PLS (partial leastsquares) models were established by using different absorption bands of oil. The 4 472-5 000 cm(-1) characteristic band of oil acid value, including 132 wavelengths, was selected preliminarily. Then the Kalman filter was used to select characteristic wavelengths further. The PLS calibration model was established using selected 22 characteristic wavelength variables, the determination coefficient R2 of prediction set and RMSEP (root mean squared error of prediction) are 0.970 8 and 0.125 4 respectively, equivalent to that of 132 wavelengths, however, the number of wavelength variables was reduced to 16.67%. This algorithm is deterministic iteration, without complex parameters setting and randomicity of variable selection, and its physical significance was well defined. The modeling using a few selected characteristic wavelength variables which affected modeling effect heavily, instead of total spectrum, can make the complexity of model decreased, meanwhile the robustness of model improved. The research offered important reference for developing special oil near infrared spectroscopy analysis instruments on next step.

  18. Organisation and management of the first clinical trial of BNCT in Europe (EORTC protocol 11961).EORTC BNCT study group.

    Science.gov (United States)

    Sauerwein, W; Moss, R; Rassow, J; Stecher-Rasmussen, F; Hideghéty, K; Wolbers, J G; Sack, H

    1999-06-01

    Boron Neutron Capture Therapy is based on the ability of the isotope 10B to capture thermal neutrons and to disintegrate instantaneously producing high LET particles. The only neutron beam available in Europe for such a treatment is based at the European High Flux Reactor HFR at Petten (The Netherlands). The European Commission, owners of the reactor, decided that the potential benefit of the facility should be opened to all European citizens and therefore insisted on a multinational approach to perform the first clinical trial in Europe on BNCT. This precondition had to be respected as well as the national laws and regulations. Together with the Dutch authorities actions were undertaken to overcome the obvious legal problems. Furthermore, the clinical trial at Petten takes place in a nuclear research reactor, which apart from being conducted in a non-hospital environment, is per se known to be dangerous. It was therefore of the utmost importance that special attention is given to safety, beyond normal rules, and to the training of staff. In itself, the trial is an unusual Phase I study, introducing a new drug with a new irradiation modality, with really an unknown dose-effect relationship. This trial must follow optimal procedures, which underscore the quality and qualified manner of performance.

  19. Computational dosimetry of a simulated combined standard X-Rays and BNCT treatment

    Energy Technology Data Exchange (ETDEWEB)

    Casal, M.R., E-mail: mcasal@cnea.gov.ar [Instituto de Oncologia ' Angel H. Roffo' , Universidad de Buenos Aires, Av. San Martin 5481, Bs.As. (Argentina)] [Comision Nacional de Energia Atomica, Av. General Paz 1499, San Martin, Buenos Aires (Argentina); Herrera, M.S., E-mail: mariettaherrera@gmail.com [Comision Nacional de Energia Atomica, Av. General Paz 1499, San Martin, Buenos Aires (Argentina)] [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) Av. Rivadavia 191, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad de General San Martin, 25 de Mayo and M. de Irigoyen, San Martin (Argentina); Gonzalez, S.J., E-mail: srgonzal@cnea.gov.ar [Comision Nacional de Energia Atomica, Av. General Paz 1499, San Martin, Buenos Aires (Argentina)] [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) Av. Rivadavia 191, Buenos Aires (Argentina)

    2011-12-15

    There has been increasing interest in combining Boron Neutron Capture Therapy (BNCT) with standard radiotherapy, either concomitantly or as a BNCT treatment of a recurrent tumor that was previously irradiated with a medical electron linear accelerator (LINAC). In this work we report the simulated dosimetry of treatments combining X-rays and BNCT

  20. An Image Filter Based on Shearlet Transformation and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2015-01-01

    Full Text Available Digital image is always polluted by noise and made data postprocessing difficult. To remove noise and preserve detail of image as much as possible, this paper proposed image filter algorithm which combined the merits of Shearlet transformation and particle swarm optimization (PSO algorithm. Firstly, we use classical Shearlet transform to decompose noised image into many subwavelets under multiscale and multiorientation. Secondly, we gave weighted factor to those subwavelets obtained. Then, using classical Shearlet inverse transform, we obtained a composite image which is composed of those weighted subwavelets. After that, we designed fast and rough evaluation method to evaluate noise level of the new image; by using this method as fitness, we adopted PSO to find the optimal weighted factor we added; after lots of iterations, by the optimal factors and Shearlet inverse transform, we got the best denoised image. Experimental results have shown that proposed algorithm eliminates noise effectively and yields good peak signal noise ratio (PSNR.

  1. Multi-Material and Thickness Optimization Utilizing Casting Filters for Laminated Composite Structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2013-01-01

    This extended abstract presents a new parameterization for performing discrete material and thickness optimization of laminated composite structures. The parameterization is based on the work by Sørensen and Lund 2013, where we present a reformulation of the original parameterization. The reformu......This extended abstract presents a new parameterization for performing discrete material and thickness optimization of laminated composite structures. The parameterization is based on the work by Sørensen and Lund 2013, where we present a reformulation of the original parameterization....... The reformulation eliminates the need for having explicit constraint for ensuring that intermediate void does not appear in between layers of the laminate. This is achieved by utilizing a filtering technique known as a casting constraint from traditional topology optimization with isotropic materials....

  2. Diagonal slice spectrum assisted optimal scale morphological filter for rolling element bearing fault diagnosis

    Science.gov (United States)

    Li, Yifan; Liang, Xihui; Zuo, Ming J.

    2017-02-01

    This paper presents a novel signal processing scheme, diagonal slice spectrum assisted optimal scale morphological filter (DSS-OSMF), for rolling element fault diagnosis. In this scheme, the concept of quadratic frequency coupling (QFC) is firstly defined and the ability of diagonal slice spectrum (DSS) in detection QFC is derived. The DSS-OSMF possesses the merits of depressing noise and detecting QFC. It can remove fault independent frequency components and give a clear representation of fault symptoms. A simulated vibration signal and experimental vibration signals collected from a bearing test rig are employed to evaluate the effectiveness of the proposed method. Results show that the proposed method has a superior performance in extracting fault features of defective rolling element bearing. In addition, comparisons are performed between a multi-scale morphological filter (MMF) and a DSS-OSMF. DSS-OSMF outperforms MMF in detection of an outer race fault and a rolling element fault of a rolling element bearing.

  3. Optimization of dichromatic filters based on photonic heterostructures of Si/MgF2

    Science.gov (United States)

    Guan, Huihuan; Han, Peide; Li, Yuping; Zhou, Hongwei; Zhang, Xue; Zhang, Ruizhen

    2012-05-01

    The current research work presents the theoretical results of demonstrating novel dichromatic filters, which consist of blue and yellow light. A one-dimensional photonic crystal or photonic heterostructure of Si/MgF2 is analyzed in detail by fully considering the effects of structural parameters using the transfer matrix method. The position and the number of defect modes are shown to have relationships with the repeat cycle counts of various photonic crystals. When the photonic heterostructures have the optimized structural parameters, defect modes can be obtained with high transmittances located in blue and yellow light. This photonic heterostructure is expected to be used in dichromatic filters with wide non-transmission range in a visible range.

  4. Thickness filters for gradient based multi-material and thickness optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    This paper presents a new gradient based method for performing discrete material and thickness optimization of laminated composite structures. The novelty in the new method lies in the application of so-called casting constraints, or thickness filters in this context, to control the thickness...... govern the presence of material in each layer through the thickness of the laminate. Combined with an in-plane density filter, the method enables manufacturers to control the length scale of the geometry while obtaining near discrete designs. Together with the applied manufacturing constraints it is now...... possible for manufacturers to steer the design towards a higher level of manufacturability. The method is demonstrated for mass minimization with displacement and manufacturing constraints. The results show that the method indeed is capable of obtaining near discrete designs which obey the governing...

  5. Optimal Filtering Algorithm-Based Multiuser Detector for Fast Fading CDMA Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A multiuser detector was developed for fast fading code-division multiple-access systems by representing the channels as a system with the multiplicative noise (SMN) model and then using the known optimal filtering algorithm for the SMN for multiuser detection (MUD). This multiuser detector allows the channel response to be stochastic in one symbol duration, which can be regarded as an effective method of MUD for fast fading CDMA systems. Performance analyses show that the multiuser detector is theoretically valid for CDMA systems over fast fading channels. Simulations show that the multiuser detector performs better than the Kalman filter-based multiuser detector with a faster convergence rate and lower bit error rate.

  6. PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Tadashi [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan)], E-mail: nariai.nsrg@tmd.ac.jp; Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Nakacho, Itabashi-ku, Tokyo (Japan); Kimura, Yuichi [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba (Japan); Inaji, Motoki; Momose, Toshiya [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan); Yamamoto, Tetsuya; Matsumura, Akira [Department of Neurosurgery, University of Tsukuba, Tennodai, Tsukuba, Igaraki (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Nakacho, Itabashi-ku, Tokyo (Japan); Ohno, Kikuo [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan)

    2009-07-15

    Introduction: To plan the optimal BNCT for patients with malignant cerebral glioma, estimation of the ratio of boron concentration in tumor tissue against that in the surrounding normal brain (T/N ratio of boron) is important. We report a positron emission tomography (PET) imaging method to estimate T/N ratio of tissue boron concentration based on pharmacokinetic analysis of amino acid probes. Methods: Twelve patients with cerebral malignant glioma underwent 60 min dynamic PET scanning of brain after bolus injection of {sup 18}F-borono-phenyl-alanine (FBPA) with timed arterial blood sampling. Using kinetic parameter obtained by this scan, T/N ratio of boron concentration elicited by one-hour constant infusion of BPA, as performed in BNCT, was simulated on Runge-Kutta algorithm. {sup 11}C-methionine (MET) PET scan, which is commonly used in worldwide PET center as brain tumor imaging tool, was also performed on the same day to compare the image characteristics of FBPA and that of MET. Result: PET glioma images obtained with FBPA and MET are almost identical in all patients by visual inspection. Estimated T/N ratio of tissue boron concentration after one-hour constant infusion of BPA, T/N ratio of FBPA on static condition, and T/N ratio of MET on static condition showed significant linear correlation between each other. Conclusion: T/N ratio of boron concentration that is obtained by constant infusion of BPA during BNCT can be estimated by FBPA PET scan. This ratio can also be estimated by MET-PET imaging. As MET-PET study is available in many clinical PET center, selection of candidates for BNCT may be possible by MET-PET images. Accurate planning of BNCT may be performed by static images of FBPA PET. Use of PET imaging with amino acid probes may contribute very much to establish an appropriate application of BNCT for patients with malignant glioma.

  7. Experimental and theoretical evaluation of accelerator based epithermal neutron yields for BNCT

    Science.gov (United States)

    Wielopolski, L.; Ludewig, H.; Powell, J. R.; Raparia, D.; Alessi, J. G.; Alburger, D. E.; Zucker, M. S.; Lowenstein, D. I.

    1999-06-01

    At BNL, we have evaluated the beam current required to produce a clinical neutron beam for Boron Neutron Capture Therapy (BNCT) with an epithermal neutron flux of 1012n/cm2/hr. Experiments were carried out on a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) at Columbia University. A thick Li target was irradiated by protons with energies from 1.8 to 2.5 MeV. The neutron spectra resulting from the 7Li(p,n)7Be reaction, followed by various filter configurations, were determined by measuring pulse height distributions with a gas filled proton recoil spectrometer. These distributions were unfolded into neutron energy spectra using the PSNS code, from which the required beam currents were estimated to be about 5 mA. Results are in good agreement with calculations using the MCNP-4A transport code. In addition comparison was also made between the neutron flux obtained at the Brookhaven Medical Research Reactor (where clinical trials of BNCT are ongoing), and measurements at RARAF, using a 10BF3 detector in a phantom. These results also support the requirement for about 5 mA beam current.

  8. An evaluation on the design of beam shaping assembly based on the D-T reaction for BNCT

    Science.gov (United States)

    Asnal, M.; Liamsuwan, T.; Onjun, T.

    2015-05-01

    Boron Neutron Capture Therapy (BNCT) can be achieved by using a compact neutron generator such as a compact D-T neutron source, in which neutron energy must be in the epithermal energy range with sufficient flux. For these requirements, a Beam Shaping Assembly (BSA) is needed. In this paper, three BSA designs based on the D-T reaction for BNCT are discussed. It is found that the BSA configuration designed by Rasouli et al. satisfies all of the International Atomic Energy Agency (IAEA) criteria. It consists of 14 cm uranium as multiplier, 23 cm TiF3 and 36 cm Fluental as moderator, 4 cm Fe as fast neutron filter, 1 mm Li as thermal neutron filter, 2.6 cm Bi as gamma ray filter, and Pb as collimator and reflector. It is also found that use of specific filters is important for removing the fast and thermal neutrons and gamma contamination. Moreover, an appropriate neutron source plays a key role in providing a proper epithermal flux.

  9. Effectiveness of BNCT for recurrent head and neck malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Itsuro E-mail: katoitsu@dent.osaka-u.ac.jp; Ono, Koji; Sakurai, Yoshinori; Ohmae, Masatoshi; Maruhashi, Akira; Imahori, Yoshio; Kirihata, Mitsunori; Nakazawa, Mitsuhiro; Yura, Yoshiaki

    2004-11-01

    Recurrent head and neck malignancies (HNM) are often radio-/chemo-resistant and show extensive growth, necessitating a wide resection including surrounding tissues. To avoid severe impairment of oro-facial structures and functions, it is necessary to explore new treatments for HNM. Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. We report here, first in the world, six patients with a recurrent HNM who have been treated with BNCT. The BNCT in combination with boronophenylalanine (BPA) and borocaptate sodium (BSH) was performed using the epithermal neutrons with Kyoto University Research Reactor (KUR). The results of BNCT were as follows: (1) {sup 10}B concentration of tumor/normal tissue ratios (T/N ratio) of PET studies were SCC:1.8-4.4, sarcoma:3.1-4.0, parotid tumor:3.5. (2) Relative volume (%) of each tumor to the prior were 6-46%. (3) Remarkable reduction (46-100%) of huge tumor such as 40-675 cm{sup 3} (average: 315 cm{sup 3}), improvement of QOL and very mild side effects were recognized in all cases. These results indicate that BNCT represents a new and promising treatment approach even for a huge or far advanced HNM.

  10. Optimal IIR filter design using Gravitational Search Algorithm with Wavelet Mutation

    Directory of Open Access Journals (Sweden)

    S.K. Saha

    2015-01-01

    Full Text Available This paper presents a global heuristic search optimization technique, which is a hybridized version of the Gravitational Search Algorithm (GSA and Wavelet Mutation (WM strategy. Thus, the Gravitational Search Algorithm with Wavelet Mutation (GSAWM was adopted for the design of an 8th-order infinite impulse response (IIR filter. GSA is based on the interaction of masses situated in a small isolated world guided by the approximation of Newtonian’s laws of gravity and motion. Each mass is represented by four parameters, namely, position, active, passive and inertia mass. The position of the heaviest mass gives the near optimal solution. For better exploitation in multidimensional search spaces, the WM strategy is applied to randomly selected particles that enhance the capability of GSA for finding better near optimal solutions. An extensive simulation study of low-pass (LP, high-pass (HP, band-pass (BP and band-stop (BS IIR filters unleashes the potential of GSAWM in achieving better cut-off frequency sharpness, smaller pass band and stop band ripples, smaller transition width and higher stop band attenuation with assured stability.

  11. Optimality analysis of one-step OOSM filtering algorithms in target tracking

    Institute of Scientific and Technical Information of China (English)

    ZHOU WenHui; LI Lin; CHEN GuoHai; YU AnXi

    2007-01-01

    In centralized multisensor tracking systems, there are out-of-sequence measurements (OOSMs) frequently arising due to different time delays in communication links and varying pre-processing times at the sensor. Such OOSM arrival can induce the "negative-time measurement update" problem, which is quite common in real multisensor tracking systems. The A1 optimal update algorithm with OOSM is presented by Bar-Shalom for one-step case. However, this paper proves that the optimality of A1 algorithm is lost in direct discrete-time model (DDM) of the process noise, it holds true only in discretized continuous-time model (DCM). One better OOSM filtering algorithm for DDM case is presented. Also, another new optimal OOSM filtering algorithm, which is independent of the discrete time model of the process noise, is presented here. The performance of the two new algorithms is compared with that of A1 algorithm by Monte Carlo simulations. The effectiveness and correctness of the two proposed algorithms are validated by analysis and simulation results.

  12. Sparse gammatone signal model optimized for English speech does not match the human auditory filters.

    Science.gov (United States)

    Strahl, Stefan; Mertins, Alfred

    2008-07-18

    Evidence that neurosensory systems use sparse signal representations as well as improved performance of signal processing algorithms using sparse signal models raised interest in sparse signal coding in the last years. For natural audio signals like speech and environmental sounds, gammatone atoms have been derived as expansion functions that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M., 2006. Efficient auditory coding. Nature 439, 978-982). Furthermore, gammatone functions are established models for the human auditory filters. Thus far, a practical application of a sparse gammatone signal model has been prevented by the fact that deriving the sparsest representation is, in general, computationally intractable. In this paper, we applied an accelerated version of the matching pursuit algorithm for gammatone dictionaries allowing real-time and large data set applications. We show that a sparse signal model in general has advantages in audio coding and that a sparse gammatone signal model encodes speech more efficiently in terms of sparseness than a sparse modified discrete cosine transform (MDCT) signal model. We also show that the optimal gammatone parameters derived for English speech do not match the human auditory filters, suggesting for signal processing applications to derive the parameters individually for each applied signal class instead of using psychometrically derived parameters. For brain research, it means that care should be taken with directly transferring findings of optimality for technical to biological systems.

  13. (9)Be(d,n)(10)B-based neutron sources for BNCT.

    Science.gov (United States)

    Capoulat, M E; Herrera, M S; Minsky, D M; González, S J; Kreiner, A J

    2014-06-01

    In the frame of accelerator-based BNCT, the (9)Be(d,n)(10)B reaction was investigated as a possible source of epithermal neutrons. In order to determine the configuration in terms of bombarding energy, target thickness and Beam Shaping Assembly (BSA) design that results in the best possible beam quality, a systematic optimization study was carried out. From this study, the optimal configuration resulted in tumor doses ≥40Gy-Eq, with a maximum value of 51Gy-Eq at a depth of about 2.7cm, in a 60min treatment. The optimal configuration was considered for the treatment planning assessment of a real Glioblastoma Multiforme case. From this, the resulted dose performances were comparable to those obtained with an optimized (7)Li(p,n)-based neutron source, under identical conditions and subjected to the same clinical protocol.

  14. Modified Particle Swarm Optimization for Blind Deconvolution and Identification of Multichannel FIR Filters

    Directory of Open Access Journals (Sweden)

    Khanagha Ali

    2010-01-01

    Full Text Available Blind identification of MIMO FIR systems has widely received attentions in various fields of wireless data communications. Here, we use Particle Swarm Optimization (PSO as the update mechanism of the well-known inverse filtering approach and we show its good performance compared to original method. Specially, the proposed method is shown to be more robust against lower SNR scenarios or in cases with smaller lengths of available data records. Also, a modified version of PSO is presented which further improves the robustness and preciseness of PSO algorithm. However the most important promise of the modified version is its drastically faster convergence compared to standard implementation of PSO.

  15. Schwartz' distributions in nonlinear setting: Applications to differential equations, filtering and optimal control

    Directory of Open Access Journals (Sweden)

    Y. Orlov

    2002-01-01

    Full Text Available The paper is intended to be of tutorial value for Schwartz' distributions theory in nonlinear setting. Mathematical models are presented for nonlinear systems which admit both standard and impulsive inputs. These models are governed by differential equations in distributions whose meaning is generalized to involve nonlinear, non single-valued operating over distributions. The set of generalized solutions of these differential equations is defined via closure, in a certain topology, of the set of the conventional solutions corresponding to standard integrable inputs. The theory is exemplified by mechanical systems with impulsive phenomena, optimal impulsive feedback synthesis, sampled-data filtering of stochastic and deterministic dynamic systems.

  16. An effective coded excitation scheme based on a predistorted FM signal and an optimized digital filter

    DEFF Research Database (Denmark)

    Misaridis, Thanasis; Jensen, Jørgen Arendt

    1999-01-01

    performed with the program Field II. A commercial scanner (B-K Medical 3535) was modified and interfaced to an arbitrary function generator along with an RF power amplifier (Ritec). Hydrophone measurements in water were done to establish excitation voltage and corresponding intensity levels (I-sptp and I......This paper presents a coded excitation imaging system based on a predistorted FM excitation and a digital compression filter designed for medical ultrasonic applications, in order to preserve both axial resolution and contrast. In radars, optimal Chebyshev windows efficiently weight a nearly...

  17. Cyclotron-based neutron source for BNCT

    Science.gov (United States)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-01

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  18. Dose masking feature for BNCT radiotherapy planning

    Science.gov (United States)

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  19. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  20. Proceedings of neutron irradiation technical meeting on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  1. Protocols for BNCT of glioblastoma multiforme at Brookhaven: Practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Chanana, A.D.; Coderre, J.A.; Joel, D.D.; Slatkin, D.N.

    1996-12-31

    In this report we discuss some issues considered in selecting initial protocols for boron neutron capture therapy (BNCT) of human glioblastoma multiforme. First the tolerance of normal tissues, especially the brain, to the radiation field. Radiation doses limits were based on results with human and animal exposures. Estimates of tumor control doses were based on the results of single-fraction photon therapy and single fraction BNCT both in humans and experimental animals. Of the two boron compounds (BSH and BPA), BPA was chosen since a FDA-sanctioned protocol for distribution in humans was in effect at the time the first BNCT protocols were written and therapy studies in experimental animals had shown it to be more effective than BSH.

  2. INEEL BNCT Research Program Annual Report, CY-2000

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert

    2001-03-01

    This report is a summary of the activities conducted in conjunction with the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 2000. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, neutron source design and demonstration, and support the Department of Energy’s (DOE) National BNCT Program goals are the goals of this Program. Contributions from the individual contributors about their projects are included, specifically described are the following, chemistry: analysis of biological samples and an infrared blood-boron analyzer, and physics: progress in the patient treatment planning software, measurement of neutron spectra for the Argentina RA-6 reactor, and recalculation of the Finnish research reactor FiR 1 neutron spectra, BNCT accelerator technology, and modification to the research reactor at Washington State University for an epithermal-neutron beam.

  3. Protocols for BNCT of glioblastoma multiforme at Brookhaven: Practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Chanana, A.D.; Coderre, J.A.; Joel, D.D.; Slatkin, D.N.

    1996-12-31

    In this report we discuss some issues considered in selecting initial protocols for boron neutron capture therapy (BNCT) of human glioblastoma multiforme. First the tolerance of normal tissues, especially the brain, to the radiation field. Radiation doses limits were based on results with human and animal exposures. Estimates of tumor control doses were based on the results of single-fraction photon therapy and single fraction BNCT both in humans and experimental animals. Of the two boron compounds (BSH and BPA), BPA was chosen since a FDA-sanctioned protocol for distribution in humans was in effect at the time the first BNCT protocols were written and therapy studies in experimental animals had shown it to be more effective than BSH.

  4. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    Science.gov (United States)

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  5. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Kreiner, A.J. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia. Universidad Nacional de Gral. San Martin, M. De Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917(C1033AAJ), Ciudad Autonoma de Buenos Aires (Argentina)], E-mail: kreiner@tandar.cnea.gov.ar; Thatar Vento, V. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Levinas, P. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917(C1033AAJ), Ciudad Autonoma de Buenos Aires (Argentina); Bergueiro, J. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Di Paolo, H.; Burlon, A.A. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia. Universidad Nacional de Gral. San Martin, M. De Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Kesque, J.M. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Valda, A.A.; Debray, M.E.; Somacal, H.R. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia. Universidad Nacional de Gral. San Martin, M. De Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Minsky, D.M. [Dept. de Fisica, Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia. Universidad Nacional de Gral. San Martin, M. De Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917(C1033AAJ), Ciudad Autonoma de Buenos Aires (Argentina)] (and others)

    2009-07-15

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the {sup 7}Li(p,n){sup 7}Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the {sup 7}Li(p,n){sup 7}Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.0.

  6. Point source detection and extraction from simulated Planck TOD using optimal adaptive filters

    CERN Document Server

    Herranz, D; Sanz, J L; Martínez-González, E

    2002-01-01

    Wavelet-related techniques have proven useful in the processing and analysis of one and two dimensional data sets (spectra in the former case, images in the latter). In this work we apply adaptive filters, introduced in a previous work (Sanz et al. 2001), to optimize the detection and extraction of point sources from a one-dimensional array of time-ordered data such as the one that will be produced by the future 30 GHz LFI28 channel of the ESA Planck mission. At a $4\\sigma$ detection level 224 sources over a flux of 0.88 Jy are detected with a mean relative error (in absolute value) of 21% and a systematic bias of -7.7%. The position of the sources in the sky is determined with errors inferior to the size of the pixel. The catalogue of detected sources is complete at fluxes $\\geq$ 4.3 Jy. The number of spurious detections is less than a 10% of the true detections. We compared the results with the ones obtained by filtering with a Gaussian filter and a Mexican Hat Wavelet of width equal to the scale of the sou...

  7. Optimal sensorimotor integration in recurrent cortical networks: a neural implementation of Kalman filters.

    Science.gov (United States)

    Denève, Sophie; Duhamel, Jean-René; Pouget, Alexandre

    2007-05-23

    Several behavioral experiments suggest that the nervous system uses an internal model of the dynamics of the body to implement a close approximation to a Kalman filter. This filter can be used to perform a variety of tasks nearly optimally, such as predicting the sensory consequence of motor action, integrating sensory and body posture signals, and computing motor commands. We propose that the neural implementation of this Kalman filter involves recurrent basis function networks with attractor dynamics, a kind of architecture that can be readily mapped onto cortical circuits. In such networks, the tuning curves to variables such as arm velocity are remarkably noninvariant in the sense that the amplitude and width of the tuning curves of a given neuron can vary greatly depending on other variables such as the position of the arm or the reliability of the sensory feedback. This property could explain some puzzling properties of tuning curves in the motor and premotor cortex, and it leads to several new predictions.

  8. Towards Optimal Filtering on ARM for ATLAS Tile Calorimeter Front-End Processing

    Science.gov (United States)

    Cox, Mitchell A.

    2015-10-01

    The Large Hadron Collider at CERN generates enormous amounts of raw data which presents a serious computing challenge. After planned upgrades in 2022, the data output from the ATLAS Tile Calorimeter will increase by 200 times to over 40 Tb/s. Advanced and characteristically expensive Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs) are currently used to process this quantity of data. It is proposed that a cost- effective, high data throughput Processing Unit (PU) can be developed by using several ARM System on Chips in a cluster configuration to allow aggregated processing performance and data throughput while maintaining minimal software design difficulty for the end-user. ARM is a cost effective and energy efficient alternative CPU architecture to the long established x86 architecture. This PU could be used for a variety of high-level algorithms on the high data throughput raw data. An Optimal Filtering algorithm has been implemented in C++ and several ARM platforms have been tested. Optimal Filtering is currently used in the ATLAS Tile Calorimeter front-end for basic energy reconstruction and is currently implemented on DSPs.

  9. Cat Swarm Optimization Based Functional Link Artificial Neural Network Filter for Gaussian Noise Removal from Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2016-01-01

    Full Text Available Gaussian noise is one of the dominant noises, which degrades the quality of acquired Computed Tomography (CT image data. It creates difficulties in pathological identification or diagnosis of any disease. Gaussian noise elimination is desirable to improve the clarity of a CT image for clinical, diagnostic, and postprocessing applications. This paper proposes an evolutionary nonlinear adaptive filter approach, using Cat Swarm Functional Link Artificial Neural Network (CS-FLANN to remove the unwanted noise. The structure of the proposed filter is based on the Functional Link Artificial Neural Network (FLANN and the Cat Swarm Optimization (CSO is utilized for the selection of optimum weight of the neural network filter. The applied filter has been compared with the existing linear filters, like the mean filter and the adaptive Wiener filter. The performance indices, such as peak signal to noise ratio (PSNR, have been computed for the quantitative analysis of the proposed filter. The experimental evaluation established the superiority of the proposed filtering technique over existing methods.

  10. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    Science.gov (United States)

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA.

  11. Graphics-processor-unit-based parallelization of optimized baseline wander filtering algorithms for long-term electrocardiography.

    Science.gov (United States)

    Niederhauser, Thomas; Wyss-Balmer, Thomas; Haeberlin, Andreas; Marisa, Thanks; Wildhaber, Reto A; Goette, Josef; Jacomet, Marcel; Vogel, Rolf

    2015-06-01

    Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here, we present a graphics processor unit (GPU)-based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to autoregressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and four times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a seven-day high-resolution ECG is computed within less than 3 s. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.

  12. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  13. INEL BNCT Program: Volume 5, No. 9. Bulletin, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. [ed.

    1991-12-31

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory`s (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  14. An optimized Kalman filter for the estimate of trunk orientation from inertial sensors data during treadmill walking.

    Science.gov (United States)

    Mazzà, Claudia; Donati, Marco; McCamley, John; Picerno, Pietro; Cappozzo, Aurelio

    2012-01-01

    The aim of this study was the fine tuning of a Kalman filter with the intent to provide optimal estimates of lower trunk orientation in the frontal and sagittal planes during treadmill walking at different speeds using measured linear acceleration and angular velocity components represented in a local system of reference. Data were simultaneously collected using both an inertial measurement unit (IMU) and a stereophotogrammetric system from three healthy subjects walking on a treadmill at natural, slow and fast speeds. These data were used to estimate the parameters of the Kalman filter that minimized the difference between the trunk orientations provided by the filter and those obtained through stereophotogrammetry. The optimized parameters were then used to process the data collected from a further 15 healthy subjects of both genders and different anthropometry performing the same walking tasks with the aim of determining the robustness of the filter set up. The filter proved to be very robust. The root mean square values of the differences between the angles estimated through the IMU and through stereophotogrammetry were lower than 1.0° and the correlation coefficients between the corresponding curves were greater than 0.91. The proposed filter design can be used to reliably estimate trunk lateral and frontal bending during walking from inertial sensor data. Further studies are needed to determine the filter parameters that are most suitable for other motor tasks.

  15. Design and optimization of an analog filter with a CdTe detector for X-ray fluorescence applications

    Science.gov (United States)

    Choi, Hyojeong; Kim, Hui Su; Kim, Young Soo; Ha, Jang Ho; Chai, Jong-Seo

    2016-10-01

    An analog pre-filter circuit for digital pulse processing is designed and optimized for X-ray fluorescence (XRF) applications to replace traditional analog shaping amplifiers. To optimize the pre-filter performance, we characterized noise electrons as a function of the input pulse rise time and decay time of the output pulse by using the full width at half maximum. In addition, gamma-ray energy measurements at room temperature showed that the commercially available CdTe Schottky-type radiation detector with our newly designed and optimized pre-filter circuit exhibited full widths at half maxima of 4.97 (Ba-133, at 53 keV) and 5.56 keV (Am-241, at 59.5 keV), respectively.

  16. Weighted Optimization-Based Distributed Kalman Filter for Nonlinear Target Tracking in Collaborative Sensor Networks.

    Science.gov (United States)

    Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang

    2016-07-21

    The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.

  17. Plasma grid design for optimized filter field configuration for the NBI test facility ELISE

    Energy Technology Data Exchange (ETDEWEB)

    Nocentini, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85740 Garching (Germany)], E-mail: riccardo.nocentini@ipp.mpg.de; Gutser, R.; Heinemann, B.; Froeschle, M.; Riedl, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85740 Garching (Germany)

    2009-12-15

    Maintenance-free RF sources for negative hydrogen ions with moderate extraction areas (100-200 cm{sup 2}) have been successfully developed in the last years at IPP Garching in the test facilities BATMAN and MANITU. A facility with larger extraction area (1000 cm{sup 2}), ELISE, is being designed with a 'half-size' ITER-like extraction system, pulsed ion acceleration up to 60 kV for 10 s and plasma generation up to 1 h. Due to the large size of the source, the magnetic filter field (FF) cannot be produced solely by permanent magnets. Therefore, an additional magnetic field produced by current flowing through the plasma grid (PG current) is required. The filter field homogeneity and the interaction with the electron suppression magnetic field have been studied in detail by finite element method (FEM) during the ELISE design phase. Significant improvements regarding the field homogeneity have been introduced compared to the ITER reference design. Also, for the same PG current a 50% higher field in front of the grid has been achieved by optimizing the plasma grid geometry. Hollow spaces have been introduced in the plasma grid for a more homogeneous PG current distribution. The introduction of hollow spaces also allows the insertion of permanent magnets in the plasma grid.

  18. Application of digital tomosynthesis (DTS) of optimal deblurring filters for dental X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J. E.; Cho, H. S.; Kim, D. S.; Choi, S. I.; Je, U. K. [Yonsei University, Wonju (Korea, Republic of)

    2012-04-15

    Digital tomosynthesis (DTS) is a limited-angle tomographic technique that provides some of the tomographic benefits of computed tomography (CT) but at reduced dose and cost. Thus, the potential for application of DTS to dental X-ray imaging seems promising. As a continuation of our dental radiography R and D, we developed an effective DTS reconstruction algorithm and implemented it in conjunction with a commercial dental CT system for potential use in dental implant placement. The reconstruction algorithm employed a backprojection filtering (BPF) method based upon optimal deblurring filters to suppress effectively both the blur artifacts originating from the out-focus planes and the high-frequency noise. To verify the usefulness of the reconstruction algorithm, we performed systematic simulation works and evaluated the image characteristics. We also performed experimental works in which DTS images of enhanced anatomical resolution were successfully obtained by using the algorithm and were promising to our ongoing applications to dental X-ray imaging. In this paper, our approach to the development of the DTS reconstruction algorithm and the results are described in detail.

  19. Spatio-spectral color filter array design for optimal image recovery.

    Science.gov (United States)

    Hirakawa, Keigo; Wolfe, Patrick J

    2008-10-01

    In digital imaging applications, data are typically obtained via a spatial subsampling procedure implemented as a color filter array-a physical construction whereby only a single color value is measured at each pixel location. Owing to the growing ubiquity of color imaging and display devices, much recent work has focused on the implications of such arrays for subsequent digital processing, including in particular the canonical demosaicking task of reconstructing a full color image from spatially subsampled and incomplete color data acquired under a particular choice of array pattern. In contrast to the majority of the demosaicking literature, we consider here the problem of color filter array design and its implications for spatial reconstruction quality. We pose this problem formally as one of simultaneously maximizing the spectral radii of luminance and chrominance channels subject to perfect reconstruction, and-after proving sub-optimality of a wide class of existing array patterns-provide a constructive method for its solution that yields robust, new panchromatic designs implementable as subtractive colors. Empirical evaluations on multiple color image test sets support our theoretical results, and indicate the potential of these patterns to increase spatial resolution for fixed sensor size, and to contribute to improved reconstruction fidelity as well as significantly reduced hardware complexity.

  20. Classification of high spatial resolution imagery using optimal Gabor-filters-based texture features

    Science.gov (United States)

    Zhao, Yindi; Wu, Bo

    2007-06-01

    Texture analysis has received great attention in the interpretation of high-resolution satellite images. This paper aims to find optimal filters for discriminating between residential areas and other land cover types in high spatial resolution satellite imagery. Moreover, in order to reduce the blurring border effect, inherent in texture analysis and which introduces important errors in the transition areas between different texture units, a classification procedure is designed for such high spatial resolution satellite images as follows. Firstly, residential areas are detected using Gabor texture features, and two clusters, one a residential area and the other not, are detected using the fuzzy C-Means algorithm, in the frequency space based on Gabor filters. Sequentially, a mask is generated to eliminate residential areas so that other land-cover types would be classified accurately, and not interfered with the spectrally heterogeneous residential areas. Afterwards, other objects are classified using spectral features by the MAP (maximum a posterior) - ICM (iterated conditional mode) classification algorithm designed to enforce the spatial constraints into classification. Experimental results on high spatial resolution remote sensing data confirm that the proposed algorithm provide remarkably better detection accuracy than conventional approaches in terms of both objective measurements and visual evaluation.

  1. Theoretical optimal modulation frequencies for scattering parameter estimation and ballistic photon filtering in diffusive media

    CERN Document Server

    Panigrahi, Swapnesh; Ramachandran, Hema; Alouini, Mehdi

    2016-01-01

    The efficiency of using intensity modulated light for estimation of scattering properties of a turbid medium and for ballistic photon discrimination is theoretically quantified in this article. Using the diffusion model for modulated photon transport and considering a noisy quadrature demodulation scheme, the minimum-variance bounds on estimation of parameters of interest are analytically derived and analyzed. The existence of a variance-minimizing optimal modulation frequency is shown and its evolution with the properties of the intervening medium is derived and studied. Furthermore, a metric is defined to quantify the efficiency of ballistic photon filtering which may be sought when imaging through turbid media. The analytical derivation of this metric shows that the minimum modulation frequency required to attain significant ballistic discrimination depends only on the reduced scattering coefficient of the medium in a linear fashion for a highly scattering medium.

  2. Theoretical optimal modulation frequencies for scattering parameter estimation and ballistic photon filtering in diffusing media.

    Science.gov (United States)

    Panigrahi, Swapnesh; Fade, Julien; Ramachandran, Hema; Alouini, Mehdi

    2016-07-11

    The efficiency of using intensity modulated light for the estimation of scattering properties of a turbid medium and for ballistic photon discrimination is theoretically quantified in this article. Using the diffusion model for modulated photon transport and considering a noisy quadrature demodulation scheme, the minimum-variance bounds on estimation of parameters of interest are analytically derived and analyzed. The existence of a variance-minimizing optimal modulation frequency is shown and its evolution with the properties of the intervening medium is derived and studied. Furthermore, a metric is defined to quantify the efficiency of ballistic photon filtering which may be sought when imaging through turbid media. The analytical derivation of this metric shows that the minimum modulation frequency required to attain significant ballistic discrimination depends only on the reduced scattering coefficient of the medium in a linear fashion for a highly scattering medium.

  3. New efficient optimizing techniques for Kalman filters and numerical weather prediction models

    Science.gov (United States)

    Famelis, Ioannis; Galanis, George; Liakatas, Aristotelis

    2016-06-01

    The need for accurate local environmental predictions and simulations beyond the classical meteorological forecasts are increasing the last years due to the great number of applications that are directly or not affected: renewable energy resource assessment, natural hazards early warning systems, global warming and questions on the climate change can be listed among them. Within this framework the utilization of numerical weather and wave prediction systems in conjunction with advanced statistical techniques that support the elimination of the model bias and the reduction of the error variability may successfully address the above issues. In the present work, new optimization methods are studied and tested in selected areas of Greece where the use of renewable energy sources is of critical. The added value of the proposed work is due to the solid mathematical background adopted making use of Information Geometry and Statistical techniques, new versions of Kalman filters and state of the art numerical analysis tools.

  4. An Optimal Observing System Study for the Kuroshio Extension using Particle Filters

    Science.gov (United States)

    Kramer, Werner; van Leeuwen, Peter Jan; Pierieni, Stefano; Dijkstra, Henk

    2010-05-01

    The Kuroshio Extension - the eastward-flowing free jet formed when the warm waters of the Kuroshio separate from the Japanese coast - reveals bimodal behavior. It changes from an elongated, energetic meandering jet into a weaker, unstable jet with a reduced zonal penetration. Many of its characteristics, e.g. the decadal period and the more stable character of the elongated state, are also observed in a reduced-gravity ocean model of the northern Pacific basin with a schematic Japanese coastline driven by a constant double-gyre wind field. The success of this idealized model suggests that intrinsic nonlinear mechanisms play a major role in determining the meander pattern of the mean flow. The low complexity of the model makes it ideal to perform an observing system study. Here, we take a new approach by using particle filters to assimilate observations into the model. An ensemble of model states is integrated over time from an initial distribution. The first approach is to pick one run as the synthetic truth. Observations are produced from this synthetic truth with an additional observation error. The particle filter technique adjusts the weight of each ensemble run - each particle - according to the observation value and the error distribution. From the ensemble and its weight distribution the expectation and probability distribution of the state vector can be computed. As the ensemble itself is not altered by the filter, different sets of observations, e.g. with different geometrical configurations, locations and/or time resolutions, can be analyzed a posteriori. The particle filter analyses allows us to identify which observations have a large impact on reconstructing the true state of Kuroshio Extension. More precisely, which observations contribute to a (local) reduction in the entropy of the ensemble. In a way each observation is then linked to an area of influence, which permits for determining the flow of information. We will present results where

  5. Enhanced Microgrid Dynamic Performance Using a Modulated Power Filter Based on Enhanced Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Ahmed M. Othman

    2017-06-01

    Full Text Available This paper presents a design of microgrid (MG with enhanced dynamic performance. Distributed energy resources (DER are widely used in MGs to match the various load types and profiles. DERs include solar PV cells, wind energy sources, fuel cells, batteries, micro gas-engines and storage elements. MG will include AC/DC circuits, developed power electronics devices, inverters and power electronic controllers. A novel modulated power filters (MPF device will be applied in MG design. Enhanced bacterial foraging optimization (EBFO will be proposed to optimize and set the MPF parameters to enhance and tune the MG dynamic response. Recent dynamic control is applied to minimize the harmonic reference content. EBFO will adapt the gains of MPF dynamic control. The present research achieves an enhancement of MG dynamic performance, in addition to ensuring improvements in the power factor, bus voltage profile and power quality. MG operation will be evaluated by the dynamic response to be fine-tuned by MPF based on EBFO. Digital simulations have validated the results to show the effectiveness and efficient improvement by the proposed strategy.

  6. Application of Parallel Algorithm Approach for Performance Optimization of Oil Paint Image Filter Algorithm

    Directory of Open Access Journals (Sweden)

    Siddhartha Mukherjee

    2014-04-01

    Full Text Available This paper gives a detailed study on the performance of image filter algorithm with various parameters applied on an image of RGB model. There are various popular image filters, which consumes large amount of computing resources for processing. Oil paint image filter is one of the very interesting filters, which is very performance hungry. Current research tries to find improvement in oil paint image filter algorithm by using parallel pattern library. With increasing kernel-size, the processing time of oil paint image filter algorithm increases exponentially. I have also observed in various blogs and forums, the questions for faster oil paint have been asked repeatedly.

  7. Four optimal design approaches of high-order finite-impulse response filters based on neural network

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hua; HE Yi-gang; LIU Mei-rong

    2007-01-01

    Four optimal approaches of high-order finite-impulse response(FIR)digital filters were developed for designing four types filters using neural network algorithms. The solutions were presented as parallel algorithms to approximate the desired frequency response specification.Therefore, these methods avoid matrix inversion, and make a fast calculation of the filter's coeffcients possible.The convergence theorems of these proposed algorithms were presented and proved to illustrate them stable, and the implementation of these methods was described together with some design guidelines.The simulation results show that the ripples of the designed FIR filters are significantly little in the pass.band and stop-band, and the proposed algorithms are of fast convergence.

  8. SVD-based optimal filtering for noise reduction in dual microphone hearing aids: a real time implementation and perceptual evaluation.

    Science.gov (United States)

    Maj, Jean-Baptiste; Royackers, Liesbeth; Moonen, Marc; Wouters, Jan

    2005-09-01

    In this paper, the first real-time implementation and perceptual evaluation of a singular value decomposition (SVD)-based optimal filtering technique for noise reduction in a dual microphone behind-the-ear (BTE) hearing aid is presented. This evaluation was carried out for a speech weighted noise and multitalker babble, for single and multiple jammer sound source scenarios. Two basic microphone configurations in the hearing aid were used. The SVD-based optimal filtering technique was compared against an adaptive beamformer, which is known to give significant improvements in speech intelligibility in noisy environment. The optimal filtering technique works without assumptions about a speaker position, unlike the two-stage adaptive beamformer. However this strategy needs a robust voice activity detector (VAD). A method to improve the performance of the VAD was presented and evaluated physically. By connecting the VAD to the output of the noise reduction algorithms, a good discrimination between the speech-and-noise periods and the noise-only periods of the signals was obtained. The perceptual experiments demonstrated that the SVD-based optimal filtering technique could perform as well as the adaptive beamformer in a single noise source scenario, i.e., the ideal scenario for the latter technique, and could outperform the adaptive beamformer in multiple noise source scenarios.

  9. Filter optimization of Si and SiC semiconductor-based H5 and Conergy-NPC transformerless PV inverters

    DEFF Research Database (Denmark)

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    Single-phase transformerless Photovoltaic (PV) inverters are synthesized by combining available solutions in terms of the power section topology, power semiconductors manufacturing technology and structure of the output filter. A design method is presented in this paper for optimizing the power s...

  10. Reduced Cost of Reactive Power in Doubly Fed Induction Generator Wind Turbine System With Optimized Grid Filter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2015-01-01

    through the rotor-side converter or the grid-side converter. This paper first compares the current ripples and supportive reactive power ranges between the conventional L and optimized LCL filter, if the reactive power is injected from the grid-side converter. Then, the loss distribution is evaluated both...

  11. Reduced Cost of Reactive Power in Doubly Fed Induction Generator Wind Turbine System with Optimized Grid Filter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Franke, Toke

    2014-01-01

    the rotor-side converter or the grid-side converter. This paper firstly compares the current ripples and supportive reactive power ranges between the conventional L and optimized LCL filter, if the reactive power is injected from the grid-side converter. Then, the loss distribution is evaluated both...

  12. THE INVERSE PROBLEM OF OPTIMAL ONESTEP AND MULTI-STEP FILTERING OF MEASUREMENT ERRORS IN THE VECTOR

    Directory of Open Access Journals (Sweden)

    Laipanova Z. M.

    2015-12-01

    Full Text Available In practice, we often encounter the problem of determining a system state based on results of various measurements. Measurements are usually accompanied by random errors; therefore, we should not talk about the definition of the system state but its estimation through stochastic processing of measurement results. In the monograph by E. A. Semenchina and M. Z. Laipanova [1] it was investigated for one-step filtering of the measurement errors of the vector of demand in balance model of Leontiev, as well as multistage optimal filtering of measurement errors of the vector of demand. In this article, we have delivered and investigated the inverse problem for the optimal one-step and multi-step filtering of the measurement errors of the vector of demand. For its solution, the authors propose the method of conditional optimization and using given and known disturbance to determine (estimate the matrix elements for one-step filtering of measurement errors and for multi-stage filtration: for given variables and known disturbance to determine the elements of the matrix. The solution of the inverse problem is reduced to the solution of constrained optimization problems, which is easily determined using in MS Excel. The results of the research have been outlined in this article, they are of considerable interest in applied researches. The article also formulated and the proposed method of solution of inverse in a dynamic Leontiev model

  13. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters.

    Science.gov (United States)

    Daugman, J G

    1985-07-01

    Two-dimensional spatial linear filters are constrained by general uncertainty relations that limit their attainable information resolution for orientation, spatial frequency, and two-dimensional (2D) spatial position. The theoretical lower limit for the joint entropy, or uncertainty, of these variables is achieved by an optimal 2D filter family whose spatial weighting functions are generated by exponentiated bivariate second-order polynomials with complex coefficients, the elliptic generalization of the one-dimensional elementary functions proposed in Gabor's famous theory of communication [J. Inst. Electr. Eng. 93, 429 (1946)]. The set includes filters with various orientation bandwidths, spatial-frequency bandwidths, and spatial dimensions, favoring the extraction of various kinds of information from an image. Each such filter occupies an irreducible quantal volume (corresponding to an independent datum) in a four-dimensional information hyperspace whose axes are interpretable as 2D visual space, orientation, and spatial frequency, and thus such a filter set could subserve an optimally efficient sampling of these variables. Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial-2D-spectral information resolution. The variety of their receptive-field dimensions and orientation and spatial-frequency bandwidths, and the correlations among these, reveal several underlying constraints, particularly in width/length aspect ratio and principal axis organization, suggesting a polar division of labor in occupying the quantal volumes of information hyperspace.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Second-Order Cone Formulations of Mixed-Norm Error Constraints for FIR Filter Optimization

    Science.gov (United States)

    2010-06-25

    length N an approximate rule of thumb for the minimum grid spacing is 1/(20N). If E is a real-valued function, representing a linear- phase filter , then...well as the general Lp solution. The filter has 35 real coefficients with no symmetry and a reduced passband delay (relative to a linear phase filter ) of

  15. Optimization of leaf margins for lung stereotactic body radiotherapy using a flattening filter-free beam

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, Nobuhide, E-mail: wakai@naramed-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan and Department of Radiation Oncology, Nara Medical University, Kashihara, Nara 634-8522 (Japan); Sumida, Iori; Otani, Yuki; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Hasegawa, Masatoshi [Department of Radiation Oncology, Nara Medical University, Kashihara, Nara 634-8522 (Japan)

    2015-05-15

    Purpose: The authors sought to determine the optimal collimator leaf margins which minimize normal tissue dose while achieving high conformity and to evaluate differences between the use of a flattening filter-free (FFF) beam and a flattening-filtered (FF) beam. Methods: Sixteen lung cancer patients scheduled for stereotactic body radiotherapy underwent treatment planning for a 7 MV FFF and a 6 MV FF beams to the planning target volume (PTV) with a range of leaf margins (−3 to 3 mm). Forty grays per four fractions were prescribed as a PTV D95. For PTV, the heterogeneity index (HI), conformity index, modified gradient index (GI), defined as the 50% isodose volume divided by target volume, maximum dose (Dmax), and mean dose (Dmean) were calculated. Mean lung dose (MLD), V20 Gy, and V5 Gy for the lung (defined as the volumes of lung receiving at least 20 and 5 Gy), mean heart dose, and Dmax to the spinal cord were measured as doses to organs at risk (OARs). Paired t-tests were used for statistical analysis. Results: HI was inversely related to changes in leaf margin. Conformity index and modified GI initially decreased as leaf margin width increased. After reaching a minimum, the two values then increased as leaf margin increased (“V” shape). The optimal leaf margins for conformity index and modified GI were −1.1 ± 0.3 mm (mean ± 1 SD) and −0.2 ± 0.9 mm, respectively, for 7 MV FFF compared to −1.0 ± 0.4 and −0.3 ± 0.9 mm, respectively, for 6 MV FF. Dmax and Dmean for 7 MV FFF were higher than those for 6 MV FF by 3.6% and 1.7%, respectively. There was a positive correlation between the ratios of HI, Dmax, and Dmean for 7 MV FFF to those for 6 MV FF and PTV size (R = 0.767, 0.809, and 0.643, respectively). The differences in MLD, V20 Gy, and V5 Gy for lung between FFF and FF beams were negligible. The optimal leaf margins for MLD, V20 Gy, and V5 Gy for lung were −0.9 ± 0.6, −1.1 ± 0.8, and −2.1 ± 1.2 mm, respectively, for 7 MV FFF compared

  16. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.

    Science.gov (United States)

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-12-01

    In order to provide an appropriate neutron beam for Boron Neutron Capture Therapy (BNCT), a special Beam Shaping Assembly (BSA) must be designed based on the neutron source specifications. A typical BSA includes moderator, reflector, collimator, thermal neutron filter, and gamma filter. In common BSA, the reflector is considered as a layer which covers the sides of the moderator materials. In this paper, new reflector/moderator geometries including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. It was found that the proposed configurations have a significant effect to improve the thermal to epithermal neutron flux ratio which is an important neutron beam parameter.

  17. Dose factor entry and display tool for BNCT radiotherapy

    Science.gov (United States)

    Wessol, Daniel E.; Wheeler, Floyd J.; Cook, Jeremy L.

    1999-01-01

    A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

  18. Boron concentration measurement system for the Czech BNCT project

    Science.gov (United States)

    Honzátko, J.; Tomandl, I.

    2000-07-01

    In the framework of the Czech Boron Neutron Capture Therapy (BNCT) project a Prompt Gamma Ray Analysis (PGRA) facility for the determination of the boron concentration in biological samples was built at light-water reactor at Řež. The facility utilizes the beam of thermal neutrons from a neutron guide. The pure beam of thermal neutrons and background conditions enables the determination of 1 ppm with the reasonable statistical error 5% within 15 minutes.

  19. Measurement and simulation of the TRR BNCT beam parameters

    Science.gov (United States)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad

    2016-09-01

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  20. Measurement and simulation of the TRR BNCT beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bavarnegin, Elham [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Sadremomtaz, Alireza [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Khalafi, Hossein [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Kasesaz, Yaser, E-mail: ykasesaz@aeoi.org.ir [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-09-11

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  1. Improved design and optimization of subsurface flow constructed wetlands and sand filters

    Science.gov (United States)

    Brovelli, A.; Carranza-Díaz, O.; Rossi, L.; Barry, D. A.

    2010-05-01

    Subsurface flow constructed wetlands and sand filters are engineered systems capable of eliminating a wide range of pollutants from wastewater. These devices are easy to operate, flexible and have low maintenance costs. For these reasons, they are particularly suitable for small settlements and isolated farms and their use has substantially increased in the last 15 years. Furthermore, they are also becoming used as a tertiary - polishing - step in traditional treatment plants. Recent work observed that research is however still necessary to understand better the biogeochemical processes occurring in the porous substrate, their mutual interactions and feedbacks, and ultimately to identify the optimal conditions to degrade or remove from the wastewater both traditional and anthropogenic recalcitrant pollutants, such as hydrocarbons, pharmaceuticals, personal care products. Optimal pollutant elimination is achieved if the contact time between microbial biomass and the contaminated water is sufficiently long. The contact time depends on the hydraulic residence time distribution (HRTD) and is controlled by the hydrodynamic properties of the system. Previous reports noted that poor hydrodynamic behaviour is frequent, with water flowing mainly through preferential paths resulting in a broad HRTD. In such systems the flow rate must be decreased to allow a sufficient proportion of the wastewater to experience the minimum residence time. The pollutant removal efficiency can therefore be significantly reduced, potentially leading to the failure of the system. The aim of this work was to analyse the effect of the heterogeneous distribution of the hydraulic properties of the porous substrate on the HRTD and treatment efficiency, and to develop an improved design methodology to reduce the risk of system failure and to optimize existing systems showing poor hydrodynamics. Numerical modelling was used to evaluate the effect of substrate heterogeneity on the breakthrough curves of

  2. A Dedicated Inferior Vena Cava Filter Service Line: How to Optimize Your Practice.

    Science.gov (United States)

    Karp, Jennifer K; Desai, Kush R; Salem, Riad; Ryu, Robert K; Lewandowski, Robert J

    2016-06-01

    Despite the increased placement of retrievable inferior vena cava filters (rIVCFs), efforts to remove these devices are not commensurate. The majority of rIVCFs are left in place beyond their indicated usage, and often are retained permanently. With a growing understanding of the clinical issues associated with these devices, the United States Food and Drug Administration (FDA) has prompted clinicians to remove rIVCF when they are no longer indicated. However, major obstacles exist to filter retrieval, chief among them being poor clinical follow-up. The establishment of a dedicated IVC filter service line, or clinic, has been shown to improve filter retrieval rates. Usage of particular devices, specifically permanent versus retrievable filters, is enhanced by prospective physician consultation. In this article, the rationale behind a dedicated IVC filter service line is presented as well as described the structure and activities of the authors' IVC filter clinic; supporting data will also be provided when appropriate.

  3. Dimension reduction: additional benefit of an optimal filter for independent component analysis to extract event-related potentials.

    Science.gov (United States)

    Cong, Fengyu; Leppänen, Paavo H T; Astikainen, Piia; Hämäläinen, Jarmo; Hietanen, Jari K; Ristaniemi, Tapani

    2011-09-30

    The present study addresses benefits of a linear optimal filter (OF) for independent component analysis (ICA) in extracting brain event-related potentials (ERPs). A filter such as the digital filter is usually considered as a denoising tool. Actually, in filtering ERP recordings by an OF, the ERP' topography should not be changed by the filter, and the output should also be able to be modeled by the linear transformation. Moreover, an OF designed for a specific ERP source or component may remove noise, as well as reduce the overlap of sources and even reject some non-targeted sources in the ERP recordings. The OF can thus accomplish both the denoising and dimension reduction (reducing the number of sources) simultaneously. We demonstrated these effects using two datasets, one containing visual and the other auditory ERPs. The results showed that the method including OF and ICA extracted much more reliable components than the sole ICA without OF did, and that OF removed some non-targeted sources and made the underdetermined model of EEG recordings approach to the determined one. Thus, we suggest designing an OF based on the properties of an ERP to filter recordings before using ICA decomposition to extract the targeted ERP component. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Clinical results of BNCT for malignant brain tumors in children

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [Department of Neurosurgery, Kagawa National Children' s Hospital, Kagawa 765-8501 (Japan)], E-mail: ynakagawa0517@yahoo.co.jp; Kageji, Teruyoshi; Mizobuchi, Yoshifumi [Department of Neurosurgery, University of Tokushima, Tokushima 770-8503 (Japan); Kumada, Hiroaki [Department of Research Reactor, Japan Atomic Energy Research Institute, Ibaragi 319-1195 (Japan); Nakagawa, Yoshiaki [Department of Medical Informatics, Post Graduated School, Kyoto University, Kyoto (Japan)

    2009-07-15

    It is very difficult to treat the patients with malignant brain tumor in children, especially under 3 years, because the conventional irradiation cannot be applied due to the damage of normal brain tissue. However, boron neutron capture therapy (BNCT) has tumor selectivity such that it can make damage only in tumor cells. We evaluated the clinical results and courses in patients with malignant glioma under 15 years. Among 183 patients with brain tumors treated by our group using BSH-based intra-operative BNCT, 23 patients were under 15 years. They included 4 patients under 3 years. There were 3 glioblastomas (GBM), 6 anaplastic astrocytomas(AAS), 7 primitive neuroectodermal tumors (PNET), 6 pontine gliomas and 1 anaplastic ependymoma. All GBM and PNET patients died due to CSF and/or CNS dissemination without local tumor regrowth. All pontine glioma patients died due to regrowth of the tumor. Four of 6 anaplastic astrocytoma and 1 anaplastic ependymoma patients alive without tumor recurrence. BNCT can be applied to malignant brain tumors in children, especially under 3 years instead of conventional radiation. Although it can achieve the local control in the primary site, it cannot prevent CSF dissemination in patients with glioblastoma.

  5. Meta-optimization of the extended kalman filter's parameters for improved feature extraction on hyper-temporal images

    CSIR Research Space (South Africa)

    Salmon, BP

    2011-07-01

    Full Text Available -OPTIMIZATION OF THE EXTENDED KALMAN FILTER?S PARAMETERS FOR IMPROVED FEATURE EXTRACTION ON HYPER-TEMPORAL IMAGES yzB.P. Salmon, yzW. Kleynhans, zF. van den Bergh, yJ.C. Olivier, W.J. Marais and zK.J. Wessels yDepartment of Electrical, Electronic and Computer Engineering... mod- ulated cosine function to improve land cover separation [3]. This paper proposes an extension to [3], that each of the first two spectral bands be modelled separately as a triply modu- lated cosine function and is expressed as yi;k;b = i;k;b...

  6. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    Science.gov (United States)

    Litt, Jonathan S.

    2007-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine's performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  7. Multiple local feature representations and their fusion based on an SVR model for iris recognition using optimized Gabor filters

    Science.gov (United States)

    He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Dong, Hongxing

    2014-12-01

    Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This paper provides multiple local feature representations and their fusion scheme based on a support vector regression (SVR) model for iris recognition using optimized Gabor filters. In our iris system, a particle swarm optimization (PSO)- and a Boolean particle swarm optimization (BPSO)-based algorithm is proposed to provide suitable Gabor filters for each involved test dataset without predefinition or manual modulation. Several comparative experiments on JLUBR-IRIS, CASIA-I, and CASIA-V4-Interval iris datasets are conducted, and the results show that our work can generate improved local Gabor features by using optimized Gabor filters for each dataset. In addition, our SVR fusion strategy may make full use of their discriminative ability to improve accuracy and reliability. Other comparative experiments show that our approach may outperform other popular iris systems.

  8. Realization of a digital rate meter as an IIR digital filter by implementing an optimized signal processing algorithm

    Directory of Open Access Journals (Sweden)

    Šaponjić Đorđe

    2009-01-01

    Full Text Available By applying the well known dualism: mean count rate - mean time between successive pulses - the equivalence between an IIR digital filter and a preset count digital rate meter has been demonstrated. By using a bank of four second order IIR filters and an optimized automated algorithm for filter selection, a practical realization of a preset count rate meter giving good tradeoff between statistical fluctuations and speed of response, particularly at low count rates such as background monitoring, is presented. The presented solution is suitable for designing portable count rate meters. The designed prototype is capable of operating up to 3600 pulses per second with an accuracy of over 4% in steady-state and response times of 1 second for the rising edge and 2 seconds for the falling edge of the mean count rate step-change.

  9. Linear Unbiased Optimal Filter for Discrete-Time Systems with One-Step Random Delays and Inconsecutive Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Jian Ding

    2013-11-01

    Full Text Available This paper is concerned with the linear unbiased minimum variance estimation problem for discrete-time stochastic linear control systems with one-step random delay and inconsecutive packet dropout. A new model is developed to describe the phenomena of the one-step delay and inconsecutive packet dropout by employing a Bernoulli distributed stochastic variable. Based on the model, a recursive linear unbiased optimal filter in the linear minimum variance sense is designed by the method of completing the square. The solution to the linear filter is given by three equations including a Riccati equation, a Lyapunov equation and a simple difference equation. A sufficient condition for the existence of the steady-state filter is given. A simulation shows the effectiveness of the proposed algorithm.    

  10. Optimal O(1 Bilateral Filter with Arbitrary Spatial and Range Kernels Using Sparse Approximation

    Directory of Open Access Journals (Sweden)

    Shengdong Pan

    2014-01-01

    Full Text Available A number of acceleration schemes for speeding up the time-consuming bilateral filter have been proposed in the literature. Among these techniques, the histogram-based bilateral filter trades the flexibility for achieving O(1 computational complexity using box spatial kernel. A recent study shows that this technique can be leveraged for O(1 bilateral filter with arbitrary spatial and range kernels by linearly combining the results of multiple-box bilateral filters. However, this method requires many box bilateral filters to obtain sufficient accuracy when approximating the bilateral filter with a large spatial kernel. In this paper, we propose approximating arbitrary spatial kernel using a fixed number of boxes. It turns out that the multiple-box spatial kernel can be applied in many O(1 acceleration schemes in addition to the histogram-based one. Experiments on the application to the histogram-based acceleration are presented in this paper. Results show that the proposed method has better accuracy in approximating the bilateral filter with Gaussian spatial kernel, compared with the previous histogram-based methods. Furthermore, the performance of the proposed histogram-based bilateral filter is robust with respect to the parameters of the filter kernel.

  11. Efficient generation of correlated random numbers using Chebyshev-optimal magnitude-only IIR filters

    CERN Document Server

    Rodríguez, A; Johnson, Steven G.; Rodriguez, Alejandro

    2007-01-01

    We compare several methods for the efficient generation of correlated random sequences (colored noise) by filtering white noise to achieve a desired correlation spectrum. We argue that a class of IIR filter-design techniques developed in the 1970s, which obtain the global Chebyshev-optimum minimum-phase filter with a desired magnitude and arbitrary phase, are uniquely suited for this problem but have seldom been used. The short filters that result from such techniques are crucial for applications of colored noise in physical simulations involving random processes, for which many long random sequences must be generated and computational time and memory are at a premium.

  12. Building of scientific information system for sustainable development of BNCT in Bulgaria.

    Science.gov (United States)

    Mitev, M; Ilieva, K; Apostolov, T

    2009-07-01

    Building a boron neutron capture therapy (BNCT) facility is foreseen within the reconstruction of the Research Reactor IRT (IRT) of the Institute for Nuclear Research and Nuclear Energy of the Bulgaria Academy of Sciences (INRNE). The development of BNCT at IRT plays a very significant role in the plan for sustainable application of the reactor. A centralized scientific information system on BNCT is being built at the INRNE with the purpose to collect and sort new information as knowledge accumulated during more than thirty years history of BNCT. This BNCT information system will help the creation and consolidation of a well informed and interconnected interdisciplinary team of physicists, chemists, biologists, and radio-oncologists for establishing BNCT cancer treatment in Bulgaria. It will strengthen more intensive development of the national network as well as its enlargement to the Balkan region countries. Furthermore, to acquaint the public at large with the opportunity for BNCT cancer treatment will be addressed. Human, social, and economics results due to BNCT for many patients from Balkan region are expected.

  13. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg

    2012-08-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA–BNCT, boronophenylalanine (BPA) ? neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA–BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks posttreatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA–BNCT, 2.7 ± 1.8 for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mgfell significantly to 19 ± 16 mg for BPA–BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA–BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA– BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.

  14. Toward an Optimal Position for IVC Filters: Computational Modeling of the Impact of Renal Vein Inflow

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S L; Singer, M A

    2009-07-13

    The purpose of this report is to evaluate the hemodynamic effects of renal vein inflow and filter position on unoccluded and partially occluded IVC filters using three-dimensional computational fluid dynamics. Three-dimensional models of the TrapEase and Gunther Celect IVC filters, spherical thrombi, and an IVC with renal veins were constructed. Hemodynamics of steady-state flow was examined for unoccluded and partially occluded TrapEase and Gunther Celect IVC filters in varying proximity to the renal veins. Flow past the unoccluded filters demonstrated minimal disruption. Natural regions of stagnant/recirculating flow in the IVC are observed superior to the bilateral renal vein inflows, and high flow velocities and elevated shear stresses are observed in the vicinity of renal inflow. Spherical thrombi induce stagnant and/or recirculating flow downstream of the thrombus. Placement of the TrapEase filter in the suprarenal vein position resulted in a large area of low shear stress/stagnant flow within the filter just downstream of thrombus trapped in the upstream trapping position. Filter position with respect to renal vein inflow influences the hemodynamics of filter trapping. Placement of the TrapEase filter in a suprarenal location may be thrombogenic with redundant areas of stagnant/recirculating flow and low shear stress along the caval wall due to the upstream trapping position and the naturally occurring region of stagnant flow from the renal veins. Infrarenal vein placement of IVC filters in a near juxtarenal position with the downstream cone near the renal vein inflow likely confers increased levels of mechanical lysis of trapped thrombi due to increased shear stress from renal vein inflow.

  15. STEPS: a grid search methodology for optimized peptide identification filtering of MS/MS database search results.

    Science.gov (United States)

    Piehowski, Paul D; Petyuk, Vladislav A; Sandoval, John D; Burnum, Kristin E; Kiebel, Gary R; Monroe, Matthew E; Anderson, Gordon A; Camp, David G; Smith, Richard D

    2013-03-01

    For bottom-up proteomics, there are wide variety of database-searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid-search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection--referred to as STEPS--utilizes user-defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal "parameter set" for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true-positive identifications are demonstrated using datasets derived from immunoaffinity-depleted blood serum and a bacterial cell lysate, two common proteomics sample types.

  16. Optimizing nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Smets, Barth F.; Lee, Carson Odell

    Addition of phosphate or trace metals or better management e.g. in terms of anmonium load can improve the nitrification rate and efficiency in biological rapid sand filters.......Addition of phosphate or trace metals or better management e.g. in terms of anmonium load can improve the nitrification rate and efficiency in biological rapid sand filters....

  17. Moment-tensor solutions estimated using optimal filter theory: Global seismicity, 2001

    Science.gov (United States)

    Sipkin, S.A.; Bufe, C.G.; Zirbes, M.D.

    2003-01-01

    This paper is the 12th in a series published yearly containing moment-tensor solutions computed at the US Geological Survey using an algorithm based on the theory of optimal filter design (Sipkin, 1982 and Sipkin, 1986b). An inversion has been attempted for all earthquakes with a magnitude, mb or MS, of 5.5 or greater. Previous listings include solutions for earthquakes that occurred from 1981 to 2000 (Sipkin, 1986b; Sipkin and Needham, 1989, Sipkin and Needham, 1991, Sipkin and Needham, 1992, Sipkin and Needham, 1993, Sipkin and Needham, 1994a and Sipkin and Needham, 1994b; Sipkin and Zirbes, 1996 and Sipkin and Zirbes, 1997; Sipkin et al., 1998, Sipkin et al., 1999, Sipkin et al., 2000a, Sipkin et al., 2000b and Sipkin et al., 2002).The entire USGS moment-tensor catalog can be obtained via anonymous FTP at ftp://ghtftp.cr.usgs.gov. After logging on, change directory to “momten”. This directory contains two compressed ASCII files that contain the finalized solutions, “mt.lis.Z” and “fmech.lis.Z”. “mt.lis.Z” contains the elements of the moment tensors along with detailed event information; “fmech.lis.Z” contains the decompositions into the principal axes and best double-couples. The fast moment-tensor solutions for more recent events that have not yet been finalized and added to the catalog, are gathered by month in the files “jan01.lis.Z”, etc. “fmech.doc.Z” describes the various fields.

  18. Towards an optimal sampling of peculiar velocity surveys for Wiener Filter reconstructions

    Science.gov (United States)

    Sorce, Jenny G.; Hoffman, Yehuda; Gottlöber, Stefan

    2017-06-01

    The Wiener Filter (WF) technique enables the reconstruction of density and velocity fields from observed radial peculiar velocities. This paper aims at identifying the optimal design of peculiar velocity surveys within the WF framework. The prime goal is to test the dependence of the reconstruction quality on the distribution and nature of data points. Mock data sets, extending to 250 h-1 Mpc, are drawn from a constrained simulation that mimics the local Universe to produce realistic mock catalogues. Reconstructed fields obtained with these mocks are compared to the reference simulation. Comparisons, including residual distributions, cell-to-cell and bulk velocities, imply that the presence of field data points is essential to properly measure the flows. The fields reconstructed from mocks that consist only of galaxy cluster data points exhibit poor-quality bulk velocities. In addition, the reconstruction quality depends strongly on the grouping of individual data points into single points to suppress virial motions in high-density regions. Conversely, the presence of a Zone of Avoidance hardly affects the reconstruction. For a given number of data points, a uniform sample does not score any better than a sample with decreasing number of data points with the distance. The best reconstructions are obtained with a grouped survey containing field galaxies: assuming no error, they differ from the simulated field by less than 100 km s-1 up to the extreme edge of the catalogues or up to a distance of three times the mean distance of data points for non-uniform catalogues. The overall conclusions hold when errors are added.

  19. Nature-inspired optimization of quasicrystalline arrays and all-dielectric optical filters and metamaterials

    Science.gov (United States)

    Namin, Frank Farhad A.

    (photonic resonance) and the plasmonic response of the spheres (plasmonic resonance). In particular the couplings between the photonic and plasmonic modes are studied. In periodic arrays this coupling leads to the formation of a so called photonic-plasmonic hybrid mode. The formation of hybrid modes is studied in quasicrystalline arrays. Quasicrystalline structures in essence possess several periodicities which in some cases can lead to the formation of multiple hybrid modes with wider bandwidths. It is also demonstrated that the performance of these arrays can be further enhanced by employing a perturbation method. The second property considered is local field enhancements in quasicrystalline arrays of gold nanospheres. It will be shown that despite a considerably smaller filling factor quasicrystalline arrays generate larger local field enhancements which can be even further enhanced by optimally placing perturbing spheres within the prototiles that comprise the aperiodic arrays. The second thrust of research in this dissertation focuses on designing all-dielectric filters and metamaterial coatings for the optical range. In higher frequencies metals tend to have a high loss and thus they are not suitable for many applications. Hence dielectrics are used for applications in optical frequencies. In particular we focus on designing two types of structures. First a near-perfect optical mirror is designed. The design is based on optimizing a subwavelength periodic dielectric grating to obtain appropriate effective parameters that will satisfy the desired perfect mirror condition. Second, a broadband anti-reflective all-dielectric grating with wide field of view is designed. The second design is based on a new computationally efficient genetic algorithm (GA) optimization method which shapes the sidewalls of the grating based on optimizing the roots of polynomial functions.

  20. A performance optimized architecture of deblocking filter for H.264/AVC

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The in-loop deblocking filter is one of the complex parts in H.264/AVC. It has such a large amount of computation that almost all the pixels in all the frames are involved in the worst case. In this paper, a fast deblocking filter architecture is proposed, and it can effectively save the operating time. In the proposed architecture, two 1-D filters are introduced so that the vertical filtering and the horizontal filtering can be performed at the same time, Only 120 cycles are needed for a macroblock. Our architecture is also a memory efficient one, and only one 4×4 pixels register, one 4×4 transpose array and one 16×32 b two-port (SRAM) are used as buffers in the filtering process. The simulation and synthesis results show that, with almost the same or even smaller area than some 1-D filter based architectures before, the proposed one can save more than 40% processing time. The architecture is suitable for real-time applications and can easily achieve the requirement of processing real-time video in 1080HD (high definition format, 1 920×1 088@30 fps) at 100 MHz.

  1. Optimization of a Segmented Filter with a New Error Diffusion Approach

    Institute of Scientific and Technical Information of China (English)

    Ayman; Al; Falou; Marwa; ELBouz

    2003-01-01

    The segmented filters, based on spectral cutting, proved their efficiency for the multi-correlation. In this article we propose an optimisation of this cutting according to a new error diffusion method.

  2. Optimal features selection based on circular Gabor filters and RSE in texture segmentation

    Science.gov (United States)

    Wang, Qiong; Liu, Jian; Tian, Jinwen

    2007-12-01

    This paper designs the circular Gabor filters incorporating into the human visual characteristics, and the concept of mutual information entropy in rough set is introduced to evaluate the effect of the features extracted from different filters on clustering, redundant features are got rid of, Experimental results indicate that the proposed algorithm outperforms conventional approaches in terms of both objective measurements and visual evaluation in texture segmentation.

  3. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  4. Optimal adaptive focusing through heterogeneous media with the minimally invasive inverse filter.

    Science.gov (United States)

    Vignon, François; de Rosny, Julien; Aubry, Jean-François; Fink, Mathias

    2007-11-01

    The inverse filter is a technique used to adaptively focus waves through heterogeneous media. It is based on the inversion of the Green's functions matrix between the M transducers of a focusing array and N control points in the focal area. The inverse filter minimizes the pressure deposited around the focal point. However it is highly invasive, requiring the presence of N transducers or hydrophones in the focal area at the control points' locations to measure the Green's functions. This paper presents a way of reaching the inverse filter's focusing quality with a minimally invasive setup: only one transducer (at the desired focal location) is needed. This minimally invasive inverse filter takes advantage of the fact all the information about the propagation medium can be retrieved from the signals backscattered by the medium towards the focusing array, if the propagation medium is lossless. A numerical simulation is performed to test this minimally invasive inverse filter through a scattering, lossless medium. The focusing quality equals the conventional, highly invasive inverse filter's. The average spatial and temporal contrast is increased by up to 10 dB compared to the time reversal focusing.

  5. GASDRA: Galaxy Spectrum Dynamic Range Analysis for Photometric Redshift Filter Partition Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Sanchez, E.; Sevilla, I.; Castilla, J.; Ponce, R.; Sanchez, F. J.

    2012-04-11

    The photometric redshift is an active area of research. It is becoming the preferred method for redshift measurement above spectroscopy one for large surveys. In these surveys, the requirement in redshift precision is relaxed in benefit of obtaining the measurements of large number of galaxies. One of the more relevant decisions to be taken in the design of a photometric redshift experiment is the number of filters since it affects deeply to the precision and survey time. Currently, there is not a clear method for evaluating the impact in both precision and exposure time of a determined filter partition set and usually it is determined by detailed simulations on the behavior of photo-z algorithms. In this note we describe GASDRA, a new method for extracting the minimal signal to noise requirement, depending on the number of filters needed for preserving the filtered spectrum shape, and hence to make feasible the spectrum identification. The application of this requirement guaranties a determined precision in the spectrum measurement. Although it cannot be translated directly to absolute photometric redshift error, it does provide a method for comparing the relative precision achieved in the spectrum representation by different sets of filters. We foresee that this relative precision is close related to photo-z error. In addition, we can evaluate the impact in the exposure time of any filter partition set with respect to other. (Author) 11 refs.

  6. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Directory of Open Access Journals (Sweden)

    Carlos Pozo

    Full Text Available Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study

  7. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Science.gov (United States)

    Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Sorribas, Albert; Jiménez, Laureano

    2012-01-01

    Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the

  8. Spectral optimization for measuring electron density by the dual-energy computed tomography coupled with balanced filter method.

    Science.gov (United States)

    Saito, Masatoshi

    2009-08-01

    Dual-energy computed tomography (DECT) has the potential for measuring electron density distribution in a human body to predict the range of particle beams for treatment planning in proton or heavy-ion radiotherapy. However, thus far, a practical dual-energy method that can be used to precisely determine electron density for treatment planning in particle radiotherapy has not been developed. In this article, another DECT technique involving a balanced filter method using a conventional x-ray tube is described. For the spectral optimization of DECT using balanced filters, the author calculates beam-hardening error and air kerma required to achieve a desired noise level in electron density and effective atomic number images of a cylindrical water phantom with 50 cm diameter. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimized parameters were applied to cases with different phantom diameters ranging from 5 to 50 cm for the calculations. The author predicts that the optimal combination of tube voltages would be 80 and 140 kV with Tb/Hf and Bi/Mo filter pairs for the 50-cm-diameter water phantom. When a single phantom calibration at a diameter of 25 cm was employed to cover all phantom sizes, maximum absolute beam-hardening errors were 0.3% and 0.03% for electron density and effective atomic number, respectively, over a range of diameters of the water phantom. The beam-hardening errors were 1/10 or less as compared to those obtained by conventional DECT, although the dose was twice that of the conventional DECT case. From the viewpoint of beam hardening and the tube-loading efficiency, the present DECT using balanced filters would be significantly more effective in measuring the electron density than the conventional DECT. Nevertheless, further developments of low-exposure imaging technology should be necessary as well as x-ray tubes with higher outputs to apply DECT coupled with the

  9. INEL BNCT Research Program Annual Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1994-08-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy Research Program for calendar year 1993. Contributions from all the principal investigators are included, covering chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, boron drug analysis), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (tissue and efficacy studies of small and large animal models). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented. Results of 21 spontaneous-tumor-bearing dogs that have been treated with boron neutron capture therapy at the Brookhaven National Laboratory are updated. Boron-containing drug purity verification is discussed in some detail. Advances in magnetic resonance imaging of boron in vivo are discussed. Several boron-carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Measurement of the epithermal-neutron flux of the Petten (The Netherlands) High Flux Reactor beam (HFB11B), and comparison to predictions are shown.

  10. Optimal use of conservation and accessibility filters in microRNA target prediction.

    Directory of Open Access Journals (Sweden)

    Ray M Marín

    Full Text Available It is generally accepted that filtering microRNA (miRNA target predictions by conservation or by accessibility can reduce the false discovery rate. However, these two strategies are usually not exploited in a combined and flexible manner. Here, we introduce PACCMIT, a flexible method that filters miRNA binding sites by their conservation, accessibility, or both. The improvement in performance obtained with each of these three filters is demonstrated on the prediction of targets for both i highly and ii weakly conserved miRNAs, i.e., in two scenarios in which the miRNA-target interactions are subjected to different evolutionary pressures. We show that in the first scenario conservation is a better filter than accessibility (as both sensitivity and precision are higher among the top predictions and that the combined filter improves performance of PACCMIT even further. In the second scenario, on the other hand, the accessibility filter performs better than both the conservation and combined filters, suggesting that the site conservation is not equally effective in rejecting false positive predictions for all miRNAs. Regarding the quality of the ranking criterion proposed by Robins and Press and used in PACCMIT, it is shown that top ranking interactions correspond to more downregulated proteins than do the lower ranking interactions. Comparison with several other target prediction algorithms shows that the ranking of predictions provided by PACCMIT is at least as good as the ranking generated by other conservation-based methods and considerably better than the energy-based ranking used in other accessibility-based methods.

  11. Optimization of the filter parameters in (99m)Tc myocardial perfusion SPECT studies: the formulation of flowchart.

    Science.gov (United States)

    Shibutani, Takayuki; Onoguchi, Masahisa; Yamada, Tomoki; Kamida, Hiroki; Kunishita, Kohei; Hayashi, Yuuki; Nakajima, Tadashi; Kinuya, Seigo

    2016-06-01

    Myocardial perfusion single photon emission computed tomography (SPECT) is typically subject to a variation in image quality due to the use of different acquisition protocols, image reconstruction parameters and image display settings by each institution. One of the principal image reconstruction parameters is the Butterworth filter cut-off frequency, a parameter strongly affecting the quality of myocardial images. The objective of this study was to formulate a flowchart for the determination of the optimal parameters of the Butterworth filter for filtered back projection (FBP), ordered subset expectation maximization (OSEM) and collimator-detector response compensation OSEM (CDR-OSEM) methods using the evaluation system of the myocardial image based on technical grounds phantom. SPECT studies were acquired for seven simulated defects where the average counts of the normal myocardial components of 45° left anterior oblique projections were approximately 10-120 counts/pixel. These SPECT images were then reconstructed by FBP, OSEM and CDR-OSEM methods. Visual and quantitative assessment of short axis images were performed for the defect and normal parts. Finally, we formulated a flowchart indicating the optimal image processing procedure for SPECT images. Correlation between normal myocardial counts and the optimal cut-off frequency could be represented as a regression expression, which had high or medium coefficient of determination. We formulated the flowchart in order to optimize the image reconstruction parameters based on a comprehensive assessment, which enabled us to perform objectively processing. Furthermore, the usefulness of image reconstruction using the flowchart was demonstrated by a clinical case.

  12. Numerical Investigation and Optimization of SBS-Based Slow-Light Using Filtered Incoherent Pump

    Institute of Scientific and Technical Information of China (English)

    ZHENG Di; PAN Wei; YAN Lian-Shan; LUO Bin; ZOU Xi-Hua; WEN Kun-Hua; JIANG Ning

    2009-01-01

    The performance of stimulated Brillouin scattering(SBS)-based slow light using a novel spectrally-sliced broad band incoherent pump source is numerically studied.The profile of the pump-power spectrum is determined by the transmission spectra of the optical filter followed by the polarized broadband incoherent pump source.We also investigate the performance of Gaussian-type and super-Gaussian-type filtering under different spectrally-sliced bandwidths and pump power levels for 2.5 Gbit/s return-to-zero pulse(50% duty-cycle).The pulse broadening is characterized by the full width of half maximum(FWHM)and the rms pulse width,respectively.However,the results obtained by the two kinds of measurement methods deviate from each other with increasing pump power.Compared with the regular Gaussian-type filtering,the pulse broadening can be significantly reduced using super-Gaussian-type filtering at the cost of a small reduction in delay time.Furthermore,the maximum improvement in pulse broadening of △B_(FWHM) = 28.4% and △B_(RMS)= 10.4% is achieved by using a five-order super-Gaussian-type filter and a pump power of 500mw.

  13. Target Tracking Approximation Algorithms with Particle Filter Optimization and Fault-Tolerant Analysis in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    2012-05-01

    Full Text Available In order to process target tracking approximation with unknown motion state models beforehand in a two-dimensional field of binary proximity sensors, the algorithms based on cost functions of particle filters and near-linear curve simple optimization are proposed in this paper. Through moving target across detecting intersecting fields of sensor nodes sequentially, cost functions are introduced to solve target tracking approximation and velocity estimation which is not similar to traditional particle filters that rely on probabilistic assumptions about the motion states. Then a near-linear curve geometric approach is used to simplify and easily describe target trajectories that are below a certain error measure. Because there maybe some sensor nodes invalid in practice, so a fault-tolerant detection is applied to avoid the nodes’ reporting fault and also improve accuracy of tracking at the same time. The validity of our algorithms is demonstrated through simulation results.

  14. Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds

    Science.gov (United States)

    Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.

    2017-06-26

    Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased

  15. Potential of boron neutron capture therapy (BNCT) for malignant peripheral nerve sheath tumors (MPNST).

    Science.gov (United States)

    Fujimoto, Takuya; Andoh, Tooru; Sudo, Tamotsu; Fujita, Ikuo; Fukase, Naomasa; Takeuchi, Tamotsu; Sonobe, Hiroshi; Inoue, Masayoshi; Hirose, Tkanori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Kawamoto, Teruya; Fukumori, Yoshinobu; Yamamoto, Satomi; Atagi, Shinji; Sakurai, Yoshinori; Kurosaka, Masahiro; Ono, Koji; Ichikawa, Hideki; Suzuki, Minoru

    2015-12-01

    Malignant peripheral nerve sheath tumors (MPNST) are relatively rare neoplasms with poor prognosis. At present there is no effective treatment for MPNST other than surgical resection. Nonetheless, the anti-tumor effect of boron neutron capture therapy (BNCT) was recently demonstrated in two patients with MPNST. Subsequently, tumor-bearing nude mice subcutaneously transplanted with a human MPNST cell line were injected with p-borono-L-phenylalanine (L-BPA) and subjected to BNCT. Pathological studies then revealed that the MPNST cells were selectively destroyed by BNCT.

  16. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  17. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  18. Simulation of RF data with tissue motion for optimizing stationary echo canceling filters

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Torp-Pedersen, S.; Jensen, Jørgen Arendt

    2003-01-01

    Blood velocity estimation is complicated by the strong echoes received from tissue surrounding the vessel under investigation. Proper blood velocity estimation necessitates use of a filter for separation of the different signal components. Development of these filters and new estimators requires RF......-data, where the tissue component is known. In vivo RF-data does not have this property. Instead simulated data incorporating all relevant features of the measurement situation can be employed. One feature is the motion in the surrounding tissue induced by pulsation, heartbeat, and breathing. This study has...... developed models for the motions and incorporated them into the RF simulation program Field II, thereby obtaining realistic simulated data. A powerful tool for evaluation of different filters and estimators is then available. The model parameters can be varied according to the physical situation...

  19. A design study for an accelerator-based epithermal neutron beam for BNCT.

    Science.gov (United States)

    Allen, D A; Beynon, T D

    1995-05-01

    An achievable design concept for a boron neutron capture therapy (BNCT) facility, based on a high-current, low-energy proton accelerator, is described. Neutrons are produced within a thick natural lithium target, under bombardment from protons with an initial energy between 2.5 and 3.0 MeV. The proton current will be up to 10 mA. After gamma-ray filtering, the neutrons are partially moderated to epithermal energies within a heavy-water moderator, poisoned with 6Li to remove thermal neutrons. Monte Carlo modelling has been used to predict system performance in terms of neutron fluence rate and neutron and gamma-ray dose at the patient position. The relationship between the system performance and key parameters, such as proton energy, moderator depth and 6Li concentration, has been investigated. With a proton current of 10 mA, the facility is capable of providing a therapy beam with a useful neutron fluence rate of 10(9) cm-2 s-1 and a neutron dose per unit fluence of less than 6 x 10(-13) Gy cm2, with a gamma-ray contamination of the therapy beam of about 10(-13) Gy cm2.

  20. 优化FIR数字滤波器的FPGA实现%Implementation of Optimal FIR Filter Based on FPGA

    Institute of Scientific and Technical Information of China (English)

    邹兴宇; 程树英

    2011-01-01

    The traditional FIR digital filter was modified with the concept of increasing the speed and reducing the area. Taking into account of the characteristics of FPGA, the Booth Radix-2 algorithm multiplier and the fast adder were designed in the combination with CSA adder and a tree structure, and then the adder and multiplier were used successfully in the design of FIR digital filter.The coefficients of the filter were generated by Matlab. Simulation and synthesis results show that Booth algorithm multiplier and adder tree based on CSA algorithm not only meet the performance requirements of FIR digital filter but also optimize the area on the circuit and especially the speed, and the optimization is more evident when there are a large amount of data.%基于提高速度和减少面积的理念,对传统的FIR数字滤波器进行改良.考虑到FPGA的实现特点,研究并设计了采用Radix-2的Booth算法乘法器以及结合了CSA加法器和树型结构的快速加法器,并成功应用于FIR数字滤波器的设计中.滤波器的系数由Matlab设计产生.仿真和综合结果表明,Booth算法乘法嚣和CSA算法加法器树,在满足FIR数字滤波器的性能要求的同时,在电路实现面积上、尤其是速度上有明显的优化;并且当数据量越多时,优化也越明显.

  1. Gamma-Ray Dose Measurement with Radio-Photoluminescence Glass Dosimeter in Mixed Radiation Field for BNCT

    Science.gov (United States)

    Hiramatsu, K.; Yoshihashi, S.; Kusaka, S.; Sato, F.; Hoashi, E.; Murata, I.

    2017-09-01

    Accelerator based neutron sources (ABNS) are being developed as the next generation neutron irradiation system for BNCT. From the ABNS, unnecessary gamma-rays will be generated by neutron capture reactions, as well as fast neutrons. To control the whole-body radiation dose to the patient, measurement of gamma-ray dose in the irradiation room is necessary. In this study, the objective is to establish a method to measure gamma-ray dose separately in a neutron/gamma mixed field by using RPL glass dosimeter. For this purpose, we proposed a lead filter method which uses a pair of RPL glasses with and without a lead filter outside. In order to realize this method, the basic characteristics of glass dosimeter was verified in the gamma-ray field, before adapting it in the mixture field. From the result of the experiment using the lead filter, the simulation result especially for the case with a lead filter overestimated the absorbed does obtained from measurement. We concluded that the reason of the discrepancy is caused by existence of gradient of the dose distribution in the glass, and the difference of sensitivity to low-energy photon between measurement and theory.

  2. Optimization of the purification process of wine lees through anaerobic filter reactors. Optimizacion del proceso de depuracion de vinazas de vino mediante reactores tipo filtro anaerobio

    Energy Technology Data Exchange (ETDEWEB)

    Nebot Sanz, E.; Romero Garcia, L.I.; Quiroga Alonso, J.M.; Sales Marquez, D. (Departamento de Ingenieria Quimica, Universidad de Cadiz, Cadiz (Spain))

    1994-01-01

    In this work, the optimization of thermophilic anaerobic process, using Anaerobic Filter technology was studied. Feed of the Anaerobic Filter was wine-distillery wastewaters. The experiments developed were carried out at lab-scale downflow anaerobic filter reactors. Reactors were filled with a high porous plastic media (Flocor-R). The media support entities have a high surface/volume ratio. Test were run to determine the maximum organic load attainable in the system for wich both, the depurative efficiency and the methane production were optimum. Likewise, the effect of organic load on the anaerobic filter performance were studied. (Author) 15 refs. (Author)

  3. Single-Channel Noise Reduction using Unified Joint Diagonalization and Optimal Filtering

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Benesty, Jacob; Jensen, Jesper Rindom;

    2014-01-01

    In this paper, the important problem of single-channel noise reduction is treated from a new perspective. The problem is posed as a filtering problem based on joint diagonalization of the covariance matrices of the desired and noise signals. More specifically, the eigenvectors from the joint...... diagonalization corresponding to the least significant eigenvalues are used to form a filter, which effectively estimates the noise when applied to the observed signal. This estimate is then subtracted from the observed signal to form an estimate of the desired signal, i.e., the speech signal. In doing this, we...

  4. Design and optimization of fundamental mode filters based on long-period fiber gratings

    Science.gov (United States)

    Chen, Ming-Yang; Wei, Jin; Sheng, Yong; Ren, Nai-Fei

    2016-07-01

    A segment of long-period fiber grating (LPFG) that can selectively filter the fundamental mode in the few-mode optical fiber is proposed. By applying an appropriate chosen surrounding material and an apodized configuration of LPFG, high fundamental mode loss and low high-order core mode loss can be achieved simultaneously. In addition, we propose a method of cascading LPFGs with different periods to expand the bandwidth of the mode filter. Numerical simulation shows that the operating bandwidth of the cascade structure can be as large as 23 nm even if the refractive index of the surrounding liquid varies with the environment temperature.

  5. On Optimal Linear Filtering of Speech for Near-End Listening Enhancement

    DEFF Research Database (Denmark)

    Taal, Cees H.; Jensen, Jesper; Leijon, Arne

    2013-01-01

    In this letter the focus is on linear filtering of speech before degradation due to additive background noise. The goal is to design the filter such that the speech intelligibility index (SII) is maximized when the speech is played back in a known noisy environment. Moreover, a power constraint...... suboptimal. In this work we propose a nonlinear approximation of the SII which is accurate for all SNRs. Experiments show large intelligibility improvements with the proposed method over the unprocessed noisy speech and better performance than one state-of-the art method....

  6. Optimized FPGA Implementation of Multi-Rate FIR Filters Through Thread Decomposition

    Science.gov (United States)

    Kobayashi, Kayla N.; He, Yutao; Zheng, Jason X.

    2011-01-01

    Multi-rate finite impulse response (MRFIR) filters are among the essential signal-processing components in spaceborne instruments where finite impulse response filters are often used to minimize nonlinear group delay and finite precision effects. Cascaded (multistage) designs of MRFIR filters are further used for large rate change ratio in order to lower the required throughput, while simultaneously achieving comparable or better performance than single-stage designs. Traditional representation and implementation of MRFIR employ polyphase decomposition of the original filter structure, whose main purpose is to compute only the needed output at the lowest possible sampling rate. In this innovation, an alternative representation and implementation technique called TD-MRFIR (Thread Decomposition MRFIR) is presented. The basic idea is to decompose MRFIR into output computational threads, in contrast to a structural decomposition of the original filter as done in the polyphase decomposition. A naive implementation of a decimation filter consisting of a full FIR followed by a downsampling stage is very inefficient, as most of the computations performed by the FIR state are discarded through downsampling. In fact, only 1/M of the total computations are useful (M being the decimation factor). Polyphase decomposition provides an alternative view of decimation filters, where the downsampling occurs before the FIR stage, and the outputs are viewed as the sum of M sub-filters with length of N/M taps. Although this approach leads to more efficient filter designs, in general the implementation is not straightforward if the numbers of multipliers need to be minimized. In TD-MRFIR, each thread represents an instance of the finite convolution required to produce a single output of the MRFIR. The filter is thus viewed as a finite collection of concurrent threads. Each of the threads completes when a convolution result (filter output value) is computed, and activated when the first

  7. 基于背景最佳滤波尺度的红外图像复杂度评价准则∗%An evaluation criterion of infrared image complexity based on background optimal filter scale

    Institute of Scientific and Technical Information of China (English)

    侯旺; 梅风华; 陈国军; 邓喜文

    2015-01-01

    An evaluation of infrared image complexity is proposed based on the background optimal filtering to solve the problem that the traditional methods have given poor results in the background evaluation. Meanwhile, the optimal filtering scale for infrared image filtering can be given by this method, it will provide a guidance for optimal infrared image filtering. First, we generate the Gaussian simulated target and fuse it to the infrared image to obtain the real infrared image with the simulated target. Then, this image is filtered in different scales and the signal-to-noise ratio of the target after filtering is calculated. Finally, the maximal value of signal-to-noise ratio of the target is used as the background optimal filter scale, to evaluate the infrared image complexity. Besides, the infrared filtering scale is deduced by establishing the mathematic model, and then the mathematical expression of optimal filtering scale is obtained. A lot of experiments indicate that: 1) The mathematical expression of optimal filtering scale agrees with the experimental results. 2) The result of our method is better than that of the traditional methods based on information entropy. Because the optimal filtering scale is obtained by using our method, we can use this scale to filter the infrared image to effectively detect a small target. 3) When the scale of simulated target increases, the optimal filtering scale increases accordingly. So, when we calculate the infrared image complexity, the scale of simulated target must be the same. We can compare the infrared image complexity between different images. Moreover, the optimal filtering scale is independent of the intensity of simulated target. 4) The effect of Gaussian and Butterworth high-pass filter is better than that of the ideal high-pass filter in the proposed method. 5) The infrared image complexity can be analyzed by the proposed method effectively. Moreover, changes of different image contents can be analyzed by using

  8. An optimized item-based collaborative filtering recommendation algorithm based on item genre prediction

    Science.gov (United States)

    Zhang, De-Jia

    2009-07-01

    With the fast development of Internet, many systems have emerged in e-commerce applications to support the product recommendation. Collaborative filtering is one of the most promising techniques in recommender systems, providing personalized recommendations to users based on their previously expressed preferences in the form of ratings and those of other similar users. In practice, with the adding of user and item scales, user-item ratings are becoming extremely sparsity and recommender systems utilizing traditional collaborative filtering are facing serious challenges. To address the issue, this paper presents an approach to compute item genre similarity, through mapping each item with a corresponding descriptive genre, and computing similarity between genres as similarity, then make basic predictions according to those similarities to lower sparsity of the user-item ratings. After that, item-based collaborative filtering steps are taken to generate predictions. Compared with previous methods, the presented collaborative filtering employs the item genre similarity can alleviate the sparsity issue in the recommender systems, and can improve accuracy of recommendation.

  9. Optimization of the concrete delayed deformations by Kalman filter; Optimisation des deformations differees du beton par filtre de Kalman

    Energy Technology Data Exchange (ETDEWEB)

    Sebastien Massart [CERFACS / URA 1875, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, (France)

    2005-07-01

    Imperviousness of French nuclear power plants containments has to secure radioactive products confinement during incident or accident. Temporal evolution of containments is obtained through the numerical model Code Aster that purpose is to detect if some fissure could appear and as a consequence, imperviousness lost. In parallel, sensors are placed all around the containments to follow real time deformations. In this paper, Kalman filter analysis of an extensometer data is used to optimize eight parameters of the numerical model Code Aster. This method allows us to improve the concrete delayed behaviors modelization and supplies uncertainties to the forecast of the containment evolution. (author)

  10. Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Rasouli

    2012-09-01

    Full Text Available Introduction BNCT is an effective method to destroy brain tumoral cells while sparing the healthy tissues. The recommended flux for epithermal neutrons is 109 n/cm2s, which has the most effectiveness on deep-seated tumors. In this paper, it is indicated that using D-T neutron source and optimizing of Beam Shaping Assembly (BSA leads to treating brain tumors in a reasonable time where all IAEA recommended criteria are met. Materials and Methods The proposed BSA based on a D-T neutron generator consists of a neutron multiplier system, moderators, reflector, and collimator. The simulated Snyder head phantom is used to evaluate dose profiles in tissues due to the irradiation of designed beam. Monte Carlo Code, MCNP-4C, was used in order to perform these calculations.   Results The neutron beam associated with the designed and optimized BSA has an adequate epithermal flux at the beam port and neutron and gamma contaminations are removed as much as possible. Moreover, it was showed that increasing J/Φ, as a measure of beam directionality, leads to improvement of beam performance and survival of healthy tissues surrounding the tumor. Conclusion According to the simulation results, the proposed system based on D-T neutron source, which is suitable for in-hospital installations, satisfies all in-air parameters. Moreover, depth-dose curves investigate proper performance of designed beam in tissues. The results are comparable with the performances of other facilities.

  11. Construction of the WSU Epithermal Neutron Filter

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert; Nigg, David Waler; Tripard, G.

    2002-09-01

    Moderating material has been installed in the original thermal-neutron filter region of the Washington State University (WSU) TRIGA™ type reactor to produce an epithermal-neutron beam. Attention has been focused upon the development of a convenient, local, epithermal-neutron beam facility at WSU for collaborative Idaho National Engineering and Environmental Laboratory (INEEL)/WSU boron neutron capture therapy (BNCT) preclinical research and boronated pharmaceutical screening in cell and animal models. The design of the new facility was performed in a collaborative effort1,2 of WSU and INEEL scientists. This paper summarizes the physical assembly of this filter.

  12. Investigation of development and management of treatment planning systems for BNCT at foreign facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A new computational dosimetry system for BNCT: JCDS is developed by JAERI in order to carry out BNCT with epithermal neutron beam at present. The development and management situation of computational dosimetry system, which are developed and are used in BNCT facilities in foreign countries, were investigated in order to accurately grasp functions necessary for preparation of the treatment planning and its future subjects. In present state, 'SERA', which are developed by Idaho National Engineering and Environmental Laboratory (INEEL), is used in many BNCT facilities. Followings are necessary for development and management of the treatment planning system. (1) Reliability confirmation of system performance by verification as comparison examination of calculated value with actual experimental measured value. (2) Confirmation systems such as periodic maintenance for retention of the system quality. (3) The improvement system, which always considered relative merits and demerits with other computational dosimetry system. (4) The development of integrated system with patient setting. (author)

  13. Optimal discrimination and classification of neuronal action potential waveforms from multiunit, multichannel recordings using software-based linear filters.

    Science.gov (United States)

    Gozani, S N; Miller, J P

    1994-04-01

    We describe advanced protocols for the discrimination and classification of neuronal spike waveforms within multichannel electrophysiological recordings. The programs are capable of detecting and classifying the spikes from multiple, simultaneously active neurons, even in situations where there is a high degree of spike waveform superposition on the recording channels. The protocols are based on the derivation of an optimal linear filter for each individual neuron. Each filter is tuned to selectively respond to the spike waveform generated by the corresponding neuron, and to attenuate noise and the spike waveforms from all other neurons. The protocol is essentially an extension of earlier work [1], [13], [18]. However, the protocols extend the power and utility of the original implementations in two significant respects. First, a general single-pass automatic template estimation algorithm was derived and implemented. Second, the filters were implemented within a software environment providing a greatly enhanced functional organization and user interface. The utility of the analysis approach was demonstrated on samples of multiunit electrophysiological recordings from the cricket abdominal nerve cord.

  14. Identification of a Typical CSTR Using Optimal Focused Time Lagged Recurrent Neural Network Model with Gamma Memory Filter

    Directory of Open Access Journals (Sweden)

    S. N. Naikwad

    2009-01-01

    Full Text Available A focused time lagged recurrent neural network (FTLR NN with gamma memory filter is designed to learn the subtle complex dynamics of a typical CSTR process. Continuous stirred tank reactor exhibits complex nonlinear operations where reaction is exothermic. It is noticed from literature review that process control of CSTR using neuro-fuzzy systems was attempted by many, but optimal neural network model for identification of CSTR process is not yet available. As CSTR process includes temporal relationship in the input-output mappings, time lagged recurrent neural network is particularly used for identification purpose. The standard back propagation algorithm with momentum term has been proposed in this model. The various parameters like number of processing elements, number of hidden layers, training and testing percentage, learning rule and transfer function in hidden and output layer are investigated on the basis of performance measures like MSE, NMSE, and correlation coefficient on testing data set. Finally effects of different norms are tested along with variation in gamma memory filter. It is demonstrated that dynamic NN model has a remarkable system identification capability for the problems considered in this paper. Thus FTLR NN with gamma memory filter can be used to learn underlying highly nonlinear dynamics of the system, which is a major contribution of this paper.

  15. Orientation Capture of a Walker’s Leg Using Inexpensive Inertial Sensors with Optimized Complementary Filter Design

    Directory of Open Access Journals (Sweden)

    Sebastian Andersson

    2015-01-01

    Full Text Available Accelerometers and gyroscope are often referred to as inertial sensors. They detect movement and are used for motion tracking systems in many fields. In recent years they have become much smaller, lighter and cheaper which makes them attractive for use in consumer electronics. The goal of this research is to use all these advantages to create a cheap, low cost and accurate motion tracking system. The system that will be developed is using two pairs of accelerometer + gyroscope sensors which communicates with an iOS device using BLE. The sensors are attached to a persons leg to capture the orientation of the leg while walking or running. Studying the movements of a persons leg can be useful regarding both performance and health aspects. To create the system, usage of inertial sensors and how to combine their data using the complementary filter have been studied. Further, several experiments were made to optimize the filter design for this kind of movement. The results shows how the orientation estimation differs in accuracy depending on different values of how the filter is designed. However, by using the right values, a fairly accurate orientation of the leg can be estimated which is proved by the simple visualization of the iOS application.

  16. Comfort filters in a total energy demand optimization method for the passive design of a building

    OpenAIRE

    2015-01-01

    The effective design of sustainable buildings results from an accurate optimization process of all the interrelated variables. The authors developed a replicable methodology for the optimization of the building envelope design. Following a previous work, where in the pre-processing and the optimization phases the minimization of the total energy demand is performed by coupling TRNSYS® with GenOpt®, this paper is focused on the post-processing phase of the methodology, in which the results are...

  17. Exploration of Optimization Options for Increasing Performance of a GPU Implementation of a Three-dimensional Bilateral Filter

    Energy Technology Data Exchange (ETDEWEB)

    Bethel, E. Wes; Bethel, E. Wes

    2012-01-06

    This report explores using GPUs as a platform for performing high performance medical image data processing, specifically smoothing using a 3D bilateral filter, which performs anisotropic, edge-preserving smoothing. The algorithm consists of a running a specialized 3D convolution kernel over a source volume to produce an output volume. Overall, our objective is to understand what algorithmic design choices and configuration options lead to optimal performance of this algorithm on the GPU. We explore the performance impact of using different memory access patterns, of using different types of device/on-chip memories, of using strictly aligned and unaligned memory, and of varying the size/shape of thread blocks. Our results reveal optimal configuration parameters for our algorithm when executed sample 3D medical data set, and show performance gains ranging from 30x to over 200x as compared to a single-threaded CPU implementation.

  18. Voxel model in BNCT treatment planning: performance analysis and improvements

    Science.gov (United States)

    González, Sara J.; Carando, Daniel G.; Santa Cruz, Gustavo A.; Zamenhof, Robert G.

    2005-02-01

    In recent years, many efforts have been made to study the performance of treatment planning systems in deriving an accurate dosimetry of the complex radiation fields involved in boron neutron capture therapy (BNCT). The computational model of the patient's anatomy is one of the main factors involved in this subject. This work presents a detailed analysis of the performance of the 1 cm based voxel reconstruction approach. First, a new and improved material assignment algorithm implemented in NCTPlan treatment planning system for BNCT is described. Based on previous works, the performances of the 1 cm based voxel methods used in the MacNCTPlan and NCTPlan treatment planning systems are compared by standard simulation tests. In addition, the NCTPlan voxel model is benchmarked against in-phantom physical dosimetry of the RA-6 reactor of Argentina. This investigation shows the 1 cm resolution to be accurate enough for all reported tests, even in the extreme cases such as a parallelepiped phantom irradiated through one of its sharp edges. This accuracy can be degraded at very shallow depths in which, to improve the estimates, the anatomy images need to be positioned in a suitable way. Rules for this positioning are presented. The skin is considered one of the organs at risk in all BNCT treatments and, in the particular case of cutaneous melanoma of extremities, limits the delivered dose to the patient. Therefore, the performance of the voxel technique is deeply analysed in these shallow regions. A theoretical analysis is carried out to assess the distortion caused by homogenization and material percentage rounding processes. Then, a new strategy for the treatment of surface voxels is proposed and tested using two different irradiation problems. For a parallelepiped phantom perpendicularly irradiated with a 5 keV neutron source, the large thermal neutron fluence deviation present at shallow depths (from 54% at 0 mm depth to 5% at 4 mm depth) is reduced to 2% on average

  19. INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1997-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of {sup 10}B enriched decaborane.

  20. Optimal Linear Filters. 2. Pulse Time Measurements in the Presence of Noise

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, K.

    1966-09-15

    The problem of calculating the maximum available timing information contained in nuclear pulses in the presence of noise is solved theoretically. Practical experiments show that the theoretical values can be obtained by very simple, but untraditional, means. An output pulse from a practical filter connected to a charge sensitive amplifier with a Ge(Li) detector showed a rise time of 30 ns and a noise level of less than 5 keV. The time jitter measured was inversely proportional to the pulse height and less than 30 ns for 10 keV pulses. With the timing filter shown solid state detectors can be classified somewhere between Nal scintillators and organic scintillators with respect to time resolution.

  1. Design of FIR digital filters for pulse shaping and channel equalization using time-domain optimization

    Science.gov (United States)

    Houts, R. C.; Vaughn, G. L.

    1974-01-01

    Three algorithms are developed for designing finite impulse response digital filters to be used for pulse shaping and channel equalization. The first is the Minimax algorithm which uses linear programming to design a frequency-sampling filter with a pulse shape that approximates the specification in a minimax sense. Design examples are included which accurately approximate a specified impulse response with a maximum error of 0.03 using only six resonators. The second algorithm is an extension of the Minimax algorithm to design preset equalizers for channels with known impulse responses. Both transversal and frequency-sampling equalizer structures are designed to produce a minimax approximation of a specified channel output waveform. Examples of these designs are compared as to the accuracy of the approximation, the resultant intersymbol interference (ISI), and the required transmitted energy. While the transversal designs are slightly more accurate, the frequency-sampling designs using six resonators have smaller ISI and energy values.

  2. Optimal Attitude Estimation and Filtering Without Using Local Coordinates Part I: Uncontrolled and Deterministic Attitude Dynamics

    OpenAIRE

    Sanyal, Amit K.

    2005-01-01

    There are several attitude estimation algorithms in existence, all of which use local coordinate representations for the group of rigid body orientations. All local coordinate representations of the group of orientations have associated problems. While minimal coordinate representations exhibit kinematic singularities for large rotations, the quaternion representation requires satisfaction of an extra constraint. This paper treats the attitude estimation and filtering problem as an optimizati...

  3. System optimization of a field-widened Michelson interferometric spectral filter for high spectral resolution lidar

    Science.gov (United States)

    Liu, Dong; Miller, Ian; Hostetler, Chris; Cook, Anthony; Hair, Johnathan

    2011-06-01

    High spectral resolution lidars (HSRLs) have recently shown great value in aerosol measurements form aircraft and are being called for in future space-based aerosol remote sensing applications. A quasi-monolithic field-widened, off-axis Michelson interferometer had been developed as the spectral discrimination filter for an HSRL currently under development at NASA Langley Research Center (LaRC). The Michelson filter consists of a cubic beam splitter, a solid arm and an air arm. The input light is injected at 1.5° off-axis to provide two output channels: standard Michelson output and the reflected complementary signal. Piezo packs connect the air arm mirror to the main part of the filter that allows it to be tuned within a small range. In this paper, analyses of the throughput wavephase, locking error, AR coating, and tilt angle of the interferometer are described. The transmission ratio for monochromatic light at the transmitted wavelength is used as a figure of merit for assessing each of these parameters.

  4. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  5. Pareto optimality between width of central lobe and peak sidelobe intensity in the far-field pattern of lossless phase-only filters for enhancement of transverse resolution.

    Science.gov (United States)

    Mukhopadhyay, Somparna; Hazra, Lakshminarayan

    2015-11-01

    Resolution capability of an optical imaging system can be enhanced by reducing the width of the central lobe of the point spread function. Attempts to achieve the same by pupil plane filtering give rise to a concomitant increase in sidelobe intensity. The mutual exclusivity between these two objectives may be considered as a multiobjective optimization problem that does not have a unique solution; rather, a class of trade-off solutions called Pareto optimal solutions may be generated. Pareto fronts in the synthesis of lossless phase-only pupil plane filters to achieve superresolution with prespecified lower limits for the Strehl ratio are explored by using the particle swarm optimization technique.

  6. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter

    Science.gov (United States)

    Gorsevski, Pece V.; Jankowski, Piotr

    2010-08-01

    The Kalman recursive algorithm has been very widely used for integrating navigation sensor data to achieve optimal system performances. This paper explores the use of the Kalman filter to extend the aggregation of spatial multi-criteria evaluation (MCE) and to find optimal solutions with respect to a decision strategy space where a possible decision rule falls. The approach was tested in a case study in the Clearwater National Forest in central Idaho, using existing landslide datasets from roaded and roadless areas and terrain attributes. In this approach, fuzzy membership functions were used to standardize terrain attributes and develop criteria, while the aggregation of the criteria was achieved by the use of a Kalman filter. The approach presented here offers advantages over the classical MCE theory because the final solution includes both the aggregated solution and the areas of uncertainty expressed in terms of standard deviation. A comparison of this methodology with similar approaches suggested that this approach is promising for predicting landslide susceptibility and further application as a spatial decision support system.

  7. 集成滤波器优化设计新方法%A New Method for Optimization Design of Integrated Filter

    Institute of Scientific and Technical Information of China (English)

    张瑜; 陈丹丹; 赵俊杰; 张磊昂

    2012-01-01

    In case to high sensitivity and wild fluctuaion problems which appeared in the design procedure of integrated filter, the study takes LC ladcler-lype filter as design prototype and optimizes the transfer function by applying the design margin which is generated by rounding the filter order to the nearest integer. Ry optimizing the the analytical formula for the low-pass filler design, it could receive the best analytical formulas of filter design. By utilizing Bruton transformation, it could transfer analog IX ladder-type filter into low-sensitivity integrated active filter. Simulation results .show that integrated filter which obtained by optimized design method not only has the advantage of low sensitivity as LC ladder-type filter, but also could improve the bandpass fluctuating range of filter without any increase in filter order number.%针对集成滤波器设计中灵敏度高,波动大的问题,以LC梯形滤波器为设计原型,利用滤波器设计阶数上取整后带来的设计余量优化传递函数.通过对低通滤波器设计解析公式的优化,得到了滤波器设计的最佳解析公式.借助Bruton变换,可使模拟LC梯形滤波器转化成低灵敏度集成有源滤波器.仿真实验表明,利用该优化设计方法得到的集成滤波器,不仅具有LC梯形滤波器元件变化灵敏度低的优点,又在不增加滤波器阶数的情况下,改善了滤波器通带波动范围.

  8. Complexion of Boric Acid with 2-Deoxy-D-glucose (DG) as a novel boron carrier for BNCT

    OpenAIRE

    Akan, Zafer; Demiroglu, Hasan; Avcibasi, Ugur; Oto, Gokhan; Ozdemir, Hulya; Deniz, Sabahattin; Basak, Ali Sadi

    2014-01-01

    Objective: Boron neutron capture therapy (BNCT) is an intensive research area for cancer researchers. Especially the side effects and inabilities of conventional therapies in some cases, directs researchers to find out a new cancer therapy methods such as BNCT. One of three important problem of BNCT is targeting of boron to tumor tissue. Borono Phenyl Alanine (BPA) and Borono Sodium Borocaptate (BSH) are already using in clinical studies as boron carriers. New boron carriers are searching fo...

  9. INEL BNCT Research Program, September--October 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-12-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotain. carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophonylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  10. INEL BNCT Research Program, January/February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1993-04-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  11. INEL BNCT Research Program, March/April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murino screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronopheoylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  12. TIDBIT - the INEL database of BNCT information and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, C.A.

    1995-11-01

    The INEL Database of BNCT Information and Treatment (TIDBIT) has been under development for several years. Late in 1993, a new software development team took over the project and did and assessment of the current implementation status, and determined that the user interface was unsatisfactory for the expected users and that the data structures were out of step with the current state of reality. The team evaluated several tools that would improve the user interface to make the system easier to use. Uniface turned out to be the product of choice. During 1994, TIDBIT got its name, underwent a complete change of appearance, had a major overhaul to the data structures that support the application, and system documentation was begun. A prototype of the system was demonstrated in September 1994.

  13. INEL BNCT research program, July--August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-10-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  14. INEL BNCT Research Program, May/June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (IBPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  15. INEL BNCT Research Program, March/April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murino screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronopheoylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  16. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  17. SVD-Based Optimal Filtering Technique for Noise Reduction in Hearing Aids Using Two Microphones

    Directory of Open Access Journals (Sweden)

    Moonen Marc

    2002-01-01

    Full Text Available We introduce a new SVD-based (Singular value decomposition strategy for noise reduction in hearing aids. This technique is evaluated for noise reduction in a behind-the-ear (BTE hearing aid where two omnidirectional microphones are mounted in an endfire configuration. The behaviour of the SVD-based technique is compared to a two-stage adaptive beamformer for hearing aids developed by Vanden Berghe and Wouters (1998. The evaluation and comparison is done with a performance metric based on the speech intelligibility index (SII. The speech and noise signals are recorded in reverberant conditions with a signal-to-noise ratio of and the spectrum of the noise signals is similar to the spectrum of the speech signal. The SVD-based technique works without initialization nor assumptions about a look direction, unlike the two-stage adaptive beamformer. Still, for different noise scenarios, the SVD-based technique performs as well as the two-stage adaptive beamformer, for a similar filter length and adaptation time for the filter coefficients. In a diffuse noise scenario, the SVD-based technique performs better than the two-stage adaptive beamformer and hence provides a more flexible and robust solution under speaker position variations and reverberant conditions.

  18. SVD-Based Optimal Filtering Technique for Noise Reduction in Hearing Aids Using Two Microphones

    Science.gov (United States)

    Maj, Jean-Baptiste; Moonen, Marc; Wouters, Jan

    2002-12-01

    We introduce a new SVD-based (Singular value decomposition) strategy for noise reduction in hearing aids. This technique is evaluated for noise reduction in a behind-the-ear (BTE) hearing aid where two omnidirectional microphones are mounted in an endfire configuration. The behaviour of the SVD-based technique is compared to a two-stage adaptive beamformer for hearing aids developed by Vanden Berghe and Wouters (1998). The evaluation and comparison is done with a performance metric based on the speech intelligibility index (SII). The speech and noise signals are recorded in reverberant conditions with a signal-to-noise ratio of [InlineEquation not available: see fulltext.] and the spectrum of the noise signals is similar to the spectrum of the speech signal. The SVD-based technique works without initialization nor assumptions about a look direction, unlike the two-stage adaptive beamformer. Still, for different noise scenarios, the SVD-based technique performs as well as the two-stage adaptive beamformer, for a similar filter length and adaptation time for the filter coefficients. In a diffuse noise scenario, the SVD-based technique performs better than the two-stage adaptive beamformer and hence provides a more flexible and robust solution under speaker position variations and reverberant conditions.

  19. Non-Invasive Fetal Monitoring: A Maternal Surface ECG Electrode Placement-Based Novel Approach for Optimization of Adaptive Filter Control Parameters Using the LMS and RLS Algorithms.

    Science.gov (United States)

    Martinek, Radek; Kahankova, Radana; Nazeran, Homer; Konecny, Jaromir; Jezewski, Janusz; Janku, Petr; Bilik, Petr; Zidek, Jan; Nedoma, Jan; Fajkus, Marcel

    2017-05-19

    This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters (such as step size μ and filter order N) of LMS and RLS adaptive filters used for noninvasive fetal monitoring. The optimization algorithm is driven by considering the ECG electrode positions on the maternal body surface in improving the performance of these adaptive filters. The main criterion for optimal parameter selection was the Signal-to-Noise Ratio (SNR). We conducted experiments using signals supplied by the latest version of our LabVIEW-Based Multi-Channel Non-Invasive Abdominal Maternal-Fetal Electrocardiogram Signal Generator, which provides the flexibility and capability of modeling the principal distribution of maternal/fetal ECGs in the human body. Our novel algorithm enabled us to find the optimal settings of the adaptive filters based on maternal surface ECG electrode placements. The experimental results further confirmed the theoretical assumption that the optimal settings of these adaptive filters are dependent on the ECG electrode positions on the maternal body, and therefore, we were able to achieve far better results than without the use of optimization. These improvements in turn could lead to a more accurate detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to establish recommendations for standard electrode placement and find the optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing. Ultimately, diagnostic-grade fetal ECG signals would ensure the reliable detection of fetal hypoxia.

  20. Dose calculation and in-phantom measurement in BNCT using response matrix method.

    Science.gov (United States)

    Rahmani, Faezeh; Shahriari, Majid

    2011-12-01

    In-phantom measurement of physical dose distribution is very important for Boron Neutron Capture Therapy (BNCT) planning validation. If any changes take place in therapeutic neutron beam due to the beam shaping assembly (BSA) change, the dose will be changed so another group of simulations should be carried out for dose calculation. To avoid this time consuming procedure and speed up the dose calculation to help patients not wait for a long time, response matrix method was used. This procedure was performed for neutron beam of the optimized BSA as a reference beam. These calculations were carried out using the MCNPX, Monte Carlo code. The calculated beam parameters were measured for a SNYDER head phantom placed 10 cm away from beam the exit of the BSA. The head phantom can be assumed as a linear system and neutron beam and dose distribution can be assumed as an input and a response of this system (head phantom), respectively. Neutron spectrum energy was digitized into 27 groups. Dose response of each group was calculated. Summation of these dose responses is equal to a total dose of the whole neutron/gamma spectrum. Response matrix is the double dimension matrix (energy/dose) in which each parameter represents a depth-dose resulted from specific energy. If the spectrum is changed, response of each energy group may be differed. By considering response matrix and energy vector, dose response can be calculated. This method was tested for some BSA, and calculations show statistical errors less than 10%.

  1. An optimal algorithm based on extended kalman filter and the data fusion for infrared touch overlay

    Science.gov (United States)

    Zhou, AiGuo; Cheng, ShuYi; Pan, Qiang Biao; Sun, Dong Yu

    2016-01-01

    Current infrared touch overlay has problems on the touch point recognition which bring some burrs on the touch trajectory. This paper uses the target tracking algorithm to improve the recognition and smoothness of infrared touch overlay. In order to deal with the nonlinear state estimate problem for touch point tracking, we use the extended Kalman filter in the target tracking algorithm. And we also use the data fusion algorithm to match the estimate value with the original target trajectory. The experimental results of the infrared touch overlay demonstrate that the proposed target tracking approach can improve the touch point recognition of the infrared touch overlay and achieve much smoother tracking trajectory than the existing tracking approach.

  2. Optimal filtering of dynamics in short-time features for music organization

    DEFF Research Database (Denmark)

    Arenas-García, Jerónimo; Larsen, Jan; Hansen, Lars Kai

    2006-01-01

    proof-of-concept, where an altosax with and without vibrato is modelled. A more complex \\$11\\$ music genre classification setup is also investigated to illustrate the robustness and validity of the proposed method on larger datasets. Both experiments showed the good properties of our method, as well...... as superior performance when compared to a fixed filter bank approach suggested previously in the MIR literature. We think that the proposed method is a natural step towards a customized MIR application that generalizes well to a wide range of different music organization tasks.......There is an increasing interest in customizable methods for organizing music collections. Relevant music characterization can be obtained from short-time features, but it is not obvious how to combine them to get useful information. In this work, a novel method, denoted as the Positive Constrained...

  3. Reduction of Common-Mode Conducted Noise Emissions in PWM Inverter-fed AC Motor Drive Systems using Optimized Passive EMI Filter

    Science.gov (United States)

    Jettanasen, C.; Ngaopitakkul, A.

    2010-10-01

    Conducted electromagnetic interference (EMI) generated by PWM inverter-fed induction motor drive systems, which are currently widely used in many industrial and/or avionic applications, causes severe parasitic current problems, especially at high frequencies (HF). These restrict power electronic drive's evolution. In order to reduce or minimize these EMI problems, several techniques can be applied. In this paper, insertion of an optimized passive EMI filter is proposed. This filter is optimized by taking into account real impedances of each part of a considered AC motor drive system contrarily to commercial EMI filters designed by considering internal impedance of disturbance source and load, equal to 50Ω. Employing the latter EMI filter would make EMI minimization less effective. The proposed EMI filter optimization is mainly dedicated to minimize common mode (CM) currents due to its most dominant effects in this kind of system. The efficiency of the proposed optimization method using two-port network approach is deduced by comparing the minimized CM current spectra to an applied normative level (ex. DO-160D in aeronautics).

  4. Reaction null-space filter: extracting reactionless synergies for optimal postural balance from motion capture data.

    Science.gov (United States)

    Nenchev, D N; Miyamoto, Y; Iribe, H; Takeuchi, K; Sato, D

    2016-01-01

    This paper introduces the notion of a reactionless synergy: a postural variation for a specific motion pattern/strategy, whereby the movements of the segments do not alter the force/moment balance at the feet. Given an optimal initial posture in terms of stability, a reactionless synergy can ensure optimality throughout the entire movement. Reactionless synergies are derived via a dynamical model wherein the feet are regarded to be unfixed. Though in contrast with the conventional fixed-feet models, this approach has the advantage of exhibiting the reactions at the feet explicitly. The dynamical model also facilitates a joint-space decomposition scheme yielding two motion components: the reactionless synergy and an orthogonal complement responsible for the dynamical coupling between the feet and the support. Since the reactionless synergy provides the basis (a feedforward control component) for optimal balance control, it may play an important role when evaluating balance abnormalities or when assessing optimality in balance control. We show how to apply the proposed method for analysis of motion capture data obtained from three voluntary movement patterns in the sagittal plane: squat, sway, and forward bend.

  5. Dual state-parameter optimal estimation of one-dimensional open channel model using ensemble Kalman filter

    Institute of Scientific and Technical Information of China (English)

    LAI Rui-xun; FANG Hong-wei; HE Guo-jian; YU Xin; YANG Ming; WANG Ming

    2013-01-01

    In this paper,both state variables and parameters of one-dimensional open channel model are estimated using a framework of the Ensemble Kalman Filter (EnKF).Compared with observation,the predicted accuracy of water level and discharge are improved while the parameters of the model are identified simultaneously.With the principles of the EnKF,a state-space description of the Saint-Venant equation is constructed by perturbing the measurements with Gaussian error distribution.At the same time,the roughness,one of the key parameters in one-dimensional open channel,is also considered as a state variable to identify its value dynamically.The updated state variables and the parameters are then used as the initial values of the next time step to continue the assimilation process.The usefulness and the capability of the dual EnKF are demonstrated in the lower Yellow River during the water-sediment regulation in 2009.In the optimization process,the errors between the prediction and the observation are analyzed,and the rationale of inverse roughness is discussed.It is believed that (1) the flexible approach of the dual EnKF can improve the accuracy of predicting water level and discharge,(2) it provides a probabilistic way to identify the model error which is feasible to implement but hard to handle in other filter systems,and (3) it is practicable for river engineering and management.

  6. DE optimized fuzzy PID controller with derivative filter for LFC of multi source power system in deregulated environme

    Directory of Open Access Journals (Sweden)

    Rabindra Kumar Sahu

    2015-06-01

    Full Text Available In this paper, Differential Evolution (DE optimized fuzzy PID controller with derivative Filter (PIDF is proposed for Load Frequency Control (LFC of a deregulated power system with multi-source power generation and interconnected via parallel AC/DC transmission links. To get an accurate insight of the LFC problem, important physical constraints such as time delay and GRC are considered. The performance of proposed controller is evaluated at all possible power transactions that take place in a deregulated power market. The improvement in dynamic performance of the power system with DC link in parallel with AC tie-line is also assessed. Further, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values. It is observed from the simulation results that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters.

  7. An optimized DSP implementation of adaptive filtering and ICA for motion artifact reduction in ambulatory ECG monitoring.

    Science.gov (United States)

    Berset, Torfinn; Geng, Di; Romero, Iñaki

    2012-01-01

    Noise from motion artifacts is currently one of the main challenges in the field of ambulatory ECG recording. To address this problem, we propose the use of two different approaches. First, an adaptive filter with electrode-skin impedance as a reference signal is described. Secondly, a multi-channel ECG algorithm based on Independent Component Analysis is introduced. Both algorithms have been designed and further optimized for real-time work embedded in a dedicated Digital Signal Processor. We show that both algorithms improve the performance of a beat detection algorithm when applied in high noise conditions. In addition, an efficient way of choosing this methods is suggested with the aim of reduce the overall total system power consumption.

  8. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    Science.gov (United States)

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays.

  9. Optimization of ecosystem model parameters with different temporal variabilities using tower flux data and an ensemble Kalman filter

    Science.gov (United States)

    He, L.; Chen, J. M.; Liu, J.; Mo, G.; Zhen, T.; Chen, B.; Wang, R.; Arain, M.

    2013-12-01

    Terrestrial ecosystem models have been widely used to simulate carbon, water and energy fluxes and climate-ecosystem interactions. In these models, some vegetation and soil parameters are determined based on limited studies from literatures without consideration of their seasonal variations. Data assimilation (DA) provides an effective way to optimize these parameters at different time scales . In this study, an ensemble Kalman filter (EnKF) is developed and applied to optimize two key parameters of an ecosystem model, namely the Boreal Ecosystem Productivity Simulator (BEPS): (1) the maximum photosynthetic carboxylation rate (Vcmax) at 25 °C, and (2) the soil water stress factor (fw) for stomatal conductance formulation. These parameters are optimized through assimilating observations of gross primary productivity (GPP) and latent heat (LE) fluxes measured in a 74 year-old pine forest, which is part of the Turkey Point Flux Station's age-sequence sites. Vcmax is related to leaf nitrogen concentration and varies slowly over the season and from year to year. In contrast, fw varies rapidly in response to soil moisture dynamics in the root-zone. Earlier studies suggested that DA of vegetation parameters at daily time steps leads to Vcmax values that are unrealistic. To overcome the problem, we developed a three-step scheme to optimize Vcmax and fw. First, the EnKF is applied daily to obtain precursor estimates of Vcmax and fw. Then Vcmax is optimized at different time scales assuming fw is unchanged from first step. The best temporal period or window size is then determined by analyzing the magnitude of the minimized cost-function, and the coefficient of determination (R2) and Root-mean-square deviation (RMSE) of GPP and LE between simulation and observation. Finally, the daily fw value is optimized for rain free days corresponding to the Vcmax curve from the best window size. The optimized fw is then used to model its relationship with soil moisture. We found that

  10. Designing spectrum-splitting dichroic filters to optimize current-matched photovoltaics.

    Science.gov (United States)

    Miles, Alexander; Cocilovo, Byron; Wheelwright, Brian; Pan, Wei; Tweet, Doug; Norwood, Robert A

    2016-03-10

    We have developed an approach for designing a dichroic coating to optimize performance of current-matched multijunction photovoltaic cells while diverting unused light. By matching the spectral responses of the photovoltaic cells and current matching them, substantial improvement to system efficiencies is shown to be possible. A design for use in a concentrating hybrid solar collector was produced by this approach, and is presented. Materials selection, design methodology, and tilt behavior on a curved substrate are discussed.

  11. Drying process optimization for an API solvate using heat transfer model of an agitated filter dryer.

    Science.gov (United States)

    Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V

    2012-10-01

    Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time.

  12. A feasibility study of the Tehran research reactor as a neutron source for BNCT.

    Science.gov (United States)

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Monshizadeh, Mahdi

    2014-08-01

    Investigation on the use of the Tehran Research Reactor (TRR) as a neutron source for Boron Neutron Capture Therapy (BNCT) has been performed by calculating and measuring energy spectrum and the spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal column, and the medical room. Activation methods with multiple foils and a copper wire have been used for the mentioned measurements. The results show that (1) the small diameter and long length beam tubes cannot provide sufficient neutron flux for BNCT; (2) in order to use the medical room, the TRR core should be placed in the open pool position, in this situation the distance between the core and patient position is about 400 cm, so neutron flux cannot be sufficient for BNCT; and (3) the best facility which can be adapted for BNCT application is the thermal column, if all graphite blocks can be removed. The epithermal and fast neutron flux at the beginning of this empty column are 4.12×10(9) and 1.21×10(9) n/cm(2)/s, respectively, which can provide an appropriate neutron beam for BNCT by designing and constructing a proper Beam Shaping Assembly (BSA) structure.

  13. Optimization of the k-edge filters utilization in the dental radiographs; Otimizacao da utilizacao dos filtros de aresta K na radiografias dentarias

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Luis M.G.; Almeida, Adelaide de [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2001-07-01

    The signal to noise ratio (S/N) of radiographic film images may be optimized if the thicknesses and atomic composition of the structures to be analyzed are known. With specifications and a knowledge of the interaction of photons with the materials, the photon energy for maximum contrast may be determined. We propose a K-edge filter in addition to the normal aluminum filter, to reduce the dose to the patient by the transmission of a narrow spectrum of photons with energies to optimize the image contrast. The optimum photon energy to obtain the best contrast between dental pulp and dentine and between dentine and dental enamel was determined to be 29-34 and 22-26 keV respectively. The filter material, which closely approximates these spectra, is made of Ce (Z=58) whose thickness is shown do depend on the parameters of the X-ray generator. (author)

  14. Feasibility of BNCT radiobiological experiments at the HYTHOR facility

    Science.gov (United States)

    Esposito, J.; Ceballos, C.; Soncin, M.; Fabris, C.; Friso, E.; Moro, D.; Colautti, P.; Jori, G.; Rosi, G.; Nava, E.

    2008-06-01

    HYTHOR (HYbrid Thermal spectrum sHifter tapirO Reactor) is a new thermal-neutron irradiation facility, which was installed and became operative in mid 2005 at the TAPIRO (TAratura PIla Rapida potenza 0) fast reactor, in the Casaccia research centre (near Rome) of ENEA (Ente per le Nuove tecnologie Energia ed Ambiente). The facility has been designed for in vivo radiobiological studies. In HYTHOR irradiation cavity, 1-6 mice can be simultaneously irradiated to study skin melanoma treatments with the BNCT (boron neutron capture therapy). The therapeutic effects of HYTHOR radiation field on mouse melanoma has been studied as a preliminary investigation before studying the tumour local control due to boron neutron capture effect after boronated molecule injection. The method to properly irradiate small animals has been precisely defined. Results show that HYTHOR radiation field is by itself effective in reducing the tumour-growth rate. This finding has to be taken into account in studying the effectiveness of new 10B carriers. A method to properly measure the reduction of the tumour-growth rate is reported and discussed.

  15. BNCT for skin melanoma in extremities: Updated Argentine clinical results

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, P.R. [Instituto de Oncologia Angel H. Roffo. Av. San Martin 5481, (1417) Cdad. de Buenos Aires (Argentina)], E-mail: pmenende@yahoo.com; Roth, B.M.C. [Instituto de Oncologia Angel H. Roffo. Av. San Martin 5481, (1417) Cdad. de Buenos Aires (Argentina); Pereira, M.D. [Instituto de Oncologia Angel H. Roffo. Av. San Martin 5481, (1417) Cdad. de Buenos Aires (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); Agencia Nacional de Promocion Cientifica y Tecnologica. PAV 22393, Cordoba 831, (1054) Cdad. de Buenos Aires (Argentina); Casal, M.R. [Instituto de Oncologia Angel H. Roffo. Av. San Martin 5481, (1417) Cdad. de Buenos Aires (Argentina); Gonzalez, S.J. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917, (1033) Cdad. de Buenos Aires (Argentina); Feld, D.B.; Santa Cruz, G.A.; Kessler, J.; Longhino, J.; Blaumann, H.; Jimenez Rebagliati, R.; Calzetta Larrieu, O.A.; Fernandez, C.; Nievas, S.I.; Liberman, S.J. [Comision Nacional de Energia Atomica, Av. del Libertador 8250, (1429) Cdad. de Buenos Aires (Argentina)

    2009-07-15

    As part of phase I/II melanoma BNCT clinical trial conducted in Argentina in a cooperative effort of the Argentine Atomic Energy Commission (CNEA) and the Oncology Institute Angel H. Roffo (IOAHR), 7 patients (6 female-1 male) received eight treatment sessions covering ten anatomical areas located in extremities. Mean age of the patients was 64 years (51-74). The treatments were performed between October 2003 and June 2007. All patients presented multiple subcutaneous skin metastases of melanoma and received an infusion containing {approx}14 gr/m{sup 2} of {sup 10}borophenyl-alanine (BPA) followed by the exposition of the area to a mixed thermal-epithermal neutron beam at the RA-6 reactor. The maximum prescribed dose to normal skin ranged from 16.5 to 24 Gy-Eq and normal tissue administered dose varied from 15.8 to 27.5 Gy-Eq. Considering evaluable nodules, 69.3% of overall response and 30.7% of no changes were seen. The toxicity was acceptable, with 3 out of 10 evaluable areas showing ulceration (30% toxicity grade 3)

  16. INEL BNCT Program: Bulletin, Volume 5, No. 7

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-07-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for June, 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and animal data charts. Specific highlights include: final-dosage-form BSH samples were analyzed for purity, with the sample from Centronic Ltd the most free from contamination and oxidation products; MRI spectroscopy will be upgraded to provide a potential for boron resolution of 0.75 cm/pixel; neutron and gamma measurements were made for the HFR epithermal neutron beam; the current status of six spontaneous brain-tumor dogs; production of MoAbs against the pituitary CRF receptor; growth of BL6 in low Phe/Tyr medium; an altered synthetic pathway for carboranyl alanine; and encapsulation of {ital i}-B{sub 20}H{sub 18}{sup 2-} into liposomes for baseline murine studies. 2 figs., 4 tabs. (MHB)

  17. Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Laurila, Marko;

    2012-01-01

    can be compensated during the fiber draw. Design optimization of the SM bandwidth of the DMF rod fiber is presented. Analysis of band gap properties results in a fourfold increase of the SM bandwidth compared to previous results, achieved by utilizing the first band of cladding modes, which can cover......High-power fiber amplifiers for pulsed applications require large mode area (LMA) fibers having high pump absorption and near diffraction limited output. Photonic crystal fibers allow realization of short LMA fiber amplifiers having high pump absorption through a pump cladding that is decoupled...... a large fraction of the Yb emission band including wavelengths of 1030 nm and 1064 nm. Design parameters tolerating refractive index fabrication uncertainties of ± 10-4 are targeted to yield stable SM bandwidths....

  18. Design optimization of the distributed modal filtering rod fiber for increasing single mode bandwidth

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Laurila, Marko;

    2012-01-01

    . Large preform tolerances are compensated during the fiber draw resulting in ultra low NA fibers with very large cores. In this paper, design optimization of the SM bandwidth of the DMF rod fiber is presented. Analysis of band gap properties results in a fourfold increase of the SM bandwidth compared......High-power fiber amplifiers for pulsed applications require large mode area (LMA) fibers having high pump absorption and near diffraction limited output. This improves the limiting factor of nonlinear effects, while maintaining good beam quality. Photonic crystal fibers allow realization of short...... to previous results, achieved by utilizing the first band of cladding modes. This covers of a large fraction of the Yb emission band, where wavelengths of 1030 nm and 1064 nm can be included....

  19. An Optimal Method For Wake Detection In SAR Images Using Radon Transformation Combined With Wavelet Filters

    CERN Document Server

    Krishnaveni, M; Subashini, P

    2009-01-01

    A new fangled method for ship wake detection in synthetic aperture radar (SAR) images is explored here. Most of the detection procedure applies the Radon transform as its properties outfit more than any other transformation for the detection purpose. But still it holds problems when the transform is applied to an image with a high level of noise. Here this paper articulates the combination between the radon transformation and the shrinkage methods which increase the mode of wake detection process. The latter shrinkage method with RT maximize the signal to noise ratio hence it leads to most optimal detection of lines in the SAR images. The originality mainly works on the denoising segment of the proposed algorithm. Experimental work outs are carried over both in simulated and real SAR images. The detection process is more adequate with the proposed method and improves better than the conventional methods.

  20. A search algorithm to meta-optimize the parameters for an extended Kalman filter to improve classification on hyper-temporal images

    CSIR Research Space (South Africa)

    Salmon, BP

    2012-07-01

    Full Text Available In this paper the Bias Variance Search Algorithm is proposed as an algorithm to optimize a candidate set of initial parameters for an Extended Kalman filter (EKF). The search algorithm operates on a Bias Variance Equilibrium Point criterion...

  1. BNCT of 3 cases of spontaneous head and neck cancer in feline patients

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M.; Trivillin, V.A.; Heber, E.M.; Angeles Cantarelli, Maria de los; Itoiz, M.E.; Nigg, D.W.; Rebagliati, R.J.; Batistoni, Daniel; Schwint, A.E. E-mail: schwint@cnea.gov.ar

    2004-11-01

    Having demonstrated BPA-BNCT induced control of experimental squamous cell carcinomas (SCC) of the hamster cheek pouch mucosa with no damage to normal tissue we explored the feasibility and safety of treating spontaneous head and neck tumors, with particular focus on SCC, of terminal feline patients with low dose BPA-BNCT employing the thermal beam of the RA-1 Reactor within a preclinical context. The biodistribution studies showed that, in all three cases evaluated, BPA delivered absolute boron values to tumor in the range that proved therapeutically useful in the experimental model of SCC. BPA-BNCT studies showed no radiotoxic effects, partial tumor control in terms of impaired growth and partial necrosis, an improvement in clinical condition and prolonged survival beyond the terminal condition of the feline patients at the time of recruitment.

  2. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  3. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, G.; Grunewald, C.; Schutz, C.; Schmitz, T.; Kratz, J.V. [Nuclear Chemistry, University of Mainz, D-55099 Mainz (Germany); Brochhausen, C.; Kirkpatrick, J. [Department of Pathology, University of Mainz, D-55099 Mainz (Germany); Bortulussi, S.; Altieri, S. [Department of Nuclear and Theoretical Physics University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN) Pavia Section, Pavia (Italy); Kudejova, P. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen, D-85748 Garching (Germany); Appelman, K.; Moss, R. [Joint Research Centre (JRC) of the European Commission, NL-1755 ZG Petten (Netherlands); Bassler, N. [University of Aarhus, Norde Ringade, DK-8000, Aarhus C (Denmark); Blaickner, M.; Ziegner, M. [Molecular Medicine, Health and Environment Department, AIT Austrian Institute of Technology GmbH (Austria); Sharpe, P.; Palmans, H. [National Physical Laboratory, Teddington TW11 0LW, Middlesex (United Kingdom); Otto, G. [Department of Hepatobiliary, Pancreatic and Transplantation Surgery, University of Mainz, D-55099 Mainz (Germany)

    2011-07-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed in Pavia (Italy) a few years ago, where patients with liver metastases were treated by combining BNCT with auto-transplantation of the organ. Here, in Mainz, a preclinical trial has been started on patients suffering from liver metastases of colorectal carcinoma. In vitro experiments and the first animal tests have also been initiated to investigate radiobiological effects of radiation generated during BNCT. For both experiments and the treatment, a reliable dosimetry system is necessary. From work elsewhere, the use of alanine detectors appears to be an appropriate dosimetry technique. (author)

  4. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    CERN Document Server

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  5. Dosimetric feasibility study for an extracorporeal BNCT application on liver metastases at the TRIGA Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Blaickner, M., E-mail: matthias.blaickner@ait.ac.at [Health and Environment Department-Molecular Medicine, AIT Austrian Institute of Technology GmbH, Muthgasse 11, A-1190 Vienna (Austria); Kratz, J.V. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany); Minouchehr, S.; Otto, G. [Transplantationschirurgie, Universitaetsklinikum Mainz, Langenbeckstr.1, D-55131 Mainz (Germany); Schmidberger, H. [Klinik und Poliklinik fuer Radioonkologie und Strahlentherapie, Universitaetsklinikum Mainz, Langenbeckstr.1, D-55131 Mainz (Germany); Schuetz, C.; Vogtlaender, L. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany); Wortmann, B. [Evonik Energy Services GmbH Essen, Ruettenscheider Str. 1-3, D-45128 Essen (Germany); Hampel, G. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz (Germany)

    2012-01-15

    This study investigates the dosimetric feasibility of Boron Neutron Capture Therapy (BNCT) of explanted livers in the thermal column of the research reactor in Mainz. The Monte Carlo code MCNP5 is used to calculate the biologically weighted dose for different ratios of the {sup 10}B-concentration in tumour to normal liver tissue. The simulation results show that dosimetric goals are only partially met. To guarantee effective BNCT treatment the organ has to be better shielded from all gamma radiation. - Highlights: Black-Right-Pointing-Pointer Monte Carlo simulations demonstrate the potential for BNCT treatment at TRIGA Mainz. Black-Right-Pointing-Pointer Simulation shows the necessity of gamma shielding for the organ from all sides. Black-Right-Pointing-Pointer Secondary photons induced within the graphite contribute considerably to gamma dose.

  6. Might iodomethyl-{alpha}-tyrosine be a surrogate for BPA in BNCT?

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Michiko; Micca, P.L.; Nawrocky, M.M.; Slatkin, D.N.

    1996-12-31

    A single-photon emission computed tomography [SPECT] imaging agent that is an analogue of a boron carrier for boron neutron-capture therapy [BNCT] of cerebral gliomas would be useful for assessing the kinetics of boron uptake in tumors and in the surrounding brain tissues noninvasively. BNCT is based on the interaction of thermalized neutrons with {sup 10}B nuclei in the targeted tumor. For BNCT of brain tumors, it is crucial that {sup 10}B concentrations in radiosensitive regions of the brain be minimal since malignant cells and vital brain tissues are often inter-mingled at the margins of the tumor. Currently, boronophenylalanine [BPA]-mediated BNCT is undergoing preliminary clinical study for postoperative radiotherapy of glioblastorna multiforme at Brookhaven National Laboratory. Investigators in Japan are developing {sup 18}F-fluoroboronophenylaianine [FBPA] as a positron {sup 18}F (T{sub 1/2} = 110 min), which is usually emission tomography [PET] surrogate for BPA. generated at a cyclotron dedicated to PET, is generally a minimally perturbing substitute for the 2-H on the aromatic ring because of its small size and the strong covalent bond it forms with carbon. However, SPECT has potential advantages over PET: (1) SPECT is clinically more widely available at lower cost; (2) most radioisotopes for the synthesis of SPECT agents can be purchased; (3) SPECT is less difficult to implement. It is thought that the quality of images derived from the two techniques would each be sufficiently informative for BNCT treatment planning purposes, provided that the SPECT and PET agents being considered were both pharmacokinetic surrogates for BPA. This study evaluated the use of {sup 123}I alpha methyltyrosine as a surrogate for BPA in BNCT.

  7. Switching Optimization of PET Prepolymers Filter%聚酯装置中预聚物过滤器切换方法的优化

    Institute of Scientific and Technical Information of China (English)

    王建华; 孟庆吉; 罗加成; 瞿林飞; 李岗

    2012-01-01

    预聚物过滤器安装在缩聚釜Ⅱ和终聚釜之间,起到初步过滤没有参加反应的大分子和凝集粒子的作用.探讨了中纺院五釜聚酯装置中预聚物过滤器切换方法的优化.通过优化,减少了预聚物过滤器的清洗工作量,节省了滤芯使用成本,同时确保在一个检修周期内,装置能够“安、稳、长、满、优”地运行.%The prepolymers filter is installed between the polycondensation reactor II and final polyconden-sation reactor to stop the macromolecules and agglutination particles which are did not reacted. The switching optimization of the China Textile Academy five-reactor device prepolymer filter is discussed. Through the optimization of the prepolymer filter switching method, the prepolymers filter cleaning workload is reduced, the cost of the filter is saved, so as to ensure that the device in an overhaul cycle "security, stability, long, full, excellent" run.

  8. 基于粒子群优化算法的模拟滤波器设计%Design of Analog Filter Based on Particle Swarm Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    李鹏; 马红梅; 张旭珍

    2011-01-01

    采用传统的网络综合法设计计波器存在带宽不精确及阻带衰减过小的问题,为此,提出一种基于粒子群优化算法的无源模拟滤波器优化设计方法.在网络综合法设计的滤波器电路基础上,利用粒子群优化算法对滤波器的整个参数空间进行高效并行搜索直到获得最优的参数值.实例表明,采用该方法设计的滤波器带宽更加准确,且具有更加陡峭的阻带衰减.%As for the problem of the filter's bandwidth imprecision and stop-band attenuation too small, a passive analog filter optimization design method is proposed based on the Particle Swarm Optimization(PSO) algorithm.The filter is designed by the network synthesis design method, and it optimizes the circuit's parameters in the whole parameters space effectively and globally by PSO until gain the best parameters.This method can improve the filter's bandwidth imprecision and the high stop-band suppression.

  9. An optimal modeling of multidimensional wave digital filtering network for free vibration analysis of symmetrically laminated composite FSDT plates

    Science.gov (United States)

    Tseng, Chien-Hsun

    2015-02-01

    The technique of multidimensional wave digital filtering (MDWDF) that builds on traveling wave formulation of lumped electrical elements, is successfully implemented on the study of dynamic responses of symmetrically laminated composite plate based on the first order shear deformation theory. The philosophy applied for the first time in this laminate mechanics relies on integration of certain principles involving modeling and simulation, circuit theory, and MD digital signal processing to provide a great variety of outstanding features. Especially benefited by the conservation of passivity gives rise to a nonlinear programming problem (NLP) for the issue of numerical stability of a MD discrete system. Adopting the augmented Lagrangian genetic algorithm, an effective optimization technique for rapidly achieving solution spaces of NLP models, numerical stability of the MDWDF network is well received at all time by the satisfaction of the Courant-Friedrichs-Levy stability criterion with the least restriction. In particular, optimum of the NLP has led to the optimality of the network in terms of effectively and accurately predicting the desired fundamental frequency, and thus to give an insight into the robustness of the network by looking at the distribution of system energies. To further explore the application of the optimum network, more numerical examples are engaged in efforts to achieve a qualitative understanding of the behavior of the laminar system. These are carried out by investigating various effects based on different stacking sequences, stiffness and span-to-thickness ratios, mode shapes and boundary conditions. Results are scrupulously validated by cross referencing with early published works, which show that the present method is in excellent agreement with other numerical and analytical methods.

  10. On the difficulty to optimally implement the Ensemble Kalman filter: An experiment based on many hydrological models and catchments

    Science.gov (United States)

    Thiboult, A.; Anctil, F.

    2015-10-01

    Forecast reliability and accuracy is a prerequisite for successful hydrological applications. This aim may be attained by using data assimilation techniques such as the popular Ensemble Kalman filter (EnKF). Despite its recognized capacity to enhance forecasting by creating a new set of initial conditions, implementation tests have been mostly carried out with a single model and few catchments leading to case specific conclusions. This paper performs an extensive testing to assess ensemble bias and reliability on 20 conceptual lumped models and 38 catchments in the Province of Québec with perfect meteorological forecast forcing. The study confirms that EnKF is a powerful tool for short range forecasting but also that it requires a more subtle setting than it is frequently recommended. The success of the updating procedure depends to a great extent on the specification of the hyper-parameters. In the implementation of the EnKF, the identification of the hyper-parameters is very unintuitive if the model error is not explicitly accounted for and best estimates of forcing and observation error lead to overconfident forecasts. It is shown that performance are also related to the choice of updated state variables and that all states variables should not systematically be updated. Additionally, the improvement over the open loop scheme depends on the watershed and hydrological model structure, as some models exhibit a poor compatibility with EnKF updating. Thus, it is not possible to conclude in detail on a single ideal manner to identify an optimal implementation; conclusions drawn from a unique event, catchment, or model are likely to be misleading since transferring hyper-parameters from a case to another may be hazardous. Finally, achieving reliability and bias jointly is a daunting challenge as the optimization of one score is done at the cost of the other.

  11. Model-Based Control of a Nonlinear Aircraft Engine Simulation using an Optimal Tuner Kalman Filter Approach

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob

    2013-01-01

    This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.

  12. Optimization of hydrolysis and volatile fatty acids production from sugarcane filter cake: Effects of urea supplementation and sodium hydroxide pretreatment.

    Science.gov (United States)

    Janke, Leandro; Leite, Athaydes; Batista, Karla; Weinrich, Sören; Sträuber, Heike; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter

    2016-01-01

    Different methods for optimization the anaerobic digestion (AD) of sugarcane filter cake (FC) with a special focus on volatile fatty acids (VFA) production were studied. Sodium hydroxide (NaOH) pretreatment at different concentrations was investigated in batch experiments and the cumulative methane yields fitted to a dual-pool two-step model to provide an initial assessment on AD. The effects of nitrogen supplementation in form of urea and NaOH pretreatment for improved VFA production were evaluated in a semi-continuously operated reactor as well. The results indicated that higher NaOH concentrations during pretreatment accelerated the AD process and increased methane production in batch experiments. Nitrogen supplementation resulted in a VFA loss due to methane formation by buffering the pH value at nearly neutral conditions (∼ 6.7). However, the alkaline pretreatment with 6g NaOH/100g FCFM improved both the COD solubilization and the VFA yield by 37%, mainly consisted by n-butyric and acetic acids.

  13. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.

    Science.gov (United States)

    Wheeler, F J; Nigg, D W; Capala, J; Watkins, P R; Vroegindeweij, C; Auterinen, I; Seppälä, T; Bleuel, D

    1999-07-01

    The potential efficacy of boron neutron capture therapy (BNCT) for malignant glioma is a significant function of epithermal-neutron beam biophysical characteristics as well as boron compound biodistribution characteristics. Monte Carlo analyses were performed to evaluate the relative significance of these factors on theoretical tumor control using a standard model. The existing, well-characterized epithermal-neutron sources at the Brookhaven Medical Research Reactor (BMRR), the Petten High Flux Reactor (HFR), and the Finnish Research Reactor (FiR-1) were compared. Results for a realistic accelerator design by the E. O. Lawrence Berkeley National Laboratory (LBL) are also compared. Also the characteristics of the compound p-Boronophenylaline Fructose (BPA-F) and a hypothetical next-generation compound were used in a comparison of the BMRR and a hypothetical improved reactor. All components of dose induced by an external epithermal-neutron beam fall off quite rapidly with depth in tissue. Delivery of dose to greater depths is limited by the healthy-tissue tolerance and a reduction in the hydrogen-recoil and incident gamma dose allow for longer irradiation and greater dose at a depth. Dose at depth can also be increased with a beam that has higher neutron energy (without too high a recoil dose) and a more forward peaked angular distribution. Of the existing facilities, the FiR-1 beam has the better quality (lower hydrogen-recoil and incident gamma dose) and a penetrating neutron spectrum and was found to deliver a higher value of Tumor Control Probability (TCP) than other existing beams at shallow depth. The greater forwardness and penetration of the HFR the FiR-1 at greater depths. The hypothetical reactor and accelerator beams outperform at both shallow and greater depths. In all cases, the hypothetical compound provides a significant improvement in efficacy but it is shown that the full benefit of improved compound is not realized until the neutron beam is fully

  14. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    Science.gov (United States)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  15. A Study of Optimization of Alpha-Beta-Gamma-Eta Filter for Tracking a High Dynamic Target

    Directory of Open Access Journals (Sweden)

    Tae-Gweon Jeong

    2017-03-01

    Full Text Available The tracking filter plays a key role in accurate estimation and prediction of maneuvering vessel’s position and velocity. Different methods are used for tracking. However, the most commonly used method is the Kalman filter and its modifications. The Alpha-Beta-Gamma filter is one of the special cases of the general solution pro-vided by the Kalman filter. It is a third order filter that computes the smoothed estimates of position, velocity and acceleration for the nth observation, and also predicts the next position and velocity. Although found to track a maneuvering target with a good accuracy than the constant velocity, Alpha-Beta filter, the Alpha-Beta-Gamma filter does not perform impressively under high maneuvers such as when the target is undergoing changing accelerations. This study, therefore, aims to track a highly maneuvering target experiencing jerky motions due to changing accelerations. The Alpha-Beta-Gamma filter is extended to include the fourth state that is, constant jerk to correct the sudden change of acceleration in order to improve the filter’s performance. Results obtained from simulations of the input model of the target dynamics under consideration indicate an improvement in performance of the jerky model, Alpha-Beta-Gamma-Eta, algorithm as compared to the constant acceleration model, Alpha-Beta-Gamma in terms of error reduction and stability of the filter during target maneuver.

  16. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    DEFF Research Database (Denmark)

    Hampel, G.; Grunewald, C.; Schütz, C.

    2011-01-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed at Pavia (Italy) a few...

  17. BNCT dosimetry performed with a mini twin tissue-equivalent proportional counters (TEPC).

    Science.gov (United States)

    Moro, D; Colautti, P; Lollo, M; Esposito, J; Conte, V; De Nardo, L; Ferretti, A; Ceballos, C

    2009-07-01

    The BNCT radiation field is complex because different beam components are mixed, each one having different relative biological effectiveness (RBE). Microdosimetry with tissue-equivalent proportional counters (TEPC) has proven to be an ideal dosimetric technique for mixed radiation fields, because it is able both to measure the absorbed dose and to assess the radiation field relative biological effectiveness with good accuracy. An ideal detector for BNCT should contain two TEPCs, one detector loaded with, while the other one without (10)B in order to record all beam components with a unique measurement. Moreover, such a detector should be of tiny size in order to be able to measure in the intense BNCT radiation fields without significant pile-up effects. TEPCs have been shown to be pretty good dosimeters for mixed radiation fields. In this paper the first mini twin TEPC counter for BNCT is presented, as well as first measurement at the new HYTHOR thermal irradiation facility at TAPIRO nuclear reactor and comparison with related Monte Carlo calculations.

  18. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  19. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    DEFF Research Database (Denmark)

    Hampel, G.; Grunewald, C.; Schütz, C.

    2011-01-01

    years ago, where patients with liver metastases were treated successfully by combining BNCT with auto-transplantation of the organ. Here, in Mainz, a preclinical trial has been started on patients suffering from liver metastases of colorectal carcinoma. In vitro experiments and the first animal tests...

  20. Multiphysics Analysis of the 2.5 MeV BNCT RFQ Accelerator

    CERN Document Server

    Xiaowen, Zhu; Kun, Zhu

    2016-01-01

    Boron Neutron Capture Therapy (BNCT), is an advanced cancer therapy that destroys the cancer tumors using the well-known Li(p,n)Be . Because of the highly selectively reaction between a boron and a neutron, BNCT is effective for rapidly spreading cancer, invasive carcinoma, such as head and neck cancer, melanoma, malignant brain tumors and so on. The PKU RFQ group proposes an RFQ based neutron source for BNCT application. The 162.5 MHz four-vane RFQ will accelerate 20-mA H+ from 35.0 keV to 2.50 MeV in CW mode, and delivers a neutron yield of 1.73*10^13 n/sec/cm^2. The thermal management will become the most important issues. The detailed multiphysics analysis of the BNCT RFQ will be studied, and the RFQ frequency shift during nominal operating condition is also predicted. The multiphysics analysis is performed by using the CST Multiphysics Model and verified with ANSYS Multiphysics.

  1. First tomographic image of neutron capture rate in a BNCT facility

    Energy Technology Data Exchange (ETDEWEB)

    Minsky, D.M., E-mail: minsky@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martin, Prov. Bs. As. (Argentina)] [Escuela de Ciencia y Tecnologia, , UNSAM, M. de Irigoyen 3100 (1650), San Martin, Prov. Bs. As. (Argentina)] [Conicet, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martin, Prov. Bs. As. (Argentina)] [Escuela de Ciencia y Tecnologia, , UNSAM, M. de Irigoyen 3100 (1650), San Martin, Prov. Bs. As. (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martin, Prov. Bs. As. (Argentina)] [Escuela de Ciencia y Tecnologia, , UNSAM, M. de Irigoyen 3100 (1650), San Martin, Prov. Bs. As. (Argentina)] [Conicet, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Green, S.; Wojnecki, C. [School of Physics and Astronomy, University of Birmingham, B15 2 TT (United Kingdom)] [Department of Medical Physics, University Hospital Birmingham, Birmingham B15 2TH (United Kingdom); Ghani, Z. [Department of Medical Physics, University Hospital Birmingham, Birmingham B15 2TH (United Kingdom)

    2011-12-15

    This work discusses the development of online dosimetry of the boron dose via Single Photon Emission Computed Tomography (SPECT) during a BNCT treatment irradiation. Such a system will allow the online computation of boron dose maps without the large current uncertainties in the assessment of the boron concentration in different tissues. The first tomographic boron dose image with a SPECT prototype is shown.

  2. Optimization of the geometry and composition of a neutron system for treatment by Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Rohollah Gheisari

    2015-01-01

    Full Text Available Background: In the field of the treatment by Boron Neutron Capture Therapy (BNCT, an optimized neutron system was proposed. This study (simulation was conducted to optimize the geometry and composition of neutron system and increase the epithermal neutron flux for the treatment of deep tumors is performed. Materials and Methods: A neutron system for BNCT was proposed. The system included 252Cf neutron source, neutron moderator/reflector arrangement, filter and concrete. To capture fast neutrons, different neutron filters Fe, Pb, Ni and PbF2 with various thicknesses were simulated and studied. Li (with 1 mm thick was used for filtering of thermal neutrons. Bi with thickness of 1 cm was used to minimize the intensity of gamma rays. Monte Carlo simulation code MCNPX 2.4.0 was used for design of the neutron system and calculation of the neutron components at the output port of the system. Results: For different thicknesses of the filters, the fast neutron flux, the epithermal and thermal flux were calculated at the output port of the system. The spatial distribution of the fast neutron flux, the epithermal flux and gamma flux in human head phantom with the presence of 40 ppm of 10B were obtained. The present calculations showed that Pb filter (about 1 cm at the output port is suitable for fast neutron capture. The thickness of Li filter was determined due to its high absorption cross-section in thermal region. Bi was used as a gamma filter by the reason of it is good for shielding gamma rays, while having high transmission epithermal neutrons. Conclusion: The epithermal neutron flux has enhanced about 38 percent at the output port of the present system, compared with recent system proposed by Ghassoun et al. At 2 cm depth inside the head phantom, the neutron flux reaches a maximum value about . At this depth, the ratio of the thermal neutron flux to the epithermal flux is about three times, that suggests such a neutron system to treat tumors in the

  3. Postoperative treatment of glioblastoma with BNCT at the Petten Irradiation Facility (EORTC Protocol 11961)

    Energy Technology Data Exchange (ETDEWEB)

    Hideghety, K.; Sauerwein, W. [Strahlenklinik, Universitaetsklinikum Essen (Germany); Haselsberger, K. [Klinik fuer Neurochirurgie, Graz Univ. (Austria); Grochulla, F. [Klinik fuer Neurochirurgie, Zentralkrankenhaus Bremen (Germany); Frankhauser, H. [Service de Neurochirurgie, CHUV Lausanne (Switzerland); Moss, R. [European Commission Joint Research Centre Petten (Netherlands); Huiskamp, R. [Netherlands Energy Research Foundation, ECN Petten (Netherlands); Gabel, D. [Chemistry Dept., Univ. Bremen (Germany); Vries, M. de [EORTC, New Drug Development Office Amsterdam (Netherlands)

    1999-06-01

    The boron neutron capture therapy is based on the reaction occurring between the isotope {sup 10}B and thermal neutrons. A low energy neutron is captured by the nucleus and it disintegrates into two densely ionising particles, Li nucleus and He nucleus ({alpha} particle), with high biological effectiveness. On the basis of comprehensive preclinical investigations in the frame of the European Collaboration with Na{sub 2}B{sub 12}H{sub 11}SH (BSH), as boron delivery agent, the first European phase I, clinical trial was designed at the only available epithermal beam in Europe, at the High Flux Reactor, Petten, in the Netherland. The goal of this study is to establish the safe BNCT dose for cranial tumors under defined conditions. BNCT is applied as postoperative radiotherapy in 4 fractions, after removal of the tumor for a group of patients suffering from glioblastoma, who would have no benefit from conventional treatment, but have sufficient life expectancy to detect late radiation morbidity due to BNCT. The starting dose is set at 80% of the dose where neurological effects occured in preclinical large animal experiments following a single fraction. The radiation dose will be escalated, by constant boron concentration in blood, in 4 steps for cohorts of ten patients, after an observation period of at least 6 months after the end of BNCT of the last patient of a cohort. The adverse events on healthy tissues due to BSH and due to the radiotherapy will be analysed in order to establish the maximal tolerated dose and dose limiting toxicity. Besides of the primary aim of this study the survival will be recorded. The first patient was treated in October 1997, and further four patients have been irradiated todate. The protocol design proved to be well applicable, establishing the basis for scientific evaluation, for performance of safe patient treatment in a very complex situation and for opening the possibility to perform further clinical research work on BNCT. (orig.)

  4. Postoperative treatment of glioblastoma with BNCT at the petten irradiation facility (EORTC protocol 11,961).

    Science.gov (United States)

    Hideghéty, K; Sauerwein, W; Haselsberger, K; Grochulla, F; Fankhauser, H; Moss, R; Huiskamp, R; Gabel, D; de Vries, M

    1999-06-01

    The boron neutron capture therapy is based on the reaction occurring between the isotope 10B and thermal neutrons. A low energy neutron is captured by the nucleus and it disintegrates into two densely ionising particles, Li nucleus and He nucleus (alpha particle), with high biological effectiveness. On the basis of comprehensive preclinical investigations in the frame of the European Collaboration with Na2B12H11SH (BSH), as boron delivery agent, the first European phase I, clinical trial was designed at the only available epithermal beam in Europe, at the High Flux Reactor, Petten, in the Netherlands. The goal of this study is to establish the safe BNCT dose for cranial tumors under defined conditions. BNCT is applied as postoperative radiotherapy in 4 fractions, after removal of the tumor for a group of patients suffering from glioblastoma, who would have no benefit from conventional treatment, but have sufficient life expectancy to detect late radiation morbidity due to BNCT. The starting dose is set at 80% of the dose where neurological effects occurred in preclinical large animal experiments following a single fraction. The radiation dose will be escalated, by constant boron concentration in blood, in 4 steps for cohorts of ten patients, after an observation period of at least 6 months after the end of BNCT of the last patient of a cohort. The adverse events on healthy tissues due to BSH and due to the radiotherapy will be analysed in order to establish the maximal tolerated dose and dose limiting toxicity. Besides of the primary aim of this study the survival will be recorded. The first patient was treated in October 1997, and further four patients have been irradiated to-date. The protocol design proved to be well applicable, establishing the basis for scientific evaluation, for performance of safe patient treatment in a very complex situation and for opening the possibility to perform further clinical research work on BNCT.

  5. Optimizing capacitor placement in EMI-filter using back annotation of 3D field coupling parameters in circuit models

    NARCIS (Netherlands)

    Moonen, Dominicus Johannes Guilielmus; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2016-01-01

    To reduce common mode(CM) and differential mode(DM) interference, a DM/CM integrated filter is often required to reduce the level of interference. This paper will show coupling from a Common Mode Choke(CMC) into Cx capacitors can decrease the DM-filtering performance significantly at high

  6. A Class of Optimal Rectangular Filtering Matrices for Single-Channel Signal Enhancement in the Time Domain

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2013-01-01

    In this paper, we introduce a new class of op- timal rectangular filtering matrices for single-channel speech enhancement. The new class of filters exploits the fact that the dimension of the signal subspace is lower than that of the full space. By doing this, extra degrees of freedom...... in the filters, that are otherwise reserved for preserving the signal subspace, can be used for achieving an improved output signal-to-noise ratio (SNR). Moreover, the filters allow for explicit control of the tradeoff between noise reduction and speech distortion via the chosen rank of the signal subspace...... and real signals. The results show a number of interesting things. Firstly, they show how speech distortion can be traded for noise reduction and vice versa in a seamless manner. Moreover, the introduced filter designs are capable of achieving both the upper and lower bounds for the output SNR via...

  7. Filter quality of pleated filter cartridges.

    Science.gov (United States)

    Chen, Chun-Wan; Huang, Sheng-Hsiu; Chiang, Che-Ming; Hsiao, Ta-Chih; Chen, Chih-Chieh

    2008-04-01

    The performance of dust cartridge filters commonly used in dust masks and in room ventilation depends both on the collection efficiency of the filter material and the pressure drop across the filter. Currently, the optimization of filter design is based only on minimizing the pressure drop at a set velocity chosen by the manufacturer. The collection efficiency, an equally important factor, is rarely considered in the optimization process. In this work, a filter quality factor, which combines the collection efficiency and the pressure drop, is used as the optimization criterion for filter evaluation. Most respirator manufacturers pleat the filter to various extents to increase the filtration area in the limit space within the dust cartridge. Six sizes of filter holders were fabricated to hold just one pleat of filter, simulating six different pleat counts, ranging from 0.5 to 3.33 pleats cm(-1). The possible electrostatic charges on the filter were removed by dipping in isopropyl alcohol, and the air velocity is fixed at 100 cm s(-1). Liquid dicotylphthalate particles generated by a constant output atomizer were used as challenge aerosols to minimize particle loading effects. A scanning mobility particle sizer was used to measure the challenge aerosol number concentrations and size distributions upstream and downstream of the pleated filter. The pressure drop across the filter was monitored by using a calibrated pressure transducer. The results showed that the performance of pleated filters depend not only on the size of the particle but also on the pleat count of the pleated filter. Based on filter quality factor, the optimal pleat count (OPC) is always higher than that based on pressure drop by about 0.3-0.5 pleats cm(-1). For example, the OPC is 2.15 pleats cm(-1) from the standpoint of pressure drop, but for the highest filter quality factor, the pleated filter needed to have a pleat count of 2.65 pleats cm(-1) at particle diameter of 122 nm. From the aspect of

  8. Structure Parameters Optimization of the Filter Core and Numerical Simulation%滤芯结构参数的优化及数值模拟

    Institute of Scientific and Technical Information of China (English)

    巴鹏; 房元灿; 欧周华; 张鹏飞

    2012-01-01

    研究液压管路过滤系统褶型不锈钢滤芯的结构参数和压降之间的关系,建立滤芯结构参数和压降之间的数学模型.寻求XYZ-100稀油站所使用的过滤器滤芯的最优结构参数,并用CFD软件FLUENT对理论计算的最优结构参数进行数值模拟,将理论结果和模拟结果进行对比,结果表明:通过理论模型求得的最优结构参数是可行的.%To research relationship of pressure drop with structure parameters of pleated stainless steel filter core of the hydraulic pipelines, a mathematic model between the structure parameters of filter core and pressure drop was constructed. The optimized structure parameters of the filter core for XYZ-100 lubricant machine in the working state were searched, and the optimized structure parameters were simulated with FLUENT software. The calculated values were contrasted with the simulated values. It is shown that the optimized structure parameters calculated by the theoretical model are feasible.

  9. A clinical trial protocol for second line treatment of malignant brain tumors with BNCT at University of Tsukuba

    Energy Technology Data Exchange (ETDEWEB)

    Aiyama, H. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Nakai, K., E-mail: knakai@Neurosurg-tsukuba.com [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Yamamoto, T. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan)] [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Nariai, T. [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyouku (Japan); Kumada, H. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Ishikawa, E. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Isobe, T. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan)

    2011-12-15

    We have evaluated the efficacy and safety of boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor using a new protocol. One of the two patients enrolled in this trial is a man with recurrent glioblastoma and the other is a woman with anaplastic meningioma. Both are still alive and no severe adverse events have been observed. Our findings suggest that NCT will be safe as a palliative therapy for malignant brain tumors. - Highlights: Black-Right-Pointing-Pointer Boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor. Black-Right-Pointing-Pointer Two cases with recurrent glioblastoma and anaplastic meningioma. Black-Right-Pointing-Pointer No severe adverse events have been observed using BNCT. Black-Right-Pointing-Pointer BNCT has a possibility of a safe palliative therapy for malignant brain tumors.

  10. 基于果蝇优化算法的模拟滤波器设计%Design of Analog Filter Based on Fruit Fly Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    肖正安

    2012-01-01

    基于粒子群优化算法的无源模拟滤波器优化设计方法容易陷入局部最优,收敛速度慢迭代次数多、运算量大且稳定性不够好。提出果蝇优化算法对滤波器的整个参数空间进行高效并行搜索直到获得最优的参数值,实例仿真表明,采用该方法设计的滤波器在相同的带宽准确度及阻带衰减的情况下,具有更快的运算速度及收敛性能。%The optimum design of passive simulation filters based on Particle Swarm Optimization algorithm has slow convergence velocity and may easily fall into local optimum,more iterative times,large computational complexity,and stability is not good enough.A passive analog filter optimization design method is proposed based on the Fruit Fly Optimization Algorithm(FOA),and it optimizes the circuit's parameters in the whole parameters space effectively and globally by FOA until gain the best parameters.The simulation results on the MATLAB show that our algorithm has global convergence and higher speed of optimization.

  11. An optimal selection method for morphological filter's parameters and its application in bearing fault diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Aijun; Xiang, Ling [North China Electric Power University, Hebei (China)

    2016-03-15

    The Mathematical morphological filter (MMF) is widely applied in vibration signal processing for fault diagnosis. The Structure element (SE) and the cutoff frequency of filter have important impacts on the filtering effect, but there is no selection principle of these parameters for vibration signal processing in fault diagnosis. In this paper, the working mechanism of the MMF is studied, and a novel technique with filter characteristics and selection criterion of the MMF is proposed. The filter characteristics of morphological filter are described through frequency response analysis. The relationship between the SE length and the cutoff frequency of MMF is put forward, and the quantitative selection method of SE in engineering is proposed to effectively remove the noise and detect the impulses. The method is evaluated using both simulated signal and experimental bearing vibration signal. The results show that quantized selection method can make MMF have the better filtering effect, and can reliably extract impulsive features for bearing defect diagnosis. The study provides a theoretical basis for the application of MMF in vibration signal processing.

  12. Cross talk experiment with two-element CdTe detector and collimator for BNCT-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, Masanobu; Ohya, Ryosuke; Saraue, Nobuhide; Sato, Fuminobu; Murata, Isao [Osaka University, Osaka (Japan)

    2016-12-15

    Boron Neutron Capture Therapy (BNCT) is a new radiation therapy. In BNCT, there exists some very critical problems that should be solved. One of the severest problems is that the treatment effect cannot be known during BNCT in real time. We are now developing a SPECT (single photon emission computed tomography) system (BNCT-SPECT), with a cadmium telluride (CdTe) semiconductor detector. BNCT-SPECT can obtain the BNCT treatment effect by measuring 478 keV gamma-rays emitted from the excited state of 7Li nucleus created by 10B(n,α) 7Li reaction. In the previous studies, we investigated the feasibility of the BNCT-SPECT system. As a result, the S/N ratio did not meet the criterion of S/N >1 because deterioration of the S/N ratio occurred caused by the influence of Compton scattering especially due to capture gamma-rays of hydrogen. We thus produced an arrayed detector with two CdTe crystals to test cross talk phenomenon and to examine an anti-coincidence detection possibility. For more precise analysis for the anti-coincidence detection, we designed and made a collimator having a similar performance to the real BNCT-SPECT. We carried out experiments with the collimator to examine the effect of cross talk of scattering gamma-rays between CdTe elements more practically. As a result of measurement the coincidence events were successfully extracted. We are now planning to carry out evaluation of coincidence rate from the measurement and comparison of it with the numerical calculations.

  13. Optimizing the reconstruction filter in cone-beam CT to improve periodontal ligament space visualization: An in vitro study.

    Science.gov (United States)

    Houno, Yuuki; Hishikawa, Toshimitsu; Gotoh, Ken-Ichi; Naitoh, Munetaka; Mitani, Akio; Noguchi, Toshihide; Ariji, Eiichiro; Kodera, Yoshie

    2017-09-01

    Evaluation of alveolar bone is important in the diagnosis of dental diseases. The periodontal ligament space is difficult to clearly depict in cone-beam computed tomography images because the reconstruction filter conditions during image processing cause image blurring, resulting in decreased spatial resolution. We examined different reconstruction filters to assess their ability to improve spatial resolution and allow for a clearer visualization of the periodontal ligament space. Cone-beam computed tomography projections of 2 skull phantoms were reconstructed using 6 reconstruction conditions and then compared using the Thurstone paired comparison method. Physical evaluations, including the modulation transfer function and the Wiener spectrum, as well as an assessment of space visibility, were undertaken using experimental phantoms. Image reconstruction using a modified Shepp-Logan filter resulted in better sensory, physical, and quantitative evaluations. The reconstruction conditions substantially improved the spatial resolution and visualization of the periodontal ligament space. The difference in sensitivity was obtained by altering the reconstruction filter. Modifying the characteristics of a reconstruction filter can generate significant improvement in assessments of the periodontal ligament space. A high-frequency enhancement filter improves the visualization of thin structures and will be useful when accurate assessment of the periodontal ligament space is necessary.

  14. A Fruit Fly-Optimized Kalman Filter Algorithm for Pushing Distance Estimation of a Hydraulic Powered Roof Support through Tuning Covariance

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2016-10-01

    Full Text Available To measure the pushing distance of a hydraulic-powered roof support, and reduce the cost from a non-reusable displacement sensor embedded in pushing a hydraulic cylinder, an inertial sensor is used to measure the pushing distance, and a Kalman filter is applied to process the inertial data. To obtain better estimation performance, an improved fruit fly optimization algorithm (IFOA is proposed to tune the parameters of the Kalman filter, processing noise covariance Q and observation noise covariance R. The key procedures of the proposed method, including state-space model, fitness function, and Kalman filter implementation, are presented. Finally, an artificial signal is utilized to verify the feasibility of the proposed method, and the tuning results of other algorithms, particle swarm optimization (PSO, genetic algorithm (GA, basic FOA, and 3D-FOA are compared. The proposed method is also applied in the pushing distance estimation scenario. The simulation and application results prove the effectiveness and superiority of the proposed method.

  15. The Optimized Design of Filter by Interactive Simulation in ADS%ADS交互仿真优化滤波器设计

    Institute of Scientific and Technical Information of China (English)

    郭勇

    2012-01-01

    The optimized design of filter is the key and difficult points in designing. This paper introduces a method named interactive simulation between circuits and electromagnetic fields, and then gives the detailed steps with an example of microstrip wideband bandpass filter. At last, the effective result is demonstrated.%滤波器的优化仿真是设计的重点和难点。针对此,应用ADS软件,介绍了一种电路和电磁场之间的交互联合仿真,结合微带带通滤波器实例给出了详细的步骤,并得到了有效的结果。

  16. Near threshold ⁷Li(p,n) ⁷Be reaction as neutron source for BNCT.

    Science.gov (United States)

    Minsky, D M; Kreiner, A J

    2015-12-01

    (7)Li(p,n)(7)Be is an endothermic reaction and working near its threshold (1.88 MeV) has the advantage of neutron spectra with maximum energies of about 100 keV, considerably lower than at higher beam energies, or than using other neutron-producing reactions or as for the uranium fission spectrum, relevant for BNCT based on nuclear reactors. With this primary energy it is much easier to obtain the energies needed for treating deep seated tumors by BNCT (about 10 keV). This work studies bombarding energies up to 2.05 MeV, different beam incidence angles and the effect of the undesirable gamma production via the (7)Li(p,γp') (7)Li reaction.

  17. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation.

    Science.gov (United States)

    Zaboronok, A; Yamamoto, T; Nakai, K; Yoshida, F; Uspenskii, S; Selyanin, M; Zelenetskii, A; Matsumura, Akira

    2015-12-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron-hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required.

  18. Evaluation of the effective dose during BNCT at TRR thermal column epithermal facility.

    Science.gov (United States)

    Jarahi, Hossein; Kasesaz, Yaser; Saleh-Koutahi, Seyed Mohsen

    2016-04-01

    An epithermal neutron beam has been designed for Boron neutron Capture Therapy (BNCT) at the thermal column of Tehran Research Reactor (TRR) recently. In this paper the whole body effective dose, as well as the equivalent doses of several organs have been calculated in this facility using MCNP4C Monte Carlo code. The effective dose has been calculated by using the absorbed doses determined for each individual organ, taking into account the radiation and tissue weighting factors. The ICRP 110 whole body male phantom has been used as a patient model. It was found that the effective dose during BNCT of a brain tumor is equal to 0.90Sv. This effective dose may induce a 4% secondary cancer risk.

  19. Lithium target for accelerator based BNCT neutron source: Influence by the proton irradiation on lithium

    Science.gov (United States)

    Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.

    2012-12-01

    The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.

  20. Progress on the accelerator based SPES-BNCT project at INFN Legnaro

    Science.gov (United States)

    Esposito, J.; Colautti, P.; Pisent, A.; De Nardo, L.; Conte, V.; Moro, D.; Agosteo, S.; Jori, G.; Tinti, R.; Rosi, G.

    2007-02-01

    In the framework of an advanced Exotic Ion Beam facility, named SPES (Study and Production of Exotic Species), that will allow a frontier program both in nuclear and interdisciplinary physics, an intense thermal neutron beam facility, devoted to perform Boron Neutron Capture Therapy (BNCT) experimental treatments on skin melanoma tumor, is currently under construction based on the SPES proton driver. A vast radiobiological investigation in vitro and in vivo has started with the new 10B carriers developed. Special microdosimetric detectors have been constructed to properly measure all the BNCT dose components and their qualities. Both microdosimetric and radiobiological measurements are being performed at the new HYTHOR beam shaping assembly at the Enea-Casaccia TAPIRO reactor.

  1. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  2. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL.

    Science.gov (United States)

    Ceballos, C; Esposito, J; Agosteo, S; Colautti, P; Conte, V; Moro, D; Pola, A

    2011-12-01

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the (9)Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  4. Optimal low noise phase-only and binary phase-only optical correlation filters for threshold detectors

    Science.gov (United States)

    Kallman, Robert R.

    1986-12-01

    Phase-only (PO) and binary phase only (BPO) versions of recently developed Synthetic Discriminant Filters, SDFs, (Kallman, 1986) are discussed which are potentially useful for threshold optical correlation detectors. A formulation of the performance or SNR of a filter against a training set is first presented which takes into account the POF or BPOF, unlike the SDF, being unable to control the actual size of the recognition spike of the output correlation plane when a valid target is centered in the filter input plane. Numerical tests of the present recipes for POFs and BPOFs have been carried out on four SDFs made from tank imagery, and the SNR for 12 POFs and 24 BPOFs were computed.

  5. A feasibility design study on a neutron spectrometer for BNCT with liquid moderator.

    Science.gov (United States)

    Tamaki, S; Sato, F; Murata, I

    2015-12-01

    Neutrons generated by accelerators have various energy spectra. However, only limited methods are available to measure the whole neutron energy spectrum, especially when including the epithermal region that is normally used in BNCT. In the present study, we carried out the design study on a new neutron spectrometer that can measure such a neutron spectrum more accurately, precisely and with higher energy resolution, using an unfolding technique and a liquid moderator.

  6. Application of the new MultiTrans SP3 radiation transport code in BNCT dose planning.

    Science.gov (United States)

    Kotiluoto, P; Hiisamäki, P; Savolainen, S

    2001-09-01

    Dose planning in boron neutron capture therapy (BNCT) is a complex problem and requires sophisticated numerical methods. In the framework of the Finnish BNCT project, new deterministic three-dimensional radiation transport code MultiTrans SP3 has been developed at VTT Chemical Technology, based on a novel application of the tree multigrid technique. To test the applicability of this new code in a realistic BNCT dose planning problem, cylindrical PMMA (polymethyl-methacrylate) phantom was chosen as a benchmark case. It is a convenient benchmark, as it has been modeled by several different codes, including well-known DORT and MCNP. Extensive measured data also exist. In this paper, a comparison of the new MultiTrans SP3 code with other methods is presented for the PMMA phantom case. Results show that the total neutron dose rate to ICRU adult brain calculated by the MultiTrans SP3 code differs less than 4% in 2 cm depth in phantom (in thermal maximum) from the DORT calculation. Results also show that the calculated 197Au(n,gamma) and 55Mn(n,gamma) reaction rates in 2 cm depth in phantom differ less than 4% and 1% from the measured values, respectively. However, the photon dose calculated by the MultiTrans SP3 code seems to be incorrect in this PMMA phantom case, which requires further studying. As expected, the deterministic MultiTrans SP3 code is over an order of magnitude faster than stochastic Monte Carlo codes (with similar resolution), thus providing a very efficient tool for BNCT dose planning.

  7. Computer Aided Filter Design.

    Science.gov (United States)

    1987-12-01

    FIR filter can be described in the following. [Ref. 2] 1. FIR filters with exact linear phase can be easily designed. Linear phase filters are important...response for the four cases of linear phase filter , i.e., even or odd symmetry with an even or odd number of terms, can be written in the form: H (eJ ) = e...Ansari, The Design and Application of Optimal FIR Fractional Phase Filters , IEEE on Acoutics, Speech and Signal Processing, Vol. 2, 1987, pp.896-899. 77 14

  8. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    Science.gov (United States)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  9. In-phantom dosimetry for BNCT with Fricke and normoxic-polymer gels

    Science.gov (United States)

    Gambarini, G.; Agosteo, S.; Carrara, M.; Gay, S.; Mariani, M.; Pirola, L.; Vanossi, E.

    2006-05-01

    Measurements of in-phantom dose distributions and images are important for Boron Neutron Capture Therapy treatment planning. The method for spatial determination of absorbed doses in thermal or epithermal neutron fields, based on Fricke-xylenol-orange-infused gel dosimeters in form of layers, has revealed to be very reliable, as gel layer dosimeters give the possibility of obtaining spatial dose distributions and measurements of each dose contribution in neutron fields, by means of a properly studied procedure. Quite recently, BNCT has been applied to treat liver metastases; in this work the results of in-phantom dosimetry for explanted liver in BNCT treatments are described. Moreover, polyacrylamide gel (PAG) dosimeters in which a polymerization process appears as a consequence of absorbed dose, have been recently tested, because of their characteristic absence of diffusion. In fact, due to the diffusion of ferric ions, Fricke-gel dosimeters require prompt analysis after exposure to avoid spatial information loss. In this work the preliminary results of a study about the reliability of polymer gel in BNCT dosimetry are also discussed. Gel layers have been irradiated in a phantom exposed in the thermal column of the TRIGA MARK II reactor (Pavia). The results obtained with the two kinds of gel dosimeter have been compared.

  10. Effective dose evaluation for BNCT brain tumor treatment based on voxel phantoms.

    Science.gov (United States)

    Wang, Jeng-Ning; Lee, Kuo-Wei; Jiang, Shiang-Huei

    2014-06-01

    For BNCT treatments, in addition to tumor target doses, non-negligible doses will result in all the remaining organs of the body. This work aims to evaluate the effective dose as well as the average absorbed doses of each of organs of patients with brain tumor treated in the BNCT epithermal neutron beam at THOR. The effective doses were evaluated according to the definitions of ICRP Publications 60 and 103 for the reference male and female computational phantoms developed in ICRP Publication 110 by using the MCNP5 Monte Carlo code with the THOR-Y09 beam source. The effective dose acquired in this work was compared with the results of our previous work calculated for an adult hermaphrodite mathematical phantom. It was found that the effective dose for the female voxel phantom is larger than that for the male voxel phantom by a factor of 1.2-1.5 and the effective dose for the voxel phantom is larger than that for the mathematical phantom by a factor of 1.3-1.6. For a typical brain tumor BNCT, the effective dose was calculated to be 1.51Sv and the average absorbed dose for eye lenses was 1.07Gy.

  11. Boron neutron capture therapy (BNCT) for the treatment of spontaneous nasal planum squamous cell carcinoma in felines.

    Science.gov (United States)

    Trivillin, Verónica A; Heber, Elisa M; Rao, Monica; Cantarelli, María A; Itoiz, Maria E; Nigg, David W; Calzetta, Osvaldo; Blaumann, Herman; Longhino, Juan; Schwint, Amanda E

    2008-02-01

    Recently, Boron neutron capture therapy (BNCT) was successfully applied to treat experimental squamous cell carcinomas (SCC) of the hamster cheek pouch mucosa, with no damage to normal tissue. It was also shown that treating spontaneous nasal planum SCC in terminal feline patients with low dose BNCT is safe and feasible. In an extension of this work, the present study aimed at evaluation of the response of tumor and dose-limiting normal tissues to potentially therapeutic BNCT doses. Biodistribution studies with (10)B-boronophenylalanine (BPA enriched in (10)B) as a (10)B carrier were performed on three felines that showed advanced nasal planum SCC without any standard therapeutic option. Following the biodistribution studies, BNCT mediated by (10)BPA was done using the thermalized epithermal neutron beam at the RA-6 Nuclear Reactor. Follow-up included clinical evaluation, assessment of macroscopic tumor and normal tissue response and biopsies for histopathological analysis. The treated animals did not show any apparent radiation-induced toxicity. All three animals exhibited partial tumor control and an improvement in clinical condition. Enhanced therapeutic efficacy was associated with a high (10)B content of the tumor and a small tumor size. BNCT is therefore believed to be potentially effective in the treatment of spontaneous SCC. However, improvement in targeting (10)B into all tumor cells and delivering a sufficient dose at a greater depth are still required for the treatment of deep-seated, large tumors. Future studies are needed to evaluate the potential efficacy of the dual mode cellular (e.g. BPA-BNCT) and vascular (e.g. GB-10-BNCT) targeting protocol in a preclinical scenario, employing combinations of (10)B compounds with different properties and complementary uptake mechanisms.

  12. Condition Monitoring of Rolling Element Bearings Using Optimal Gabor Filters%采用Gabor滤波器的轴承状态监控方法

    Institute of Scientific and Technical Information of China (English)

    张丹; 隋文涛; 郭前建

    2016-01-01

    针对滚动轴承状态监控中最优共振频带难确定的问题,提出一种新的寻优方法和目标函数,可快速准确地定位共振频带,提取状态信息。通过两步网格搜索法,以包络稀疏性为目标函数,对Gabor滤波器参数寻优;然后对振动信号进行滤波并得到信号包络;最后运用包络自相关谱抑制噪声,突出运行状态信息。用仿真信号和实际信号对该方法进行了验证,结果表明,该方法能准确判明轴承运行状态。%Aiming to the difficulty in finding the resonant frequency band in condition monitoring of roll-ing element bearings, a new optimization method and objective function was proposed. The resonant fre-quency band can be located through this proposed method. Firstly, the parameters of Gabor filter are op-timized through the two-step grid search method, in which the envelope sparseness is as objective func-tion. The vibration signal was filtered through the optimal filter and the envelop signal was calculated. The envelop autocorrelation spectrum was adopted to restrain noise and highlight operation condition infor-mation. The effectiveness and advantages of the proposed method were proved through the simulation sig-nal and experimental signals. It is shown that the bearing operation condition can be recognized accurate-ly by the proposed method.

  13. The application of magnetic self-filter to optimization of AIN film growth process during the impulse plasma deposition synthesis

    Directory of Open Access Journals (Sweden)

    Chodun Rafal

    2016-03-01

    Full Text Available This work presents the very first results of the application of plasma magnetic filtering achieved by a coil coupled with an electrical circuit of a coaxial accelerator during the synthesis of A1N thin films by use of Impulse Plasma Deposition method (IPD. The uniqueness of this technical solution lies in the fact that the filter is not supplied, controlled and synchronized from any external device. Our solution uses the energy from the electrical circuit of plasma accelerator. The plasma state was described on the basis of OES studies. Estimation of the effects of plasma filtering on the film quality was carried out on the basis of characterization of structure morphology (SEM, phase and chemical composition (vibrational spectroscopy. Our work has shown that the use of the developed magnetic self-filter improved the structure of the AlN coatings synthesized under the condition of impulse plasma, especially by the minimization of the tendency to deposit metallic aluminum droplets and columnar growth.

  14. Abscopal effect of boron neutron capture therapy (BNCT): proof of principle in an experimental model of colon cancer.

    Science.gov (United States)

    Trivillin, Verónica A; Pozzi, Emiliano C C; Colombo, Lucas L; Thorp, Silvia I; Garabalino, Marcela A; Monti Hughes, Andrea; González, Sara J; Farías, Rubén O; Curotto, Paula; Santa Cruz, Gustavo A; Carando, Daniel G; Schwint, Amanda E

    2017-08-08

    The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 × 10(6) DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 × 10(6) DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm(3). In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm(3). The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect.

  15. 3D-characterization method and morphological filtering for the assessment and the design of friction optimized surfaces

    Science.gov (United States)

    Gröger, S.; Burkhardt, T.; Dietzsch, M.

    2011-08-01

    For a specific manipulation of friction surfaces it is important to measure and calculate geometrical parameters to derive the tribological behavior. The new functional approach presented in this paper is the calculation of the characteristic lateral extension of the real contact surface as well as the representative contact radius by applying morphological filters to a 3D-set of data. All surface characteristics, including form, waviness, roughness as well as defined microstructures, are extracted holistically with a 3D Coordinate Measuring Instrument or a Form Measuring Instrument, but with the smallest available tip radius. The paper presents the benefit of this holistic extraction method and the application of morphological filtering for the description of the contact form (plateau or sphere), the real contact surface, number of contacts, the typical contact radius and the typical lateral extension of the micro contact plateaus.

  16. Cat Swarm Optimization Based Functional Link Artificial Neural Network Filter for Gaussian Noise Removal from Computed Tomography Images

    OpenAIRE

    Kumar, M.; Mishra, S K; S S Sahu

    2016-01-01

    Gaussian noise is one of the dominant noises, which degrades the quality of acquired Computed Tomography (CT) image data. It creates difficulties in pathological identification or diagnosis of any disease. Gaussian noise elimination is desirable to improve the clarity of a CT image for clinical, diagnostic, and postprocessing applications. This paper proposes an evolutionary nonlinear adaptive filter approach, using Cat Swarm Functional Link Artificial Neural Network (CS-FLANN) to remove the ...

  17. A constrained extended Kalman filter for the optimal estimate of kinematics and kinetics of a sagittal symmetric exercise.

    Science.gov (United States)

    Bonnet, V; Dumas, R; Cappozzo, A; Joukov, V; Daune, G; Kulić, D; Fraisse, P; Andary, S; Venture, G

    2016-12-29

    This paper presents a method for real-time estimation of the kinematics and kinetics of a human body performing a sagittal symmetric motor task, which would minimize the impact of the stereophotogrammetric soft tissue artefacts (STA). The method is based on a bi-dimensional mechanical model of the locomotor apparatus the state variables of which (joint angles, velocities and accelerations, and the segments lengths and inertial parameters) are estimated by a constrained extended Kalman filter (CEKF) that fuses input information made of both stereophotogrammetric and dynamometric measurement data. Filter gains are made to saturate in order to obtain plausible state variables and the measurement covariance matrix of the filter accounts for the expected STA maximal amplitudes. We hypothesised that the ensemble of constraints and input redundant information would allow the method to attenuate the STA propagation to the end results. The method was evaluated in ten human subjects performing a squat exercise. The CEKF estimated and measured skin marker trajectories exhibited a RMS difference lower than 4mm, thus in the range of STAs. The RMS differences between the measured ground reaction force and moment and those estimated using the proposed method (9N and 10Nm) were much lower than obtained using a classical inverse dynamics approach (22N and 30Nm). From the latter results it may be inferred that the presented method allows for a significant improvement of the accuracy with which kinematic variables and relevant time derivatives, model parameters and, therefore, intersegmental moments are estimated.

  18. Diseño de Filtros FIR de Retraso Fraccionario Mediante Optimización en Frecuencia Fractional Delay FIR Filter Design using Frequency-Based Optimization

    Directory of Open Access Journals (Sweden)

    J. Díaz-Carmona

    2005-01-01

    Full Text Available En este artículo se describe el diseño en el dominio de la frecuencia de filtros digitales FIR de retraso fraccionario (Fractional Delay Filter, FDF con características de ancho de banda amplio y una resolución fina de retraso. El método de diseño en frecuencia utilizado está basado en optimización con mínimos cuadrados en la aproximación de series de Taylor de la señal de entrada. La propuesta consiste en reducir la complejidad de la optimización en frecuencia al momento de diseñar el FDF. Lo anterior se logra con la combinación de una estructura multirazón (multirate y una estructura Farrow modificada. El filtro resultante presenta como ventajas un número reducido de operaciones por muestra de salida y una reducción notable en la carga computacional de diseño.A frequency domain design method for fractional delay FIR filters (Fractional Delay Filter, FDF with wide bandwidth and fine delay resolution is described. The frequency domain method is based on a least square Taylor series approximation of the input signal. The proposed design method consists of reducing the complexity of the frequency optimization workload in the design of the FDF. This is obtained by the combination of a multirate structure and a modified Farrow structure. The resulting filter has a reduced number of arithmetic operations per output sample and yields a significant reduction in the design computational workload.

  19. Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new "B2" configuration of the RA-6 nuclear reactor.

    Science.gov (United States)

    Monti Hughes, Andrea; Longhino, Juan; Boggio, Esteban; Medina, Vanina A; Martinel Lamas, Diego J; Garabalino, Marcela A; Heber, Elisa M; Pozzi, Emiliano C C; Itoiz, María E; Aromando, Romina F; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E

    2017-09-04

    Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new "B2" configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in "B1" experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94-96%) than in control (16%) and BO groups (9-38%), and did not differ significantly from the "B1" results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control.

  20. Identification of a Typical CSTR Using Optimal Focused Time Lagged Recurrent Neural Network Model with Gamma Memory Filter

    National Research Council Canada - National Science Library

    Naikwad, S. N; Dudul, S. V

    2009-01-01

    .... It is noticed from literature review that process control of CSTR using neuro-fuzzy systems was attempted by many, but optimal neural network model for identification of CSTR process is not yet available...

  1. Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer.

    Science.gov (United States)

    Júnez-Ferreira, H E; Herrera, G S; González-Hita, L; Cardona, A; Mora-Rodríguez, J

    2016-01-01

    A new method for the optimal design of groundwater quality monitoring networks is introduced in this paper. Various indicator parameters were considered simultaneously and tested for the Irapuato-Valle aquifer in Mexico. The steps followed in the design were (1) establishment of the monitoring network objectives, (2) definition of a groundwater quality conceptual model for the study area, (3) selection of the parameters to be sampled, and (4) selection of a monitoring network by choosing the well positions that minimize the estimate error variance of the selected indicator parameters. Equal weight for each parameter was given to most of the aquifer positions and a higher weight to priority zones. The objective for the monitoring network in the specific application was to obtain a general reconnaissance of the water quality, including water types, water origin, and first indications of contamination. Water quality indicator parameters were chosen in accordance with this objective, and for the selection of the optimal monitoring sites, it was sought to obtain a low-uncertainty estimate of these parameters for the entire aquifer and with more certainty in priority zones. The optimal monitoring network was selected using a combination of geostatistical methods, a Kalman filter and a heuristic optimization method. Results show that when monitoring the 69 locations with higher priority order (the optimal monitoring network), the joint average standard error in the study area for all the groundwater quality parameters was approximately 90 % of the obtained with the 140 available sampling locations (the set of pilot wells). This demonstrates that an optimal design can help to reduce monitoring costs, by avoiding redundancy in data acquisition.

  2. Optimization and realization of IIR digital filter based on immune algorithms%基于免疫算法的IIR数字滤波器优化与实现

    Institute of Scientific and Technical Information of China (English)

    倪龙

    2011-01-01

    由于IIR数字滤波器设计实质上是一个非线性高维复杂函数优化问题,文中提出基于具有全局搜索能力强,收敛速度快特点的免疫算法实现IIR数字滤波器优化设计的新方法,给出了IIR滤波器优化设计的数学模型,描述了应用免疫算法优化设计IIR数字滤波器的具体实现步骤.通过低通和高通IIR数字滤波器设计的仿真结果表明方法的有效性和高效性.%Based on optimization design for IIR digital filters being a non-linear and high-dimension complex function optimization problem, immune algorithms (IA) , which has the characteristics of more powerful global and rpider convergence is applied on IIR digital filter optimization design in this paper.Firstly, the maths model of IIR digital filter optimization design is proposed. Secondly, the process of optimization design for IIR digital filters on the basis ofIA is described in detail, finally, the validity and effectivenss of the introduced method are demonstrated by experimental results on the lowpass and highpass IIR digital filters.

  3. 车用空气滤清器总成性能分析与优化%Analysis and Optimization of Air Filter Assembly Performance

    Institute of Scientific and Technical Information of China (English)

    曹培元; 杜爱民; 杜玉彪; 冯桂军

    2012-01-01

    提出了混合优化设计的概念,在考虑空气滤清器流动性能和降噪两大指标的前提下对空气滤清器作出整体优化.计算过程中利用有限元分析前处理软件HyperMesh进行了网格划分,利用声学分析软件Sysnoise对空气滤清器总成进行了声学性能计算,利用流场分析软件Fluent进行了进气流场和压降分析,最后依据各分析结果提出了针对空气滤清器结构改进的合理优化方案,使其在满足结构要求的前提下,传递损失和压力损失得到了较大的改善.%The concept of mixed optimization was put forward. Based on the flow performance and denoising of air filter, the overall optimization was carried out. During the calculation, the Hypermesh FEA software was used for the mesh generation, the Sysnoise acoustic software was used to calculate the acoustic performance and the Fluent fluid software was used to analyze the intake flow field and pressure loss. Finally the feasible optimized scheme for the structure-improved air filter model was acquired, which improved transfer and pressure loss under meeting the structural requirements.

  4. Uranium target for electron accelerator based neutron source for BNCT

    Science.gov (United States)

    Tonchev, A. P.; Harmon, F.; Collens, T. J.; Kennedy, K.; Sabourov, A.; Harker, Y. D.; Nigg, D. W.; Jones, J. L.

    2001-07-01

    Calculations of the epithermal-neutron yield of photoneutrons from a uranium-beryllium converter using a 27 MeV electron linear accelerator have been investigated. In this concept, relativistic electron beams from a 30 MeV LINAC impinge upon a small uranium sphere surrounded by a cylindrical tank of circulating heavy water (D2O) nested in a beryllium cube. The photo-fission neutron spectrum from the uranium sphere is thermalized in deuterium and beryllium, filtered and moderated in special material (AlF3/Al/LiF), and directed to the patient. The results of these calculations demonstrate that photoneutron devices could offer a promising alternative to nuclear reactors for the production of epithermal neutrons for Neutron Capture Therapy. The predicted parameter for the epithermal flux is more than 108n.cm-2.mA-1.

  5. Renovation of epithermal neutron beam for BNCT at THOR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.-W.H. E-mail: ywhliu@ess.nthu.edu.tw; Huang, T.T.; Jiang, S.H.; Liu, H.M

    2004-11-01

    Heading for possible use for clinical trial, THOR (Tsing Hua Open-pool Reactor) at Taiwan was shutdown for renovation of a new epithermal neutron beam in January 2003. In November 2003, concrete cutting was finished for closer distance from core and larger treatment room. This article presents the design base that the construction of the new beam is based on. The filter/moderator design along the beam is Cd(0.1 cm)+Al(10 cm)+FLUENTAL{sup TM}(16 cm)+Al(10 cm)+FLUENTAL(24 cm)+Void(18 cm)+Cd(0.1 cm)+Bi(10 cm) with 6 cm Pb as reflector. Following the filter/moderator is an 88 cm long, 6 cm thick Bi-lined collimator with Li{sub 2}CO{sub 3}-PE at the end. The collimator is surrounded by Li{sub 2}CO{sub 3}-PE and Pb. The calculated beam parameters under 2 MW at the beam exit is phi{sub epi}=3.4x10{sup 9} n/cm{sup 2}/s, D{sub f}/phi{sub epi}=2.8x10{sup -11} cGy cm{sup 2}/n, D{sub {gamma}}/phi{sub epi}=1.3x10{sup -11} cGy cm{sup 2}/n, and J{sub +}/phi= 0.8. For a phantom placed 10 cm from beam exit, MCNP calculation shows that the advantage depth is 8.9 cm, and advantage ratio is 5.6 if boron concentration in tumor and normal tissue are assumed to be 65 and 18 ppm. The maximum dose rate for normal tissue is 50 cGy/min. The maximum therapeutic ratio is 6. The construction of the beam is scheduled to be finished by the end of April 2004.

  6. Renovation of epithermal neutron beam for BNCT at THOR.

    Science.gov (United States)

    Liu, Y-W H; Huang, T T; Jiang, S H; Liu, H M

    2004-11-01

    Heading for possible use for clinical trial, THOR (Tsing Hua Open-pool Reactor) at Taiwan was shutdown for renovation of a new epithermal neutron beam in January 2003. In November 2003, concrete cutting was finished for closer distance from core and larger treatment room. This article presents the design base that the construction of the new beam is based on. The filter/moderator design along the beam is Cd(0.1cm)+Al(10 cm)+FLUENTAL (16 cm)+Al(10 cm)+FLUENTAL(24 cm)+Void(18 cm)+Cd(0.1cm)+Bi(10 cm) with 6 cm Pb as reflector. Following the filter/moderator is an 88 cm long, 6 cm thick Bi-lined collimator with Li(2)CO(3)-PE at the end. The collimator is surrounded by Li(2)CO(3)-PE and Pb. The calculated beam parameters under 2 MW at the beam exit is phi(epi) = 3.4 x 10(9) n/cm(2)/s, Df/phi(epi) = 2.8 x 10(-11) cGy cm(2)/n, Dgamma/phi(epi) = 1.3 x 10(-11) cGy cm(2)/n, and J+/phi = 0.8. For a phantom placed 10 cm from beam exit, MCNP calculation shows that the advantage depth is 8.9 cm, and advantage ratio is 5.6 if boron concentration in tumor and normal tissue are assumed to be 65 and 18 ppm. The maximum dose rate for normal tissue is 50 cGy/min. The maximum therapeutic ratio is 6. The construction of the beam is scheduled to be finished by the end of April 2004.

  7. Design and Optimization of FIR Filtering Algorithm Based on CUDA Platform%基于CUDA平台的FIR滤波算法的设计与优化

    Institute of Scientific and Technical Information of China (English)

    郭海凤; 李莉

    2014-01-01

    针对目前基于普通DSP的FIR算法速度低、扩展性差的缺点,提出并实现基于CUDA平台实现的FIR滤波算法。由于在CUDA中程序可以直接操作数据而无需借助于图形系统的API,使开发者能够在GPU 强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。该算法将CUDA用于FIR滤波器输入输出关系计算,采用矩阵乘法的并行运算技术,在GPU上建立并行滤波模型,并对算法进行了优化。实验结果表明,在Tesla C1060平台上,和传统的基于DSP的FIR滤波算法计算速度相比,基于CUDA平台计算FIR滤波算法时,其加速比可接近30,解决了传统基于DSP计算FIR滤波算法速度较慢、扩展性差的问题。%It is well known that FIR algorithm based on normal DSP has low computing speed and extensive capabilities. In order to over-come these,present a new FIR filter algorithm based on CUDA platform. Since in CUDA program can directly manipulate data without graphics API of the system,enables developers on the basis of the powerful GPU computing power to set up a efficient dense data compu-ting solutions. The algorithm adopts CUDA for FIR filter calculation of input and output relationship,using the parallel computing tech-nology of matrix multiplication,on the GPU the parallel filtering model is established,and the algorithm is optimized. Experiment on Tes-la C1060 shows that,compared with traditional FIR filter algorithm's speed based on DSP,it can accelerate its computation speed up to 30 times,solving conventional FIR filter's defect based on DSP of low speed and bad extending capabilities.

  8. Cationized gelatin-HVJ envelope with sodium borocaptate improved the BNCT efficacy for liver tumors in vivo

    Directory of Open Access Journals (Sweden)

    Ono Koji

    2011-01-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is a cell-selective radiation therapy that uses the alpha particles and lithium nuclei produced by the boron neutron capture reaction. BNCT is a relatively safe tool for treating multiple or diffuse malignant tumors with little injury to normal tissue. The success or failure of BNCT depends upon the 10B compound accumulation within tumor cells and the proximity of the tumor cells to the body surface. To extend the therapeutic use of BNCT from surface tumors to visceral tumors will require 10B compounds that accumulate strongly in tumor cells without significant accumulation in normal cells, and an appropriate delivery method for deeper tissues. Hemagglutinating Virus of Japan Envelope (HVJ-E is used as a vehicle for gene delivery because of its high ability to fuse with cells. However, its strong hemagglutination activity makes HVJ-E unsuitable for systemic administration. In this study, we developed a novel vector for 10B (sodium borocaptate: BSH delivery using HVJ-E and cationized gelatin for treating multiple liver tumors with BNCT without severe adverse events. Methods We developed cationized gelatin conjugate HVJ-E combined with BSH (CG-HVJ-E-BSH, and evaluated its characteristics (toxicity, affinity for tumor cells, accumulation and retention in tumor cells, boron-carrying capacity to multiple liver tumors in vivo, and bio-distribution and effectiveness in BNCT therapy in a murine model of multiple liver tumors. Results CG-HVJ-E reduced hemagglutination activity by half and was significantly less toxic in mice than HVJ-E. Higher 10B concentrations in murine osteosarcoma cells (LM8G5 were achieved with CG-HVJ-E-BSH than with BSH. When administered into mice bearing multiple LM8G5 liver tumors, the tumor/normal liver ratios of CG-HVJ-E-BSH were significantly higher than those of BSH for the first 48 hours (p . In suppressing the spread of tumor cells in mice, BNCT treatment was as

  9. Simulation and optimal operation of mechanical filter under constant flux%恒流操作下机械过滤仿真与优化运行

    Institute of Scientific and Technical Information of China (English)

    蒋镇军; 姜周曙; 江爱朋; 王剑

    2011-01-01

    Mechanical filtration process is an important part in the front of desalination. The research of mechanical filtration in optimal operation helps reduce its cost. Based on the study of deep filtration theory, the relational model between the porosity of filtering layer and the pressure drop of filter cake under constant flux can be discovered. And based on the model founded above, the relational model is established, which regards the cleaning frequency of mechanical filter as dependent variable, the running expense per year as object function. By the simulation optimization, the best cleaning frequency of mechanical filter can be calculated. At the same time, the changes of porosity, cake pressure drop and other parameters in the best cleaning frequency are discussed. Research shows that, when the porosity of filter layer is greater than 0.5, especially between 0.6 to 0.8, the pressure drop of filter cake will slowly increase while the porosity of filter layer reducing under constant flux; when the porosity of filter layer is less than 0.5, the pressure drop of filter cake will speedy increase, the analysis of the best cleaning frequency of mechanical filter shows that it is unaffected by the running time of the mechanical filtration in a year, but affected by the cleaning cost of Mechanical filtration. As the cleaning cost of mechanical filtration growing, the best cleaning frequency increases. The simulation optimization also shows that number of annual saving is growing when the running time increasing or the cleaning cost reducing.%机械过滤过程是海水淡化处理的前端重要环节,对其优化运行研究有助于降低机械过滤成本.本文通过对深层过滤理论的研究,得到在恒流条件下,滤层孔隙率与滤饼压降之间的关系模型.以此为基础建立了以机械过滤器清洗周期为应变量,以机械过滤器年周期运行费用为目标函数的关系模型,通过仿真优化,得到机械过滤器的最佳清洗周

  10. Monte Carlo based protocol for cell survival and tumour control probability in BNCT

    Science.gov (United States)

    Ye, Sung-Joon

    1999-02-01

    A mathematical model to calculate the theoretical cell survival probability (nominally, the cell survival fraction) is developed to evaluate preclinical treatment conditions for boron neutron capture therapy (BNCT). A treatment condition is characterized by the neutron beam spectra, single or bilateral exposure, and the choice of boron carrier drug (boronophenylalanine (BPA) or boron sulfhydryl hydride (BSH)). The cell survival probability defined from Poisson statistics is expressed with the cell-killing yield, the (n, ) reaction density, and the tolerable neutron fluence. The radiation transport calculation from the neutron source to tumours is carried out using Monte Carlo methods: (i) reactor-based BNCT facility modelling to yield the neutron beam library at an irradiation port; (ii) dosimetry to limit the neutron fluence below a tolerance dose (10.5 Gy-Eq); (iii) calculation of the (n, ) reaction density in tumours. A shallow surface tumour could be effectively treated by single exposure producing an average cell survival probability of - for probable ranges of the cell-killing yield for the two drugs, while a deep tumour will require bilateral exposure to achieve comparable cell kills at depth. With very pure epithermal beams eliminating thermal, low epithermal and fast neutrons, the cell survival can be decreased by factors of 2-10 compared with the unmodified neutron spectrum. A dominant effect of cell-killing yield on tumour cell survival demonstrates the importance of choice of boron carrier drug. However, these calculations do not indicate an unambiguous preference for one drug, due to the large overlap of tumour cell survival in the probable ranges of the cell-killing yield for the two drugs. The cell survival value averaged over a bulky tumour volume is used to predict the overall BNCT therapeutic efficacy, using a simple model of tumour control probability (TCP).

  11. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. E-mail: stefano.agosteo@polimi.it; Curzio, G.; D' Errico, F.; Nath, R.; Tinti, R

    2002-01-01

    Neutron capture in {sup 10}B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  12. Two-zone pupil filters

    Science.gov (United States)

    Sheppard, Colin J. R.; Campos, Juan; Escalera, Juan C.; Ledesma, Silvia

    2008-03-01

    The performance of pupil filters consisting of two zones each of constant complex amplitude transmittance is investigated. For filters where the transmittance is real, different classes of potentially useful filter are identified and optimized. These include leaky filters with an inner zone of low amplitude transmittance, pure phase filters with phase change of π, and equal area filters. The first of these minimizes the relative power in the outer rings for a given axial resolution, the second maximizes the Strehl ratio for a given transverse resolution, and the third minimizes the relative power in the outer rings for a given transverse resolution. Complex filters can give an axially shifted maximum in intensity: the performance parameters calculated relative to the true focus are investigated for some different classes of filter, but filters with phase change not equal to π are found to give inferior performance to the real value filters.

  13. The new hybrid thermal neutron facility at TAPIRO reactor for BNCT radiobiological experiments.

    Science.gov (United States)

    Esposito, J; Rosi, G; Agosteo, S

    2007-01-01

    A new thermal neutron irradiation facility, devoted to carry out both dosimetric and radiobiological studies on boron carriers, which are being developed in the framework of INFN BNCT project, has been installed at the ENEA Casaccia TAPIRO research fast reactor. The thermal column, based on an original, hybrid, neutron spectrum shifter configuration, has been recently become operative. In spite of its low power (5 kW), the new facility is able to provide a high thermal neutron flux level, uniformly distributed inside the irradiation cavity, with a quite low gamma background. The main features and preliminary benchmark measurements of the Beam-shaping assembly are here presented and discussed.

  14. Synthesis and evaluation of a novel liposome containing BPA-peptide conjugate for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Shirakawa, Makoto [Department of Graduate School of Comprehensive Human Sciences, Faculty of Functional and Regulatory Medical Sciences, University of Tsukuba (Japan)], E-mail: m0720347@md.tsukuba.ac.jp; Yamamto, Tetsuya; Nakai, Kei [Department of Graduate School of Comprehensive Human Sciences, Faculty of Functional and Regulatory Medical Sciences, University of Tsukuba (Japan); Aburai, Kenichi [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (Japan); Kawatobi, Sho [Faculty of Pharmaceutical Sciences, Toho University (Japan); Tsurubuchi, Takao; Yamamoto, Yohei [Department of Graduate School of Comprehensive Human Sciences, Faculty of Functional and Regulatory Medical Sciences, University of Tsukuba (Japan); Yokoyama, Yuusaku; Okuno, Hiroaki [Faculty of Pharmaceutical Sciences, Toho University (Japan); Matsumura, Akira [Department of Graduate School of Comprehensive Human Sciences, Faculty of Functional and Regulatory Medical Sciences, University of Tsukuba (Japan)

    2009-07-15

    We aimed at securing sufficient concentrations of {sup 10}B in boron neutron capture therapy (BNCT) by developing a new drug delivery system. We have designed and developed a novel lipid analog and succeeded in using it to develop the new boron component liposome. It consisted of three different kinds of amino acid derivatives and two fatty acids, and could react directly with the peptide synthesized first on resin by Fmoc solid-phase synthesis. In this study, lipid analog conjugated with HIV-TAT peptide (domain of human immunodeficiency virus TAT protein) and boronophenylalanine (BPA) was synthesized and successfully incorporated into liposomes.

  15. FY2000 FRED Test Report - Final Report on the Crossflow Filter Optimization with 5.6M Sodium Salt Solution

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.R.

    2001-04-04

    The Filtration Research Engineering Demonstration (FRED) at the University of South Carolina ran a test campaign to confirm the utility of crossflow filtration for use with the MST sorption as a strontium-actinide removal technology that is expected to be coupled with the ion exchange and solvent extraction process alternatives. FRED has a Mott Metallurgical 7 tube filter with individual tubes 10 ft long and 3/4 inch o.d. having a nominal pore size of 0.5 microns. The blend sludge consisted of a 50/50 wt percent mixture of sludge simulants of SRS Tank 40H and Tank 8F simulated sludges previously manufactured at FRED. Monosodium Titanate (MST) was blended with the 50/50 sludge mixture in a proportion of 0.9167 MST-to-Sludge ratio to provide the solids loadings analyzed in this test.

  16. 基于实数编码量子进化算法的IIR数字滤波器优化设计%IIR digital filter optimization design based on read-coded quantum evolutionary algorithms

    Institute of Scientific and Technical Information of China (English)

    孙成发

    2013-01-01

    Based on optimization design for IIR digital filters being a multi-parameters and non-linear complex function optimization problem,a novel method of IIR digital filters optimization design is proposed,its core is that read-coded quantum evolutionary algorithms(RQEA)is applied on optimizing the interrelated parameters of IIR digital filters.In this paper, firstly,the maths model of IIR digital filter optimization design is proposed;secondly,the process of optimization design for IIR digital filters on the basis of RQEA is described in detail,final y,the validity and effectivenss of the introduced method are demonstrated by experimental results on the lowpass and highpass IIR digital filters.%  IIR数字滤波器设计的本质是求解多参数非线性复杂函数优化问题,提出应用实数编码量子进化算法优化IIR数字滤波器的相关参数,进而形成一种新的IIR数字滤波器优化设计方法。文中给出了IIR滤波器优化设计的数学模型,描述了应用实数编码量子进化算法优化设计IIR数字滤波器的具体实现步骤,并通过低通和高通IIR数字滤波器设计的仿真结果表明该方法的有效性和高效性。

  17. 基于优化欧氏距离的协同过滤推荐%Collaborative Filtering Recommendation Based on Optimization Euclidean Distance

    Institute of Scientific and Technical Information of China (English)

    陈小辉; 高燕

    2015-01-01

    由于推荐系统中用户对项目的评价数据具有多样性和稀疏性的特点,传统的相似性度量算法不能有效查找相似邻居,本文提出一种基于优化欧氏距离的邻居相似度计算方法,在欧氏距离计算的基础上引入归一化处理和杰卡德相似系数,并最终作出评价预测和推荐。在典型数据集上的实验结果显示该算法能够有效提高协同过滤推荐系统的推荐性能。%User evaluation data of items often are of the biodiversity and sparse characteristic in collaborative filtering recommen-dation system, the traditional similarity measurement algorithm cannot effectively find similar neighbors, this paper proposed a neighbor similarity computing algorithm based on optimized Euclidean distance. The algorithm introduced normalization and Jac-card similarity coefficient based on Euclidean distance calculation, and finally made the evaluation prediction and recommenda-tion. The experiments result on typical dataset show that the algorithm can effectively improve the performance of collaborative fil-tering recommendation system.

  18. [Optimization of beam filtering, kv-ma regulation curve and image intensifier entrance exposure rate to reduce radiation exposure in angiographic fluoroscopy].

    Science.gov (United States)

    Barkhausen, J; Schoenfelder, D; Nagel, H D; Stöblen, F; Müller, R D

    1999-11-01

    Evaluation of radiation exposure and image quality during fluoroscopy using a new vascular X-ray system. The measurements were made on an Integris V 3000 X-ray system with MRC tube and SpectraBeam technology (Philips Medical Systems, Hamburg). Entrance dose rates were measured with phantoms for the three fluoroscopy levels (1-3) which differed with regard to beam filtering and image intensiver entrance exposure rate. We evaluated 132 diagnostic and interventional angiographic studies. The angiographic investigators were asked to start with level 1 and to change to the next fluoroscopy level only in the case of insufficient image quality. Entrance dose rate is reduced by approx. 74% at fluoroscopy level 1 and by approx. 46% at level 2 relative to level 3 which is comparable to angiographic X-ray systems without MRC tube and SpectraBeam technology. Because level 1 ensured a sufficient image quality in 92% of the diagnostic and 60% of the interventional angiographic procedures a change to higher fluoroscopy levels was not necessary. Reduction of the intensifier exposure rate and the optimization of beam filtering enabled us to reduce the radiation exposure considerably. The procedure was well accepted by the angiographic investigators due to the diagnostically sufficient image quality of the fluoroscopy level 1.

  19. Off-line determination of the optimal number of iterations of the robust anisotropic diffusion filter applied to denoising of brain MR images.

    Science.gov (United States)

    Ferrari, Ricardo J

    2013-02-01

    Although anisotropic diffusion filters have been used extensively and with great success in medical image denoising, one limitation of this iterative approach, when used on fully automatic medical image processing schemes, is that the quality of the resulting denoised image is highly dependent on the number of iterations of the algorithm. Using many iterations may excessively blur the edges of the anatomical structures, while a few may not be enough to remove the undesirable noise. In this work, a mathematical model is proposed to automatically determine the number of iterations of the robust anisotropic diffusion filter applied to the problem of denoising three common human brain magnetic resonance (MR) images (T1-weighted, T2-weighted and proton density). The model is determined off-line by means of the maximization of the mean structural similarity index, which is used in this work as metric for quantitative assessment of the resulting processed images obtained after each iteration of the algorithm. After determining the model parameters, the optimal number of iterations of the algorithm is easily determined without requiring any extra computation time. The proposed method was tested on 3D synthetic and clinical human brain MR images and the results of qualitative and quantitative evaluation have shown its effectiveness.

  20. 基于Matlab带阻滤波器电路设计及参数寻优%Bandstop Filter Circuit Design and Parameter Optimization Based on Matlab

    Institute of Scientific and Technical Information of China (English)

    陈晓冲; 屈蕾

    2012-01-01

    Various filter circuits often arise in analog circuit design As the values of resistors and capacitors are not continuous in actual projects, the calculation of circuit parameters would be trivial and computationally intensive in designing the circuit. In addition, hand-calculation result would not be an optimal solution. This paper, by means of the powerful computation capacity of MATLAB, establishes a corresponding standard circuit model and pa- rameter optimization model according to the transfer function of the band-stop filter, and finally circuit parameters which meet the requirements can be quickly obtained using the mathematical toolbox of MATLAB to program the cor- responding solver, which greatly improves the design efficiency and is of great applicability.%各种滤波器电路在模拟电路设计中经常出现,由于在实际工程中,电阻、电容的值均连续,因此在设计电路时,电路参数计算繁冗且计算量大,并且手工计算出的结果并非是一个最优解,文中借助Matlab的计算功能,根据带阻滤波器的传递函数,建立了相应的标准电路模型以及参数最优化模型,最后使用Matlab中的数学工具箱编写出相应的求解程序,可以快速得到符合要求的电路参数,大幅提高了设计效率,有较强的实用性。

  1. 非对称优化PWM串联型有源滤波器的研究及设计%Asymmetric Research and Design Optimization the PWM Series Active Filter

    Institute of Scientific and Technical Information of China (English)

    许文静

    2013-01-01

    This article first describes the basic principle and optimization of asymmetric filter characteristic and mathe-matical model of PWM, and then discussed the unsymmetrical optimal PWM series active filter design of hardware and software. Finally, system simulation using Matlab.%  首先介绍了有源滤波器基本原理和非对称优化PWM的特点及数学模型;然后讨论了非对称优化PWM串联型有源滤波的硬件及软件设计;最后使用Matlab对系统进行了仿真。

  2. 随机奇异系统分布式最优融合降阶卡尔曼滤波器%Distributed Reduced-order Optimal Fusion Kalman Filters for Stochastic Singular Systems

    Institute of Scientific and Technical Information of China (English)

    孙书利; 马静

    2006-01-01

    Based on the optimal fusion algorithm weighted by matrices in the linear minimum variance (LMV) sense, a distributed full-order optimal fusion Kalman filter (DFFKF) is given for discrete-time stochastic singular systems with multiple sensors, which involves the inverse of a highdimension matrix to compute matrix weights. To reduce the computational burden, a distributed reduced-order fusion Kalman filter (DRFKF) is presented, which involves in parallel the inverses of two relatively low-dimension matrices to compute matrix weights. A simulation example shows the effectiveness.

  3. 模拟滤波器群时延的优化设计%Optimization Design of Analog Filter's Group-delay

    Institute of Scientific and Technical Information of China (English)

    马红梅; 李鹏; 张旭珍

    2011-01-01

    为解决滤波器幅频特性算术对称性和相位平直度之间的矛盾,提出了一种基于极点放置技术和电路改进技术的滤波器优化设计方法,即在网络综合法设计的滤波器电路基础上,利用极点放置技术和电路改进技术对电路结构进行改进,然后用最小二乘法使群时延特性逼近一条直线,同时利用无约束优化算法对整个电路进行优化使幅频特性线性对称.仿真结果表明,该方法能够使滤波器幅频特性算术对称,通带内能得到较好的群时延特性,而且电路结构简单,阶数少,插入损耗低.%As for the contradiction between the filter' s amplitude-frequency characteristic arithmetic symmetry and the phase-frequency straightness,the paper is focus on an optimization design method based on pole placement technique and circuit improvement technique. Improving the circuit designed by network synthesis method,then optimizing the group-delay to a straight line using least square method,and simultaneously the circuit is optimized by unconstrained optimization method to obtain arithmetic symmetrical amplitude-frequency characteristic. The simulation results indicate that the proposed method can get arithmetic symmetrical amplitude-frequency and preferable group delay characteristics in pass-band. The designed circuit has merits of simple structure,less order,and lower insertion loss.

  4. Evaluation of BPA uptake in clear cell sarcoma (CCS) in vitro and development of an in vivo model of CCS for BNCT studies

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, T., E-mail: fujitaku@hp.pref.hyogo.jp [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Andoh, T. [Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Sudo, T. [Section of Translational Research, Hyogo Cancer Center, Akashi 673-0021 (Japan); Fujita, I.; Imabori, M. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Moritake, H. [Division of Pediatrics, University of Miyazaki, Miyazaki 889-1692 (Japan); Sugimoto, T. [Department of Pediatrics, Saiseikai Shigaken Hospital, Ritto 520-3046 (Japan); Sakuma, Y. [Department of Pathology, Hyogo Cancer Center, Akashi 673-0021 (Japan); Takeuchi, T. [Department of Pathology, Kochi Medical School, Nangoku 783-8505 (Japan); Sonobe, H. [Department of Pathology, Chugoku Central Hospital, Fukuyama 720-0001 (Japan); Epstein, Alan L. [Department of Pathology, Keck School of Medicine,University of Southern California, Los Angeles,CA 90033 (United States); Akisue, T. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kirihata, M. [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531 (Japan); Kurosaka, M. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Fukumori, Y.; Ichikawa, H. [Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan)

    2011-12-15

    Clear cell sarcoma (CCS), a rare malignant tumor with a predilection for young adults, is of poor prognosis. Recently however, boron neutron capture therapy (BNCT) with the use of p-borono-L-phenylalanine (BPA) for malignant melanoma has provided good results. CCS also produces melanin; therefore, the uptake of BPA is the key to the application of BNCT to CCS. We describe, for the first time, the high accumulation of boron in CCS and the CCS tumor-bearing animal model generated for BNCT studies.

  5. Optimal design of filter with double-layer EBG structure based on improved particle swarm optimization%一种双层EBG结构滤波器的粒子群优化设计

    Institute of Scientific and Technical Information of China (English)

    孟非; 沙莎; 解志斌; 彭涛

    2012-01-01

    A kind of new dual-plane electromagnetic band gap (EBG) structure is studied in this paper. The filter has metal conductor line etched bow-tie cells and metal ground etched cirques. In order to improve the transmission performance of the filter, particle swarm optimization algorithm, which is improve based on quantum theory , differential evolution operator and chaos disturbance, and the HFSS software, which has great electromagnetic simulating function, are integrated to optimize the size of the cirques automatically. The simulation results show that the relative bandwidth at - l0dB and the attenuation of stopband are increased 25. 0% and 15. 4% respectively, and the maximum passband ripples on the left and right sides are reduced by 69. 2% and 79. 8%. The optimal result is excellent.%研究了一种基于双层电磁带隙结构的滤波器,该滤波器的金属导带上刻蚀蝶形单元,接地板上刻蚀圆环孔.为使该滤波器的传输特性更好,运用了基于量子理论、微分进化算子、混沌扰动改进的粒子群优化算法,并结合电磁仿真软件HFSS对接地板圆环孔的结构尺寸进行了自动优化设计,优化后-10 dB的相对带宽和阻带的衰减值分别增加了25.0%和15.4%,左右最大通带波纹分别减小了69.2%和79.8%,优化效果明显.

  6. Design and construction of a thermal neutron beam for BNCT at Tehran Research Reactor.

    Science.gov (United States)

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezzati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Amini, Sepideh

    2014-12-01

    An irradiation facility has been designed and constructed at Tehran Research Reactor (TRR) for the treatment of shallow tumors using Boron Neutron Capture Therapy (BNCT). TRR has a thermal column which is about 3m in length with a wide square cross section of 1.2×1.2m(2). This facility is filled with removable graphite blocks. The aim of this work is to perform the necessary modifications in the thermal column structure to meet thermal BNCT beam criteria recommended by International Atomic Energy Agency. The main modifications consist of rearranging graphite blocks and reducing the gamma dose rate at the beam exit. Activation foils and TLD700 dosimeter have been used to measure in-air characteristics of the neutron beam. According to the measurements, a thermal flux is 5.6×10(8) (ncm(-2)s(-1)), a cadmium ratio is 186 for gold foils and a gamma dose rate is 0.57Gy h(-1).

  7. Procedural and practical applications of radiation measurements for BNCT at the HFR Petten

    Science.gov (United States)

    Moss, R. L.; Stecher-Rasmussen, F.; Rassow, J.; Morrissey, J.; Voorbraak, W.; Verbakel, W.; Appelman, K.; Daquino, G. G.; Muzi, L.; Wittig, A.; Bourhis-Martin, E.; Sauerwein, W.

    2004-01-01

    Since October 1997, a clinical trial of Boron Neutron Capture Therapy (BNCT) for glioblastoma patients has been in progress at the High Flux Reactor, Petten, the Netherlands. The trial is a European Organisation for Research and Treatment of Cancer (EORTC) protocol (#11 961) and, as such, must be conducted following the highest quality management and procedures, according to good clinical practice and also other internationally accepted codes. The complexity of BNCT involves not only strict international procedures, but also a variety of techniques to measure the different aspects of the irradiation involved when treating the patient. Applications include: free beam measurements using packets of activation foils; in-phantom measurements for beam calibration using ionisation chambers, pn-diodes and activation foils; monitoring of the irradiation beam during patient treatment using fission chambers and GM-counters; boron in blood measurements using prompt gamma ray spectroscopy; radiation protection of the patient and staff using portable radiation dosimeters and personal dosimeters; and in vivo measurements of the boron in the patient using a prompt gamma ray telescope. The procedures and applications of such techniques are presented here, with particular emphasis on the importance of the quality assurance/quality control procedures and its reporting.

  8. Resumption of JRR-4 and characteristics of neutron beam for BNCT.

    Science.gov (United States)

    Nakamura, T; Horiguchi, H; Kishi, T; Motohashi, J; Sasajima, F; Kumada, H

    2011-12-01

    The clinical trials of Boron Neutron Capture Therapy (BNCT) have been conducted using Japan Research Reactor No. 4 (JRR-4) at Japan Atomic Energy Agency (JAEA). On December 28th, 2007, a crack of a graphite reflector in the reactor core was found on the weld of the aluminum cladding. For this reason, specifications of graphite reflectors were renewed; dimensions of the graphite were reduced and gaps of water were increased. All existing graphite reflectors of JRR-4 were replaced by new graphite reflectors. In February 2010 the resumption of JRR-4 was carried out with new graphite reflectors. We measured the characteristics of neutron beam at the JRR-4 Neutron Beam Facility. A cylindrical water phantom of 18.6 cm diameter and 24 cm depth was set in front of the beam port with 1cm gap. TLDs and gold wires were inserted within the phantom when the phantom was irradiated. The results of the measured thermal neutron flux and the gamma dose in water were compared with that of MCNP calculation. The neutron energy spectrum of the calculation model with new reflector had little variation compared to that with old reflector, but intensities of the neutron flux and gamma dose with new reflector were rather smaller than those with old reflector. The calculated results showed the same tendency as that of the experimental results. Therefore, the clinical trials of BNCT in JRR-4 could be restarted.

  9. 124Sb-Be photo-neutron source for BNCT: Is it possible?

    Science.gov (United States)

    Golshanian, Mohadeseh; Rajabi, Ali Akbar; Kasesaz, Yaser

    2016-11-01

    In this research a computational feasibility study has been done on the use of 124SbBe photo-neutron source for Boron Neutron Capture Therapy (BNCT) using MCNPX Monte Carlo code. For this purpose, a special beam shaping assembly has been designed to provide an appropriate epithermal neutron beam suitable for BNCT. The final result shows that using 150 kCi of 124Sb, the epithermal neutron flux at the designed beam exit is 0.23×109 (n/cm2 s). In-phantom dose analysis indicates that treatment time for a brain tumor is about 40 min which is a reasonable time. This high activity 124Sb could be achieved using three 50 kCi rods of 124Sb which can be produced in a research reactor. It is clear, that as this activity is several hundred times the activity of a typical cobalt radiotherapy source, issues related to handling, safety and security must be addressed.

  10. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    Science.gov (United States)

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  11. Feasibility study on the utilization of boron neutron capture therapy (BNCT) in a rat model of diffuse lung metastases

    Energy Technology Data Exchange (ETDEWEB)

    Bakeine, G.J. [Department of Clinical Medicine and Neurology, Cattinara Hospital, University of Trieste (Italy)], E-mail: jamesbakeine1@yahoo.com; Di Salvo, M. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); Bortolussi, S.; Stella, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi 6, Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); Bertolotti, A.; Nano, R. [Department of Animal Biology University of Pavia, Piazza Botta, Pavia (Italy); Clerici, A.; Ferrari, C.; Zonta, C. [Department of Surgery University of Pavia, Piazza Botta, Pavia (Italy); Marchetti, A. [Scientific Research Office, Fondazione San Matteo University Policlinic, Pavia (Italy); Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, Via Bassi 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi 6, Pavia (Italy)

    2009-07-15

    In order for boron neutron capture therapy (BNCT) to be eligible for application in lung tumour disease, three fundamental criteria must be fulfilled: there must be selective uptake of boron in the tumour cells with respect to surrounding healthy tissue, biological effectiveness of the radiation therapy and minimal damage or collateral effects of the irradiation on the surrounding tissues. In this study, we evaluated the biological effectiveness of BNCT by in vitro irradiation of rat colon-carcinoma cells previously incubated in boron-enriched medium. One part of these cells was re-cultured in vitro while the other was inoculated via the inferior vena cava to induce pulmonary metastases in a rat model. We observed a post-irradiation in vitro cell viability of 0.05% after 8 days of cell culture. At 4 months follow-up, all animal subjects in the treatment group that received irradiated boron-containing cells were alive. No animal survived beyond 1 month in the control group that received non-treated cells (p<0.001 Kaplan-Meier). These preliminary findings strongly suggest that BNCT has a significant lethal effect on tumour cells and post irradiation surviving cells lose their malignant capabilities in vivo. This radio-therapeutic potential warrants the investigation of in vivo BNCT for lung tumour metastases.

  12. Statistically-Efficient Filtering in Impulsive Environments: Weighted Myriad Filters

    Directory of Open Access Journals (Sweden)

    Gonzalez Juan G

    2002-01-01

    Full Text Available Linear filtering theory has been largely motivated by the characteristics of Gaussian signals. In the same manner, the proposed Myriad Filtering methods are motivated by the need for a flexible filter class with high statistical efficiency in non-Gaussian impulsive environments that can appear in practice. Myriad filters have a solid theoretical basis, are inherently more powerful than median filters, and are very general, subsuming traditional linear FIR filters. The foundation of the proposed filtering algorithms lies in the definition of the myriad as a tunable estimator of location derived from the theory of robust statistics. We prove several fundamental properties of this estimator and show its optimality in practical impulsive models such as the -stable and generalized- . We then extend the myriad estimation framework to allow the use of weights. In the same way as linear FIR filters become a powerful generalization of the mean filter, filters based on running myriads reach all of their potential when a weighting scheme is utilized. We derive the "normal" equations for the optimal myriad filter, and introduce a suboptimal methodology for filter tuning and design. The strong potential of myriad filtering and estimation in impulsive environments is illustrated with several examples.

  13. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  14. Autoradiographic and histopathological studies of boric acid-mediated BNCT in hepatic VX2 tumor-bearing rabbits: Specific boron retention and damage in tumor and tumor vessels.

    Science.gov (United States)

    Yang, C H; Lin, Y T; Hung, Y H; Liao, J W; Peir, J J; Liu, H M; Lin, Y L; Liu, Y M; Chen, Y W; Chuang, K S; Chou, F I

    2015-12-01

    Hepatoma is a malignant tumor that responds poorly to conventional therapies. Boron neutron capture therapy (BNCT) may provide a better way for hepatoma therapy. In this research, (10)B-enriched boric acid (BA, 99% (10)B) was used as the boron drug. A multifocal hepatic VX2 tumor-bearing rabbit model was used to study the mechanisms of BA-mediated BNCT. Autoradiography demonstrated that BA was selectively targeted to tumors and tumor vessels. Histopathological examination revealed the radiation damage to tumor-bearing liver was concentrated in the tumor regions during BNCT treatment. The selective killing of tumor cells and the destruction of the blood vessels in tumor masses may be responsible for the success of BA-mediated BNCT for liver tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Endogenous Kalman Filter

    OpenAIRE

    Brad Baxter; Liam Graham; Stephen Wright

    2007-01-01

    We relax the assumption of full information that underlies most dynamic general equilibrium models, and instead assume agents optimally form estimates of the states from an incomplete information set. We derive a version of the Kalman filter that is endogenous to agents' optimising decisions, and state conditions for its convergence. We show the (restrictive) conditions under which the endogenous Kalman filter will at least asymptotically reveal the true states. In general we show that incomp...

  16. Evaluation of the characteristics of boron-dose enhancer (BDE) materials for BNCT using near threshold {sup 7}Li(p,n){sup 7}Be direct neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bengua, Gerard [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennann-gun, Osaka 590-0494 (Japan); Kobayashi, Tooru [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennann-gun, Osaka 590-0494 (Japan); Tanaka, Kenichi [Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Nakagawa, Yoshinobu [National Kagawa Children' s Hospital, Zentsuji-cho, Zentsuji, Kagawa 765-8501 (Japan)

    2004-03-07

    The characteristics of a number of candidate boron-dose enhancer (BDE) materials for boron neutron capture therapy (BNCT) using near threshold {sup 7}Li(p,n){sup 7}Be direct neutrons were evaluated based on the treatable protocol depth (TPD), defined in this paper. Simulation calculations were carried out by means of MCNP-4B transport code for candidate BDE materials, namely, (C{sub 2}H{sub 4}){sub n}, (C{sub 2}H{sub 3}F){sub n}, (C{sub 2}H{sub 2}F{sub 2}){sub n}, (C{sub 2}HF{sub 3}){sub n}, (C{sub 2}D{sub 4}){sub n}, (C{sub 2}F{sub 4}){sub n}, beryllium metal, graphite, D{sub 2}O and {sup 7}LiF. Dose protocols applied were those used for intra-operative BNCT treatment for brain tumour currently used in Japan. The maximum TPD (TPD{sub max}) for each BDE material was found to be between 4 cm and 5 cm in the order of (C{sub 2}H{sub 4}){sub n} < (C{sub 2}H{sub 3}F){sub n} < (C{sub 2}H{sub 2}F{sub 2}){sub n} < (C{sub 2}HF{sub 3}){sub n} < beryllium metal < (C{sub 2}D{sub 4}){sub n} < graphite < (C{sub 2}F{sub 4}){sub n} < D{sub 2}O < {sup 7}LiF. Based on the small and arbitrary variations in the TPD{sub max} for these materials, an explicit advantage of a candidate BDE material could not be established from the TPD{sub max} alone. The dependence of TPD on BDE thickness was found to be influenced by the type of BDE material. For materials with hydrogen, sharp variations in TPD were observed, while those without hydrogen exhibited more moderate fluctuations in TPD as the BDE thickness was varied. The BDE thickness corresponding to TPD{sub max} (BDE(TPD{sub max})) was also found to depend on the type of BDE material used. Thicker BDE(TPD{sub max}), obtained mostly for BDE materials without hydrogen, significantly reduced the dose rates within the phantom. The TPD{sub max}, the dependence of TPD on BDE thickness and the BDE (TPD{sub max}) were ascertained as appropriate optimization criteria in choosing suitable BDE materials for BNCT. Among the candidate BDE materials

  17. In-vivo measurements with TLD detectors for BNCT of glioblastoma patients at the high-flux research reactor petten/NL

    Energy Technology Data Exchange (ETDEWEB)

    Finke, E.; Hideghety, K.; Rassow, J.; Sauerwein, W. [Universitaetsklinikum, Essen (Germany); Kessler, C. [Comision Nacional de Energia Atomica, Laboratorio Secundario de Calibracion Dosimetricqa, Buenos Aires (Argentina); Morrissey, J.; Moss, R. [JRC Joint Research Center, Petten (Netherlands); Stecher-Rasmussen, F.; Verhagen, H.W. [NRG (an ECN Kema Company), Petten (Netherlands)

    2000-10-01

    Base of this investigation is an experimental test, which TLD detector material is best suited for indication of a representative dose component for in-vivo measurements at BNCT patients treated with epithermal neutrons of a constant energy spectrum. In-vivo measurements with Thermoluminescence detectors CaF{sub 2}:Tm (TLD 300) were carried out during irradiation of four BNCT-patients. (author)

  18. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, E. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)], E-mail: epozzi@cnea.gov.ar; Nigg, D.W. [Idaho National Laboratory, Idaho Falls (United States); Miller, M.; Thorp, S.I. [Instrumentation and Control Department, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Zarza, L.; Estryk, G. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Monti Hughes, A.; Molinari, A.J.; Garabalino, M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Quintana, J. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Trivillin, V.A.; Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)

    2009-07-15

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10{sup 9} n cm{sup -2} s{sup -1} and the fast neutron flux was 2.5x10{sup 6} n cm{sup -2} s{sup -1}, indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in {sup 6}Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  19. A phantom experiment for the evaluation of whole body exposure during BNCT using cyclotron-based epithermal neutron source (C-BENS)

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, T., E-mail: t.tsukamoto@ft5.ecs.kyoto-u.ac.jp [Graduate School of Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Tanaka, H.; Yoshinaga, H. [Research Reactor Institute, Kyoto University, Asashiro-nishi 2-1010, Kumatori-cho, Osaka 590-0494 (Japan); Mitsumoto, T. [Sumitomo Heavy Industries, Ltd., Osaki 2-1-1, Shinagawa, Tokyo 141-6025 (Japan); Maruhashi, A.; Ono, K.; Sakurai, Y. [Research Reactor Institute, Kyoto University, Asashiro-nishi 2-1010, Kumatori-cho, Osaka 590-0494 (Japan)

    2011-12-15

    At Kyoto University Research Reactor Institute (KURRI), cyclotron-based epithermal neutron source was installed in December 2008, and the supplementary construction works have been performed. As of December 2010, the various irradiation characteristics important for BNCT were mostly evaluated. The whole body exposure during BNCT medical irradiation is one of the important characteristics. In this article, measurements of absorbed dose for thermal and fast neutrons and gamma-ray at ten positions corresponding to important organs are reported.

  20. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    Science.gov (United States)

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.