WorldWideScience

Sample records for bnct boron neutron

  1. Clinical results of boron neutron capture therapy (BNCT) for glioblastoma

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H.

    2011-01-01

    The purpose of this study was to evaluate the clinical outcome of BSH-based intra-operative BNCT (IO-BNCT) and BSH and BPA-based non-operative BNCT (NO-BNCT). We have treated 23 glioblastoma patients with BNCT without any additional chemotherapy since 1998. The median survival time (MST) of BNCT was 19.5 months, and 2-year, 3-year and 5-year survival rates were 26.1%, 17.4% and 5.8%, respectively. This clinical result of BNCT in patients with GBM is superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment. - Highlights: ► In this study, we evaluate the clinical outcome of boron neutron capture therapy (BNCT) for malignant brain tumors. ► We have treated 23 glioblastoma (GBM) patients with BNCT without any additional chemotherapy. ► Clinical results of BNCT in patients with GBM are superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment.

  2. Boron analysis and boron imaging in biological materials for Boron Neutron Capture Therapy (BNCT).

    Science.gov (United States)

    Wittig, Andrea; Michel, Jean; Moss, Raymond L; Stecher-Rasmussen, Finn; Arlinghaus, Heinrich F; Bendel, Peter; Mauri, Pier Luigi; Altieri, Saverio; Hilger, Ralf; Salvadori, Piero A; Menichetti, Luca; Zamenhof, Robert; Sauerwein, Wolfgang A G

    2008-10-01

    Boron Neutron Capture Therapy (BNCT) is based on the ability of the stable isotope 10B to capture neutrons, which leads to a nuclear reaction producing an alpha- and a 7Li-particle, both having a high biological effectiveness and a very short range in tissue, being limited to approximately one cell diameter. This opens the possibility for a highly selective cancer therapy. BNCT strongly depends on the selective uptake of 10B in tumor cells and on its distribution inside the cells. The chemical properties of boron and the need to discriminate different isotopes make the investigation of the concentration and distribution of 10B a challenging task. The most advanced techniques to measure and image boron are described, both invasive and non-invasive. The most promising approach for further investigation will be the complementary use of the different techniques to obtain the information that is mandatory for the future of this innovative treatment modality.

  3. Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application.

    Science.gov (United States)

    Achilli, Cesare; Grandi, Stefania; Ciana, Annarita; Guidetti, Gianni F; Malara, Alessandro; Abbonante, Vittorio; Cansolino, Laura; Tomasi, Corrado; Balduini, Alessandra; Fagnoni, Maurizio; Merli, Daniele; Mustarelli, Piercarlo; Canobbio, Ilaria; Balduini, Cesare; Minetti, Giampaolo

    2014-04-01

    Boron neutron capture therapy (BNCT) is a radiotherapy treatment based on the accumulation in the tumor of a (10)B-containing drug and subsequent irradiation with low energy neutrons, which bring about the decay of (10)B to (7)Li and an α particle, causing the death of the neoplastic cell. The effectiveness of BNCT is limited by the low delivery and accumulation of the used boron-containing compounds. Here we report the development and the characterization of BPO4 nanoparticles (NPs) as a novel possible alternative drug for BNCT. An extensive analysis of BPO4 NP biocompatibility was performed using both mature blood cells (erythrocytes, neutrophils and platelets) and a model of hematopoietic progenitor cells. A time- and concentration-dependent cytotoxicity study was performed on neoplastic coloncarcinoma and osteosarcoma cell lines. BPO4 functionalization with folic acid, introduced to improve the uptake by tumor cells, appeared to effectively limit the unwanted effects of NPs on the analyzed blood components. Boron neutron capture therapy (BNCT) is a radiotherapy treatment modality based on the accumulation of a (10)B-containing drug and subsequent irradiation with low energy neutrons, inducing the decay of (10)B to (7)Li and an α particle, causing neoplastic cell death. This team of authors reports on a folic acid functionalized BPO4 nanoparticle with improved characteristics compared with conventional BNCT approaches, as demonstrated in tumor cell lines, and hopefully to be followed by translational human studies. © 2014.

  4. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Camillo, M.A.P.; Tomac Junior, U.

    1990-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na 2 10 B 12 H 11 SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author) [pt

  5. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).

    Science.gov (United States)

    Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro

    2017-12-01

    The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.

  6. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chadha, M.

    1997-01-01

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains

  7. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  8. Long-survivors of glioblatoma treated with boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, H.

    2011-01-01

    The purpose of this study was to compare the radiation dose between long-survivors and non-long-survivors in patients with glioblatoma (GBM) treated with boron neutron capture therapy (BNCT). Among 23 GBM patients treated with BNCT, there were five patients who survived more than three years after diagnosis. The physical and weighted dose of the minimum gross tumor volume (GTV) of long-survivors was much higher than that of non-long survivors with significant statistical differences.

  9. 'Sequential' Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    International Nuclear Information System (INIS)

    Molinari, Ana J.; Pozzi, Emiliano C.C.; Hughes, Andrea Monti; Heber, Elisa M.; Garabalino, Marcela A.; Thorp, Silvia I.; Miller, Marcelo; Itoiz, Maria E.; Aromando, Romina F.; Nigg, David W.; Quintana, Jorge; Santa Cruz, Gustavo A.; Trivillin, Veronica A.; Schwint, Amanda E.

    2011-01-01

    In the present study we evaluated the therapeutic effect and/or potential radiotoxicity of the novel 'Tandem' Boron Neutron Capture Therapy (T-BNCT) for the treatment of oral cancer in the hamster cheek pouch model at RA-3 Nuclear Reactor. Two groups of animals were treated with 'Tandem BNCT', i.e. BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (T-24h-BNCT) or 48 h (T-48h-BNCT) later. A total tumor dose-matched single application of BNCT mediated by BPA and GB-10 administered jointly ((BPA + GB-10)-BNCT) was administered to an additional group of animals. At 28 days post-treatment, T-24h-BNCT and T-48h-BNCT induced, respectively, overall tumor control (OTC) of 95% and 91%, with no statistically significant differences between protocols. Tumor response for the single application of (BPA + GB-10)-BNCT was 75%, significantly lower than for T-BNCT. The T-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47% and 60% of the animals respectively. No normal tissue radiotoxicity was associated to tumor control for any of the protocols. 'Tandem' BNCT enhances tumor control in oral cancer and reduces or, at worst, does not increase, mucositis in dose-limiting precancerous tissue.

  10. “Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    Energy Technology Data Exchange (ETDEWEB)

    Ana J. Molinari; Emiliano C. C. Pozzi; Andrea Monti Hughes; Elisa M. Heber; Marcela A. Garabalino; Silvia I. Thorp; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; David W. Nigg; Jorge Quintana; Gustavo A. Santa Cruz; Veronica A. Trivillin; Amanda E. Schwint

    2011-04-01

    In the present study we evaluated the therapeutic effect and/or potential radiotoxicity of the novel “Tandem” Boron Neutron Capture Therapy (T-BNCT) for the treatment of oral cancer in the hamster cheek pouch model at RA-3 Nuclear Reactor. Two groups of animals were treated with “Tandem BNCT”, i.e. BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (T-24h-BNCT) or 48 h (T-48h-BNCT) later. A total tumor dose-matched single application of BNCT mediated by BPA and GB-10 administered jointly [(BPA + GB-10)-BNCT] was administered to an additional group of animals. At 28 days post-treatment, T-24h-BNCT and T-48h-BNCT induced, respectively, overall tumor control (OTC) of 95% and 91%, with no statistically significant differences between protocols. Tumor response for the single application of (BPA + GB-10)-BNCT was 75%, significantly lower than for T-BNCT. The T-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47% and 60% of the animals respectively. No normal tissue radiotoxicity was associated to tumor control for any of the protocols. “Tandem” BNCT enhances tumor control in oral cancer and reduces or, at worst, does not increase, mucositis in dose-limiting precancerous tissue.

  11. Neutron therapy coupling brachytherapy and boron neutron capture therapy (BNCT) techniques

    International Nuclear Information System (INIS)

    Chaves, Iara Ferreira.

    1994-12-01

    In the present dissertation, neutron radiation techniques applied into organs of the human body are investigated as oncologic radiation therapy. The proposal treatment consists on connecting two distinct techniques: Boron Neutron Capture Therapy (BNCT) and irradiation by discrete sources of neutrons, through the brachytherapy conception. Biological and radio-dosimetrical aspects of the two techniques are considered. Nuclear aspects are discussed, presenting the nuclear reactions occurred in tumoral region, and describing the forms of evaluating the dose curves. Methods for estimating radiation transmission are reviewed through the solution of the neutron transport equation, Monte Carlo methodology, and simplified analytical calculation based on diffusion equation and numerical integration. The last is computational developed and presented as a quickly way to neutron transport evaluation in homogeneous medium. The computational evaluation of the doses for distinct hypothetical situations is presented, applying the coupled techniques BNTC and brachytherapy as an possible oncologic treatment. (author). 78 refs., 61 figs., 21 tabs

  12. Accelerator based-boron neutron capture therapy (BNCT)-clinical QA and QC

    International Nuclear Information System (INIS)

    Suzuki, Minoru; Tanaka, Hiroki; Sakurai, Yoshinori; Yong, Liu; Kashino, Genro; Kinashi, Yuko; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2009-01-01

    Alpha-particle and recoil Li atom yielded by the reaction ( 10 B, n), due to their high LET properties, efficiently and specifically kill the cancer cell that has incorporated the boron. Efficacy of this boron neutron capture therapy (BNCT) has been demonstrated mainly in the treatment of recurrent head/neck and malignant brain cancers in Kyoto University Research Reactor Institute (KUR). As the clinical trial of BNCT is to start from 2009 based on an accelerator (not on the Reactor), this paper describes the tentative outline of the standard operation procedure of BNCT for its quality assurance (QA) and quality control (QC) along the flow of its clinical practice. Personnel concerned in the practice involve the attending physician, multiple physicians in charge of BNCT, medical physicists, nurses and reactor stuff. The flow order of the actual BNCT is as follows: Pre-therapeutic evaluation mainly including informed consent and confirmation of the prescription; Therapeutic planning including setting of therapy volume, and of irradiation axes followed by meeting for stuffs' agreement, decision of irradiating field in the irradiation room leading to final decision of the axis, CT for the planning, decision of the final therapeutic plan according to Japan Atomic Energy Agency-Computational Dosimetry System (JCDS) and meeting of all related personnel for the final confirmation of therapeutic plan; and BNCT including the transport of patient to KUR, dripping of boronophenylalanine, setting up of the patient on the machine, blood sampling for pharmacokinetics, boron level measurement for decision of irradiating time, switch on/off of the accelerator, confirmation of patient's movement in the irradiated field after the neutron irradiation, blood sampling for confirmation of the boron level, and patient's leave from the room. The QA/QC check is principally to be conducted with the two-person rule. The purpose of the clinical trial is to establish the usefulness of BNCT

  13. The Idaho Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program overview

    International Nuclear Information System (INIS)

    Dorn, R.V. III; Griebenow, M.L.; Ackermann, A.L.; Miller, L.G.; Miller, D.L.; Wheeler, F.J.; Bradshaw, K.M.; Wessol, D.E.; Harker, Y.D.; Nigg, D.W.; Randolph, P.D.; Bauer, W.F.; Gavin, P.R.; Richards, T.L.

    1992-01-01

    The Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program has been funded since 1988 to evaluate brain tumor treatment using Na 2 B 12 H 11 SH (borocaptate sodium or BSH) and epithermal neutrons. The PBF/BNCT Program pursues this goal as a comprehensive, multidisciplinary, multiorganizational endeavor applying modern program management techniques. The initial focus was to: (1) establish a representative large animal model and (2) develop the generic analytical and measurement capabilities require to control treatment repeatability and determine critical treatment parameters independent of tumor type and body location. This paper will identify the PBF/BNCT Program elements and summarize the status of some of the developed capabilities

  14. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    DEFF Research Database (Denmark)

    Hampel, G.; Grunewald, C.; Schütz, C.

    2011-01-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed at Pavia (Italy) a few...... have also been initiated to investigate radiobiological effects of radiation generated during BNCT. For both experiments and treatment, a reliable dosimetry system is necessary. From work elsewhere, the use of alanine detectors appear to be an appropriate dosimetry technique....

  15. Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats

    International Nuclear Information System (INIS)

    Trivillin, V.A.; Garabalino, M.A.; Colombo, L.L.

    2013-01-01

    Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats Introduction: Boron Neutron Capture Therapy (BNCT) is based on selective tumor uptake of boron compounds, followed by neutron irradiation. BNCT was proposed for the treatment of unresectable, diffuse lung metastases. The aim of the present study was to perform BNCT studies in an experimental model of lung metastases. Materials and Methods: 3 x 106/0.5 ml colon carcinoma cells (DHD/K12/TRb) were injected iv in syngeneic BDIX rats. Three weeks post-inoculation, rats with diffuse lung metastases were used for in vivo BNCT studies in the RA-3 Nuclear Reactor. Based on previous biodistribution studies and computational dosimetry with Monte Carlo simulation, 2 doses were prescribed, i.e. 4 Gy and 8 Gy minimum absorbed dose to tumor. The animals were assigned to 5 experimental groups (n= 4 to 8) at each dose level: T0 (euthanized pre-treatment), BPA-BNCT, Comb-BNCT (BPA+GB-10), Beam only (background dose) and Sham (same manipulation, no treatment). Boron concentration was measured in a blood sample taken pre-irradiation to verify that the value was in the range established in previous biodistribution studies. The animals were followed clinically for 2 weeks after neutron irradiation and then euthanized to assess the response of tumor and normal lung, macroscopically and histologically. To date we have evaluated the end-point weight of lung (normal lung + metastases) and % lung weight/body weight as an indicator of tumor growth. Results: The statistical analysis (ANOVA) of % lung weight/body weight showed statistically significant differences (p<0.05) between groups T0 (0.79 ± 0.38) and Sham (1.87 ± 0.91). No statistically significant differences were observed between the Beam only groups (at both dose levels) and Sham. Similar and statistically significant tumor control was induced in the groups BPA-BNCT Low dose (LD) (0.56 ± 0.11), BPA-BNCT High dose (HD) (0.80 ± 0.16), Comb-BNCT

  16. Biodistribution of Boron compounds in an experimental model of liver metastases for Boron Neutron Capture (BNCT) Studies

    International Nuclear Information System (INIS)

    Garabalino, Marcela A.; Monti Hughes, Andrea; Molinari, Ana J.; Heber, Elisa M.; Pozzi, Emiliano C.C.; Itoiz, Maria E.; Trivillin, Veronica A.; Schwint, Amanda E.; Nievas, Susana; Aromando, Romina F.

    2009-01-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10 B carriers in tumors followed by irradiation with thermal or epithermal neutrons. The high linear energy transfer alpha particles and recoiling 7 Li nuclei emitted during the capture of a thermal neutron by a 10 B nucleus have a short range and a high biological effectiveness. Thus, BNCT would potentially target neoplastic tissue selectively. In previous studies we demonstrated the therapeutic efficacy of different BNCT protocols in an experimental model of oral cancer. More recently we performed experimental studies in normal rat liver that evidenced the feasibility of treating liver metastases employing a novel BNCT protocol proposed by JEC based on ex-situ treatment and partial liver auto-transplant. The aim of the present study was to perform biodistribution studies with different boron compounds and different administration protocols to determine the protocols that would be therapeutically useful in 'in vivo' BNCT studies at the RA-3 Nuclear Reactor in an experimental model of liver metastases in rats. Materials and Methods. A total of 70 BDIX rats (Charles River Lab., MA, USA) were inoculated in the liver with syngeneic colon cancer cells DH/DK12/TRb (ECACC, UK) to induce the development of subcapsular metastatic nodules. 15 days post-inoculation the animals were used for biodistribution studies. A total of 11 protocols were evaluated employing the boron compounds boronophenylalanine (BPA) and GB-10 (Na 2 10 B 1 -0H 10 ), alone or combined employing different doses and administration routes. Tumor, normal tissue and blood samples were processed for boron measurement by ICP-OES. Results. Several protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue, i.e. BPA 15.5 mg 10 B/kg iv + GB-10 50 mg 10 B/kg iv; BPA 46.5 mg 10 B/kg ip; BPA 46.5 mg 10 B/kg ip

  17. Study on high speed lithium jet for neutron source of boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mak, Michael; Stefanica, Jiri; Dostal, Vaclav; Zhao Wei

    2012-01-01

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively. (author)

  18. Application of HVJ envelope system to boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Nakai, Kei; Kurooka, Masaaki; Kaneda, Yasufumi; Yamamoto, Tetsuya; Matsumura, Akira; Asano, Tomoyuki

    2006-01-01

    Boron Neutron Capture Therapy (BNCT) has been used clinically for the treatment of malignant tumors. Two drugs, p-boronophenylalanine (BPA) and sulfhydral borane (BSH), have been used as boron delivery agents. These drugs seem to be taken up preferentially in solid tumors, but it is uncertain whether therapeutic quantities of boron atoms are taken up by micro-invasive or distant tumor cells. High accumulation and high selective delivery of boron into tumor tissues are the most important requirements to achieve efficient BNCT for malignant tumor. The HVJ envelope (HVJ-E) vector system is a novel fusion-mediated gene delivery system based on inactivated hemagglutinating virus of Japan (HVJ; Sendai virus). Although we developed this vector system for gene transfer, it can also deliver proteins, synthetic oligonucleotides, and drugs. HVJ-liposome, which is liposome fused with HVJ-E, has higher boron trapping efficiency than HVJ-E alone. We report the boron delivery into cultured cells with HVJ-liposome systems. The cellular 10 B concentration after 60 min incubation with HVJ-E containing BSH was 24.9 μg/g cell pellet for BHK-21 cells (baby hamster kidney cells) and 19.4 μg/g cell pellet for SCC VII cells (murine squamous cell carcinoma). These concentrations are higher than that of 60 min incubated cells with BSH containing (100μg 10 B/ml) medium. These results indicate the HVJ-E fused with tumor cell membrane and rapidly delivered boron agents, and that the HVJ-E-mediated delivery system could be applicable to BNCT. Plans are underway to begin neutron radiation experiments in vivo and in vitro. (author)

  19. PBF/BNCT [power burst facility/boron neutron capture therapy] program for cancer treatment

    International Nuclear Information System (INIS)

    Dorn, R.V. III.

    1989-06-01

    Highlights of the PBF/BNCT Program during June include progress within the areas of gross boron analysis in tissue, blood, and urine; analytical methodologies development for BSH (sodium borocaptate) purity determination; boron microscopic (subcellular) analytical development; noninvasive boron quantification determination; dosimetry; and analytical radiation transport and interaction modeling for BNCT

  20. Meeting the challenge of homogenous boron targeting of heterogeneous tumors for effective boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Heber, Elisa M.; Trivillin, Veronica A.; Itoiz, Maria E.; Rebagliati, J. Raul; Batistoni, Daniel; Kreimann, Erica L.; Schwint, Amanda E.; Nigg, David W.; Gonzalez, Beatriz N.

    2006-01-01

    BNCT is a tumor cell targeted radiation therapy. Inadequately boron targeted tumor populations jeopardize tumor control. Meeting the to date unresolved challenge of homogeneous targeting of heterogeneous tumors with effective boron carriers would contribute to therapeutic efficacy. The aim of the present study was to evaluate the degree of variation in boron content delivered by boronophenylalanine (BPA), GB-10 (Na 2 10 B 10 H 10 ) and the combined administration of (BPA+GB-10) in different portions of tumor, precancerous tissue around tumor and normal pouch tissue in the hamster cheek pouch oral cancer model. Boron content was evaluated by ICP-AES. The degree of homogeneity in boron targeting was assessed in terms of the coefficient of variation ([S.D./Mean]x100) of boron values. Statistical analysis of the results was performed by one-way ANOVA and the least significant difference test. GB-10 and GB-10 plus BPA achieved respectively a statistically significant 1.8-fold and 3.3-fold increase in targeting homogeneity over BPA. The combined boron compound administration protocol contributes to homogeneous targeting of heterogeneous tumors and would increase therapeutic efficacy of BNCT by exposing all tumor populations to neutron capture reactions in boron. (author)

  1. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    Auterinen, I.; Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material Fluental TM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  2. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Monti Hughes, A.; Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Pozzi, E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Research and Production Reactors, Ezeiza Atomic Center, CNEA, Buenos Aires (Argentina); Nigg, D.W. [Idaho National Laboratory, Idaho Falls, Idaho (United States); Calzetta, O.; Blaumann, H.; Longhino, J. [Department of Nuclear Engineering, Bariloche Atomic Center, CNEA, Rio Negro (Argentina); Nievas, S.I. [Department of Chemistry, CNEA, Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Trivillin, V.A. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina)], E-mail: schwint@cnea.gov.ar

    2009-07-15

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na{sub 2}{sup 10}B{sub 10}H{sub 10}) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  3. Boron Neutron Capture Therapty (BNCT) in an Oral Precancer Model: Therapeutic Benefits and Potential Toxicity of a Double Application of BNCT with a Six-Week Interval

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Monti Hughes; Emiliano C.C. Pozzi; Elisa M. Heber; Silvia Thorp; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; Ana J. Molinari; Marcela A. Garabalino; David W. Nigg; Veronica A. Trivillin; Amanda E. Schwint

    2011-11-01

    Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10 + BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB- 10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.

  4. Gel dosimeters as useful dose and thermal-fluence detectors in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Gambarini, G.; Valente, M.; Moss, R.L.; Daquino, G.G.; Nievaart, V.A.; Mariani, M.; Vanossi, E.; Carrara, M.

    2006-01-01

    The dosimetry method based on Fricke-Xylenol-Orange-infused gels in form of layers has shown noticeable potentiality for in-phantom or in-free-beam dose and thermal flux profiling and imaging in the high fluxes of thermal or epithermal neutrons utilised for boron neutron capture therapy (BNCT). Gel-dosimeters in form of layers give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. The discrimination of the various dose components is achieved by means of pixel-to-pixel manipulations of pairs of images obtained with gel-dosimeters having different isotopic composition. It is possible to place large dosimeters, detecting in such a way large dose images, because the layer geometry of dosimeters avoids sensitive variation of neutron transport due to the gel isotopic composition. Some results obtained after the last improvements of the method are reported. (Author)

  5. Comparison of the radiobiological effects of Boron neutron capture therapy (BNCT) and conventional Gamma Radiation

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Carpano, Marina; Perona, Marina; Thomasz, Lisa; Juvenal, Guillermo J.; Pisarev, Mario; Pozzi, Emiliano; Thorp, Silvia

    2009-01-01

    BNCT is an experimental radiotherapeutic modality that uses the capacity of the isotope 10 B to capture thermal neutrons leading to the production of 4 He and 7 Li, particles with high linear energy transfer (LET). The aim was to evaluate and compare in vitro the mechanisms of response to the radiation arising of BNCT and conventional gamma therapy. We measured the survival cell fraction as a function of the total physical dose and analyzed the expression of p27/Kip1 and p53 by Western blotting in cells of colon cancer (ARO81-1). Exponentially growing cells were distributed into the following groups: 1) BPA (10 ppm 10 B) + neutrons; 2) BOPP (10 ppm 10 B) + neutrons; 3) neutrons alone; 4) gamma-rays. A control group without irradiation for each treatment was added. The cells were irradiated in the thermal neutron beam of the RA-3 (flux= 7.5 10 9 n/cm 2 sec) or with 60 Co (1Gy/min) during different times in order to obtain total physical dose between 1-5 Gy (±10 %). A decrease in the survival fraction as a function of the physical dose was observed for all the treatments. We also observed that neutrons and neutrons + BOPP did not differ significantly and that BPA was the more effective compound. Protein extracts of irradiated cells (3Gy) were isolated to 24 h and 48 h post radiation exposure. The irradiation with neutrons in presence of 10 BPA or 10 BOPP produced an increase of p53 at 24 h maintain until 48 h. On the contrary, in the groups irradiated with neutrons alone or gamma the peak was observed at 48 hr. The level of expression of p27/Kip1 showed a reduction of this protein in all the groups irradiated with neutrons (neutrons alone or neutrons plus boron compound), being more marked at 24 h. These preliminary results suggest different radiobiological response for high and low let radiation. Future studies will permit establish the role of cell cycle in the tumor radio sensibility to BNCT. (author)

  6. Dosimetric analysis of BNCT - Boron Neutron Capture Therapy - coupled to 252Cf brachytherapy

    International Nuclear Information System (INIS)

    Brandao, Samia F.; Campos, Tarcisio P.R.

    2009-01-01

    The incidence of brain tumors is increasing in world population; however, the treatments employed in this type of tumor have a high rate of failure and in some cases have been considered palliative, depending on histology and staging of tumor. Its necessary to achieve the control tumor dose without the spread irradiation cause damage in the brain, affecting patient neurological function. Stereotactic radiosurgery is a technique that achieves this; nevertheless, other techniques that can be used on the brain tumor control must be developed, in order to guarantee lower dose on health surroundings tissues other techniques must be developing. The 252 Cf brachytherapy applied to brain tumors has already been suggested, showing promising results in comparison to photon source, since the active source is placed into the tumor, providing greater dose deposition, while more distant regions are spared. BNCT - Boron Neutron Capture Therapy - is another technique that is in developing to brain tumors control, showing theoretical superiority on the rules of conventional treatments, due to a selective irradiation of neoplasics cells, after the patient receives a borate compound infusion and be subjected to a epithermal neutrons beam. This work presents dosimetric studies of the coupling techniques: BNCT with 252 Cf brachytherapy, conducted through computer simulation in MCNP5 code, using a precise and well discretized voxel model of human head, which was incorporated a representative Glioblastoma Multiform tumor. The dosimetric results from MCNP5 code were exported to SISCODES program, which generated isodose curves representing absorbed dose rate in the brain. Isodose curves, neutron fluency, and dose components from BNCT and 252 Cf brachytherapy are presented in this paper. (author)

  7. Radioprotective agents to reduce BNCT (Boron Neutron Capture Therapy) induced mucositis in the hamster cheek pouch

    International Nuclear Information System (INIS)

    Monti Hughes, A.; Pozzi, E.C.C.; Thorp, S.

    2013-01-01

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of BNCT mediated by boronophenylalanine (BPA) in the hamster cheek pouch oral cancer and pre cancer model. Despite therapeutic efficacy, mucositis induced in premalignant tissue was dose limiting and favored, in some cases, tumor development. In a clinical scenario, oral mucositis limits the dose administered to head and neck tumors. Aim: Our aim was to evaluate the effect of the administration of different radioprotective agents, seeking to reduce BNCT-induced mucositis to acceptable levels in dose-limiting premalignant tissue; without compromising therapeutic effect evaluated as inhibition on tumor development in premalignant tissue; without systemic or local side effects; and without negative effects on the biodistribution of the boron compound used for treatment. Materials and methods: Cancerized hamsters with DMBA (dimethylbenzanthracene) were treated with BPA-BNCT 5 Gy total absorbed dose to premalignant tissue, at the RA-3 Nuclear Reactor, divided into different groups: 1-treated with FLUNIXIN; 2- ATORVASTATIN; 3-THALIDOMIDE; 4-HISTAMINE (two concentrations: Low -1 mg/ml- and High -5 mg/ml-); 5-JNJ7777120; 6-JNJ10191584; 7-SALINE (vehicle). Cancerized animals without any treatment (neither BNCT nor radioprotective therapy) were also analyzed. We followed the animals during one month and evaluated the percentage of animals with unacceptable/severe mucositis, clinical status and percentage of animals with new tumors post treatment. We also performed a preliminary biodistribution study of BPA + Histamine “low” concentration to evaluate the potential effect of the radioprotector on BPA biodistribution. Results: Histamine

  8. A preclinical study of boron neutron capture therapy (BNCT) of spontaneous tumors in cats at RA-6 in Argentina

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.; Calzetta, Osvaldo A.; Blaumann, Hernan R.; Longhino, J.; Rao, Monica; Cantarelli, Maria de los A.

    2005-01-01

    BNCT is a binary treatment modality that combines irradiation with a thermal or epithermal neutron beam with tumor-seeking, boron containing drugs to produce selective irradiation of tumor tissue. Having demonstrated that BNCT mediated by boronophenylalanine (BPA) induced control of experimental squamous cell carcinomas (SCC) of the hamster cheek pouch mucosa with no damage to normal tissue we explored the feasibility and safety of treating spontaneous head and neck tumors, with particular focus on SCC, of terminal feline patients with low dose BPA-BNCT employing the thermal beam of RA-1. Having demonstrated partial tumor control with no radio toxic effects, the aim of the present study was to evaluate the effect of BPA-BNCT on tumor and normal tissue in 3 cases of spontaneous SCC in feline patients employing a higher neutron fluence than in the previous study. The present study was performed at RA-6 with the thermalized epithermal neutron beam. All three irradiations were successful. Except for an initial, moderate and reversible mucositis, no significant radio toxic effects were observed in terms of clinical follow-up, histological examination, biochemical analysis and assessment of autopsy material. Partial tumor control was evidenced in terms of growth inhibition and partial necrosis and improvement in the quality of life during the survival period. Optimization of the therapeutic efficacy of BNCT would require improvement in boron tumor targeting and strategies to increase in-depth dose in large tumors. (author)

  9. Boron neutron capture therapy (BNCT) using fast neutrons: Effects in two human tumor cell lines

    International Nuclear Information System (INIS)

    Sauerwein, W.; Ziegler, W.; Szypniewski, H.; Streffer, C.

    1990-01-01

    The results demonstrate that the effect of fast neutrons on cell survival in cell culture can be enhanced by boron neutron capture reaction. Even with lower enhancement ratios, the concept of NCT assisted fast neutron therapy may successfully be applied for tumor treatment with the Essen cyclotron. (orig.)

  10. Abscopal effect of boron neutron capture therapy (BNCT). Proof of principle in an experimental model of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trivillin, Veronica A.; Monti Hughes, Andrea; Schwint, Amanda E. [Comision Nacional de Energia Atomica (CNEA), Department of Radiobiology, B1650KNA San Martin, Provincia Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Pozzi, Emiliano C.C.; Curotto, Paula [Centro Atomico Ezeiza, Comision Nacional de Energia Atomica (CNEA), Department of Research and Production Reactors, Provincia Buenos Aires (Argentina); Colombo, Lucas L. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Instituto de Oncologia Angel H. Roffo, Ciudad Autonoma de Buenos Aires (Argentina); Thorp, Silvia I.; Farias, Ruben O. [Comision Nacional de Energia Atomica (CNEA), Department of Instrumentation and Control, Provincia Buenos Aires (Argentina); Garabalino, Marcela A. [Comision Nacional de Energia Atomica (CNEA), Department of Radiobiology, B1650KNA San Martin, Provincia Buenos Aires (Argentina); Gonzalez, Sara J. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Comision Nacional de Energia Atomica (CNEA), Department of Instrumentation and Control, Provincia Buenos Aires (Argentina); Santa Cruz, Gustavo A. [Comision Nacional de Energia Atomica (CNEA), Department of Boron Neutron Capture Therapy, Provincia Buenos Aires (Argentina); Carando, Daniel G. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Universidad de Buenos Aires, Faculty of Exact and Natural Sciences, Ciudad Autonoma de Buenos Aires (Argentina)

    2017-11-15

    The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 x 10{sup 6} DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 x 10{sup 6} DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm{sup 3}. In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm{sup 3}. The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect. (orig.)

  11. Abscopal effect of boron neutron capture therapy (BNCT). Proof of principle in an experimental model of colon cancer

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Monti Hughes, Andrea; Schwint, Amanda E.; Pozzi, Emiliano C.C.; Curotto, Paula; Colombo, Lucas L.; Thorp, Silvia I.; Farias, Ruben O.; Garabalino, Marcela A.; Gonzalez, Sara J.; Santa Cruz, Gustavo A.; Carando, Daniel G.

    2017-01-01

    The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 x 10 6 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 x 10 6 DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm 3 . In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm 3 . The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect. (orig.)

  12. "Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    Energy Technology Data Exchange (ETDEWEB)

    Ana J. Molinari; Andrea Monti Hughes; Elisa M. Heber; Marcela A. Garabalino; Veronica A. Trivillin; Amanda E. Schwint; Emiliano C. C. Pozzi; Maria E. Itoiz; Silvia I. Thorp; Romina F. Aromando; David W. Nigg; Jorge Quintana; Gustavo A. Santa Cruz

    2011-04-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with a thermal or epithermal neutron beam. The minor abundance stable isotope of boron, 10B, interacts with low energy (thermal) neutrons to produce high linear energy transfer (LET) a-particles and 7Li ions. These disintegration products are known to have a high relative biological effectiveness (RBE). Their short range (<10 {micro}m) would limit the damage to cells containing 10B (1,2). Thus, BNCT would target tumor tissue selectively, sparing normal tissue. Clinical trials of BNCT for the treatment of glioblastoma multiforme and/or melanoma and, more recently, head and neck tumors and liver metastases, using boronophenylalanine (BPA) or sodium mercaptoundecahydrododecaborane (BSH) as the 10B carriers, have been performed or are underway in Argentina, Japan, the US and Europe (e.g. 3-8). To date, the clinical results have shown a potential, albeit inconclusive, therapeutic advantage for this technique. Contributory translational studies have been carried out employing a variety of experimental models based on the implantation of tumor cells in normal tissue (e.g. 5).

  13. Considerations for boron neutron capture therapy studies; Consideracoes sobre o estudo da BNCT (terapia de captura neutronica por boro)

    Energy Technology Data Exchange (ETDEWEB)

    Faria Gaspar, P. de

    1994-12-31

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps.

  14. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M. [Beth Israel Medical Center, NY (United States). Dept. of Radiation Oncology; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  15. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Chadha, M.

    1996-01-01

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT

  16. Boron neutron capture therapy (BNCT) for glioblastoma multiforme (GBM), using the epithermal neutron beam at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Chadha, Manjeet; Capala, Jacek; Coderre, Jeffrey A.; Elowitz, Eric H.; Joel, Darrel D.; Hungyuan, B. Liu; Slatkin, Daniel N.; Chanana, Arjun D.

    1996-01-01

    Objective: BNCT is a binary treatment modality based on the nuclear reactions that occur when boron ( 10 B) is exposed to thermal neutrons. Preclinical studies have demonstrated the therapeutic efficacy of p-boronophenylalanine (BPA)-based BNCT. The objective of the Phase I/II trial was to evaluate BPA-fructose (BPA-F) as a boron delivery agent for GBM and to study the feasibility and safety of a single-fraction of BNCT. Materials and Methods: The trial design required i) a BPA-F biodistribution study performed at the time of craniotomy; and ii) BNCT within 4 weeks of the craniotomy. From September 94 to July 95, 10 patients with biopsy proven GBM were treated. All but 1 patient underwent a biodistribution study receiving IV BPA-F at the time of craniotomy. Multiple tissue samples and concurrent blood and urine samples were collected for evaluation of the boron concentration and clearance kinetics. For BNCT all patients received 250 mg/kgm of BPA-F (IV infusion over 2 hrs) followed by neutron irradiation. The blood 10 B concentration during irradiation was used to calculate the time of neutron exposure. The 3D treatment planning was done using the BNCT treatment planning software developed at the Idaho National Engineering Laboratory. The BNCT dose is expressed as the sum of the physical dose components corrected for both the RBE and the 10 B localization factor with the unit Gy-Eq. The photon-equivalent dose, where the thermal neutron fluence reaches a maximum, is the peak-dose equivalent. A single-fraction of BNCT was delivered prescribing 10.5 Gy-Eq (9 patients) and 13.8 Gy-Eq (1 patient) as the peak dose-equivalent to the normal brain. The peak dose rate was kept below 27 cGy-Eq/min. Results: Biodistribution data: The maximum blood 10 B concentration was observed at the end of the infusion and scaled as a linear function of the administered dose. The 10 B concentration in the scalp and in the GBM tissue was higher than in blood by 1.5 x and at least 3.5 x

  17. Stability of high-speed lithium sheet jets for the neutron source in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Nakagawa, Masamichi; Takahashi, Minoru; Aritomi, Masanori; Kobayashi, Toru

    2014-01-01

    The stability of high-speed liquid lithium sheet jets was analytically studied for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to realize the thin and high-speed plane sheet jets of liquid lithium in a high-vacuum as an accelerator target. Linear analysis approach is made to the stability on thin plane sheet jets of liquid lithium in a high-vacuum, and then our analytical results were compared with the previous experimental ones. We proved that the waves of surface tension on thin lithium sheet jets in a high-vacuum are of supercritical flows and neutral stable under about 17.4 m/s in flow velocity and that the fast non-dispersive anti-symmetric waves are more significant than the very slow dispersive symmetric waves. We also formulated the equation of shrinking angle in isosceles-triangularly or isosceles-trapezoidal shrinking sheet jets corresponding to the Mach angle of supersonic gas flows. This formula states universally the physical meaning of Weber number of sheet jets on the wave of surface tension in supercritical flows. We obtained satisfactory prospects (making choice of larger flow velocity U and larger thickness of sheet a) to materialize a liquid target of accelerator in BNCT. (author)

  18. Therapeutic efficacy and toxicity of a single and double application of boron neutron capture therapy (BNCT) in a hamster cheek pouch oral precancer model

    International Nuclear Information System (INIS)

    Monti Hughes, A; Pozzi, E C C; Thorp, S; Garabalino, M A; Farias, R O; Gonzalez, S J; Heber, E M; Itoiz, M E; Aromando, R F; Molinari, A J; Miller, M; Nigg, D W; Curotto, P; Trivillin, V A; Schwint, A E

    2012-01-01

    Tumor development from tissue with potentially malignant disorders (PMD) gives rise to second primary tumors. We previously demonstrated the partial inhibitory effect on tumor development of Boron Neutron Capture Therapy (BNCT) mediated by the boron compounds BPA (boronophenylalanine) and decahydrodecaborate (GB-10) in a hamster pouch oral precancer model. Seeking to optimize BNCT, the aim of the present study was to contribute to the knowledge of BNCT radiobiology for oral precancer and assess new BNCT protocols in terms of inhibition of tumor development and radiotoxicity. Groups of cancerized hamsters were locally exposed to single or double applications (2 weeks apart) of BPA-BNCT or (GB-10 + BPA)-BNCT at a total dose of 8Gy to tissue with PMD; to a single application of BPA-BNCT at 6Gy and to a double application (4 weeks apart) of BPA-BNCT or (BPA + GB-10)-BNCT at a total dose of 10Gy. Cancerized, sham-irradiated hamsters served as controls. Clinical status, tumor development from tissue with PMD and mucositis were followed for 8 months. The marked therapeutic efficacy of single applications of BNCT at 6 and 8Gy were associated to severe radiotoxicity. Dose fractionation into 2 applications reduced mucositis but also reduced therapeutic efficacy, depending on dose and interval between applications. A double application (4 weeks apart) of (GB-10 + BPA)-BNCT at a total dose of 10Gy rendered the best therapeutic advantage, i.e. 63% - 100% inhibition of tumor development with only slight mucositis in 67% of cases. The data reported herein show that issues such as dose levels and dose fractionation, interval between applications, and choice of boron compounds are pivotal to therapeutic advantage and must be tailored for a particular pathology and anatomic site. The present study determined treatment conditions that would contribute to optimize BNCT for precancer and that would warrant cautious assessment in a clinical scenario (author)

  19. Boron Neutron Capture Therapy at the TRIGA Mark II of Pavia, Italy - The BNCT of the diffuse tumours

    International Nuclear Information System (INIS)

    Altieri, S.; Bortolussi, S.; Stella, S.; Bruschi, P.; Gadan, M.A.

    2008-01-01

    The selectivity based on the B distribution rather than on the irradiation field makes Boron neutron Capture Therapy (BNCT) a valid option for the treatment of the disseminated tumours. As the range of the high LET particles is shorter than a cell diameter, the normal cells around the tumour are not damaged by the reactions occurring in the tumoral cells. PAVIA 2001: first treatment of multiple hepatic metastases from colon ca by BNCT and auto-transplantation technique: TAOrMINA project. The liver was extracted after BPA infusion, irradiated in the Thermal Column of the Pavia TRIGA Mark II reactor, and re-implanted in the patient. Two patients were treated, demonstrating the feasibility of the therapy and the efficacy in destroying the tumoral nodules sparing the healthy tissues. In the last years, the possibility of applying BNCT to the lung tumours using epithermal collimated neutron beams and without explanting the organ, is being explored. The principal obtained results of the BNCT research are presented, with particular emphasis on the following aspects: a) the project of a new thermal column configuration to make the thermal neutron flux more uniform inside the explanted liver, b) the Monte Carlo study by means of the MCNP code of the thermal neutron flux distribution inside a patient's thorax irradiated with epithermal neutrons, and c) the measurement of the boron concentration in tissues by (n,α) spectroscopy and neutron autoradiography. The dose distribution in the thorax are simulated using MCNP and the anthropomorphic model ADAM. To have a good thermal flux distribution inside the lung epithermal neutrons must be used, which thermalize crossing the first tissue layers. Thermal neutrons do not penetrate and the obtained uniformity is poor. In the future, the construction of a PGNAA facility using a horizontal channel of the TRIGA Mark II is planned. With this method the B concentration can be measured also in liquid samples (blood, urine) and in those

  20. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    International Nuclear Information System (INIS)

    Nigg, David W.

    2012-01-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K(nido-7-CH3(CH2)15-7,8-C2B9H11) in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K(nido-7-CH3(CH2)15-7,8-C2B9H11) in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 (ae-B20H17NH3), administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  1. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg

    2012-05-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 [ae-B20H17NH3], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 {+-} 16.1 ppm at 48 h and to 43.9 {+-} 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  2. Sodium borocaptate (BSH) for Boron Neutron Capture Therapy (BNCT) in the hamster cheek pouch oral cancer model: boron biodistribution at 9 post administration time-points

    International Nuclear Information System (INIS)

    Garabalino, M.A.; Heber, E.M.; Monti, Hughes A.; Molinari, A.J.; Pozzi, E.C.C.; Trivillin, V.A.; Schwint, Amanda E.

    2011-01-01

    The therapeutic success of Boron Neutron Capture Therapy (BNCT) depends centrally on boron concentration in tumor and healthy tissue. We previously demonstrated the therapeutic efficacy of boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) as boron carriers for BNCT in the hamster cheek pouch oral cancer model. Given the clinical relevance of sodium mercaptoundecahydro-closo-dodecaborate (BSH) as a boron carrier, the aim of the present study was to expand the ongoing BSH biodistribution studies in the hamster cheek pouch oral cancer model. In particular, we studied 3 additional post-administration time-points and increased the sample size corresponding to the time-points evaluated previously, to select more accurately the post-administration time at which neutron irradiation would potentially confer the greatest therapeutic advantage. BSH was dissolved in saline solution in anaerobic conditions to avoid the formation of the dimer BSSB and its oxides which are toxic. The solution was injected intravenously at a dose of 50 mg 10 B/kg (88 mg BSH / kg). Different groups of animals were killed humanely at 7, 8, and 10 h after administration of BSH. The sample size corresponding to the time-points 3, 4, 6, 9 and 12 h was increased. Samples of blood, tumor, precancerous tissue, normal pouch tissue, cheek mucosa, parotid gland, palate, skin, tongue, spinal cord marrow, brain, liver, kidney, spleen and lung were processed for boron measurement by Optic Emission Spectroscopy (ICP-OES). Boron concentration in tumor peaked to 24-34 ppm, 3-10 h post-administration of BSH, with a spread in values that resembled that previously reported in other experimental models and human subjects. The boron concentration ratios tumor/normal pouch tissue and tumor/blood ranged from 1.3 to 1.8. No selective tumor uptake was observed at any of the time points evaluated. The times post-administration of BSH that would be therapeutically most useful would be 5, 7 and 9 h. The

  3. Production of epithermal neutron beams for BNCT

    CERN Document Server

    Bisceglie, E; Colonna, N; Paticchio, V; Santorelli, P; Variale, V

    2002-01-01

    The use of boron neutron capture therapy (BNCT) for the treatment of deep-seated tumors requires neutron beams of suitable energy and intensity. Simulations indicate the optimal energy to reside in the epithermal region, in particular between 1 and 10 keV. Therapeutic neutron beams with high spectral purity in this energy range could be produced with accelerator-based neutron sources through a suitable neutron-producing reaction. Herein, we report on different solutions that have been investigated as possible sources of epithermal neutron beams for BNCT. The potential use of such sources for a hospital-based therapeutic facility is discussed.

  4. An accelerator-based Boron Neutron Capture Therapy (BNCT) facility based on the 7Li(p,n)7Be

    Science.gov (United States)

    Musacchio González, Elizabeth; Martín Hernández, Guido

    2017-09-01

    BNCT (Boron Neutron Capture Therapy) is a therapeutic modality used to irradiate tumors cells previously loaded with the stable isotope 10B, with thermal or epithermal neutrons. This technique is capable of delivering a high dose to the tumor cells while the healthy surrounding tissue receive a much lower dose depending on the 10B biodistribution. In this study, therapeutic gain and tumor dose per target power, as parameters to evaluate the treatment quality, were calculated. The common neutron-producing reaction 7Li(p,n)7Be for accelerator-based BNCT, having a reaction threshold of 1880.4 keV, was considered as the primary source of neutrons. Energies near the reaction threshold for deep-seated brain tumors were employed. These calculations were performed with the Monte Carlo N-Particle (MCNP) code. A simple but effective beam shaping assembly (BSA) was calculated producing a high therapeutic gain compared to previously proposed facilities with the same nuclear reaction.

  5. Collimator and shielding design for boron neutron capture therapy (BNCT) facility at TRIGA MARK II reactor

    International Nuclear Information System (INIS)

    Mohd Rafi Mohd Solleh; Abdul Aziz Tajuddin; Abdul Aziz Mohamed; Eid Mahmoud Eid Abdel Munem; Mohamad Hairie Rabir; Julia Abdul Karim; Yoshiaki, Kiyanagi

    2011-01-01

    The geometry of reactor core, thermal column, collimator and shielding system for BNCT application of TRIGA MARK II Reactor were simulated with MCNP5 code. Neutron particle lethargy and dose were calculated with MCNPX code. Neutron flux in a sample located at the end of collimator after normalized to measured value (Eid Mahmoud Eid Abdel Munem, 2007) at 1 MW power was 1.06 x 10 8 n/ cm 2 / s. According to IAEA (2001) flux of 1.00 x 10 9 n/ cm 2 / s requires three hours of treatment. Few modifications were needed to get higher flux. (Author)

  6. Effects of secondary interactions on the dose calculation in treatments with Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    Monteiro, E.

    2004-01-01

    The aimed of this work consists of evaluating the influence of the secondary contributions of dose (thermal neutrons dose, epithermal neutrons dose, fast neutrons dose and photon dose) in treatment planning with BNCT. MCNP4B Code was used to calculate RBE-Gy doses through the irradiation of the modified Snyder head head phantom.A reduction of the therapeutical gain of monoenergetic neutron beans was observed in non invasive treatments, provoked for the predominance of the fast neutron dose component in the skin, showing that the secondary contributions of dose can contribute more in the direction to raise the dose in the fabric healthy that in the tumor, thus reducing the treatment efficiency. (author)

  7. In vitro studies of the cellular response to boron neutron capture therapy (BNCT) in thyroid carcinoma

    International Nuclear Information System (INIS)

    Rodriguez, C; Carpano, M; Perona, M; Thorp, S; Curotto, P; Pozzi, E; Casal, M; Juvenal, G; Pisarev, M; Dagrosa, A

    2012-01-01

    Background: Previously, we have started to study the mechanisms of DNA damage and repair induced by BNCT in thyroid carcinoma some years ago. We have shown different genotoxic patterns for tumor cells irradiated with gamma rays, neutrons alone or neutrons plus different compounds, boronophenylalanine (BPA) or α, β - dihydroxyethyl)-deutero-porphyrin IX (BOPP). In the present study we analyzed the expression of Ku70, Rad51 and Rad54 components of non homologous end-joing (NHEJ) and homologous recombination repair (HRR) pathways, respectively, induced by BNCT in human cells of thyroid carcinoma. Methods: A human cell line of follicular thyroid carcinoma (WRO) in exponential growth phase was distributed into the following groups: 1) Gamma Radiation, 2) Radiation with neutrons beam (NCT), 3) Radiation with n th in presence of BPA (BNCT). A control group for each treatment was added. The cells were irradiated in the thermal column facility of the RA-3 reactor (flux= 1.10 10 n/cm 2 sec) or with a source of 60 Co. The irradiations were performed during different lapses in order to obtain a total physical dose of 3 Gy (±10%). The mRNA expressions of Ku70, Rad 51 and Rad 54 were analysed by reverse transcription-polymerase chain reaction (RT-PCR) at different times post irradiation (2, 4, 6, 24 and 48 h). DNA damage was evaluated by immunofluorescence using an antibody against the phosphorylation of histone H2AX, which indicates double strand breaks in the DNA. Results: The expression of Rad51 increased at 2 h post-irradiation and it lasted until 6 h only in the neutron and neutron + BPA groups (p<0.05). Rad54 showed an up-regulation from 2 to 24 h in both groups irradiated with the neutron beam (with and without BPA) (p<0.05). On the other hand, Ku70 mRNA did not show a modification of its expression in the irradiated groups respect to the control group. Conclusion: these results would indicate an activation of the HRR pathway in the thyroid carcinoma cells treated by

  8. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, E. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)], E-mail: epozzi@cnea.gov.ar; Nigg, D.W. [Idaho National Laboratory, Idaho Falls (United States); Miller, M.; Thorp, S.I. [Instrumentation and Control Department, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Zarza, L.; Estryk, G. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Monti Hughes, A.; Molinari, A.J.; Garabalino, M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Quintana, J. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Trivillin, V.A.; Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)

    2009-07-15

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10{sup 9} n cm{sup -2} s{sup -1} and the fast neutron flux was 2.5x10{sup 6} n cm{sup -2} s{sup -1}, indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in {sup 6}Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  9. First evaluation of the biologic effectiveness factors of boron neutron capture therapy (BNCT) in a human colon carcinoma cell line.

    Science.gov (United States)

    Dagrosa, Maria Alejandra; Crivello, Martín; Perona, Marina; Thorp, Silvia; Santa Cruz, Gustavo Alberto; Pozzi, Emiliano; Casal, Mariana; Thomasz, Lisa; Cabrini, Romulo; Kahl, Steven; Juvenal, Guillermo Juan; Pisarev, Mario Alberto

    2011-01-01

    DNA lesions produced by boron neutron capture therapy (BNCT) and those produced by gamma radiation in a colon carcinoma cell line were analyzed. We have also derived the relative biologic effectiveness factor (RBE) of the neutron beam of the RA-3- Argentine nuclear reactor, and the compound biologic effectiveness (CBE) values for p-boronophenylalanine ((10)BPA) and for 2,4-bis (α,β-dihydroxyethyl)-deutero-porphyrin IX ((10)BOPP). Exponentially growing human colon carcinoma cells (ARO81-1) were distributed into the following groups: (1) BPA (10 ppm (10)B) + neutrons, (2) BOPP (10 ppm (10)B) + neutrons, (3) neutrons alone, and (4) gamma rays ((60)Co source at 1 Gy/min dose-rate). Different irradiation times were used to obtain total absorbed doses between 0.3 and 5 Gy (±10%) (thermal neutrons flux = 7.5 10(9) n/cm(2) sec). The frequency of micronucleated binucleated cells and the number of micronuclei per micronucleated binucleated cells showed a dose-dependent increase until approximately 2 Gy. The response to gamma rays was significantly lower than the response to the other treatments (p irradiations with neutrons alone and neutrons + BOPP showed curves that did not differ significantly from, and showed less DNA damage than, irradiation with neutrons + BPA. A decrease in the surviving fraction measured by 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay as a function of the absorbed dose was observed for all the treatments. The RBE and CBE factors calculated from cytokinesis block micronucleus (CBMN) and MTT assays were, respectively, the following: beam RBE: 4.4 ± 1.1 and 2.4 ± 0.6; CBE for BOPP: 8.0 ± 2.2 and 2.0 ± 1; CBE for BPA: 19.6 ± 3.7 and 3.5 ± 1.3. BNCT and gamma irradiations showed different genotoxic patterns. To our knowledge, these values represent the first experimental ones obtained for the RA-3 in a biologic model and could be useful for future experimental studies for the application of BNCT to colon carcinoma

  10. The effect of ionizing radiation on the blood-brain-barrier (BBB): Considerations for the application of boron neutron capture therapy (BNCT) of brain tumors

    International Nuclear Information System (INIS)

    Dorn, R.V. III; Spickard, J.H.; Griebenow, M.L.

    1988-01-01

    All methods of boron neutron capture therapy (BNCT) in use or envisioned for treatment of brain tumors have, as an inseparable component, an element of ionizing radiation. This paper reviews data on the effects of ionizing radiation on the blood-brain-barrier (BBB) and the blood-tumor-barrier (BTB) and the potential impact of the effects on the delivery techniques of BNCT. This paper has the following objectives: review the available technique for BNCT of brain tumors; review the literature on experimental and human studies regarding the effects of ionizing radiation on the BBB; discuss the impact of these effects on the fractionization question for BNCT; and draw conclusions from that information

  11. Study of a neutron producing target via the 7Li(p,n)7Be reaction near its energy threshold for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    Burlon, Alejandro; Kreiner, Andres J.; Debray, Mario E.; Stoliar, Pablo; Kesque, Jose M.; Naab, Fabian; Ozafran, Mabel J.; Schuff, Juan; Vazquez, Monica; Caraballo, Maria E.; Valda, Alejandro; Somacal, Hector; Davidson, Miguel; Davidson, Jorge

    2000-01-01

    In the framework of Accelerator Based BNCT (AB-BNCT) the 7 Li(p,n) 7 Be reaction near its energy threshold is one of the most promising. In this work a thick LiF target irradiated with a proton beam was studied as a neutron source. The 1.88-2.0 MeV proton beam was produced by the tandem accelerator TANDAR at CNEA's facilities in Buenos Aires. A water-filled phantom, containing a boron sample was irradiated with the resulting neutron beam. The boron neutron capture reaction produces a 0.478 MeV gamma ray in 94 % of the cases. The neutron yield was monitored by detecting this gamma ray using a germanium detector with an 'anti-Compton' shield. Moreover, the thermal neutron flux was evaluated at different depths inside the phantom using bare and Cd-covered gold foils. A maximum neutron thermal flux of 1.4 x 10 8 1/(cm 2 -s-mA) was obtained at 4.2 cm from the phantom surface. (author)

  12. Intracellular targeting of mercaptoundecahydrododecaborate (BSH) to malignant glioma by transferrin-PEG liposomes for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Doi, Atsushi; Miyatake, Shin-ichi; Iida, Kyouko

    2006-01-01

    Malignant glioma is one of the most difficult tumor to control with usual therapies. In our institute, we select boron neutron capture therapy (BNCT) as an adjuvant radiation therapy after surgical resection. This therapy requires the selective delivery of high concentration of 10 B to malignant tumor tissue. In this study, we focused on a tumor-targeting 10 B delivery system (BDS) for BNCT that uses transferrin-conjugated polyethylene-glycol liposome encapsulating BSH (TF-PEG liposome-BSH) and compared 10 B uptake of the tumor among BSH, PEG liposome-BSH and TF-PEG liposome-BSH. In vitro, we analyzed 10 B concentration of the cultured human U87Δ glioma cells incubated in medium containing 20 μg 10 B/ml derived from each BDS by inductively coupled plasma atomic emission spectrometry (ICP-AES). In vivo, human U87Δ glioma-bearing nude mice were administered with each BDS (35mg 10 B/kg) intravenously. We analyzed 10 B concentration of tumor, normal brain and blood by ICP-AES. The TF-PEG liposome-BSH showed higher absolute concentration more than the other BDS. Moreover, TF-PEG liposome-BSH decreased 10 B concentration in blood and normal tissue while it maintained high 10 B concentration in tumor tissue for a couple of days. This showed the TF-PEG liposome-BSH caused the selective delivery of high concentration of 10 B to malignant tumor tissue. The TF-PEG liposome-BSH is more potent BDS for BNCT to obtain absolute high 10 B concentration and good contrast between tumor and normal tissue than BSH and PEG liposome-BSH. (author)

  13. Tumor blood vessel "normalization" improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Nigg

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  14. Studies for the application of Boron neutron capture therapy (BNCT) to the treatment of differentiated thyroid cancer (CDT)

    International Nuclear Information System (INIS)

    Carpano, Marina; Thomasz, Lisa; Perona, Marina; Juvenal, Guillermo J.; Pisarev, Mario; Dagrosa, Maria A.; Nievas, Susana I.; Pozzi, Emiliano; Thorp, Silvia

    2009-01-01

    Boron neutron capture therapy (BNCT) is a high linear energy transfer (LET) radiotherapy for cancer, which it is based on the nuclear reaction that occurs when boron-10 that it is a non radioactive isotope of the natural elemental boron, is irradiated with low energy thermal neutrons to produce an alpha particle and a nucleus of lithium-7. Both particles have a range smaller than the diameter of a cell causing cell tumor death without significant damage to the surrounding normal tissues. In previous studies we have shown that BNCT can be a possibility for the treatment of undifferentiated thyroid cancer (UTC). However, more than 80 % of patients with thyroid neoplasm present differentiated carcinoma (CDT). These carcinomas are treated by surgery followed by therapy with 131 I and mostly these forms are well controlled. But in some patients recurrence of the tumor is observed. BNCT can be an alternative for these patients in who the tumor lost the capacity to concentrate iodide. The aim of these studies was to evaluate the possibility of treating differentiated thyroid cancer by BNCT. Materials and Methods: The human cell lines of follicular (WRO) and papillary carcinomas (TPC-1) were grown in RPMI and modified DMEM medium respectively. Both supplemented with 10 % of SFB. The cell line of thyroid rat, FRTL-5, used as control normal, was cultured in DMEM/F12. The uptakes of 125 I and p-borophenylalanine BPA (6.93mM) were studied. The intracellular boron concentration was measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) at 2 hr post incubation. The NIH strain of male nude mice, aged 6 to 8 weeks and weighing 20 to 25 g were implanted (s.c) in the back right flank with different concentrations of tumor cells. The size of the tumors was measured with a caliper twice or three times a week and the volume was calculated according the following formulae: A 2 x B/2 (were A is the width and B is the length). To evaluate the BPA uptake, animals

  15. Tumor development in field-cancerized tissue is inhibited by a double application of Boron neutron capture therapy (BNCT) without exceeding radio-tolerance

    International Nuclear Information System (INIS)

    Monti Hughes, Andrea; Heber, Elisa M.; Itoiz, Maria E.; Molinari, Ana J.; Garabalino, Marcela A.; Trivillin, Veronica A.; Schwint, Amanda E.; Aromando, Romina F.

    2009-01-01

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of a 'single' application of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-1(Na 2 10 B 10 H 10 ) or (GB-10+BPA) to treat hamster cheek pouch tumors with no normal tissue radiotoxicity. Based on these results, we developed a model of precancerous tissue in the hamster cheek pouch for long-term studies. Employing this model we evaluated the long-term potential inhibitory effect on the development of second primary tumors from precancerous tissue and eventual radiotoxicity of a single application of BNCT mediated by BPA, GB-10 or (GB-10+BPA), in the RA-6. The clinical rationale of this study was to search for a BNCT protocol that is therapeutic for tumor, not radio-toxic for the normal tissue that lies in the neutron beam path, and exerts the desired inhibitory effect on the development of second primary tumors, without exceeding the radio-tolerance of precancerous tissue, the dose limiting tissue in this case. Second primary tumors that arise in precancerous tissue (also called locoregional recurrences) are a frequent cause of therapeutic failure in head and neck tumors. Aim: Evaluate the radiotoxicity and inhibitory effect of a 'double' application of the same BNCT protocols that were proved therapeutically successful for tumor and precancerous tissue, with a long term follow up (8 months). A 'double' application of BNCT is a potentially useful strategy for the treatment of tumors, in particular the larger ones, but the cost in terms of side-effects in dose-limiting tissues might preclude its application and requires cautious evaluation. Materials and methods: We performed a double application of 1) BPA-BNCT; 2) (GB

  16. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boggio, E. F.; Longhino, J. M. [Centro Atomico Bariloche, Departamento de Fisica de Reactores y Radiaciones / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina); Andres, P. A., E-mail: efboggio@cab.cnea.gov.ar [Centro Atomico Bariloche, Division Proteccion Radiologica / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina)

    2015-10-15

    BNCT is a cancerous cells selective, non-conventional radiotherapy modality to treat malignant tumors such as glioblastoma, melanoma and recurrent head and neck cancer. It consists of a two-step procedure: first, the patient is injected with a tumor localizing drug containing a non-radioactive isotope (Boron-10) with high slow neutron capture cross-section. In a second step, the patient is irradiated with neutrons, which are absorbed by the Boron-10 agent with the subsequently nuclear reaction B- 10(n,a)Li-7, thereby resulting in dose at cellular level due to the high-Let particles. The neutron fields suitable for BNCT are characterized by high neutron fluxes and low gamma dose. Determination of each component is not an easy task, especially when the volume of measurement is quite small or inaccessible for a miniature ionization chamber, for example. A method of measuring the photon and slow neutron dose(mainly by N-14 and B-10) from the glow curve (GC) analysis of a single {sup 7}LiF thermoluminescence detector is evaluated. This method was suggested by the group headed by Dr. Grazia Gambarini. The dosemeters used were TLD-600 ({sup 6}LiF:Mg,Ti with 95.6% {sup 6}Li) and TLD-700 ({sup 7}LiF:Mg,Ti with 99.9% {sup 7}LiF) from Harshaw. Photon dose measurement using the GC analysis method with TLD-700 in mixed fields requires the relation of the two main peaks of a TLD-600 GC shape obtained from an exposition to the same neutron field, and a photon calibrated GC with TLD-700. The requirements for slow neutron dose measurements are similar. In order to properly apply the GC analysis method at the Ra-6 Research Reactor BNCT facility, measurements were carried out in a standard water phantom, fully characterized on the BNCT beam by conventional techniques (activation detectors and paired ionization chambers technique). Next, the method was implemented in whole body dose monitoring of a patient undergoing a BNCT treatment, using a Bo MAb (Bottle Manikin Absorption) phantom

  17. A method to build an analytic model of the 10B(n,alpha)7Li reaction rate space distribution for boron neutron capture therapy (BNCT).

    Science.gov (United States)

    Morand, Josselin; Moss, Raymond; Hachem, Sabet; Sauerwein, Wolfgang

    2009-07-01

    This work provides the basis of a methodology to build a deterministic model for the spatial distribution of the (10)B(n,alpha)(7)Li reaction rate in boron neutron capture therapy (BNCT), as a function of space variables, boron concentration and beam incidence angle in homogeneous isotropic environments but also in different heterogeneous environments. Building the analytic function in a simple homogeneous environment with numerical methods leads to a mathematical formulation of the (10)B(n,alpha)(7)Li reactions rate.

  18. Neutron Flux Measurement Produced by BNCT Target using Proton Beam

    International Nuclear Information System (INIS)

    Ha, Jang Ho; Kim, Yong Kyun; Chai, Jong Seo; Kim, Jong Kyung

    2005-01-01

    We are investigating neutron production target system performance for boron captured neutron therapy (BNCT). The epithermal neutron is useful for this therapy and in present study we performed a simple method to measure neutron flux and energy, which are important for the accurate cancer therapy. The simple method and result of neutron flux and energy measurement experiment are presented

  19. An Accelerator Neutron Source for BNCT

    International Nuclear Information System (INIS)

    Blue, Thomas E.

    2006-01-01

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were (1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, (2) that the patient treatment time be reasonable, (3) that the proton current required to treat patients in reasonable times be technologically achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally (4) that the treatment be safe for the patients

  20. An Accelerator Neutron Source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  1. Boron neutron capture therapy (BNCT) for liver metastasis in an experimental model: dose–response at five-week follow-up based on retrospective dose assessment in individual rats

    Energy Technology Data Exchange (ETDEWEB)

    Emiliano C. C. Pozzi; Veronica A. Trivilin; Lucas L. Colombo; Andrea Monti Hughes; Silvia I. Thorp; Jorge E. Cardoso; Marcel A. Garabalino; Ana J. Molinari; Elisa M. Heber; Paula Curotto; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; David W. Nigg; Amanda E. Schwint

    2013-11-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For each rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5–8.9 Gy and BPA-BNCT II: 9.2–16 Gy. At 5 weeks post-irradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 +/- 6.6 for Sham, 7.8 +/- 4.1 for Beam only, 4.4 +/- 5.6 for BPA-BNCT I and 0.45 +/- 0.20 for BPA-BNCT II; tumor nodule weight was 750 +/- 480 mg for Sham, 960 +/- 620 mg for Beam only, 380 +/- 720 mg for BPA-BNCT I and 7.3 +/- 5.9 mg for BPA-BNCT II. The BPA-BNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively.

  2. Complexion of Boric Acid with 2-Deoxy-D-glucose (DG) as a novel boron carrier for BNCT

    OpenAIRE

    Akan, Zafer; Demiroglu, Hasan; Avcibasi, Ugur; Oto, Gokhan; Ozdemir, Hulya; Deniz, Sabahattin; Basak, Ali Sadi

    2014-01-01

    Objective: Boron neutron capture therapy (BNCT) is an intensive research area for cancer researchers. Especially the side effects and inabilities of conventional therapies in some cases, directs researchers to find out a new cancer therapy methods such as BNCT. One of three important problem of BNCT is targeting of boron to tumor tissue. Borono Phenyl Alanine (BPA) and Borono Sodium Borocaptate (BSH) are already using in clinical studies as boron carriers. New boron carriers are searching fo...

  3. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  4. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS).

    Science.gov (United States)

    Chandra, S; Ahmad, T; Barth, R F; Kabalka, G W

    2014-06-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 ((10)B) atoms to individual tumour cells. Cell killing results from the (10)B (n, α)(7) Li neutron capture and fission reactions that occur if a sufficient number of (10)B atoms are localized in the tumour cells. Intranuclear (10)B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of (10)B atoms reflects both bound and free pools of boron in individual tumour cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular-scale resolution by clinically applicable techniques such as positron emission tomography and magnetic resonance imaging. In this study, a secondary ion mass spectrometry based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high-grade gliomas, recurrent tumours of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumour cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This

  5. Morphometric and immunocytochemical analysis of melanoma samples for individual optimization of therapy for boron neutron capture (BNCT)

    International Nuclear Information System (INIS)

    Carpano, M; Dagrosa, A; Brandizzi, D; Nievas, S; Olivera, M S; Perona, M; Rodriguez, C; Cabrini, R; Juvenal, G; Pisarev, M

    2012-01-01

    Introduction: Tumors from different patients with the same histological diagnosis can show different responses to ionizing radiation including BNCT. Further knowledge about individual tumor characteristics is needed in order to optimize the individual application of this therapy. In previous studies we have shown different patterns of boron intracellular concentration in three human melanoma cell lines. When we performed xenografts with these cell lines in nude mice a wide range of boron concentrations in tumor was observed. We also evaluated the tumor temperature obtained by thermography. Objectives: The aim of this study was to evaluate the differences in the BPA uptake related to different histological and thermal characteristics of each tumor in nude mice bearing human melanoma. We also studied the proliferation and the vasculature in tumors by immunohistochemical studies and the relationship with the BPA uptake. Materials and Methodos: NIH nude mice of 6-8 weeks were implanted (s.c.) into the back right flank with 3.106 human melanoma cells (MELJ). To evaluate the BPA uptake, animals were injected at a dose of 350 mg/Kg b.w. (ip) and sacrificed 2 h post administration. Each sample of tumor was divided into two equal parts, one for uptake of B and another for histological studies. Boron measurements in tissues were performed by ICP-OES. For the histological studies, samples from the tumors were fixed in buffered 10% formaldehyde, embedded in paraffin and stained with hematoxylin and eosin (HE). Infrared imaging studies were performed the day before the biodistribution, measuring the tumor and body temperatures. Immunohistochemical studies were performed with antibodies Ki-67 and CD31. The first one is a marker of proliferative rate and the second one is a specific marker of endothelial cells which allows to identify the vasculature. Formaldehyde-fixed paraffin-embedded tissues and avidin biotin complex immunostaining were used. Results: Tumor BPA uptake showed

  6. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    International Nuclear Information System (INIS)

    Yoon, D; Jung, J; Suh, T

    2014-01-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  7. Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new ''B2'' configuration of the RA-6 nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Monti Hughes, Andrea; Trivillin, Veronica A.; Schwint, Amanda E. [Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Department of Radiobiology, San Martin, Province Buenos Aires (Argentina); National Research Council (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Longhino, Juan; Boggio, Esteban [Bariloche Atomic Center, CNEA, Department of Nuclear Engineering, San Carlos de Bariloche, Province Rio Negro (Argentina); Medina, Vanina A.; Martinel Lamas, Diego J. [National Research Council (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Pontifical Catholic University of Argentina (UCA), Laboratory of Tumoral Biology and Inflammation, School of Medical Sciences, Institute for Biomedical Research (BIOMED CONICET-UCA), Ciudad Autonoma de Buenos Aires (Argentina); Garabalino, Marcela A.; Heber, Elisa M.; Pozzi, Emiliano C.C. [Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Department of Radiobiology, San Martin, Province Buenos Aires (Argentina); Itoiz, Maria E. [Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Department of Radiobiology, San Martin, Province Buenos Aires (Argentina); UBA, Department of Oral Pathology, Faculty of Dentistry, Ciudad Autonoma de Buenos Aires (Argentina); Aromando, Romina F. [UBA, Department of Oral Pathology, Faculty of Dentistry, Ciudad Autonoma de Buenos Aires (Argentina); Nigg, David W. [Idaho National Laboratory, Idaho Falls (United States)

    2017-11-15

    Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new ''B2'' configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in ''B1'' experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94-96%) than in control (16%) and BO groups (9-38%), and did not differ significantly from the ''B1'' results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control. (orig.)

  8. Experimental Studies of Boronophenylalanine ({sup 10}BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Carpano, Marina; Perona, Marina; Rodriguez, Carla [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A. [Department of Boron Neutron Capture Therapy, National Atomic Energy Commission, San Martín (Argentina); Brandizzi, Daniel; Cabrini, Romulo [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); School of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Pisarev, Mario [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires (Argentina); Juvenal, Guillermo Juan [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Dagrosa, Maria Alejandra, E-mail: dagrosa@cnea.gov.ar [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina)

    2015-10-01

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ({sup 10}BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10{sup 6} MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of {sup 10}B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R{sup 2} = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R{sup 2} = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT

  9. Basic research of boron neutron-capture therapy for treatment of pancreatic cancer. Application of neutron radiography for visualization of boron compound on BNCT

    International Nuclear Information System (INIS)

    Yanagie, Hironobu

    1997-01-01

    The cytotoxic effects of locally injected 10 B-immunoliposomes (anti-CEA) on human pancreatic carcinoma xenografts in nude mice were evaluated with thermal neutron irradiation. After thermal neutron irradiation of mice injected with 10 B-immunoliposomes, AsPC-1 tumour growth was suppressed relative to controls. Histopathologically, hyalinization and necrosis were found in 10 B-treated tumours, while tumour tissue injected with saline or saline-containing immunoliposomes showed neither destruction nor necrosis. These results suggest that intratumoral injection of boronated immunoliposomes can increase the retention of 10 B atoms by tumour cells, causing tumour growth suppression in vivo upon thermal neutron irradiation. We prepared boronated PEG-binding bovine serum albumin ( 10 B-PEG-BSA). 10 B concentrations in AsPC-1, human pancreatic cancer cells (2 x 10 5 /well) obtained 24 hrs after incubation with 10 B-PEG-BSA was 13.01 ± 1.74 ppm. The number of 10 B atoms delivered to the tumor cells was calculated to be 7.83 x 10 11 at 24 hrs after incubation with 10 B-PEG-BSA. These data indicated that the 10 B-PEG-BSA could deliver a sufficient amount of 10 B atoms (more than 10 9 atoms/cell) to the tumor cells to induce cytotoxic effects after incubation upon thermal neutron irradiation. Neutron capture autoradiography by using an Imaging Plate (IP-NCR) was performed on AsPC-1 tumor-bearing mouse that had been given an intratumoral injection of 10 B-PEG BSA or 10 B-cationic liposome. We had demonstrated the 10 B-PEG BSA or 10 B-cationic liposome is taken up by AsPC-1 tumor tissue to a much greater extent than by normal tissues. (J.P.N.)

  10. Basic research of boron neutron-capture therapy for treatment of pancreatic cancer. Application of neutron radiography for visualization of boron compound on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Yanagie, Hironobu [Tokyo Univ. (Japan). Inst. of Medical Science

    1997-02-01

    The cytotoxic effects of locally injected {sup 10}B-immunoliposomes (anti-CEA) on human pancreatic carcinoma xenografts in nude mice were evaluated with thermal neutron irradiation. After thermal neutron irradiation of mice injected with {sup 10}B-immunoliposomes, AsPC-1 tumour growth was suppressed relative to controls. Histopathologically, hyalinization and necrosis were found in {sup 10}B-treated tumours, while tumour tissue injected with saline or saline-containing immunoliposomes showed neither destruction nor necrosis. These results suggest that intratumoral injection of boronated immunoliposomes can increase the retention of {sup 10}B atoms by tumour cells, causing tumour growth suppression in vivo upon thermal neutron irradiation. We prepared boronated PEG-binding bovine serum albumin ({sup 10}B-PEG-BSA). {sup 10}B concentrations in AsPC-1, human pancreatic cancer cells (2 x 10{sup 5} /well) obtained 24 hrs after incubation with {sup 10}B-PEG-BSA was 13.01 {+-} 1.74 ppm. The number of {sup 10}B atoms delivered to the tumor cells was calculated to be 7.83 x 10{sup 11} at 24 hrs after incubation with {sup 10}B-PEG-BSA. These data indicated that the {sup 10}B-PEG-BSA could deliver a sufficient amount of {sup 10}B atoms (more than 10{sup 9} atoms/cell) to the tumor cells to induce cytotoxic effects after incubation upon thermal neutron irradiation. Neutron capture autoradiography by using an Imaging Plate (IP-NCR) was performed on AsPC-1 tumor-bearing mouse that had been given an intratumoral injection of {sup 10}B-PEG BSA or {sup 10}B-cationic liposome. We had demonstrated the {sup 10}B-PEG BSA or {sup 10}B-cationic liposome is taken up by AsPC-1 tumor tissue to a much greater extent than by normal tissues. (J.P.N.)

  11. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  12. Tumor control induced by Boron Neutron Capture Therapy (BNCT) as a function of dose in an experimental model of liver metastases at 5 weeks follow-up

    International Nuclear Information System (INIS)

    Pozzi, E C C; Trivillin, V A; Colombo, L L; Monti Hughes, A; Thorp, S; Cardoso, J E; Garabalino, M A; Molinari, A J; Heber, E M; Curotto, Paula; Miller, M; Itoiz, M E; Aromando, R F; Nigg, D W; Schwint, A E

    2012-01-01

    BNCT has been proposed for the treatment of multifocal, non-resectable, bilobar colorectal liver metastases that do not respond to chemotherapy. We recently reported that BNCT mediated by boronophenylalanine (BPA) induced significant remission of experimental colorectal tumor nodules in rat liver at 3 weeks follow-up with no contributory liver toxicity (Pozzi et al.,2012). The aim of the present study was to evaluate tumor control and potential liver toxicity of BPA-BNCT at 5 weeks follow-up. Prescribed dose was retrospectively evaluated based on blood boron values, allowing for assessment of response over a range of delivered dose values (author)

  13. Proceedings of neutron irradiation technical meeting on BNCT

    International Nuclear Information System (INIS)

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  14. Proceedings of neutron irradiation technical meeting on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The 'Neutron Irradiation Technical Meeting for Boron Neutron Capture Therapy (BNCT)' was held on March 13, 2000 at Tokai Research Establishment. The Meeting is aimed to introduce the neutron beam facility for medical irradiation at JRR-4 to Japanese researchers widely, as well as providing an opportunity for young researchers, engineers, medical representatives such surgeons and doctors of pharmacology to present their research activities and to exchange valuable information. JAERI researcher presented the performance and the irradiation technology in the JRR-4 neutron beam facility, while external researchers made various and beneficial presentations containing such accelerator-based BNCT, spectrum-shifter, biological effect, pharmacological development and so on. In this meeting, a special lecture titled 'The Dawn of BNCT and Its Development.' was given by MD, Prof. Takashi Minobe, an executive director of Japan Foundation for Emergency Medicine. The 11 of the presented papers are indexed individually. (J.P.N.)

  15. Application of 10BSH entrapped transferrin-PEG-liposome to boron neutron-capture therapy (BNCT) for solid tumor

    International Nuclear Information System (INIS)

    Maruyama, K.; Ishida, O.; Iwatsuru, M.; Yanagie, H.; Eriguchi, M.; Kobayashi, H.

    2000-01-01

    The successful treatment of cancer by BNCT requires the selective concentration of 10 B within malignant tumor cells. Intracellular targeting ability and cytotoxic effects of 10 B entrapped TF-PEG-liposomes, in which TF is covalently linked to the distal terminal of PEG chains on the external surface of PEG-liposomes, were examined in Colon 26 tumor-bearing mice. TF-PEG-liposomes readily bound to tumor cells in vivo, and were internalized by receptor-mediated endocytosis. 10 B-PEG-liposomes and 10 B-TF-PEG-liposomes showed prolonged residence time in the circulation and low RES uptake in tumor-bearing mice, resulting in enhanced extravasation of the liposomes into the solid tumor tissue and reached high level of 10 B content in tumor. After thermal neutron irradiation of mice injected with 10 B-PEG-liposomes or 10 B-TF-PEG-liposome, tumor growth was suppressed relative to controls. These results suggest that intravenous injection of 10 B TF-PEG-liposome can increase the intracellular retention of 10 B atoms, which were introduced by receptor mediated endocytosis after binding, causing tumor growth suppression in vivo upon thermal neutron irradiation. (author)

  16. Comparison of three experimental protocols in pre clinical studies for thyroid cancer treatment using sodium butyrate in combination with boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Perona, M; Rodriguez, C; Carpano, M; Majdalani E; Nievas, S; Olivera, M; Pisarev, M; Cabrini, R; Juvenal, G; Dagrosa A

    2012-01-01

    Background: We have shown that boron neutron capture therapy (BNCT) could be an alternative for the treatment of poorly differentiated (PDTC) and undifferentiated thyroid carcinoma (UTC). However new strategies are being assayed in order to optimize its application. Histone de acetylase inhibitors (HDAC-I) like sodium butyrate (NaB), are emerging as a new class of chemotherapeutic agents which target the epigenome. Since histone hyper acetylation mediates changes in chromatin conformation, HDAC-I are involved in different epigenetically controlled activities like apoptosis, proliferation, cell differentiation, induction of cell cycle arrest and motility. The purpose of the present studies was to analyze different treatment regimens of combination of NaB and boronophenylalanine (BPA) uptake in animals bearing transplants of a human thyroid carcinoma Methods: NIH nude mice of 6-8 weeks were implanted (s.c.) with 10 6 of human follicular thyroid carcinoma cells (WRO). Three regimens were evaluated in 48 animals after 15 days when tumors had a size between 50 and 100 mm 3 . Group 1 (n=10): BPA and NaB (50 mM) via i.p. at a dose of 110 mg/kg b.w. 24 h before boron compound administration; group 2 (n=10): BPA and NaB 3.4% in the water ad libitum during a month after 15 days post-implantation; group 3 (n=10): BPA alone. In all the groups BPA was injected at a dose of 350 mg/Kg b.w. (i.p.) and the animals were sacrificed at 2 h post-administration. Boron measurements in tissues and blood were performed by ICP-OES. A control group without NaB (n=6) for each regimen was included. The tumor growth and the body weight were determined twice a week during a month. Results: The administration of NaB 3.4% during a month previous to BNCT did not modify the body weight of the mice and decreased the tumor growth compared to its control group (p<0.01). The biodistribution studies showed a tumor boron concentration of 32.6 ± 1.4 ppm for group 1 (NaB 50 mM plus BPA), of 16.9 ± 3.7 ppm

  17. Boron-11 MRI and MRS of intact animals infused with a boron neutron capture agent

    International Nuclear Information System (INIS)

    Kabalka, G.W.; Davis, M.; Bendel, P.

    1988-01-01

    Boron neutron capture therapy (BNCT) depends on the delivery of boron-containing drugs to a targeted lesion. Currently, the verification and quantification of in vivo boron content is a difficult problem. Boron-11 spectroscopy was utilized to confirm the presence of a dimeric sulfhydryl dodecaborane BNCT agent contained in an intact animal. Spectroscopy experiments revealed that the decay time of transverse magnetization of the boron-11 spins was less than 1 ms which precluded the use of a 2DFT imaging protocol. A back-projection protocol was developed and utilized to generate the first boron-11 image of a BNCT agent in the liver of an intact Fisher 344 rat

  18. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  19. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  20. Experimental study on the performance of an epithermal neutron flux monitor for BNCT.

    Science.gov (United States)

    Guan, Xingcai; Manabe, Masanobu; Tamaki, Shingo; Liu, Shuangtong; Sato, Fuminobu; Murata, Isao; Wang, Tieshan

    2016-07-01

    The performance of an epithermal neutron (0.5eVflux monitor designed for boron neutron capture therapy (BNCT) was experimentally studied by using a prototype monitor in an appropriate neutron field at the intense deuterium-tritium neutron source facility OKTAVIAN of Osaka University, Japan. It was convinced from the experimental results that the developed monitor worked well and the epithermal neutron fluxes in BNCT neutron sources can be measured within 5% by the monitor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Anesthetic management of Boron Neutron Capture Therapy for glioblastoma

    International Nuclear Information System (INIS)

    Shinomura, T.; Furutani, H.; Osawa, M.; Ono, K.; Fukuda, K.

    2000-01-01

    General anesthesia was given to twenty-seven patients who received Boron Neutron Capture Therapy (BNCT) under craniotomy at Kyoto University Research Reactor from 1991 to 1999. Special considerations are required for anesthesia. (author)

  2. Anesthetic management of Boron Neutron Capture Therapy for glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Shinomura, T.; Furutani, H.; Osawa, M.; Ono, K.; Fukuda, K. [Kyoto Univ. (Japan)

    2000-10-01

    General anesthesia was given to twenty-seven patients who received Boron Neutron Capture Therapy (BNCT) under craniotomy at Kyoto University Research Reactor from 1991 to 1999. Special considerations are required for anesthesia. (author)

  3. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    CERN Document Server

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  4. Proceedings of workshop on 'Boron Chemistry and Boron Neutron Capture Therapy'

    International Nuclear Information System (INIS)

    Kitaoka, Y.

    1991-07-01

    This volume contains the proceedings of the 3rd Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 12, in 1991. In this workshop, our attention was focused on the chemical nature of boron compounds and the boron neutron capture therapy (BNCT). First, clinical experiences of BNCT in KURRI in 1990 and 1991 were reported (Chap. 3). The feasibility of the gadolinium neutron capture therapy for brain tumors was discussed (Chap. 4). In the chemical field, a rapid spectrophotometric determination of trace amounts of borons in biological samples is described (Chap. 5). The chemical behaviours of p-boronophenylalanine and its analogs in aqueous solutions were investigated by a paper electrophoresis and infrared spectroscopy (Chap. 6). On the molecular design and synthesis of new boron carriers for BNCT, several new synthetic methods for B-10 containing nucleoside derivatives were shown (Chap. 7). (author)

  5. Prediction of boron concentration in blood from low dose infusion for the patients of BNCT at JAERI

    International Nuclear Information System (INIS)

    Shibata, Y.; Matsumura, A.; Yamamoto, T.

    2000-01-01

    It is difficult to measure boron concentration in blood during neutron irradiation in BNCT. We have investigated the predictability of boron concentration in blood from the data at 1st craniotomy after low dose BSH infusion. Two patients entered BNCT at JRR2 in 1995/1996, and 5 patients entered BNCT at JRR4 in 1992/2000. The patients include 2 male and 5 female and their age ranged from 20 to 66. In 5 patients 1 g of BSH was infused before 1st tumor removal operation and boron concentrations in blood were examined around this operation. All patients were infused 100 mg/kg of BSH at 12 hours prior to BNCT and boron concentrations were examined before and after BNCT using prompt gamma ray analysis or ICP-AES. Each results showed biphasic pharmacokinetic profile. Personal variations of the pharmacokinetics of BSH were small. Final and 1 g data were well correlated and final boron concentrations at BNCT were predictable from 1 g studies. (author)

  6. Prediction of boron concentration in blood from low dose infusion for the patients of BNCT at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Y.; Matsumura, A.; Yamamoto, T. [University of Tsukuba, Department of Neurosurgery, Tsukuba, Ibaraki (JP)] [and others

    2000-10-01

    It is difficult to measure boron concentration in blood during neutron irradiation in BNCT. We have investigated the predictability of boron concentration in blood from the data at 1st craniotomy after low dose BSH infusion. Two patients entered BNCT at JRR2 in 1995/1996, and 5 patients entered BNCT at JRR4 in 1992/2000. The patients include 2 male and 5 female and their age ranged from 20 to 66. In 5 patients 1 g of BSH was infused before 1st tumor removal operation and boron concentrations in blood were examined around this operation. All patients were infused 100 mg/kg of BSH at 12 hours prior to BNCT and boron concentrations were examined before and after BNCT using prompt gamma ray analysis or ICP-AES. Each results showed biphasic pharmacokinetic profile. Personal variations of the pharmacokinetics of BSH were small. Final and 1 g data were well correlated and final boron concentrations at BNCT were predictable from 1 g studies. (author)

  7. A core laboratory offering full evaluation of new boron compounds. A service to the BNCT community

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Patel, H.; Palmer, M.R.; Lin, H.C.; Busse, P.M.; Harling, O.; Binns, P.J.; Riley, K.J.; Bernard, J.

    2000-01-01

    A joint project by the Beth Israel Deaconess Medical Center at Harvard Medical School and The Nuclear Reactor Laboratory of the Massachusetts Institute of Technology is proposed which would provide a core laboratory for the evaluation of new boron compounds. Federal agency funding has been applied for to support such a facility. The facility's evaluation of candidate boron compounds will include: quantitative cellular boron uptake; cell survival curve analysis (using a thermal neutron beam); small or large animal pharmacokinetic analysis; macro- and micro boron distribution analysis using high-resolution autoradiography, prompt gamma analysis and ICP-AES; small or large animal in vivo tumor control studies (using thermal or epithermal neutron beams); and pharmacological in vivo toxicity evaluation. The laboratory will include small and large animal surgical facilities and resources for additional boron compound chemistry as required by the evaluation procedure. This facility will be open to the BNCT research community. (author)

  8. SERA -- An advanced treatment planning system for neutron therapy and BNCT

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wemple, C.A.; Wessol, D.E.; Wheeler, F.J.; Albright, C.; Cohen, M.; Frandsen, M.; Harkin, G.; Rossmeier, M.

    1999-01-01

    Detailed treatment planning calculations on a patient-specific basis are required for boron neutron capture therapy (BNCT). Two integrated treatment planning systems developed specifically for BNCT have been in clinical use in the United States over the past few years. The MacNCTPLAN BNCT treatment planning system is used in the clinical BNCT trials that are underway at the Massachusetts Institute of Technology. A second system, BNCT rtpe (BNCT radiation therapy planning environment), developed independently by the Idaho national Engineering and Environmental Laboratory (INEEL) in collaboration with Montana State University (MSU), is used for treatment planning in the current series of BNCT clinical trials for glioblastoma at Brookhaven National Laboratory (BNL). This latter system is also licensed for use at several other BNCT research facilities worldwide. Although the currently available BNCT planning systems have served their purpose well, they suffer from somewhat long computation times (2 to 3 CPU-hours or more per field) relative to standard photon therapy planning software. This is largely due to the need for explicit three-dimensional solutions to the relevant transport equations. The simplifying approximations that work well for photon transport computations are not generally applicable to neutron transport computations. Greater computational speeds for BNCT treatment planning must therefore generally be achieved through the application of improved numerical techniques rather than by simplification of the governing equations. Recent efforts at INEEL and MSU have been directed toward this goal. This has resulted in a new paradigm for this type of calculation and the subsequent creation of the new simulation environment for radiotherapy applications (SERA) treatment planning system for BNCT. SERA is currently in initial clinical testing in connection with the trials at BNL, and it is expected to replace the present BNCT rtpe system upon general release

  9. A shielding design for an accelerator-based neutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, A.E.; Blue, T.E. E-mail: blue.1@osu.edu; Woollard, J.E

    2004-11-01

    Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a {sup 7}Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.

  10. Accelerator-driven boron neutron capture therapy

    Science.gov (United States)

    Edgecock, Rob

    2014-05-01

    Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.

  11. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  12. Physical engineering and medical physics on boron neutron capture therapy

    International Nuclear Information System (INIS)

    Sakurai, Yoshinori

    2011-01-01

    The contents of physical engineering and medical physics that support boron neutron capture therapy (BNCT) can be roughly classified to the four items, (1) neutron irradiation system, (2) development and improvement of dose assessment techniques, (3) development and improvement of dose planning system, and (4) quality assurance and quality control. This paper introduces the BNCT at Kyoto University Research Reactor Institute, with a focus on the basic physics of BNCT, thermal neutron irradiation and epithermal neutron irradiation, heavy water neutron irradiation facilities of KUR, and medical irradiation system of KUR. It also introduces the world's first BNCT clinical cyclotron irradiation system (C-BENS) of Kyoto University Research Reactor Institute, BNCT dose assessment techniques, dose planning system, and quality assurance and quality control. (A.O.)

  13. Development of cancer therapy facility of HANARO and medical research in BNCT; development of the technique for boron concentration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Dong; Byun, Soo Hyun; Sun, Gwang Min; Kim, Suk Kwon; Kim, In Jung; Park, Chang Su [Seoul National University, Seoul (Korea)

    2002-03-01

    Objective and Necessity of the Project- Development of a boron concentration analysis facility used for BNCT. - Development of the technique for boron concentration analysis. Contents and Scopes of the Project - Construction of the boron concentration analysis facility based on PGAA. Estimation of the neutron beam characteristics. -Establishment of the technique for the boron concentration analysis. - Estimation of the reliability for the boron analysis. Results of the Project -Installation of the boron concentration analysis facility at Hanaro. - Neutron beam characteristics are the sample position (neutron flux : 7.9 x 10{sup 7} n/cm{sup 2}s, Cd-ratio : 266) Technique for the boron concentration analysis. - Boron detection sensitivity and limit (detection sensitivity : 2, 131 cps/mg-B, detection limit : 67 ng for 10,000 sec). 63 refs., 37 figs., 13 tabs. (Author)

  14. Clinical potential of boron neutron capture therapy for locally recurrent inoperable previously irradiated head and neck cancer

    International Nuclear Information System (INIS)

    Lim, Diana; Quah, Daniel SC; Leech, Michelle; Marignol, Laure

    2015-01-01

    This review compares the safety and efficacy of boron neutron capture therapy (BNCT) in the treatment of previously irradiated, inoperable locoregional recurrent HNC patients and compares BNCT against the standard treatment of platinum-based chemotherapy. Our analysis of published clinical trials highlights efficacy of BNCT associated with mild side effects. However, the use of BNCT should be explored in stratified randomised trials. - Highlights: • BNCT can prolong median overall survival. • BNCT can be associated with severe adverse effects. • BNCT may be comparable to chemotherapy-based regimens. • BNCT may be comparable to re-irradiation techniques regimens in patients with low performance status.

  15. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    Science.gov (United States)

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Radiation shielding design of BNCT treatment room for D-T neutron source.

    Science.gov (United States)

    Pouryavi, Mehdi; Farhad Masoudi, S; Rahmani, Faezeh

    2015-05-01

    Recent studies have shown that D-T neutron generator can be used as a proper neutron source for Boron Neutron Capture Therapy (BNCT) of deep-seated brain tumors. In this paper, radiation shielding calculations have been conducted based on the computational method for designing a BNCT treatment room for a recent proposed D-T neutron source. By using the MCNP-4C code, the geometry of the treatment room has been designed and optimized in such a way that the equivalent dose rate out of the treatment room to be less than 0.5μSv/h for uncontrolled areas. The treatment room contains walls, monitoring window, maze and entrance door. According to the radiation protection viewpoint, dose rate results of out of the proposed room showed that using D-T neutron source for BNCT is safe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Development of An Epi-thermal Neutron Field for Fundamental Researches for BNCT with A DT Neutron Source

    Directory of Open Access Journals (Sweden)

    Osawa Yuta

    2017-01-01

    Full Text Available Boron Neutron Capture Therapy (BNCT is known to be a new promising cancer therapy suppressing influence against normal cells. In Japan, Accelerator Based Neutron Sources (ABNS are being developed for BNCT. For the spread of ABNS based BNCT, we should characterize the neutron field beforehand. For this purpose, we have been developing a low-energy neutron spectrometer based on 3He position sensitive proportional counter. In this study, a new intense epi-thermal neutron field was developed with a DT neutron source for verification of validity of the spectrometer. After the development, the neutron field characteristics were experimentally evaluated by using activation foils. As a result, we confirmed that an epi-thermal neutron field was successfully developed suppressing fast neutrons substantially. Thereafter, the neutron spectrometer was verified experimentally. In the verification, although a measured detection depth distribution agreed well with the calculated distribution by MCNP, the unfolded spectrum was significantly different from the calculated neutron spectrum due to contribution of the side neutron incidence. Therefore, we designed a new neutron collimator consisting of a polyethylene pre-collimator and boron carbide neutron absorber and confirmed numerically that it could suppress the side incident neutrons and shape the neutron flux to be like a pencil beam.

  18. Microwave digestion techniques applied to determination of boron by ICP-AES in BNCT program

    International Nuclear Information System (INIS)

    Farias, Silvia S.; Di Santo, Norberto R.; Garavaglia, Ricardo N.; Pucci, Gladys N.; Batistoni, Daniel A.; Schwint, Amanda E.

    1999-01-01

    Recently, boron neutron capture therapy (BNCT) has merged as an interesting option for the treatment of some kind of tumors where established therapies show no success. A molecular boronated species, enriched in 10 B is administrated to the subject; it localizes in malignant tissues depending the kind of tumor and localization. Therefore, a very important fact in BNCT research is the detection of boron at trace or ultra trace levels precisely and accurately. This is extremely necessary as boronated species do localize in tumoral tissue and also localize in liver, kidney, spleen, skin, membranes. By this way, before testing a boronated species, it is mandatory to determine its biodistribution in a statistically meaning population, that is related with managing of a great number of samples. In the other hand, it is necessary to exactly predict when to begin the irradiation and to determine the magnitude of radiation to obtain the desired radiological dose for a specified mean boron concentration. This involves the determination of boron in whole blood, which is related with boron concentration in the tumor object of treatment. The methodology selected for the analysis of boron in whole blood and tissues must join certain characteristics: it must not be dependant of the chemical form of boron, it has to be fast and capable to determine boron accurately and precisely in a wide range of concentrations. The design and validation of experimental models involving animals in BNCT studies and the determination of boron in blood of animals and subjects upon treatment require reliable analytical procedures to determine boron quantitatively in those biologic materials. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) using pneumatic nebulization is one of the most promising methods for boron analysis, but the sample must be liquid and have low solid concentration. In our case, biological tissues and blood, it is mandatory to mineralize and/or dilute samples

  19. Boron-containing thioureas for neutron capture therapy

    International Nuclear Information System (INIS)

    Ketz, H.

    1993-01-01

    Melanin is produced in large amounts in malignant melanotic melanomas. Because thiourea compounds are covalently incorporated into melanin during its biosynthesis, the preparation of boronated thiourea-derivatives is of particular interest for the BNCT (Boron Neutron Capture Therapy). Accumulation of boron in tumors by means of boronated thiourea-derivatives may therefore provide levels of 10 B which are useful for BNCT. In BNCT the tumor containing the boron compound is irradiated with epithermal neutrons to generate He- and Li-nuclei from the 10 B which can then destroy the tumor cells. Because of the short ranges of these particles (approximately one cell diameter) the damage will be almost exclusively confined to the tumor leaving normal tissue unharmed. High accumulation of 2-mercapto-1-methylimidazole (methimazole) in melanotic melanomas has been described in the literature. Boronated derivatives of methimazole were therefore synthesized. Boron was in the form of a boronic acid, a nido-carbonate and a mercaptoundeca hydro-closo-dodecaborate (BSH). The synthesis of the boron cluster derivatives of methimazole (nido-carborate- and BSH-derivatives) with 9 resp. 12 boron atoms in the molecule were expected to achieve higher concentrations of boron in the tumor than in the case of the boronic acid compound with its single boron atom. (orig.) [de

  20. Microdosimetry for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Maughan, R.L.; Kota, C.

    2000-01-01

    The specific aims of the research proposal were as follows: (1) To design and construct small volume tissue equivalent proportional counters for the dosimetry and microdosimetry of high intensity thermal and epithermal neutron beams used in BNCT, and of modified fast neutron beams designed for boron neutron capture enhanced fast neutron therapy (BNCEFNT). (2) To develop analytical methods for estimating the biological effectiveness of the absorbed dose in BNCT and BNCEFNT based on the measured microdosimetric spectra. (3) To develop an analytical framework for comparing the biological effectiveness of different epithermal neutron beams used in BNCT and BNCEFNT, based on correlated sets of measured microdosimetric spectra and radiobiological data. Specific aims (1) and (2) were achieved in their entirety and are comprehensively documented in Jay Burmeister's Ph.D. dissertation entitled ''Specification of physical and biologically effective absorbed dose in radiation therapies utilizing the boron neutron capture reaction'' (Wayne State University, 1999). Specific aim (3) proved difficult to accomplish because of a lack of sufficient radiobiological data

  1. Neutron beams implemented at nuclear research reactors for BNCT

    Science.gov (United States)

    Bavarnegin, E.; Kasesaz, Y.; Wagner, F. M.

    2017-05-01

    This paper presents a survey of neutron beams which were or are in use at 56 Nuclear Research Reactors (NRRs) in order to be used for BNCT, either for treatment or research purposes in aspects of various combinations of materials that were used in their Beam Shaping Assembly (BSA) design, use of fission converters and optimized beam parameters. All our knowledge about BNCT is indebted to researches that have been done in NRRs. The results of about 60 years research in BNCT and also the successes of this method in medical treatment of tumors show that, for the development of BNCT as a routine cancer therapy method, hospital-based neutron sources are needed. Achieving a physical data collection on BNCT neutron beams based on NRRs will be helpful for beam designers in developing a non-reactor based neutron beam.

  2. Boron-rich oligomers for BNCT

    International Nuclear Information System (INIS)

    Gula, M.; Perleberg, O.; Gabel, D.

    2000-01-01

    The synthesis of two BSH derivatives is described, which can be used for oligomerization in DNA-synthesizers. Synthesis pathways lead to final products in five and six steps, respectively. Because of chirality interesting results were expected. NMR-measurements confirm this expectation. Possible oligomers with high concentrations of boron can be attached to biomolecules. These oligomers can be explored with several imaging methods (EELS, PEM) to determine the lower detection limit of boron with these methods. (author)

  3. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Faria Gaspar, P. de.

    1994-01-01

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  4. Role of gel dosimeters in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Khajeali, Azim; Farajollahi, Ali Reza; Khodadadi, Roghayeh; Kasesaz, Yaser; Khalili, Assef

    2015-01-01

    Gel dosimeters have acquired a unique status in radiotherapy, especially with the advent of the new techniques in which there is a need for three-dimensional dose measurement with high spatial resolution. One of the techniques in which the use of gel dosimeters has drawn the attention of the researchers is the boron neutron capture therapy. Exploring the history of gel dosimeters, this paper sets out to study their role in the boron neutron capture therapy dosimetric process. - Highlights: • Gel dosimeters have been investigated. • Conventional dosimetric proses of BNCT has been investigated. • Role of gel dosimeters in BNCT has been investigated

  5. OPTIMIZATION OF A NEUTRON BEAM SHAPING ASSEMBLY DESIGN FOR BNCT AND ITS DOSIMETRY SIMULATION BASED ON MCNPX

    Directory of Open Access Journals (Sweden)

    I Made Ardana

    2017-10-01

    OPTIMASI DESAIN KOLIMATOR NEUTRON UNTUK SISTEM BNCT DAN UJI DOSIMETRINYA MENGGUNAKAN PROGRAM MCNPX. Telah dilakukan penelitian tentang sistem BNCT yang meliputi dua tahapan simulasi dengan menggunakan program MCNPX yaitu uji simulasi untuk optimasi desain kolimator neutron untuk sistem BNCT berbasis Siklotron 30 MeV dan uji simulasi untuk menghitung fluks neutron dan dosimetri radiasi pada kanker sarkoma jaringan lunak pada leher dan kepala. Tujuan simulasi untuk mendapatkan desain kolimator yang paling optimal dalam memoderasi fluks neutron cepat yang dihasilkan dari sistem target berilium sehingga dapat dihasilkan fluks neutron yang sesuai untuk sistem BNCT. Uji optimasi dilakukan dengan cara memvariasikan bahan dan ketebalan masing-masing komponen dalam kolimator seperi reflektor, moderator, filter neutron cepat, filter neutron thermal, filter radiasi gamma dan lubang keluaran. Desain kolimator yang diperoleh dari hasil optimasi tersusun atas moderator berbahan Al dengan ketebalan 39 cm, filter neutron cepat berbahan LiF2 setebal 8,2 cm, dan filter neutron thermal berbahan B4C setebal 0,5 cm. Untuk reflektor, filter radiasi gamma dan lubang keluaran masing-masing menggunakan bahan PbF2, Pb dan Bi. Fluks neutron epithermal yang dihasilkan dari kolimator yang didesain adalah sebesar 2,83 x 109 n/s cm-2 dan telah memenuhi seluruh parameter fluks neutron yang sesuai untuk sistem BNCT. Selanjutnya uji simulasi dosimetri pada kanker sarkoma jaringan lunak pada leher dan kepala dilakukan dengan cara memvariasikan konsentrasi senyawa boron pada model phantom leher manusia (ORNL. Selanjutnya model phantom tersebut diiradiasi dengan fluks neutron yang berasal dari kolimator yang telah didesain sebelumnya. Hasilnya, fluks neutron thermal mencapai nilai tertinggi pada kedalaman 4,8 cm di dalam model phantom leher ORNL dengan laju dosis tertinggi terletak pada area jaringan kanker. Untuk masing-masing variasi konsentrasi senyawa boron pada model phantom leher ORNL supaya

  6. Comparison of the image-derived radioactivity and blood-sample radioactivity for estimating the clinical indicators of the efficacy of boron neutron capture therapy (BNCT): 4-borono-2-18F-fluoro-phenylalanine (FBPA) PET study.

    Science.gov (United States)

    Isohashi, Kayako; Shimosegawa, Eku; Naka, Sadahiro; Kanai, Yasukazu; Horitsugi, Genki; Mochida, Ikuko; Matsunaga, Keiko; Watabe, Tadashi; Kato, Hiroki; Tatsumi, Mitsuaki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT), positron emission tomography (PET) with 4-borono-2- 18 F-fluoro-phenylalanine (FBPA) is the only method to estimate an accumulation of 10 B to target tumor and surrounding normal tissue after administering 10 B carrier of L-paraboronophenylalanine and to search the indication of BNCT for individual patient. Absolute concentration of 10 B in tumor has been estimated by multiplying 10 B concentration in blood during BNCT by tumor to blood radioactivity (T/B) ratio derived from FBPA PET. However, the method to measure blood radioactivity either by blood sampling or image data has not been standardized. We compared image-derived blood radioactivity of FBPA with blood sampling data and studied appropriate timing and location for measuring image-derived blood counts. We obtained 7 repeated whole-body PET scans in five healthy subjects. Arterialized venous blood samples were obtained from the antecubital vein, heated in a heating blanket. Time-activity curves (TACs) of image-derived blood radioactivity were obtained using volumes of interest (VOIs) over ascending aorta, aortic arch, pulmonary artery, left and right ventricles, inferior vena cava, and abdominal aorta. Image-derived blood radioactivity was compared with those measured by blood sampling data in each location. Both the TACs of blood sampling radioactivity in each subject, and the TACs of image-derived blood radioactivity showed a peak within 5 min after the tracer injection, and promptly decreased soon thereafter. Linear relationship was found between blood sampling radioactivity and image-derived blood radioactivity in all the VOIs at any timing of data sampling (p radioactivity measured in the left and right ventricles 30 min after injection showed high correlation with blood radioactivity. Image-derived blood radioactivity was lower than blood sampling radioactivity data by 20 %. Reduction of blood radioactivity of FBPA in left ventricle after 30 min of FBPA

  7. Materials for neutron beam optimization for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo

    2001-01-01

    Several prospective materials (neutron filter/moderator, beam reflector, gamma ray shielding and beam collimator) were studied with a view to generating thermal and epithermal neutron beams suited for boron neutron capture therapy (BNCT). The beams are delivered from the thermal and thermalizing column exits situated on two opposite faces of a TRIGA-II type reactor. An investigation was performed with Monte Carlo calculations from a viewpoint of obtaining sufficiently intense thermal and epithermal neutron beams separately, and little adulterated both with neutrons of extraneous energy ranges and with gamma rays. High-density graphite (G) would be the most suitable material for thermal neutron beams as a neutron filter/moderator, and the combination of aluminum (Al) and aluminum fluoride (AlF 3 ) for epithermal neutron beams. The graphite would be also the most promising material for thermal neutron beams as a beam reflector while for epithermal neutron beams the choice would be lead fluoride (PbF 2 ). The PbF 2 would be also the most suitable material for epithermal neutron beams as a gamma ray shielding, and bismuth (Bi) for thermal neutron beam. The PbF 2 would be also the most useful material for epithermal neutron beam as a beam collimator while for thermal neutron beam the choice would be the graphite. The epithermal neutron beam for BNCT could be optimized with the progressive use of PbF 2 . (author)

  8. Spectrum shaping assessment of accelerator-based fusion neutron sources to be used in BNCT treatment

    Science.gov (United States)

    Cerullo, N.; Esposito, J.; Daquino, G. G.

    2004-01-01

    Monte Carlo modelling of an irradiation facility, for boron neutron capture therapy (BNCT) application, using a set of advanced type, accelerator based, 3H(d,n) 4He (D-T) fusion neutron source device is presented. Some general issues concerning the design of a proper irradiation beam shaping assembly, based on very hard energy neutron source spectrum, are reviewed. The facility here proposed, which represents an interesting solution compared to the much more investigated Li or Be based accelerator driven neutron source could fulfil all the medical and safety requirements to be used by an hospital environment.

  9. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  10. Possible alternation of the blood-brain barrier by boron-neutron capture therapy

    International Nuclear Information System (INIS)

    Hatanaka, H.; Moritani, M.; Camillo, M.

    1991-01-01

    In the course of re-assessment of boron-neutron capture therapy (BNCT) for malignant brain tumors, fractionation of neutron irradiation has been proposed. The authors have used BNCT with a single fraction technique during the past 21 years and now decided to study some effects of fractionation. Twenty-two healthy mouse brains were irradiated with thermal neutrons after boron-10 injection (mercaptoundecahydrododecaborate). A second dose of boron-10 was administered and its uptake in the boron-neutron-capture-irradiated brains was determined. A tendency towards increased boron uptake in the moderately BNCT-treated brains was noticed, which may result in increased brain damage if fractionated neutron irradiation is used. (orig.)

  11. On line local measurement of thermal neutron flux on BNCT patient using SPND

    International Nuclear Information System (INIS)

    Miller, M.E.; Sztejnberg Goncalves-Carralves, M.L.; Gonzalez, S.J.

    2006-01-01

    The first on-line neutron flux measurement on a patient using a self-powered neutron detector (SPND) was assessed during the fourth clinical trial of the Boron Neutron Capture Therapy (BNCT) Project carried out at the National Atomic Energy Commission of Argentina (CNEA) and the medical center Angel H. Roffo. The SPND was specially developed and assembled for BNCT by CNEA. Its small size, 1 cm sensible length and 1.9 mm diameter, allowed performing a localized measurement. Since the treated tumors were cutaneous melanomas of nodular type, the SPND was located on the patient's skin. The patient was exposed to three different and consecutive fields and in each of them the SPND was used to measure local thermal neutron fluxes at selected dosimetric reference points. The values of the measured fluxes agreed with the ones estimated by calculation. This trial also demonstrated the usefulness of the SPND for assessing flux on-line. (author)

  12. An accelerator neutron source for BNCT. Technical progress report, 1 June 1993--31 May 1994

    International Nuclear Information System (INIS)

    Blue, T.E.; Vafai, K.

    1994-02-01

    This is the progress report for the project entitled, ''An Accelerator Neutron Source for BNCT.'' The progress report is for the period from July 1, 1993 to date. The overall objective of our research project is to develop an Accelerator Epithermal Neutron Irradiation Facility (AENIF) for Boron Neutron Capture Therapy (BNCT). The AENIF consists of a 2.5 MeV high current proton accelerator, a lithium target to produce source neutrons, and a moderator/reflector assembly to obtain from the energetic source neutrons an epithermal neutron field suitable for BNCT treatments. Our project goals are to develop the non-accelerator components of the AENIF, and to specifically include in our development: (1) design, numerical simulation, and experimental verification of a target assembly which is capable of removing 75 kW of beam power; (2) re-optimization of the moderator assembly design based on in-phantom dose assessments using neutron spectra calculated in phantom and an energy-dependent neutron Relative Biological Effectiveness (RBE); (3) construction of a prototype moderator assembly and confirmation of its design by measurements; (4) design of the shielding of the accelerator and treatment rooms for an AENIF; and (5) design of a high energy beam transport system which is compatible with the shielding design and the thermal-hydraulic design

  13. Synthesis and in-vivo detection of boronated compounds for use in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G.W.

    1992-01-01

    The primary objective of the DOE program at The University of Tennessee Graduate School of Medicine is the development of effective molecular medicine for use in neutron-capture therapy (NCT). The research focuses primarily on the preparation of new boron-rich NCT agents and the technology to detect them in-vivo. The detection technology involves the development of effective magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques for verifying and measuring NCT agents in-vivo. The synthetic program is directed toward the design of novel boron NCT (BNCT) agents which are targeted to the cell nucleus and gadolinium liposomes targeted to the liver. The UT-DOE program is unique in that it has access to both state-of-the-art whole-body and microscopy MRI instruments.

  14. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line.

    Science.gov (United States)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser

    2016-01-01

    Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Different dose components have been measured in a head phantom which has been designed and constructed for BNCT purpose in TRR. Different in-phantom beam quality factors have also been determined. This study demonstrates that the TRR BNCT beam line has potential for treatment of superficial tumors.

  15. A colorimetric determination of boron in biological sample for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Camilo, M.A.P.; Tomac Junior, U.

    1989-01-01

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of gliomas and glioblastomas grade III and IV than other therapies. During the treatment of levels of Na 2 10 B 12 H 11 S H must be known in several compartments of the organism and with this purpose the method of colorimetric determination of boron using curcumin was established. This method is simples, reproducible and has adequate sensitivity for this control. (author). 7 refs, 3 figs, 1 tab

  16. Performance testing of the neutron flux monitors from 10keV to 1MeV developed for BNCT: A preliminary study.

    Science.gov (United States)

    Guan, Xingcai; Manabe, Masanobu; Tamaki, Shingo; Sato, Fuminobu; Murata, Isao; Wang, Tieshan

    2017-07-01

    The neutron flux monitors from 10keV to 1MeV designed for boron neutron capture therapy (BNCT) were experimentally tested with prototype monitors in an appropriate neutron field produced at the intense deuterium-tritium neutron source facility OKTAVIAN of Osaka University, Japan. The experimental test results and related analysis indicated that the performance of the monitors was good and the neutron fluxes from 10keV to 1MeV of practical BNCT neutron sources can be measured within 10% by the monitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Thermally optimized lithium neutron producing target design for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Park Shane; Joo Hyeong Min; Jang Byeong Ill; Jeun, Gyoodong; Kim Jong Kyung; Chai, Jong Seo

    2006-01-01

    In accelerator-based Boron Neutron Capture Therapy (BNCT), 7 Li(p,n) 7 Be reaction is prevalently used as a neutron source. However, lithium has a very low melting point and poor thermal conductivity. Thus lithium target needs an efficient cooling. In this study, ways of increasing proton beam diameter and slanting target are proposed to reduce the heat density of lithium target. Thermal analysis on the lithium target design shows that water cooling is feasible if the proton beam diameter and target slopes are in the available range of the contour plots generated from this study. On the basis of the thermal analysis, the prototype of target system was designed and manufactured. Full-model thermal analysis and temperature measuring experiment were subsequently performed. The calculated temperature distribution coincided with the contour plots and the experimental results. These results will be used in the manufacture of the prototype accelerator-based BNCT facility at Hanyang University. (author)

  18. Radiobiology studies for the evaluation of epithermal neutron beams used for BNCT

    International Nuclear Information System (INIS)

    Green, S.; Jones, B.; Mill, A.J.

    2006-01-01

    This paper outlines our plans for a study to establish the radiobiological effectiveness of the various mixes of radiation components present in an epithermal neutron beam designed for BNCT and to incorporate these data into clinical protocols for the treatment of malignant glioma. This is a description of work which is funded and just now beginning in Birmingham so no results can be presented. Our project will involve a combination of experimental measurements carried out in Birmingham and in Boston and mathematical modelling carried out in Birmingham. Despite all the extant in-vitro and in-vivo work, there is no widely accepted method to determine biological effect by accounting for variations in beam component mix, dose rate and treatment fractionation for disparate from the various BNCT centres. The objectives of this study are: To develop a cell-based radiobiology protocol to provide essential data on safety and efficacy of beams for Boron Neutron Capture Therapy (BNCT) in advance of clinical trials. To exploit the facilities at Massachusetts Institute of Technology for variable dose-rate epithermal irradiations to validate the above protocol. To develop mathematical models of this radiobiological system that can be used to inform decisions on dose selection, fractionation schedules, BNCT use as supplementary boosts or for re-treatment of recurrent cancers. To provide fundamental data relevant to the understanding of the radiobiology of simultaneous mixed high-and low-LET radiations over a clinically relevant dose-range. (author)

  19. Radiologic findings in patients treated with boron neutron capture therapy for glioblastoma multiforme within EORTC trial 11961

    NARCIS (Netherlands)

    Vos, Maaike J.; Turowski, Bernd; Zanella, Friedhelm E.; Paquis, Philippe; Siefert, Axel; Hideghéty, Katalin; Haselsberger, Klaus; Grochulla, Frank; Postma, Tjeerd J.; Wittig, Andrea; Heimans, Jan J.; Slotman, Ben J.; Vandertop, W. Peter; Sauerwein, Wolfgang

    2005-01-01

    PURPOSE: To assess the occurrence and development of cerebral radiologic changes (cerebral atrophy and white matter lesions) in patients treated with boron neutron capture therapy (BNCT) for primary supratentorial glioblastoma multiforme within the European Organization for Research and Treatment of

  20. Synthesis and in-vivo detection of boronated compounds for use in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G.W.

    1991-02-01

    The primary objectives of the DOE Program at the University of Tennessee Biomedical Imaging Center are the development of new boron-neutron-capture agents as well as the technology to detect boron compounds in-vivo. The detection technology focuses on the development of effective magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques for verifying and measuring BNCT agents in-vivo. A significant portion of the effort is directed toward the design of boron-containing neutron-capture-therapy agents. The UT -- DOE program is unique in that it has access to two state-of-the-art multinuclear magnetic resonance imaging units housed in the Biomedical Imaging Center at the University of Tennessee Medical Center at Knoxville. In addition the UT -- DOE researchers actively collaborate with colleagues at other DOE facilities (Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory and Oak Ridge Associated Universities). An important goal of the DOE program at UT is to provide training for students (predoctoral and postdoctoral). The University of Tennessee is one of the very few institutions in the world where students have hands-on'' access to both modern scientific equipment and medical imaging modalities such as the clinical MRI units. The academic nature of the program facilitates collaborative interactions with other DOE programs and helps to insure the continued availability of skilled scientists dedicated to the advancement of diagnostic medical procedures. 14 refs., 3 figs.

  1. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    OpenAIRE

    Wang, Peng; Zhen, Haining; Jiang, Xinbiao; Zhang, Wei; Cheng, Xin; Guo, Geng; Mao, Xinggang; Zhang, Xiang

    2010-01-01

    Abstract Background Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical Un...

  2. Boron Neutron Capture Therapy (BCNT) for the Treatment of Liver Metastases: Biodistribution Studies of Boron Compounds in an Experimental Model

    International Nuclear Information System (INIS)

    Garabalino, Marcela A.; Hughes, Andrea Monti; Molinari, Ana J.; Heber, Elisa M.; Pozzi, Emiliano C.C.; Itoiz, Maria E.; Trivillin, Veronica A.; Schwint, Amanda E.; Cardoso, Jorge E.; Colombo, Lucas L.; Nievas, Susana; Nigg, David W.; Aromando, Romina F.

    2011-01-01

    We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of 10B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B10H10), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.

  3. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    Science.gov (United States)

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Investigation of Isfahan miniature neutron source reactor (MNSR for boron neutron capture therapy by MCNP simulation

    Directory of Open Access Journals (Sweden)

    S.Z Kalantari

    2015-01-01

    Full Text Available One of the important neutron sources for Boron Neutron Capture Therapy (BNCT is a nuclear reactor. It needs a high flux of epithermal neutrons. The optimum conditions of the neutron spectra for BNCT are provided by the International Atomic Energy Agency (IAEA. In this paper, Miniature Neutron Source Reactor (MNSR as a neutron source for BNCT was investigated. For this purpose, we designed a Beam Shaping Assembly (BSA for the reactor and the neutron transport from the core of the reactor to the output windows of BSA was simulated by MCNPX code. To optimize the BSA performance, two sets of parameters should be evaluated, in-air and in-phantom parameters. For evaluating in-phantom parameters, a Snyder head phantom was used and biological dose rate and dose-depth curve were calculated in brain normal and tumor tissues. Our calculations showed that the neutron flux of the MNSR reactor can be used for BNCT, and the designed BSA in optimum conditions had a good therapeutic characteristic for BNCT.

  5. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    Science.gov (United States)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  6. Selective enhancement of boron accumulation with boron-entrapped water-in-oil-water emulsion in VX-2 rabbit hepatic cancer model for BNCT

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Higashi, Shushi; Ikushima, Ichiro

    2006-01-01

    Tumor cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10 B and thermal neutrons. It is necessary for effective BNCT therapy to accumulate 10 B atoms in the tumor cells without affecting adjacent healthy cells. Water-in-oil-water (WOW) emulsion was used as the carrier of anti-cancer agents on arterial injections in clinical cancer treatment. In this study, we prepared 10 BSH entrapped WOW emulsion for selective arterial infusion for the treatment of hepatocellular carcinoma. WOW emulsion was administrated by arterial injections via proper hepatic artery. The anti-tumor activity of the emulsion was compared with 10 BSH-Lipiodol mix emulsion or 10 BSH solutions on VX-2 rabbit hepatic tumor models. The 10 B concentrations in VX-2 tumor on delivery with WOW emulsion was superior to those by conventional lipiodol mix emulsion. Electro-microscopic figures of WOW emulsion delineated the accumulation of fat droplets of WOW emulsion in the tumor site, but there was no accumulation of fat droplets in lipiodol emulsion. These results indicate that 10 B entrapped WOW emulsion is most useful carrier for arterial delivery of boron agents on BNCT to cancer. (author)

  7. Boron neutron capture therapy: Brain Tumor Treatment Evaluation Program

    International Nuclear Information System (INIS)

    Griebenow, M.L.; Dorn, R.V. III; Gavin, P.R.; Spickard, J.H.

    1988-01-01

    The United States (US) Department of Energy (DOE) recently initiated a focused, multidisciplined program to evaluate Boron Neutron Capture Therapy (BNCT) for the treatment of brain tumors. The program, centered at the DOE/endash/Idaho National Engineering Laboratory (INEL), will develop the analytical, diagnostic and treatment tools, and the database required for BNCT technical assessment. The integrated technology will be evaluated in a spontaneously-occurring canine brain-tumor model. Successful animal studies are expected to lead to human clinical trials within four to five years. 2 refs., 3 figs

  8. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    Kitaoka, Yoshinori

    1992-09-01

    This volume contains the proceedings of the 4th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 24 in 1992. First, clinical experiences of BNCT in the Kyoto University Research Reactor in 1992 were briefly reported. Then, the killing effects of boron cluster-containing nucleic acid precursors on tumor cells were shown (Chap. 2). The various trials of the optical resolution of B-p-boronophenylalanine for neutron capture therapy were made (Chap. 3). The borate-dextran gel complexes were investigated by the nuclear magnetic resonance spectroscopy. The stability constants of borate complexes were listed, and are useful in the solution chemistry of boron compounds (Chap. 4). The interactions between boron compounds and biological materials were studied by the paper electrophoresis which had been developed by us (Chap. 5). Molecular design of boron-10 carriers and their organic synthesis were reported (Chap. 6). Carborane-containing aziridine boron carriers which were directed to the DNA alkylation were synthesized and their cancer cell killing efficacies were tested (Chap. 7). The solution chemistry of deuterium oxide which is a good neutron moderator was reported, relating to the BNCT (Chap. 8). (author)

  9. Current status of accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Kreiner, A. J.; Bergueiro, J.; Di Paolo, H.; Castell, W.; Vento, V. Thatar; Cartelli, D.; Kesque, J.M.; Valda, A.A.; Ilardo, J.C.; Baldo, M.; Erhardt, J.; Debray, M.E.; Somacal, H.R.; Estrada, L.; Sandin, J.C. Suarez; Igarzabal, M.; Huck, H.; Padulo, J.; Minsky, D.M.

    2011-01-01

    The direct use of proton and heavy ion beams for radiotherapy is a well established cancer treatment modality, which is becoming increasingly widespread due to its clear advantages over conventional photon-based treatments. This strategy is suitable when the tumor is spatially well localized. Also the use of neutrons has a long tradition. Here Boron Neutron Capture Therapy (BNCT) stands out, though on a much smaller scale, being a second-generation promising alternative for tumors which are diffuse and infiltrating. On this sector, so far only nuclear reactors have been used as neutron sources. In this paper we describe the current situation worldwide as far as the use of accelerator-based neutron sources for BNCT is concerned (so-called Accelerator-Based (AB)-BNCT). In particular we discuss the present status of an ongoing project to develop a folded Tandem-ElectroStatic-Quadrupole (TESQ) accelerator at the Atomic Energy Commission of Argentina. The project goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p,n) 7 Be reaction. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams to perform BNCT for deep-seated tumors in less than an hour. (author)

  10. The radiation biology of Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Coderre, J.A.

    2003-01-01

    Boron Neutron Capture Therapy (BNCT) produces a complex mixture of high and low-LET radiations in tissue. Using data on the biological effectiveness of these various dose components, derived primarily in small animals irradiated with thermal neutrons, it has been possible to express clinical BNCT doses in photon-equivalent units. The accuracy of these calculated doses in normal tissue and tumor will be reviewed. Clinical trials are underway at a number of centers. There are differences in the neutron beams at these centers, and differences in the details of the clinical protocols. Ideally, data from all centers using similar boron compounds and treatment protocols should be compared and combined, if appropriate, in a multi-institutional study in order to strengthen statistical analysis. An international dosimetry exchange is underway that will allow the physical doses from the various treatment centers to be quantitatively compared. As a first step towards the comparison of the clinical data, the normal brain tolerance data from the patients treated in the initial Brookhaven National Laboratory and the Harvard/MIT BNCT clinical trials have been compared. The data provide a good estimate of the normal brain tolerance for a somnolence syndrome endpoint, and provide guidance for setting normal brain tolerance limits in ongoing and future clinical trials. Escalation of the dose in BNCT can be accomplished by increasing the amount of the boron compound administered, increasing the duration of the neutron exposure, or both. The dose escalations that have been carried out to date at the various treatment centers will be compared and contrasted. Possible future clinical trials using BNCT in combination with other modalities will be discussed

  11. Capability of NIPAM polymer gel in recording dose from the interaction of 10B and thermal neutron in BNCT

    International Nuclear Information System (INIS)

    Khajeali, Azim; Reza Farajollahi, Ali; Kasesaz, Yaser; Khodadadi, Roghayeh; Khalili, Assef; Naseri, Alireza

    2015-01-01

    The capability of N-isopropylacrylamide (NIPAM) polymer gel to record the dose resulting from boron neutron capture reaction in BNCT was determined. In this regard, three compositions of the gel with different concentrations of 10 B were prepared and exposed to gamma radiation and thermal neutrons. Unlike irradiation with gamma rays, the boron-loaded gels irradiated by neutron exhibited sensitivity enhancement compared with the gels without 10 B. It was also found that the neutron sensitivity of the gel increased by the increase of concentration of 10 B. It can be concluded that NIPAM gel might be suitable for the measurement of the absorbed dose enhancement due to 10 B and thermal neutron reaction in BNCT. - Highlights: • Three compositions of NIPAM gel with different concentration of 10 B have been exposed by gamma and thermal neutron. • The vials containing NIPAM gel have been irradiated by an automatic system capable of providing for dose uniformity. • Suitability of NIPAM polymer gel in measuring radiation doses in BNCT has been investigated.

  12. First tomographic image of neutron capture rate in a BNCT facility

    Energy Technology Data Exchange (ETDEWEB)

    Minsky, D.M., E-mail: minsky@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martin, Prov. Bs. As. (Argentina)] [Escuela de Ciencia y Tecnologia, , UNSAM, M. de Irigoyen 3100 (1650), San Martin, Prov. Bs. As. (Argentina)] [Conicet, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martin, Prov. Bs. As. (Argentina)] [Escuela de Ciencia y Tecnologia, , UNSAM, M. de Irigoyen 3100 (1650), San Martin, Prov. Bs. As. (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CAC, CNEA, Av. Gral. Paz 1499 (B1650KNA), San Martin, Prov. Bs. As. (Argentina)] [Escuela de Ciencia y Tecnologia, , UNSAM, M. de Irigoyen 3100 (1650), San Martin, Prov. Bs. As. (Argentina)] [Conicet, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Green, S.; Wojnecki, C. [School of Physics and Astronomy, University of Birmingham, B15 2 TT (United Kingdom)] [Department of Medical Physics, University Hospital Birmingham, Birmingham B15 2TH (United Kingdom); Ghani, Z. [Department of Medical Physics, University Hospital Birmingham, Birmingham B15 2TH (United Kingdom)

    2011-12-15

    This work discusses the development of online dosimetry of the boron dose via Single Photon Emission Computed Tomography (SPECT) during a BNCT treatment irradiation. Such a system will allow the online computation of boron dose maps without the large current uncertainties in the assessment of the boron concentration in different tissues. The first tomographic boron dose image with a SPECT prototype is shown.

  13. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1998-01-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by 10 B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase I/II clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark experiments

  14. Boron Activated Neutron Thermometer

    Energy Technology Data Exchange (ETDEWEB)

    Lapsley, A. C. [Argonne National Lab. (ANL), Argonne, IL (United States). Instrument Research & Development

    1952-01-09

    The Brown Instrument Division of Minneapolis-Honeywell Regulator Co. have been making pilot models of boron coated neutron sensitive thermopiles, which show considerable promise of being effective indicators of slow neutron flux. Their loss in sensitivity in a year of operation in the maximum flux of CP-6 calculates to be less than 6 per cent. When used as rooftop indicators, the ratio of the signal of the two units would change by about 2 per cent in a year's time.

  15. The Swedish facility for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Skoeld, K.; Capala, J.; Kierkegaard, J.; Haakansson, R.; Gudowska, I.

    2000-01-01

    A BNCT (Boron Neutron Capture Therapy) facility has been constructed at the R2-0 reactor at Studsvik, Sweden. R2-0 is a 1 MW, open core, pool reactor. The reactor core is suspended on a movable tower and can be positioned anywhere in the pool. The BNCT facility includes two adjacent, parallel filter/moderator configurations and the reactor core is positioned in front of any of them as appropriate. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range and with an extended collimator for convenient patient positioning. The other beam has been designed for radiobiological research and is equipped with a heavy water moderator and a large irradiation cavity with a uniform field of thermal neutrons. (author)

  16. Calculation of neutron flux distributions in BNCT using removal-diffusion theory

    Energy Technology Data Exchange (ETDEWEB)

    Niemkiewicz, J.; Blue, T.E.; Gupta, N.

    1994-12-31

    Boron neutron capture therapy (BNCT) is under investigation as a treatment modality for brain tumors. Successful routine use of BNCT will require a knowledge of the radiation dose distribution in a patient`s head prior to treatment. This will allow optimization of the treatment to fit the needs of individual patients. Determination of the dose distribution begins with calculation of the neutron flux distribution in the head. Most efforts to date have relied on Monte Carlo or discrete ordinates techniques to calculate this flux distribution. Use of removal-diffusion theory has the advantage of a relatively short computer time to complete a calculation. Previous work by our group has shown good agreement between neutron flux distributions calculated using removal-diffusion theory and Monte Carlo methods for parallel incident neutrons and a rectangular parallelepiped water phantom. This work compares neutron flux distributions calculated using removal-diffusion theory and Monte Carlo methods for a homogeneous ellipsoidal water phantom that models the human head.

  17. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F.; Lin, S.Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Peir, J.J. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liao, J.W. [Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan (China); Lin, Y.C. [Department of Veterinary Medicine, National Chung Hsing University, Taiwan (China); Chou, F.I., E-mail: fichou@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)] [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)

    2011-12-15

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 {mu}g {sup 10}B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg {sup 10}B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  18. Using BPA alone for boron neutron capture therapy of recurrent head and neck malignancies

    International Nuclear Information System (INIS)

    Aihara, Teruhito; Hiratsuka, Junichi; Nishiike, Suetaka; Morita, Norimasa; Uno, Masako; Harada, Tamotsu; Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji

    2006-01-01

    In recent years, boron neutron capture therapy(BNCT) has been established as a special treatment technique for overcoming the radiation resistance of malignant melanomas and brain tumors. Head and neck malignancies were consequently selected as adaptable cancers. We report the clinical results of treatment with BPA alone utilizing 18 F-BPA·PET and discuss several advantages to the application of BNCT to head and neck malignancies. (author)

  19. Boron neutron capture therapy for children with malignant brain tumor

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Komatsu, Hisao; Kageji, Teruyoshi; Tsuji, Fumio; Matsumoto, Keizo; Kitamura, Katsuji; Hatanaka, Hiroshi; Minobe, Takashi.

    1993-01-01

    Among the 131 cases with brain tumors treated by boron-neutron capture therapy (BNCT), seventeen were children. Eight supratentorial tumors included five astrocytomas(grade 2-4), two primitive neuroectodermal tumors (PNET) and one rhabdomyosarcoma. Seven pontine tumors included one astrocytoma, one PNET and 5 unverified gliomas. Two cerebellar tumors (PNET and astrocytoma) were also treated. All pontine tumors showed remarkable decrease in size after BNCT. However, most of them showed regrowth of the tumors because the neutrons were insufficient due to the depth. Four cases with cerebral tumor died of remote cell dissemination, although they all responded to BNCT. One of them survived 7 years after repeated BNCTs. An 11 years old girl with a large astrocytoma in the right frontal lobe has lived more than 11 years and is now a draftswoman at a civil engineering company after graduating from a technical college. An 8 years old girl with an astrocytoma in the left occipital lobe has no recurrence of the tumor for 2 years and attends on elementary school without mental and physical problems. Two children (one year old girl and four years old boy) with cerebellar tumors have shown showed an excellent growth after BNCT and had no neurological deficits. Mental and physical development in patients treated by BNCT is usually better than that in patients treated by conventional radiotherapy. (author)

  20. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    International Nuclear Information System (INIS)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-01-01

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  1. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    Science.gov (United States)

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  2. Intracavitary moderator balloon combined with (252)Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations.

    Science.gov (United States)

    Brandão, S F; Campos, T P R

    2015-07-01

    This article proposes a combination of californium-252 ((252)Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Dosimetric evaluations were performed on three protocol set-ups: (252)Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0-5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the (252)Cf source, sparing the normal brain tissue. Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis.

  3. Intracavitary moderator balloon combined with 252Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations

    Science.gov (United States)

    Brandão, S F

    2015-01-01

    Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876

  4. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga.vadim@gmail.com [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Sidorov, A. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Maslennikova, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State Medical Academy, 10/1 Minina Sq., 603005 Nizhny Novgorod (Russian Federation); Volovecky, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Kalvas, T.; Koivisto, H.; Tarvainen, O. [University of Jyvaskyla, Department of Physics, PO Box 35 (YFL), 40500 Jyväskylä (Finland)

    2014-12-21

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D–D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm{sup 2} is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·10{sup 10} cm{sup −2}/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  5. Antiproliferative effect and apoptosis induction in melanoma treatment by boron neutron capture therapy (BCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, Fernanda; Coelho, Paulo; Arruda-Neto, Joao; Maria, Durvanei [University of Sao Paulo (USP), SP (Brazil)

    2011-07-01

    Full text: Introduction: Boron neutron capture therapy (BNCT) is an experimental radiotherapy where a compound having {sup 10}B is administered to cancer patients and is accumulated in tumor tissues. Thus, the tumor is irradiated with thermal neutrons, {sup 10}B absorbs and destroys them, producing alpha radiation. Boronophenylalanine (BPA) is the agent responsible for delivering boron to the tumor tissue. After BPA administration, BNCT is used as a localized radiotherapy for many tumors treatment, mainly melanoma, which has a high mortality rate among all types of tumors. The aim of this study was to evaluate in vitro antiproliferative and antitumor effects of BNCT application in human melanoma treatment. Materials and Methods: MEWO cells (human melanoma) were cultured and treated with different concentrations of BPA (8.36 to 0.52 mg/ml). After 90 minutes, they were irradiated with thermal neutron flux up to a dose of 8.4 Gy. The parameters analyzed were free radical production, cell cycle progression, cell death signaling pathways, cycling D1, caspase-3 and extracellular matrix synthesis produced, beyond the mitochondrial electric potential analysis. Results: After BNCT treatment, MEWO cells showed an amount of free radical increase about 10 times. Still, there was a significant decrease of cyclin D1, G0/G1 proliferation, synthesis and G2/M cell cycle phases. BNCT induced a mitochondrial electrical potential decrease, as well as fibrillar proteins of extracellular matrix. BNCT had a significant number of dead cell increase, mainly by necrosis. However, BNCT induced phosphorylated caspase 3 increase. Discussion/Conclusion: BNCT induced cell death increase by necrosis, mitochondrial electric potential decrease and free radical production increase. BNCT is cytotoxic to melanoma cells. Besides necrosis, phosphorylated caspase 3 increase was observed, accompanied by a proliferative response decrease regulated by the G1/S checkpoint and matrix extracellular synthesis

  6. Exploring new labelling strategies for boronated compounds: towards fast development and efficient assessment of BNCT drug candidates

    OpenAIRE

    Gona, Kiran Babu

    2016-01-01

    208 p. La terapia por captura de neutrones (BNCT o Boron Neutron Capture Therapy), fue descrita por primera vez por Locher en 1936 y es una modalidad terapéutica binaria para el tratamiento del cáncer que se basa en la captura de neutrones térmicos por medio de átomos de 10B, previamente acumulados en las células tumorales. La captura del neutrón térmico resulta en la formación de un núcleo de 11B, que fisiona para generar dos iones altamente energéticos: 4He2+ y 7Li3+. El daño y la poster...

  7. Carborane derivative development for boron neutron capture therapy. Final report

    International Nuclear Information System (INIS)

    Barnum, Beverly A.; Yan Hao; Moore, Roger; Hawthorne, M. Frederick; Baum, Kurt

    1999-01-01

    Boron Neutron Capture Therapy [BNCT] is a binary method of cancer therapy based on the capture of neutrons by a boron-10 atom [ 10 B]. Cytotoxic 7 Li nuclei and α-particles are emitted, with a range in tissue of 9 and 5 microm, respectively, about one cell diameter. The major obstacle to clinically viable BNCT is the selective localization of 5-30 ppm 10 B in tumor cells required for effective therapy. A promising approach to BNCT is based on hydrophilic boron-rich oligomeric phosphate diesters, or ''trailers'' that have been shown to concentrate selectively in tumor tissue. Examples of these compounds were prepared previously at high cost using an automated DNA synthesizer. Direct synthesis methods are needed for the production of gram-scale quantities for further biological evaluation. The work accomplished as a result of the collaboration between Fluorochem, Inc. and UCLA demonstrates that short oligomers containing at least five carborane units with four phosphodiester linkages can be prepared in substantial quantities. This work was accomplished by the application of standard phosphoramidite coupling chemistry

  8. Pilot clinical study of boron neutron capture therapy for recurrent hepatic cancer involving the intra-arterial injection of a (10)BSH-containing WOW emulsion.

    Science.gov (United States)

    Yanagie, Hironobu; Higashi, Syushi; Seguchi, Koji; Ikushima, Ichiro; Fujihara, Mituteru; Nonaka, Yasumasa; Oyama, Kazuyuki; Maruyama, Syoji; Hatae, Ryo; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Tomoko; Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Narabayashi, Masaru; Kajiyama, Tetsuya; Maruhashi, Akira; Ono, Koji; Nakajima, Jun; Ono, Minoru; Takahashi, Hiroyuki; Eriguchi, Masazumi

    2014-06-01

    A 63-year-old man with multiple HCC in his left liver lobe was enrolled as the first patient in a pilot study of boron neutron capture therapy (BNCT) involving the selective intra-arterial infusion of a (10)BSH-containing water-in-oil-in-water emulsion ((10)BSH-WOW). The size of the tumorous region remained stable during the 3 months after the BNCT. No adverse effects of the BNCT were observed. The present results show that (10)BSH-WOW can be used as novel intra-arterial boron carriers during BNCT for HCC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    Kitaoka, Yoshinori

    1993-09-01

    This volume contains the proceedings of the 5th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 22 in 1993. The solubility of the boron carrier play an important role in the BNCT. New water-soluble p-boronophenylalanine derivatives are synthesized and their biological activities are investigated (Chap. 2 and 3). Some chemical problems on the BNCT were discussed, and the complex formation reaction of hydroxylboryl compounds were studied by the paper electrophoresis (Chap. 4). The results of the medical investigation on the BNCT using BSH compounds are shown in Chap. 5. Syntheses of o- and m-boronophenylalanine were done and their optical resolution was tried (Chap. 6). The complex formation reaction of p-boronophenylalanine (BPA) with L-DOPA and the oxidation reaction of the analogs are found in Chap. 7. The pka of BPA were determined by the isotachophoresis (Chap. 8). The chemical nature of dihydroxyboryl compounds were investigated by an infrared spectroscopy and electrophoresis (Chap. 9). New synthetic methods of BPA and p-boronophenylserine using ester of isocyanoacetic acid are described in Chap. 10. The induction of chromosomal aberations by neutron capture reaction are discussed from a point of the biological view. The a of the presented papers are indexed individually. (J.P.N.)

  10. INEL BNCT Program

    International Nuclear Information System (INIS)

    Ackermann, A.L.; Dorn, R.V. III.

    1991-03-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program for March 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, a milestone summary, and animal data charts

  11. INEL BNCT Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-08-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for August 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  12. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation.

    Science.gov (United States)

    Zaboronok, A; Yamamoto, T; Nakai, K; Yoshida, F; Uspenskii, S; Selyanin, M; Zelenetskii, A; Matsumura, Akira

    2015-12-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron-hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Monte Carlo calculations on efficiency of boron neutron capture therapy for brain cancer

    International Nuclear Information System (INIS)

    Awadalla, Galaleldin Mohamed Suliman

    2015-11-01

    The search for ways to treat cancer has led to many different treatments, including surgery, chemotherapy, and radiation therapy. Among these treatments, boron neutron capture therapy (BNCT) has shown promising results. BNCT is a radiotherapy treatment modality that has been proposed to treat brain cancer. In this technique, cancerous cells are being injected with 1 0B and irradiated by thermal neutrons to increase the probability of 1 0B (n, a)7 L i reaction to occur. This reaction can potentially deliver a high radiation dose sufficient to kill cancer cells by concentrating boron in them. The short rang of 1 0B (n, a) 7 L i reaction limits the damage to only cancerous cells without affecting healthy tissues. The effectiveness and safety of radiotherapy are dependent on the radiation dose delivered to the tumor and healthy tissues. In this thesis, after reviewing the basics and working principles of boron neutron capture therapy (BNCT), monte Carlo simulations were carried out to model a thermal neutron source suitable for BNCT and to examine the performance of proposed model when used to irradiate a sample of boron containing both 1 0B and 1 1B isotopes. MCNP5 code was used to examine the modeled neutron source through different shielding materials. The results were presented, analyzed and discussed at the end of the work. (author)

  14. Tandem electrostatic accelerators for BNCT

    International Nuclear Information System (INIS)

    Ma, J.C.

    1994-01-01

    The development of boron neutron capture therapy (BNCT) into a viable therapeutic modality will depend, in part, on the availability of suitable neutron sources compatible with installation in a hospital environment. Low-energy accelerator-based intense neutron sources, using electrostatic or radio frequency quadrupole proton accelerators have been suggested for this purpose and are underdevelopment at several laboratories. New advances in tandem electrostatic accelerator technology now allow acceleration of the multi-milliampere proton beams required to produce therapeutic neutron fluxes for BNCT. The relatively compact size, low weight and high power efficiency of these machines make them particularly attractive for installation in a clinical or research facility. The authors will describe the limitations on ion beam current and available neutron flux from tandem accelerators relative to the requirements for BNCT research and therapy. Preliminary designs and shielding requirements for a tandern accelerator-based BNCT research facility will also be presented

  15. Boron concentration measurements by alpha spectrometry and quantitative neutron autoradiography in cells and tissues treated with different boronated formulations and administration protocols.

    Science.gov (United States)

    Bortolussi, Silva; Ciani, Laura; Postuma, Ian; Protti, Nicoletta; Luca Reversi; Bruschi, Piero; Ferrari, Cinzia; Cansolino, Laura; Panza, Luigi; Ristori, Sandra; Altieri, Saverio

    2014-06-01

    The possibility to measure boron concentration with high precision in tissues that will be irradiated represents a fundamental step for a safe and effective BNCT treatment. In Pavia, two techniques have been used for this purpose, a quantitative method based on charged particles spectrometry and a boron biodistribution imaging based on neutron autoradiography. A quantitative method to determine boron concentration by neutron autoradiography has been recently set-up and calibrated for the measurement of biological samples, both solid and liquid, in the frame of the feasibility study of BNCT. This technique was calibrated and the obtained results were cross checked with those of α spectrometry, in order to validate them. The comparisons were performed using tissues taken form animals treated with different boron administration protocols. Subsequently the quantitative neutron autoradiography was employed to measure osteosarcoma cell samples treated with BPA and with new boronated formulations. © 2013 Published by Elsevier Ltd.

  16. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.

    Science.gov (United States)

    Krstic, D; Markovic, V M; Jovanovic, Z; Milenkovic, B; Nikezic, D; Atanackovic, J

    2014-10-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Drug delivery system design and development for boron neutron capture therapy on cancer treatment

    International Nuclear Information System (INIS)

    Sherlock Huang, Lin-Chiang; Hsieh, Wen-Yuan; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Hsu, Ming-Hua

    2014-01-01

    We have already synthesized a boron-containing polymeric micellar drug delivery system for boron neutron capture therapy (BNCT). The synthesized diblock copolymer, boron-terminated copolymers (Bpin-PLA-PEOz), consisted of biodegradable poly(D,L-lactide) (PLA) block and water-soluble polyelectrolyte poly(2-ethyl-2-oxazoline) (PEOz) block, and a cap of pinacol boronate ester (Bpin). In this study, we have demonstrated that synthesized Bpin-PLA-PEOz micelle has great potential to be boron drug delivery system with preliminary evaluation of biocompatibility and boron content. - Highlights: • Herein, we have synthesized boron-modified diblock copolymer. • Bpin-PLA-PEOz, which will be served as new boron containing vehicle for transporting the boron drug. • This boron containing Bpin-PLA-PEOz micelle was low toxicity can be applied to drug delivery

  18. Real-time dosimetry for boron-neutron capture therapy

    International Nuclear Information System (INIS)

    Bliss, M.; Craig, R.A.; Reeder, P.L.; Sunberg, D.S.

    1994-09-01

    Epithermal/thermal boron neutron-capture therapy (BNCT) is promising treatment method for malignant tumors. Because the doses and dose rates for medical therapeutic radiation are very close to the normal tissue tolerance, small errors in radiation delivery can result in harmful overdoses. A substantial need exists for a device that will monitor, in real time, the radiation dose being delivered to a patient. Pacific Northwest Laboratory (PNL) has developed a scintillating glass optical fiber that is sensitive to thermal neutrons. The small size of the fibers offers the possibility of in vivo dose monitoring at several points within the radiation field. The count rate of such detectors can approach 10 MHz because the lifetime of the cerium activator is fast. Fluxes typical of those in BNCT (i.e., 10 9 n/cm 2 /sec) may be measured because of this potentially high count rate and the small diameter of the fiber

  19. Neutron field characterization in the installation for BNCT study in the IEA-R1 reactor; Caracterizacao do campo de neutrons na instalacao para estudo em BNCT no reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro Junior, Valdeci

    2008-07-01

    This work aims to characterize the mixed neutron and gamma field, in the sample irradiation position, in a research installation for Boron Neutron Capture Therapy (BNCT), in the IPEN IEA-R1 reactor. The BNCT technique has been studied as a safe and selective option in the treatment of resistant cancerigenous tumors or considered non-curable by the conventional techniques, for example, the Glioblastoma Multiform - a brain cancerigenous tumor. Neutron flux measurements were carried out: thermal, resonance and fast, as well as neutron and gamma rays doses, in the sample position, using activation foils detectors and thermoluminescent dosimeters. For the determination of the neutron spectrum and intensity, a set of different threshold activation foils and gold foils covered and uncovered with cadmium irradiated in the installation was used, analyzed by a high Pure Germanium semiconductor detector, coupled to an electronic system suitable for gamma spectrometry. The results were processed with the SAND-BP code. The doses due to gamma and neutron rays were determined using thermoluminescent dosimeters TLD 400 and TLD 700 sensitive to gamma and TLD 600, sensitive to neutrons. The TLDs were selected and used for obtaining the calibration curves - dosimeter answer versus dose - from each of the TLD three types, which were necessary to calculate the doses due to neutron and gamma, in the sample position. The radiation field, in the sample irradiation position, was characterized flux for thermal neutrons of 1.39.10{sup 8} {+-} 0,12.10{sup 8} n/cm{sup 2}s the doses due to thermal neutrons are three times higher than those due to gamma radiation and confirm the reproducibility and consistency of the experimental findings obtained. Considering these results, the neutron field and gamma radiation showed to be appropriated for research in BNCT. (author)

  20. Experience of boron neutron capture therapy in Japan

    International Nuclear Information System (INIS)

    Kanda, K.

    2004-01-01

    Four research reactors are currently licensed for medical application in Japan. As of July 1995, approximately 210 clinical irradiations using these research reactors have been done for brain and skin tumors as shown. The number of chief medical doctors certified by the Government is eleven so far. Among them, eight doctors have already treated tumor patients using the Kyoto University Reactor (KUR, 5MW). Recently in USA clinical trials have been restarted using epithermal neutrons at MIT and BNL. In this paper, the experience of clinical trials of boron neutron capture therapy (BNCT) which have been performed in Japan, mainly physics studies, are reviewed, and current studies are also introduced

  1. Boron biodistribution for BNCT in the hamster cheek pouch oral cancer model: Combined administration of BSH and BPA

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Nigg; William Bauer; Various Others

    2014-06-01

    Sodium mercaptoundecahydro-closo-dodecaborate (BSH) is being investigated clinically for BNCT. We examined the biodistribution of BSH and BPA administered jointly in different proportions in the hamster cheek pouch oral cancer model. The 3 assayed protocols were non-toxic, and showed preferential tumor boron uptake versus precancerous and normal tissue and therapeutic tumor boron concentration values (70–85 ppm). All 3 protocols warrant assessment in BNCT studies to contribute to the knowledge of (BSH+BPA)-BNCT radiobiology for head and neck cancer and optimize therapeutic efficacy.

  2. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation

    International Nuclear Information System (INIS)

    Zaboronok, A.; Yamamoto, T.; Nakai, K.; Yoshida, F.; Uspenskii, S.; Selyanin, M.; Zelenetskii, A.; Matsumura, Akira

    2015-01-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron–hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required. - Highlights: • Hyaluronic acid (HA) is a nonimmunogenic, biocompatible polymer. • Boron–HA (BHA) acid can contain a large number of boron atoms for BNCT. • Active targeting can be realized with CD44 and other HA receptors on tumor cells. • BHA showed a certain degree of toxicity against C6 tumor cells and V79 fibroblasts. • BHA was injected into rats via the tail vein, boron was detected in tumors in vivo.

  3. Monitoring total boron in blood for BNCT by a novel atomic emission method

    International Nuclear Information System (INIS)

    Laakso, J.; Kulvik, M.; Ruokonen, I.; Vaehaetalo, J.; Faerkkilae, M.; Kallio, M.; Zilliacus, R.

    2000-01-01

    In BNCT the duration and timing of the is adjusted by 10 B concentrations in whole blood. Time-frame for determinations is less than 20 minutes. Therefore fast and accurate boron determinations are a prerequisite for BNCT. We present a method based on ICP-AES instrument for whole blood and plasma boron determinations with protein precipitation with trichloroacetic acid as sample pre-treatment and beryllium as an internal standard. The method was compared to established but tedious ICP-mass spectrometric method with wet ashing as a sample pre-treatment. The ICP-AES method is in good agreement (correlation coefficient 0.99) the ICP-MS. Within-day and between-day imprecisions were less than 3,5% CV for whole blood samples. Samples taken during and after BPA-F infusion (290 mg/kg) revealed an uneven distribution between plasma and erythrocytes. The present method is feasible and one of the fastest currently available for BNCT. Our results indicate that BPA-F or its metabolites do not seem to be tightly bound to plasma proteins. It also seems that determination of boron in plasma sample may be preferable than measuring boron in whole blood. (author)

  4. Biological models in vivo for boron neutronic capture studies as tumors therapy

    International Nuclear Information System (INIS)

    Kreimann, Erica L.; Dagrosa, Maria A.; Schwint, Amanda E.; Itoiz, Maria E.; Pisarev, Mario A.; Farias, Silvia S.; Garavaglia, Ricardo N.; Batistoni, Daniel A.

    1999-01-01

    The use of experimental models for Boron Neutronic Capture studies as Tumors Therapy have as two main objectives: 1) To contribute to the basic knowledge of the biological mechanisms involved to increase the method therapeutical advantage, and 2) To explore the possible application of this therapeutic method to other pathologies. In this frame it was studied the carcinogenesis model of hamster cheek pouch, a type of human buccal cancer. Biodistribution studies of boron compound were performed in tumor, blood and in different precancerous and normal tissues as well as BNCT studies. Results validated this method for BNCT studies and show the capacity of the oral mucosa tumors of selectively concentrate the boron compound, showing a deleterious clear effect on the tumor after 24 hours with BNCT treatment. (author)

  5. Comparison and analysis of BNCT radiation dose between gold wire and JCDS measurement

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, Hiroaki

    2006-01-01

    We compared and evaluated boron neutron capture therapy (BNCT) radiation dose between gold wire measurement and JAERI Computational Dosimetry System (JCDS). Gold wire analysis demonstrates the actual BNCT dose though it dose not reflect the real the maximum and minimum dose in tumor tissue. We can conclude that JCDS is precise and high-reliable dose planning system for BNCT. (author)

  6. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ferreira, Tiago H; Miranda, Marcelo C; Rocha, Zildete; Leal, Alexandre S; Gomes, Dawidson A; Sousa, Edesia M B

    2017-04-12

    Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

  7. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2008-11-25

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of (10)B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  8. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Ciofani Gianni

    2008-01-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  9. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    Science.gov (United States)

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Manufacturing of thin films of boron for the measurement of the {sup 10}B(n, {alpha}){sup 7} Li reaction used in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Smilgys, Barbara; Oliveira, Sandro Guedes de; Hadler Neto, Julio Cesar; Vellame, Igor Alencar [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin; Soares, Cleber Jose; Salim, Leonardo Alfredo [Universidade Estadual Paulista (UNESP), Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas; Coelho, Paulo Rogerio Pinto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear

    2011-07-01

    Full text: The Boron Neutron Capture Therapy (BNCT) is considered to be a possible treatment for different types of aggressive cancers located in areas of difficult access or which already have metastasis. The working principle of this therapy is the selective delivery of a greater amount of boron to the tumor cells than to the healthy ones, followed by the neutron irradiation that will induce the emission of {alpha} particles through the {sup 10}B(n, {alpha}){sup 7} Li reaction used in BNCT reaction. The high energy deposition of the product particles causes the death of the cells and this therapy becomes much effective if the healthy tissue is less exposed to this radiation. The objective of this work is to develop a method for measuring the rate of this reaction by using thin films of boron. We have manufactured thin films with different concentrations of boron deposited on mica and the thin films were exposed to different irradiation time intervals at the reactor IEA-R1 located at IPEN, Sao Paulo. Here we show our first results on the density and uniformity of the thin films, where the detection of the particles is made using plastic track detectors (CR-39) which have their structures damaged by the passage of ions. (author)

  11. Boron neutron capture therapy for recurrent head and neck malignancies

    International Nuclear Information System (INIS)

    Kato, Itsuro; Ono, Koji; Sakurai, Yoshinori

    2006-01-01

    To avoid severe impairment of oro-facial structures and functions, it is necessary to explore new treatments for recurrent head and neck malignancies (HNM). Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. So far for 4 years and 3 months, we have treated with 37 times of BNCT for 21 patients (14 squamous cell carcinomas (SCC), 4 salivary gland carcinomas and 3 sarcomas) with a recurrent and far advanced HNM since 2001. Results are (1) 10 B concentration of tumor/normal tissue ratio (T/N ratio) of FBPA-PET studies were SCC: 1.8-5.7, sarcoma: 2.5-4.0, parotid tumor: 2.5-3.7. (2) Therapeutic effects were CR: 6cases, PR: 11cases, PD: 3cases NE (not evaluated): 1case. Response rate was 81%. (3) Improvement of QOL such as a relief of severe pain, bleeding, and exudates at the local lesion, improvement of PS, disappearance of ulceration, covered with normal skin and preserved oral and maxillofacial functions and tissues. (4) Survival periods after BNCT were 1-51 months (mean: 9.8 months). 4-year survival rate was 39% by Kaplan-Meier analysis. (5) A few adverse-effects such as transient mucositis, alopecia were recognized. These results indicate that BNCT represents a new and promising treatment approach for advanced HNM. (author)

  12. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    International Nuclear Information System (INIS)

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 10 8 n/cm 2 · s. The fast neutron and gamma radiation KERMA factors are 10 x 10 -11 cGy·cm 2 /n epi and 20 x 10 -11 cGy·cm 2 /n epi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power

  13. A sensitivity study on neutron flux variation due to 10B concentration in dose calculation for BNCT

    International Nuclear Information System (INIS)

    Jung, Sang Hoon

    2006-02-01

    The effects of inclusion of 10 B concentration on neutron flux and dose in dose calculation were studied. In order to provide the quantitative effects of inclusion of 10 B concentrations on depressions of neutron and photon flux and dose, the fluxes and doses with voxel head phantoms for various 10 B concentrations homogeneously distributed were calculated by using MCNPX simulations. A lithium target system and beam shaping assembly, which have been developed at the Hanyang University, were used as epithermal neutron beam. The calculation results show that the neutron flux at the center of the head phantom decreases by approximately 5.4% per 10 ppm of 10 B concentration in comparison with the neutron flux in the case of boron-free. It was also observed that the tissue dose at the center of the head phantom is depressed by approximately 4.7% per 10 ppm of the 10 B concentration and the tumor dose by approximately 5.3% per 10 ppm. According to depth of tumors, it was observed that the depressions of the doses in the tumors are ranged in 3.7 ∼ 9.2%. The dose calculations in the case of boron-free show that it is overestimated in comparison with the dose calculations in the cases of the inclusion of 10 B concentrations for the normal tissue and the tumors. Therefore, in dose calculation for BNCT, the depressions of neutron flux and dose should be considered. The results in this study are available to setting up the depression ratios which can be used for converting neutron and gamma fluxes and doses in phantom with boron free into the fluxes and doses in phantom with inclusion of 10 B concentrations in treatment. It is expected that the depression ratios is practicable to dose evaluation for BNCT

  14. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    International Nuclear Information System (INIS)

    Coderre, J.A.; Chanana, A.D.; Joel, D.D.; Liu, H.B.; Slatkin, D.N.; Wielopolski, L.; Bergland, R.; Elowitz, E.; Chadha, M.

    1994-01-01

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report

  15. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J.A.; Chanana, A.D.; Joel, D.D.; Liu, H.B.; Slatkin, D.N.; Wielopolski, L. [Brookhaven National Lab., Upton, NY (United States); Bergland, R.; Elowitz, E. [Beth Israel Medical Center, New York, NY (United States). Dept. of Neurosurgery; Chadha, M. [Beth Israel Medical Center, New York, NY (United States). Dept. of Radiation Oncology

    1994-12-31

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report.

  16. Boron neutron capture therapy for recurrent head and neck malignancies

    International Nuclear Information System (INIS)

    Kato, Itsuro; Ono, Koji; Ohmae, Masatoshi

    2005-01-01

    Boron neutron capture therapy (BNCT) is a tumor-cell targeted radiotherapy. When 10 B absorbs thermal neutrons, the alpha and 7 Li particles generated by the 10 B (n, α) 7 Li reaction are high linear energy transfer (LET) particles, and carry high kinetic energy (2.34 MeV), and have short ranges (4-9 micron-meters) of approximately one-cell diameter, resulting in a large relative biological effectiveness (RBE) and selective destruction of tumor cells containing 10 B. We have, for the first time in the world, used BNCT to treat 11 patients with recurrent head and neck malignancies (HNM) after a standard primary therapy since 2001. The 11 patients were composed of 6 squamous cell carcinomas, 3 salivary gland tumors and 2 sarcomas. The results of BNCT were as follows. Regression rates (volume %) were complete response (CR): 2 cases, >90%: 5 cases, 73%: 1 case, 54%: 1 case, progressive disease (PD): 1 case, NE (not evaluated): 1 case. The response rate was 82%. Improvement of quality of life (QOL) was recognized, such as disappearance of tumor ulceration and covering with normal skin: relief of severe pain, bleeding, trismus and dyspnea: improvement of performance status (PS) (from 4 to 2) allowing the patients to return to work and elongate his survival period. Survival periods after BNCT were 1-38 months (mean: 8.5 months). The survival rate was 36% (4 cases). There are a few side-effects such as transient mucositis and alopecia less than Grade-2. These results indicate that BNCT represents a new and promising treatment approach even for a huge or far-advanced HNM. (author)

  17. Commercial Clinical Application of Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    1999-01-01

    CRADA No. 95-CR-09 among the LITCO--now Bechtel BWXT Idaho, LLC; a private company, Neutron Therapies Limited Liability Company, NTL formerly Ionix Corporation; and Washington State University was established in 1996 to further the development of BNCT. NTL has established a laboratory for the synthesis, under US FDA approved current Good Manufacturing Practices (cGMP) guidelines, of key boron intermediates and final boron agents for BNCT. The company has focused initially on the development of the compound GB-10 (Na 2 B 10 H 10 ) as the first boron agent of interest. An Investigational New Drug (IND) application for GB-10 has been filed and approved by the FDA for a Phase I human biodistribution trial in patients with non-small cell lung cancer and glioblastoma multiforme at UW under the direction of Professor Keith Stelzer, Principal Investigator (PI). These trials are funded by NTL under a contract with the UW, Department of Radiation Oncology, and the initial phases are nearing completion. Initial results show that boron-10 concentrations on the order of 100 micrograms per gram (100 ppm) can be achieved and maintained in blood with no indication of toxicity

  18. Medical aspects of boron-slow neutron capture therapy

    International Nuclear Information System (INIS)

    Sweet, W.H.

    1986-01-01

    Earlier radiations of patients with cerebral tumors disclosed the need: (1) to find a carrier of the boron compound which would leave the blood and concentrate in the tumor, (2) to use a more penetrating neutron beam, and (3) to develop a much faster method for assaying boron in blood and tissue. To some extent number1 has been accomplished in the form of Na 2 B 12 H 11 SH, number2 has yet to be achieved, and number3 has been solved by the measurement of the 478-keV gamma ray when the 10 B atom disintegrates following its capture of a slow neutron. The hitherto unreported data in this paper describe through the courtesy of Professor Hiroshi Hatanaka his studies on the pharmacokinetics and quality control of Na 2 B 12 H 11 SH based on 96 boron infusions in 86 patients. Simultaneous blood and tumor data are plotted here for 30 patients with glioblastomas (Grade III-IV gliomas), illustrating remarkable variability. Detailed autopsy findings on 18 patients with BNCT showed radiation injury in only 1. Clinical results in 12 of the most favorably situated glioblastomas reveal that 5 are still alive with a 5-year survival rate of 58% and the excellent Karnofsky performance rating of 87%. For the first time evidence is presented that slow-growing astrocytomas may benefit from BNCT. 10 references, 8 figures, 5 tables

  19. Early clinical experience of boron neutron capture therapy for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Joel, D.D.; Bergland, R.; Capala, J.

    1995-01-01

    Boron neutron capture therapy (BNCT) is a binary treatment modality that can selectively irradiate tumor tissue. BNCT uses drugs containing a stable isotope of boron. 10 B, to sensitize tumor cells to irradiation by low energy (thermal) neutrons. The interaction of the 10 B with a thermal neutron (neutron capture) causes the 10 B nucleus to split, releasing an alpha particle and a lithium nucleus. These products of the 10 B(n, α) 7 Li reaction are very damaging to cells but have a combined path length in tissue of approximately 14 μm, or roughly the diameter of one or two cells. Thus, most of the ionizing energy imparted to tissue is localized to 10 B-loaded cells

  20. Early clinical experience of boron neutron capture therapy for glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Bergland, R.; Capala, J. [and others

    1995-12-31

    Boron neutron capture therapy (BNCT) is a binary treatment modality that can selectively irradiate tumor tissue. BNCT uses drugs containing a stable isotope of boron. {sup 10}B, to sensitize tumor cells to irradiation by low energy (thermal) neutrons. The interaction of the {sup 10}B with a thermal neutron (neutron capture) causes the {sup 10}B nucleus to split, releasing an alpha particle and a lithium nucleus. These products of the {sup 10}B(n, {alpha}){sup 7}Li reaction are very damaging to cells but have a combined path length in tissue of approximately 14 {mu}m, or roughly the diameter of one or two cells. Thus, most of the ionizing energy imparted to tissue is localized to {sup 10}B-loaded cells.

  1. Boron Neutron Capture Therapy at European research reactors - Status and perspectives

    International Nuclear Information System (INIS)

    Moss, R.L.

    2004-01-01

    Over the last decade. there has been a significant revival in the development of Boron Neutron Capture Therapy (BNCT) as a treatment modality for curing cancerous tumours, especially glioblastoma multiforme and subcutaneous malignant melanoma. In 1987 a European Collaboration on BNCT was formed, with the prime task to identify suitable research reactors in Europe where BNCT could be applied. Due to reasons discussed in this paper, the HFR Petten was chosen as the test-bed for demonstrating BNCT. Currently, the European Collaboration is approaching the start of clinical trials, using epithermal neutrons and borocaptate sodium (BSH) as the 10 B delivery agent. The treatment is planned to start in the first half of 1996. The paper here presents an overview on the principle of BNCT, the requirements imposed on a research reactor in order to be considered for BNCT, and the perspectives for other European materials testing reactors. A brief summary on the current status of the work at Petten is given, including: the design, construction and characterisation of the epithermal neutron beam: performance and results of the healthy tissue tolerance study; the development of a treatment planning programme based on the Monte Carlo code MCNP; the design of an irradiation room; and on the clinical trials themselves. (author)

  2. Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Haapaniemi, Aaro, E-mail: aaro.haapaniemi@hus.fi [Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Kankaanranta, Leena [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Saat, Riste [Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Koivunoro, Hanna; Saarilahti, Kauko [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Mäkitie, Antti; Atula, Timo [Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Joensuu, Heikki [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland)

    2016-05-01

    Purpose: To investigate the safety and efficacy of boron neutron capture therapy (BNCT) as a larynx-preserving treatment option for patients with recurrent laryngeal cancer. Methods and Materials: Six patients with locally recurrent squamous cell laryngeal carcinoma and 3 patients with persistent laryngeal cancer after prior treatment were treated with BNCT at the FiR1 facility (Espoo, Finland) in 2006 to 2012. The patients had received prior radiation therapy with or without concomitant chemotherapy to a cumulative median dose of 66 Gy. The median tumor diameter was 2.9 cm (range, 1.4-10.9 cm) before BNCT. Boron neutron capture therapy was offered on a compassionate basis to patients who either refused laryngectomy (n=7) or had an inoperable tumor (n=2). Boronophenylalanine-fructose (400 mg/kg) was used as the boron carrier and was infused over 2 hours intravenously before neutron irradiation. Results: Six patients received BNCT once and 3 twice. The estimated average gross tumor volume dose ranged from 22 to 38 Gy (W) (mean; 29 Gy [W]). Six of the 8 evaluable patients responded to BNCT; 2 achieved complete and 4 partial response. One patient died early and was not evaluable for response. Most common side effects were stomatitis, fatigue, and oral pain. No life-threatening or grade 4 toxicity was observed. The median time to progression within the target volume was 6.6 months, and the median overall survival time 13.3 months after BNCT. One patient with complete response is alive and disease-free with a functioning larynx 60 months after BNCT. Conclusions: Boron neutron capture therapy given after prior external beam radiation therapy is well tolerated. Most patients responded to BNCT, but long-term survival with larynx preservation was infrequent owing to cancer progression. Selected patients with recurrent laryngeal cancer may benefit from BNCT.

  3. Towards a new therapy protocol for liver metastases. Effect of boron compounds and BNCT on normal liver regeneration

    International Nuclear Information System (INIS)

    Cardoso, Jorge E.; Heber, Elisa M.; Trivillin, Veronica A.

    2006-01-01

    The Taormina project developed a new method for BNCT treatment of multifocal unresectable liver metastases based on whole liver autograft. The Roffo Institute liver surgeons propose a new technique based on partial liver autograft that would pose less risk to the patient but would require significant healthy liver regeneration following BNCT. The aim of the present study was to assess the effect of BPA, GB-10 (Na 2 10 B 10 H 10 ) and (GB-10 + BPA) and of BNCT mediated by these boron compounds on normal liver regeneration in the Wistar rat. Normal liver regeneration, body weight, hemogram, liver and kidney function were assessed following partial hepatectomy post administration of BPA, GB-10 or (GB-10 + BPA) and post in vivo BNCT at the RA-6 Reactor. These end-points were evaluated 9 days following partial hepatectomy, the time at which complete liver regeneration occurs in untreated controls. The corresponding biodistribution studies were conducted to perform dosimetric calculations. BPA, GB-10 and (GB-10 + PBA) and in vivo BNCT mediated by these boron compounds in dose ranges compatible with therapy did not cause alterations in the outcome of normal liver regeneration, and did not induce alterations in body weight, hemogram, liver or kidney function. The experimental data available to date support the development of a new BNCT protocol for the treatment of liver metastases that requires the regeneration of normal liver past-BNCT. (author)

  4. Numerical characterization of a tomographic system for online dose measurements in Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Minsky, D. M.; Valda, A. A.; Somacal, H.; Burlon, A. A.; Kreiner, A. J.

    2007-01-01

    A tomographic system for online dose measurements in Boron Neutron Capture Therapy (BNCT) based on the measurement of a specific 478 keV γ-ray emitted after the neutron capture in boron is being developed. In the present work we study by means of Monte Carlo numerical simulations the effects of the finite spatial resolution and the limited number of counts, i. e. the statistical noise, on the reconstructed image contrast of numerical phantoms. These phantoms, of simple geometry, mimic the tumor (specific) and the normal tissue (non specific) boron concentrations. The simulated projection data were reconstructed using the expectation-maximization maximum-likelihood algorithm. These studies will help in the improvement of BNCT dosimetry

  5. Perspectives of boron-neutron capture therapy of malignant brain tumors

    Science.gov (United States)

    Kanygin, V. V.; Kichigin, A. I.; Krivoshapkin, A. L.; Taskaev, S. Yu.

    2017-09-01

    Boron neutron capture therapy (BNCT) is characterized by a selective effect directly on the cells of malignant tumors. The carried out research showed the perspective of the given kind of therapy concerning malignant tumors of the brain. However, the introduction of BNCT into clinical practice is hampered by the lack of a single protocol for the treatment of patients and the difficulty in using nuclear reactors to produce a neutron beam. This problem can be solved by using a compact accelerator as a source of neutrons, with the possibility of installation in a medical institution. Such a neutron accelerator for BNCT was developed at Budker Institute of Nuclear Physics, Novosibirsk. A neutron beam was obtained on this accelerator, which fully complies with the requirements of BNCT, as confirmed by studies on cell cultures and experiments with laboratory animals. The conducted experiments showed the relative safety of the method with the absence of negative effects on cell cultures and living organisms, and also confirmed the effectiveness of BNCT for malignant brain tumors.

  6. Research of accelerator-based neutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Li Changkai; Ma Yingjie; Tang Xiaobin; Xie Qin; Geng Changran; Chen Da

    2013-01-01

    Background: 7 Li (p, n) reaction of high neutron yield and low threshold energy has become one of the most important neutron generating reactions for Accelerator-based Boron Neutron Capture Therapy (BNCT). Purpose Focuses on neutron yield and spectrum characteristics of this kind of neutron generating reaction which serves as an accelerator-based neutron source and moderates the high energy neutron beams to meet BNCT requirements. Methods: The yield and energy spectrum of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are researched using the Monte Carlo code-MCNPX2.5.0. And the energy and angular distribution of differential neutron yield by 2.5-MeV incident proton are also given in this part. In the following part, the character of epithermal neutron beam generated by 2.5-MeV incident protons is moderated by a new-designed moderator. Results: Energy spectra of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are got through the simulation and calculation. The best moderator thickness is got through comparison. Conclusions: Neutron beam produced by accelerator-based 7 Li(p, n) reaction, with the bombarding beam of 10 mA and the energy of 2.5 MeV, can meet the requirement of BNCT well after being moderated. (authors)

  7. Liquid Li based neutron source for BNCT and science application.

    Science.gov (United States)

    Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S

    2015-12-01

    Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Early effects of boron neutron capture therapy on rat glioma models

    International Nuclear Information System (INIS)

    Nakagawa, N.; Akai, F.; Fukawa, N.; Taneda, M.; Ono, K.; Suzuki, M.

    2006-01-01

    Early effects of boron neutron capture therapy on malignant gliomas are characterized by reduction of the enhanced area regression of the peritumoral edema radiologically. The aim of this study is to investigate the early histological changes of tumors and inflammatory cells after BNCT in the rat brain. The rats were treated with BNCT using boronophenyialanine (BPA) 7 days after implantation of C6 glioma cells. The tumors were assessed their sizes and configurations with magnetic resonance imaging, then killed 4 days after BNCT. The mean tumor volumes were 39mm 3 in BNCT-treated group, and 138 mm 3 in the control group. In the histological examination, tumors of the BNCT group showed less pleomorphic appearance with atypical nuclei and mitotic figures, compared with the control group. Necrosis and edematous changes in the neuropile were negligible. There existed remnant tumors adjacent to the lateral ventricle. The reactions of the inflammatory cells were examined with ED-1 of macrophage marker. ED-1 positive cells and their processes were reduced in the marginal area of tumor in the BNCT group. BNCT reduce the tumor progression by suppression of the proliferation. Inhibition of the activated macrophages may reduce peritumoral edema in early phase. (author)

  9. Application of drug delivery system to boron neutron capture therapy for cancer.

    Science.gov (United States)

    Yanagië, Hironobu; Ogata, Aya; Sugiyama, Hirotaka; Eriguchi, Masazumi; Takamoto, Shinichi; Takahashi, Hiroyuki

    2008-04-01

    Tumor cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between (10)B and thermal neutrons ((10)B + (1)n --> (7)Li + (4)He (alpha) + 2.31 MeV (93.7 %)/2.79 MeV (6.3 %)). The resulting lithium ions and alphaparticles are high linear energy transfer (LET) particles which give a high biological effect. Their short range in tissue (5 - 9 mum) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma. Sodium mercaptoundecahydro-dodecaborate (Na(2)(10)B(12)H(11)SH: BSH) and borono-phenylalanine ((10)BPA) are currently being used in clinical treatments. These low molecule compounds are easily cleared from cancer cells and blood, so high accumulation and selective delivery of boron compounds into tumor tissues and cancer cells are most important to achieve effective BNCT and to avoid damage to adjacent healthy cells. In order to achieve the selective delivery of boron atoms to cancer cells, a drug delivery system (DDS) is an attractive intelligent technology for targeting and controlled release of drugs. We performed literature searches related to boron delivery systems in vitro and in vivo. We describe several DDS technologies for boron delivery to cancer tissues and cancer cells from the past to current status. We are convinced that it will be possible to use liposomes, monoclonal antibodies and WOW emulsions as boron delivery systems for BNCT clinically in accordance with the preparation of good commercial product (GCP) grade materials.

  10. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    Science.gov (United States)

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  11. INEL BNCT Research Program annual report 1994

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1995-11-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included

  12. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    Science.gov (United States)

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  13. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10 7 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF 3 composite and a stacked Al/Teflon design) at various incident electron energies

  14. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  15. Synthesis and in-vivo detection of boronated compounds for use in BNCT. Final progress report, August 1, 1989--April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G.W.

    1993-08-01

    Carboranes contain ten boron atoms in a three-dimensional space equivalent to a benzene ring; consequently, the carborane isomers can be utilized to prepare a variety of boron-rich agents for potential use in boron-neutron capture therapy. We developed synthetic methodology suitable for use with carboranes preparing amino acids and other physio-logically active compounds of potential use in BNCT. The methodology involves the conversion of simple carboranes into more complex, reactive organometallic reagents which can then be utilized to prepare agents which will target the nuclei of tumor cells. Specific examples include the projected syntheses of boron analogs of known intercolators such as Diazaquone (AZQ) which have been proven effectiveness in chemotherapy. We have also synthesized and carried out biodistribution studies of gadolinium labeled liposomes (GLL) which were developed in our laboratory. Gadolinium like boron-10, has an excellent neutron cross section and is considered to be of potential use in neutron capture therapy. GLL are constructed by adding gadolinium based amphiphiles.

  16. General Electric PETtrace cyclotron as a neutron source for boron neutron capture therapy

    Science.gov (United States)

    Bosko, Andrey

    This research investigates the use of a PETtrace cyclotron produced by General Electric (GE) as a neutron source for boron neutron capture therapy (BNCT). The GE PETtrace was chosen for this investigation because this type of cyclotron is popular among nuclear pharmacies and clinics in many countries; it is compact and reliable; it produces protons with energies high enough to produce neutrons with appropriate energy and fluence rate for BNCT and it does not require significant changes in design to provide neutrons. In particular, the standard PETtrace 18O target is considered. The cyclotron efficiency may be significantly increased if unused neutrons produced during radioisotopes production could be utilized for other medical modalities such as BNCT at the same time. The resulting dose from the radiation emitted from the target is evaluated using the Monte Carlo radiation transport code MCNP at several depths in a brain phantom for different scattering geometries. Four different moderating materials of various thicknesses were considered: light water, carbon, heavy water, arid Fluental(TM). The fluence rate tally was used to calculate photon and neutron dose, by applying fluence rate-to-dose conversion factors. Fifteen different geometries were considered and a 30-cm thick heavy water moderator was chosen as the most suitable for BNCT with the GE PETtrace cyclotron. According to the Brookhaven Medical Research Reactor (BMRR) protocol, the maximum dose to the normal brain is set to 12.5 RBEGy, which for the conditions of using a heavy water moderator, assuming a 60 muA beam current, would be reached with a treatment time of 258 min. Results showed that using a PETtrace cyclotron in this configuration provides a therapeutic ratio of about 2.4 for depths up to 4 cm inside a brain phantom. Further increase of beam current proposed by GE should significantly improve the beam quality or the treatment time and allow treating tumors at greater depths.

  17. BNCT Technology Development on HANARO Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ki Jung; Park, Kyung Bae; Whang, Seung Ryul; Kim, Myong Seop

    2007-06-15

    So as to establish the biological effects of BNCT in the HANARO Reactor, biological damages in cells and animals with treatment of boron/neutron were investigated. And 124I-BPA animal PET image, analysis technology of the boron contents in the mouse tissues by ICP-AES was established. A Standard clinical protocol, a toxicity evaluation report and an efficacy investigation report of BNCT has been developed. Based on these data, the primary permission of clinical application was acquired through IRB of our hospital. Three cases of pre-clinical experiment for boron distribution and two cases of medium-sized animal simulation experiment using cat with verifying for 2 months after BNCT was performed and so the clinical demonstration with a patient was prepared. Also neutron flux, fast neutron flux and gamma ray dose of BNCT facility were calculated and these data will be utilized good informations for clinical trials and further BNCT research. For the new synthesis of a boron compound, o-carboranyl ethylamine, o-carboranylenepiperidine, o-carboranyl-THIQ and o-carboranyl-s-triazine derivatives were synthesized. Among them, boron uptake in the cancer cell of the triazine derivative was about 25 times than that of BPA and so these three synthesized methods of new boron compounds were patented.

  18. BNCT Technology Development on HANARO Reactor

    International Nuclear Information System (INIS)

    Chun, Ki Jung; Park, Kyung Bae; Whang, Seung Ryul; Kim, Myong Seop

    2007-06-01

    So as to establish the biological effects of BNCT in the HANARO Reactor, biological damages in cells and animals with treatment of boron/neutron were investigated. And 124I-BPA animal PET image, analysis technology of the boron contents in the mouse tissues by ICP-AES was established. A Standard clinical protocol, a toxicity evaluation report and an efficacy investigation report of BNCT has been developed. Based on these data, the primary permission of clinical application was acquired through IRB of our hospital. Three cases of pre-clinical experiment for boron distribution and two cases of medium-sized animal simulation experiment using cat with verifying for 2 months after BNCT was performed and so the clinical demonstration with a patient was prepared. Also neutron flux, fast neutron flux and gamma ray dose of BNCT facility were calculated and these data will be utilized good informations for clinical trials and further BNCT research. For the new synthesis of a boron compound, o-carboranyl ethylamine, o-carboranylenepiperidine, o-carboranyl-THIQ and o-carboranyl-s-triazine derivatives were synthesized. Among them, boron uptake in the cancer cell of the triazine derivative was about 25 times than that of BPA and so these three synthesized methods of new boron compounds were patented

  19. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We present results from an investigation of boron uptake in vivo by the synovium.

  20. For boron neutron capture therapy,synthesizing boron-polymer compounds and testing in laboratory conditions

    International Nuclear Information System (INIS)

    2011-01-01

    The aim of this project is to establish a focus point at Turkish Atomic Energy Authority (TAEA) in the field of Boron Neutron Capture Therapy which is a binary radiotherapy method for brain tumours. Moreover in the scope of the project, a new alternative of 1 0B-carrier compounds will be synthesized, the neutron source will be determined and the infrastructure to start the clinical trials of BNCT in our country will be established. BNCT is a binary radiotherapy method and the successful of this method is depend on the synthesized boron compounds which have the selective targeting property with tumour cells and neutron optimization. The water-soluble polymer based boron compounds having biochemical and physiological properties will be synthesized and cell culture experiment will be done. In addition, after the neutron source is set up in our country, the infrastructure studies will be started in order to start the clinical trials of BNCT. In this project, there are three different groups as boron compounds, neutron physics and medical group. Neutron physics group is starting the calculations of neutron beam parameters using in BNCT application. But, medical group has no active studies yet. Boron compounds group has been carried out two different experimental studies. In the first experimental study, functional groups have been bound to boron containing polymers to enhance the selectively targeting property and characterized by various analysis methods. Later, cell culture experiment will be done. The first study has been carried out with Hacettepe University. Up to present, completed studies are listed as: -Maleic anhydride oligomer was synthesized and then 2-aminoethyl diphenyl borate (2-AEPB) and monomethoxy poly(ethylene glycol) (PEG) was bound to this oligomer, respectively. Thus, [MAH] n -g 1 -2-AEPB-g 2 -PEG was synthesized. -2-AEPB compound were bound to poly(acrylic acid) polymer at different three mole ratio.Then, the selected Poli(Ac)-g 1 -2-AEPB polymer

  1. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D.

    1996-01-01

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope 10 B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/ 10 B reactions ( 10 B(n,α) 7 Li) resulting in the production of localized high LET radiation from alpha and 7 Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams

  2. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  3. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    International Nuclear Information System (INIS)

    Kabalka, G. W.

    2005-01-01

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharmacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCT agents that could be labeled with radioactive nuclides for the in vivo detection of boron

  4. 1H and 10B NMR and MRI investigation of boron- and gadolinium–boron compounds in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Bonora, M.; Corti, M.; Borsa, F.; Bortolussi, S.; Protti, N.; Santoro, D.; Stella, S.; Altieri, S.; Zonta, C.; Clerici, A.M.; Cansolino, L.; Ferrari, C.; Dionigi, P.; Porta, A.; Zanoni, G.; Vidari, G.

    2011-01-01

    10 B molecular compounds suitable for Boron Neutron Capture Therapy (BNCT) are tagged with a Gd(III) paramagnetic ion. The newly synthesized molecule, Gd-BPA, is investigated as contrast agent in Magnetic Resonance Imaging (MRI) with the final aim of mapping the boron distribution in tissues. Preliminary Nuclear Magnetic Resonance (NMR) measurements, which include 1 H and 10 B relaxometry in animal tissues, proton relaxivity of the paramagnetic Gd-BPA molecule in water and its absorption in tumoral living cells, are reported.

  5. 1H and 10B NMR and MRI investigation of boron- and gadolinium-boron compounds in boron neutron capture therapy.

    Science.gov (United States)

    Bonora, M; Corti, M; Borsa, F; Bortolussi, S; Protti, N; Santoro, D; Stella, S; Altieri, S; Zonta, C; Clerici, A M; Cansolino, L; Ferrari, C; Dionigi, P; Porta, A; Zanoni, G; Vidari, G

    2011-12-01

    (10)B molecular compounds suitable for Boron Neutron Capture Therapy (BNCT) are tagged with a Gd(III) paramagnetic ion. The newly synthesized molecule, Gd-BPA, is investigated as contrast agent in Magnetic Resonance Imaging (MRI) with the final aim of mapping the boron distribution in tissues. Preliminary Nuclear Magnetic Resonance (NMR) measurements, which include (1)H and (10)B relaxometry in animal tissues, proton relaxivity of the paramagnetic Gd-BPA molecule in water and its absorption in tumoral living cells, are reported. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Composite boron nitride neutron detectors

    Science.gov (United States)

    Roth, M.; Mojaev, E.; Khakhan, O.; Fleider, A.; Dul`kin, E.; Schieber, M.

    2014-09-01

    Single phase polycrystalline hexagonal boron nitride (BN) or mixed with boron carbide (BxC) embedded in an insulating polymeric matrix acting as a binder and forming a composite material as well as pure submicron size polycrystalline BN has been tested as a thermal neutron converter in a multilayer thermal neutron detector design. Metal sheet electrodes were covered with 20-50 μm thick layers of composite materials and assembled in a multi-layer sandwich configuration. High voltage was applied to the metal electrodes to create an interspacing electric field. The spacing volume could be filled with air, nitrogen or argon. Thermal neutrons were captured in converter layers due to the presence of the 10B isotope. The resulting nuclear reaction produced α-particles and 7Li ions which ionized the gas in the spacing volume. Electron-ion pairs were collected by the field to create an electrical signal proportional to the intensity of the neutron source. The detection efficiency of the multilayer neutron detectors is found to increase with the number of active converter layers. Pixel structures of such neutron detectors necessary for imaging applications and incorporation of internal moderator materials for field measurements of fast neutron flux intensities are discussed as well.

  7. SBNCT plan: A 3-dimensional treatment planning system for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Reinstein, L.E.; Ramsay, E.B.; Gajewski, J.; Ramamoorthy, S.; Meek, A.G.

    1993-01-01

    The need for accurate and comprehensive 3-dimensional treatment planning for boron neutron capture therapy (BNCT) has been debated for the past several years. Although many argue against the need for elaborate and expensive treatment planning programs which mimic conventional radiotherapy planning systems, it is clear that in order to realize significant gains over conventional fractionated radiation therapy, patients must be treated to the edge of normal tissue tolerance. Just how close to this edge is dictated by the uncertainties in dosimetry. Hence the focus of BNCT planning is the determination of dose distribution throughout normal tissue volumes. Although precise geometric manipulation of the epithermal neutron beam is not achievable, the following variables play an important role in BNCT optimization: patient orientation, dose fractionation, number of fields, megawatt-minutes per fraction, use of surface bolus, and use of collimation. Other variables which are not as easily adjustable and would not, therefore, be part of treatment planning optimization, include external patient contour, internal patient heterogeneities, boron compound distributions, and RBE's. The boron neutron capture therapy planning system developed at SUNY Stony Brook (SBNCT-Plan) was designed as an interactive graphic tool to assist the radiation oncologist in generating the optimum plan for a neutron capture treatment

  8. Application of drug delivery system for boron neutron capture therapy. Basic research toward clinical application

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Takahashi, Hiroyuki

    2010-01-01

    Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10 B and thermal neutrons ( 10 B+ 1 n → 7 Li+ 4 He (α) +2.31 MeV (93.7%)/2.79 MeV (6.3%)). The resulting lithium ions and αparticles are high linear energy transfer (LET) particles which give high biological effect. Their short range in tissue (5-9 μm) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma etc, recently. Sodium borocaptate (Na 2 10 B 12 H 11 SH; BSH) and borono-phenylalanine ( 10 BPA) are currently being used in clinical treatments. To achieve the selective delivery of boron atoms to cancer cells, drug delivery system (DDS) becomes an attractive intelligent technology as targeting and controlled release of drugs. We have firstly reported that 10 B atoms delivered by immunoliposomes are cytotoxic to human pancreatic carcinoma cells (AsPC-1) after thermal neutron irradiation in vitro. The intra-tumoural injection of boronated immunoliposomes can increase the retention of 10 B atoms in tumour cells, causing suppression of tumour growth in vivo following thermal neutron irradiation. We prepared polyethylene-glycol binding liposomes (PEG-liposomes) as an effective 10 B carrier to obviate phagocytosis by reticuloendotherial systems. We had prepared 10 BSH entrapped Water-in-Oil-in-Water (WOW) emulsion. The 10 B concentration in VX-2 tumour after intra-arterial injection of 10 BSH entrapped WOW emulsion was superior to the groups of 10 BSH entrapped conventional Lipiodol mix emulsion. 10 Boron entrapped WOW emulsion is one of the most useful for intra-arterial boron delivery carrier on BNCT to hepatocellular carcinoma. (author)

  9. Pilot clinical study of boron neutron capture therapy for recurrent hepatic cancer involving the intra-arterial injection of a 10BSH-containing WOW emulsion

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Higashi, Syushi; Seguchi, Koji; Ikushima, Ichiro; Fujihara, Mituteru; Nonaka, Yasumasa; Oyama, Kazuyuki; Maruyama, Syoji; Hatae, Ryo; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Tomoko; Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Narabayashi, Masaru; Kajiyama, Tetsuya; Maruhashi, Akira; Ono, Koji; Nakajima, Jun

    2014-01-01

    A 63-year-old man with multiple HCC in his left liver lobe was enrolled as the first patient in a pilot study of boron neutron capture therapy (BNCT) involving the selective intra-arterial infusion of a 10 BSH-containing water-in-oil-in-water emulsion ( 10 BSH-WOW). The size of the tumorous region remained stable during the 3 months after the BNCT. No adverse effects of the BNCT were observed. The present results show that 10 BSH-WOW can be used as novel intra-arterial boron carriers during BNCT for HCC. - Highlights: • We started the pilot clinical study of BNCT to recurrence hepatic cancer. • The tumor size was remained stable during 3 months after BNCT(SD). • No adverse effect as a result of BNCT was observed during follow-up period. • 10 B-containing WOW emulsion can be applied as a novel intra-arterial boron carrier for BNCT for HCC

  10. A theranostic approach based on the use of a dual boron/Gd agent to improve the efficacy of Boron Neutron Capture Therapy in the lung cancer treatment.

    Science.gov (United States)

    Alberti, Diego; Protti, Nicoletta; Toppino, Antonio; Deagostino, Annamaria; Lanzardo, Stefania; Bortolussi, Silva; Altieri, Saverio; Voena, Claudia; Chiarle, Roberto; Geninatti Crich, Simonetta; Aime, Silvio

    2015-04-01

    This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Analytical dosimetry for spontaneous tumor dogs receiving boron neutron capture therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Atkinson, C.A.; Gavin, P.R.

    1992-01-01

    The dog irradiation project of the Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program is administered by Washington State University (WSU) with analytical and physical dosimetry provided by the Idaho National Engineering Laboratory (INEL). One subtask of this project includes BNCT safety studies for dogs with spontaneously-occurring brain tumors. The boron compound (Na 2 B 12 H 11 SH or BSH) was administered and single irradiations performed using the epithermal-neutron beam at the Brookhaven Medical Research Reactor (BMRR). The main goal of the study was not to provide therapy, but to determine tumorcidal effect while administering a subtolerance dose to healthy tissue. Irradiation times were based on delivery of 19 Gy peak physical dose to the blood

  12. Logic Estimation of the Optimum Source Neutron Energy for BNCT of Brain Tumors

    International Nuclear Information System (INIS)

    Dorrah, M.A.; Gaber, F.A.; Abd Elwahab, M.A.; Kotb, M.A.; Mohammed, M.M.

    2012-01-01

    BNCT is very complicated technique; primarily due to the complexity of element composition of the brain. Moreover; numerous components contributes to the over all radiation dose both to normal brain and to tumor. Simple algebraic summation cannot be applied to these dose components, since each component should at first be weighed by its relative biological effectiveness (RBE) value. Unfortunately, there is no worldwide agreement on these RBE values. For that reason, the parameters required for accurate planning of BNCT of brain tumors located at different depths in brain remained obscure. The most important of these parameters is; the source neutron energy. Thermal neutrons were formerly employed for BNCT, but they failed to prove therapeutic efficacy. Later on; epithermal neutrons were suggested proposing that they would be enough thermalized while transporting in the brain tissues. However; debate aroused regarding the source neutrons energy appropriate for treating brain tumors located at different depths in brain. Again, the insufficient knowledge regarding the RBE values of the different dose components was a major obstacle. A new concept was adopted for estimating the optimum source neutrons energy appropriate for different circumstances of BNCT. Four postulations on the optimum source neutrons energy were worked out, almost entirely independent of the RBE values of the different dose components. Four corresponding condition on the optimum source neutrons energy were deduced. An energy escalation study was carried out investigating 65 different source neutron energies, between 0.01 eV and 13.2 MeV. MCNP4B Monte C arlo neutron transport code was utilized to study the behavior of neutrons in the brain. The deduced four conditions were applied to the results of the 65 steps of the neutron energy escalation study. A source neutron energy range of few electron volts (eV) to about 30 keV was estimated to be the most appropriate for BNCT of brain tumors located at

  13. Depth-dose evaluation for lung and pancreas cancer treatment by BNCT using an epithermal neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Tetsuo; Fukushima, Yuji [Musashi Institute of Technology, Atomic Energy Research Laboratory, Kawasaki, Kanagawa (Japan)

    2000-10-01

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreas cancers using an epithermal neutron beam. The MCNP calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5x10{sup 8} ncm{sup -2}s{sup -1}. The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT could be applied for both lung and pancreas cancer treatment. (author)

  14. Synthesis and in-vivo detection of boronated compounds for use in BNCT. Comprehensive progress report, August 1, 1989--July 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G.W.

    1992-01-01

    The primary objective of the DOE program at The University of Tennessee Graduate School of Medicine is the development of effective molecular medicine for use in neutron-capture therapy (NCT). The research focuses primarily on the preparation of new boron-rich NCT agents and the technology to detect them in-vivo. The detection technology involves the development of effective magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques for verifying and measuring NCT agents in-vivo. The synthetic program is directed toward the design of novel boron NCT (BNCT) agents which are targeted to the cell nucleus and gadolinium liposomes targeted to the liver. The UT-DOE program is unique in that it has access to both state-of-the-art whole-body and microscopy MRI instruments.

  15. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Kastenber, W.E.; Karni, Y.; Regev, D.; Verbeke, J.M.; Leung, K.N.; Chivers, D.; Guess, S.; Kim, L.; Waldron, W.; Zhu, Y.

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  16. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  17. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia

    Science.gov (United States)

    Bortolussi, S.; Protti, N.; Ferrari, M.; Postuma, I.; Fatemi, S.; Prata, M.; Ballarini, F.; Carante, M. P.; Farias, R.; González, S. J.; Marrale, M.; Gallo, S.; Bartolotta, A.; Iacoviello, G.; Nigg, D.; Altieri, S.

    2018-01-01

    University of Pavia is equipped with a TRIGA Mark II research nuclear reactor, operating at a maximum steady state power of 250 kW. It has been used for many years to support Boron Neutron Capture Therapy (BNCT) research. An irradiation facility was constructed inside the thermal column of the reactor to produce a sufficient thermal neutron flux with low epithermal and fast neutron components, and low gamma dose. In this irradiation position, the liver of two patients affected by hepatic metastases from colon carcinoma were irradiated after borated drug administration. The facility is currently used for cell cultures and small animal irradiation. Measurements campaigns have been carried out, aimed at characterizing the neutron spectrum and the gamma dose component. The neutron spectrum has been measured by means of multifoil neutron activation spectrometry and a least squares unfolding algorithm; gamma dose was measured using alanine dosimeters. Results show that in a reference position the thermal neutron flux is (1.20 ± 0.03) ×1010 cm-2 s-1 when the reactor is working at the maximum power of 250 kW, with the epithermal and fast components, respectively, 2 and 3 orders of magnitude lower than the thermal component. The ratio of the gamma dose with respect to the thermal neutron fluence is 1.2 ×10-13 Gy/(n/cm2).

  18. Investigation on the neutron beam characteristics for boron neutron capture therapy with 3D and 2D transport calculations

    International Nuclear Information System (INIS)

    Kodeli, I.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    In the framework of future Boron Neutron Capture Therapy (BNCT) experiments, where cells and animals irradiations are planned at the research reactor of Strasbourg University, the feasibility to obtain a suitable epithermal neutron beam is investigated. The neutron fluence and spectra calculations in the reactor are performed using the 3D Monte Carlo code TRIPOLI-3 and the 2D SN code TWODANT. The preliminary analysis of Al 2 O 3 and Al-Al 2 O 3 filters configurations are carried out in an attempt to optimize the flux characteristics in the beam tube facility. 7 figs., 7 refs

  19. An update on the clinical trial of BNCT at the BMRR

    International Nuclear Information System (INIS)

    Ma, R.; Capala, J.; Chanana, A.D.; Coderre, J.A.; Diaz, A.Z.

    1999-01-01

    Boron neutron capture therapy (BNCT) was proposed more than six decades ago. It is a binary treatment modality that requires selective delivery of a 10 B-labeled compound to a tumor and slow neutron irradiation of the tumor-bearing tissues. In order to improve the penetration of the neutron beam, an epithermal neutron beam was developed at the Brookhaven Medical Research Reactor (BMRR). This epithermal neutron beam can deliver relatively high thermal neutron fluence at depth without severe skin damage. Boronophenylalanine-fructose (BPA-F), a nontoxic boron carrier, was found to preferentially accumulate in tumor cells following intravenous infusion in patients with GBM. In preclinical BNCT studies in rats bearing 9L gliosarcoma, BPA-mediated BNCT was shown to be more efficacious than photon irradiation. In 1994, improvements in the neutron beam and in the understanding of the radiobiology of BPA-mediated BNCT led to the initiation of BNCT trials for human GBM at BMRR using BPA-F and epithermal neutrons. The primary objective of the phase I/II clinical trial of BPA-mediated BNCT at BMRR is to evaluate the safety of the BPA-F-mediated BNCT using epithermal neutrons in patients with GBM at a series of escalating BNCT doses. An incidental objective is to evaluate the therapeutic effectiveness of BNCT at each dose level. For each dose escalation group, the average brain dose (ABD) is escalated, as well as the minimum tumor dose. In summary, the BNCT procedure employed in the phase I/II clinical trial of BPA-F-mediated BNCT for GBM at BNL was found to be safe in all patients. The palliation afforded by a single session of BNCT compares favorably with palliation provided by fractionated photon therapy and adjuvant chemotherapy. If no evidence of radiation-induced brain toxicity is found in the current protocol, BNCT radiation dose will be further escalated

  20. Folic acid-conjugated 4-amino-phenylboronate, a boron-containing compound designed for boron neutron capture therapy, is an unexpected agonist for human neutrophils and platelets.

    Science.gov (United States)

    Achilli, Cesare; Jadhav, Sushilkumar A; Guidetti, Gianni F; Ciana, Annarita; Abbonante, Vittorio; Malara, Alessandro; Fagnoni, Maurizio; Torti, Mauro; Balduini, Alessandra; Balduini, Cesare; Minetti, Giampaolo

    2014-05-01

    Boron neutron capture therapy (BNCT) is an anticancer treatment based on the accumulation in the tumor cells of (10) B-containing molecules and subsequent irradiation with low-energy neutrons, which bring about the decay of (10) B to very toxic (7) Li(3+) and (4) He(2+) ions. The effectiveness of BNCT is limited by the low delivery and accumulation of the used (10) B-containing compounds. Here, we report the development of folic acid-conjugated 4-amino-phenylboronate as a novel possible compound for the selective delivery of (10) B in BNCT. An extensive analysis about its biocompatibility to mature blood cells and platelet progenitors revealed that the compound markedly supports platelet aggregation, neutrophil oxidative burst, and inhibition of megakaryocyte development, while it does not have any manifest effect on red blood cells. © 2013 John Wiley & Sons A/S.

  1. Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma.

    Science.gov (United States)

    Yeh, Chun-Nan; Chang, Chi-Wei; Chung, Yi-Hsiu; Tien, Shi-Wei; Chen, Yong-Ren; Chen, Tsung-Wen; Huang, Ying-Cheng; Wang, Hsin-Ell; Chou, You-Cheng; Chen, Ming-Huang; Chiang, Kun-Chun; Huang, Wen-Sheng; Yu, Chung-Shan

    2017-09-30

    Boron neutron capture therapy (BNCT) is a binary therapy that employs neutron irradiation on the boron agents to release high-energy helium and alpha particles to kill cancer cells. An optimal response to BNCT depends critically on the time point of maximal 10 B accumulation and highest tumor to normal ratio (T/N) for performing the neutron irradiation. The aggressive cholangiocarcinoma (CCA) representing a liver cancer that overexpresses COX-2 enzyme is aimed to be targeted by COX-2 selective boron carrier, fenbufen boronopinacol (FBPin). Two main works were performed including: 1) chemical synthesis of FBPin as the boron carrier and 2) radiochemical labeling with F-18 to provide the radiofluoro congener, m-[ 18 F]fluorofenbufen ester boronopinacol (m-[ 18 F]FFBPin), to assess the binding affinity, cellular accumulation level and distribution profile in CCA rats. FBPin was prepared from bromofenbufen via 3 steps with 82% yield. The binding assay employed [ 18 F]FFBPin to compete FBPin for binding to COX-1 (IC 50 =0.91±0.68μM) and COX-2 (IC 50 =0.33±0.24μM). [ 18 F]FFBPin-derived 60-min dynamic PET scans predict the 10 B-accumulation of 0.8-1.2ppm in liver and 1.2-1.8ppm in tumor and tumor to normal ratio=1.38±0.12. BNCT was performed 40-55min post intravenous administration of FBPin (20-30mg) in the CCA rats. CCA rats treated with BNCT display more tumor reduction than that by NCT with respect of 2-[ 18 F]fluoro-2-deoxy glucose uptake in the tumor region of interest, 20.83±3.00% (n=12) vs. 12.83±3.79% (n=10), P=0.05. The visualizing agent [ 18 F]FFBPin resembles FBPin to generate the time-dependent boron concentration profile. Optimal neutron irradiation period is thus determinable for BNCT. A boron-substituted agent based on COX-2-binding features has been prepared. The moderate COX-2/COX-1 selectivity index of 2.78 allows a fair tumor selectivity index of 1.38 with a mild cardiovascular effect. The therapeutic effect from FBPin with BNCT warrants a proper

  2. A study of computational dosimetry and boron biodistribution for ex – situ lung BNCT at RA-3 Reactor

    International Nuclear Information System (INIS)

    Garabalino, M.A.; Trivillin, V. A.; Monti Hughes, A.; Pozzi, E.C.C.; Thorp, S.; Curotto, P; Miller, M.; Santa Cruz, G.A.; Saint Martin, G.; Schwint, A.E.; González, S.J.; Farías, R.O; Portu, A.; Ferraris, S.; Santa María, J.; Lange, F.; Bortolussi, S.; Altieri, S.

    2013-01-01

    Within the context of the preclinical ex-situ BNCT Project for the treatment of diffuse lung metastases, we performed boron biodistribution studies in a sheep model and computational dosimetry studies in human lung to evaluate the potential therapeutic efficacy of the proposed technique. Herein we report preliminary data that supports the use of the sheep model as an adequate human surrogate in terms of boron kinetics and uptake in clinically relevant tissues. Furthermore, the estimation of the potential therapeutic efficacy of the proposed treatment in humans, based on boron uptake values in the large animal model, yields promising tumor control probability values even in the most conservative scenario considered. (author)

  3. Inhibition of tumor growth in a glioma model treated with boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goodman, J.H.; McGregor, J.M.; Clendenon, N.R.; Gahbauer, R.A.; Barth, R.F.; Soloway, A.H.; Fairchild, R.G.

    1990-01-01

    This investigation attempts to determine whether increased survival time seen when the F98 glioma model is treated with boron neutron capture therapy (BNCT) is a result of inhibition of tumor growth caused by radiation-induced alterations in endothelial cells and normal tissue components. This indirect effect of radiation has been called the tumor bed effect. A series of tumor-bearing rats was studied, using a standardized investigational BNCT protocol consisting of 50 mg/kg of Na2B12H11SH injected intravenously 14 to 17 hours before neutron irradiation at 4 x 10(12) n/cm2. Ten rats, serving as controls, received no treatment either before or after tumor implantation. A second group of 10 rats was treated with BNCT 4 days before tumor implantation; these animals received no further treatment. The remaining group of 10 rats received no pretreatment but was treated with BNCT 10 days after implantation. Histological and ultrastructural analyses were performed in 2 animals from each group 17 days after implantation. Survival times of the untreated control animals (mean, 25.8 days) did not differ statistically from the survival times of the rats in the pretreated group (mean, 25.5 days). The rats treated with BNCT after implantation survived significantly longer (P less than 0.02; mean, 33.2 days) than the controls and the preirradiated animals. Tumor size indices calculated from measurements taken at the time of death were similar in all groups. These results indicate that, with this tumor model, BNCT does not cause a tumor bed effect in cerebral tissue. The therapeutic gains observed with BNCT result from direct effects on tumor cells or on the peritumoral neovascularity

  4. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jr., Thomas Dean [Univ. of Virginia, Charlottesville, VA (United States)

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 108 n/cm2 • s. The fast neutron and gamma radiation KERMA factors are 10 x 10-11cGy•cm2/nepi and 20 x 10-11 cGy•cm2/nepi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  5. Fabrication of boron-phosphide neutron detectors

    International Nuclear Information System (INIS)

    Fitzsimmons, M.; Pynn, R.

    1997-01-01

    Boron phosphide is a potentially viable candidate for high neutron flux neutron detectors. The authors have explored chemical vapor deposition methods to produce such detectors and have not been able to produce good boron phosphide coatings on silicon carbide substrates. However, semi-conducting quality films have been produced. Further testing is required

  6. Basic and clinical study of boron neutron capture therapy for malignant brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Nose, Tadao; Matsumura, Akira; Nakai, Kei; Nakagawa, Kunio; Yoshii, Yoshihiko [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Shibata, Yasushi; Yamamoto, Tetsuya; Hayakawa, Yoshinori; Yamada, Takashi

    1998-01-01

    Rat malignant cells (9L glioma cell) were exposed to neutron radiation after culturing with boron compounds; BSH and STA-BX909, and cell growing ability after the exposure was determined by colony forming assay. The effects of in vivo radiation were examined by measuring neutron flux levels in rat brain and skin aiming to use neutron radiation in clinical study. STA-BX909 was found to show a dose-dependent cell toxicity, which was higher than that of BSH. The radiation induced G2/M block in 9L-glioma cells and their cell cycles recovered thereafter in low-dose radiated cells, but high-dose radiated cells became aneuploidy. Furthermore, boron neutron capture therapy (BNCT) was applied in two patients, 41-year old woman with glioma grade 3 recurred and 45-year old man with glioblastoma multiforme. The former died from systemic deterioration due to ileus, but BNCT was made only one time although conventional radiotherapy is carried out for a relatively long period. Therefore, BNCT was thought to be beneficial from an aspect of `quality of life` and the effects to repress a recurrence of cancer also seemed larger than the conventional one. (M.N.)

  7. Continued biological investigations of boron-rich oligomeric phosphate diesters (OPDs). Tumor-selective boron agents for BNCT

    International Nuclear Information System (INIS)

    Lee, Mark W.; Shelly, Kenneth; Kane, Robert R.; Hawthorne, M. Frederick

    2006-01-01

    Clinical success of Boron Neutron Capture Therapy will rely on the selective intracellular delivery of high concentrations of boron-10 to tumor tissue. In order for a boron agent to facilitate clinical success, the simultaneous needs of obtaining a high tumor dose, high tumor selectivity, and low systemic toxicity must be realized. Boron-rich oligomeric phosphate diesters (OPDs) are a class of highly water-soluble compounds containing up to 40% boron by weight. Previous work in our groups demonstrated that once placed in the cytoplasm of tumor cells, OPDs quickly accumulate within the cell nucleus. The objective of the current study was to determine the biodistribution of seven different free OPDs in BALB/c mice bearing EMT6 tumors. Fructose solutions containing between 1.4 and 6.4 micrograms of boron per gram of tissue were interveinously injected in mice seven to ten days after tumor implantation. At intervals during the study, animals were euthanized and samples of tumor, blood, liver, kidney, brain and skin were collected and analyzed for boron content using ICP-AES. Tumor boron concentrations of between 5 and 29 ppm were achieved and maintained over the 72-hour time course of each experiment. Several OPDs demonstrated high tumor selectivity with one oligomer exhibiting a tumor to blood ratio of 35:1. The apparent toxicity of each oligomer was assessed through animal behavior during the experiment and necropsy of each animal upon sacrifice. (author)

  8. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Charles A Maitz

    2017-08-01

    Full Text Available Boron neutron capture therapy (BNCT was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. Mice were implanted with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH3(CH215–7,8-C2B9H11] in the lipid bilayer and encapsulated Na3[1-(2`-B10H9-2-NH3B10H8] within the liposomal core. Mice were irradiated 30 hours after the second injection in a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. Despite relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.

  9. Clinical treatment planning for subjects undergoing boron neutron capture therapy at Harvard-MIT

    International Nuclear Information System (INIS)

    Zamenhof, R.G.; Palmer, M.R.; Buse, P.M.

    2001-01-01

    Treatment planning is a crucial component of the Harvard-MIT boron neutron capture therapy (BNCT) clinical trials. Treatment planning can be divided into five stages: (1) pre-planning, based on CT and MRI scans obtained when the subject arrives at the hospital and on assumed boron-10 distribution parameters; (2) subject set-up, or simulation, in the MITR-II medical therapy room to determine the boundary conditions for possible set-up configurations; (3) re-planning, following the subject simulation; (4) final localization of the subject in the medical therapy room for BNCT; and (5) final post facto recalculation of the doses delivered based on firm knowledge of the blood boron-10 concentration profiles and the neutron flux histories from precise online monitoring. The computer-assisted treatment planning is done using a specially written BNCT treatment planning code called MacNCTPLAN. The code uses the Los Alamos National Laboratory's Monte Carlo n-particle radiation transport code MCNPv.4b as the dose calculation engine and advanced anatomical model simulation based on an automatic evaluation of CT scan data. Results are displayed as isodose contours and dose-volume histograms, the latter correlated precisely with corresponding anatomical CT or MRI image planes. Examples of typical treatment planning scenarios will be presented. (author)

  10. Prompt gamma and neutron detection in BNCT utilizing a CdTe detector.

    Science.gov (United States)

    Winkler, Alexander; Koivunoro, Hanna; Reijonen, Vappu; Auterinen, Iiro; Savolainen, Sauli

    2015-12-01

    In this work, a novel sensor technology based on CdTe detectors was tested for prompt gamma and neutron detection using boronated targets in (epi)thermal neutron beam at FiR1 research reactor in Espoo, Finland. Dedicated neutron filter structures were omitted to enable simultaneous measurement of both gamma and neutron radiation at low reactor power (2.5 kW). Spectra were collected and analyzed in four different setups in order to study the feasibility of the detector to measure 478 keV prompt gamma photons released from the neutron capture reaction of boron-10. The detector proved to have the required sensitivity to detect and separate the signals from both boron neutron and cadmium neutron capture reactions, which makes it a promising candidate for monitoring the spatial and temporal development of in vivo boron distribution in boron neutron capture therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fission reactor based epithermal neutron irradiation facilities for routine clinical application in BNCT-Hatanaka memorial lecture

    International Nuclear Information System (INIS)

    Harling, Otto K.

    2009-01-01

    Based on experience gained in the recent clinical studies at MIT/Harvard, the desirable characteristics of epithermal neutron irradiation facilities for eventual routine clinical BNCT are suggested. A discussion of two approaches to using fission reactors for epithermal neutron BNCT is provided. This is followed by specific suggestions for the performance and features needed for high throughput clinical BNCT. An example of a current state-of-the-art, reactor based facility, suited for routine clinical use is discussed. Some comments are provided on the current status of reactor versus accelerator based epithermal neutron sources for BNCT. This paper concludes with a summary and a few personal observations on BNCT by the author.

  12. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Hawthorne, M. Frederick

    2005-01-01

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  13. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick [Univ. of California, Los Angeles, CA (United States)

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are

  14. Time factor of BSH from intravenous infusion to neutron irradiation for BNCT in patients with glioblastoma

    International Nuclear Information System (INIS)

    Kageji, T.; Nagahiro, S.; Kitamura, K.; Nakagawa, Y.; Hatanaka, H.; Haritz, D.; Grochulla, F.; Haselsberger, K.; Gabel, D.

    2000-01-01

    The present report evaluates the time factor of BSH from infusion to irradiation in patients with glioblastoma as a cooperative study in Europe and Japan. For BNCT with BSH after intravenous infusion, this work confirms that the planned neutron irradiation after intravenous BSH infusion appears to be optimal around 12-19 hours after the infusion. (author)

  15. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Barth Rolf F

    2012-08-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH. In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger

  16. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    International Nuclear Information System (INIS)

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key; Sil Lee, Keum

    2015-01-01

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations

  17. GPU-based prompt gamma ray imaging from boron neutron capture therapy.

    Science.gov (United States)

    Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae

    2015-01-01

    The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  18. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  19. Design and optimization of a beam-shaping assembly (BSA) for BNCT based on a neutron generator located at CEADEN, Havana, Cuba

    International Nuclear Information System (INIS)

    Padilla Cabal, F.; Martin, G.; Abrahantes, A.

    2007-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2 H(d;n) 3 He and 3 H(d;n) 4 Hedown to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as Fluental TM for the neutron spectrum shifting. A semi spherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT. (Author)

  20. Design and optimization of a beam-shaping assembly (BSA) for BNCT based on a neutron generator located at CEADEN, Havana, Cuba

    International Nuclear Information System (INIS)

    Padilla Cabal, F.; Martin, G; Abrahantes, A.

    2007-01-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions 2 H(d;n) 3 He and 3 H(d;n) 4 He down to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as Fluental TM for the neutron spectrum shifting. A semispherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT. (Author)

  1. INEL BNCT Program: Volume 5, No. 9

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1991-01-01

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  2. 2-O-α-glucopytanosyl L-ascorbic acid reduced mutagenicity at HPRT locus of mouse splenocytes following BNCT

    International Nuclear Information System (INIS)

    Kinashi, Yuko; Masunaga, Shin-ichiro; Suzuki, Minoru; Nagata, Kanji; Ono, Koji

    2006-01-01

    In boron neutron capture therapy (BNCT), normal tissue surrounding the tumor cells sometimes take up boron compounds resulting in radiation-induced damage to normal tissue. We have previously reported the evidence for increased the mutagenicity of thermal neutron in the presence of boron. In addition, we described the biological radio-protective effects of the ascorbic acid for mutation induction following BNCT in vitro. Here, we investigated these radio-protective effects of ascorbic acid for mutation induction in mouse splenocytes on HPRT locus following a BNCT study in vivo. (author)

  3. The radiobiology of boron neutron capture therapy: Are ''photon-equivalent'' doses really photon-equivalent?

    International Nuclear Information System (INIS)

    Coderre, J.A.; Diaz, A.Z.; Ma, R.

    2001-01-01

    Boron neutron capture therapy (BNCT) produces a mixture of radiation dose components. The high-linear energy transfer (LET) particles are more damaging in tissue than equal doses of low-LET radiation. Each of the high-LET components can multiplied by an experimentally determined factor to adjust for the increased biological effectiveness and the resulting sum expressed in photon-equivalent units (Gy-Eq). BNCT doses in photon-equivalent units are based on a number of assumptions. It may be possible to test the validity of these assumptions and the accuracy of the calculated BNCT doses by 1) comparing the effects of BNCT in other animal or biological models where the effects of photon radiation are known, or 2) if there are endpoints reached in the BNCT dose escalation clinical trials that can be related to the known response to photons of the tissue in question. The calculated Gy-Eq BNCT doses delivered to dogs and to humans with BPA and the epithermal neutron beam of the Brookhaven Medical Research Reactor were compared to expected responses to photon irradiation. The data indicate that Gy-Eq doses in brain may be underestimated. Doses to skin are consistent with the expected response to photons. Gy-Eq doses to tumor are significantly overestimated. A model system of cells in culture irradiated at various depths in a lucite phantom using the epithermal beam is under development. Preliminary data indicate that this approach can be used to detect differences in the relative biological effectiveness of the beam. The rat 9L gliosarcoma cell survival data was converted to photon-equivalent doses using the same factors assumed in the clinical studies. The results superimposed on the survival curve derived from irradiation with Cs-137 photons indicating the potential utility of this model system. (author)

  4. Exploring Boron Neutron Capture Therapy for non-small cell lung cancer.

    Science.gov (United States)

    Farías, Rubén O; Bortolussi, Silva; Menéndez, Pablo R; González, Sara J

    2014-12-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapy that combines biological targeting and high LET radiation. It consists in the enrichment of tumour with (10)B and in the successive irradiation of the target with low energy neutrons producing charged particles that mainly cause non-repairable damages to the cells. The feasibility to treat Non Small Cells Lung Cancer (NSCLC) with BNCT was explored. This paper proposes a new approach to determine treatment plans, introducing the possibility to choose the irradiation start and duration to maximize the tumour dose. A Tumour Control Probability (TCP) suited for lung BNCT as well as other high dose radiotherapy schemes was also introduced. Treatment plans were evaluated in localized and disseminated lung tumours. Semi-ideal and real energy spectra beams were employed to assess the best energy range and the performance of non-tailored neutron sources for lung tumour treatments. The optimal neutron energy is within [500 eV-3 keV], lower than the 10 keV suggested for the treatment of deep-seated tumours in the brain. TCPs higher than 0.6 and up to 0.95 are obtained for all cases. Conclusions drawn from [Suzuki et al., Int Canc Conf J 1 (4) (2012) 235-238] supporting the feasibility of BNCT for shallow lung tumours are confirmed, however discussions favouring the treatment of deeper lesions and disseminated disease are also opened. Since BNCT gives the possibility to deliver a safe and potentially effective treatment for NSCLC, it can be considered a suitable alternative for patients with few or no treatment options. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Boron Neutron Capture Therapy activity of diffused tumors at TRIGA Mark II in Pavia

    International Nuclear Information System (INIS)

    Bortolussi, S.; Stella, S.; De Bari, A.; Altieri, S.; Bruschi, P.; Bakeine, J.G.; Clerici, A.; Ferrari, C.; Zonta, C.; Zonta, A.; Nano, R.

    2008-01-01

    The Boron neutron Capture Therapy research in Pavia has a long tradition: it begun more than 20 years ago at the TRIGA Mark II reactor of the University. A technique for the treatment of the hepatic metastases was developed, consisting in explanting the liver treated with 10 B, irradiating it in the thermal column of the reactor, and re-implanting the organ in the patient. In the last years, the possibility of applying BNCT to the lung tumours using epithermal collimated neutron beams and without explanting the organ, is being explored. The principal obtained results of the BNCT research will be presented, with particular emphasis on the following aspects: a) the project of a new thermal column configuration to make the thermal neutron flux more uniform inside the explanted liver, b) the Monte Carlo study by means of the MCNP code of the thermal neutron flux distribution inside a patient's thorax irradiated with epithermal neutrons, and c) the measurement of the boron concentration in tissues by (n,α) spectroscopy and neutron autoradiography. (authors)

  6. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thatar Vento, V., E-mail: Vladimir.ThatarVento@gmail.com [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Bergueiro, J.; Cartelli, D. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina)

    2011-12-15

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  7. INEEL BNCT Research Program Annual Report, CY-2000

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert

    2001-03-01

    This report is a summary of the activities conducted in conjunction with the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 2000. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, neutron source design and demonstration, and support the Department of Energy’s (DOE) National BNCT Program goals are the goals of this Program. Contributions from the individual contributors about their projects are included, specifically described are the following, chemistry: analysis of biological samples and an infrared blood-boron analyzer, and physics: progress in the patient treatment planning software, measurement of neutron spectra for the Argentina RA-6 reactor, and recalculation of the Finnish research reactor FiR 1 neutron spectra, BNCT accelerator technology, and modification to the research reactor at Washington State University for an epithermal-neutron beam.

  8. Neutron dosimetry in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na 2 B 12 H 11 SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with 10 B in boron containing cells through the 10 B(n,α) 7 Li reaction producing charged particles with a maximum range of approx. 10μm in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize 6 Li and 10 B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the 14 N(n,p) 14 C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils

  9. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-01-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10 9 n/cm 2 /s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin (∼ 5 cm iron). However, this approach has an extremely low neutron yield (n/p ∼ 1.0(-6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target ∼ 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies (∼ 2.5 MeV) have a much higher yield (n/p ∼ 1.0(-4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV

  10. Spectral tailoring for boron Neutron capture therapy

    NARCIS (Netherlands)

    Nievaart, V.A.

    2007-01-01

    In several places in the world, such as Petten and Delft in the Netherlands, investigations are in progress in the fight against certain types of cancer with Boron Neutron Capture Therapy. The basic idea is very simple: boron is loaded only into the cancer cells, using a special drug, after which

  11. Boron-neutron capture therapy for incurable cancer and inoperable brain tumors

    International Nuclear Information System (INIS)

    Hatanaka, Hiroshi

    1993-01-01

    Recent advances in cancer diagnosis and treatment have not yet improved the survival rate of patients with cancers of the brain, liver, etc. In these organs, an extirpation of the organ, which can be done for stomach, breast, cervix, lung, etc. is not allowed, and this fact is the cause of poor therapeutic results. Boron-neutron capture therapy (BNCT) utilizes the nuclear reaction which will take place between the boron-10 (loaded in the cancer cells artificially) and the thermal neutrons (delivered by reactors). The secondary radiations, helium and lithium hit the cancer cell itself and cause the death of the cancer cell while sparing the surrounding normal cells. BNCT is now being tried also by Oda of Kyoto University (9 cases) and by Nakagawa of Tokushima University (7 cases). It has been tried by Mishima (Kobe University) on 12 skin melanoma patients, proving satisfactory local control of the melanomas. Mercaptoundecahydrododecaborate (BHS) and boronophenylalanine (BPA) have been tried for brain tumors and for melanoma. For cancers of the liver and abdominal viscerae, antibody to the tumor specific antigen has been considered a good carrier of boron-10. Surgeons Takahashi, Fujii, Fujii, Yanagie, and Sekiguchi and immunologist Nariuchi of Tokyo University have been involved in the research and have obtained encouraging results in animals. Hatanaka has been proving good effect of BNCT upon giant cerebral arteriovenous malformation (AVM) and skull base meningioma. These diseases, although pathologically benign, have posed difficult problems in neurosurgery. It will be exciting good news to the patients. In conclusion, BNCT appears to be a good means to treat difficult lesions in the brain and other organs which defy sophisticated modern therapeutic means. (author)

  12. Improvement of neutron irradiation field of research reactors for BNCT

    International Nuclear Information System (INIS)

    Aizawa, Otohiko

    1992-01-01

    The modification of research reactors for an improvement of the irradiation field for BNCT has been investigated in comparison with the field characteristics of the 'old' configuration at the Musashi reactor. The new point of this study is that the evaluation has been done by using an arrangement including both the facility structure and a whole-body phantom, and also by considering the whole-body absorbed dose. (author)

  13. INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1997-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of 10 B enriched decaborane

  14. INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1997-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of {sup 10}B enriched decaborane.

  15. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    International Nuclear Information System (INIS)

    Wang, Peng; Zhen, Haining; Jiang, Xinbiao; Zhang, Wei; Cheng, Xin; Guo, Geng; Mao, Xinggang; Zhang, Xiang

    2010-01-01

    Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [ 60 Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [ 60 Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [ 60 Co] γ-rays; Group C included cells treated with 8 Gy of [ 60 Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [ 60 Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with

  16. Feasibility of boron neutron capture therapy for malignant spinal tumors

    International Nuclear Information System (INIS)

    Nakai, Kei; Kumada, Hiroaki; Yamamoto, Tetsuya; Tsurubuchi, Takao; Zaboronok, Alexander; Matsumura, Akira

    2009-01-01

    Treatment of malignant spinal cord tumors is currently ineffective. The characteristics of the spine are its seriality, small volume, and vulnerability: severe QOL impairment can be brought about by small neuronal damage. The present study aimed to investigate the feasibility of BNCT as a tumor-selective charged particle therapy for spinal cord tumors from the viewpoint of protecting the normal spine. A previous report suggested the tolerance dose of the spinal cord was 13.8 Gy-Eq for radiation myelopathy; a dose as high as 11 Gy-Eq demonstrated no spinal cord damage in an experimental animal model. We calculated the tumor dose and the normal spinal cord dose on a virtual model of a spinal cord tumor patient with a JAEA computational dosimetry system (JCDS) treatment planning system. The present study made use of boronophenylalanine (BPA). In these calculations, conditions were set as follows: tumor/normal (T/N) ratio of 3.5, blood boron concentration of 12 ppm, tumor boron concentration of 42 ppm, and relative biological effectiveness (RBE) values for tumor and normal spinal cord of 3.8 and 1.35, respectively. We examined how to optimize neutron irradiation by changing the beam direction and number. In our theoretical example, simple opposed two-field irradiation achieved 28.0 Gy-Eq as a minimum tumor dose and 7.3 Gy-Eq as a maximum normal spinal dose. The BNCT for the spinal cord tumor was therefore feasible when a sufficient T/N ratio could be achieved. The use of F-BPA PET imaging for spinal tumor patients is supported by this study.

  17. A case of astrocytoma, 19 year history after BNCT

    International Nuclear Information System (INIS)

    Kamano, Shuji

    2006-01-01

    A 39-year-old man had received Boron Neutron Capture Therapy (BNCT) in 1987 for a Grade II Astrocytoma. He gradually exacerbated and received a second operation in 1994. The mass taken in the second operation is almost competent with radiation necrosis. Following that, he shows no signs of recurrence. Currently, he has returned to full time employment in physical labor. This case suggests effectiveness of BNCT for rather low-grade astrocytomas. (author)

  18. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The

  19. The coordination chemistry of boron porphyrin complexes B2OX2 ...

    Indian Academy of Sciences (India)

    Unknown

    therapeutic method that utilizes porphyrin deriva- tives localized in tumors, as in situ photosensitizers for the production of singlet oxygen on irradiation with red light.2 Candidate porphyrin derivatives that contain boron for boron neutron capture therapy (BNCT) ... in small animal glioma models.4,5 BNCT is a two-step.

  20. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.

    Science.gov (United States)

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2015-02-01

    High-energy neutrons, named fast neutrons which have a number of undesirable biological effects on tissue, are a challenging problem in beam designing for Boron Neutron Capture Therapy, BNCT. In spite of this fact, there is not a widely accepted criterion to guide the beam designer to determine the appropriate contribution of fast neutrons in the spectrum. Although a number of researchers have proposed a target value for the ratio of fast neutron flux to epithermal neutron flux, it can be shown that this criterion may not provide the optimum treatment condition. This simulation study deals with the determination of the optimum contribution of fast neutron flux in the beam for BNCT of deep-seated tumors. Since the dose due to these high-energy neutrons damages shallow tissues, delivered dose to skin is considered as a measure for determining the acceptability of the designed beam. To serve this purpose, various beam shaping assemblies that result in different contribution of fast neutron flux are designed. The performances of the neutron beams corresponding to such configurations are assessed in a simulated head phantom. It is shown that the previously used criterion, which suggests a limit value for the contribution of fast neutrons in beam, does not necessarily provide the optimum condition. Accordingly, it is important to specify other complementary limits considering the energy of fast neutrons. By analyzing various neutron spectra, two limits on fast neutron flux are proposed and their validity is investigated. The results show that considering these limits together with the widely accepted IAEA criteria makes it possible to have a more realistic assessment of sufficiency of the designed beam. Satisfying these criteria not only leads to reduction of delivered dose to skin, but also increases the advantage depth in tissue and delivered dose to tumor during the treatment time. The Monte Carlo Code, MCNP-X, is used to perform these simulations. Copyright © 2014

  1. Desain Beam Shaping Assembly (BSA berbasis D-D Neutron Generator 2,45 MeV untuk Uji Fasilitas BNCT

    Directory of Open Access Journals (Sweden)

    Desman P. Gulo

    2015-12-01

    Full Text Available Boron Neutron Capture Therapy (BNCT is one of the cancer treatments that are being developed in nowadays. In order to support BNCT treatment for cancer that exists in underneath skin like breast cancer, the facility needs a generator that is able to produce epithermal neutron. One of the generator that is able to produce neutron is D-D neutron generator with 2.45 MeV energy. Based on the calculation of this paper, we found that the total production of neutron per second (neutron yield from Neutron Generator (NG by PSTA-BATAN Yogyakarta is 2.55×1011 n/s. The energy and flux that we found is in the range of quick neutron. Thus, it needs to be moderated to the level of epithermal neutron which is located in the interval energy of 1 eV to 10 KeV with 109 n/cm2s flux. This number is the recommendation standard from IAEA. Beam Shaping Assembly (BSA is needed in order to moderate the quick neutron to the level of epithermal neutron. One part of BSA that has the responsibility in moderating the quick neutron to epithermal neutron is the moderator. The substance of moderator used in this paper is MgF2 and A1F3. The thickness of moderator has been set in in such a way by using MCNPX software in order to fulfill the standard of IAEA. As the result of optimizing BSA moderator, the data obtain epithermal flux with the total number of 4.64×108 n/cm2/s for both of moderators with the thickness of moderator up to 15 cm. At the end of this research, the number of epithermal flux does not follow the standard of IAEA. This is because the flux neutron that is being produced by NG is relatively small. In conclusion, the NG from PSTA-BATAN Yogyakarta is not ready to be used for the BNCT treatment facility for the underneath skin cancer like breast cancer.

  2. Selective uptake of p-boronophenylalanine by osteosarcoma cells for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, C. [Department of Surgery, Experimental Surgery Laboratory, University of Pavia, Piazza Botta, Pavia (Italy)], E-mail: ferraric@unipv.it; Zonta, C.; Cansolino, L.; Clerici, A.M.; Gaspari, A. [Department of Surgery, Experimental Surgery Laboratory, University of Pavia, Piazza Botta, Pavia (Italy); Altieri, S.; Bortolussi, S.; Stella, S. [Department of Nuclear and Theoretical Physics of University, Via Bassi, 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi, 6, Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics of University, Via Bassi, 6, Pavia (Italy); Dionigi, P.; Zonta, A. [Department of Surgery, Experimental Surgery Laboratory, University of Pavia, Piazza Botta, Pavia (Italy)

    2009-07-15

    Osteosarcoma is the most common non-hematologic primary cancer type that develops in bone. Current osteosarcoma treatments combine multiagent chemotherapy with extensive surgical resection, which in some cases makes necessary the amputation of the entire limb. Nevertheless its infiltrative growth leads to a high incidence of local and distant recurrences that reduce the percentage of cured patients to less than 60%. These poor data required to set up a new therapeutic approach aimed to restrict the surgical removal meanwhile performing a radical treatment. Boron neutron capture therapy (BNCT), a particular radiotherapy based on the nuclear capture and fission reactions by atoms of {sup 10}B, when irradiated with thermal neutrons, could be a valid alternative or integrative option in case of osteosarcoma management, thanks to its peculiarity in selectively destroying neoplastic cells without damaging normal tissues. Aim of the present work is to investigate the feasibility of employing BNCT to treat the limb osteosarcoma. Boronophenylalanine (BPA) is used to carry {sup 10}B inside the neoplastic cells. As a first step the endocellular BPA uptake is tested in vitro on the UMR-106 osteosarcoma cell line. The results show an adequate accumulation capability. For the in vivo experiments, an animal tumor model is developed in Sprague-Dawley rats by means of an intrafemoral injection of UMR-106 cells at the condyle site. The absolute amounts of boron loading and the tumor to normal tissue {sup 10}B ratio are evaluated 2 h after the i.v. administration of BPA. The boron uptake by the neoplastic tissue is almost twice the normal one. However, higher values of boron concentration in tumor are requested before upholding BNCT as a valid therapeutic option in the treatment of osteosarcoma.

  3. ESR-dosimetry in thermal and epithermal neutron fields for application in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Tobias

    2016-01-22

    Dosimetry is essential for every form of radiotherapy. In Boron Neutron Capture Therapy (BNCT) mixed neutron and gamma fields have to be considered. Dose is deposited in different neutron interactions with elements in the penetrated tissue and by gamma particles, which are always part of a neutron field. The therapeutic dose in BNCT is deposited by densely ionising particles, originating from the fragmentation of the isotope boron-10 after capture of a thermal neutron. Despite being investigated for decades, dosimetry in neutron beams or fields for BNCT remains complex, due to the variety in type and energy of the secondary particles. Today usually ionisation chambers combined with metal foils are used. The applied techniques require extensive effort and are time consuming, while the resulting uncertainties remain high. Consequently, the investigation of more effective techniques or alternative dosimeters is an important field of research. In this work the possibilities of ESR-dosimeters in those fields have been investigated. Certain materials, such as alanine, generate stable radicals upon irradiation. Using Electron Spin Resonance (ESR) spectrometry the amount of radicals, which is proportional to absorbed dose, can be quantified. Different ESR detector materials have been irradiated in the thermal neutron field of the research reactor TRIGA research reactor in Mainz, Germany, with five setups, generating different secondary particle spectra. Further irradiations have been conducted in two epithermal neutron beams. The detector response, however, strongly depends on the dose depositing particle type and energy. It is hence necessary to accompany measurements by computational modelling and simulation. In this work the Monte Carlo code FLUKA was used to calculate absorbed doses and dose components. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using amorphous track models. For the simulation, detailed models of

  4. Long term outcome of boron neutron capture therapy for malignant melanoma

    International Nuclear Information System (INIS)

    Hiratsuka, J.; Fukuda, H.; Kobayashi, T.; Yoshino, K.; Honda, C.; Ichihashi, M.; Mishima, Y.

    2000-01-01

    Eighteen patients with cutaneous malignant melanoma were treated by boron neutron capture therapy (BNCT) using 10 B-BPA. Our aim was to assess the long term clinical outcome of BNCT on these patients. The target areas were 15 primary lesions and 5 metastatic lesions. The primary lesions were consisted of acral lentigious melanoma (ALM) in six patients, nodular melanoma (NM) in six and lentigo maligna melanoma (LMM) in three. The complete regression (CR) rates were 73% for the primary lesions, 20% for the metastatic lesions. The CR rates for the primary lesions according to melanoma type were 33% for NM and 100% for non-NM. None of the patients with CR showed local recurrence in the radiation field during follow up ranging from 5.5 to 10.6 years (mean 6.7 years). The five year cause specific survival rate was 92% in the cases without distant metastasis at the time of BNCT. BNCT proves to be a very useful therapeutic modality for the management of cutaneous malignant melanoma. (author)

  5. Long term outcome of boron neutron capture therapy for malignant melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, J. [Kawasaki Medical School, Kurashiki, Okayama (Japan); Fukuda, H. [Tohoku Univ., Sendai (Japan); Kobayashi, T. [Kyoto Univ. (Japan); Yoshino, K. [Shinshu Univ., Matsumoto, Nagano (Japan); Honda, C.; Ichihashi, M. [Kobe Univ., Kobe, Hyogo (Japan); Mishima, Y. [Mishima Institute for Dermatological Research, Kobe, Hyogo (Japan)

    2000-10-01

    Eighteen patients with cutaneous malignant melanoma were treated by boron neutron capture therapy (BNCT) using {sup 10}B-BPA. Our aim was to assess the long term clinical outcome of BNCT on these patients. The target areas were 15 primary lesions and 5 metastatic lesions. The primary lesions were consisted of acral lentigious melanoma (ALM) in six patients, nodular melanoma (NM) in six and lentigo maligna melanoma (LMM) in three. The complete regression (CR) rates were 73% for the primary lesions, 20% for the metastatic lesions. The CR rates for the primary lesions according to melanoma type were 33% for NM and 100% for non-NM. None of the patients with CR showed local recurrence in the radiation field during follow up ranging from 5.5 to 10.6 years (mean 6.7 years). The five year cause specific survival rate was 92% in the cases without distant metastasis at the time of BNCT. BNCT proves to be a very useful therapeutic modality for the management of cutaneous malignant melanoma. (author)

  6. Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Itsuro [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan)], E-mail: katoitsu@dent.osaka-u.ac.jp; Fujita, Yusei [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan); Maruhashi, Akira [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan); Kumada, Hiroaki [Japan Atomic Energy Agency, Tokai Research and Development Center, Ibaraki (Japan); Ohmae, Masatoshi [Department of Oral and Maxillofacial Surgery, Izimisano Municipal Hospital, Rinku General Hospital, Izumisano, Osaka (Japan); Kirihata, Mitsunori [Graduate School of Environment and Life Science, Osaka prefectural University, Osaka (Japan); Imahori, Yoshio [Department of Neurosurgery, Kyoto Prefectural University, Kyoto (Japan); CEO of Cancer Intelligence Care Systems, Inc., Tokyo (Japan); Suzuki, Minoru [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan); Sakrai, Yoshinori [Graduate School of Medicine, Sapporo Medical University of Medicine, Hokkaido (Japan); Sumi, Tetsuro; Iwai, Soichi; Nakazawa, Mitsuhiro [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan); Murata, Isao; Miyamaru, Hiroyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University (Japan); Ono, Koji [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan)

    2009-07-15

    It is necessary to explore new treatments for recurrent head and neck malignancies (HNM) to avoid severe impairment of oro-facial structures and functions. Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. We have treated with BNCT 42 times for 26 patients (19 squamous cell carcinomas (SCC), 4 salivary gland carcinomas and 3 sarcomas) with a recurrent and far advanced HNM since 2001. Results of (1) {sup 10}B concentration of tumor/normal tissue ratios (T/N ratio) of FBPA-PET studies were SCC: 1.8-5.7, sarcoma: 2.5-4.0, parotid tumor: 2.5-3.7. (2) Therapeutic effects were CR: 12 cases, PR: 10 cases, PD: 3 cases NE (not evaluated): 1 case. Response rate was 85%. (3) Improvement of QOL such as a relief of severe pain, bleeding, and exudates at the local lesion, improvement of PS, disappearance of ulceration, covered with normal skin and preserved oral and maxillofacial functions and tissues. (4) Survival periods after BNCT were 1-72 months (mean: 13.6 months). Six-year survival rate was 24% by Kaplan-Meier analysis. (5) Adverse-events were transient mucositis and alopecia in most of the cases; three osteomyelitis and one brain necrosis were recognized. These results indicate that BNCT represents a new and promising treatment approach for advanced HNM.

  7. PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Tadashi [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan)], E-mail: nariai.nsrg@tmd.ac.jp; Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Nakacho, Itabashi-ku, Tokyo (Japan); Kimura, Yuichi [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba (Japan); Inaji, Motoki; Momose, Toshiya [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan); Yamamoto, Tetsuya; Matsumura, Akira [Department of Neurosurgery, University of Tsukuba, Tennodai, Tsukuba, Igaraki (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1-1, Nakacho, Itabashi-ku, Tokyo (Japan); Ohno, Kikuo [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo (Japan)

    2009-07-15

    Introduction: To plan the optimal BNCT for patients with malignant cerebral glioma, estimation of the ratio of boron concentration in tumor tissue against that in the surrounding normal brain (T/N ratio of boron) is important. We report a positron emission tomography (PET) imaging method to estimate T/N ratio of tissue boron concentration based on pharmacokinetic analysis of amino acid probes. Methods: Twelve patients with cerebral malignant glioma underwent 60 min dynamic PET scanning of brain after bolus injection of {sup 18}F-borono-phenyl-alanine (FBPA) with timed arterial blood sampling. Using kinetic parameter obtained by this scan, T/N ratio of boron concentration elicited by one-hour constant infusion of BPA, as performed in BNCT, was simulated on Runge-Kutta algorithm. {sup 11}C-methionine (MET) PET scan, which is commonly used in worldwide PET center as brain tumor imaging tool, was also performed on the same day to compare the image characteristics of FBPA and that of MET. Result: PET glioma images obtained with FBPA and MET are almost identical in all patients by visual inspection. Estimated T/N ratio of tissue boron concentration after one-hour constant infusion of BPA, T/N ratio of FBPA on static condition, and T/N ratio of MET on static condition showed significant linear correlation between each other. Conclusion: T/N ratio of boron concentration that is obtained by constant infusion of BPA during BNCT can be estimated by FBPA PET scan. This ratio can also be estimated by MET-PET imaging. As MET-PET study is available in many clinical PET center, selection of candidates for BNCT may be possible by MET-PET images. Accurate planning of BNCT may be performed by static images of FBPA PET. Use of PET imaging with amino acid probes may contribute very much to establish an appropriate application of BNCT for patients with malignant glioma.

  8. PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Ishiwata, Kiichi; Kimura, Yuichi; Inaji, Motoki; Momose, Toshiya; Yamamoto, Tetsuya; Matsumura, Akira; Ishii, Kenji; Ohno, Kikuo

    2009-01-01

    Introduction: To plan the optimal BNCT for patients with malignant cerebral glioma, estimation of the ratio of boron concentration in tumor tissue against that in the surrounding normal brain (T/N ratio of boron) is important. We report a positron emission tomography (PET) imaging method to estimate T/N ratio of tissue boron concentration based on pharmacokinetic analysis of amino acid probes. Methods: Twelve patients with cerebral malignant glioma underwent 60 min dynamic PET scanning of brain after bolus injection of 18 F-borono-phenyl-alanine (FBPA) with timed arterial blood sampling. Using kinetic parameter obtained by this scan, T/N ratio of boron concentration elicited by one-hour constant infusion of BPA, as performed in BNCT, was simulated on Runge-Kutta algorithm. 11 C-methionine (MET) PET scan, which is commonly used in worldwide PET center as brain tumor imaging tool, was also performed on the same day to compare the image characteristics of FBPA and that of MET. Result: PET glioma images obtained with FBPA and MET are almost identical in all patients by visual inspection. Estimated T/N ratio of tissue boron concentration after one-hour constant infusion of BPA, T/N ratio of FBPA on static condition, and T/N ratio of MET on static condition showed significant linear correlation between each other. Conclusion: T/N ratio of boron concentration that is obtained by constant infusion of BPA during BNCT can be estimated by FBPA PET scan. This ratio can also be estimated by MET-PET imaging. As MET-PET study is available in many clinical PET center, selection of candidates for BNCT may be possible by MET-PET images. Accurate planning of BNCT may be performed by static images of FBPA PET. Use of PET imaging with amino acid probes may contribute very much to establish an appropriate application of BNCT for patients with malignant glioma.

  9. Studi Awal Pengaruh Pemberian Asam Boron dan Penembakan Neutron terhadap cell fibroblast dan cell lineKanker Payudara

    Directory of Open Access Journals (Sweden)

    Giner Maslebu

    2017-11-01

    Full Text Available Kanker merupakan salah satu penyakit mematikan yang mendapatkan perhatian serius oleh peneliti dan praktisi di bidang kesehatan. Penyakit kanker adalah penyakit yang timbul akibat pertumbuhan tidak normal sel jaringan tubuh yang berubah menjadi sel kanker.Dari berbagai jenis kanker, kasus yang paling banyak terjadi pada kaum perempuan adalah kanker payudara. Teknik pengobatan kanker terus dikembangkan sehingga mampu secara selektif membunuh target sel kanker (cell targeting dan memberikan efek yang minimal bagi sel sehat di sekitar target. Salah satu teknik pengobatan yang menjanjikan adalah Boron Neutron Captured Teraphy (BNCT. Dalam penelitian ini, sel fibroblast dan sel kanker payudara T47D dipanen pada sumuran setelah diinkubasi selama 16 jam, kemudian diberikan perlakuan  asam boron dengan dosis asam boron berjenjang 100 µM, 200 µM, 400 µM.Penembakan neutron diberikan dengan flux sebesar 1010 neutron/cm2s mengggunakan sumber neutron pada fasilitas reaktor Kartini PSTA-Batan terhadap kultur selselama 30 menit. Pada sel fibroblast tingkat kematian sel berkisar antara 2,5-21,212 % setelah pemberian asam Boron dan meningkat menjadi 24,242-71,424 % setelah penembakan neutron. Pada sel kanker payudara T47D tingkat kematian sel berkisar antara 26,761-48,76 % setelah pemberian asam Boron dan meningkat menjadi 36,585-56,25 % setelah penembakan neutron. Hasil penelitian ini menunjukkan ada pengaruh pemberian asam Boron dan penembakan Neutron terhadap tingkat kematian sel.

  10. Comparative assessment of single-dose and fractionated boron neutron capture therapy

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Fisher, C.D.

    1995-01-01

    The effects of fractionating boron neutron capture therapy (BNCT) were evaluated in the intracerebral rat 9L gliosarcoma and rat spinal cord models using the Brookhaven Medical Research Reactor (BMRR) thermal neutron beam. The amino acid analog p-boronophenylalanine (BPA) was administered prior to each exposure to the thermal neutron beam. The total physical absorbed dose to the tumor during BNCT using BPA was 91% high-linear energy transfer (LET) radiation. Two tumor doses of 5.2 Gy spaced 48 h apart (n = 14) or three tumor doses of 5.2 Gy, each separated by 48 h (n = 10), produced 50 and 60% long-term (>1 year) survivors, respectively. The outcome of neither the two nor the three fractions of radiation was statistically different from that of the corresponding single-fraction group. In the rat spinal cord, the ED 50 for radiation myelopathy (as indicated by limb paralysis within 7 months) after exposure to the thermal beam alone was 13.6 ± 0.4 Gy. Dividing the beam-only irradiation into two or four consecutive daily fractions increased the ED 50 to 14.7 ± 0.2 Gy and 15.5 ± 0.4 Gy, respectively. Thermal neutron irradiation in the presence of BPA resulted in an ED 50 for myelopathy of 13.8 ± 0.6 Gy after a single fraction and 14.9 ± 0.9 Gy after two fractions. An increase in the number of fractions to four resulted in an ED 50 of 14.3 ± 0.6 Gy. The total physical absorbed dose to the blood in the vasculature of the spinal cord during BNCT using BPA was 80% high-LET radiation. It was observed that fractionation was of minor significance in the amelioration of damage to the normal central nervous system in the rat after boron neutron capture irradiation. 30 refs., 5 figs., 3 tabs

  11. Utilization of thymine analogue as a boron carrier for neutron capture therapy

    International Nuclear Information System (INIS)

    Zhang, Z.H.; Oda, Y.; Takagaki, M.

    1993-01-01

    The BNCT effect of 5'- carboranyl uridine (5'-CU), one of a most powerful candidate of thymine analogues as a boron carrier, was investigated on experimental brain tumor models. 5'-CU was highly accumulated into tumor cells through its multi-affinity potential to a variety of subcellular fractions of DNA/RNA and proteins. The boron concentration in tumor was more than 100 ppm, and its tumor/normal brain ratio was more than 11. Thermal neutron dose yielding 37% surviving fraction on cultured glioma cells was 3.7x10 12 nvt which was lower than that of control dose of 5.8x10 12 nvt. However, α-autoradiogram revealed that 5'-CU tightly binded to a variety of normal brain structures; choloid plexus, ependymal layer and so on. Indeed, the mean surviving fraction of brain tumor rats after BNCT using 5'-CU was slightly lower than that of control rats which did not received neutrons and 5'-CU. Furthermore its cytotoxicity was not low enough, 1/10-1/20 dose of rat LD 50 was required as a therapeutic dose. We are now under investigation of its clinical applicability as a boron carrier through its chemical modification in order to circumvent those problems, or warrant of further experiments in this area. (author)

  12. Adjustment methodology for preliminary study on the distribution of bone tissue boron. Potential therapeutic applications

    International Nuclear Information System (INIS)

    Brandizzi, D; Dagrosa, A; Carpano, M.; Olivera, M. S.; Nievas, S; Cabrini, R.L.

    2013-01-01

    Boron is an element that has an affinity for bone tissue and represents a considered element in bone health . Other boron compounds are used in the Boron Neutron Capture Therapy (BNCT ) in the form of sodium borocaptate (BSH ) and borono phenylalanine (BPA). The results of clinical trials up to date are encouraging but not conclusive . At an experimental level , some groups have applied BNCT in osteosarcomas . We present preliminary methodological adjustments for the presence of boron in bone. (author)

  13. Study of ceramic mixed boron element as a neutron shielding

    International Nuclear Information System (INIS)

    Ismail Mustapha; Mohd Reusmaazran Yusof; Md Fakarudin Ab Rahman; Nor Paiza Mohamad Hasan; Samihah Mustaffha; Yusof Abdullah; Mohamad Rabaie Shari; Airwan Affandi Mahmood; Nurliyana Abdullah; Hearie Hassan

    2012-01-01

    Shielding upon radiation should not be underestimated as it can causes hazard to health. Precautions on the released of radioactive materials should be well concerned and considered. Therefore, the combination of ceramic and boron make them very useful for shielding purpose in areas of low and intermediate neutron. A six grades of ceramic tile have been produced namely IMN05 - 5 % boron, IMN06 - 6 % boron, IMN07 - 7 % boron, IMN08 - 8 % boron, IMN09 - 9 % boron, IMN10 - 10 % boron from mixing, press and sintered process. Boron is a material that capable of absorbing and capturing neutron, so that neutron and gamma test were conducted to analyze the effectiveness of boron material in combination with ceramic as shielding. From the finding, percent reduction number of count per minute shows the ceramic tiles are capable to capture neutron. Apart from all the percentage of boron used, 10 % is the most effective shields since the percent reduction indicating greater neutron captured increased. (author)

  14. Quantitative boron detection by neutron transmission method

    International Nuclear Information System (INIS)

    Okka, M.; Genceli, M.; Eren, E.; Bayulken, A.

    2008-01-01

    //Quantitative boron detection is mainly performed by chemical methods like colorimetric titration. High neutron absorption cross section of natural boron makes attractive its detection by absorption measurements. This work is an extension of earlier investigations where neutron radiography technique was used for boron detection. In the present investigation, the neutron absorption rate of boron containing solutions is the way to measure quantitatively the boron content of the solutions. The investigation was carried out in Istanbul TRIGA Mark-II reactor. In the end of the experiments, it was observed that even |ppw| grade boron in aqueous solution can be easily detected. The use of this method is certainly very useful for boron utilizing industries like glass and steel industries.The major disadvantage of the method is the obligation to use always aqueous solutions to be able to detect homogeneously the boron content. Then, steel or glass samples have to be put first in an appropriate solution form. The irradiation of steel samples can give the distribution of boron by the help of a imaging and this suggested method will give its quantitative measurement. The superiority of this method are its quick response time and its accuracy. To test this accuracy, a supposed unknown , solution of boric acid is irradiated and then calculated by the help of the calibration curve. The measured value of boric acid was 0.89 mg and the calculated value was found to be 0.98 mg which gives an accuracy of 10 %. It was also seen that the method is more accurate for low concentration. (authors)

  15. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    CERN Document Server

    Kumada, H; Matsumura, A; Nakagawa, Y; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, K; Yamamoto, T

    2003-01-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is...

  16. In vivo BNCT in experimental and spontaneous tumors at RA-1 reactor

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Schwint, Amanda E.; Nigg, David W.

    2003-01-01

    Within the search for new applications of Boron Neutron Capture Therapy (BNCT) and the basic research oriented towards the study of BNCT radiobiology to optimize its therapeutic gain, we previously proposed and validated the hamster cheek pouch oral cancer model and showed, for the first time, the success of BNCT to treat oral cancer in an experimental model. The staff of the Ra-1 Reactor (Constituyentes Atomic Center) adapted the thermal beam and physical set-up to perform in vivo BNCT of superficial tumors in small animals. We preformed a preliminary characterization of the thermal beam, performed beam only irradiation of normal and tumor bearing hamsters and in vivo BNCT of experimental oral squamous cell carcinomas in hamsters mediated by boron phenylalanine (BPA) and GB-10 (Na 2 10 B 10 H 10 ). Having demonstrated the absence of radio toxic effects in healthy tissue and a therapeutic effect of in vivo BNCT in hamster cheek pouch tumors employing the Ra-1 thermal beam, we performed a feasibility study of the treatment by BNCT of 3 terminal cases of spontaneous head and neck squamous cell carcinoma in cats following the corresponding biodistribution studies. This was the first treatment of spontaneous tumors by BNCT in our country and the first treatment by BNCT in cats worldwide. This preclinical study in terminal cases showed significant tumor control by BNCT with no damage to normal tissue. (author)

  17. Biodistribution of a new boron compound for BNCT in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Kreimann, Erica L.; Itoiz, Maria E.; Schwint, Amanda E.; Miura, M.; Coderre, J.A.; Garavaglia, Ricardo; Batistoni, Daniel A.

    2000-01-01

    We have proposed and validated the HCP carcinogenesis model of oral cancer, a model that mimics spontaneous malignant transformation, for BNCT research in a separate study. We herein perform a biodistribution study of a lipophilic carborane-containing tetraphenylporphyrin, CuTCPH, in this model. This compound was previously tested in a model of mice bearing subcutaneously transplanted mammary carcinomas. In the present study CuTCPH was administered as a single i.p. injection at a dose of 32 μg/g b.w. (10 μg B/g b.w.) or as 4 i.p. injections over 2 days at a dose of 32 μg/g b.w. per injection. Blood (Bl) and tissue, i.e. tumor (T), precancerous tissue surrounding tumor (P), normal pouch (N), skin, tongue, cheek and palate mucosa, liver, spleen, parotid gland and brain were sampled 3, 6, 12, 24, 48 and 72 hs post-administration in the single dose protocol and 1-4 days after the last injection in the multidose protocol. Boron (B) analysis was performed by ICP-AES. The maximum ratio of B concentration for the single dose protocol was 32.7:1 for T:N and 31.8:1 for T:Bl. The B value in tumor reached a maximum of 43.8 ppm. However, the mean value of 16 ± 14.3 ppm fell short of therapeutically useful levels. The multidose protocol yielded maximum ratios of 53.33:1 for T:N and 3633.3:1 for T:Bl. The maximum absolute B value in tumor reached 106.40 ppm. The mean value in tumor 3 days post-administration was 68.02 ± 25.02. Absolute and relative maximum and average B values markedly exceeded the therapeutic threshold values. (author)

  18. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G. W.

    2005-06-28

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharamacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCTagents that could be labeled with radioactive nuclides for the in vivo detection of boron.

  19. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Dynamic infrared imaging for biological and medical applications in Boron neutron capture therapy

    Science.gov (United States)

    Santa Cruz, Gustavo A.; González, Sara J.; Dagrosa, Alejandra; Schwint, Amanda E.; Carpano, Marina; Trivillin, Verónica A.; Boggio, Esteban F.; Bertotti, José; Marín, Julio; Monti Hughes, Andrea; Molinari, Ana J.; Albero, Miguel

    2011-05-01

    Boron Neutron Capture Therapy (BNCT) is a treatment modality, currently focused on the treatment of cancer, which involves a tumor selective 10B compound and a specially tuned neutron beam to produce a lethal nuclear reaction. BNCT kills target cells with microscopic selectivity while sparing normal tissues from potentially lethal doses of radiation. In the context of the Argentine clinical and research BNCT projects at the National Atomic Energy Commission and in a strong collaboration with INVAP SE, we successfully implemented Dynamic Infrared Imaging (DIRI) in the clinical setting for the observation of cutaneous melanoma patients and included DIRI as a non invasive methodology in several research protocols involving small animals. We were able to characterize melanoma lesions in terms of temperature and temperature rate-of-recovery after applying a mild cold thermal stress, distinguishing melanoma from other skin pigmented lesions. We observed a spatial and temporal correlation between skin acute reactions after irradiation, the temperature pattern and the dose distribution. We studied temperature distribution as a function of tumor growth in mouse xenografts, observing a significant correlation between tumor temperature and drug uptake; we investigated temperature evolution in the limbs of Wistar rats for a protocol of induced rheumatoid arthritis (RA), DIRI being especially sensitive to RA induction even before the development of clinical signs and studied surface characteristics of tumors, precancerous and normal tissues in a model of oral cancer in the hamster cheek pouch.

  1. Verification of the computational dosimetry system in JAERI (JCDS) for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Kumada, H; Yamamoto, K; Matsumura, A; Yamamoto, T; Nakagawa, Y; Nakai, K; Kageji, T

    2004-01-01

    Clinical trials for boron neutron capture therapy (BNCT) by using the medical irradiation facility installed in Japan Research Reactor No. 4 (JRR-4) at Japan Atomic Energy Research Institute (JAERI) have been performed since 1999. To carry out the BNCT procedure based on proper treatment planning and its precise implementation, the JAERI computational dosimetry system (JCDS) which is applicable to dose planning has been developed in JAERI. The aim of this study was to verify the performance of JCDS. The experimental data with a cylindrical water phantom were compared with the calculation results using JCDS. Data of measurements obtained from IOBNCT cases at JRR-4 were also compared with retrospective evaluation data with JCDS. In comparison with phantom experiments, the calculations and the measurements for thermal neutron flux and gamma-ray dose were in a good agreement, except at the surface of the phantom. Against the measurements of clinical cases, the discrepancy of JCDS's calculations was approximately 10%. These basic and clinical verifications demonstrated that JCDS has enough performance for the BNCT dosimetry. Further investigations are recommended for precise dose distribution and faster calculation environment

  2. PEMODELAN KOLIMATOR DI RADIAL BEAM PORT REAKTOR KARTINI UNTUK BORON NEUTRON CAPTURE THERAPY

    Directory of Open Access Journals (Sweden)

    Bemby Yulio Vallenry

    2015-03-01

    Full Text Available Salah satu metode terapi kanker adalah Boron Neutron Capture Therapy (BNCT. BNCT memanfaatkan tangkapan neutron oleh 10B yang terendapkan pada sel kanker. Keunggulan BNCT dibandingkan dengan terapi radiasi lainnya adalah tingkat selektivitas yang tinggi karena tingkatannya adalah sel. Pada penelitian ini dilakukan pemodelan kolimator di radial beamport reaktor Kartini sebagai dasar pemilihan material dan manufature kolimator sebagai sumber neutron untuk BNCT. Pemodelan ini dilakukan dengan simulasi menggunakan perangkat lunak Monte Carlo N-Particle versi 5 (MCNP 5. MCNP 5 adalah suatu paket program untuk memodelkan sekaligus menghitung masalah transpor partikel dengan mengikuti sejarah hidup neutron semenjak lahir, bertranspor pada bahan hingga akhirnya hilang karena mengalami reaksi penyerapan atau keluar dari sistem. Pemodelan ini menggunakan variasi material dan ukurannya agar menghasilkan nilai dari tiap parameter-parameter yang sesuai dengan rekomendasi I International Atomic Energy Agency (IAEA untuk BNCT, yaitu fluks neutron epitermal (Фepi > 9 n.cm-2.s-1, rasio antara laju dosis neutron cepat dan fluks neutron epitermal (Ḋf/Фepi 0,7. Berdasarkan hasil optimasi dari pemodelan ini, material dan ukuran penyusun kolimator yang didapatkan yaitu 0,75 cm Ni sebagai dinding kolimator, 22 cm Al sebagai moderator dan 4,5 cm Bi sebagai perisai gamma. Keluaran berkas radiasi yang dihasilkan dari pemodelan kolimator radial beamport yaitu Фepi = 5,25 x 106 n.cm-2s-1, Ḋf/Фepi =1,17 x 10-13 Gy.cm2.n-1, Ḋγ/Фepi = 1,70 x 10-12 Gy.cm2.n-1, Фth/Фepi = 1,51 dan J/Фepi = 0,731. Berdasarkan penelitian ini, hasil optimasi 5 parameter sebagai persyaratan kolimator untuk BNCT yang keluar dari radial beam port tidak sepenuhnya memenuhi kriteria yang direkomendasikan oleh IAEA sehingga perlu dilakukan penelitian lebih lanjut agar tercapainya persyaratan IAEA. Kata kunci: BNCT, radial beamport, MCNP 5, kolimator   One of the cancer therapy methods is

  3. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Torii, Yoshiya; Uchiyama, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsumura, Akira; Yamamoto, Tetsuya; Nose, Tadao [Tsukuba Univ., Tsukuba, Ibaraki (Japan); Nakagawa, Yoshinobu [National Sanatorium Kagawa-Children' s Hospital, Kagawa (Japan); Kageji, Teruyoshi [Tokushima Univ., Tokushima (Japan)

    2003-03-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal in the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System which can support to set the patient to an actual irradiation position swiftly and accurately. This report describes basic design of JCDS and functions in several processing, calculation methods, characteristics and performance of JCDS. (author)

  4. Clinical aspects of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goodman, J.H.; Gahbauer, R.; Clendenon, N.

    1986-01-01

    Boron neutron capture therapy is potentially useful in treating malignant tumors of the central nervous system and is technically possible. Additional in vitro and in vivo testing is required to determine toxicities, normal tissue tolerances and tissue responses to treatment parameters. Adequate tumor uptake of the capture agent can be evaluated clinically prior to implementation of a finalized treatment protocol. Phase I and Phase II protocol development, clinical pharmacokinetic studies and neutron beam development

  5. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    Science.gov (United States)

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Uranium target for electron accelerator based neutron source for BNCT

    International Nuclear Information System (INIS)

    Tonchev, A.P.; Harmon, F.; Collens, T.J.; Kennedy, K.; Sabourov, A.; Harker, Y.D.; Nigg, D.W.; Jones, J.L.

    2001-01-01

    Calculations of the epithermal-neutron yield of photoneutrons from a uranium-beryllium converter using a 27 MeV electron linear accelerator have been investigated. In this concept, relativistic electron beams from a 30 MeV LINAC impinge upon a small uranium sphere surrounded by a cylindrical tank of circulating heavy water (D 2 O) nested in a beryllium cube. The photo-fission neutron spectrum from the uranium sphere is thermalized in deuterium and beryllium, filtered and moderated in special material (AlF 3 /Al/LiF), and directed to the patient. The results of these calculations demonstrate that photoneutron devices could offer a promising alternative to nuclear reactors for the production of epithermal neutrons for Neutron Capture Therapy. The predicted parameter for the epithermal flux is more than 10 8 n.cm -2 .mA -1

  7. INEL BNCT Program: Volume 5, No. 9. Bulletin, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. [ed.

    1991-12-31

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory`s (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  8. Comparative study of two boron compounds (BPA and BOPP) for the application of BNCT to an animal model of undifferentiated thyroid cancer

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Viaggi, Mabel; Juvenal, Guillermo; Pisarev, Mario A.

    2003-01-01

    Boron neutron capture therapy (BNCT) is based on the selective uptake of certain boron compounds by tumors. Once the uptake, relative to normal tissues, is equal of greater than 3, the tumoral area is irradiated with an appropriate neutron beam. The 10 B is then converted into 11 B and this decays releasing an atom of Li, gamma rays and alpha particles. These latter have a high linear energy transfer (LET) and will cause local damage, eventually killing the tumoral cells. At the present time several clinical trials are being conducted in different countries to treat patients with glioblastoma multiform and melanomas. So far the results obtained, specially with this last disease, are quite encouraging. Undifferentiated thyroid cancer (UTC) is a very aggressive tumor which does not respond to the therapies available at the present. Usually it has a very bad prognosis with a very short survival period. We have previously shown that the human UTC cell line ARO has an uptake of borophenylanine (BPA) significantly greater than normal thyroid or than human follicular adenoma cells in culture. Moreover, an animal model for UTC was developed in our laboratory by transplanting the human ARO cells into nude mice. This model closely resembles the evolution of human disease and even produces lung metastasis, like the human. In the present studies we have compared the uptake of two boron compounds: BPA and boronated porphyrin (BOPP). BPA was administered via ip in a dose of 600 mg/kg body weight, while BOPP was given either ip or iv, in doses of 10 and 100 mg/kg body weight. The animals were sacrificed at different times after the injection: up to 150 min for BPA and after 24 h with BOPP. The concentration of boron was determined by ICP-AES. The results obtained showed that the uptake of BPA was significantly greater in the tumoral area and in the infiltrated surrounding skin than in the other organs examined (liver, kidney, lung, mice thyroid, blood, spleen and distal skin

  9. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    International Nuclear Information System (INIS)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-01

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity

  10. INEL BNCT Research Program annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1995-11-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  11. Single photon image from PET with insertable collimator for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Jung, Jooyoung; Suh, Tae Suk; Hong, Key Jo

    2014-01-01

    Boron neutron capture therapy (BNCT) is a radiation therapy technique for treating deep-seated brain tumors by irradiation with a thermal neutron in which boron-labelled low molecular weight compounds. Once completed, a single photon emission computed tomography (SPECT) scan is conducted to investigate for the region of therapy using an isotope exclusive to SPECT. In the case of an existing PET/SPECT combination system, at least two types of isotopes should be used for each scan with their purposes. Recently, researchers examined the effects of PET/SPECT dual modality on animal imaging systems. They reported that the PET/SPECT combination system was effective for simultaneous achievement of a single event and coincidence. The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one PET module with an insertable collimator for brain tumor treatment during the BNCT. We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector

  12. Application of generalized perturbation theory to sensitivity analysis in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanessa S. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Programa de Pos-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Silva, Fernando C.; Silva, Ademir X., E-mail: fernando@con.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Alvarez, Gustavo B. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Dept. de Ciencias Exatas

    2011-07-01

    Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the {sup 10}B (n, {alpha}) {sup 7}Li nuclear reaction, which emits two types of high-energy particles, {alpha} particle and the {sup 7}Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the {sup 10}B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)

  13. Application of generalized perturbation theory to sensitivity analysis in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Garcia, Vanessa S.; Silva, Fernando C.; Silva, Ademir X.; Alvarez, Gustavo B.

    2011-01-01

    Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the 10 B (n, α) 7 Li nuclear reaction, which emits two types of high-energy particles, α particle and the 7 Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the 10 B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)

  14. Dosimetry boron neutron capture therapy in liver cancer (hepatocellular carcinoma) by means of MCNP-code with neutron source from thermal column

    International Nuclear Information System (INIS)

    Irhas; Andang Widi Harto; Yohannes Sardjono

    2014-01-01

    Boron Neutron Capture Therapy (BNCT) using physics principle when B 10 (Boron-10) irradiated by low energy neutron (thermal neutron). Boron and thermal neutron reaction produced B 11m (Boron-11m) (t 1/2 =10 -2 s). B 11m decay emitted alpha, Li 7 (Lithium-7) particle and gamma ray. Irradiated time needed to ensure cancer dose enough. Liver cancer was primary malignant who located in liver (Hepatocellular carcinoma). Malignant in liver were different to metastatic from Breast, Colon Cancer, and the other. This condition was Metastatic Liver Cancer. Monte Carlo method used by Monte Carlo N-Particle (MCNP) Software. Probabilistic approach used for probability of interaction occurred and record refers to characteristic of particle and material. In this case, thermal neutron produced by model of Collimated Thermal Column Kartini Research Nuclear Reactor, Yogyakarta. Modelling organ and source used liver organ that contain of cancer tissue and research reactor. Variation of boron concentration was 20, 25, 30, 35, 40, 45, and 47 µg/g cancers. Output of MCNP calculation were neutron scattering dose, gamma ray dose and neutron flux from reactor. Neutron flux used to calculate alpha, proton and gamma ray dose from interaction of tissue material and thermal neutron. Variation of boron concentration result dose rate to every variation were 0,059; 0,072; 0,084; 0,098; 0.108; 0,12; 0,125 Gy/sec. Irradiation time who need to every concentration were 841,5 see (14 min 1 sec); 696,07 sec(11 min 36 sec); 593.11 sec (9 min 53 sec); 461,35 sec (8 min 30 sec); 461,238 sec (7 min 41 sec); 414,23 sec (6 min 54 sec); 398,38 sec (6 min 38 sec). Irradiating time could shortly when boron concentration more high. (author)

  15. Monte Carlo based treatment planning systems for Boron Neutron Capture Therapy in Petten, The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Nievaart, V A; Daquino, G G; Moss, R L [JRC European Commission, PO Box 2, 1755ZG Petten (Netherlands)

    2007-06-15

    Boron Neutron Capture Therapy (BNCT) is a bimodal form of radiotherapy for the treatment of tumour lesions. Since the cancer cells in the treatment volume are targeted with {sup 10}B, a higher dose is given to these cancer cells due to the {sup 10}B(n,{alpha}){sup 7}Li reaction, in comparison with the surrounding healthy cells. In Petten (The Netherlands), at the High Flux Reactor, a specially tailored neutron beam has been designed and installed. Over 30 patients have been treated with BNCT in 2 clinical protocols: a phase I study for the treatment of glioblastoma multiforme and a phase II study on the treatment of malignant melanoma. Furthermore, activities concerning the extra-corporal treatment of metastasis in the liver (from colorectal cancer) are in progress. The irradiation beam at the HFR contains both neutrons and gammas that, together with the complex geometries of both patient and beam set-up, demands for very detailed treatment planning calculations. A well designed Treatment Planning System (TPS) should obey the following general scheme: (1) a pre-processing phase (CT and/or MRI scans to create the geometric solid model, cross-section files for neutrons and/or gammas); (2) calculations (3D radiation transport, estimation of neutron and gamma fluences, macroscopic and microscopic dose); (3) post-processing phase (displaying of the results, iso-doses and -fluences). Treatment planning in BNCT is performed making use of Monte Carlo codes incorporated in a framework, which includes also the pre- and post-processing phases. In particular, the glioblastoma multiforme protocol used BNCT{sub r}tpe, while the melanoma metastases protocol uses NCTPlan. In addition, an ad hoc Positron Emission Tomography (PET) based treatment planning system (BDTPS) has been implemented in order to integrate the real macroscopic boron distribution obtained from PET scanning. BDTPS is patented and uses MCNP as the calculation engine. The precision obtained by the Monte Carlo

  16. Boron in nuclear medicine: New synthetic approaches to PET, SPECT, and BNCT agents

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1989-10-01

    The primary objective of the DOE Nuclear Medicine Program at The University of Tennessee is the creation of new methods for introducing short-lived isotopes into agents for use in PET and SPECT. A small, but significant portion of our effort is directed toward the design of boron-containing neutron therapy agents. The uniqueness of the UT program is its focus on the design of new chemistry (molecular architecture) and technology as opposed to the application of known reactions to the synthesis of specific radiopharmaceuticals, the new technology is then utilized in nuclear medicine research at the UT Biomedical Imaging Center and in collaboration with colleagues at other DOE facilities (Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Oak Ridge Associated Universities)

  17. Neutron intensity monitor with activation foil for p-Li neutron source for BNCT--Feasibility test of the concept.

    Science.gov (United States)

    Murata, Isao; Otani, Yuki; Sato, Fuminobu

    2015-12-01

    Proton-lithium (p-Li) reaction is being examined worldwide as a candidate nuclear production reaction for accelerator based neutron source (ABNS) for BNCT. In this reaction, the emitted neutron energy is not so high, below 1 MeV, and especially in backward angles the energy is as low as about 100 keV. The intensity measurement was thus known to be difficult so far. In the present study, a simple method was investigated to monitor the absolute neutron intensity of the p-Li neutron source by employing the foil activation method based on isomer production reactions in order to cover around several hundreds keV. As a result of numerical examination, it was found that (107)Ag, (115)In and (189)Os would be feasible. Their features found out are summarized as follows: (107)Ag: The most convenient foil, since the half life is short. (115)In: The accuracy is the best at 0°, though it cannot be used for backward angles. And (189)Os: Suitable nuclide which can be used in backward angles, though the gamma-ray energy is a little too low. These would be used for p-Li source monitoring depending on measuring purposes in real BNCT scenes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. INEL BNCT Research Program annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.

  19. INEL BNCT Research Program annual report, 1992

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database

  20. Study of the potential of using 9B(p,n) for BNCT clinical trials

    International Nuclear Information System (INIS)

    Stone, N.; Bleuel, D.; Donahue, R.; Ludewigt, B.A.; Chu, W.T.

    2000-01-01

    The potential of using a 30-MeV proton accelerator utilizing the 9 Be(p,n) 9 B reaction as a neutron source for BNCT (Boron Neutron Capture Therapy) was investigated. MCNPX (Monte Carlo Neutron Photon-transport code X) was used to calculated neutron spectra and yields for comparison against existing experimental data and for the moderator optimization. Moderator performance was assessed using MCNPX and clinical efficacy was assessed using BNCT-RTPE to estimate in-phantom dose distributions and neutron fluences. The optimized source and moderator gave comparable tumor doses and treatment times to the clinical trials recently completed at the Brookhaven Medical Research Reactor (BMRR). (author)

  1. Synovectomy by neutron capture in boron

    International Nuclear Information System (INIS)

    Vega C, H.R.

    2002-01-01

    The rheumatoid arthritis is an illness which affect approximately at 3% of the World population. This illness is characterized by the inflammation of the joints which reduces the quality of life and the productivity of the patients. Since, it is an autoimmune illness, the inflammation is due to the overproduction of synovial liquid by the increase in the quantity of synoviocytes. The rheumatoid arthritis does not have a definitive recovery and the patients have three options of treatment: the use of drugs, the surgery and the radio synovectomy. The synovectomy by neutron capture in Boron is a novel proposal of treatment of the rheumatoid arthritis that consists in using a charged compound with Boron 10 that is preferently incorporated in the synoviocytes and to a less extent in the rest of surrounding tissues of the joint. Then, the joint is exposed to a thermal neutron field that induces the reaction (n, α) in the 10 B. the products of this reaction place their energy inside synoviocytes producing their reduction and therefore the reduction of the joint inflammation. Since it is a novel procedure, the synovectomy by neutron capture in boron has two problems: the source design and the design of the adequate drug. In this work it has been realized a Monte Carlo study with the purpose to design a moderating medium that with a 239 Pu Be source in its center, produces a thermal neutron field. With the produced neutron spectra, the neutrons spectra and neutron doses were calculated in different sites inside a model of knee joint. In Monte Carlo studies it is necessary to know the elemental composition of all the joint components, for the case of synovia and the synovial liquid this information does not exist in such way that it is supposed that its composition is equal than the water. In this work also it has been calculated the kerma factors by neutrons of synovia and the synovial liquid supposing that their elemental composition are similar to the blood tissue

  2. Application of boron-entrapped stealth liposomes to inhibition of growth of tumour cells in the in vivo boron neutron-capture therapy model.

    Science.gov (United States)

    Yanagie, H; Maruyama, K; Takizawa, T; Ishida, O; Ogura, K; Matsumoto, T; Sakurai, Y; Kobayashi, T; Shinohara, A; Rant, J; Skvarc, J; Ilic, R; Kuhne, G; Chiba, M; Furuya, Y; Sugiyama, H; Hisa, T; Ono, K; Kobayashi, H; Eriguchi, M

    2006-01-01

    Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between (10)B and thermal neutrons. It is necessary for effective BNCT therapy to accumulate (10)B atoms in the tumour cells. The delivery system consisted of polyethylene-glycol (PEG) binding liposomes (DPPC/cholesterol/DSPC-PEG2000) with an entrapped (10)B-compound and we evaluated the cytotoxic effects of intravenously injected (10)B-PEG-liposomes on human pancreatic carcinoma xenografts in nude mice with thermal neutron irradiation. After thermal neutron irradiation of mice injected with (10)B-PEG-liposomes, growth of AsPC-1 tumours was suppressed relative to controls. Injection of (10)B-PEG-liposomes caused the greatest tumour suppression with thermal neutron irradiation in vivo. These results suggest that intravenous injection of (10)B-PEG-liposomes can increase the retention of (10)B atoms by tumour cells, causing suppression of tumour growth in vivo, after thermal neutron irradiation.

  3. Analysis of Boron Distribution in Steel using Neutron at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun-Joo; Seong, Baek-Seok; Kim, Hark-Rho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    Boron is very useful element in steels to improve the mechanical properties. In steel matrix, boron exist several types such as solute, segregation in grain boundary and many kinds of precipitate, which influence the properties of the steel. But, detecting of boron using X-ray or ion-beam is not easy because boron is very light atom than iron. However neutron gives the clear image of boron distribution from the particle tracking autoradiography (PTA) method. The PTA method of boron uses the phenomenon that boron irradiated by neutron emits Liion and alpha particle. Boron distribution can be obtained by observing the traces of the emitted Li-ion and alpha particle. At HANARO, the study for observing of boron distribution has been performed several years ago. Recently, the experimental techniques were improved for the reactor power of 30 MW. In this paper, improved experimental techniques were described and some results for boron added low-carbon steel plate were introduced.

  4. User's manual of a supporting system for treatment planning in boron neutron capture therapy. JAERI computational dosimetry system

    International Nuclear Information System (INIS)

    Kumada, Hiroaki; Torii, Yoshiya

    2002-09-01

    A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimensional head model of a patient by using CT and MRI images and that generates a input data file automatically for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal for the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System to set the patient in an actual irradiation position swiftly and accurately. This report describes basic design and procedure of dosimetry, operation manual, data and library structure for JCDS (ver.1.0). (author)

  5. BNCT irradiation facility at the JRR-4

    International Nuclear Information System (INIS)

    Torii, Y.; Kishi, T.; Kumada, H.; Yamamoto, K.; Sakurai, F.; Takayanagi, M.

    2000-01-01

    The JRR--4 was modified for fuel enrichment reducing and reactor equipment renewal. And also a medical irradiation facility for the Boron Neutron Capture Therapy (BNCT) was installed at the JRR--4 in that time. The medical irradiation facility has been composed of a heavy water tank, a collimator and an irradiation room. The heavy water tank has four layers of heavy water for spectrum shifter and 75cm-thickness aluminum for the shield of fast neutron. The collimator is for collimating thermal neutron and epithermal neutron using polyethylene with lithium-fluoride and shielding gamma ray by bismuth. The irradiation room has sufficient space at exit side of the beam, to accommodate a large working area for setting the patient. Both of the medical treatment room and the patient-monitoring area were prepared adjacent to the irradiation room. The medical irradiation facility in the JRR-4 is designed to permit selection of neutron energies from thermal neutron to epithermal neutron by changing the thickness of heavy water layers. Therefore it is available to continue the same kind of BNCT with thermal neutron used to perform in the JRR-2, as well as to commence the research and development of BNCT with epithermal neutron, which will make the brain tumor treatment possible at a deep part of brain. The full power operation of the JRR-4 was resumed with LEU fuel in October 1998 and currently performing some experiments to measure the neutron fluxes and physical doses for determinate characterization of the medical irradiation facility. The first medical irradiation for BNCT was carried out on 25th October 1999. The patient was treated by Tsukuba University group using thermal neutron beam included epi-thermal neutrons. (author)

  6. BNCT irradiation facility at the JRR-4

    Energy Technology Data Exchange (ETDEWEB)

    Torii, Y.; Kishi, T.; Kumada, H.; Yamamoto, K.; Sakurai, F.; Takayanagi, M. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-10-01

    The JRR--4 was modified for fuel enrichment reducing and reactor equipment renewal. And also a medical irradiation facility for the Boron Neutron Capture Therapy (BNCT) was installed at the JRR--4 in that time. The medical irradiation facility has been composed of a heavy water tank, a collimator and an irradiation room. The heavy water tank has four layers of heavy water for spectrum shifter and 75cm-thickness aluminum for the shield of fast neutron. The collimator is for collimating thermal neutron and epithermal neutron using polyethylene with lithium-fluoride and shielding gamma ray by bismuth. The irradiation room has sufficient space at exit side of the beam, to accommodate a large working area for setting the patient. Both of the medical treatment room and the patient-monitoring area were prepared adjacent to the irradiation room. The medical irradiation facility in the JRR-4 is designed to permit selection of neutron energies from thermal neutron to epithermal neutron by changing the thickness of heavy water layers. Therefore it is available to continue the same kind of BNCT with thermal neutron used to perform in the JRR-2, as well as to commence the research and development of BNCT with epithermal neutron, which will make the brain tumor treatment possible at a deep part of brain. The full power operation of the JRR-4 was resumed with LEU fuel in October 1998 and currently performing some experiments to measure the neutron fluxes and physical doses for determinate characterization of the medical irradiation facility. The first medical irradiation for BNCT was carried out on 25th October 1999. The patient was treated by Tsukuba University group using thermal neutron beam included epi-thermal neutrons. (author)

  7. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model.

    Science.gov (United States)

    Heber, Elisa M; Hawthorne, M Frederick; Kueffer, Peter J; Garabalino, Marcela A; Thorp, Silvia I; Pozzi, Emiliano C C; Monti Hughes, Andrea; Maitz, Charles A; Jalisatgi, Satish S; Nigg, David W; Curotto, Paula; Trivillin, Verónica A; Schwint, Amanda E

    2014-11-11

    The application of boron neutron capture therapy (BNCT) mediated by liposomes containing (10)B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 ± 16 ppm whereas the precancerous tissue contained 11 ± 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70-88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70-88%.

  8. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system

    Science.gov (United States)

    NAKAMURA, Satoshi; IMAMICHI, Shoji; MASUMOTO, Kazuyoshi; ITO, Masashi; WAKITA, Akihisa; OKAMOTO, Hiroyuki; NISHIOKA, Shie; IIJIMA, Kotaro; KOBAYASHI, Kazuma; ABE, Yoshihisa; IGAKI, Hiroshi; KURITA, Kazuyoshi; NISHIO, Teiji; MASUTANI, Mitsuko; ITAMI, Jun

    2017-01-01

    This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24Na, 38Cl, 80mBr, 82Br, 56Mn, and 42K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 102, (2.2 ± 0.1) × 101, (3.4 ± 0.4) × 102, 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 101 Bq/g/mA, respectively. The 24Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system. PMID:29225308

  9. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    Science.gov (United States)

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Clinical practice in BNCT to the brain

    International Nuclear Information System (INIS)

    Nakagawa, Y.

    2001-01-01

    Our concept of Boron Neutron Capture Therapy (BNCT) is to selectively destroy tumour cells using the high LET particles yielded from the 10B(n,α)7Li reactions. The effort of clinical investigators has concentrated on how to escalate the radiation dose at the target point. BNCT in Japan combines thermal neutrons and BSH (Na 2 B 12 H 11 SH). The radiation dose is determined by the neutron fluence at the target point and the boron concentration in the tumour tissue. According to the recent analysis, the ratio of boron concentration (BSH) in tumour tissue and blood is nearly stable at around 1.2 to 1.69. Escalation of the radiation dose was carried out by means of improving the penetration of the thermal neutron beam. Since 1968, 175 patients with glioblastoma (n=83), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumour (n=32) were treated by BNCT at 5 reactors (HTR n=13, JRR-3 n=1, MulTR n=98, KUR n=30, JRR-2 n=33). The retrospective analysis revealed that the important factors related to the clinical results and QOL of the patients were minimum tumour volume radiation dose, more than 18Gy of physical dose and maximum vascular radiation dose (less than 15Gy) in the normal cortex. We have planned several trials to escalate the target radiation dose. One trial makes use of a cavity in the cortex following debulking surgery of the tumour tissue to improve neutron penetration. The other trial is introduction of epithermal neutron. KUR and JRR-4 were reconstructed and developed to be able to irradiate using epithermal neutrons. The new combination of surgical procedure and irradiation using epithermal neutrons should remarkably improve the target volume dose compared to the radiation dose treated by thermal neutrons. (author)

  11. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. MCNP speed advances for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.

    1998-04-01

    The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject's head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers

  13. MCNP speed advances for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.

    1998-04-01

    The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject`s head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers.

  14. Impact of intra-arterial administration of boron compounds on dose-volume histograms in boron neutron capture therapy for recurrent head-and-neck tumors

    International Nuclear Information System (INIS)

    Suzuki, Minoru; Sakurai, Yoshinori; Nagata, Kenji; Kinashi, Yuko; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira; Kato, Ituro; Fuwa, Nobukazu; Hiratsuka, Junichi; Imahori, Yoshio

    2006-01-01

    Purpose: To analyze the dose-volume histogram (DVH) of head-and-neck tumors treated with boron neutron capture therapy (BNCT) and to determine the advantage of the intra-arterial (IA) route over the intravenous (IV) route as a drug delivery system for BNCT. Methods and Materials: Fifteen BNCTs for 12 patients with recurrent head-and-neck tumors were included in the present study. Eight irradiations were done after IV administration of boronophenylalanine and seven after IA administration. The maximal, mean, and minimal doses given to the gross tumor volume were assessed using a BNCT planning system. Results: The results are reported as median values with the interquartile range. In the IA group, the maximal, mean, and minimal dose given to the gross tumor volume was 68.7 Gy-Eq (range, 38.8-79.9), 45.0 Gy-Eq (range, 25.1-51.0), and 13.8 Gy-Eq (range, 4.8-25.3), respectively. In the IV group, the maximal, mean, and minimal dose given to the gross tumor volume was 24.2 Gy-Eq (range, 21.5-29.9), 16.4 Gy-Eq (range, 14.5-20.2), and 7.8 Gy-Eq (range, 6.8-9.5), respectively. Within 1-3 months after BNCT, the responses were assessed. Of the 6 patients in the IV group, 2 had a partial response, 3 no change, and 1 had progressive disease. Of 4 patients in the IA group, 1 achieved a complete response and 3 a partial response. Conclusion: Intra-arterial administration of boronophenylalanine is a promising drug delivery system for head-and-neck BNCT

  15. Evaluation of neutron irradiation fields for BNCT by using absorbed dose in a phantom

    International Nuclear Information System (INIS)

    Aizawa, O.

    1993-01-01

    In a previous paper, the author defined the open-quotes irradiation timeclose quotes as the time of irradiation in which the maximum open-quotes total background doseclose quotes becomes 2,500 RBE-cGy. In this paper, he has modified the definition a little as the time of irradiation in which the maximum open-quotes lμg/g B-10 doseclose quotes becomes 3,000 RBE-cGy, because he assumed that normal tissue contained 1μg/g B-10. Moreover, he has modified the dose criteria for BNCT as follows: The open-quotes eye doseclose quotes, open-quotes total body doseclose quotes and open-quotes except-head doseclose quotes should be less that 200, 100 and 50 RBE-cGy, respectively. He has added one more criterion for BNCT that the thermal neutron fluence at the tumor position should be over 2.5x10 12 n/cm 2 at the open-quotes irradiation timeclose quotes. The distance from the core side to the irradiation port in the open-quotes old configurationclose quotes of the Musashi reactor (TRIGA-II, 100kW) was 160 cm. He is now planning to design an eccentric core and to move the reactor core nearer to the irradiation port, distance between the core side and the irradiation port to be 140, 130 and 120cm. The other assumptions used in this paper are as follows: (1) The B-10 concentrations in tumor are 30 and/or 10μg/g. (2) The depth of the tumor is 5.0 cm to 5.5 cm from the surface. (3) The RBE values used are 1.0 for all gamma rays and 2.3 for B 10 (n,α) reaction products. (4) The RBE values for neutrons are the following three cases: the first case is using 1.6 for all neutrons; the second one is using 3.2 for non-thermal neutrons and 1.6 for thermal neutrons; the third case is using 4.8 for fast neutrons, 3.2 for faster epithermal and epithermal neutrons, and 1.6 for thermal neutrons

  16. Boron in nuclear medicine: New synthetic approaches to PET, SPECT and BNCT agents

    International Nuclear Information System (INIS)

    Kabalka, G.W.

    1990-10-01

    The primary objective of the Department of Energy (DOE) Nuclear Medicine Program at the University of Tennessee is the creation of new methods for introducing short-lived isotopes into agents for use in PET and SPECT. A small, but significant portion of our effort is directed toward the design of boron-containing neutron therapy agents. The uniqueness of the UT program is its focus on the design of new chemistry (molecular architecture) and technology as opposed to the application of know reactions to the synthesis of specific radiopharmaceuticals. The new technology is then utilized in nuclear medicine research at the UT Biomedical Imaging Center and in collaboration with colleagues at other DOE facilities (Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Oak Ridge Associated Universities). An important goal of the DOE Nuclear Medicine Program at UT is to provide training for students (predoctoral and postdoctoral) in the scientific aspects of nuclear medicine. The academic nature of the program facilitates collaborative interactions with other DOE nuclear medicine programs and helps to insure the continued availability of skilled scientists dedicated to the advancement of nuclear medicine

  17. MODELING THE RADIATION SHIELDING OF BORON NEUTRON CAPTURE THERAPY BASED ON 2.4 MEV D-D NEUTRON GENERATOR FACILITY

    Directory of Open Access Journals (Sweden)

    Muhammad Mu’Alim

    2018-01-01

    PEMODELAN PERISAI RADIASI PADA FASILITAS BORON NEUTRON CAPTURE THERAPY BERBASIS GENERATOR NEUTRON D-D 2,4 MeV. Telah dimodelkan perisai radiasi pada fasilitas Boron Neutron Capture Therapy (BNCT berbasis reaksi D-D pada Neutron Generator 2,4 MeV dengan Beam Shaping Assembly (BSA yang telah didesain sebelumnya. Pemodelan ini dilakukan untuk memperoleh suatu desain perisai radiasi untuk fasilitas BNCT berbasis generator neutron 2,4 MeV. Pemodelan dilakukan dengan cara memvariasikan bahan dan ketebalan perisasi radiasi. Bahan yang dipilih adalah beton barit, parafin, polietilen terborasi dan timbal. Perhitungan dilakukan menggunakan program MCNPX dengan tally F4 untuk menentukan laju dosis yang keluar dari perisai radiasi. Desain periasi radiasi dinyatakan optimal jika radiasi yang dihasilkan diluar perisai radiasi tidak melebihi Nilai Batas Dosis (NBD yang telah ditentukan oleh BAPETEN. Hasilnya, diperoleh suatu desain perisai radiasi menggunakan lapisan utama beton barit setebal 100 cm yang mengelilingi ruangan 100 cm x 100 cm x 166,4 cm dan polietilen terborasi 40 cm yang mengelilingi bahan beton barit. Kemudian ditambahkan beton barit 10 cm dan polietilen terborasi 10 cm untuk mengurangi radiasi primer yang lurus dari BSA setelah keluar dari lapisan utama. Laju dosis terbesar adalah 4,58 μSv·jam-1 pada sel 227 dan laju dosis rata-rata yang dihasilkan adalah sebesar 0,65 µSv·jam-1. Nilai laju dosis tersebut masih dibawah ambang batas NBD yang diperbolehkan oleh BAPETEN untuk pekerja radiasi. Kata kunci: Perisai radiasi, tally, laju dosis radiasi, BSA, BNCT

  18. Protocols for BNCT of glioblastoma multiforme at Brookhaven: Practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Chanana, A.D.; Coderre, J.A.; Joel, D.D.; Slatkin, D.N.

    1996-12-31

    In this report we discuss some issues considered in selecting initial protocols for boron neutron capture therapy (BNCT) of human glioblastoma multiforme. First the tolerance of normal tissues, especially the brain, to the radiation field. Radiation doses limits were based on results with human and animal exposures. Estimates of tumor control doses were based on the results of single-fraction photon therapy and single fraction BNCT both in humans and experimental animals. Of the two boron compounds (BSH and BPA), BPA was chosen since a FDA-sanctioned protocol for distribution in humans was in effect at the time the first BNCT protocols were written and therapy studies in experimental animals had shown it to be more effective than BSH.

  19. Mock-up experiment at Birmingham University for BNCT project of Osaka University--Neutron flux measurement with gold foil.

    Science.gov (United States)

    Tamaki, S; Sakai, M; Yoshihashi, S; Manabe, M; Zushi, N; Murata, I; Hoashi, E; Kato, I; Kuri, S; Oshiro, S; Nagasaki, M; Horiike, H

    2015-12-01

    Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. NEUTRON IRRADIATION EFFECTS ON SPARK PLASMA SINTERED BORON CARBIDE

    OpenAIRE

    Buyuk, Bulent; Cengiz, Meral; Tugrul, A. Beril

    2015-01-01

    In this study, spark plasma sintered boron carbide (B4C) was examined against neutrons. The specimens were irradiated by reactor neutrons (include both thermal and fast neutrons) up to fluence of 1.37x1021n m-2. Thermal and fast neutrons cause swelling by different interactions with boron (10B) atoms in the related materials. X-Ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images were investigated for initial and irradiated samples. In addition, lattice parameters and ...

  1. Neutron-gamma discrimination of boron loaded plastic scintillator

    International Nuclear Information System (INIS)

    Wang Dong; He Bin; Zhang Quanhu; Wu Chuangxin; Luo Zhonghui

    2010-01-01

    Boron loaded plastic scintillator could detect both fast neutrons thanks to hydrogen and thermal neutrons thanks to 10B. Both reactions have large cross sections, and results in high detection efficiency of incident neutrons. However, similar with other organic scintillators, boron loaded plastic scintillator is sensitive to gamma rays and neutrons. So gamma rays must be rejected from neutrons using their different behavior in the scintillator. In the present research zero crossing method was used to test neutron-gamma discrimination of BC454 boron loaded plastic scintillator. There are three Gaussian peaks in the time spectrum, they are corresponding to gamma rays, fast neutrons and flow neutrons respectively. Conclusion could be made that BC454 could clear discriminate slow neutrons and gamma, but the discrimination performance turns poor as the neutrons' energy becomes larger. (authors)

  2. Determination of boron-containing compounds in urine and blood plasma from boron neutron capture therapy patients. The importance of using coupled techniques.

    Science.gov (United States)

    Svantesson, Eva; Capala, Jacek; Markides, Karin E; Pettersson, Jean

    2002-10-15

    The necessity of using coupled techniques to analyze samples from boron neutron capture therapy (BNCT) patients prior to element-specific detection has been demonstrated. BNCT patients were infused with p-boronophenylalanine (BPA)-fructose complex before the therapy started. Urine and blood plasma samples were collected at different times after the start of the BPA administration and were run on a porous graphitic carbon column coupled on-line to an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and an ICP time-of-flight mass spectrometer (TOF-MS). In addition to BPA, a possible metabolite to BPA and some minor boron-containing compounds, eluting close to the front, were also found in the urine and plasma samples. Because only the total concentration of boron has been measured so far in earlier studies, the suspected metabolite could not be detected, and this is the first report indicating its presence in urine and plasma of BNCT patients. The abundance of 10B in urine was about the same for BPA and its possible metabolite (98-99%). The ratio between the possible metabolite and BPA was found to differ in the urine from different patients. Most of the patients had a metabolite concentration of approximately 10 mol % of the BPA content in their urine 5-11 h after the start of the BPA administration. This ratio increased to between 30 and 80% when 24 h had passed. The ratio of metabolite to BPA was found to be lower in the plasma than in the urine samples at comparable time after the start of BPA infusion. Preliminary results from micro-LC-electrospray ionization (ESI)-MS/MS measurements on four urine samples indicate that the metabolite has a higher mass than BPA.

  3. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    International Nuclear Information System (INIS)

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models

  4. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  5. Evaluation of BPA uptake in clear cell sarcoma (CCS) in vitro and development of an in vivo model of CCS for BNCT studies

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, T., E-mail: fujitaku@hp.pref.hyogo.jp [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Andoh, T. [Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Sudo, T. [Section of Translational Research, Hyogo Cancer Center, Akashi 673-0021 (Japan); Fujita, I.; Imabori, M. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Moritake, H. [Division of Pediatrics, University of Miyazaki, Miyazaki 889-1692 (Japan); Sugimoto, T. [Department of Pediatrics, Saiseikai Shigaken Hospital, Ritto 520-3046 (Japan); Sakuma, Y. [Department of Pathology, Hyogo Cancer Center, Akashi 673-0021 (Japan); Takeuchi, T. [Department of Pathology, Kochi Medical School, Nangoku 783-8505 (Japan); Sonobe, H. [Department of Pathology, Chugoku Central Hospital, Fukuyama 720-0001 (Japan); Epstein, Alan L. [Department of Pathology, Keck School of Medicine,University of Southern California, Los Angeles,CA 90033 (United States); Akisue, T. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kirihata, M. [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531 (Japan); Kurosaka, M. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Fukumori, Y.; Ichikawa, H. [Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan)

    2011-12-15

    Clear cell sarcoma (CCS), a rare malignant tumor with a predilection for young adults, is of poor prognosis. Recently however, boron neutron capture therapy (BNCT) with the use of p-borono-L-phenylalanine (BPA) for malignant melanoma has provided good results. CCS also produces melanin; therefore, the uptake of BPA is the key to the application of BNCT to CCS. We describe, for the first time, the high accumulation of boron in CCS and the CCS tumor-bearing animal model generated for BNCT studies.

  6. A clinical trial protocol for second line treatment of malignant brain tumors with BNCT at University of Tsukuba

    Energy Technology Data Exchange (ETDEWEB)

    Aiyama, H. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Nakai, K., E-mail: knakai@Neurosurg-tsukuba.com [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Yamamoto, T. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan)] [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Nariai, T. [Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyouku (Japan); Kumada, H. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Ishikawa, E. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Isobe, T. [Department of Radiation Oncology, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan); Endo, K.; Takada, T.; Yoshida, F.; Shibata, Y.; Matsumura, A. [Department of Neurosurgery, Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba (Japan)

    2011-12-15

    We have evaluated the efficacy and safety of boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor using a new protocol. One of the two patients enrolled in this trial is a man with recurrent glioblastoma and the other is a woman with anaplastic meningioma. Both are still alive and no severe adverse events have been observed. Our findings suggest that NCT will be safe as a palliative therapy for malignant brain tumors. - Highlights: Black-Right-Pointing-Pointer Boron neutron capture therapy (BNCT) for recurrent glioma and malignant brain tumor. Black-Right-Pointing-Pointer Two cases with recurrent glioblastoma and anaplastic meningioma. Black-Right-Pointing-Pointer No severe adverse events have been observed using BNCT. Black-Right-Pointing-Pointer BNCT has a possibility of a safe palliative therapy for malignant brain tumors.

  7. INEL BNCT research program: Annual report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented.

  8. INEL BNCT research program: Annual report, 1995

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented

  9. Lattice design of a FFAG accelerator for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Wang Kun; Song Mingtao; Zhang Jinquan; Shenglina

    2014-01-01

    A compact FFAG accelerator for Boron Neutron Capture Therapy (BNCT) has been designed. Firstly, a linear simplified magnet model has been applied to calculate the basic parameters of FFAG accelerator; Then the WINAGILE program is used to design and optimize the lattice, as well as to obtain the critical parameters such as the Beta functions, the dispersion functions, the envelopes and the tunes; Also, the MAD program is used to check the design scheme; Finally, the ZGOUBI program is used to simulate the particles movement in the nonlinear magnetic field. The super period of the FFAG accelerator is 6. The energy is 11 MeV and the eld index k is 1.9. The structure is compact with the circumference of 11.1795 m. The results show that this optimized design has achieved the proposal object. (authors)

  10. Dose estimation for internal organs during boron neutron capture therapy for body-trunk tumors

    International Nuclear Information System (INIS)

    Sakurai, Y.; Tanaka, H.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kondo, N.; Ono, K.; Maruhashi, A.

    2014-01-01

    Radiation doses during boron neutron capture therapy for body-trunk tumors were estimated for various internal organs, using data from patients treated at Kyoto University Research Reactor Institute. Dose–volume histograms were constructed for tissues of the lung, liver, kidney, pancreas, and bowel. For pleural mesothelioma, the target total dose to the normal lung tissues on the diseased side is 5 Gy-Eq in average for the whole lung. It was confirmed that the dose to the liver should be carefully considered in cases of right lung disease. - Highlights: • This article is written about the dose estimation for internal organs in body-trunk BNCT. • The dose estimations were performed for several internal organs in body-trunk BNCTs for several body tumors, carried out at Kyoto University Research Reactor Institute

  11. Liposome and co-spray-dried PVP / o-carborane formulations for BNCT treatment of cancer

    OpenAIRE

    Olusanya, Temidayo; Stich, Theresia; Higgins, Samantha Caroline; Lloyd, Rhiannon Eleanor Iris; Pilkington, Geoffrey John; Fatouros, Dimitrios; Calabrese, Gianpiero; Smith, James Richard; Tsibouklis, John

    2015-01-01

    Purpose: Boron neutron capture therapy (BNCT) is a method for selectively destroying malignant (normally glioma) cells whilst sparing normal tissue. Irradiation of 10B (large neutron capture cross-section) with thermal neutrons effects the nuclear fission reaction: 10B + 1n → → 7Li+ + α + γ; where the penetration of α-particles and 7Li+ is only 8 and 5 µm, respectively, i.e., within a single cell thickness. Poor selectivity is the main reason why BNCT has not become a mainstream cancer therap...

  12. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.

    Science.gov (United States)

    Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-01

    Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a "dual phantom technique" for measuring the fast neutron component of dose is reported. One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % 6LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % 6LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the

  13. Development of cancer therapy facility of Hanaro and medical research in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Jin; Kim, M. S.; Kim, M. J.; Park, S. J. [KAERI, Taejon (Korea, Republic of); Lee, C. H.; Kwack, H. S.; Kim, M. S. [Korea Inst. of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, J. K.; Park, S. H.; Shin, C. H. [Hanyang Univ., Seoul (Korea, Republic of)

    2003-05-01

    In order to support the domestic research on the Boron Neutron Capture Therapy(BNCT) which is a promising treatment method for tumor in principle, a neutron irradiation facility and a Prompt Gamma Neutron Activation Analysis (PGNAA) equipment for the boron concentration measurement are developed and installed at Hanaro. Meanwhile basic research has been performed to develop BNCT medical technology using above Hanaro facilities when they are ready. The Hanaro BNCT facility gives almost pure thermal neutron beam, it can be applied to all level of BNCT research from the cell culture and animal study to clinical trials by focussed irradiation, and its use does not cause any interference with other utilization. It can also be used for other purposes such as standard thermal neutron field and a dynamic neutron radiography with excellent features. The PGNAA equipment will be used not only for the boron concentration measurement but also for the general multi-element simultaneous analyses. The medical research for BNCT covers basic research on dose evaluation, boron compound behaviour and new compound development. Technologies for neutron and gamma transport calculation and their measurement, and micro dosimetry are developed. While import of a dose planning program has been pushed, domestic development of the program has been tried. Imaging technologies for boron distribution using SPECT or PET are developed by labeling I-123 or F-18 to BPA. Data for the BPA accumulation into the brain tumor are produced by clinical trials of the technology. A general and versatile method for the synthesis of o-carborane clusters containing of their important biological activities as neurotransmitter, antipsychotic or anticancer is developed. We found three promising compounds of which accumulation into B-16 melanoma cell is about 10 times of BPA.

  14. DESIGN IMPROVEMENT OF A LIQUID-MODERATOR-BASED NEUTRON SPECTROMETER FOR BNCT.

    Science.gov (United States)

    Tamaki, Shingo; Kusaka, Sachie; Sato, Fuminobu; Murata, Isao

    2017-10-27

    Boron neutron capture therapy is known to be an effective radiation cancer therapy that requires neutron irradiation. A neutron field generated by an accelerator-based neutron source has various energy spectra, and it is necessary to evaluate the neutron spectrum in the treatment field. However, the method used to measure the neutron spectrum in the treatment field is not well established. Many researchers are making efforts to improve the spectrometers. To solve this problem, we are developing a liquid-moderator-based neutron spectrometer that is based on the same theory as that of the Bonner sphere spectrometer. The spectrometer uses a liquid moderator and absorber. In the present study, we performed a design study to improve the previously developed liquid-moderator-based neutron spectrometer. By carrying out a numerical simulation of the designed new spectrometer, we finally assessed and confirmed the validity of this spectrometer numerically. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Atomic force microscopic neutron-induced alpha-autoradiography for boron imaging in detailed cellular histology

    International Nuclear Information System (INIS)

    Amemiya, K.; Takahashi, H.; Fujita, K.; Nakazawa, M.; Yanagie, H.; Eriguchi, M.; Nakagawa, Y.; Sakurai, Y.

    2006-01-01

    The information on subcellular microdistribution of 10 B compounds a cell is significant to evaluate the efficacy of boron neutron capture therapy (BNCT) because the damage brought by the released alpha/lithium particles is highly localized along their path, and radiation sensitivity is quite different among each cell organelles. In neutron-induced alpha-autoradiography (NIAR) technique, 10 B can be measured as tracks for the energetic charged particles from 10 B(n, alpha) 7 Li reactions in solid state track detectors. To perform the NIAR at intracellular structure level for research of 10 B uptake and/or microdosimetry in BNCT, we have developed high-resolution NIAR method with an atomic force microscope (AFM). AFM has been used for analyses of biological specimens such as proteins, DNAs and surface of living cells have, however, intracellular detailed histology of cells has been hardly resolved with AFM since flat surface of sectioned tissue has quite less topographical contrast among each organelle. In our new sample preparation method using UV processing, materials that absorb UV in a semi-thin section are selectively eroded and vaporized by UV exposure, and then fine relief for cellular organelles such as mitochondria, endoplasmic reticulum, filament structure and so on reveals on flat surface of the section, which can be observed with an AFM. The imaging resolution was comparable to TEM imaging of cells. This new method provides fast and cost-effective observation of histological sections with an AFM. Combining this method with NIAR technique, intracellular boron mapping would be possible. (author)

  16. Neutron spectrum for neutron capture therapy in boron

    International Nuclear Information System (INIS)

    Medina C, D.; Soto B, T. G.; Baltazar R, A.; Vega C, H. R.

    2016-10-01

    Glioblastoma multiforme is the most common and aggressive of brain tumors and is difficult to treat by surgery, chemotherapy or conventional radiation therapy. One treatment alternative is the Neutron Capture Therapy in Boron, which requires a beam modulated in neutron energy and a drug with 10 B able to be fixed in the tumor. When the patients head is exposed to the neutron beam, they are captured by the 10 B and produce a nucleus of 7 Li and an alpha particle whose energy is deposited in the cancer cells causing it to be destroyed without damaging the normal tissue. One of the problems associated with this therapy is to have an epithermal neutrons flux of the order of 10 9 n/cm 2 -sec, whereby irradiation channels of a nuclear research reactor are used. In this work using Monte Carlo methods, the neutron spectra obtained in the radial irradiation channel of the TRIGA Mark III reactor are calculated when inserting filters whose position and thickness have been modified. From the arrangements studied, we found that the Fe-Cd-Al-Cd polyethylene filter yielded a ratio between thermal and epithermal neutron fluxes of 0.006 that exceeded the recommended value (<0.05), and the dose due to the capture gamma rays is lower than the dose obtained with the other arrangements studied. (Author)

  17. A CONCEPTUAL DESIGN OF NEUTRON COLLIMATOR IN THE THERMAL COLUMN OF KARTINI RESEARCH REACTOR FOR IN VITRO AND IN VIVO TEST OF BORON NEUTRON CAPTURE THERAPY

    Directory of Open Access Journals (Sweden)

    Nina Fauziah

    2015-03-01

    Full Text Available Studies were carried out to design a collimator which results in epithermal neutron beam for IN VITRO and IN VIVO of Boron Neutron Capture Therapy (BNCT at the Kartini research reactor by means of Monte Carlo N-Particle (MCNP codes. Reactor within 100 kW of thermal power was used as the neutron source. The design criteria were based on recommendation from the International Atomic Energy Agency (IAEA. All materials used were varied in size, according to the value of mean free path for each material. MCNP simulations indicated that by using 5 cm thick of Ni as collimator wall, 60 cm thick of Al as moderator, 15 cm thick of 60Ni as filter, 2 cm thick of Bi as γ-ray shielding, 3 cm thick of 6Li2CO3-polyethylene as beam delimiter, with 1 to 5 cm varied aperture size, epithermal neutron beam with maximum flux of 7.65 x 108 n.cm-2.s-1 could be produced. The beam has minimum fast neutron and γ-ray components of, respectively, 1.76 x 10-13 Gy.cm2.n-1 and 1.32 x 10-13 Gy.cm2.n-1, minimum thermal neutron per epithermal neutron ratio of 0.008, and maximum directionality of 0.73. It did not fully pass the IAEA’s criteria, since the epithermal neutron flux was below the recommended value, 1.0 x 109 n.cm-2.s-1. Nonetheless, it was still usable with epithermal neutron flux exceeding 5.0 x 108 n.cm-2.s-1. When it was assumed that the graphite inside the thermal column was not discharged but only the part which was going to be replaced by the collimator, the performance of the collimator became better within the positive effect from the surrounding graphite that the beam resulted passed all criteria with epithermal neutron flux up to 1.68 x 109 n.cm-2.s-1. Keywords: design, collimator, epithermal neutron beam, BNCT, MCNP, criteria   Telah dilakukan penelitian tentang desain kolimator yang menghasilkan radiasi netron epitermal untuk uji in vitro dan in vivo pada Boron Neutron Capture Therapy (BNCT di Reaktor Riset Kartini dengan menggunakan program Monte

  18. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Biodistribution of boron after intravenous 4-dihydroxyborylphenylalanine-fructose (BPA-F) infusion in meningioma and schwannoma patients: A feasibility study for boron neutron capture therapy.

    Science.gov (United States)

    Kulvik, Martti; Kallio, Merja; Laakso, Juha; Vähätalo, Jyrki; Hermans, Raine; Järviluoma, Eija; Paetau, Anders; Rasilainen, Merja; Ruokonen, Inkeri; Seppälä, Matti; Jääskeläinen, Juha

    2015-12-01

    We studied the uptake of boron after 100 mg/kg BPA infusion in three meningioma and five schwannoma patients as a pre-BNCT feasibility study. With average tumour-to-whole blood boron concentrations of 2.5, we discuss why BNCT could, and probably should, be developed to treat severe forms of the studied tumours. However, analysing 72 tumour and 250 blood samples yielded another finding: the plasma-to-whole blood boron concentrations varied with time, suggesting that the assumed constant boron ratio of 1:1 between normal brain tissue and whole blood deserves re-assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Experimental boron neutron capture therapy for melanoma: Systemic delivery of boron to melanotic and amelanotic melanoma

    International Nuclear Information System (INIS)

    Coderre, J.A.; Glass, J.D.; Micca, P.; Greenberg, D.; Packer, S.

    1990-01-01

    The boron-containing melanin precursor analogue p-boronophenylalanine (BPA) has previously been shown to selectively deliver boron to pigmented murine melanomas when administered in a single intragastric dose. If boron neutron capture therapy is to become a clinically useful method of radiation therapy for human malignant melanoma, the boron carrier must be capable of delivering useful amounts of boron to remote tumor sites (metastases) and to poorly pigmented melanomas. The authors have now determined the ability of BPA to accumulate in several nonpigmented melanoma models including human melanoma xenografts in nude mice. The absolute amount of boron in the nonpigmented melanomas was about 50% of the observed in the pigmented counterparts but was still selectively concentrated in the tumor relative to normal tissues in amounts sufficient for effective neutron capture therapy. Single intragastric doses of BPA resulted in selective localization of boron in the amelanotic Greene melanoma carried in the anterior chamber of the rabbit eye and in a pigmented murine melanoma growing in the lungs. The ratio of the boron concentration in these tumors to the boron concentration in the immediately adjacent normal tissue was in the range of 3:1 to 4:1. These distribution studies support the proposal that boron neutron capture therapy may be useful as a regional therapy for malignant melanoma

  1. Carborane-containing metalloporphyrins for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Michiko; Joel, D.D.; Nawrocky, M.M.; Micca, P.L. [and others

    1996-12-31

    For BNCT of malignant brain tumors, it is crucial that there be relatively high boron concentrations in tumor compared with normal tissues within the neutron-irradiated treatment volume. Fairchild and Bond estimated that major advances in BNCT should be possible if ratios of {sup 10}B concentrations in tumor to those in normal tissue (e.g. brain and blood) were at least 5: 1. Given that the only current boron carrier being tested clinically in the U.S., p-boronophenyl-alanine[BPA], yields tumor blood and tumor brain ratios of about 3:1, the criteria for new boronated compounds should be to at least match these ratios and maintain tumor boron concentrations greater than 30 {mu}g B/g. Although previously tested boronated porphyrins have not only matched but surpassed these ratios, it was at a cost of greater toxicity. Chemical and hematological assays of blood analytes; showed marked thrombocytopenia, a decrease to about one-tenth the normal concentration of platelets circulating in the blood, in addition to abnormalities in concentrations of circulating enzymes, that indicated liver toxicity. The physical appearance and behavior of the affected mice were different from those of mice injected with solvent only. Although thrombocytopenia and other toxic effects had disappeared after a few days, previously tested porphyrins would not be safe to infuse into patients for BNCT of potentially hemorrhagic malignant tumors in the brain such as glioblastoma multiforme and metastatic melanoma. We synthesized a different boronated porphyrin, tetracarboranylphenylporphyrin, [TCP] and inserted nickel, copper, or manganese into its coordination center. Biological studies of NiTCP in mice and of CuTCP in rats show that these compounds elicit little or no toxicity when given at potentially therapeutic doses.

  2. Carborane-containing metalloporphyrins for BNCT

    International Nuclear Information System (INIS)

    Miura, Michiko; Joel, D.D.; Nawrocky, M.M.; Micca, P.L.

    1996-01-01

    For BNCT of malignant brain tumors, it is crucial that there be relatively high boron concentrations in tumor compared with normal tissues within the neutron-irradiated treatment volume. Fairchild and Bond estimated that major advances in BNCT should be possible if ratios of 10 B concentrations in tumor to those in normal tissue (e.g. brain and blood) were at least 5: 1. Given that the only current boron carrier being tested clinically in the U.S., p-boronophenyl-alanine[BPA], yields tumor blood and tumor brain ratios of about 3:1, the criteria for new boronated compounds should be to at least match these ratios and maintain tumor boron concentrations greater than 30 μg B/g. Although previously tested boronated porphyrins have not only matched but surpassed these ratios, it was at a cost of greater toxicity. Chemical and hematological assays of blood analytes; showed marked thrombocytopenia, a decrease to about one-tenth the normal concentration of platelets circulating in the blood, in addition to abnormalities in concentrations of circulating enzymes, that indicated liver toxicity. The physical appearance and behavior of the affected mice were different from those of mice injected with solvent only. Although thrombocytopenia and other toxic effects had disappeared after a few days, previously tested porphyrins would not be safe to infuse into patients for BNCT of potentially hemorrhagic malignant tumors in the brain such as glioblastoma multiforme and metastatic melanoma. We synthesized a different boronated porphyrin, tetracarboranylphenylporphyrin, [TCP] and inserted nickel, copper, or manganese into its coordination center. Biological studies of NiTCP in mice and of CuTCP in rats show that these compounds elicit little or no toxicity when given at potentially therapeutic doses

  3. Boron neutron capture therapy design calculation of a 3H(p,n reaction based BSA for brain cancer setup

    Directory of Open Access Journals (Sweden)

    Bassem Elshahat

    2015-09-01

    Full Text Available Purpose: Boron neutron capture therapy (BNCT is a promising technique for the treatment of malignant disease targeting organs of the human body. Monte Carlo simulations were carried out to calculate optimum design parameters of an accelerator based beam shaping assembly (BSA for BNCT of brain cancer setup.Methods: Epithermal beam of neutrons were obtained through moderation of fast neutrons from 3H(p,n reaction in a high density polyethylene moderator and a graphite reflector. The dimensions of the moderator and the reflector were optimized through optimization of epithermal / fast neutron intensity ratio as a function of geometric parameters of the setup. Results: The results of our calculation showed the capability of our setup to treat the tumor within 4 cm of the head surface. The calculated peak therapeutic ratio for the setup was found to be 2.15. Conclusion: With further improvement in the polyethylene moderator design and brain phantom irradiation arrangement, the setup capabilities can be improved to reach further deep-seated tumor.

  4. User's manual of a supporting system for treatment planning in boron neutron capture therapy. JAERI computational dosimetry system

    CERN Document Server

    Kumada, H

    2002-01-01

    A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimensional head model of a patient by using CT and MRI images and that generates a input data file automatically for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to ...

  5. Boron containing magnetic nanoparticles for neutron capture therapy – an innovative approach for specifically targeting tumors

    International Nuclear Information System (INIS)

    Tietze, Rainer; Unterweger, Harald; Dürr, Stephan; Lyer, Stefan; Canella, Lea; Kudejova, Petra; Wagner, Franz M.; Petry, Winfried; Taccardi, Nicola; Alexiou, Christoph

    2015-01-01

    The selective delivery of 10 B into the tumor tissue remains to be further improved for successful and reliable Boron Neutron Capture Therapy applications. Magnetic Drug Targeting using intraarterially administered superparamagnetic nanoparticles and external magnetic fields already exhibited convincing results in terms of highly efficient and selective drug deposition. Using the same technique for the targeted 10 B delivery is a promising new approach. Here, systematic irradiation experiments of phantom cubes containing different concentrations of boron and nanoparticles as well as varying three-dimensional arrangements have been performed. - Highlights: • Magnetic Drug Targeting is a possible approach to substantially improve BNCT. • SPIONs did not influence the radiation dose deposition. • Superior dose deposition in gel phantoms reflecting Magnetic Drug Targeting set up.

  6. Neutron sensitivity improvement in boron-lined proportional counters

    International Nuclear Information System (INIS)

    Dighe, P.M.; Prasad, K.R.; Kataria, S.K.

    2002-01-01

    Various techniques have been employed to improve the neutron sensitivity of boron-coated proportional counters developed indigenously. A boron-lined proportional counter (67 mm ID x 750 mm length) of 17 cps/nv thermal neutron sensitivity is developed by coating 92% enriched 10 B on the inner wall of the counter. This counter can be used for low thermal neutron flux (∼0.2 nv) at various applications such as neutron area monitoring, reactor start-up instrumentation, assay of fissile materials and detection of fuel failure. An improvement in sensitivity was also achieved by summing the output signals from four 10 B lined counters and two BF 3 proportional counters. The summation did not change the susceptibility of the device to gamma interference. In view of the scarcity of enriched 10 B isotope, indigenously available natural boron coated two prototype proportional counters are developed of 0.8 cps/nv and 1.1 cps/nv thermal neutron sensitivity. Efforts have been made to improve the sensitivity with boron coated 3-dimensional structures introduced into the sensitive volume. Tests in thermal neutron flux showed 50% improvement in the sensitivity due to the introduction of additional boron coated wires. Another counter with 51 boron-coated annular discs (23 mm OD X 10 mm ID X 1 mm thick) mounted perpendicular to the axis of the cathode showed 1.7 cps/nv neutron sensitivity, an improvement by a factor of 2.5. (author)

  7. Selective boron delivery by intra-arterial injection of BSH-WOW emulsion in hepatic cancer model for neutron capture therapy.

    Science.gov (United States)

    Yanagie, Hironobu; Dewi, Novriana; Higashi, Syushi; Ikushima, Ichiro; Seguchi, Koji; Mizumachi, Ryoji; Murata, Yuji; Morishita, Yasuyuki; Shinohara, Atsuko; Mikado, Shoji; Yasuda, Nakahiro; Fujihara, Mitsuteru; Sakurai, Yuriko; Mouri, Kikue; Yanagawa, Masashi; Iizuka, Tomoya; Suzuki, Minoru; Sakurai, Yoshinori; Masunaga, Shin-Ichiro; Tanaka, Hiroki; Matsukawa, Takehisa; Yokoyama, Kazuhito; Fujino, Takashi; Ogura, Koichi; Nonaka, Yasumasa; Sugiyama, Hirotaka; Kajiyama, Tetsuya; Yui, Sho; Nishimura, Ryohei; Ono, Koji; Takamoto, Sinichi; Nakajima, Jun; Ono, Minoru; Eriguchi, Masazumi; Hasumi, Kenichiro; Takahashi, Hiroyuki

    2017-06-01

    Boron neutron-capture therapy (BNCT) has been used to inhibit the growth of various types of cancers. In this study, we developed a 10 BSH-entrapped water-in-oil-in-water (WOW) emulsion, evaluated it as a selective boron carrier for the possible application of BNCT in hepatocellular carcinoma treatment. We prepared the 10 BSH-entrapped WOW emulsion using double emulsification technique and then evaluated the delivery efficacy by performing biodistribution experiment on VX-2 rabbit hepatic tumour model with comparison to iodized poppy-seed oil mix conventional emulsion. Neutron irradiation was carried out at Kyoto University Research Reactor with an average thermal neutron fluence of 5 × 10 12  n cm -2 . Morphological and pathological analyses were performed on Day 14 after neutron irradiation. Biodistribution results have revealed that 10 B atoms delivery with WOW emulsion was superior compared with those using iodized poppy-seed oil conventional emulsion. There was no dissemination in abdomen or lung metastasis observed after neutron irradiation in the groups treated with 10 BSH-entrapped WOW emulsion, whereas many tumour nodules were recognized in the liver, abdominal cavity, peritoneum and bilateral lobes of the lung in the non-injected group. Tumour growth suppression and cancer-cell-killing effect was observed from the morphological and pathological analyses of the 10 BSH-entrapped WOW emulsion-injected group, indicating its feasibility to be applied as a novel intra-arterial boron carrier for BNCT. Advances in knowledge: The results of the current study have shown that entrapped 10 BSH has the potential to increase the range of therapies available for hepatocellular carcinoma which is considered to be one of the most difficult tumours to cure.

  8. A Study on Optimized Neutron Beam Generation by Analysis of Neutron Angular Distribution from 7Li(p,n)7Be Reaction for Accelerator-Based BNCT

    International Nuclear Information System (INIS)

    Kim, Kyung O

    2008-02-01

    Perpendicular neutrons (i.e., solid angle bin of 50-150 .deg. ) among ones generated from 7 Li(p,n) 7 Be reaction, which are focused on the relative low energy regions, was used to produce optimized epithermal neutron beam for Accelerator-based BNCT. By this time, most of the studies for generating the therapeutic neutron beam have used the neutrons emitted to the collinear with the incoming proton. However, it is very difficult to produce the high quantity of epithermal neutrons due to the relative high energy neutrons to be used. In this study, it was found that perpendicular neutrons (solid angle 50-150 .deg. ) include about two times as many neutrons in the energy range of 100 - 300 keV as the existing studies. In particular, epithermal neutron beam from the dual beam port assembly was simulated by MCNPX: this assembly was designed for using the neutrons in optimized neutron angle bin (solid angle 50-150 .deg. ). As the results of the IAEA recommendations for all parameters, and moderation length could be reduced. The advantage depth (AD) and dose rate in the mathematical phantom are calculated to evaluate the dosimetric characterization of the designed epithermal neutron beams. It was recognized that the tumor positioned at the maximum depth of 70 mm from skin could be treated, and tumor at 60 mm depth is approximately taken with only a treatment of a few minutes by using the beam from the dual beam port assembly. It is therefore expected that the neutrons emitted into the solid angle bin of 50 - 150 .deg. from 7 Li(p,n) 7 Be reaction are very effective to produce epithermal neutron beam for BNCT. The new dual beam port assembly which is possible to generate the therapeutic neutron beam satisfies with the IAEA recommendations at each beam port and can be used for reference study of epithermal neutron beam design

  9. Progress in neutron beam development at the HFR Petten (feasibility study for a BNCT facility)

    International Nuclear Information System (INIS)

    Constantine, G.; Moss, R.L.; Watkins, P.R.D.; Perks, C.A.; Delafield, H.J.; Ross, D.; Voorbraak, W.P.; Paardekooper, A.; Freudenreich, W.E.; Stecher-Rasmussen, F.

    1990-08-01

    Boron Neutron Capture Therapy, using intermediate energy neutrons to achieve the deep penetration essential for treating brain tumours, can be implemented with a filtered reactor neutron beam. This is designed to minimize the mean energy of the neutrons to keep proton recoil damage to the scalp within normal tissue tolerance limits whilst delivering the required thermal neutron fluence to the tumour over a reasonably short period. This can only be realized in conjunction with a high power density reactor. At the Joint Research Centre Petten an optimized neutron filter is currently being built for installation into the HB11 beam tube of the High Flux Reactor HFR. Part of the development leading to this design has been an extensive study of broad spectrum, filtered beam performance on the HB7 beam tube facility. A wide range of calculations was performed using the Monte Carlo code, MCPN, supported by validation experiments in which several filter configuration incorporating aluminium, sulphur, liquid argon, titanium and cadmium were installed for low power measurements of the neutron fluence rate, neutron spectra and beam gamma-ray contamination. The measurements were carried out within a successful European collaboration. Evaluations were made of the reactor core edge and unfiltered beam spectra, for comparison with MCNP calculations. Multi-foil activation methods and also gamma dose determination in the filtered beam using thermo-luminescent detectors were performed by the ECN. The Harwell/ Birmingham University collaborators undertook the neutron spectrum measurements in the filtered beam. proton recoil spectrometry was used above 30 keV, combined with a multi-sphere and BF 3 chamber response modification technique. Subsequent spectrum adjustment was carried out with the SENSAK code. The agreement between the calculated and measured spectra has given confidence in the reactor and filter modelling methods used to design the HB11 therapy facility. (author). 12 refs

  10. Building of scientific information system for sustainable development of BNCT in Bulgaria

    International Nuclear Information System (INIS)

    Mitev, M.; Ilieva, K.; Apostolov, T.

    2009-01-01

    Building a boron neutron capture therapy (BNCT) facility is foreseen within the reconstruction of the Research Reactor IRT (IRT) of the Institute for Nuclear Research and Nuclear Energy of the Bulgaria Academy of Sciences (INRNE). The development of BNCT at IRT plays a very significant role in the plan for sustainable application of the reactor. A centralized scientific information system on BNCT is being built at the INRNE with the purpose to collect and sort new information as knowledge accumulated during more than thirty years history of BNCT. This BNCT information system will help the creation and consolidation of a well informed and interconnected interdisciplinary team of physicists, chemists, biologists, and radio-oncologists for establishing BNCT cancer treatment in Bulgaria. It will strengthen more intensive development of the national network as well as its enlargement to the Balkan region countries. Furthermore, to acquaint the public at large with the opportunity for BNCT cancer treatment will be addressed. Human, social, and economics results due to BNCT for many patients from Balkan region are expected.

  11. Dosimetric comparative analysis between 10 MV Megavoltage unidirectional beam and boron neutron capture therapy for brain tumors treatment

    International Nuclear Information System (INIS)

    Brandao, Samia F.; Campos, Tarcisio P.R.

    2011-01-01

    This paper present a comparative dosimetric analysis between boron neutron capture therapy and 10 MV megavoltage employed in brain tumor treatments, limited to a unidirectional beam. A computational phantom of a human head was developed to be used in computational simulations of the two protocols, conducted in MCNP5 code. This phantom represents several head's structures, mainly, the central nervous system and a tumor that represents a Glioblastoma Multiform - one of the most malignant and aggressive brain tumors. Absorbed and biological weighted dose rates and neutron fluency in the computational phantom were evaluated from the MCNP5 code. The biologically weighted dose rate to 10 MV megavoltage beam presented no specificity in deposited dose in tumor. The average total biologically weighted dose rate in tumor was 9.93E-04 RBE.Gy.h -1 /Mp.s -1 while in healthy tissue it was 8.67E-04 RBE.Gy.h -1 /Mp.s - 1. On the BNCT simulations the boron concentration was particularly relevant since the largest dose deposition happened in borate tissues. The average total biologically weighted dose rate in tumor was 3.66E-02 RBE.Gy.h -1 /Mp.s -1 while in healthy tissue it was 1.39E-03 RBE.Gy.h -1 /Mp.s -1 . In comparison to the 10 MV megavoltage beam, BNCT showed clearly a largest dose deposition in the tumor, on average, 37 times larger than in the megavoltage beam, while in healthy tissue that average was only 1,6 time larger in BNCT. (author)

  12. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  13. Nuclear engineering aspects of glioma BNCT research in Italy

    International Nuclear Information System (INIS)

    Curzio, G.; Mazzini, M.

    1998-01-01

    A research project on Boron Neutron Capture Therapy (BNCZ) of gliomas has been set up in Italy, with the participation of Departments of Oncology and Mechanical and Nuclear Construction (DCMN) of the University of Pisa, as well as the Neuroscience and Physics Departments of the Universities of Roma. The specific objective of DCMN Research Unit is the study of the physical-engineering aspects related to BNCT. The paper outlines the research lines in progress at DCMN: Monte Carlo calculations of neutron dose distribution for BNCT treatment planning; measurements of neutron fluxes, spectra and doses by neutron detectors specifically set up; design of modifications to the nuclear reactors of ENEA Casaccia Center. In particular, the paper emphasizes the most original contributions on dosimetric aspects, both from informatic and experimental points of view.(author)

  14. Boron Drug Delivery via Encapsulated Magnetic Nanocomposites: A New Approach for BNCT in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Yinghuai Zhu

    2010-01-01

    Full Text Available Ortho-carborane cages have been successfully attached to modified magnetic nanoparticles via catalytic azide-alkyne cycloadditions between 1-R-2-butyl-Ortho-C2B10H10(R=Me,3;Ph,4 and propargyl group-enriched magnetic nanoparticles. A loading amount of 9.83 mmol boron atom/g starch-matrixed magnetic nanoparticles has been reached. The resulting nanocomposites have been found to be highly tumor-targeted vehicles under the influence of an external magnetic field (1.14T, yielding a high boron concentration of 51.4 μg/g tumor and ratios of around 10 : 1 tumor to normal tissues.

  15. Synthesis of PBAD-lipiodol nanoparticles for combination treatment with boric acid in boron neutron capture therapy for hepatoma in-vitro

    International Nuclear Information System (INIS)

    Chou, F.I.; Chung, H.P.; Liu, H.M.; Wen, H.W.; Chi, C.W.; Lin, Shanyang; Lui, W.Y.; Kai, J.J.

    2006-01-01

    This study attempted to increase BNCT efficiency for hepatoma by a combined treatment of phenylboric acid derivative entrapped lipiodol nanoparticles (PBAD-L nanoparticles) with boric acid. The size of PBAD-L nanoparticles were 400-750 nm at the boron concentrations of 0.3-2.7 mg/ml. After 24 hours the boron concentration in PBAD-L nanoparticles treated human hepatoma HepG2 cells was 112 ppm, while that in rat liver Clone 9 cells was 52 ppm. With the use of 25 μg B/ml boric acid, after 6 hours the boron concentration in HepG2 and Clone 9 cells were 75 ppm and 40 ppm, respectively. In a combined treatment, boron concentration in HepG2 cells which were treated with PBAD-L nanoparticles for 18 hours and then combined with boric acid for 6 hours was 158 ppm. After neutron irradiation, the surviving fraction of HepG2 cells treated with PBAD-L nanoparticles was 12.6%, while that in the ones with a combined treatment was 1.3%. In conclusion, the combined treatment provided a higher boron concentration in HepG2 cells than treatments with either PBAD-L nanoparticles or boric acid, resulting in a higher therapeutic efficacy of BNCT in hepatoma cells. (author)

  16. Boronated Unnatural Cyclic Amino Acids as Potential Delivery Agents for Neutron Capture Therapy

    Science.gov (United States)

    Kabalka, George W.; Shaikh, Aarif L.; Barth, Rolf F.; Huo, Tianyao; Yang, Weilian; Gordnier, Pamela M.; Chandra, Subhash

    2011-01-01

    Boron delivery characteristics of cis and trans isomers of a boronated unnatural amino acid, 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC) were tested in B16 mouse model for human melanoma. Both ABCPC isomers delivered comparable boron to B16 melanoma tumor cells as L-p-boronophenylalanine (BPA). Secondary ion mass spectrometry (SIMS) analysis revealed the presence of boron throughout the tumor from these compounds, and a near homogeneous distribution between the nucleus and cytoplasm of B16 cells grown in vitro. These encouraging observations support further studies of these new boron carriers in BNCT. PMID:21481596

  17. User's manual of a supporting system for treatment planning in boron neutron capture therapy. JAERI computational dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Hiroaki; Torii, Yoshiya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-09-01

    A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimensional head model of a patient by using CT and MRI images and that generates a input data file automatically for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal for the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System to set the patient in an actual irradiation position swiftly and accurately. This report describes basic design and procedure of dosimetry, operation manual, data and library structure for JCDS (ver.1.0). (author)

  18. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.

    Science.gov (United States)

    Hsieh, Mindy; Liu, Yingzi; Mostafaei, Farshad; Poulson, Jean M; Nie, Linda H

    2017-02-01

    Boron neutron capture therapy (BNCT) is a binary treatment modality that uses high LET particles to achieve tumor cell killing. Deuterium-deuterium (DD) compact neutron generators have advantages over nuclear reactors and large accelerators as the BNCT neutron source, such as their compact size, low cost, and relatively easy installation. The purpose of this study is to design a beam shaping assembly (BSA) for a DD neutron generator and assess the potential of a DD-based BNCT system using Monte Carlo (MC) simulations. The MC model consisted of a head phantom, a DD neutron source, and a BSA. The head phantom had tally cylinders along the centerline for computing neutron and photon fluences and calculating the dose as a function of depth. The head phantom was placed at 4 cm from the BSA. The neutron source was modeled to resemble the source of our current DD neutron generator. A BSA was designed to moderate and shape the 2.45-MeV DD neutrons to the epithermal (0.5 eV to 10 keV) range. The BSA had multiple components, including moderator, reflector, collimator, and filter. Various materials and configurations were tested for each component. Each BSA layout was assessed in terms of the in-air and in-phantom parameters. The maximum brain dose was limited to 12.5 Gray-Equivalent (Gy-Eq) and the skin dose to 18 Gy-Eq. The optimized BSA configuration included 30 cm of lead for reflector, 45 cm of LiF, and 10 cm of MgF 2 for moderator, 10 cm of lead for collimator, and 0.1 mm of cadmium for thermal neutron filter. Epithermal flux at the beam aperture was 1.0 × 10 5  n epi /cm 2 -s; thermal-to-epithermal neutron ratio was 0.05; fast neutron dose per epithermal was 5.5 × 10 -13  Gy-cm 2 /φ epi , and photon dose per epithermal was 2.4 × 10 -13  Gy-cm 2 /φ epi . The AD, AR, and the advantage depth dose rate were 12.1 cm, 3.7, and 3.2 × 10 -3  cGy-Eq/min, respectively. The maximum skin dose was 0.56 Gy-Eq. The DD neutron yield that is needed to

  19. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model

    Energy Technology Data Exchange (ETDEWEB)

    Heber, Elisa M. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Hawthorne, M. Frederick [Univ. of Missouri, Columbia, MO (United States). International Inst. of Nano and Molecular Medicine; Kueffer, Peter J. [Univ. of Missouri, Columbia, MO (United States). International Inst. of Nano and Molecular Medicine; Garabalino, Marcela A. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Thorp, Silvia I. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Pozzi, Emiliano C. C. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Hughes, Andrea Monti [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Maitz, Charles A. [Univ. of Missouri, Columbia, MO (United States). International Inst. of Nano and Molecular Medicine; Jalisatgi, Satish S. [Univ. of Missouri, Columbia, MO (United States). International Inst. of Nano and Molecular Medicine; Nigg, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Curotto, Paula [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Trivillin, Verónica A. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina); Schwint, Amanda E. [Comision Nacional de Energia Atomica (CNEA), Buenos Aires (Argentina)

    2014-11-11

    Unilamellar liposomes formulated with an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the lipid bilayer, and encapsulating Na3[1-(2’-B10-H9)-2-NH3B10H8] were prepared by probe sonication and investigated in vivo. Microwave assisted digestion followed by inductively coupled plasma-optical emission spectroscopy was utilized to determine the biodistribution of boron in various tissues following either a single tail vein injection or two identical injections (separated by 24 hours) of the liposomal suspension in BALB/c mice bearing EMT6 mammary adenocarcinomas in their right flank. Double-injection protocols resulted in a boron content in the tumor exceeding 50 µg of boron per gram of tissue for 48 to 72 hours subsequent to the initial injection while tumor:blood boron ratios were more ideal from 54 hours (1.9:1) to 96 hours (5.7:1) subsequent to the initial injection. Tumor bearing mice were given a double-injection of liposomes containing the 10B-enriched analogs of the aforementioned agents and subjected to a 30 minute irradiation by thermal neutrons with a flux of 8.8 x 108 (±7%) neutrons/cm2 s integrated over the energy range of 0.0 – 0.414 eV. Significant tumor response for a single BNCT treatment was demonstrated by growth curves versus a control group. Vastly diminished tumor growth was witnessed at 14 days (186% increase versus 1551% in controls) in mice that were given a second injection/radiation treatment 7 days after the first. Mice given a one hour neutron irradiation following the double-injection of liposomes had a similar response (169% increase at 14 days) suggesting that neutron fluence is the limiting factor towards BNCT efficacy in this study.

  20. An Exploration of Neutron Detection in Semiconducting Boron Carbide

    Science.gov (United States)

    Hong, Nina

    The 3He supply problem in the U.S. has necessitated the search for alternatives for neutron detection. The neutron detection efficiency is a function of density, atomic composition, neutron absorption cross section, and thickness of the neutron capture material. The isotope 10B is one of only a handful of isotopes with a high neutron absorption cross section---3840 barns for thermal neutrons. So a boron carbide semiconductor represents a viable alternative to 3He. This dissertation provides an evaluation of the performance of semiconducting boron carbide neutron detectors grown by plasma enhance chemical vapor deposition (PECVD) in order to determine the advantages and drawbacks of these devices for neutron detection. Improved handling of the PECVD system has resulted in an extremely stable plasma, enabling deposition of thick films of semiconducting boron carbide. A variety of material and semiconducting characterization tools have been used to investigate the structure and electronic properties of boron carbide thin films, including X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, infrared/Raman spectroscopy, current-voltage measurements and capacitance-voltage measurements. Elemental concentrations in the boron carbide films have been obtained from Rutherford backscattering and elastic recoil detection analysis. Solid state neutron detection devices have been fabricated in the form of heterostructured p-n diodes, p-type boron carbide/n-type Si. Operating conditions, including applied bias voltage, and time constants, have been optimized for maximum detection efficiency and correlated to the semiconducting properties investigated in separate electronic measurements. Accurate measurements of the neutron detection efficiency and the response of the detector to a wide range of neutron wavelengths have been performed at a well calibrated, tightly collimated, "white" cold neutron beam source using time-of-flight neutron detection technique

  1. Synthesis and cytotoxicity of boronated fatty esters for BNCT of cervix cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tambunchong, C.; Prachayasittikul, S. [Srinakharinwirot Univ., Chemistry Department (Thailand); Picha, P. [The National Cancer Institute of Thailand (Thailand); Tumpum, C.

    2000-10-01

    Esterification reactions of o-carboranic acid with six fatty alcohols, palmitoleyl, stearyl, oleyl, elaidyl, linoleyl and linoelaidyl alcohols, proceeded smoothly under nitrogen atmosphere with dimethylamino pyrimidine as a catalyst. The reaction gave the corresponding esters in moderate yields. Most of the synthetic esters are stable at room temperature except the linoleyl carboranate and linoelaidyl carboranate which decomposed within two weeks. The in vitro studies on Hela cells showed relatively low cytotoxic. The IC{sub 50} of boronated esters were in range of 36-83 micrograms/cm{sup 3}. (author)

  2. Accelerator-based BNCT.

    Science.gov (United States)

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  3. Application of an octa-anionic 5,10,15,20-tetra[3,5-(nido-carboranylmethyl)phenyl]porphyrin (H2OCP) as dual sensitizer for BNCT and PDT

    Science.gov (United States)

    The applications of the octa-anionic 5,10,15,20-tetra[3,5-(nidocarboranylmethyl) phenyl]porphyrin (H2OCP) as a boron delivery agent in boron neutron capture therapy (BNCT) and a photosensitizer in photodynamic therapy (PDT) have been investigated. Using F98 Rat glioma cells, we evaluated the cytotox...

  4. Future boronated molecules for neutron capture therapy

    International Nuclear Information System (INIS)

    Soloway, A.H.; Alam, F.; Barth, R.F.

    1986-01-01

    The ability of several boron compounds to localize in tumor cells is examined. A number of first and second generation compounds which were not synthesized specifically for localization are described. Among these are the boron hydrides and boranes. A third generation of boron compounds are designed for selective localization. These fall into two groups: relatively small organic compounds and boronated antibodies, both of which are discussed here

  5. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    Science.gov (United States)

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  6. Neutron measurement at the thermal column of the Malaysian Triga Mark II reactor using gold foil activation method and TLD

    Science.gov (United States)

    Shalbi, Safwan; Salleh, Wan Norhayati Wan; Mohamad Idris, Faridah; Aliff Ashraff Rosdi, Muhammad; Syahir Sarkawi, Muhammad; Liyana Jamsari, Nur; Nasir, Nur Aishah Mohd

    2018-01-01

    In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding

  7. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre......-incubated with boron nanoparticles for 12 hours, were injected subcutaneously into C57BL16J mice. The tumour sites were exposed to different doses of neutron radiation one, four, or eight days after tumour cell inoculation. Results: When the tumour site was irradiated with thermal neutrons one day after injection......, tumour growth was delayed and the treated mice survived longer than untreated controls (median survival time 20 days (N=8) compared with 10 days (N=7) for untreated mice). Conclusion: Boron nanoparticles significantly delay the growth of an aggressive B16-OVA tumour in vivo by boron neutron capture...

  8. Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Yoshinori [Kyoto University Research Reactor Institute, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Ono, Koji [Kyoto University Research Reactor Institute, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Miyatake, Shin-ichi [Department of Neurosurgery, Osaka Medical College, Daigaku-cho 2-7, Takatsuki City, Osaka 569-8686 (Japan); Maruhashi, Akira [Kyoto University Research Reactor Institute, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2006-03-07

    Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.

  9. The Phase I/II BNCT Trials at the Brookhaven medical research reactor: Critical considerations

    International Nuclear Information System (INIS)

    Diaz, A.Z.

    2001-01-01

    A phase I/II clinical trial of boronophenylalanine-fructose (BPA-F) mediated boron neutron capture therapy (BNCT) for Glioblastoma Multiforme (GBM) was initiated at Brookhaven National Laboratory (BNL) in 1994. Many critical issues were considered during the design of the first of many sequential dose escalation protocols. These critical issues included patient selection criteria, boron delivery agent, dose limits to the normal brain, dose escalation schemes for both neutron exposure and boron dose, and fractionation. As the clinical protocols progressed and evaluation of the tolerance of the central nervous system (CNS) to BPA-mediated BNCT at the BMRR continued new specifications were adopted. Clinical data reflecting the progression of the protocols will be presented to illustrate the steps taken and the reasons behind their adoption. (author)

  10. In vitro biological models in order to study BNCT

    International Nuclear Information System (INIS)

    Dagrosa, Maria A.; Kreimann, Erica L.; Schwint, Amanda E.; Juvenal, Guillermo J.; Pisarev, Mario A.; Farias, Silvia S.; Garavaglia, Ricardo N.; Batistoni, Daniel A.

    1999-01-01

    Undifferentiated thyroid carcinoma (UTC) lacks an effective treatment. Boron neutron capture therapy (BNCT) is based on the selective uptake of 10 B-boronated compounds by some tumours, followed by irradiation with an appropriate neutron beam. The radioactive boron originated ( 11 B) decays releasing 7 Li, gamma rays and alpha particles, and these latter will destroy the tumour. In order to explore the possibility of applying BNCT to UTC we have studied the biodistribution of BPA. In vitro studies: the uptake of p- 10 borophenylalanine (BPA) by the UTC cell line ARO, primary cultures of normal bovine thyroid cells (BT) and human follicular adenoma (FA) thyroid was studied. No difference in BPA uptake was observed between proliferating and quiescent ARO cells. The uptake by quiescent ARO, BT and FA showed that the ARO/BT and ARO/FA ratios were 4 and 5, respectively (p< 0.001). The present experimental results open the possibility of applying BNCT for the treatment of UTC. (author)

  11. Characterization of plastic and boron carbide additive manufactured neutron collimators

    Science.gov (United States)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  12. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Farías, R. O.; Trivillin, V. A.; Portu, A. M.; Schwint, A. E.; González, S. J., E-mail: srgonzal@cnea.gov.ar [Comisión Nacional de Energía Atómica (CNEA), San Martín 1650, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033 (Argentina); Garabalino, M. A.; Monti Hughes, A.; Pozzi, E. C. C.; Thorp, S. I.; Curotto, P.; Miller, M. E.; Santa Cruz, G. A.; Saint Martin, G. [Comisión Nacional de Energía Atómica (CNEA), San Martín 1650 (Argentina); Ferraris, S.; Santa María, J.; Rovati, O.; Lange, F. [CIDME, Universidad Maimónides, Buenos Aires 1405 (Argentina); Bortolussi, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia 27100 (Italy); Altieri, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia 27100, Italy and Dipartimento di Fisica, Università di Pavia, Pavia 27100 (Italy)

    2015-07-15

    Purpose: Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (L)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Methods: Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Results: Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect

  13. Fatal carotid blowout syndrome after BNCT for head and neck cancers

    International Nuclear Information System (INIS)

    Aihara, T.; Hiratsuka, J.; Ishikawa, H.; Kumada, H.; Ohnishi, K.; Kamitani, N.; Suzuki, M.; Sakurai, H.; Harada, T.

    2015-01-01

    Boron neutron capture therapy (BNCT) is high linear energy transfer (LET) radiation and tumor-selective radiation that does not cause serious damage to the surrounding normal tissues. BNCT might be effective and safe in patients with inoperable, locally advanced head and neck cancers, even those that recur at previously irradiated sites. However, carotid blowout syndrome (CBS) is a lethal complication resulting from malignant invasion of the carotid artery (CA); thus, the risk of CBS should be carefully assessed in patients with risk factors for CBS after BNCT. Thirty-three patients in our institution who underwent BNCT were analyzed. Two patients developed CBS and experienced widespread skin invasion and recurrence close to the carotid artery after irradiation. Careful attention should be paid to the occurrence of CBS if the tumor is located adjacent to the carotid artery. The presence of skin invasion from recurrent lesions after irradiation is an ominous sign of CBS onset and lethal consequences. - Highlights: • This study is fatal carotid blowout syndrome after BNCT for head and neck cancers. • Thirty-three patients in our institution who underwent BNCT were analyzed. • Two patients (2/33) developed CBS. • The presence of skin invasion from recurrent lesions after irradiation is an ominous sign of CBS. • We must be aware of these signs to perform BNCT safely.

  14. Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head-and-Neck Cancer: Final Analysis of a Phase I/II Trial

    Energy Technology Data Exchange (ETDEWEB)

    Kankaanranta, Leena [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Seppaelae, Tiina; Koivunoro, Hanna [Department of Physics, University of Helsinki, Helsinki (Finland); Boneca Corporation, Helsinki (Finland); Saarilahti, Kauko [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Atula, Timo [Department of Otorhinolaryngology, Helsinki University Central Hospital, Helsinki (Finland); Collan, Juhani [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Salli, Eero; Kortesniemi, Mika [Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Uusi-Simola, Jouni [Department of Physics, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Vaelimaeki, Petteri [Department of Physics, University of Helsinki, Helsinki (Finland); Boneca Corporation, Helsinki (Finland); Maekitie, Antti [Department of Otorhinolaryngology, Helsinki University Central Hospital, Helsinki (Finland); Seppaenen, Marko [Turku PET Centre, Turku University Hospital, Turku (Finland); Minn, Heikki [Department of Oncology, Turku University Central Hospital, Turku (Finland); Revitzer, Hannu [Aalto University School of Science and Technology, Esopo (Finland); Kouri, Mauri [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo (Finland); Savolainen, Sauli [Department of Physics, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Joensuu, Heikki, E-mail: heikki.joensuu@hus.fi [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland)

    2012-01-01

    Purpose: To investigate the efficacy and safety of boron neutron capture therapy (BNCT) in the treatment of inoperable head-and-neck cancers that recur locally after conventional photon radiation therapy. Methods and Materials: In this prospective, single-center Phase I/II study, 30 patients with inoperable, locally recurred head-and-neck cancer (29 carcinomas and 1 sarcoma) were treated with BNCT. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 50 to 98 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed by use of the RECIST (Response Evaluation Criteria in Solid Tumors) and adverse effects by use of the National Cancer Institute common terminology criteria version 3.0. Intravenously administered L-boronophenylalanine-fructose (400 mg/kg) was administered as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Twenty-six patients received BNCT twice; four were treated once. Of the 29 evaluable patients, 22 (76%) responded to BNCT, 6 (21%) had tumor growth stabilization for 5.1 and 20.3 months, and 1 (3%) progressed. The median progression-free survival time was 7.5 months (95% confidence interval, 5.4-9.6 months). Two-year progression-free survival and overall survival were 20% and 30%, respectively, and 27% of the patients survived for 2 years without locoregional recurrence. The most common acute Grade 3 adverse effects were mucositis (54% of patients), oral pain (54%), and fatigue (32%). Three patients were diagnosed with osteoradionecrosis (each Grade 3) and one patient with soft-tissue necrosis (Grade 4). Late Grade 3 xerostomia was present in 3 of the 15 evaluable patients (20%). Conclusions: Most patients who have inoperable, locally advanced head-and-neck carcinoma that has recurred at a previously irradiated site respond to boronophenylalanine-mediated BNCT, but cancer recurrence after BNCT remains frequent. Toxicity was

  15. Modeling solid-state boron carbide low energy neutron detectors

    International Nuclear Information System (INIS)

    Lundstedt, C.; Harken, A.; Day, E.; Robertson, B.W.; Adenwalla, S.

    2006-01-01

    Two independent techniques for modeling boron-based solid-state neutron detectors are presented-one using the GEANT4 Monte Carlo toolkit and the other one an analytical approach using a simplified physical model. Results of these techniques are compared for three different types of solid-state boron carbide detector. These results provide the basis for distinguishing between conversion layer and other solid-state detectors

  16. Neutron activation of patients following boron neutron capture therapy of brain tumors at the high flux reactor (HFR) Petten (EORTC Trials 11961 and 11011).

    Science.gov (United States)

    Wittig, Andrea; Moss, Raymond L; Stecher-Rasmussen, Finn; Appelman, Klaas; Rassow, Jürgen; Roca, Antoanetta; Sauerwein, Wolfgang

    2005-12-01

    At the High Flux Reactor (HFR), Petten, The Netherlands, EORTC clinical trials of Boron Neutron Capture Therapy (BNCT) have been in progress since 1997. BNCT involves the irradiation of cancer patients by a beam of neutrons, with an energy range of predominantly 1 eV to 10 keV. The patient is infused with a tumor-seeking, (10)B-loaded compound prior to irradiation. Neutron capture in the (10)B atoms results in a high local radiation dose to the tumor cells, whilst sparing the healthy tissue. Neutron capture, however, also occurs in other atoms naturally present in tissue, sometimes resulting in radionuclides that will be present after treatment. The patient is therefore, following BNCT, radioactive. The importance of this induced activity with respect to the absorbed dose in the patient as well as to the radiation exposure of the staff has been investigated. As a standard radiation protection procedure, the ambient dose equivalent rate was measured on all patients following BNCT using a dose ratemeter. Furthermore, some of the patients underwent measurements using a gamma-ray spectrometer to identify which elements and confirm which isotopes are activated. Peak levels, i.e., at contact and directly after irradiation, are of the order of 40-60 muSv/h, falling to < 10 muSv/h 30-50 min after treatment. The average ambient dose equivalent in the first 2 h at a distance of 2 m from the patient is in the order of 2.5 muSv. The ambient dose equivalent rate in 2 m distance from the patient's head at the earliest time of leaving the reactor center (20 min after the end of treatment) is far less than 1 muSv/h. The main radioisotopes were identified as (38)Cl, (49)Ca, and (24)Na. Furthermore, in two patients, the isotopes (198)Au and (116m)In were also present. The initial activity is predominantly due to (49)Ca, whilst the remaining activity is predominantly due to (24)Na. The absorbed dose resulting from the activated isotopes in the irradiated volume is in the order of < 1

  17. Electrophoretic deposition of boron-10 in neutron detectors electrodes

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.; Vieira, J.M.

    1990-01-01

    Process of boron-10 electrophoresis on large area of aluminum substrates was developed with the aim of using them in the construction of neutron detectors. After definition and optimization of the boron electrophoresis parameters, depositions of boron-10 on aluminum cylinders were performed and used as electrodes in gamma compensated and non-compensated ionization chambers and in proportional detectors. These prototypes were designed and builded at IPEN-CNEN-SP, and submited for characterization tests at IEA-R1 reactor, and they fulfil the technical specifications of the project. (author) [pt

  18. Neutron irradiation effects on spark plasma sintered boron carbide

    International Nuclear Information System (INIS)

    Buyuk, B.; Cengiz, M.; Tugrul, A.; Ozer, S.; Yucel, O.; Goller, G.; Sahin, F.C.; Lastovski, S.B.

    2015-01-01

    In this study, spark plasma sintered boron carbide (B 4 C) was examined against neutrons. The specimens were ir-radiated by reactor neutrons (include both thermal and fast neutrons) up to fluence of 1.37x10 21 n*m -2 . Thermal and fast neutrons cause swelling by different interactions with boron ( 10 B) atoms in the related materials. X-Ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images were investigated for initial and irradiated samples. In addition, lattice parameters and unit cell volumes were calculated for the samples. The swelling percentages were calculated to be within a range of 0.49-3.80 % (average 1.70 %) for the outer surface of the materials for applied neutron irradiation doses. (authors)

  19. Investigation of current status in Europe and USA on boron neutron capture therapy

    International Nuclear Information System (INIS)

    2000-11-01

    This report describes on the spot investigation results of current status of medical irradiation in Europe and USA at Feb. 1999. In HFR (Netherlands), the phase 1 study with the Joint Research Centre (JRC) of the EU had been already finished in those days, at the same time, an improvement of medical irradiation field of VTT(Finland) had been finishing and then clinical trial research had been about to start. On the other hand, phase 1 studies by two groups of BNL (Brook heaven National Laboratory) and MIT (Nuclear Engineering of Massachusetts Institute of Technology) in US were now in almost final stage, and they would start on phase 2 study. Either reactors of MIT and BNL were in modification to increase neutron flux, especially that employing fission converter into the irradiation facility and installation of irradiation room were carrying out in the former. In Europe and USA, the accelerator-based BNCT planes are now in progress vigorously, and will have reality. A reform of dynamitron accelerator at University of Birmingham was progressed, and the clinical treatment would be started from September 2000. The accelerator group at MIT has a small type of tandem accelerator, and they were performing basic experiment for BNCS (Boron Neutron Capture Synovectomy) with this accelerator. The concept design for an accelerator and a moderator had been finished at Lawrence Berkeley National Laboratory and University of Berkeley. (author)

  20. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  1. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    International Nuclear Information System (INIS)

    Halfon, S.; Paul, M.; Steinberg, D.; Nagler, A.; Arenshtam, A.; Kijel, D.; Polacheck, I.; Srebnik, M.

    2009-01-01

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction 7 Li(p,n) 7 Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  2. Introduction to Neutron Coincidence Counter Design Based on Boron-10

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2012-01-22

    The Department of Energy Office of Nonproliferation Policy (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is ultimately to design, build and demonstrate a boron-lined proportional tube based alternative system in the configuration of a coincidence counter. This report, providing background information for this project, is the deliverable under Task 1 of the project.

  3. Dynamic infrared imaging for cancer: research and development in the Argentine Boron neutron capture therapy

    International Nuclear Information System (INIS)

    Santa Cruz, Gustavo A.; Bertotti, J.; Marin, J.

    2009-01-01

    In the framework of the Argentine Boron Neutron Capture Therapy (BNCT) project for treating metastatic cutaneous melanoma, we have initiated a research and development program aimed at obtaining a noninvasive methodology for following-up the treated patients. The technique is called Dynamic Infrared Imaging (DIRI) and comprises the acquisition of infrared images as a function of time of the anatomical part under study, when the region is subjected to a mild cold stress. Vascular, metabolic and regulating differences between normal and tumor tissues appear as differences in the pattern of temperature evolution, which can be correlated with the anatomical and functional aspects of both. Two patients enrolled in the BNCT protocol were studied with DIRI. A good spatial correlation between dose, temperature recovery velocity and skin reaction distributions was observed at the time of maximum expression of the erythematous reaction. Melanoma nodules appear as highly localized hyperthermic regions, surrounded and interconnected by elevated temperature areas. Their temperature recovery velocity after the thermal cold stress was substantially faster than that of normal skin with an appreciably large temperature difference (6 degreesC to 10 degreesC). These tissue differences can be related with the thermal conductivity and metabolic rate as explained by a simple one-directional heat transport model. Compared with other imaging modalities (CT and Doppler ultrasound) DIRI has had a similar ability for confirming the already diagnosed nodules. Together with the clinical observation, DIRI provides a potentially useful amount of information, at a competitive cost-benefit relationship suitable for performing a non-invasive functional assessment of this kind of cutaneous lesions and the evaluation of the acute skin reaction following irradiation. (author)

  4. Note: Development of real-time epithermal neutron detector for boron neutron capture therapy.

    Science.gov (United States)

    Tanaka, H; Sakurai, Y; Takata, T; Watanabe, T; Kawabata, S; Suzuki, M; Masunaga, S-I; Taki, K; Akabori, K; Watanabe, K; Ono, K

    2017-05-01

    The real-time detection of epithermal neutrons forms an important aspect of boron neutron capture therapy. In this context, we developed an epithermal neutron detector based on the combination of a small Eu:LiCaAlF 6 scintillator and a quartz fiber in order to fulfill the irradiation-field requirements for boron neutron capture therapy. The irradiation test is performed with the use of a reactor-based neutron source. The thermal and epithermal neutron sensitivities of our epithermal neutron detector are estimated to be 9.52 × 10 -8 ± 1.59 × 10 -8 cm 2 and 1.20 × 10 -6 cm 2 ± 8.96 × 10 -9 cm 2 , respectively. We also subject the developed epithermal neutron detector to actual irradiation fields, and we confirm that the epithermal neutron flux can be measured in realtime.

  5. Characterization of materials used for neutron spectra modification

    International Nuclear Information System (INIS)

    Solieman, A.H.M.; Comsan, M.N.H.; Fahmey, M.A.; Morsy, A.A.

    2008-01-01

    Monte Carlo Simulation is used to study the thickness-dependent neutron-spectral-modification after transport in different materials. A collection of significant materials is studied, for choosing of potential candidates in the construction and design of accelerator-based neutron irradiation system suitable for Boron Neutron Capture Therapy (BNCT)

  6. Models for estimation of the 10B concentration after BPA-fructose complex infusion in patients during epithermal neutron irradiation in BNCT

    International Nuclear Information System (INIS)

    Ryynaenen, Paeivi M.; Kortesniemi, Mika; Coderre, Jeffrey A.; Diaz, Aidnag Z.; Hiismaeki, Pekka; Savolainen, Sauli E.

    2000-01-01

    Purpose: To create simple and reliable models for clinical practice for estimating the blood 10 B time-concentration curve after p-boronophenylalanine fructose complex (BPA-F) infusion in patients during neutron irradiation in boron neutron capture therapy (BNCT). Methods and Materials: BPA-F (290 mg BPA/kg body weight) was infused i.v. during two hours to 10 glioblastoma multiforme patients. Blood samples were collected during and after the infusion. Compartmental models and bi-exponential function fit were constructed based on the 10 B blood time-concentration curve. The constructed models were tested with data from six additional patients who received various amounts of infused BPA-F and data from one patient who received a one-hour infusion of 170 mg BPA/kg body weight. Results: The resulting open two-compartment model and bi-exponential function estimate the clearance of 10 B after 290 mg BPA/kg body weight infusion from the blood with satisfactory accuracy during the first irradiation field (1 ppm, i.e., 7%). The accuracy of the two models in predicting the clearance of 10 B during the second irradiation field are for two-compartment model 1.0 ppm (8%) and 0.2 ppm (2%) for bi-exponential function. The models predict the average blood 10 B concentration with an increasing accuracy as more data points are available during the treatment. Conclusion: By combining the two models, a robust and practical modeling tool is created for the estimation of the 10 B concentration in blood after BPA-F infusion

  7. A γ-ray telescope for on-line measurements of low boron concentrations in a head-phantom for BNCT

    International Nuclear Information System (INIS)

    Verbakel, W.F.A.R.

    1997-02-01

    In Boron Neutron Capture Therapy the 10 B(n, α) 7 Li reaction is used to create a tumour destructing field of high LET (Linear Energy Transfer) particles. The therapy requires a high boron concentration in the tumour and a low boron concentration in the healthy tissue. The boron neutron capture reaction is accompanied by the emission of a photon of energy 478 keV. It is investigated whether measuring of these photons can serve as a tool to determine the boron concentration during therapy in the tumour as well as in the healthy tissue. Such a measurement is complicated by the presence of a large background photon field. To study the feasibility, an experimental configuration has been designed at a test facility of the Low Flux Reactor (LFR). The LFR provides an epithermal neutron beam for irradiation of a head phantom which simulates a human head with a tumour. This paper shows that the reconstruction of the position and the size of the tumour as well as the ratio of the boron concentrations appeared to be possible. In a second stage is shown that these measurements can be expanded to experiments with the therapy neutron beam of the High Flux Reactor. (orig.)

  8. BNCT enhanced fast neutron therapy: in vitro studies for preparing a clinical trial at the Essen cyclotron

    International Nuclear Information System (INIS)

    Wittig, A.; Sauerwein, W.; Hideghety, K.; Poeller, F.; Pignol, J.P.; Mueller, W.

    2000-01-01

    At the University Hospital Essen a cyclotron producing d(14)+Be fast neutrons is used routinely for patient treatment. Fast neutrons have demonstrated their potential to sterilize glioblastoma but could not show a clinical benefit because of lethal damages to healthy brain. At depth, fast neutrons are thermalized allowing neutron capture reactions, which can be used to enhance the applied dose. A selective increase of the dose to the tumor cells by BNCT may offer a chance to an effective treatment. In order to prepare a clinical trial in vitro experiments were performed. MeWo cells were irradiated in a tissue equivalent phantom at a depth of 6.5 cm. 91% 10 B enriched BSH was used to generate BNC effects. For a total dose of 1 Gy the thermal fluence rate was 3.4x10 10 cm -2 . An amount of 960 ppm 10 B present in the cell medium during irradiation led to a reduction of the cell survival from 3.6% (neutron alone) to 0.2%. If the irradiation was performed after incubation of the cells in BSH, but in a medium without BSH the survival was 1.6%. The in vitro set up demonstrates the capacity of BSH to considerably increase the biological effects of the neutron irradiation and add arguments for the opening of a clinical trial. (author)

  9. Early phase II study on BNCT in metastatic malignant melanoma using the boron carrier BPA (EORTC protocol 11011)

    International Nuclear Information System (INIS)

    Wittig, Andrea; Sauerwein, Wolfgang; Moss, Raymond

    2006-01-01

    The aim of the trial is to examine the clinical response of metastatic melanoma following BNCT with BPA. The trial contains an optional biodistribution sub-study, which is done if operable metastases are removed prior BNCT. BNCT is applied in 2 fractions at the HFR in Petten. In cases of diffuse brain metastases the whole brain is irradiated homogeneously using 5 irradiation beams from different directions. Up to now 4 patients suffering from multiple brain metastases (more than 20) have been included. In all cases we observed a partial response or no change in the irradiated volume. However, none of the patients survived more than 3 months. The pharmacokinetic of the BPA can be predicted very precisely using a two-compartment model. The treatment can be performed safety. (author)

  10. Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion.

    Science.gov (United States)

    Yanagie, Hironobu; Kumada, Hiroaki; Nakamura, Takemi; Higashi, Syushi; Ikushima, Ichiro; Morishita, Yasuyuki; Shinohara, Atsuko; Fijihara, Mitsuteru; Suzuki, Minoru; Sakurai, Yoshinori; Sugiyama, Hirotaka; Kajiyama, Tetsuya; Nishimura, Ryohei; Ono, Koji; Nakajima, Jun; Ono, Minoru; Eriguchi, Masazumi; Takahashi, Hiroyuki

    2011-12-01

    Hepatocellular carcinoma (HCC) is one of the most difficult to cure with surgery, chemotherapy, or other combinational therapies. In the treatment of HCC, only 30% patients can be operated due to complication of liver cirrhosis or multiple intrahepatic tumours. Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between (10)B atoms and thermal neutrons, so it is necessary to accumulate a sufficient quantity of (10)B atoms in tumour cells for effective tumour cell destruction by BNCT. Water-in-oil-in-water (WOW) emulsion has been used as the carrier of anti-cancer agents on intra-arterial injections in clinical. In this study, we prepared (10)BSH entrapped WOW emulsion by double emulsifying technique using iodized poppy-seed oil (IPSO), (10)BSH and surfactant, for selective intra-arterial infusion to HCC, and performed simulations of the irradiation in order to calculate the dose delivered to the patients. WOW emulsion was administrated with intra-arterial injections via proper hepatic artery on VX-2 rabbit hepatic tumour models. We simulated the irradiation of epithermal neutron and calculated the dose delivered to the tissues with JAEA computational dosimetry system (JCDS) at JRR4 reactor of Japan Atomic Research Institute, using the CT scans of a HCC patient. The (10)B concentrations in VX-2 tumour obtained by delivery with WOW emulsion were superior to those by conventional IPSO mix emulsion. According to the rabbit model, the boron concentrations (ppm) in tumour, normal liver tissue, and blood are 61.7, 4.3, and 0.1, respectively. The results of the simulations show that normal liver biologically weighted dose is restricted to 4.9 Gy-Eq (CBE; liver tumour: 2.5, normal liver: 0.94); the maximum, minimum, and mean tumour weighted dose are 43.1, 7.3, and 21.8 Gy-Eq, respectively, in 40 min irradiation. In this study, we show that (10)B entrapped WOW emulsion could be applied to novel intra-arterial boron delivery carrier

  11. Boron neutron capture therapy: A guide to the understanding of the pathogenesis of late radiation damage to the rat spinal cord

    International Nuclear Information System (INIS)

    Morris, G.M.; Whitehouse, E.M.; Hopewell, J.W.; Coderre, J.A.; Micca, P.

    1994-01-01

    Before the commencement of new boron neutron capture therapy (BNCT) clinical trials in Europe and North America, detailed information on normal tissue tolerance is required. In this study, the pathologic effects of BNCT on the central nervous system (CNS) have been investigated using a rat spinal cord model. The neutron capture agent used was 10 B-enriched sodium mercaptoundecahydro-closo-dodecaborate (BSH), at a dosage of 100 mg/kg body weight. Rats were irradiated on the thermal beam at the Brookhaven Medical Research Reactor. The large spine of vertebra T 2 was used as the lower marker of the irradiation field. Rats were irradiated with thermal neutrons alone to a maximum physical absorbed dose of 11.4 Gy, or with thermal neutrons in combination with BSH, to maximum absorbed physical doses of 5.7 Gy to the CNS parenchyma and 33.7 Gy to the blood in the vasculature of the spinal cord. An additional group of rats was irradiated with 250 kVp X-rays to a single dose of 35 Gy. Spinal cord pathology was examined between 5 and 12 months after irradiation. The physical dose of radiation delivered to the CNS parenchyma, using thermal neutron irradiation in the presence of BSH, was a factor of two to three lower than that delivered to the vascular endothelium, and could not account for the level of damage observed in the parenchyma. The histopathological observations of the present study support the hypothesis that the blood vessels, and the endothelial cells in particular, are the critical target population responsible for the lesions seen in the spinal cord after BNCT type irradiation and by inference, after more conventional irradiation modalities such as photons or fast neutrons. 30 refs., 6 figs., 1 tab

  12. Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Kumada, Hiroaki; Nakamura, Takemi; Higashi, Syushi; Ikushima, Ichiro; Morishita, Yasuyuki; Shinohara, Atsuko; Fijihara, Mitsuteru; Suzuki, Minoru; Sakurai, Yoshinori; Sugiyama, Hirotaka; Kajiyama, Tetsuya; Nishimura, Ryohei; Ono, Koji; Nakajima, Jun; Ono, Minoru; Eriguchi, Masazumi; Takahashi, Hiroyuki

    2011-01-01

    Introduction: Hepatocellular carcinoma (HCC) is one of the most difficult to cure with surgery, chemotherapy, or other combinational therapies. In the treatment of HCC, only 30% patients can be operated due to complication of liver cirrhosis or multiple intrahepatic tumours. Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10 B atoms and thermal neutrons, so it is necessary to accumulate a sufficient quantity of 10 B atoms in tumour cells for effective tumour cell destruction by BNCT. Water-in-oil-in-water (WOW) emulsion has been used as the carrier of anti-cancer agents on intra-arterial injections in clinical. In this study, we prepared 10 BSH entrapped WOW emulsion by double emulsifying technique using iodized poppy-seed oil (IPSO), 10 BSH and surfactant, for selective intra-arterial infusion to HCC, and performed simulations of the irradiation in order to calculate the dose delivered to the patients. Materials and methods: WOW emulsion was administrated with intra-arterial injections via proper hepatic artery on VX-2 rabbit hepatic tumour models. We simulated the irradiation of epithermal neutron and calculated the dose delivered to the tissues with JAEA computational dosimetry system (JCDS) at JRR4 reactor of Japan Atomic Research Institute, using the CT scans of a HCC patient. Results and discussions: The 10 B concentrations in VX-2 tumour obtained by delivery with WOW emulsion were superior to those by conventional IPSO mix emulsion. According to the rabbit model, the boron concentrations (ppm) in tumour, normal liver tissue, and blood are 61.7, 4.3, and 0.1, respectively. The results of the simulations show that normal liver biologically weighted dose is restricted to 4.9 Gy-Eq (CBE; liver tumour: 2.5, normal liver: 0.94); the maximum, minimum, and mean tumour weighted dose are 43.1, 7.3, and 21.8 Gy-Eq, respectively, in 40 min irradiation. In this study, we show that 10 B entrapped WOW emulsion could be

  13. Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Yanagie, Hironobu, E-mail: yanagie@n.t.u-tokyo.ac.jp [Dept of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)] [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Kumada, Hiroaki [Proton Medical Research Center, University of Tsukuba, Ibaraki (Japan); Nakamura, Takemi [Japan Atomic Energy Research Institute, Ibaraki (Japan); Higashi, Syushi [Dept of Surgery, Ebihara Memorial Hospital, Miyazaki (Japan)] [Kyushu Industrial Sources Foundation, Miyazaki (Japan); Ikushima, Ichiro [Dept of Radiology, Miyakonojyo Metropolitan Hospital, Miyazaki (Japan); Morishita, Yasuyuki [Dept of Human and Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo (Japan); Shinohara, Atsuko [Dept of Humanities, Graduate School of Seisen University, Tokyo (Japan); Fijihara, Mitsuteru [SPG Techno Ltd. Co., Miyazaki (Japan); Suzuki, Minoru; Sakurai, Yoshinori [Research Reactor Institute, Kyoto University, Osaka (Japan); Sugiyama, Hirotaka [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Kajiyama, Tetsuya [Kyushu Industrial Sources Foundation, Miyazaki (Japan); Nishimura, Ryohei [Dept of Veternary Surgery, University of Tokyo Veternary Hospital, Tokyo (Japan); Ono, Koji [Research Reactor Institute, Kyoto University, Osaka (Japan); Nakajima, Jun; Ono, Minoru [Dept of Cardiothracic Surgery, University of Tokyo Hospital, Tokyo (Japan); Eriguchi, Masazumi [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan)] [Department of Surgery, Shin-Yamanote Hospital, Saitama (Japan); Takahashi, Hiroyuki [Dept of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)] [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan)

    2011-12-15

    Introduction: Hepatocellular carcinoma (HCC) is one of the most difficult to cure with surgery, chemotherapy, or other combinational therapies. In the treatment of HCC, only 30% patients can be operated due to complication of liver cirrhosis or multiple intrahepatic tumours. Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between {sup 10}B atoms and thermal neutrons, so it is necessary to accumulate a sufficient quantity of {sup 10}B atoms in tumour cells for effective tumour cell destruction by BNCT. Water-in-oil-in-water (WOW) emulsion has been used as the carrier of anti-cancer agents on intra-arterial injections in clinical. In this study, we prepared {sup 10}BSH entrapped WOW emulsion by double emulsifying technique using iodized poppy-seed oil (IPSO), {sup 10}BSH and surfactant, for selective intra-arterial infusion to HCC, and performed simulations of the irradiation in order to calculate the dose delivered to the patients. Materials and methods: WOW emulsion was administrated with intra-arterial injections via proper hepatic artery on VX-2 rabbit hepatic tumour models. We simulated the irradiation of epithermal neutron and calculated the dose delivered to the tissues with JAEA computational dosimetry system (JCDS) at JRR4 reactor of Japan Atomic Research Institute, using the CT scans of a HCC patient. Results and discussions: The {sup 10}B concentrations in VX-2 tumour obtained by delivery with WOW emulsion were superior to those by conventional IPSO mix emulsion. According to the rabbit model, the boron concentrations (ppm) in tumour, normal liver tissue, and blood are 61.7, 4.3, and 0.1, respectively. The results of the simulations show that normal liver biologically weighted dose is restricted to 4.9 Gy-Eq (CBE; liver tumour: 2.5, normal liver: 0.94); the maximum, minimum, and mean tumour weighted dose are 43.1, 7.3, and 21.8 Gy-Eq, respectively, in 40 min irradiation. In this study, we show that {sup 10}B

  14. Design of a model for BSA to meet free beam parameters for BNCT based on multiplier system for D–T neutron source

    International Nuclear Information System (INIS)

    Rasouli, Fatemeh S.; Farhad Masoudi, S.; Kasesaz, Yaser

    2012-01-01

    Highlights: ► The possibility of using natural uranium as a neutron multiplier for D–T neutron generator is examined. ► To optimize output neutron beam, a moderator/filter/reflector arrangement was designed. ► The MCNP4C code has been used for BSA optimization and other simulations. ► The results show that using this system the BNCT in-air recommended parameters are met. - Abstract: Extensive research has recently been carried out for the development of high-energy D–T neutron generators as neutron sources for BNCT. The energy of these high-energy neutrons must be reduced by designing a Beam Shaping Assembly (BSA) to make them usable for BNCT. However, the neutron flux decreases drastically as neutrons pass through different materials of BSA. Therefore, it is very important to find ways to treat the neutrons economically. In this paper the possibility of using natural uranium as a neutron multiplier is investigated in order to increase the number of neutrons emitted from D–T neutron generator. According to the simulations and performed calculations, a sphere containing natural uranium as neutron multiplier was used to increase the number of neutrons generated by the D–T neutron generator. The energy of fast neutrons that are generated by D–T fusion reaction and amplified by neutron multiplier system is decreased using proper materials as moderators and fast neutron filters in BSA. The gamma rays which are generated as a result of neutron interaction with moderators are removed from neutron spectrum using bismuth as the gamma filter. Also, a thermal neutron absorber omits undesired low-energy neutrons which lead to a high radiation dose for the skin and soft tissues. The results show that passing neutrons through such a BSA causes the establishment of free beam parameters yet the reduction of the output beam intensity is unavoidable. The neutron spectrum related to our BSA has a proper epithermal flux and the fast and thermal neutron fluxes are

  15. INEL BNCT Research Program, January/February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R. [ed.

    1993-04-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  16. INEL BNCT Research Program, May/June 1992

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (IBPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed

  17. INEL BNCT Research Program, September--October 1992

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1992-12-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotain. carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophonylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed

  18. INEL BNCT Research Program, September--October 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-12-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotain. carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophonylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  19. INEL BNCT Research Program, January/February 1993

    International Nuclear Information System (INIS)

    Venhuizen, J.R.

    1993-04-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed

  20. INEL BNCT Research Program, March/April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murino screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronopheoylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  1. Measurement and simulation of the TRR BNCT beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bavarnegin, Elham [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Sadremomtaz, Alireza [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Khalafi, Hossein [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Kasesaz, Yaser, E-mail: ykasesaz@aeoi.org.ir [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2016-09-11

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  2. Medical setup of intraoperative BNCT at JRR-4

    Energy Technology Data Exchange (ETDEWEB)

    Akutsu, H.; Yamamoto, T.; Matsumura, A. [Tsukuba Univ., Ibaraki (Japan)] [and others

    2000-10-01

    Since October 1999, we have been performing clinical trials of intraoperative boron neutron capture therapy (IOBNCT) using a mixed thermal-epithermal beam at the Japan Research Reactor No. 4 (JRR-4). For immediate pre-BNCT care, including administration of a boron compound as well as post-BNCT care, a collaborating neurosurgical department of the University of Tsukuba was prepared in the vicinity of JRR-4. Following craniotomy in the treatment room, anesthetized patients were transported into the irradiation room for BNCT. The boron concentration in tissue was measured by the PGA and ICP-AES methods. The long-term follow-up was done at the University of Tsukuba Hospital. IOBNCT is a complex clinical procedure, which requires sophisticated operating team and co-medical staffs and also cooperation with physicist team. IOBNCT is a complex clinical procedure requiring a high level of cooperation among the operating team, co-medical staff, and physicists. For the safe and successful performance of IOBNCT, we have made the program including critical pathway and prepared various equipments for IOBNCT. To ensure the safe and successful performance of IOBNCT, we developed a critical pathway for use during the procedure, and prepared various apparatus for IOBNCT. (author)

  3. Designing power supplies for 2.5 MV, 100 mADC for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Reginato, L.L.; Ayers, J.; Johnson, R.; Peters, C.; Stevenson, R.

    1997-01-01

    Renewed interest by several major university medical centers (UCSF, Stanford, U. of Washington, Loma Linda) in conducting Boron Neutron Capture Therapy (BNCT) led to the investigation of generating a continuous proton beam with 2.5 MeV of energy and up to 100 mA of current. The power supply for the Heavy Ion Injector (Adam) at LBNL operated at lower currents from its completion in 1970 until it was shut down in 1993. This power supply consisted of 64 stages of shunt-fed multipliers (Dynamitron) and seemed to offer an attractive first step for BNCT experiments. The Adam power supply was reactivated in June of 1995 and extensive tests were performed to establish its maximum capability. After the tests were completed, it became clear that 100 mA was well beyond the capability of this power source and that even 10 endash 20 mA would require extensive modifications. After some initial conceptual design studies, it was decided that the air-coupled transformer with multiple secondaries warranted some serious investigations and could offer the best chance for achieving 100 mA. copyright 1997 American Institute of Physics

  4. Might iodomethyl-{alpha}-tyrosine be a surrogate for BPA in BNCT?

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Michiko; Micca, P.L.; Nawrocky, M.M.; Slatkin, D.N.

    1996-12-31

    A single-photon emission computed tomography [SPECT] imaging agent that is an analogue of a boron carrier for boron neutron-capture therapy [BNCT] of cerebral gliomas would be useful for assessing the kinetics of boron uptake in tumors and in the surrounding brain tissues noninvasively. BNCT is based on the interaction of thermalized neutrons with {sup 10}B nuclei in the targeted tumor. For BNCT of brain tumors, it is crucial that {sup 10}B concentrations in radiosensitive regions of the brain be minimal since malignant cells and vital brain tissues are often inter-mingled at the margins of the tumor. Currently, boronophenylalanine [BPA]-mediated BNCT is undergoing preliminary clinical study for postoperative radiotherapy of glioblastorna multiforme at Brookhaven National Laboratory. Investigators in Japan are developing {sup 18}F-fluoroboronophenylaianine [FBPA] as a positron {sup 18}F (T{sub 1/2} = 110 min), which is usually emission tomography [PET] surrogate for BPA. generated at a cyclotron dedicated to PET, is generally a minimally perturbing substitute for the 2-H on the aromatic ring because of its small size and the strong covalent bond it forms with carbon. However, SPECT has potential advantages over PET: (1) SPECT is clinically more widely available at lower cost; (2) most radioisotopes for the synthesis of SPECT agents can be purchased; (3) SPECT is less difficult to implement. It is thought that the quality of images derived from the two techniques would each be sufficiently informative for BNCT treatment planning purposes, provided that the SPECT and PET agents being considered were both pharmacokinetic surrogates for BPA. This study evaluated the use of {sup 123}I alpha methyltyrosine as a surrogate for BPA in BNCT.

  5. Might iodomethyl-α-tyrosine be a surrogate for BPA in BNCT?

    International Nuclear Information System (INIS)

    Miura, Michiko; Micca, P.L.; Nawrocky, M.M.; Slatkin, D.N.

    1996-01-01

    A single-photon emission computed tomography [SPECT] imaging agent that is an analogue of a boron carrier for boron neutron-capture therapy [BNCT] of cerebral gliomas would be useful for assessing the kinetics of boron uptake in tumors and in the surrounding brain tissues noninvasively. BNCT is based on the interaction of thermalized neutrons with 10 B nuclei in the targeted tumor. For BNCT of brain tumors, it is crucial that 10 B concentrations in radiosensitive regions of the brain be minimal since malignant cells and vital brain tissues are often inter-mingled at the margins of the tumor. Currently, boronophenylalanine [BPA]-mediated BNCT is undergoing preliminary clinical study for postoperative radiotherapy of glioblastorna multiforme at Brookhaven National Laboratory. Investigators in Japan are developing 18 F-fluoroboronophenylaianine [FBPA] as a positron 18 F (T 1/2 = 110 min), which is usually emission tomography [PET] surrogate for BPA. generated at a cyclotron dedicated to PET, is generally a minimally perturbing substitute for the 2-H on the aromatic ring because of its small size and the strong covalent bond it forms with carbon. However, SPECT has potential advantages over PET: (1) SPECT is clinically more widely available at lower cost; (2) most radioisotopes for the synthesis of SPECT agents can be purchased; (3) SPECT is less difficult to implement. It is thought that the quality of images derived from the two techniques would each be sufficiently informative for BNCT treatment planning purposes, provided that the SPECT and PET agents being considered were both pharmacokinetic surrogates for BPA. This study evaluated the use of 123 I alpha methyltyrosine as a surrogate for BPA in BNCT

  6. The 3D tomographic image reconstruction software for prompt-gamma measurement of the boron neutron capture therapy

    International Nuclear Information System (INIS)

    Morozov, Boris; Auterinen, Iiro; Kotiluoto, Petri; Kortesniemi, Mika

    2006-01-01

    A tomographic imaging system based on the spatial distribution measurement of the neutron capture reaction during Boron Neutron Capture Therapy (BNCT) would be very useful for clinical purpose. Using gamma-detectors in a 2D-panel, boron neutron capture and hydrogen neutron capture gamma-rays emitted by the neutron irradiated region can be detected, and an image of the neutron capture events can be reconstructed. A 3D reconstruction software package has been written to support the development of a 3D prompt-gamma tomographic system. The package consists of three independent modules: phantom generation, reconstruction and evaluation modules. The reconstruction modules are based on algebraic approach of the iterative reconstruction algorithm (ART), and on the maximum likelihood estimation method (ML-EM). In addition to that, two subsets of the ART, the simultaneous iterative reconstruction technique (SIRT) and the component averaging algorithms (CAV) have been included to the package employing parallel codes for multiprocessor architecture. All implemented algorithms use two different field functions for the reconstruction of the region. One is traditional voxel function, another is, so called, blob function, smooth spherically symmetric generalized Kaiser-Bessel function. The generation module provides the phantom and projections with background by tracing the prompt gamma-rays for a given scanner geometry. The evaluation module makes statistical comparisons between the generated and reconstructed images, and provides figure-of-merit (FOM) values for the applied reconstruction algorithms. The package has been written in C language and tested under Linux and Windows platforms. The simple graphical user interface (GUI) is used for command execution and visualization purposed. (author)

  7. A gamma-ray telescope for on-line measurements of low boron concentrations in a head-phantom for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Verbakel, W.F.A.R.

    1996-06-01

    In Boron Neutron Capture Therapy the {sup 10}B(n, {alpha}){sup 7}Li reaction is used to create a tumour destructing field by the emitted high-LET (Linear Energy Transfer) particles. This reaction is accompanied by the emission of a photon of energy 478 keV. This can serve as a probe for detection of the reaction rate and thereby provide a tool to assess the boron concentration during therapy. An experimental configuration has been designed for on-line measurements of the {sup 10}B prompt gamma rays in a background of hydrogen neutron capture prompt gamma rays, neutrons and gamma rays coming from the reactor. At a facility with epithermal neutrons of the Low Flux Reactor a head phantom has been irradiated with neutorns. This phantom is filled with water and a small volume of 7.8 cm{sup 3} containing 62 ppm {sup 10}B, simulating a tumour. The experimental configuration for prompt gamma measurements has been expanded to perform tomography. The reconstruction of the position and the size of the tumour and its boron cencentration appeared to be possible. The first experiments at the therapy room in the High Flux Reactor showed that this method can probably be expanded for on-line monitoring of the total boron amount in a patients head. Next to this, Monte Carlo calculations and foil activation measurements have been performed to obtain the neutron spectrum of the epithermal beam of the LFR. With the insight achieved with these calculations it has been possible to optimize the total neutron flux. By introduction of a graphite scatter in the beam tube close to the reactr core, the flux has been rainsed with about 65%. With the computer code DORT neutron distributions over the phantom have been calculated for 47 energy groups. These calculations are necessary for ultimate boron tomography. (orig.).

  8. Transferrin-loaded nido-carborane liposomes. Synthesis and intracellular targeting to solid tumors for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Nakamura, Hiroyuki; Miyajima, Yusuke; Kuwata, Yasuhiro; Maruyama, Kazuo; Masunaga, Shinichiro; Ono, Koji

    2006-01-01

    The boron ion cluster lipids, as a double-tailed boron lipid synthesized from heptadecanol, formed stable liposomes at 25% molar ratio toward DSPC with cholesterol. Transferrin was able to be introduced on the surface of boron liposomes (Tf-PEG-CL liposomes) by the coupling of transferrin to the PEG-CO 2 H moieties of PEG-CL liposomes. The biodistribution of Tf-PEG-CL liposomes showed that Tf-PEG-CL liposomes accumulated in tumor tissues and stayed there for a sufficiently long time to increase tumor:blood concentration ratio. A 10 B concentration of 22 ppm in tumor tissues was achieved by the injection of Tf-PEG-CL liposome at 7.2 mg/kg body weight 10 B in tumor-bearing mice. After neutron irradiation, the average survival rate of mice not treated with Tf-PEG-CL liposomes was 21 days, whereas that of the treated mice was 31 days. Longer survival rates were observed in the mice treated with Tf-PEG-CL liposomes; one of them even survived for 52 days after BNCT. (author)

  9. Three-dimensional boron particle loaded thermal neutron detector

    Science.gov (United States)

    Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel

    2014-09-09

    Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

  10. Dosimetry methods in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Artuso, E.; Felisi, M.; Regazzoni, V.; Giove, D. [Universita degli Studi di Milano, Department of Physics, Via Festa del Patrono 7, 20122 Milano (Italy); Agosteo, S.; Barcaglioni, L. [Istituto Nazionale di Fisica Nucleare, Milano (Italy); Campi, F.; Garlati, L. [Politecnico di Milano, Energy Department, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); De Errico, F. [Universita degli Studi di Pisa, Department of Civil and Industrial Engineering, Lungamo Pacinotti 43, 56126 Pisa (Italy); Borroni, M.; Carrara, M. [Fondazione IRCCS Istituto Nazionale Tumori, Medical Physics Unit, Via Venezian 1, 20133 Milano (Italy); Burian, J.; Klupak, V.; Viererbl, L.; Marek, M. [Research Centre Rez, Department of Neutron Physics, 250-68 Husinec-Rez (Czech Republic)

    2014-08-15

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  11. Development of a Boron Neutron Capture Enhanced Fast Neutron Therapy Beam

    Energy Technology Data Exchange (ETDEWEB)

    Sweezy, Jeremy Ed [Georgia Tech

    2002-01-01

    The combination of fast neutron therapy and boron neutron capture therapy is currently under investigation at several fast neutron therapy centers worldwide. This treatment method, termed boron neutron capture enhanced fast neutron therapy (BNCEFNT) utilizes a boron containing drug to selectively increase the dose to the target tumor. BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiforme. A neutron therapy beam for boron neutron capture enhanced fast neutron therapy has been developed for the existing Fermilab Neutron Therapy Facility. This beam produces a significant dose enhancement due to the the boron neutron capture reaction. The beam was developed by designing a filter and collimator system using the Monte Carlo radiation transport code, MCNPX. The MCNPX code was benchmarked against depth-dose measurements of the standard treatment beam. The new BNCEFNT beam is filtered with 18.3-cm of low carbon steel and is collimated with steel. Measurements of the dose enhancement of the new BNCEFNT beam were performed with paired tissue equivalent ion chambers. One of the ion chambers has boron incorporated in the wall of the chamber to measure the dose due to boron neutron capture. The measured boron dose enhancement of the BNCEFNT beam is (16.3 ± 2.6)% per 100-ppm 10B for a 20-cm diameter beam and (10.0 ± 1.6)% per 100-ppm 10B for a 10-cm diameter beam. The dose rate of the new beam is reduced to 4.4% of the dose rate of the standard treatment beam. xxi A conceptual design that overcomes the reduced dose rate is also presented. This design uses a tungsten collimator placed near the patient, with a 1.5-cm tungsten filter just upstream of the collimator. Using graphite moderation of neutrons around the patient a percent dose enhancement of 15% can be attained with good collimation, for field sizes as small as 5 × 5 cm2 , and without a reduction in dose rate.

  12. Optimization of the irradiation beam in the BNCT research facility at IEA-R1 reactor

    International Nuclear Information System (INIS)

    Castro, Vinicius Alexandre de

    2014-01-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapeutic technique for the treatment of some types of cancer whose useful energy comes from a nuclear reaction that occurs when thermal neutron impinges upon a Boron-10 atom. In Brazil there is a research facility built along the beam hole number 3 of the IEA-R1 research reactor at IPEN, which was designed to perform BNCT research experiments. For a good performance of the technique, the irradiation beam should be mostly composed of thermal neutrons with a minimum as possible gamma and above thermal neutron components. This work aims to monitor and evaluate the irradiation beam on the sample irradiation position through the use of activation detectors (activation foils) and also to propose, through simulation using the radiation transport code, MCNP, new sets of moderators and filters which shall deliver better irradiation fields at the irradiation sample position In this work, a simulation methodology, based on a MCNP card, known as wwg (weight window generation) was studied, and the neutron energy spectrum has been experimentally discriminated at 5 energy ranges by using a new set o activation foils. It also has been concluded that the BNCT research facility has the required thermal neutron flux to perform studies in the area and it has a great potential for improvement for tailoring the irradiation field. (author)

  13. Neutron-Activated Gamma-Emission: Technology Review

    Science.gov (United States)

    2012-01-01

    complex in implementation. The lower energy neutrons from californium - 252 (0.7–4 MeV) and deuterium-on-deuterium (D-D) electronic neutron generators (ENG...for production of californium is centered at Oak Ridge National Laboratory (ORNL) high-flux- reactor (HIFR). Californium is used to start up new power...achievable Am americium API associated particle imaging B boron Be beryllium BNCT boron neutron capture therapy C carbon Cf californium Cl

  14. Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients

    International Nuclear Information System (INIS)

    García-Reiriz, Alejandro; Magallanes, Jorge; Zupan, Jure; Líberman, Sara

    2011-01-01

    For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in blood during BNCT treatment, a method is suggested based on Kohonen neural networks. The results of a model trained with the concentration profiles from the literature are described. The prediction of the model was validated by the leave-one-out method. Its robustness shows that it is mostly independent on small variations. The ability to fit retrospective experimental data shows an uncertainty lower than the two compartment model used previously. - Highlights: ► We predicted decaying concentration profiles of BPA in blood during BNCT therapy. ► Is suggested a method based on Kohonen neural networks. ► The results show that it is very robust and mostly independent of small variations. ► It has a better ability to fit retrospective experimental data. ► The model could be progressively improved by adding new data to the training matrix.

  15. Monte Carlo simulations of the cellular S-value, lineal energy and RBE for BNCT

    International Nuclear Information System (INIS)

    Liu Chingsheng; Tung Chuanjong

    2006-01-01

    Due to the non-uniform uptake of boron-containing pharmaceuticals in cells and the short-ranged alpha and lithium particles, microdosimetry provides useful information on the cellular dose and response of boron neutron capture therapy (BNCT). Radiation dose and quality in BNCT may be expressed in terms of the cellular S-value and the lineal energy spectrum. In the present work, Monte Carlo simulations were performed to calculate these microdosimetric parameters for different source-target configurations and sizes in cells. The effective relative biological effectiveness (RBE) of the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam was evaluated using biological weighting functions that depended on the lineal energy. RBE changes with source-target configurations and sizes were analyzed. (author)

  16. Design of polymeric carrier containing boron for boron neutron capture therapy and its use in tissue cultures

    International Nuclear Information System (INIS)

    Kahraman, G.

    2004-01-01

    The aim of this study is the synthesis of a new alternative boron containing polymer carrier to be used for Boron Neutron Capture Therapy (BNCT) (one of the treatment methods for brain tumours) and to investigate its use in cell cultures. First of all, B-containing copolymer were synthesized by complex-radical copolymerization of vinylphenylboronic acid and maleic anhydride with 2, 2- azobisisobutyronitrile as an initiator in DMF solvent at 65 degree Celsius under nitrogen atmosphere. Macro branched derivatives of these polymers were synthesized by the partial grafting with α-hydroxy,ω -methoxy-poly(ethylene oxide). Characterization of Poly(VPBA-co-MA) and these macro branched copolymers were performed by FTIR, 1 H NMR spectroscopy, X-Ray diffraction, DSC and TGA analyses. As a result of these analyses, it was observed that these macro branched copolymers had a higher crystallinity and thermal stability than the copolymer. These properties of macro branched copolymers are explained by self-organized H-bonding effect in radical copolymerization and grafting reactions and by the formation of self assembled supramolecular architecture. The selected macro branched copolymer was incorporated by poly(ethylene imine) in order to uptake to cell and thus, this synthesized macro complex copolymer [(VFBA-co-MA)-g-PEG/PEI] was charged with positive charge. As a result of FTIR analysis, it was observed that COO - .NH + complex was formed. After the cell culture experiment, it was observed that this macro complex copolymer labelled with fluorescein up took to HeLa cells with 7 % efficiency. And then, folic acid was incorporated in [(VFBA-co-MA)-g-PEG/PEI] macro complex in order to provide selective targeting properties with tumour cells. As a result of the experiment of cell culture containing mixture of HeLa and fibroblast cell, it was observed that [(VFBA-co-MA)-g-PEG/PEI]-FA macro complex went towards to HeLa cells selectively by means of fluorescence microscopy. Poly

  17. A large animal model for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Gavin, P.R.; Kraft, S.L.; DeHaan, C.E.; Moore, M.P.; Griebenow, M.L.

    1992-01-01

    An epithermal neutron beam is needed to treat relatively deep seated tumors. The scattering characteristics of neutrons in this energy range dictate that in vivo experiments be conducted in a large animal to prevent unacceptable total body irradiation. The canine species has proven an excellent model to evaluate the various problems of boron neutron capture utilizing an epithermal neutron beam. This paper discusses three major components of the authors study: (1) the pharmacokinetics of borocaptate sodium (NA 2 B 12 H 11 SH or BSH) in dogs with spontaneously occurring brain tumors, (2) the radiation tolerance of normal tissues in the dog using an epithermal beam alone and in combination with borocaptate sodium, and (3) initial treatment of dogs with spontaneously occurring brain tumors utilizing borocaptate sodium and an epithermal neutron beam

  18. Reprint of Application of BNCT to the treatment of HER2+ breast cancer recurrences: Research and developments in Argentina

    International Nuclear Information System (INIS)

    Gadan, M.A.; González, S.J.; Batalla, M.; Olivera, M.S.; Policastro, L.; Sztejnberg, M.L.

    2015-01-01

    In the frame of the Argentine BNCT Project a new research line has been started to study the application of BNCT to the treatment of locoregional recurrences of HER2+ breast cancer subtype. Based on former studies, the strategy considers the use of immunoliposomes as boron carriers nanovehicles to target HER2 overexpressing cells. The essential concerns of the current stage of this proposal are the development of carriers that can improve the efficiency of delivery of boron compounds and the dosimetric assessment of treatment feasibility. For this purpose, an specific pool of clinical cases that can benefit from this application was determined. In this work, we present the proposal and the advances related to the different stages of current research. - Highlights: • A new proposal of BNCT for HER2+ breast cancer treatment is introduced. • The proposal considers development of immunoliposomes as boron carrier nanovehicles. • Locoregional recurrences after treatment were identified as candidates for initial BNCT studies. • First analysis show acceptable neutron flux distributions provided by RA-6 BNCT facility.

  19. Monte Carlo based protocol for cell survival and tumour control probability in BNCT.

    Science.gov (United States)

    Ye, S J

    1999-02-01

    A mathematical model to calculate the theoretical cell survival probability (nominally, the cell survival fraction) is developed to evaluate preclinical treatment conditions for boron neutron capture therapy (BNCT). A treatment condition is characterized by the neutron beam spectra, single or bilateral exposure, and the choice of boron carrier drug (boronophenylalanine (BPA) or boron sulfhydryl hydride (BSH)). The cell survival probability defined from Poisson statistics is expressed with the cell-killing yield, the 10B(n,alpha)7Li reaction density, and the tolerable neutron fluence. The radiation transport calculation from the neutron source to tumours is carried out using Monte Carlo methods: (i) reactor-based BNCT facility modelling to yield the neutron beam library at an irradiation port; (ii) dosimetry to limit the neutron fluence below a tolerance dose (10.5 Gy-Eq); (iii) calculation of the 10B(n,alpha)7Li reaction density in tumours. A shallow surface tumour could be effectively treated by single exposure producing an average cell survival probability of 10(-3)-10(-5) for probable ranges of the cell-killing yield for the two drugs, while a deep tumour will require bilateral exposure to achieve comparable cell kills at depth. With very pure epithermal beams eliminating thermal, low epithermal and fast neutrons, the cell survival can be decreased by factors of 2-10 compared with the unmodified neutron spectrum. A dominant effect of cell-killing yield on tumour cell survival demonstrates the importance of choice of boron carrier drug. However, these calculations do not indicate an unambiguous preference for one drug, due to the large overlap of tumour cell survival in the probable ranges of the cell-killing yield for the two drugs. The cell survival value averaged over a bulky tumour volume is used to predict the overall BNCT therapeutic efficacy, using a simple model of tumour control probability (TCP).

  20. Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.

    Science.gov (United States)

    Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Application of neutron capture autoradiography to Boron Delivery seeking techniques for selective accumulation of boron compounds to tumor with intra-arterial administration of boron entrapped water-in-oil-in-water emulsion

    Science.gov (United States)

    Mikado, S.; Yanagie, H.; Yasuda, N.; Higashi, S.; Ikushima, I.; Mizumachi, R.; Murata, Y.; Morishita, Y.; Nishimura, R.; Shinohara, A.; Ogura, K.; Sugiyama, H.; Iikura, H.; Ando, H.; Ishimoto, M.; Takamoto, S.; Eriguchi, M.; Takahashi, H.; Kimura, M.

    2009-06-01

    It is necessary to accumulate the 10B atoms selectively to the tumor cells for effective Boron Neutron Capture Therapy (BNCT). In order to achieve an accurate measurement of 10B accumulations in the biological samples, we employed a technique of neutron capture autoradiography (NCAR) of sliced samples of tumor tissues using CR-39 plastic track detectors. The CR-39 track detectors attached with the biological samples were exposed to thermal neutrons in the thermal column of the JRR3 of Japan Atomic Energy Agency (JAEA). We obtained quantitative NCAR images of the samples for VX-2 tumor in rabbit liver after injection of 10BSH entrapped water-in-oil-in-water (WOW) emulsion by intra-arterial injection via proper hepatic artery. The 10B accumulations and distributions in VX-2 tumor and normal liver of rabbit were investigated by means of alpha-track density measurements. In this study, we showed the selective accumulation of 10B atoms in the VX-2 tumor by intra-arterial injection of 10B entrapped WOW emulsion until 3 days after injection by using digitized NCAR images (i.e. alpha-track mapping).

  2. Application of neutron capture autoradiography to Boron Delivery seeking techniques for selective accumulation of boron compounds to tumor with intra-arterial administration of boron entrapped water-in-oil-in-water emulsion

    International Nuclear Information System (INIS)

    Mikado, S.; Yanagie, H.; Yasuda, N.; Higashi, S.; Ikushima, I.; Mizumachi, R.; Murata, Y.; Morishita, Y.; Nishimura, R.; Shinohara, A.; Ogura, K.; Sugiyama, H.; Iikura, H.; Ando, H.; Ishimoto, M.; Takamoto, S.; Eriguchi, M.; Takahashi, H.; Kimura, M.

    2009-01-01

    It is necessary to accumulate the 10 B atoms selectively to the tumor cells for effective Boron Neutron Capture Therapy (BNCT). In order to achieve an accurate measurement of 10 B accumulations in the biological samples, we employed a technique of neutron capture autoradiography (NCAR) of sliced samples of tumor tissues using CR-39 plastic track detectors. The CR-39 track detectors attached with the biological samples were exposed to thermal neutrons in the thermal column of the JRR3 of Japan Atomic Energy Agency (JAEA). We obtained quantitative NCAR images of the samples for VX-2 tumor in rabbit liver after injection of 10 BSH entrapped water-in-oil-in-water (WOW) emulsion by intra-arterial injection via proper hepatic artery. The 10 B accumulations and distributions in VX-2 tumor and normal liver of rabbit were investigated by means of alpha-track density measurements. In this study, we showed the selective accumulation of 10 B atoms in the VX-2 tumor by intra-arterial injection of 10 B entrapped WOW emulsion until 3 days after injection by using digitized NCAR images (i.e. alpha-track mapping).

  3. Application of neutron capture autoradiography to Boron Delivery seeking techniques for selective accumulation of boron compounds to tumor with intra-arterial administration of boron entrapped water-in-oil-in-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Mikado, S. [Physical Science Laboratories, College of Industrial Technology, Nihon University, Chiba (Japan)], E-mail: mikado@cit.nihon-u.ac.jp; Yanagie, H. [Department of Nuclear Engineering and Management, University of Tokyo, Tokyo (Japan); Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Yasuda, N. [Fundamental Technology Center, National Institute of Radiological Sciences, Chiba (Japan); Higashi, S.; Ikushima, I. [Miyakonojyo Metropolitan Hospital, Miyazaki (Japan); Mizumachi, R.; Murata, Y. [Department of Pharmacology, Kumamoto Institute Branch, Mitsubishi Chemical Safety Institute Ltd., Kumamoto (Japan); Morishita, Y. [Department of Human and Molecular Pathology, University of Tokyo, Tokyo (Japan); Nishimura, R. [Faculty of Agriculture, Laboratory of Veterinary Surgery, University of Tokyo (Japan); Shinohara, A. [Department of Humanities, The Graduate School of Seisen University, Tokyo (Japan); Ogura, K. [Physical Science Laboratories, College of Industrial Technology, Nihon University, Chiba (Japan); Sugiyama, H. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Iikura, H.; Ando, H. [Japan Atomic Energy Agency, Ibaraki (Japan); Ishimoto, M. [Department of Nuclear Professional School, University of Tokyo (Japan); Takamoto, S. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Department of Cardiac Surgery, University of Tokyo Hospital, Tokyo (Japan); Eriguchi, M. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Department of Microbiology, Syowa University School of Pharmaceutical Sciences, Tokyo (Japan); Takahashi, H. [Department of Nuclear Engineering and Management, University of Tokyo, Tokyo (Japan); Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Kimura, M. [Department of Physics, Toho University, Chiba (Japan)

    2009-06-21

    It is necessary to accumulate the {sup 10}B atoms selectively to the tumor cells for effective Boron Neutron Capture Therapy (BNCT). In order to achieve an accurate measurement of {sup 10}B accumulations in the biological samples, we employed a technique of neutron capture autoradiography (NCAR) of sliced samples of tumor tissues using CR-39 plastic track detectors. The CR-39 track detectors attached with the biological samples were exposed to thermal neutrons in the thermal column of the JRR3 of Japan Atomic Energy Agency (JAEA). We obtained quantitative NCAR images of the samples for VX-2 tumor in rabbit liver after injection of {sup 10}BSH entrapped water-in-oil-in-water (WOW) emulsion by intra-arterial injection via proper hepatic artery. The {sup 10}B accumulations and distributions in VX-2 tumor and normal liver of rabbit were investigated by means of alpha-track density measurements. In this study, we showed the selective accumulation of {sup 10}B atoms in the VX-2 tumor by intra-arterial injection of {sup 10}B entrapped WOW emulsion until 3 days after injection by using digitized NCAR images (i.e. alpha-track mapping)

  4. Radiobiology of BNCT mediated by GB-10 and GB-10+BPA in experimental oral cancer

    International Nuclear Information System (INIS)

    Trivillin, Veronica A.; Heber, Elisa M.; Itoiz, Maria E.; Nigg, David; Calzetta, Osvaldo; Blaumann, Herman; Longhino, Juan; Schwint, Amanda E.

    2004-01-01

    We previously reported biodistribution and pharmacokinetic data for GB-10 (Na 2 10 B 10 H 10 ) and the combined administration of GB-10 and boronophenylalanine (BPA) as boron delivery agents for boron neutron capture therapy (BNCT) in the hamster cheek pouch oral cancer model. The aim of the present study was to assess, for the first time, the response of hamster cheek pouch tumors, precancerous tissue and normal tissue to BNCT mediated by GB-10 and BNCT mediated by GB-10 and BPA administered jointly using the thermalized epithermal beam of the RA-6 Reactor at the Bariloche Atomic Center. GB-10 exerted 75.5% tumor control (partial+complete remission) with no damage to precancerous tissue around tumor or to normal tissue. Thus, GB-10 proved to be a therapeutically efficient boron agent in this model despite the fact that it is not taken up selectively by oral tumor tissue. GB-10 exerted a selective effect on tumor blood vessels leading to significant tumor control with a sparing effect on normal tissue. BNCT mediated by the combined administration of GB-10 and BPA resulted in a reduction in the dose to normal tissue and would thus allow for significant escalation of dose to tumor without exceeding normal tissue tolerance

  5. Optimization of a neutron production target and a beam shaping assembly based on the 7Li( p, n) 7Be reaction for BNCT

    Science.gov (United States)

    Burlon, A. A.; Kreiner, A. J.; Valda, A. A.; Minsky, D. M.; Somacal, H. R.; Debray, M. E.; Stoliar, P.

    2005-02-01

    In this work a thick LiF target was studied through the 7Li( p, n) 7Be reaction as a neutron source for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) to provide a testing ground for numerical simulations aimed at producing an optimized neutron production target and beam shaping assembly design. Proton beams in the 1.88-2.0 MeV energy range were produced with the tandem accelerator TANDAR ( TANDem ARgentino) at the Comisión Nacional de Energía Atómica (CNEA) in Buenos Aires, Argentina. A cylindrical water-filled head-phantom, containing a boric acid sample, was irradiated to study the resulting neutron flux. The dose deposited in the boric acid sample was inferred through the Compton-suppressed detection of the gamma radiation produced from the 10B( n, αγ) 7Li capture reaction. The thermal neutron flux was evaluated using bare and Cd-covered activation gold foils. In all cases, Monte Carlo simulations have been done showing good agreement with the experimental results. Extensive MCNP simulation trials have then been performed after the preliminary calculation tool validation in order to optimize a neutron beam shaping assembly. These simulations include a thick Li metal target (instead of LiF), a whole-body phantom, two different moderator-reflector assemblies (Al/AlF 3/LiF, Fluental ®, as moderator and lead as reflector and a combination of Al, PTFE (polytetrafluoroethylene) and LiF as moderator and lead as reflector) and the treatment room. The doses were evaluated for proton bombarding energies of 1.92 MeV (near to the threshold of the reaction), 2.0 MeV, 2.3 MeV (near the reaction resonance) and 2.5 MeV, and for three Fluental ® and Al/PTFE/LiF moderator thicknesses (18, 26 and 34 cm). In a later instance, the effect of the specific skin radiosensitivity (an RBE of 2.5 for the 10B( n, α) 7Li reaction) and a 10B uptake 50% greater than the healthy tissue one, was considered for the scalp. To evaluate the doses in the phantom, a comparison of

  6. Large animal normal tissue tolerance with boron neutron capture

    International Nuclear Information System (INIS)

    Gavin, P.R.; Swartz, C.D.; Kraft, S.L.; Briebenow, M.L.; DeHaan, C.E.

    1994-01-01

    Normal tissue tolerance of boron neutron capture irradiation using borocaptate sodium (NA 2 B 12 H 11 SH) in an epithermal neutron beam was studied. Large retriever-type dogs were used and the irradiations were performed by single dose, 5 x 10 dorsal portal. Fourteen dogs were irradiated with the epithermal neutron beam alone and 35 dogs were irradiated following intravenous administration of borocaptate sodium. Total body irradiation effect could be seen from the decreased leukocytes and platelets following irradiation. Most values returned to normal within 40 days postirradiation. Severe dermal necrosis occurred in animals given 15 Gy epithermal neutrons alone and in animals irradiated to a total peak physical dose greater than 64 Gy in animals following borocaptate sodium infusion. Lethal brain necrosis was seen in animals receiving between 27 and 39 Gy. Lethal brain necrosis occurred at 22-36 weeks postirradiation. A total peak physical dose of approximately 27 Gy and blood-boron concentrations of 25-50 ppm resulted in abnormal magnetic resonance imaging results in 6 months postexamination. Seven of eight of these animals remained normal and the lesions were not detected at the 12-month postirradiation examination. The bimodal therapy presents a complex challenge in attempting to achieve dose response assays. The resultant total radiation dose is a composite of low and high LET components. The short track length of the boron fission fragments and the geometric effect of the vessels causes much of the intravascular dose to miss the presumed critical target of the endothelial cells. The results indicate a large dose-sparing effect from the boron capture reactions within the blood. 23 refs., 6 figs., 2 tabs

  7. An international dosimetry exchange for boron neutron capture therapy, Part I: Absorbed dose measurements

    Czech Academy of Sciences Publication Activity Database

    Binns, P. J.; Riley, K. J.; Harling, O. K.; Kiger III, W. S.; Munck af Rosenschöld, P. M.; Giusti, V.; Capala, J.; Sköld, K.; Auterinen, I.; Serén, T.; Kotiluoto, P.; Uusi-Simola, J.; Marek, M.; Viererbl, L.; Spurný, František

    2005-01-01

    Roč. 32, č. 12 (2005), s. 3729-3736 ISSN 0094-2405 R&D Projects: GA ČR GA202/04/0795 Institutional research plan: CEZ:AV0Z10480505 Keywords : BNCT * thermal neutrons * dosimetry intercomparison Subject RIV: BO - Biophysics Impact factor: 3.192, year: 2005

  8. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications.

    NARCIS (Netherlands)

    Mandal, S.; Bakeine, G.J.; Krol, S.; Ferrari, C.; Clerici, A.M.; Zonta, C.; Cansolino, L.; Ballarini, F.; Bortolussi, S.; Stella, S.; Protti, N.; Bruschi, P.; Altieri, S.

    2011-01-01

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were

  9. A Tandem-electrostatic-quadrupole for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Kwan, J.W.; Burlon, A.A.; Di Paolo, H.; Henestroza, E.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.

    2007-01-01

    A project to develop a Tandem-electrostatic-quadrupole (TESQ) accelerator for accelerator-based boron neutron capture therapy (AB-BNCT) is described. A folded Tandem, with 1.25 MV terminal voltage, combined with an electrostatic quadrupole (ESQ) chain is being proposed. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the 7 Li(p, n) 7 Be reaction slightly beyond its resonance at 2.25 MeV. This machine is conceptually shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the 7 Li(p, n) 7 Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. This electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT

  10. A neutron dynamic therapy with a boron tracedrug UTX-51 using a compact neutron generator.

    Science.gov (United States)

    Hori, Hitoshi; Tada, Ryu; Uto, Yoshihiro; Nakata, Eiji; Morii, Takashi; Masuda, Kai

    2014-08-01

    We are developing a neutron dynamic therapy (NDT) with boron tracedrugs for a new mechanical-clearance treatment of pathotoxic misfolded, aggregated, and self-propagating prion-associated disease proteins. We present a compact neutron generator-based NDT using a boron tracedrug UTX-51. Our NDT is based on the weak thermal neutron-bombarded destructive action of UTX-51 on bovine serum albumin (BSA) using the neutron beams produced from a compact inertial electrostatic confinement fusion (IECF) neutron generator. BSA as an NDT molecular target was subjected to thermal neutron irradiation for eight hours using a compact neutron generator. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern showed no protein band when 2 nmoles of BSA were irradiated with more than 100 nmoles of UTX-51, while BSA was not affected when irradiated without UTX-51. For the first time, we have succeeded in the molecular destruction of a prion-disease model protein, BSA, by NDT with a boron tracedrug, UTX-51, using a compact neutron generator. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Fractionated Boron Neutron Capture Therapy in Locally Recurrent Head and Neck Cancer: A Prospective Phase I/II Trial.

    Science.gov (United States)

    Wang, Ling-Wei; Chen, Yi-Wei; Ho, Ching-Yin; Hsueh Liu, Yen-Wan; Chou, Fong-In; Liu, Yuan-Hao; Liu, Hong-Ming; Peir, Jinn-Jer; Jiang, Shiang-Huei; Chang, Chi-Wei; Liu, Ching-Sheng; Lin, Ko-Han; Wang, Shyh-Jen; Chu, Pen-Yuan; Lo, Wen-Liang; Kao, Shou-Yen; Yen, Sang-Hue

    2016-05-01

    To investigate the efficacy and safety of fractionated boron neutron capture therapy (BNCT) for recurrent head and neck (H&N) cancer after photon radiation therapy. In this prospective phase 1/2 trial, 2-fraction BNCT with intravenous L-boronophenylalanine (L-BPA, 400 mg/kg) was administered at a 28-day interval. Before each fraction, fluorine-18-labeled-BPA-positron emission tomography was conducted to determine the tumor/normal tissue ratio of an individual tumor. The prescription dose (D80) of 20 Gy-Eq per fraction was selected to cover 80% of the gross tumor volume by using a dose volume histogram, while minimizing the volume of oral mucosa receiving >10 Gy-Eq. Tumor responses and adverse effects were assessed using the Response Evaluation Criteria in Solid Tumors v1.1 and the Common Terminology Criteria for Adverse Events v3.0, respectively. Seventeen patients with a previous cumulative radiation dose of 63-165 Gy were enrolled. All but 2 participants received 2 fractions of BNCT. The median tumor/normal tissue ratio was 3.4 for the first fraction and 2.5 for the second, whereas the median D80 for the first and second fraction was 19.8 and 14.6 Gy-Eq, respectively. After a median follow-up period of 19.7 months (range, 5.2-52 mo), 6 participants exhibited a complete response and 6 exhibited a partial response. Regarding acute toxicity, 5 participants showed grade 3 mucositis and 1 participant showed grade 4 laryngeal edema and carotid hemorrhage. Regarding late toxicity, 2 participants exhibited grade 3 cranial neuropathy. Four of six participants (67%) receiving total D80 > 40 Gy-Eq had a complete response. Two-year overall survival was 47%. Two-year locoregional control was 28%. Our results suggested that 2-fraction BNCT with adaptive dose prescription was effective and safe in locally recurrent H&N cancer. Modifications to our protocol may yield more satisfactory results in the future. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Killing effect of carboranyl uridine on boron neutron capture reaction

    International Nuclear Information System (INIS)

    Takagaki, M.; Oda, Y.; Zhang, Z.

    1994-01-01

    This paper deals with the killing effect of carboranyl uridine (CU) on thermal neutron capture reaction in cultured glioma cell line (C6). The tumoricidal effect of CU for boron neutron capture therapy in the cultured cell system is presented. To assess the uptake of CU, the number of germ cells was determined by comparing protein concentrations of C6 cells in vitro with that of intracranially transplanted C6 tumor cells in vivo. To assess tumoricidal effects of CU, human glioma cells (T98G), containing 25 ppm natural boron of CU, were irradiated with various doses of thermal neutrons at a constant fluence rate. The uptake and killing effects of mercaptoboron and boric acid were also investigated as controls. Subcellular boron concentrations confirmed the selective affinity to the nucleic acid synthesis. CU was found to have an affinity to nucleic acid synthesis and to be accumulated into nucleus of tumor cells. The irradiation dose which yielded 37% survival rate in the case of CU and control were 3.78+12E nvt and 5.80+12E nvt, respectively. The killing effect of CU was slightly higher than that of B-SH or BA. The effective way of CU injection should be further studied to obtain the uniform CU uptake in tumor cells. (N.K.)

  13. A simple and rapid method for measurement of 10B-para-boronophenylalanine in the blood for boron neutron capture therapy using fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Kashino, Genro; Fukutani, Satoshi; Suzuki, Minoru

    2009-01-01

    10 B deriving from 10 B-para-boronophenylalanine (BPA) and 10 B-borocaptate sodium (BSH) have been detected in blood samples of patients undergoing boron neutron capture therapy (BNCT) using prompt gamma ray spectrometer or Inductively Coupled Plasma (ICP) method, respectively. However, the concentration of each compound cannot be ascertained because boron atoms in both molecules are the target in these assays. Here, we propose a simple and rapid method to measure only BPA by detecting fluorescence based on the characteristics of phenylalanine. 10 B concentrations of blood samples from human or mice were estimated by the fluorescence intensities at 275 nm of a BPA excited by light of wavelength 257 nm using a fluorescence spectrophotometer. The relationship between fluorescence to increased BPA concentration showed a positive linear correlation. Moreover, we established an adequate condition for BPA measurement in blood samples containing BPA, and the estimated 10 B concentrations of blood samples derived from BPA treated mice were similar between the values obtained by our method and those by ICP method. This new assay will be useful to estimate BPA concentration in blood samples obtained from patients undergoing BNCT especially in a combination use of BSH and BPA. (author)

  14. Artificial neural networks to evaluate the boron concentration decreasing profile in Blood-BPA samples of BNCT patients

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Reiriz, Alejandro, E-mail: garciareiriz@gmail.com [Department of Analytical Chemistry, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario Institute of Chemistry (IQUIR-CONICET), Suipacha 531, Rosario S2002LRK (Argentina); Magallanes, Jorge [Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, San Martin, B1650KNA, Buenos Aires (Argentina); Zupan, Jure [National Institute of Chemistry, Hajdrihova 19, SLO-1000 Ljubljana, Eslovenia (Slovenia); Liberman, Sara [Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, San Martin, B1650KNA, Buenos Aires (Argentina)

    2011-12-15

    For the prediction of decay concentration profiles of the p-boronophenylalanine (BPA) in blood during BNCT treatment, a method is suggested based on Kohonen neural networks. The results of a model trained with the concentration profiles from the literature are described. The prediction of the model was validated by the leave-one-out method. Its robustness shows that it is mostly independent on small variations. The ability to fit retrospective experimental data shows an uncertainty lower than the two compartment model used previously. - Highlights: Black-Right-Pointing-Pointer We predicted decaying concentration profiles of BPA in blood during BNCT therapy. Black-Right-Pointing-Pointer Is suggested a method based on Kohonen neural networks. Black-Right-Pointing-Pointer The results show that it is very robust and mostly independent of small variations. Black-Right-Pointing-Pointer It has a better ability to fit retrospective experimental data. Black-Right-Pointing-Pointer The model could be progressively improved by adding new data to the training matrix.

  15. First clinical results on the finnish study on BPA-mediated BNCT in glioblastoma

    International Nuclear Information System (INIS)

    Kankaanranta, L.; Seppaelae, T.; Kallio, M.

    2000-01-01

    An open phase I dose-escalation boron neutron capture therapy (BNCT) study on glioblastoma multiforme (GBM) was initiated at the BNCT facility FiR 1, Espoo, Finland, in May 1999. The aim of the study is to investigate the safety of boronophenylalanine (BPA)-mediated BNCT. Ten GBM patients were treated with a 2-field treatment plan using one fraction. BPA-F was used as the 10 B carrier infused as a fructose solution 290 mg BPA/kg over 2-hours prior to irradiation with epithermal neutrons. Average doses to the normal brain, contrast enhancing tumour, and the target ranged from 3.0 to 5.6 Gy (W), from 35.1 to 66.7 Gy (W), and from 29.6 to 53.6 Gy (W), respectively. BNCT was associated with acceptable toxicity. The median follow-up is 9 months (range, 3 to 16 months) post diagnosis in July 2000. Seven of the 10 patients have recurrent or persistent GBM, and the median time to progression is 8 months. Only one patient has died, and the estimated 1-year overall survival is 86%. Five of the recurrent tumours were treated with external beam photon radiation therapy to the total dose of 30-40 Gy with few acute side-effects. These preliminary findings suggest that acute toxicity of BPA-mediated BNCT is acceptable when average brain doses of 5.6 Gy (W) or less are used. The followup time is too short to evaluate survival, but the estimated 1-year survival of 86% achieved with BNCT followed by conventional photon irradiation at the time of tumour progression is encouraging and emphasises the need of further investigation of BPA-mediated BNCT. (author)

  16. Response of alpha particles in hexagonal boron nitride neutron detectors

    Science.gov (United States)

    Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2017-05-01

    Thermal neutron detectors were fabricated from 10B enriched h-BN epilayers of different thicknesses. The charge carrier generation and energy loss mechanisms as well as the range of alpha daughter particles generated by the nuclear reaction between thermal neutrons and 10B atoms in hexagonal boron nitride (h-BN) thermal neutron detectors have been investigated via their responses to alpha particles from a 210Po source. The ranges of alpha particles in h-BN were found to be anisotropic, which increase with the angle (θ) between the trajectory of the alpha particles and c-axis of the h-BN epilayer following (cos θ)-1 and are 4.6 and 5.6 μm, respectively, for the alpha particles with energies of 1.47 MeV and 1.78 MeV at θ = 0. However, the energy loss of an alpha particle inside h-BN is determined by the number of layers it passes through with a constant energy loss rate of 107 eV per layer due to the layered structure of h-BN. Roughly 5 electron-hole pairs are generated when an alpha particle passes through each layer. It was also shown that the durability of h-BN thermal neutron detectors is excellent based on the calculation of boron vacancies generated (or 10B atoms consumed) by neutron absorption. The results obtained here provide useful insights into the mechanisms of energy loss and charge carrier generation inside h-BN detectors and possible approaches to further improve the overall performance of h-BN thermal neutron detectors, as well as the ultimate spatial resolution of future neutron imaging devices or cameras based on h-BN epilayers.

  17. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    Science.gov (United States)

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.