WorldWideScience

Sample records for bn-350 fast-breeder reactor

  1. The passive nondestructive assay of the plutonium content of spent-fuel assemblies from the BN-350 fast-breeder reactor in the city of Aqtau, Kazakhstan

    CERN Document Server

    Lestone, J P; Rennie, J A; Sprinkle, J K; Staples, P; Grimm, K N; Hill, R N; Cherradi, I; Islam, N; Koulikov, J; Starovich, Z

    2002-01-01

    The International Atomic Energy Agency is presently interested in developing equipment and techniques to measure the plutonium content of breeder reactor spent-fuel assemblies located in storage ponds before they are relocated to more secure facilities. We present the first quantitative nondestructive assay of the plutonium content of fast-breeder reactor spent-fuel assemblies while still underwater in their facility storage pond. We have calibrated and installed an underwater neutron coincidence counter (Spent Fuel Coincidence Counter (SFCC)) in the BN-350 reactor spent-fuel pond in Aqtau, Kazakhstan. A procedure has been developed to convert singles and doubles (coincidence) neutron rates observed by the SFCC into the total plutonium content of a given BN-350 spent-fuel assembly. The plutonium content has been successfully determined for spent-fuel assemblies with a contact radiation level as high as approx 10 sup 5 Rads/h. Using limited facility information and multiple measurements along the length of spe...

  2. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  3. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  4. Reactor BN-350 spent fuel handling

    International Nuclear Information System (INIS)

    In pursuance with the Decree No. 456 of the Government of Kazakhstan, dated 22 April of 1999, BN-350 reactor shall be converted to SAFSTOR state for 50 years period followed by dismantling and disposal. Nuclear fuel unloading and safe arrangement for long-term storage in a specially constructed storage facility outside the reactor plant is one of the main criteria of reactor conversion of SAFSTOR state. In accordance with principles of nonproliferation and cancellation of 'nuclear test sites' the 'Baikal-1' bench-top complex located at National Nuclear Center of the Republic of Kazakhstan site is defined by Kazakhstan side decision as a location for long-term storage of BN-350 spent fuel. Project of BN-350 spent fuel transportation and arrangement for long-term storage includes several stages for completion. Currently the spent fuel is unloaded and packed into sealed jackets filled with inert gas. Thus the first Project stage - spent fuel preparation for transportation and provision of necessary temporary storage condition in BN-350 ponds till the moment of transportation is completed. Spent fuel transportation to the place of long-term storage is suggested to conduct in transport packaging casks (TPC) by railway to Kurchatov station where casks will be reloaded for transportation by auto-trailers. For the second Project stage the works have to be carried out on development of the following features: TPC design, technological process of transportation, design of storage facility and both nuclear fuel loading and reloading platforms. This part of this stage is yet completed and main project and technical solution are reported (TPC based on the one pack metal cask, technological process of TPC handling, Silo-type storage facility. As one of the option the TPC is reported based on heavy metal-concrete cask and indented for spent fuel transportation and storage (up to seven canisters with SFAs). Advantages and disadvantages of these TPC are reported compared to that of

  5. Fast breeder reactor research

    International Nuclear Information System (INIS)

    , Italy, in April or May 1977. Recognizing the importance of international co-ope ration within the framework of IWGFR for preparing surveys, proposals and recommendations concerning sodium cooled fast breeder reactors, the Working Group prepared a number of joint documents with the help of experts from the participating countries, discussed them at the Eighth Annual Meeting and made recommendations on the preparation of subsequent joint documents. (author)

  6. Fast breeder reactor protection system

    Science.gov (United States)

    van Erp, J.B.

    1973-10-01

    Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)

  7. Thermal and neutronic calculation for fast breeder reactor FBR

    International Nuclear Information System (INIS)

    This research included studying of thermal and neutronic calculation for fast breeder nuclear reactor, to putting the optimum design for this reactor. So a Soviet type (BN-350) was chosen, which has its core composed of two enrichment zones, and with blanket that contains depleted uranium. A group of thermal calculation programs was made by using personal computer, to obtain core and blanket reactor dimensions and volume fractions of reaction input material and number and dimensions of fuel rods which were used for neutron calculations. Several core and blanket enrichments were used to study neutron flux behaviour for two reactors different conditions. First when control rods exist in the core reactor and second when the rods are out of the core. Breeding ratio was also studied for different core and blanket enrichment. 30 tabs.; 24 figs.; 34 refs.; 3 apps

  8. Fast breeder reactors an engineering introduction

    CERN Document Server

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  9. UK contributions to the decommissioning of the BN-350 reactor in Kazakhstan: 2002 – 2011

    International Nuclear Information System (INIS)

    UK assistance with the decommissioning of BN-350 has cost ~£8.9 million over ten years, ~£4 million spent directly in Kazakhstan. The Programme has immobilised key wastes, contributed to irreversible shutdown of the reactor and addressed issues associated with sodium coolant processing. The Programme funded the operations to load spent fuel canisters into casks at BN-350, together with their despatch from site and receipt at the secure storage facility. The Programme also delivered technical and project management training, assisted in the production of the BN-350 Decommissioning Plan and contributed to the radiation survey effort in the STS

  10. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  11. Improved fuel element for fast breeder reactor

    International Nuclear Information System (INIS)

    The invention, in which the United States Department of Energy has participated as co-inventor, relates to breeder reactor fuel elements, and specifically to such elements incorporating 'getters', hereafter designated as fission product traps. The main object of the invention is the construction of a fast breeder reactor fuel pin, free from local stresses induced in the cladding by reactions with cesium. According to the invention, the fast breeder fuel element includes a cladding tube, sealed at both ends by a plug, and containing a fissile stack and a fertile stack, characterized by the interposition of a cesium trap between the fissile and fertile stacks. The trap is effective at reactor operating temperatures in retaining and separating the cesium generated in the fissile material and preventing cesium reaction with the fertile stack. Depending on the construction method adopted, the trap may consists of a low density titanium oxide or niobium oxide pellet

  12. Coatings for fast breeder reactor components

    International Nuclear Information System (INIS)

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  13. Prototype fast breeder reactor main options

    International Nuclear Information System (INIS)

    Fast reactor programme gets importance in the Indian energy market because of continuous growing demand of electricity and resources limited to only coal and FBR. India started its fast reactor programme with the construction of 40 MWt Fast Breeder Test Reactor (FBTR). The reactor attained its first criticality in October 1985. The reactor power will be raised to 40 MWt in near future. As a logical follow-up of FBTR, it was decided to build a prototype fast breeder reactor, PFBR. Considering significant effects of capital cost and construction period on economy, systematic efforts are made to reduce the same. The number of primary and secondary sodium loops and components have been reduced. Sodium coolant, pool type concept, oxide fuel, 20% CW D9, SS 316 LN and modified 9Cr-1Mo steel (T91) materials have been selected for PFBR. Based on the operating experience, the integrity of the high temperature components including fuel and cost optimization aspects, the plant temperatures are recommended. Steam temperature of 763 K at 16.6 MPa and a single TG of 500 MWe gross output have been decided. PFBR will be located at Kalpakkam site on the coast of Bay of Bengal. The plant life is designed for 30 y and 75% load factor. In this paper the justifications for the main options chosen are given in brief. (author). 2 figs, 2 tabs

  14. Safeguards in Prototype Fast Breeder Reactor Monju

    International Nuclear Information System (INIS)

    The assemblies loaded in the core and stored in the ex-vessel storage tank (EVST) are in liquid sodium in the Japanese prototype fast breeder reactor (FBR) Monju. Since it is difficult to apply a direct verification procedure for the fuel assemblies in these areas, a dual containment and surveillance system consisting of two monitoring devices such as surveillance camera and radiation monitor that are functionally independent has been applied. In addition, the Monju Remote Monitoring System was developed to strengthen the continuous surveillance and to reduce the load of the inspection activities. Furthermore, the ex-vessel transfer machine radiation monitor (EVRM) and the exit gate monitor (EXGM) were upgraded to strengthen the monitoring of spent blanket fuel assemblies and to improve the reliability of distinguishing between fuel assemblies and non-fuel items. As the result, the integrated safeguards was introduced in November 2009, and the effective safeguards activities have been implemented in Monju. (author)

  15. Liquid metal tribology in fast breeder reactors

    International Nuclear Information System (INIS)

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.)

  16. Operating experience of Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) is a 40 MWt / 13.2 MWe sodium cooled, loop type mixed carbide fuelled reactor. Its main aim is to gain experience in the design, construction and operation of fast reactors and to serve as an irradiation facility for development of fuel and structural material for future fast reactors. The reactor achieved first criticality in October 1985 with small indigenously designed and fabricated Mark I core (70% PuC-30% UC). The reactor power was subsequently raised in steps to 17.4 MWt by addition of Mark II fuel subassemblies (55% PuC-45% UC) and with the Mark I fuel operating at the designed linear heat rating of 400 W/cm. The turbo-generator was synchronized with the grid in July 1997. The achieved peak burn-up is 137 000 MWd/t so far without any fuel-clad failure. Presently the reactor is being operated at a nominal power of 15.7 MWt for irradiation of a test fuel subassembly of the Prototype Fast Breeder Reactor, which is coming up at Kalpakkam. It is also planned to irradiate test subassemblies made of metallic fuel for future fast reactor program. Being a small reactor, all feed back coefficients of reactivity including void coefficient are negative and hence the reactor is inherently safe. This was confirmed by carrying out physics tests. The capability to remove decay heat under various incidental conditions including natural convection was demonstrated by carrying out engineering tests. Thermo couples are provided for on-line monitoring of fuel SA outlet temperature by dedicated real time computer and processed to generate trip signals for the reactor in case of power excursion, increase in clad hot spot temperature and subassembly flow blockage. All pipelines and capacities in primary main circuit are provided with segmented outer envelope to minimize and contain radioactive sodium leak while ensuring forced cooling through reactor to remove decay heat in case of failure of primary boundary. In secondary circuit, provision is

  17. Symposium on key questions about the fast breeder reactor

    International Nuclear Information System (INIS)

    Except for several introductions on various aspects of the fast breeder reactor development this paper contains the full texts of the discussions held in the sub-groups panels on resp. technical matters, environment and health, society, politics and economics. The main issues of each discussion are summarized

  18. Determination of tritium in the metallic sodium - the BN-350 reactor coolant

    International Nuclear Information System (INIS)

    In the paper the results on tritium determination in the metallic sodium samples - BN-350 reactor coolant - are presented. Tritium activity measurement was carried out on liquid scintillation spectrometer - TriCarb-3100 ('Canberra'). For the spectrometer calibration the solutions prepared on the base NIS USA standards was used. One of principal difficulties in tritium determination in metallic sodium is sodium hydride extraction into solution. Interaction of metallic sodium with water leads to vigorous energy release, heating and explosion. A few methods of sodium dissolution were tested. The sodium dissolution in isopropyl alcohol with small water quantity addition is the most effective sodium dissolution method. Thr process is proceeding smoothly enough, and 1 gram sodium dissolution goes during 1-2 hours. Tritium determination limit estimated by the measurements results makes up 0.1 Bq/g

  19. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    The twenty-second Annual Meeting of the International Working Group on Fast Reactors took place in Vienna, 18-21 April 1989. Nineteen representatives from twelve Member States and International Organizations attended the Meeting. This publication is a collection of presentations in which the participants reported the status of their national programmes on fast breeder reactors. A separate abstract was prepared for each of the twelve papers from this collections. Refs, figs, tabs and 1 graph

  20. Concept of BN-350 reactor spent fuel handling during its storage after shutdown

    International Nuclear Information System (INIS)

    Full text: According to the Kazakhstan Government Decree (456; Apr 22, 1999), the fast BN-350 reactor has been shutdown in 1999 and the plan of its decommissioning has been started. By a decision of the Kazakhstan Government is defined that its spent fuel must be placed into 50 year's long-term safe storage with following dismantling and final disposal. This plan most important part is the concept of the spent fuel handling during its storage after shutdown. Next main stages of this concept are discussed here: discharge of the fuel, spent fuel packaging into special canisters, temporary storage of these canisters in the rector pool, to choose the site for long-term spent fuel storage and transport cask, making a choice of safety technique for canisters dry storage during 50 years. At first stage the fuel has been removed from the core and placing into reactor pool. The second stage lasted practically about two years. During this period all spent fuel has been packaged into special sealed canisters filled with inert gas. On next stage the site outside of the reactor one for long-term storage of these canisters and the way to ship them into the casks were chosen. The selected site is placed within the territory of former Semipalatinsk nuclear site. But the casks for spent fuel ought to be shipping as by rail and trailer vehicles too. Until its shipping will be started the canisters have been temporary stored under the water into BN-350 reactor pool. The following step is to define the transport cask design and the way to store the canisters at the site during long-term period about 50 years. There are two projects, which have been under consideration. The first is to use single-canister iron cask designed for shipping only. In this case the canisters with spent fuel ought to be transporting to the site into these casks and then transshipped into special 'silo'-type storage. Each canister has to be placed into individual near surface silo. The goal of this way is to

  1. Fast breeder reactors: Experience and trends. V. 2

    International Nuclear Information System (INIS)

    The IAEA Symposium on ''Fast Breeder Reactors: Experience and Future Trends'' was held, at the invitation of the Government of France, in Lyons, France, on 22-26 July 1985. It was hosted by the French Commissariat a l'energie atomique and Electricite de France. The purpose of the Symposium was to review the experience gained so far in the field of LMFBRs, taking into account the constructional, operational, technological, economic and fuel cycle aspects, and to consider the developmental trends as well as the international co-operation in fast breeder reactor design and utilization. The Symposium was attended by almost 400 participants (340 participants, 35 observers and 20 journalists) from 25 countries and five international organizations. More than 80 papers were presented and discussed during six regular sessions and four poster sessions. A separate abstract was prepared for each of these papers

  2. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    The present document contains information on the status of fast breeder reactor development and on worldwide activities in this advanced nuclear power technology during 1989 as reported at the 23rd meeting of the IWGFR in Vienna, April 1990. The publication is intended to provide information regarding the current status of LMFBR development in IAEA Member States. A separate abstract was prepared for each of the 11 papers presented by the participants of this meeting. Refs, figs and tabs

  3. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    The present document contains information on the status of fast breeder reactor development and on worldwide activities in this advanced nuclear power technology during 1990 as reported at the 24th meeting of the IWGFR in Tsuruga, Japan, 15-18 April 1991. The publication is intended to provide information regarding the current status of LMFBR development in IAEA Member States and CEC. Figs and tabs

  4. Sodium technology for fast breeder reactors

    International Nuclear Information System (INIS)

    Sodium, because of its good heat transfer and nuclear properties, is used as a coolant in fast reactors. It is also used largely as a reducing agent in pharmaceutical, perfumery and general chemical industries. Its affinity to react with air and water is a strong disadvantage. However, this is fully understood and the design of engineering systems take care of this aspect. With several experimental and test facilities established over the years in this country as well as abroad, the 'sodium technology' has reached a level of maturity. The design of sodium systems considering all the physical and chemical properties and the developmental work carried out at Indira Gandhi Centre for Atomic Research are broadly covered in this report. (author)

  5. Elements for evaluation of fast breeder reactor's potential in Argentina

    International Nuclear Information System (INIS)

    Fast Breeder Reactors (FBR) main features are presented in a general form, including their physical principles, the history of their evolution, their relevant technological aspects and the basis for their comparison to other energy sources. This is completed with descriptions of typical reactors and a model of FBR penetration in the Argentine electrical network. It is recommended to form a multidisciplinary board to study which position should be taken with respect to this type of reactors. In the author's opinion a Research activity should be started and gradually increased for passing to Development activities after a short while. (Author)

  6. Strengthening of nuclear weapon non-proliferation by means of International cooperation: the role of BN-350 reactor

    International Nuclear Information System (INIS)

    Beginning from 1996 US Department of Energy jointly with National Laboratories is working with Kazakhstan on non-proliferation problems and nuclear safety related to the BN-350 reactor. The first cooperative work has included the modernization of system for nuclear materials accounting and control on the reactor as well as creation of the Centre of Nuclear Technologies Safety for coordination of jobs related with the reactor and the others issues of safety. Hereupon fulfillment of two joint project were began. The first one includes safety provision for spent fuel in the dry safe depository. At present joint teams have completed the fuel package procedures. The second project is a irreversible withdrawal of the BN-350 reactor and it transfer into safe disposal condition for 50 years. This prevents a possibility of nuclear material production at the reactor those would be used for an unforeseen aims. The paper shows, that USA and Kazakhstan are working out the second project and it gives presentation about of status of conducting jobs. An especial attention was paid to cooperation between Kazakhstan and USA which is the part of works on the BN-350 reactor decommissioning

  7. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    G Pandikumar; V Gopalakrishnan; P Mohanakrishnan

    2009-05-01

    In a thermal neutron reactor, multiple recycle of U–Pu fuel is not possible due to degradation of fissile content of Pu in just one recycle. In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving near constant input inventory of Pu and near stable Pu isotopic composition after a few recycles of the same fuel of the prototype fast breeder reactor under construction at Kalpakkam. After about five recycles, the cycle-to-cycle variation in the above parameters is below 1%.

  8. Development of fuels and structural materials for fast breeder reactors

    Indian Academy of Sciences (India)

    Baldev Raj; S L Mannan; P R Vasudeva Rao; M D Mathew

    2002-10-01

    Fast breeder reactors (FBRs) are destined to play a crucial role inthe Indian nuclear power programme in the foreseeable future. FBR technology involves a multi-disciplinary approach to solve the various challenges in the areas of fuel and materials development. Fuels for FBRs have significantly higher concentration of fissile material than in thermal reactors, with a matching increase in burn-up. The design of the fuel is an important aspect which has to be optimised for efficient, economic and safe production of power. FBR components operate under hostile and demanding environment of high neutron flux, liquid sodium coolant and elevated temperatures. Resistance to void swelling, irradiation creep, and irradiation embrittlement are therefore major considerations in the choice of materials for the core components. Structural and steam generator materials should have good resistance to creep, low cycle fatigue, creep-fatigue interaction and sodium corrosion. The development of carbide fuel and structural materials for the Fast Breeder Test Reactor at Kalpakkam was a great technological challenge. At the Indira Gandhi Centre for Atomic Research (IGCAR), advanced research facilities have been established, and extensive studies have been carried out in the areas of fuel and materials development. This has laid the foundation for the design and development of a 500 MWe Prototype Fast Breeder Reactor. Highlights of some of these studies are discussed in this paper in the context of our mission to develop and deploy FBR technology for the energy security of India in the 21st century.

  9. Development of devices for handling with BN-350 radioactive waste

    International Nuclear Information System (INIS)

    The package of activity performed proves the correctness of the concept accepted by the Government of the Republic of Kazakhstan on the BN-350 decommissioning (three successive steps above) targeted at minimization of cost, exposure and amount of radioactive waste. Decommissioning of the high power fast breeder reactor plant is carried out for the first time and therefore the normative documents and design decisions elaborated, accepted technologies and estimation of capital expenditure and maintenance costs may enrich the database and serve as orientation for decommissioning of similar units. According to the concept accepted the BN-350 decommissioning is the process of top level of complexity that is characterized with the requirement of concurrent execution of a large scope of work by means of international teams from Kazakhstan, Russia, USA, EC, etc. Such approach needs the creation of modern effective organization schemes of interfaces and management of the Projects and will be further used in other complicated Projects

  10. The United States of America fast breeder reactor program

    International Nuclear Information System (INIS)

    The reasons for the development of the fast breeder reactor in the United States are outlined, and the LMFBR program is discussed in detail, under the following headings: program objectives, reactor physics, fuel and materials development, fuel recycle, safety, components, plant experience program (Near Commercial Breeder Reactor). The special facilities to be used at each stage of the program are described. It is planned that the Near Commercial Breeder Reactor will be complete in 1986, and commercial plants should follow in rapid succession. An alternate fast reactor concept (Gas Cooled Fast Reactor) is outlined. The Environmental Impact Statement for the proposed program is summarized, and the cost benefit analysis supplied as part of the Environment Statement is also summarized. (U.K.)

  11. Fast breeder reactors: experience and trends. V. 1

    International Nuclear Information System (INIS)

    The IAEA Symposium on ''Fast Breeder Reactors: Experience and Future Trends'' was held, at the invitation of the Government of France, in Lyons, France, on 22-26 July 1985. It was hosted by the French Commissariat a l'energie atomique and Electricite de France. The purpose of the Symposium was to review the experience gained so far in the field of LMFBRs, taking into account the constructional, operational, technological, economic and fuel cycle aspects, and to consider the developmental trends as well as the international co-operation in fast breeder reactor design and utilization. The Symposium presentations were divided into sessions devoted to the following topics: Experience of LMFBR construction and operation and resultant development strategies (6 papers); LMFBR plant startup and commissioning tests and general behaviour (8 papers); Core performance experience for high burnup and core design trends (8 papers); Experience and trends in the LMFBR fuel cycle (4 papers); Core design and behaviour (3 papers); Fuels and materials (7 papers). A separate abstract was prepared for each of these papers

  12. Computational intelligent systems for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Nearly 15000 process signals are digitized by physically and functionally distributed embedded systems in Prototype Fast Breeder Reactor (PFBR). Digitized signals are processed and relevant information is displayed through Large video display systems at Control Room. It is necessary that correct and reliable information need to be provided to the plant operator. Computational intelligent systems play a major role in enhancing the safe operation of the Nuclear reactor. The paper explains the features of three such systems, one for on-line validation of neutronic power channel through on-line thermal balance calculation and another for detection of anomalous reactivity addition through on-line reactivity balance computation and third for on-line computation of Reactor power from fluctuations of core thermocouple signals. (author)

  13. Optimisation of safety parameters in fast breeder test reactor

    International Nuclear Information System (INIS)

    Full text: Optimisation of safety parameters is an important aspect to be considered in the design of nuclear power plant and also becomes extremely important activity to be followed up during the commissioning and operating phases of the plant taking into account the operational feed back and review of incidental situations and available diversity and reliability. Otherwise, the spurious/ superfluous trips on the reactor besides affecting the availability of the plant, initiate plant transients causing stress for the plant equipment resulting in reduction of plant life. This activity has a significant role to play in attaining the maximum availability of the plant, without compromising safety. The study and evolution of optimisation process in fast breeder test reactor (FBTR); at Kalpakkam has been an interesting and rewarding experience

  14. Safeguards in the prototype fast breeder reactor MONJU

    Energy Technology Data Exchange (ETDEWEB)

    Usami, S.; Deshimaru, T.; Tomura, K. [Power Reactor and Nuclear Fuels Development Corporation, Ibaraki-ken (Japan)

    1995-12-31

    MONJU is a prototype fast breeder reactor in Japan designed to have a 280-MW(electric) output. The Power Reactor and Nuclear Fuel Development Corporation (PNC) started its construction in the autumn of 1985 in Tsuruga. The loading of the core fuel assemblies was started in October 1993, and the preoperational test is ongoing. MONJU uses 198 mixed-oxide (MOX) fuel assemblies as core fuel and 172 depleted uranium assemblies as blanket fuel. Assemblies loaded in-core and stored in the ex-vessel storage tank (EVST) reside in liquid sodium. These plutonium-containing fuel assemblies, MOX, and irradiated depleted uranium are regarded as in the difficult-to-access area, and the flows of fuel assemblies into and out of the area must be verified. Flow is verified by fuel flow monitors measuring radiation, which can limit inspector attendance during fuel handling.

  15. Designing a SCADA system simulator for fast breeder reactor

    Science.gov (United States)

    Nugraha, E.; Abdullah, A. G.; Hakim, D. L.

    2016-04-01

    SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.

  16. Innovations in Equipment Erection of Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR) is sodium cooled, pool type reactor with generating capacity of 1250 MWt/500 MWe. Reactor assembly consists of large dimensional vessels like Safety vessel (13.54 m diameter, 12.8 m height and weight approximately 155 MT) and Main vessel (12.9 m diameter, 12.94 m height and weight approximately 202 MT including core catcher, core support structure and cooling pipes) and Steam generator (26 m length, 1.5 m diameter, and weight approximately 35 MT). PFBR reactor equipment erection was a challenging task where thin walled vessels had transported and handled with utmost precaution to avoid radial forces on the vessels which could buckle the vessels. There was a real challenge in lifting the vessels without swing, placement of large size and heavy vessel at a distance of 57 m where the crane operator had no line of site to the equipment being erected. To handle such over dimensional reactor components many mock-up tests had been carried out before erection and gained lot of confidence. Lot of care had been taken during lifting, handling and erection of thin walled over dimensional reactor components with innovative methods used for lifting fixtures, guiding arrangements, alignment fixtures and achieved the stringent erection tolerances. This paper discusses the first ever experiences gained during the handling and erection of such thin walled, over dimensional reactor components at PFBR site. (author)

  17. Fast breeder reactor-block antiseismic design and verification

    International Nuclear Information System (INIS)

    The Specialists' Meeting on ''Fast Breeder Reactor-Block Antiseismic Design and Verification'' was organized by the ENEA Fast Reactor Department in co-operation with the International Working Group (IWGFR) of the International Atomic Energy Agency (IAEA), according to the recommendations of the 19th IAEA/IWGFR Meeting. It was held in Bologna, at the Headquarters of the ENEA Fast Reactor Department, on October 12-15, 1987, in the framework of the Celebrations for the Ninth Centenary of the Bologna University. The proceedings of the meeting consists of three parts. Part 1 contains the introduction and general comments, the agenda of the meeting, session summaries, conclusions and recommendations and the list of participants. Part 2 contains 8 status reports of Member States participating in the Working Group. Contributed papers were published in Part 3 and were further subdivided into 5 sessions as follows: whole reactor-block analysis (4 papers); whole reactor-block analysis (sloshing and buckling, seismic isolation effects) (8 papers); detailed core analysis (6 papers); shutdown systems and core structural and functional verifications (6 papers); component and piping analysis (7 papers). A separate abstract was prepared for each of the 8 status reports and 31 contributed papers. Refs, figs and tabs

  18. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  19. Method of advancing research and development of fast breeder reactors

    International Nuclear Information System (INIS)

    In the long term plan of atomic energy development and utilization, fast breeder reactors are to be developed as the main of the future nuclear power generation in Japan, and when their development is advanced, it has been decided to positively aim at building up the plutonium utilization system using FBRs superior to the uranium utilization system using LWRs. Also it has been decided that the development of FBRs requires to exert incessant efforts for a considerable long period under the proper cooperation system of government and people, and as for its concrete development, hereafter the deliberation is to be carried out in succession by the expert subcommittee on FBR development projects of the Atomic Energy Commission. The subcommittee was founded in May, 1986, to deliberate on the long term promotion measures for FBR development, the measures for promoting the research and development, the examination of the basic specification of a demonstration FBR, the measures for promoting international cooperation, and other important matters. As the results of investigation, the situation around the development of FBRs, the fundamentals at the time of promoting the research and development, the subjects of the research and development and so on are reported. (Kako, I.)

  20. Manufacturing of prototype fast breeder reactor components: challenges and achievements

    International Nuclear Information System (INIS)

    In the presentation, three components of 500 MWe Prototype Fast Breeder Reactor (PFBR), viz. grid plate, roof slab and fuel handling systems, are focused, which have been responsible for the considerable delay of the project schedule. The manufacturing challenges of grid plate mainly originated from large number of sleeves resulting in higher self weight and hard facing of large diameter sleeves. Machining of large diameter plates and shell assembly to the required tight tolerances on dimensions, hard facing with nickel based cobalt free hard facing material on continuous, large diameter (6.7 m) annular tracks, heat treatment of large austenitic stainless steel parts at 1050℃ with controlled rates of cooling and heating together with control on temperature gradient across the parts, complex assembly of a large number of parts (∼14900) meeting the important requirements on verticality of sleeve assemblies (Ø0.1 mm) and delicate handling and transportation are truly challenging activities in the manufacturing technology. In case of roof slab, complex manufacturing process, especially welding between the shell and stiffeners caused lamellar tearing problems and extensive testing time. Inclined fuel transfer machine, multiple repairs, heavy weight and testing strategy resulted in long manufacturing and testing time. Some general lessons learnt are also brought out in this presentation. Technology development prior to start of construction is essential for long delivery components. Judicious choice of tolerances, number and location of welds and inspections has to be made. Robust criteria need to be applied for the acceptance of manufacturing deviations and material compositions. Indigenous materials should be used after qualifications of manufacturing process of direct relevance apart from routine standards. From the rich experience gained through the manufacture and erection of reactor assembly components of PFBR, important guidelines and approaches were derived

  1. Status of liquid metal cooled fast breeder reactors

    International Nuclear Information System (INIS)

    This document represents a compilation of the information on the status of fast breeder reactor development. It is intended to provide complete and authoritative information for academic, energy, industrial and planning organizations in the IAEA Member States. The Report also provides extended reference and bibliography lists. A summarized overview of the national programmes of LMFBR development is given in Chapter II. Chapter III on LMFBR experience provides a brief description and purpose of all fast reactors - experimental, demonstration and commercial size - that have been or are planned for construction and operation. Fast reactor physics is dealt with in Chapter IV. Besides the basic facts and definitions of neutronics and the compilation and measurement of nuclear data, a broad range of the calculation methods, codes, and the state of the art is described. In Chapter V, fuels and materials are described. The emphasis is on the design and development experience gained with mixed oxide fuel pins and subassemblies. Structural materials, blanket elements and absorber materials are also discussed. Chaper VI presents a broad overview of the technical and engineering aspects of LMFBR power plants. LMFBR core design is described in detail, followed by the components of the main heat transport system, the refuelling equipment, and auxiliary systems. Chapter VII on safety is a compilation of the current safety design concepts of LMFBRs and new trends in safety criteria and safety goals. The chapter concludes with risk analyses of LMFBR technology. In Chapter VIII, the systems approach has been emphasized in the consideration of the whole LMFBR fuel cycle. Special emphasis is placed on safeguards aspects and the environmental impact of the LMFBR fuel cycle. Chapter IX describes deployment considerations of LMFBRs. Special emphasis is placed on economic aspects of the LMFBR power plant and its related fuel cycle. Finally, Chapter X provides an overall summary and a

  2. Progress report on fast breeder reactor development in Japan

    International Nuclear Information System (INIS)

    In the power increase performance test of the experimental fast reactor ''Joyo'', which was in progress since April, the first stage of the rated thermal output of 50 MW has been accomplished on July 5. Thereafter, the continuous opeation test at 50 MW for 100 hours was performed for the verification of its overall operational performance from August 13 to 16. The safety evaluation for power increase up to 75 MW and 100 MW, which was under way since September, last year, was completed, and the power increase was licensed on September 20. Concerning the design of the prototype fast breeder reactor ''Monju'', the studies on the specifications of the Construction Preliminary Design (2) have been finished. In respect of the analysis and preparation of materials for the Safety Licensing by the Committee, the developments of the analytical codes for rupture propagation in the heat transfer tubes of steam generators and for decay heat have been conducted. In the construction site surveys, the third geological structure survey and beach deformation survey have all ended, while the meteorological and seismic observations, the prediction of the diffusion of drained warm water, the survey of river flow, etc. are now under way. A report on the survey conducted on the construction site in Shiraki was received by the Fukui prefectural government in July, and the copies of a report on the assessment of environmental effect were submitted in August to both the national government and the Fukui prefectural government. The situations of progress of the research and development works on reactor physics, structural components, instrumentation and control, sodium technology, fuel materials, structural materials, safety and steam generators are reported. (Nakai, Y.)

  3. Status of fast breeder reactor development in the United States

    International Nuclear Information System (INIS)

    The energy policy of the United States is aimed at shifting as rapidly as practicable from an oil dependent economy to one that relies heavily on other fuels and energy sources. Nuclear power Is now and is expected to continue to be an important factor in achieving this goal. If nuclear power is to contribute to a solution of future energy needs, demonstration of the breeder reactor as a viable source of essentially inexhaustible energy supply is essential. The US DOE program for development of the fast breeder reactor has witnessed some notable events in the past year. Foremost among these Is the successful operational testing of the Fast Flux Test Facility (FFTF), located at.the Hanford Engineering Development Laboratory. The reactor reached full design power of 400 MW(t) on December 21, 1980, and has performed remarkably close to design specifications. Design of the Clinch River Breeder Reactor Plant (CRBRP), a 375 MW(e) LMFBR, is now over 80 percent complete. About $530 million in components have been ordered; component deliveries total approximately $124 million; work-in-process totals another $204 million. Construction of the plant, however, has been suspended since 1977. With the concurrence of the U.S. Congress and approvals from the appropriate authorities work on the safety review and site clearing for construction can resume. The Conceptual Design Study for a large, 1000 MW(e) LMFBR Large Developmental Plant was recently completed on a schedule commensurate with submission of a full report to the Congress at the end of March, 1981. This report is the culmination of a study which began in October, 1978 and involved contributions from U.S. reactor manufacturers and US DOE laboratories. The US DOE is carrying forward a comprehensive technology development program. This effort provides direct support to the FFTF and CRBRP projects and to the LDP. It also supports technology development which is generic to the overall LMFBR program. Funding for breeder

  4. The use of waveguide acoustic probes for void fraction measurement in the evaporator of BN-350-Type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, V.I.; Nigmatulin, B.I.

    1995-09-01

    The present paper deals with some results of the experimental studies which have been carried out to investigate the steam generation dynamics in the Field tubes of sodium-water evaporators used in the BN-350 reactors. The void fraction measurements have been taken with the aid of waveguide acoustic transducers manufactured in accordance with a specially designed technology (waveguide acoustic transducers-WAT technology). Presented in this paper also the transducer design and calibration methods, as well as the diagram showing transducers arrengment in the evaporator. The transducers under test featured a waveguide of about 4 m in length and a 200-mm long sensitive element (probe). Besides, this paper specifies the void fraction data obtained through measurements in diverse points of the evaporator. The studies revealed that the period of observed fluctuations in the void fraction amounted to few seconds and was largely dependent on the level of water in the evaporator.

  5. Defect assessment procedure: A french approach for fast breeder reactors

    International Nuclear Information System (INIS)

    As a result of a collaborative effort between Commissariat a l'Energie Atomique, Electricite de France, and NOVATOME to produce and improve rules for fast breeder reactors, RCC-MR, an interim defect assessment procedure is now available in the first draft version (appendix A16). This procedure addresses defects detected during in-service inspection for reactor components operating at moderate or high temperature conditions. Three stages have been considered: initiation, propagation under cyclic loading with or without holdtime and crack instability by ductile and creep rupture. For each of these topics, procedures and rules based on fracture mechanics are proposed. Prediction of initiation is obtained by a simplified method named σd method which relies on the evaluation of the real stress-strain history on a small distance d (d = 0.05 mm for 316L(N) austenitic steel) close to the crack front and material characteristics (limiting stresses) that are available in nuclear codes. This method has been developed for fatigue, creep and creep-fatigue conditions. Defect growth assessment is performed for fatigue and creep-fatigue conditions. For creep-fatigue conditions, fatigue and creep crack growth per cycle are calculated separately and the total crack extension is taken as the sum of the two contributions. Extensive use of simplified method for estimating J (Js method) is made and developed when mechanical and thermal loadings are specified. On the final defect size, assessment may be made in order to avoid crack instability by ductile and creep rupture and collapse load on the remaining. The organization and contents of the present version of this appendix A16 is described. An overview of each specific rule is given

  6. Network Representation of Design Knowledge of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    A method of design knowledge representation was studied for the Japanese fast breeder reactor Monju, aiming at enhanced understanding of engineering considerations with mutual relations. Taking over design knowledge of Monju to next generation designers/engineers to be in charge of design of future FRs is by no means easy, in contrast with operation and maintenance knowledge which can be acquired in the real plant operation and maintenance. Specifications of the as-is Monju contains only a small part of the entire design knowledge, mainly by two reasons. Firstly, reasons for selecting the as-is specifications can not be understood until reaching proper knowledge source. Secondly, there are many rejected options on the design specifications. Design specifications are selected along with technical dependencies among a huge number and diversified specification items. Decisions design are made basically along with these dependencies which can hardly be traced in the currently available database or document libraries. Reasons for the rejections of options need to be profoundly understood, because those are not certainly due to technical inferiority. Some of rejected options can be worth reconsidering in the future, possibly by technical advances in materials, high-precision prediction software tools, rationalized standards/code, etc. The authors propose a new design knowledge representation approach based on networking of knowledge nodes along with the mutual dependencies. A prototype software has been developed and a basic performance test was made to visualize the dependency network. An additional function to enable design case studies on hypothetical adoptions of rejected options is now under consideration. (author)

  7. Development of high nitrogen electrodes for fast breeder reactor applications

    International Nuclear Information System (INIS)

    Austenitic stainless steels of AISI type 316 (316 SS) and its variants are used extensively as structural material for the components of fast reactors operating at temperature up to 823 K. SS 316LN has been chosen as the major structural material for the construction of Prototype Fast Breeder Reactor (PFBR) with a targeted service life of 40 years. To reduce the risk of sensitization in SS 316LN, the carbon content has been reduced to less than 0.03 wt%, and the nitrogen content has been specified as 0.08 wt% to compensate the loss in strength due to the reduced carbon content. An improved version of this alloy with nitrogen content of 0.14 wt% in a frilly austenite matrix has been developed for the future FBRs, to enhance the service life of the structural components up to 60 years. Indigenously developed modified E3 16-1 5 electrodes were used for the fabrication of PFBR components to enhance the structural reliability of the components. The modifications from AWS/ASME SFA 5.4 include stringent composition limits, narrow range of ferrite content, and impact toughness after aging at 1023K for 100h, tensile properties at elevated (service) temperatures and intergranular corrosion (IGC) test as per ASTM A262 Practice E. Since the improved version alloy is rich in nitrogen content than the existing alloy, it has become necessary to develop a welding consumable with reasonably good weldability that is suitable for the fabrication of future FBR components. At present there are no commercially available welding consumables to weld these steels and the development is under way. In this work, a matching consumable methodology was adopted to develop the welding consumable. However, as per specification targeting the chemistry, solidification mode and delta ferrite was challenging, since the solidification mode of the weld metal shifts to fully austenitic region due to dilution of nitrogen from the base metal, which may increase the risk of hot cracking susceptibility

  8. Degrading the Plutonium Produced in Fast Breeder Reactor Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jor-Shan; Kuno, Yusuke [Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2009-06-15

    Plutonium quality, defined as the plutonium isotopic composition, is an important measure for proliferation-resistance (PR) of a nuclear energy system. The quality of the plutonium produced in the blanket assemblies of a fast breeder reactor could be as good as or better than the weapons-grade (WG). The presence of such good quality plutonium is a proliferation concern. There are various options to degrade the plutonium produced in the breeder blanket. The obvious one is to blend the blanket plutonium with those produced from the reactor core during reprocessing. Other options try to prevent the generation of good quality plutonium (Pu). The Protected Plutonium Production (P{sup 3}) Project proposed by Tokyo Institute of Technology (TIT)1,2,3 advocates the doping of certain amount of neptunium (Np), or americium (Am) in fresh blanket fuel for irradiation. The increased production of {sup 238}Pu, {sup 240}Pu and {sup 242}Pu by neutron capture in {sup 237}Np and Am would degrade the blanket plutonium. However, as {sup 237}Np is a controlled material according to IAEA, its use as doping material in fresh blanket fuel presents a concern for nuclear proliferation. In addition, the fabrication of fresh blanket fuel with inclusion of americium would be complicated due to the emission of intense low-energy gamma radiation from {sup 241}Am. Am is normally accompanied by Cm since the separation of those 2 elements is very difficult. Fuel containing both Am and Cm may make Safeguards measurement difficult. A variation would be doping the fresh blanket fuel with minor actinide (e.g., a group of neptunium, americium, and curium), or with separated reactor-grade (RG) plutonium. The drawback of such schemes would be the need for glove boxes in fresh blanket fuel fabrication. It is possible to fuel the breeder blankets with recycled (reprocessed) uranium oxide. The recycled uranium, recovered from reprocessing, contains {sup 236}U, which when irradiated in the blanket would

  9. The present status of the fast breeder reactor industrialization in western Europe

    International Nuclear Information System (INIS)

    The development of the liquid metal fast breeder reactor in Europe started in the mid-fifties, after the successful operation of EBR-1 at ARCO, Idaho, in 1951. A more and more integrated development among the countries of the European Community culminated in 1986 with the beginning to power of the 1200 MWe SUPERPHENIX plant at Creys-Malville, France. The road is now open towards the full industrialization of the liquid metal fast breeder reactor at the moment, in 2005, when the first European thermal neutron power reactor station will have to be decommissioned and replaced. The European programme aims at providing the utilities at that time with a clear choice between thermal neutron reactors and fast breeder reactors, both economical but very different in their use of the limited natural resource that uranium is. (author)

  10. Present status of the fast breeder reactor industrialization in western Europe

    International Nuclear Information System (INIS)

    The development of the liquid metal fast breeder reactor in Europe started in the mid-fifties, after the successful operation of EBR-1 at ARCO, Idaho, in 1951. A more and more integrated development among the countries of the European Community culminated in 1986 with the startup of the 1200 MWe SUPERPHENIX plant at Creys-Malville, France. The road is now open towards the full industrialization of the liquid metal fast breeder reactor at the moment, in 2005, when the first European thermal neutron power reactor station will have to be decommissioned and replaced. The European programme aims at providing the utilities at that time with a clear choice between thermal neutron reactors and fast breeder reactors, both economical but very different in their use of the limited natural resources that uranium

  11. Fast breeder reactors insertion in a D2O - natural U nuclear power plants park

    International Nuclear Information System (INIS)

    A model for the evolution of Argentine's installed nuclear power for the next 40 years is presented. The consequences of fast breeder reactors' introduction are studied in both autarchic Pu cycle and a limited reprocessing system. The passage of a reactor park like the national, of natural U - heavy water to one of fast breeder reactors, can only be obtained in a very long term due, fundamentally, to the need of Pu produced for those to feed the last ones. (M.E.L.)

  12. IAEA note on multi-national fuel cycle centres as related to fast breeder reactors

    International Nuclear Information System (INIS)

    The significant aspects of associating fast breeder reactor fuel cycles with the concept of regional fuel cycle centres, as studied earlier by the IAEA, are identified. The results of the RFCC Study Project are presented, and how in particular non-proliferation and safeguards, radioactive waste management and economic considerations would be effected by inclusion of fast breeder reactor fuel cycle facilities and possibly fast breeder reactors as well in such centres, are discussed. The current effort of the IAEA to develop a computer programme which models the material flows in the nuclear fuel cycle which could be applied to the analysis of alternative siting strategies for FBR and its fuel cycle facilities is discussed

  13. Network representation of design knowledge of prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    A method of design knowledge representation was studied for the Japanese fast breeder reactor Monju, aiming at enhanced understanding of engineering considerations with mutual relations. Taking over design knowledge of Monju to next generation designers/engineers to be in charge of design of future FRs is by no means easy, in contrast with operation and maintenance knowledge which can be acquired in the real plant operation and maintenance. Specifications of the as-is Monju contains only a small part of the entire design knowledge, mainly by two reasons. Firstly, reasons for selecting the as-is specifications can not be understood until reaching proper knowledge source. Secondly, there are many passed-over options on the design specifications. Reasons for passing-over these options are not always technical inferiority. A large part of the current specifications are selected because the worst possible technical value can be foreseeable or guaranteed to be acceptable within limited R and D period and resource, not because the expected value is estimated to be the lower. In other words, in the future where new materials with improved properties, faster and more accurate analysis/prediction methods, rationalized technical standards or regulatory requirements, and/or some other environment for thorough comparison among specification options are available, these passed-over options are likely to be worth reconsidering. There are a huge number of technical documents on diversified engineering studies, such as calculation of maximum possible temperature gradient of important structures, necessary sodium flow rate in particular sub-assemblies, etc. for validation of each decision making in design. A large part of these documents are scanned and stored in a data base with each catalogue data for electronic browse. The authors propose a network representation of these items of design decision making, where the items are mutually connected by directed arcs, where nodes stand

  14. On the development of fast breeder reactors and the use of thorium in Brazil

    International Nuclear Information System (INIS)

    This work presents a discussion on the possibility of construction of fast breeder reactors in Brazil. It is specially concerned with the use of thorium which is abundant in our country. The main advantages of this projects are: develop fuel and reactor technology in Brazil, increase thorium research, demonstrate the safety of LMFBR and promote its public acceptance. (A.C.A.S.)

  15. Reactor shutdown system of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Full text: The shutdown system of PFBR is designed to assure a very high reliability by employing well known principles of redundancy, diversity and independence. The failure probability of the shutdown system limited to -6/ ry. Salient features of the shutdown system are: Two independent shutdown systems, each of them able to accommodate an additional single failure and made up of a trip system and an associated absorber rod group. Diversity between trip systems, rods and mechanisms. Initiation of SCRAM by two diverse physical parameters of the two shutdown systems for design events leading potentially to unacceptable conditions is the core. The first group of nine rods called control and safety rods (CSR) is used for both shutdown as well as power regulation. The second group consisting of three rods known as diverse safety rods (DSR) is used only for shutdown. Diversity between the two groups is ensured by varying the operating conditions of the electromagnets and the configurations of the mobile parts. The reactivity worth of the absorber rods have been chosen such that each group of rods would ensure cold shutdown on SCRAM even when the most reactive rod of the group fails to drop. Together the two groups ensure a shutdown margin of 5000 pcm. The speed and individual rod worth of the CSR is chosen from operational and safety considerations during reactor start up and raising of power. Required drop time of rods during SCRAM depends on the incident considered. For a severe reactivity incident of 3 $/s this has to be limited to 1s and is ensured by limiting electromagnet response time and facilitating drop by gravity. Design safety limits for core components have been determined and SCRAM parameters have been identified by plant dynamic analysis to restrict the temperatures of core components within the limits. The SCRAM parameters are distributed between the two systems appropriately. Fault tree analysis of the system has been carried out to determine the

  16. Status of national programmes on fast breeder reactors. Eighteenth annual meeting, Vienna, Austria, 16-19 April 1985

    International Nuclear Information System (INIS)

    The Eighteenth Annual Meeting on the Status of National Programmes in Member States of the IAEA on Fast Breeder Reactors had been held in April 1985. The representatives of the Member States and international organizations reported status and activities in the field of fast breeder reactors development and operation. A separate abstract was prepared for each of the 12 presentations of the meeting

  17. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure.

  18. Operation and maintenance experience with control rod and their drive mechanisms of fast breeder test reactor

    International Nuclear Information System (INIS)

    This paper explains the functional and construction features of Control Rod Drive Mechanism (CRDM) and control rod used in Fast Breeder Test Reactor (FBTR) which is a 40 MWt loop type sodium cooled fast reactor. It discusses all safety related incidents and failures encountered during its service in reactor, the solutions evolved and modifications carried out to prevent recurrence. It also details the maintenance activities and periodical surveillance carried out. The results of a reliability analysis done are also discussed. (author)

  19. Application of hafnium hydride control rod to large sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazumi, E-mail: kazumi_ikeda@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Moriwaki, Hiroyuki, E-mail: hiroyuki_moriwaki@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Ohkubo, Yoshiyuki, E-mail: yoshiyuki_okubo@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Iwasaki, Tomohiko, E-mail: tomohiko.iwasaki@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi-ken 980-8579 (Japan); Konashi, Kenji, E-mail: konashi@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Narita-cho, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki-ken 311-1313 (Japan)

    2014-10-15

    Highlights: • Application of hafnium hydride control rod to large sodium cooled fast breeder reactor. • This paper treats application of an innovative hafnium hydride control rod to a large sodium cooled fast breeder reactor. • Hydrogen absorption triples the reactivity worth by neutron spectrum shift at H/Hf ratio of 1.3. • Lifetime of the control rod quadruples because produced daughters of hafnium isotopes are absorbers. • Nuclear and thermal hydraulic characteristics of the reactor are as good as or better than B-10 enriched boron carbide. - Abstract: This study treats the feasibility of long-lived hafnium hydride control rod in a large sodium-cooled fast breeder reactor by nuclear and thermal analyses. According to the nuclear calculations, it is found that hydrogen absorption of hafnium triples the reactivity by the neutron spectrum shift at the H/Hf ratio of 1.3, and a hafnium transmutation mechanism that produced daughters are absorbers quadruples the lifetime due to a low incineration rate of absorbing nuclides under irradiation. That is to say, the control rod can function well for a long time because an irradiation of 2400 EFPD reduces the reactivity by only 4%. The calculation also reveals that the hafnium hydride control rod can apply to the reactor in that nuclear and thermal characteristics become as good as or better than 80% B-10 enriched boron carbide. For example, the maximum linear heat rate becomes 3% lower. Owing to the better power distribution, the required flow rate decreases approximately by 1%. Consequently, it is concluded on desk analyses that the long lived hafnium hydride control rod is feasible in the large sodium-cooled fast breeder reactor.

  20. Overview of pool hydraulic design of Indian prototype fast breeder reactor

    Indian Academy of Sciences (India)

    K Velusamy; P Chellapandi; S C Chetal; Baldev Raj

    2010-04-01

    Thermal hydraulics plays an important role in the design of liquid metal cooled fast breeder reactor components, where thermal loads are dominant. Detailed thermal hydraulic investigations of reactor components considering multi-physics heat transfer are essential for choosing optimum designs among the various possibilities. Pool hydraulics is multi-dimensional in nature and simple one-dimensional treatment for the same is often inadequate. Computational Fluid Dynamics (CFD) plays a critical role in the design of pool type reactors and becomes an increasingly popular tool, thanks to the advancements in computing technology. In this paper, thermal hydraulic characteristics of a fast breeder reactor, design limits and challenging thermal hydraulic investigations carried out towards successful design of Indian Prototype Fast Breeder Reactor (PFBR) that is under construction, are highlighted. Special attention is paid to phenomena like thermal stratification, thermal stripping, gas entrainment, inter-wrapper flow in decay heat removal and multiphysics cellular convection. The issues in these phenomena and the design solutions to address them satisfactorily are elaborated. Experiments performed for special phenomena, which are not amenable for CFD treatment and experiments carried out for validation of the computer codes have also been described.

  1. Radiation thermal processes in Cr13Mo2NbVB steel - the material of the fuel assembly shell in reactor BN-350 under mechanical tests

    OpenAIRE

    Larionov, A. S.; Dikov, А. S.; Poltavtseva, V. P.; Kislitsin, S. B.; Kuimova, Marina Valerievna; Chernyavski (Chernyavskiy), Aleksandr Viktorovich

    2015-01-01

    Regularities of changes of structural-phase state and mechanical properties of steel 13Mo2NbVB - the material of the fuel assembly shell in reactor BN-350 after various mechanical tests at 350°C are experimentally studied. The formation of microprecipitations FeMo, enriched or depleted with molybdenum was found in the short-time mechanical tests, which is the cause of thermal hardening of irradiated Cr13Mo2NbVB steel and its destruction by the ductile-brittle mechanism. On the basis of long-t...

  2. The Last Twenty Years of Experience with Fast Breeder Reactors: Lessons Learnt and Perspectives

    International Nuclear Information System (INIS)

    India has made significant achievements in the design and development of sodium cooled fast breeder reactors over the last twenty years. Attaining a maximum burnup of 165 GW.d/t for the plutonium-rich carbide fuel without any cladding failure, coupled with excellent performance of sodium components, including primary pumps, heat exchangers and steam generators over the last 24 years, reprocessing of carbide fuel with a burnup of 150 GW.d/t and engineering tests performed for validating the plant dynamics computer codes, are the achievements from the successful operation of the 40 MW(th) capacity loop type fast breeder test reactor. Indigenous design of the 500 MW(e) Prototype Fast Breeder Reactor (PFBR), executing high quality multidisciplinary R and D and successful manufacturing and erection of large dimensioned thin walled shell structures are the achievements in PFBR development. These achievements, apart from providing confidence in the PFBR project, are instrumental for the design of innovative future reactors. National and international collaboration established with R and D establishments and academic institutions would go a long way towards helping India to attain world leadership by 2020. (author)

  3. Tube sheet structural analysis of intermediate heat exchanger for fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    The Prototype Fast Breeder Reactor 'Monju' is the first power generating fast breeder reactor in Japan. We have been designing the components of the plant for manufacturing. Among these is the intermediate heat exchanger (IHX) which exchanges heat between primary and secondary sodium loop. The tube sheet of IHX (shell to ligament junction) is a difficult area from the view point of structural strength design under elevated temperature. To validate the structural integrity of tube sheet we performed the series of inelastic analysis and tube sheet thermal shock test using test pieces and half scale model of actual design. The results of inelastic analyses showed there is little progressive deformation around shell to ligament structural discontinuous junction. Furthermore, thermal shock tests showed no increase of an accumulative deformation. By these analyses and experiments, structural reliability of tube sheet could be shown. (author)

  4. Exploding the myths about the fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.

    1979-01-01

    This paper discusses the facts and figures about the effects of conservation policies, the benefits of the Clinch River Breeder Reactor demonstration plant, the feasibility of nuclear weapons manufacture from reactor-grade plutonium, diversion of plutonium from nuclear plants, radioactive waste disposal, and the toxicity of plutonium. The paper concludes that the U.S. is not proceeding with a high confidence strategy for breeder development because of a variety of false assumptions.

  5. Research and developments on nondestructive testing in fabrications of fast breeder reactor structural components in Japan

    International Nuclear Information System (INIS)

    Research and developments (R and D) have been conducted on the nondestructive testing techniques necessary for the construction of fast breeder reactor (FBR). Radiographic tests have been made on tube-tube plate welds and small-diameter tube welds, etc. Ultrasonic tests have been conducted on austenitic stainless steel welds. In the penetrant tests and magnetic particle tests, the investigations have been performed on the effects of various test factors on the test results

  6. Anticipated transients without scram for light water reactors: implications for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    In the design of light water reactors (LWRs), protection against anticipated transients (e.g., loss of normal electric power and control rod withdrawal) is provided by a highly reliable scram, or shutdown system. If this system should become inoperable, however, the transient could lead to a core meltdown. The Nuclar Regulatory Commission (NRC) has proposed, in NUREG-0460 [1], new requirements (or acceptance criteria) for anticipated transients without scram (ATWS) events and the manner in which they could be considered in the design and safety evaluation of LWRs. This note assesses the potential impact of the proposed LWR-ATWS criteria on the liquid metal fast breeder reactor (LMFBR) safety program as represented by the Clinch River Breeder Reactor Plant

  7. Status of the fast breeder reactor technology in China

    International Nuclear Information System (INIS)

    According to the Chinese long-term energy strategy the FBR development is strongly supported. In the near term nuclear programme it is intended to build the experimental First Fast Reactor (FFR) in the year 2000. Design work is in progress. (author). 1 ref., 6 figs, 8 tabs

  8. World energy resources, demand and supply of energy, and the prospects for the fast breeder reactor

    International Nuclear Information System (INIS)

    In the past it was taken for granted that the prime role of fast breeder reactors was to complement light water reactors, mainly because of their similar and compatible fuel cycles. In particular, the plutonium converted in LWRs is most intelligently disposed of and used in FBRs. Evaluation of the time horizon of such reactor strategies generally extended only to the year 2000. It is important to realize, however, that the salient task in the breeder field after 2000 - besides electricity generation - will be to substitute for conventional ''cheap'' oil. Electricity today makes up only 10% to 12% of the total secondary energy, while liquids essentially command up to about 50%. Thus the future application of the FBR technology will have to be geared more to the production of a liquid secondary energy carrier than to electricity. A new yardstick for all these considerations is the strongly rising energy prices. They may double, for example, leading to an oil price of US 24/bbl. Under these circumstances it is prudent to generalize the scope for future fast breeders. The key element of such a new fast breeder strategy would be the production of hydrogen by electrolysis or thermolysis or a combination of both. For example, methanol synthesized from hydrogen and residual fossil fuels would thus become economically attractive. The FBR breeding gain, on the other hand, would be used for the continued supply of LWRs generating electricity. The paper identifies order-of-magnitude considerations most important for such a fast breeder application against a global energy demand scenario for the year 2030. (author)

  9. An option for the Brazilian nuclear project: necessity of fast breeder reactors and core design for an experimental fast reactor

    International Nuclear Information System (INIS)

    Aiming to assure the continued utilization of fission energy, the development of fast breeder reactors (FBRs) is a necessity. Binary fueled LMFBRs are proposed, as the best type for the Brazilian nuclear system in the future. The inherent safety characteristics are superior to current fast breeder reactors and an efficient utilization of thorium can be realized. The construction and operation of an experimental fast reactor is the first step and a basic tool for the development of FBRs technologies. A serie of core design for an 90 MW FBR is studied and the possible options and sizes of the main parameters are identified. (E.G.)

  10. Applicability of three dimensional diffusion theory programmes based on coarse mesh methods to calculating nuclear characteristics of fast breeder reactors

    International Nuclear Information System (INIS)

    Hexagonal coarse mesh methods in three dimensional diffusion theory programme have been examined for calculating in detail nuclear characteristics of fast breeder reactors composed of hexagonal fuel assemblies, comparing with more accurate triangular fine mesh method. The fast breeder reactors considered here are LMFBRs with different core configurations including heterogeneous core and GCFRs in different burnup states. The nuclear characteristics investigated in the comparative study are effective multiplication factor, power and neutron flux distributions, breeding ratio, reactivity effects and control rod reactivity worth. The comparative study indicates that the conventional coarse mesh method is not adeguate to detailed evaluation on nuclear characteristics of fast breeder reactors, and that the improved coarse mesh method developed by T. Takeda et al. is very useful for this purpose, though some problems exists in evaluation of power distribution and breeding ratio of the extremely composite fast breeder reactors, such as the radially heterogeneous core LMFBR. (author)

  11. Status of national programmes on fast breeder reactors. Nineteenth annual meeting, Kalpakkam, India, 11-14 March 1986

    International Nuclear Information System (INIS)

    The Nineteenth Annual Meeting on the Status of National Programmes in Member States of the IAEA on Fast Breeder Reactors had been held in March 1986. The representatives of the Member States and international organizations reported status and activities in the field of fast breeder reactors development and operation. A report on uranium supply and demand was also presented by the NEA/OECD. A separate abstract was prepared for each of the 11 presentations of the meeting

  12. Status of fast breeder reactor development in India

    International Nuclear Information System (INIS)

    The energy scenario and economic conditions in India are presented. India needs considerable energy for its rapid industrialisation with the liberal economic policy. Nuclear energy with FBR is the only large scale energy resource other than coal, available in the country. The present economic constraints have delayed the construction of new NPPs. The performance of operating reactors has improved considerably during the year. Operating experience of FBTR has been detailed particularly the reactivity incident and its investigations. Updated design of 500 MWe PFBR is presented. Various R and D works in support of FBR in the engineering, metallurgy, chemistry, reprocessing, safety etc. are detailed. (author)

  13. Seismic analysis of liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    This report is a general survey of the recent methods to predict the seismic structural behaviour of LMFBRs. It shall put into evidence the impact of seismic analysis on the design of the different structures of the reactor. This report is addressed to specialists and institutions of governmental organizations in industrialized and developing countries responsible for the design and operation of LMFBRs. The information presented should enable specialists in the R and D institutions and industries likely to be involved, to establish the correct course of the design and operation of LMFBRs. Also, the safety aspect of seismic risk are emphasized in the report. Refs and figs

  14. Liquid Metal Fast Breeder Reactor Program: Argonne facilities

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S. V. [comp.

    1976-09-01

    The objective of the document is to present in one volume an overview of the Argonne National Laboratory test facilities involved in the conduct of the national LMFBR research and development program. Existing facilities and those under construction or authorized as of September 1976 are described. Each profile presents brief descriptions of the overall facility and its test area and data relating to its experimental and testing capability. The volume is divided into two sections: Argonne-East and Argonne-West. Introductory material for each section includes site and facility maps. The profiles are arranged alphabetically by title according to their respective locations at Argonne-East or Argonne-West. A glossary of acronyms and letter designations in common usage to describe organizations, reactor and test facilities, components, etc., involved in the LMFBR program is appended.

  15. Development of metallic fuels for Indian Fast Breeder Reactors

    International Nuclear Information System (INIS)

    The neutronic performance of metal fuel based on binary U-Pu alloy or ternary U-Pu-Zr alloys are better than conventional uranium plutonium mixed oxide or high density carbide ceramic fuel. The growing energy demand in India needs faster growth of nuclear power and warrants introduction of fast reactors based on metallic fuels in future. Physics calculation showed that fast reactor based on metallic fuels results in higher breeding ratio and lower doubling time compare to mixed oxide or carbide fuels. Moreover inclusion of pyro-processing of the fuel in the fuel cycle is expected to make metal fuel option more economical. As part of metal fuel development programme for future FBR's in India, capsule irradiation of metal fuel based on sodium bonded U-Pu-Zr alloy and metal (Zircaloy) bonded binary U-Pu (Pu ∼ 15 %) alloy are being actively pursued. For this purpose two design concepts have been proposed : one based on sodium bonded ternary alloy fuel of U-Pu-Zr (2-10 wt%) in modified T91 cladding material and the other is U-Pu binary alloy mechanically bonded to modified T91 cladding material with 'Zircaloy' as a liner between the fuel alloy and the clad. The Zircaloy liner act as a barrier in reducing the fuel clad chemical interaction. It also helps in transfer of heat from the fuel to the clad. The smear density of metal bonded pin will be between 70% - 85% and that for sodium bonded pin will be ∼ 70%. In metal bonded fuel pin design two/four semi-circular grooves of diameter ∼1.0 mm, will be provided in diametrically opposite directions in the fuel cross section to accommodate fuel swelling. A comparison has been made on the relative merits and demerits of these two fuel pin designs. The material for the axial blanket will be 'U' or U-Zr (Zr upto 10wt %) alloy based on the results of the out-of-pile thermal cycling behavior and irradiation performance. In the present investigation out-of-pile experiments have been carried out to address some of the issues of

  16. Mechanical properties and microstructure of three Russian ferritic/martensitic steels irradiated in BN-350 reactor to 50 dpa at 490 oC

    International Nuclear Information System (INIS)

    Ferritic/martensitic (F/M) steels are being considered for application in fusion reactors, intense neutron sources, and accelerator-driven systems. While EP-450 is traditionally used with sodium coolants in Russia, EP-823 and EI-852 steels with higher silicon levels have been developed for reactor facilities using lead-bismuth coolant. To determine the influence of silicon additions on short-term mechanical properties and microstructure, ring specimens cut from cladding tubes of these three steels were irradiated in sodium at 490 oC in the BN-350 reactor to 50 dpa. Post-irradiation tensile testing and microstructural examination show that EI-852 steel (1.9 wt% Si) undergoes severe irradiation embrittlement. Microstructural investigation showed that the formation of near-continuous χ-phase precipitates on grain boundaries is the main cause of the embrittlement

  17. Studies of the restructuring of fast breeder test reactor fuel by out-of-pile simulation

    International Nuclear Information System (INIS)

    The fast breeder test reactor (FBTR) at Kalpakkam, India, currently employs a mixed carbide of uranium and plutonium with a Pu/(Pu + U) ratio of 0.70 as fuel. The behavior of this fuel in a thermal gradient is investigated. An out-of-pile simulation facility is designed, set up, and commissioned. Experiments are conducted on FBTR fuel pellets to study the restructuring of the fuel at various levels of linear power and its cracking behavior in a thermal gradient. The results are discussed in terms of their significance for reactor operation

  18. Plutonium breeding in liquid-metal fast breeder reactors and light water reactors

    International Nuclear Information System (INIS)

    The possibilities of breeding in liquid-metal fast breeder reactors (LMFBRs) and light water reactors (LWRs) are compared in two ways. The feasibility of breeding has been demonstrated in the Phenix reactor with a measured gain of 0.14. The gain in Superphenix will amount to about0.20. The studies show that while maintaining the performance of commercial reactors their breeding gain can be further increased either by the concept of heterogeneous cores or by using carbide or nitride fuel (breeding gain about0.35). Recently, the old idea of breeding in advanced pressurized water reactors (PWRs) has been taken up again with the objective of attaining a gain of 0.05. Unfortunately, these objectives had to be limited to a conversion ratio of 0.9 for safety reasons, and it is not certain whether operation will be rewarding economically. The strategy of substituting PWRs is examined using the French example. By gradually introducing LMFBRs, the cumulated uranium supplies in France can be kept within reasonable limits, which means that they attain three to four times the home resources. This is not possible with advanced LWRs, which can be considered only as a possible backup solution for plutonium recycling into PWRs

  19. Fast breeder reactor reference system classification for the ENEA data bank

    International Nuclear Information System (INIS)

    This report contains the Reference System Classification (RSC) of fast breeder reactors: it provides a functional system breakdown of the reactor. For each system the following important characteristics are reported: the main function, the mode of operation, its location in the reactor, the main interface system, its main components and the component working environment (fluid and/or atmosphere type). The RSC represent a basic step in organizing the ENEA data bank for the registration and processing of reliability data on typical fast reactor components; it provides a functional component breakdown and represent a plant-unique identification in the process of omogenization of event-data coming from different reactors. In this report it was tried to take into account different generations of nuclear power plants, different plant layouts and solutions: in particular loop and pool reactors are separately treated

  20. Plutonium bearing oxide fuels for recycling in thermal reactors and fast breeder reactors

    International Nuclear Information System (INIS)

    Programs carried out in the past two decades have established the technical feasibility of using plutonium as a fuel material in both water-cooled power reactors and sodium-cooled fast breeder reactors. The problem facing the technical community is basically one of demonstrating plutonium fuel recycle under strict conditions of public safety, accountability, personnel exposure, waste management, transportation and diversion or theft which are still evolving. In this paper only technical and economic aspects of high volume production and the demonstration program required are discussed. This paper discusses the role of mixed oxide fuels in light water reactors and the objectives of the LMFBR required for continual growth of nuclear power during the next century. The results of studies showing the impact of using plutonium on uranium requirements, power costs, and the market share of nuclear power are presented. The influence of doubling time and the introduction date of LMFBRs on the benefits to be derived by its commercial use are discussed. Advanced fuel development programs scoped to meet future commerical LMFBR fuel requirements are described. Programs designed to provide the basic technology required for using plutonium fuels in a manner which will satisfy all requirements for public acceptance are described. Included are the high exposure plutonium fabrication development program centered around the High Performance Fuels Laboratory being built at the Hanford Engineering Development Laboratory and the program to confirm the technology required for the production of mixed oxide fuels for light water reactors which is being coordinated by Savannah River Laboratories

  1. Compendium of computer codes for the safety analysis of fast breeder reactors

    International Nuclear Information System (INIS)

    The objective of the compendium is to provide the reader with a guide which briefly describes many of the computer codes used for liquid metal fast breeder reactor safety analyses, since it is for this system that most of the codes have been developed. The compendium is designed to address the following frequently asked questions from individuals in licensing and research and development activities: (1) What does the code do. (2) To what safety problems has it been applied. (3) What are the code's limitations. (4) What is being done to remove these limitations. (5) How does the code compare with experimental observations and other code predictions. (6) What reference documents are available

  2. Analysis for mechanical consequences of a core disruptive accident in Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    The mechanical consequences of a core disruptive accident (CDA) in a fast breeder reactor are described. The consequences are development of deformations and strains in the vessels, intermediate heat exchangers (IHX) and decay heat exchangers (DHX), impact of sodium slug on the bottom surface of the top shield, sodium release to reactor containment building through top shield penetrations, sodium fire and consequent temperature and pressure rise in reactor containment building (RCB). These are quantified for 500 MWe Prototype Fast Breeder Reactor (PFBR) for a CDA with 100 MJ work potential. The results are validated by conducting a series of experiments on 1/30 and 1/13 scaled down models with increasing complexities. Mechanical energy release due to nuclear excursion is simulated by chemical explosion of specially developed low density explosive charge. Based on these studies, structural integrity of primary containment, IHX and DHX is demonstrated. The sodium release to RCB is 350 kg which causes pressure rise of 12 kPa in RCB. (author)

  3. Conjugate heat transfer analysis of multiple enclosures in prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Velusamy, K.; Balaubramanian, V.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Prototype Fast Breeder Reactor (PFBR) is a 500 MWe sodium cooled reactor under design. The main vessel of the reactor serves as the primary boundary. It is surrounded by a safety vessel which in turn is surrounded by biological shield. The gaps between them are filled with nitrogen. Knowledge of temperature distribution prevailing under various operating conditions is essential for the assessment of structural integrity. Due to the presence of cover gas over sodium free level within the main vessel, there are sharp gradients in temperatures. Also cover gas height reduces during station blackout conditions due to sodium level rise in main vessel caused by temperature rise. This paper describes the model used to analyse the natural convection in nitrogen, conduction in structures and radiation interaction among them. Results obtained from parametric studies for PFBR are also presented.

  4. The fast breeder reactor Rapsodie (1962); Le reacteur rapide surregenerateur rapsodie (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Vautrey, L.; Zaleski, C.P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1962-07-01

    In this report, the authors describe the Rapsodie project, the French fast breeder reactor, as it stands at construction actual start-up. The paper provides informations about: the principal neutronic and thermal characteristics, the reactor and its cooling circuits, the main handling devices of radioactive or contaminated assemblies, the principles and means governing reactor operation, the purposes and locations of miscellaneous buildings. Rapsodie is expected to be critical by 1964. (authors) [French] Dans ce rapport, les auteurs font le point du projet RAPSODIE (reacteur francais surregenerateur a neutrons rapides), au moment du debut effectif de sa construction. On y trouvera decrits: les principales caracteristiques neutroniques et thermiques, le bloc pile et les circuits de refroidissement, les principaux moyens de manutention des ensembles actifs ou contamines, les principes et les moyens qui regissent la conduite du reacteur, les fonctions et l'implantation des divers batiments. La divergence de RAPSODIE est prevue pour 1964. (auteurs)

  5. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  6. Experience of secondary cooling system modification at prototype fast breeder reactor MONJU (Translated document)

    International Nuclear Information System (INIS)

    The prototype fast breeder reactor MONJU has been shut down since the secondary sodium leak accident that occurred in December 1995. After the accident, an investigation into the cause and a comprehensive safety review of the plant were conducted, and various countermeasures for sodium leak were examined. Modification work commenced in September 2005. Since sodium, a chemically active material, is used as coolant in MONJU, the modification work required work methods suitable for the handling of sodium. From this perspective, the use of a plastic bag when opening the sodium boundary, oxygen concentration control in a plastic bag, slightly-positive pressure control of cover gas in the systems, pressing and cutting with a roller cutter to prevent the incorporation of metal fillings, etc. were adopted, with careful consideration given to experience and findings from previous modification work at the experimental fast reactor JOYO and plants abroad. Owing to these work methods, the modification work proceeded close to schedule without incident. (author)

  7. Liquid metal seal (LMS) - challenges for fast breeder test reactor (FBTR)

    International Nuclear Information System (INIS)

    In Fast Breeder Test reactor (FBTR), Liquid Metal Seal (LMS) is being used to maintain leak tightness between reactor vessel and rotating plugs. It is a eutectic mixture of 42% tin and 58% bismuth. This paper describes measurements of melting point of LMS using Differential Scanning Calorimeter (DSC), Make: Setaram; Model- 131 evo. The instrument was calibrated using Indium as standard with different heating rates, 5 °C/min, 10 °C/min, 15°C/min and 20 °C/min. The observed value of melting point was found to be in agreement with the literature value. The melting point of as received and used LMS (LMSH8, LMSH10 and LMSH12) from three locations of FBTR were studied using DSC with different heating rates as above. The results are presented and it can be clearly seen that LMS has undergone some modifications during the continuous usage in FBTR

  8. Design optimization of backup seal for sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: ► Design arrived from fourteen geometric options by finite element analysis. ► Seal geometry, size, compression, contact pressure, stress and compression load optimized. ► Effects of reduced fluoroelastomer strength at 110 °C, strain rate and stress-softening incorporated. ► Ageing, friction, tolerances, batch-to-batch/production variations in fluoroelastomer considered. ► Procedure applicable to other elastomeric seals of Fast Breeder Reactors. -- Abstract: Design optimization of static, fluoroelastomer backup seals for the 500 MWe, Prototype Fast Breeder Reactor (PFBR) is depicted. 14 geometric variations of a solid trapezoidal cross-section were studied by finite element analysis (FEA) to arrive at a design with hollowness and double o-ring contours on the sealing face. The seal design with squeeze of 5 mm assures failsafe operation for at least 10 years under a differential pressure of 25 kPa and ageing influences of fluid (air), temperature (110 °C) and γ radiation (23 mGy/h) in reactor. Hybrid elements of 1 mm length, regular integration, Mooney–Rivlin material model and Poisson’s ratio of 0.493 were used in axisymmetric analysis scheme. Possible effects of reduced fluoroelastomer strength at 110 °C, ageing, friction, tolerances in reactor scale, testing conditions during FEA data generation and batch-to-batch/production variations in seal material were considered to ensure adequate safety margin at the end of design life. The safety margin and numerical prediction accuracy could be improved further by using properties of specimens extracted from seal. The approach is applicable to other low pressure, moderate temperature elastomeric sealing applications of PFBR, mostly operating under maximum strain of 50%.

  9. C-scope under-sodium viewer for sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    A C-scope under-sodium viewer has been developed for monitoring the interior of sodium-cooled fast breeder reactors. Consisting of a transducer that emits and receives ultrasonic waves under liquid sodium, a mechanism that drives the transducer under liquid sodium and an image displaying section, it inspects the fuel assembly through its image in optically opaque high-temperature (3000C) liquid sodium. The results of its evaluation test are: (1) The transducer could continue satisfactory operation under 3500C (at the highest) sodium for more than a month. (2) The driving mechanism, though it was the first of the kind appearing in Japan, has been proved that it could continue operation for a week under 3000C sodium. (3) The image displaying section, in spite of the low speed of the transducer (below 20 rpm), could display stable and clear images. (4) The image in 3000C was as clear as that in room-temperature water. (auth.)

  10. Development of an ISI Robot for the Fast Breeder Reactor MONJU Primary Heat Transfer System Piping

    International Nuclear Information System (INIS)

    This paper describes the development of a new inspection robot for the In-Service Inspection of the heat transfer system of the Fast Breeder Reactor MONJU. The inspection was carried out using a tire type ultrasonic sensor for volumetric tests at high temperature (atmosphere 55 degree C, Piping Surface 80 degree C) and radiation exposure condition (dose rate 10 mGy/h, piping surface dose rate 15 mGy/h). It was developed an inspection robot using a new tire type for the ultrasonic testing sensor and a new control method. A signal to noise ratio S/N over 2 was obtained during the functional test for a calibration defect with depth 50%t (from the tube wall thickness). (author)

  11. Compendium of computer codes for the safety analysis of fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The objective of the compendium is to provide the reader with a guide which briefly describes many of the computer codes used for liquid metal fast breeder reactor safety analyses, since it is for this system that most of the codes have been developed. The compendium is designed to address the following frequently asked questions from individuals in licensing and research and development activities: (1) What does the code do. (2) To what safety problems has it been applied. (3) What are the code's limitations. (4) What is being done to remove these limitations. (5) How does the code compare with experimental observations and other code predictions. (6) What reference documents are available.

  12. Numerical simulation of sodium pool fires in liquid metal-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    In Liquid Metal-Cooled Fast Breeder Reactor (LMFBR), the leakage of sodium can result in sodium fires. Due to sodium's high chemical reactivity in contact with air and water, sodium fires will lead to an immediate increase of the air temperature and pressure in the containment. This will harm the integrity of the containment. In order to estimate and foresee the sequence of this accident, or to prevent the accident and alleviate the influence of the accident, it is necessary to develop programs to analyze such sodium fire accidents. Based on the work of predecessors, flame sheet model is produced and used to analyze sodium pool fire accidents. Combustion model and heat transfer model are included and expatiated. And the comparison between the analytical and experimental results shows the program is creditable and reasonable. This program is more realistic to simulate the sodium pool fire accidents and can be used for nuclear safety judgement. (authors)

  13. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Issa Cherif [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Bose, Tanmoy [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Pekpe, Komi Midzodzi, E-mail: midzodzi.pekpe@univ-lille1.fr [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Cassar, Jean-Philippe [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Mohanty, A.R. [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Paumel, Kévin [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-15

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected.

  14. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    International Nuclear Information System (INIS)

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected

  15. In-reactor experiments in fast breeder test reactor for assessment of core structural materials

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, India is a sodium cooled reactor with neutron flux level of the order of 1015 n/cm2/s and temperature of coolant in the range of 650-790K (380-520oC). This reactor is being used as a test bed for the development of fuel and structural materials required for Indian Fast Reactor Programme. FBTR is also used as a test facility to carry out accelerated irradiation tests on thermal reactor structural materials. In-reactor experiments on core structural materials are being carried out by subjecting prefabricated specimens to desired conditions of temperature and neutron fluence levels in FBTR. Non-instrumented irradiation capsules that can be loaded at any location of FBTR core are used for the experiments. Pressurised capsules of zirconium alloys have been developed and subjected to irradiation in FBTR to determine the irradiation creep rate of indigenously developed zirconium alloys (Zircaloy-2 and Zr-2.5%Nb alloy) for life assessment of pressure tubes of Indian Pressurised Heavy Water Reactors (PHWRs). Technology development of pressurised capsules was carried out at IGCAR. These pressurised capsules were filled with argon and a small fraction of helium at a high pressure (5.0-6.5 MPa at room temperature) in such a way that the target stresses were attained in the walls of the pressurised capsules at the desired temperature of irradiation in the reactor. FBTR was operated at a low power of 8 MWt during this irradiation campaign to have an inlet temperature of about 579 K (306oC) which was close to the temperature of pressure tubes at full power in PHWR. Irradiation of thirty pressurised capsules was carried out in FBTR using six irradiation capsules for different durations (upto 79 days). The fluence levels attained by the pressurised capsules were up to 1.1 x 1021 n/cm2 (E> 1 MeV) at temperatures of 579 to 592 K. Post-irradiation increase in diameter of the pressurised

  16. Status of National Programmes on Fast Breeder Reactors. International Working Group on Fast Reactors Twenty-First Annual Meeting, Seattle, USA, 9-12 May 1988

    International Nuclear Information System (INIS)

    The following papers on the status of national programmes on fast breeder reactors are presented in this report: Fast breeder reactor development in France during 1987; Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands; A review of the Indian fast reactor programme; A review of the Italian fast reactor programme; A review of the fast reactor programme in Japan; Status of fast reactor activities in the USSR; A review of the United Kingdom fast reactor programme; Status of liquid metal reactor development in the United States of America; Review of activities of the Commission of European Communities relating to fast reactors in 1987; European co-operation in the field of fast reactor research and development — 1987 progress report; A review of fast reactor activities in Switzerland

  17. Fabrication and quality control of MOX fuel for Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    Full text: Uranium-Plutonium mixed oxide (MOX) fuel for both thermal and fast reactors have been fabricated by Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, India. MOX fuel bundles fabricated by AFFF have been loaded in Boiling Water Reactors (BWRs) and Pressurised Heavy Water Reactors (PHWRs) and have been discharged after successful irradiation. An experimental fuel subassembly containing 37 MOX pins is being irradiated in Fast Breeder Test Reactor (FBTR) at Kalpakkam near Chennai and has seen a burn up of more than 80000 MWD/T. MOX fuel pins containing 44% Pu02 have been recently loaded as a part of the hybrid core of FBTR. AFFF has now taken up the manufacture of MOX fuel pins for the Prototype Fast Breeder Reactor (BHAVINI) coming up at Kalpakkam. The core consists of 181 sub assemblies containing 217 MOX fuel pins each. It is required to fabricate nearly 40,000 MOX fuel pins (3 meter long) for the first core. The Prototype Fast Breeder Reactor is designed with two different fissile enrichment zones to be loaded with MOX subassemblies with a nominal composition of 21% and 28% of PuO2. The fuel pellets of required composition are made using conventional powder metallurgy processes. The pellets are annular with an inner hole of 1.8mm diameter and outside diameter of 5.5mm. AFFF has developed the technology of making annular MOX fuel pellets for PFBR and optimized conditions of fabrication. Multistation rotary presses have been used for compaction of the pellets. The fuel pin consists of a MOX stack of 1000mm and axial blanket of deeply depleted uranium dioxide of length 300mm on either side. New techniques have been used at different stages of fabrication of the fuel pins namely pelletisation, welding and wire wrapping. Studies have been made to use laser welding technique for welding of endplugs. Automation has been introduced in a number of process steps in the fabrication line. A detailed quality control plan is prepared

  18. Fabrication and quality control of MOX fuel for Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    Uranium-Plutonium mixed oxide (MOX) fuel for both thermal and fast reactors have been fabricated by Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, India. MOX fuel bundles fabricated by AFFF have been loaded in Boiling Water Reactors (BWRs) and Pressurised Heavy Water Reactors (PHWRs) and have been discharged after successful irradiation. An experimental fuel subassemby containing 37 MOX pins is being irradiated in Fast Breeder Test Reactor (FBTR) at Kalpakkam near Chennai and has seen a burn up of more than 92000 MWd/t. MOX fuel pins containing 44% PuO2 have been recently loaded as a part of the hybrid core of FBTR. AFFF has now taken up the manufacture of MOX fuel pins for the Prototype Fast Breeder Reactor (PFBR) coming up at Kalpakkam . The core consists of 181 sub assemblies containing 217 MOX fuel pins each. Prototype Fast Breeder Reactor is designed with two different fissile enrichment zones to be loaded with MOX subassemblies with a nominal composition of 21% and 28% of PuO2.The fuel pellets of required composition are made using conventional powder metallurgy processes. The pellets are annular with an inner hole of 1.8 mm diameter and outside diameter of 5.5 mm. AFFF has developed the technology of making annular MOX fuel pellets for PFBR and optimized conditions of fabrication. Multistaion rotary presses have been used for compaction of the pellets. The fuel pin consists of a MOX stack of 1000 mm and axial blanket of deeply depleted uranium dioxide of length 300 mm on either side. New techniques have been used at different stages of fabrication of the fuel pins namely pelletisation, welding and wire wrapping. Studies have been made to use laser welding technique for welding of endplugs. Automation has been introduced in a number of process steps in the fabrication line. A detailed quality control plan is prepared based on the specifications and advanced process and quality control procedures have been incorporated to

  19. Design and fabrication of steam generators (superheaters) for the prototype fast breeder reactor 'MONJU'

    International Nuclear Information System (INIS)

    In liquid metal-cooled fast breeder reactors, steam generators are one of the important equipments, and emphasis has been placed on their development in various countries in the world. Also in Japan, centering around the Power Reactor and Nuclear Fuel Development Corp., the research and development in the wide range from the fundamentals on heat transfer and flow, materials and strength for steam generators to the manufacture, operation and various tests of large mock-ups including a 50 MW steam generator have been carried out. Further, as for the manufacture and inspection, the improvement of the method of welding tubes and tube plates, the adoption of a fine focus X-ray inspection apparatus and others were carried out. Moreover, as the maintenance technique, the ultrasonic flaw detection probes for the heating tubes were developed. The steam generators (superheaters) for the FBR 'Monju' power station are the heat exchangers of helical coil tube-shell type using SUS 321 steel as the heating tube material. Based on the results of these research and development, the design and manufacture of these superheaters and their installation in the reactor auxiliary building of the FBR 'Monju' power station were completed. The outline of the design, the research and development and the manufacture of the steam generators (superheaters) are reported. (K.I.)

  20. Fabrication of MOX Fuel elements for irradiation in Fast Breeder Test Reactor (FBTR)

    International Nuclear Information System (INIS)

    Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur is fabricating Uranium - Plutonium Mixed Oxide Fuel (MOX) for different types of reactors. Recently MOX fuel pins for an experimental fuel subassembly of 37 pins has been fabricated for irradiation in Fast Breeder Test Reactor (FBTR) at Kalpakkam near Chennai. MOX fuel pins containing 44% PuO2 have also been also made for the hybrid core of FBTR. The experimental sub-assembly for irradiation testing in FBTR consisted of 37 short length Prototype Fast Breeder Reactor (PFBR) MOX fuel elements. The composition of the fuel was (0.71 U - 0.29 Pu) O2 with U233 O2 content of 53.5% of total UO2. Uranium enriched with U233 was used to simulate the heat flux of PFBR in FBTR neutron spectrum. MOX fuel pellets were made by powder metallurgy process consisting of pre-compaction, granulation, final compaction and sintering at high temperature. Initially U3233 O8 / U233 O3 powder was subjected to heat treatment. The pellets were sintered at reducing atmosphere at 1650oC for 4 hours to obtain acceptable quality pellets. Over sized pellets were centrelessly ground.without using a liquid coolant. During the fabrication of pins for experimental subassembly, technology was developed and conditions were optimized for making annular pellets, TIG welding of D9 tubes with SS 316 end plugs and wire wrapping. Quality control procedures and process control procedures at different stages of fabrication were developed. The hybrid core of FBTR consists of Mixed Carbide (MC) sub-assemblies containing (0.70 Pu - 0.30 U) C pellets and MOX fuel sub-assemblies containing (0.44 Pu - 0.56 U) O2. Studies were made to fabricate fuel containing higher percentage of Plutonium and the conditions were established. This paper describes the development of flowsheet for making annular MOX fuel pellets containing plutonium and U233, the technology for welding of D-9 clad tubes, wire wrapping and inspection. The paper also

  1. 03 - Sodium cooled fast breeder fourth-generation reactors - The technological demonstrator ASTRID

    International Nuclear Information System (INIS)

    After a discussion of the past experience gained on fast breeder reactors in the world (benefits, difficulties and problematics), the authors discuss the main improvement domains and the associated R and D advances (reactor safety, prevention and mitigation of severe accidents, the sodium-water risk, detection of sodium leaks, increased availability, instrumentation and inspection, control and repairability, assembly handling and washing). Then, they describe the technical requirements and safety objectives of the ASTRID experimental project, notably with its reactivity management, cooling management, and radiological containment management functions. They describe and discuss requirements to be met and choices made for Astrid, and the design options for its various components (core and fuels, nuclear heater, energy conversion system, fuel assembly handling, instrumentation and in-service inspection, control and command). They present the installations which are associated with the ASTRID cycle, evoke the development and use of simulations and codes, describe the industrial organization and the international collaboration about the ASTRID project, present the planning and cost definition

  2. Real Time Computer for Plugging Indicator Control of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR) is in the advanced stage of construction at Kalpakkam, India. Liquid sodium is used as coolant to transfer the heat produced in the reactor core to steam water circuit. Impurities present in the sodium are removed using purification circuit. Plugging indicator is a device used to measure the purity of the sodium. Versa Module Europa bus based Real Time Computer (RTC) system is used for plugging indicator control. Hot standby architecture consisting of dual redundant RTC system with switch over logic system is the configuration adopted to achieve fault tolerance. Plugging indicator can be controlled in two modes namely continuous and discontinuous mode. Software based Proportional-Integral-Derivative (PID) algorithms are developed for plugging indicator control wherein the set point changes dynamically for every scan interval of the RTC system. Set points and PID constants are kept as configurable in runtime in order to control the process in very efficient manner, which calls for reliable communication between RTC system and control station, hence TCP/IP protocol is adopted. Performance of the RTC system for plugging indicator control was thoroughly studied in the laboratory by simulating the inputs and monitored the control outputs. The control outputs were also monitored for different PID constants. Continuous and discontinuous mode plots were generated. (authors)

  3. Design and fabrication of sodium test facility for fast breeder reactor

    International Nuclear Information System (INIS)

    The purpose of the promotion policy for energy research and development base construction plan (priority facility) of the Japanese government in FY2009 is 'to construct in Tsuruga City the research and development base for plant operation technology for the practical use of fast breeder reactor where researchers in and out of Japan gather, and to contribute to the development and revitalization of the region as the base with international characteristics.' In conformity to this purpose, the Japan Atomic Energy Agency built 'sodium engineering research facilities' in Tsuruga. This paper describes the design, fabrication, and installation of interior equipment that were carried out by Kawasaki Heavy Industries. 'Sodium engineering research facilities' are the test and research facilities to conduct research and development related to sodium, while reflecting the experiences of operation and maintenance of 'Monju,' which aims at the commercialization of fast reactor. The facilities specialize in the handling technology of sodium to meet the needs in and out of Japan, and were completed in June 2015. The facilities consist of six units including tank-loop test equipment, mini-loop test equipment, sodium purification and supply equipment, etc. For the tank-loop test equipment, a sodium transfer test of about 5.5 tons, and a subsequent comprehensive function test using sodium are scheduled. (A.O.)

  4. Methodical study of cost-benefit analyses of the liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Six American cost-benefit analyses (CBA) of nuclear energy and, in particular, of the Liquid Metal Fast Breeder Reactor (LMFBR) were analysed under the aspect of their methodical difficulties. Two different methodical approaches can be discerned which are related to two completely different applications, according to which the advantages and disadvantages of the breeder reactor are estimated in line with the basic concept of cost-benefit analysis. The analytical methods used to justify the continuation of the breeder-related research programme reveal that the specific energy-related technological and economic conditions of the geographic region considered have to be taken into account. The results of a CBA performed for the USA can therefore not be transferred to the Federal Republic of Germany. Due to the in part strongly differing quantitative results the analyses reviewed do not suggest a clear and final decision in favour of the continuation of the American LMFBR research programme to the extent envisaged. In addition, neither by a positive nor by a negative overall result of the analysis can it be concluded that no other advanced electricity generating technology would have a more favourable cost-benefit ratio, or that the breeder-related research activities, which have been pursued for several years already, should be discontinued. (orig.)

  5. Development of fluorocarbon rubber for backup seals of sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: → Negligible chemical degradation of seal compound during ageing (in unstrained state) in air at 140/170/200 oC for 32 weeks. → Cross-link exchange, Joule-Gough effect and ionic interaction during ageing in unstrained state. → Enhanced physical/chemical degradation of compound during ageing under strain. → Capability of compound to withstand heat, radiation, air and mechanical load in reactor for 10 years. → Negligible chemical dose rate effect and gas evolution from compound during seal operation. -- Abstract: The development of a fluorohydrocarbon rubber compound for static backup seals of 500 MWe, Prototype Fast Breeder Reactor (PFBR) is depicted. Variations of a previously developed Viton A-401C based formulation were subjected to processability tests, accelerated heat ageing in air, mechanical characterization and production trials. Finite element analysis and literature data extrapolation were combined with long term ageing to ascertain the life (minimum 10 years) of chosen formulation in reactor under synergistic influences of 110 oC, 23 mGy/h (γ dose rate) and air considering postulated accidental conditions. Validation of test seals and quality assessment indicate that composition and properties of the validated laboratory compound has been translated effectively to the reactor seals, installed recently in PFBR. The tensile and hardness specimens indicated negligible degradation and exceptional thermo-oxidative stability of the seal compound during ageing (32 weeks at 140/170/200 oC) even though interesting manifestations of cross-link exchange and ionic interactions were observed. Compression set results, showing definite trends of change under ageing and stain, were used in Arrhenius and Williams Landel Ferry equations for realistic life prediction. The development provides a foundation to simplify and standardize the design, development and operation of major elastomeric sealing applications of Indian nuclear reactors based on a

  6. Sodium and steam generator leak detection for prototype fast breeder reactor (PFBR)

    International Nuclear Information System (INIS)

    The construction of the Prototype Fast Breeder Reactor (PFBR) a 500 MWe pool type sodium cooled breeder reactor with MOX fuel has started at Kalpakkam. The Instrumentation and Control of PFBR is designed for safe, reliable and economic operation of the plant. Special feature of breeder reactors is sodium instrumentation. Leaks in sodium systems have the possibility of being exceptionally hazardous due to the reaction of liquid sodium with oxygen and water vapour in the air. In addition, leakage from primary systems can cause radioactive contamination. Potential regions of leakage are near welds and high stress areas. Sodium also reacts with concrete releasing hydrogen and leading to damage and loss of strength of concrete structures. Leaking sodium catches fire depending on its temperature. Sodium temperature in the plant ranges from 423 K at filling condition to 820 K at reactor nominal power operating condition. Leak detectors are provided on pipelines, tanks and other capacities. Sodium leak detection systems are designed to meet requirements of ASME section XI- division 3 which specifies that sodium leak at the rate of 100 g/h are to be detected in 20 h for air filled vaults and 250 h for inert vaults. Diverse leak detection methods are employed for active and non-active sodium equipment and pipes. For detection of water leaks into Sodium in steam generators, Hydrogen in Sodium Detectors (HSD) are used. Hydrogen in Argon Detectors (HAD) are used for sodium temperatures below 623 K as HSD is not effective below this temperature due to non-dissolution of hydrogen formed. Choice and challenges posed in implementation of above leak detection requirements are discussed in this paper. (authors)

  7. Performance characterization of geopolymer composites for hot sodium exposed sacrificial layer in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Haneefa, K. Mohammed, E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Performance evaluation of geopolymers subjected to hot liquid sodium is performed. • Apart from mechanical properties, micro-analytical techniques are used for material characterization. • The geopolymer composite showed comparatively lesser damage than conventional cement composites. • Geopolymer technology can emerge as a new choice for sacrificial layer in SCFBRs. - Abstract: A sacrificial layer of concrete is used in sodium cooled fast breeder reactors (SCFBRs) to mitigate thermo-chemical effect of accidentally spilled sodium at and above 550 °C on structural concrete. Performance of this layer is governed by thermo-chemical stability of the ingredients of sacrificial layer concrete. Concrete with limestone aggregate is generally used as a sacrificial layer. Conventional cement based systems exhibit instability in hot liquid sodium environment. Geo-polymer composites are well known to perform excellently at elevated temperatures compared to conventional cement systems. This paper discusses performance of such composites subjected to exposure of hot liquid sodium in air. The investigation includes comprehensive evaluation of various geo-polymer composites before any exposure, after heating to 550 °C in air, and after immersing in hot liquid sodium initially heated to 550 °C in air. Results from the current study indicate that hot liquid sodium produces less damage to geopolymer composites than to the existing conventional cement based system. Hence, the geopolymer technology has potential application in mitigating the degrading effects of sodium fires and can emerge as a new choice for sodium exposed sacrificial layer in SCFBRs.

  8. Stress Analysis of Steam Generator Shell Nozzle Junction for Sodium cooled Fast Breeder Reactor

    Directory of Open Access Journals (Sweden)

    Mani N,

    2010-07-01

    Full Text Available The Steam Generators (SG decides the capacity factor in Sodium cooled Fast breeder Reactor (SFR plants and hence they are designed with high reliability. One of the critical locations in SG is the shell nozzle junction. This junction is subjected to an end bending moment and internal pressure. Since the shell nozzle junction is the critical location of SG a double-ended guillotine rupture will result in leakage of large quantity of sodium, which is not desirable. The material of construction is modified 9Cr-1Mo. Hence safety equirements demand that Leak Before Break criteria with assumed initial flaw have to be demonstrated. To demonstrate LBB, the basic requirement is to predict the state of stress precisely in the shell nozzle junction under various loading conditions. An efficient finiteelement modeling for shell nozzle junction has been presented in which shell elements are employed to idealize the whole region. These results are used for the analysis of leak before break concept.

  9. A study of parameters on marking of Prototype Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor Fuel (PFBR) elements are identified with a permanent unique marking. Identification of the fuel elements is very much necessary for traceability during initial fabrication as well as for post irradiation examination. Marking on fuel element has to be permanent and capable of being identified after irradiation. Laser marking is a relatively new method as compared to other marking technologies such as ink marking, mechanical engraving and electro chemical methods. It is used for the product identification and traceability during its service life. Laser marking has many advantages compared to other conventional marking. In laser marking process, mark quality is a very important factor, which depends on so many variables like input current, pulse frequency, marking speed and number of passes. The influence of the pulse frequency and the speed of travel of the laser beam on the mark depth and width have been studied in this paper. An optical microscope, scanning electron microscope were used to measure the effects of pulse frequency on the mark depth and width. It has been found that the mark depth and width depend on the interaction process of the laser beam and the material, which was influenced by the pulse frequency. Micro hardness testing is carried out to report Heat Affected Zone (HAZ) variation with parameters. Marking speed and input current selected for suitable depth and width were mentioned in the present study. (author)

  10. Blowdown transient for sodium-steam water SG for prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lele, H.G.; Srivastava, A.; Majumdar, P.; Mukhopadhyay, D.; Gupta, S.K. [Reactor Safety Div., Bhabha Atomic Research Centre, Tromblay (India); Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Associate Director, Reactor Group, Chennai (India)

    2001-07-01

    Prototype Fast Breeder Test Reactor (PFBR) Steam Generator is once through steam generator in which water flows from bottom to top in 547 tubes, changing its state from highly subcooled to superheated state as it receives heat from sodium flowing from top to bottom in the shell side. Depressurization of steam generator from the dump valve provided at bottom is protective action. It prevents further possibility of water steam leak into sodium and subsequent sodium - water reaction. To perform depressurization transient analysis of PFBR appropriate thermal hydraulic modeling of SG is essential. Correct thermal hydraulic modelling needs simulation of sodium system, steam water system with different states from highly subcooled to superheated, coupling between sodium and steam-water system, SG tube and shell and different valve action. The computer code DPPFBR is developed with capability to simulate all these systems and phenomena encountered during transient. Different models of the code have been validated and code has been used for analysing depressurization transient. This paper describes various models used in the code and results of analysis for typical scenario. (author)

  11. Development of an ISI robot for the fast breeder reactor MONJU primary heat transfer system piping

    International Nuclear Information System (INIS)

    This paper describes the development of a new inspection robot for the In-Service Inspection of the heat transfer system of the Fast Breeder Reactor MONJU. The inspection was carried out using a tire-type ultrasonic sensor for volumetric tests at high temperature (atmosphere, 55degC; piping surface, 80degC) and radiation exposure condition (dose rate, 10 mGy/h; piping surface dose rate, 15 mGy/h). An inspection robot using a new tire type for the ultrasonic testing sensor and a new control method was developed. A signal-to-noise ratio S/N over 2 was obtained during the functional test for a calibration defect with a depth of 50%t (from the tube wall thickness). In the automatic inspection test, an EDM slit with a depth of 9% from the pipe thickness was detectable and with an S/N ratio = 4.0 (12.0 dB). (author)

  12. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors

    International Nuclear Information System (INIS)

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  13. Thermal hydraulics in the hot pool of Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Sodium cooled Fast Breeder Test Reactor (FBTR) of 40 MWt/13 MWe capacity is in operation at Kalpakkam, near Chennai. Presently it is operating with a core of 10.5 MWt. Knowledge of temperatures and flow pattern in the hot pool of FBTR is essential to assess the thermal stresses in the hot pool. While theoretical analysis of the hot pool has been conducted by a three-dimensional code to access the temperature profile, it involves tuning due to complex geometry, thermal stresses and vibration. With this in view, an experimental model was fabricated in 1/4 scale using acrylic material and tests were conducted in water. Initially hydraulic studies were conducted with ambient water maintaining Froude number similarity. After that thermal studies were conducted using hot and cold water maintaining Richardson similitude. In both cases Euler similarity was also maintained. Studies were conducted simulating both low and full power operating conditions. This paper discusses the model simulation, similarity criteria, the various thermal hydraulic studies that were carried out, the results obtained and the comparison with the prototype measurements.

  14. Blowdown transient for sodium-steam water SG for prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Test Reactor (PFBR) Steam Generator is once through steam generator in which water flows from bottom to top in 547 tubes, changing its state from highly subcooled to superheated state as it receives heat from sodium flowing from top to bottom in the shell side. Depressurization of steam generator from the dump valve provided at bottom is protective action. It prevents further possibility of water steam leak into sodium and subsequent sodium - water reaction. To perform depressurization transient analysis of PFBR appropriate thermal hydraulic modeling of SG is essential. Correct thermal hydraulic modelling needs simulation of sodium system, steam water system with different states from highly subcooled to superheated, coupling between sodium and steam-water system, SG tube and shell and different valve action. The computer code DPPFBR is developed with capability to simulate all these systems and phenomena encountered during transient. Different models of the code have been validated and code has been used for analysing depressurization transient. This paper describes various models used in the code and results of analysis for typical scenario. (author)

  15. Reliability analysis of safety grade decay heat removal system of Indian prototype fast breeder reactor

    International Nuclear Information System (INIS)

    The 500 MW Indian pool type Prototype Fast Breeder Reactor (PFBR), is provided with two independent and diverse Decay Heat Removal (DHR) systems viz., Operating Grade Decay Heat Removal System (OGDHRS) and Safety Grade Decay Heat Removal System (SGDHRS). OGDHRS utilizes the secondary sodium loops and Steam-Water System with special decay heat removal condensers for DHR function. The unreliability of this system is of the order of 0.1-0.01. The safety requirements of the present generation of fast reactors are very high, and specifically for DHR function the failure frequency should be less than ∼1E-7/ry. Therefore, a passive SGDHR system using four completely independent thermo-siphon loops in natural convection mode is provided to ensure adequate core cooling for all Design Basis Events. The very high reliability requirement for DHR function is achieved mainly with the help of SGDHRS. This paper presents the reliability analysis of SGDHR system. Analysis is performed by Fault Tree method using 'CRAFT' software developed at Indira Gandhi Centre for Atomic Research. This software has special features for compact representation and CCF analysis of high redundancy safety systems encountered in nuclear reactors. Common Cause Failures (CCF) are evaluated by β factor method. The reliability target for SGDHRS arrived from DHR reliability requirement and the ultimate number of demands per year (7/y) on SGDHRS is that the failure frequency should be ≤1.4E-8/de. Since it is found from the analysis that the unreliability of SGDHRS with identical loops is 5.2E-6/de and dominated by leak rates of components like AHX, DHX and sodium dump and isolation valves, options with diversity measures in important components were studied. The failure probability of SGDHRS for a design consisting of 2 types of diverse loops (Diverse AHX, DHX and sodium dump and isolation valves) is 2.1E-8/de, which practically meets the reliability requirement

  16. Fast breeder reactor blanket management: comparison of LMFBR and GCFR blankets

    International Nuclear Information System (INIS)

    The economic performance of the fast breeder reactor blanket, considering different fuel management schemes was studied. To perform this, the investigation started with a standard reactor physics calculation. Then, two economic models for evaluation of the economic performance of the radial blanket were developed. These models formed the basis of a computer code, ECOBLAN, which computes the net economic gain and the levelized fuel cost due to the radial blanket. The net gain in terms of dollars and $/kgHM-y and the levelized fuel cost in mills/kWhe were obtained as a function of blanket thickness and a residence time of the fuel in the blanket. A LMFBR and a GCFR were the reactor models considered in this study. The optimum radial blanket of a GCFR consists of two rows, that of a LMFBR consists of three rows. Regarding the different fuel management schemes, the fixed blanket was found to be more favorable than reshuffled blanket. Out-in and in-out reshuffled blanket offer almost the same net gain. In all the cases, the burnup calculated for the fuel was found to be less than the acceptable limit. There is an optimum residence time for the fuel in the blanket which depends on the position of the fuel in the blanket and the fuel management scheme studied. As expected, except for very short residence times (less than 2.5 years), the radial blanket is a net income producer. There is no significant difference between the economic performance of the blanket of a LMFBR and a GCFR

  17. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored

  18. Deterioration of limestone aggregate mortars by liquid sodium in fast breeder reactor environment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Haneefa, K., E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2014-08-15

    Highlights: • Limestone mortars were exposed to liquid sodium exposure at 550 °C. • Micro-analytical techniques were used to characterize the exposed specimens. • The performance of limestone mortar was greatly influenced by w/c. • The fundamental degradation mechanisms of limestone mortars were identified. - Abstract: Hot liquid sodium at 550 °C can interact with concrete in the scenario of an accidental spillage of sodium in liquid metal cooled fast breeder reactors. To protect the structural concrete from thermo-chemical degradation, a sacrificial layer of limestone aggregate concrete is provided over it. This study investigates the fundamental mechanisms of thermo-chemical interaction between the hot liquid sodium and limestone mortars at 550 °C for a duration of 30 min in open air. The investigation involves four different types of cement with variation of water-to-cement ratios (w/c) from 0.4 to 0.6. Comprehensive analysis of experimental results reveals that the degree of damage experienced by limestone mortars displayed an upward trend with increase in w/c ratios for a given type of cement. Performance of fly ash based Portland pozzolana cement was superior to other types of cements for a w/c of 0.55. The fundamental degradation mechanisms of limestone mortars during hot liquid sodium interactions include alterations in cement paste phase, formation of sodium compounds from the interaction between solid phases of cement paste and aggregate, modifications of interfacial transition zone (ITZ), decomposition of CaCO{sub 3}, widening and etching of rhombohedral cleavages, and subsequent breaking through the weakest rhombohedral cleavage planes of calcite, staining, ferric oxidation in grain boundaries and disintegration of impurity minerals in limestone.

  19. Development of electromagnetic pumps for natrium coolant of liquid metal fast breeder reactor (2)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hee; Su, Soo Won; Kin, Hee Lyeong; Lee, Sang Doo; Seo, Joom Ho [Electrical Engineering and Science Research Institute, Seoul (Korea, Republic of)

    1994-07-15

    Present work on the development of annular linear induction pumps of externally-supported-duct type are to create domestic electromagnetic pumps by our own design and manufacturing technique and to secure the technological experience and data for the production of large scale electromagnetic pumps for natrium coolant loop system of liquid metal fast breeder reactor in the future. Two annular induction pumps, a small-sized one of 400 deg C and 60 l/min and a medium-sized one of 600 deg C and 800 l/min for their maximum operating temperatures and flowrates, respectively, are designed and fabricated. Conceptual and detailed designs for annular linear induction pumps with 60 l/min and 800 l/min flowrates, respectively, have been done by finding the optimum geometrical and operational parameters based on an equivalent-circuit analysis method. The measurements of the flowrates and pressures of the assembled pumps are done for confirming their characteristics and performance and comparing electrical input powers with those obtained from calculations. The cooling method developed in this study can be used in parallel with natural convection cooling without compressed air injection, and improves cooling efficiency and simplification of the pump structure. Experimental results measured by a free-fall indirect method and a EM flowmeter are and the design value of flowrate of each pump is confirmed by comparing measured one from indirect measurements. A center-return type pump for visualizing natrium pumping are also built with one pole pitch, eight outer core versions and six slots. Its natrium loop for pumping exhibition is assembled with instruments, heating equipment, leak sensing and pneumatic valve, and operated by a remote control. Magnetic flux distribution analysis is performed analytically and numerically for axial and radial directions in each case with or without end effects and consequently finds electromagnetic body force and pump efficiency.

  20. Design of fuel fabrication plant of Fast Reactor Fuel Cycle Facility for reload requirement of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    India's economic growth is on a fast growth track. The energy demand is expected to grow rapidly in the coming decades. The growth in population and economy is creating huge demand for energy which has to be met with environmentally benign technologies. Nuclear energy is best suited to meet this demand in a sustainable manner without causing undue environmental impact. Fast reactors are expected to be major contributors in sufficing this demand to a great extent. As an effort to achieve the objective, a Prototype Fast Breeder Reactor is being constructed at Kalpakkam. This paper also highlights the design features of FFP, unit operations, scheme of automation, branched layout of glove box train, shielding arrangement on glove boxes, accident consequence analysis etc.

  1. Social and ethical aspects of the liquid-metal fast breeder reactor

    International Nuclear Information System (INIS)

    Development of liquid fast breeder reactors not only indirectly entails (through commitments of time and resources that foreclose other options), but also directly entails large-scale centralized electrification. The massive economic commitments of such a policy, wether or not it is a nuclear policy, demand and cause major social changes, bypass traditional market mechanisms, concentrate political and economic power, persistently distort political structures and social priorities, compromise professional ethics, are probably inimical to greater distributional equity within and among nations, enhance vulnerability and the paramilitarization of civilian life, introduce major economic and social risks, and reinforce current trends toward centrifugal politics. Deployment of fission technology produces further social and ethical problems, since attempts to reduce potential hazards from operating accidents, from escape of nuclear wastes, or from nuclear violence and coercion will have socio-political side-effects even if they succeed, not to mention the side-effects if they fail. These side-effects, many of which would be worse with fast than with thermal reactors, include repressiveness, abrogation of civil liberties, social rigidity and homogeneity, elitist technocracy, dirigiste autarchy, and suppression of ethical objections. The inability of modern political institutions to cope with the persistent hazards of toxic and explosive nuclear materials strains the competence and perceived legitimacy of those institutions as they try to compromise between individual liberties and public safety and to subject to democratic decision technically tinged policy questions that turn largely on unknown or unknowable information. There is no scientific basis for calculating the likelihood on the maximum long-term of nuclear mishaps, nor for guaranteeing that the effects will not exceed a particular level; it is only known that all precautions are, for fundamental reasons

  2. Choice of rotatable plug seals for prototype fast breeder reactor: Review of historical perspectives

    International Nuclear Information System (INIS)

    Highlights: • Choice and arrangement of elastomeric inflatable and backup seals as primary and secondary barriers. • With survey (mid-1930s onwards) of reactor, sealing, R&D and rubber technology. • Load, reliability, safety, life and economy of seals and reactors are key factors. • PFBR blends concepts and experience of MOX fuelled FBRs with original solutions. • R&D indicates inflatable seal advanced fluoroelastomer pivotal in unifying nuclear sealing. - Abstract: Choice and arrangement of elastomeric primary inflatable and secondary backup seals for the rotatable plugs (RPs) of 500 MW (e), sodium cooled, pool type, 2-loop, mixed oxide (MOX) fuelled Prototype Fast Breeder Reactor (PFBR) is depicted with review of various historical perspectives. Static and dynamic operation, largest diameters (PFBR: ∼6.4 m, ∼4.2 m), widest gaps and variations (5 ± 2 mm) and demanding operating requirements make RP openings on top shield (TS) the most difficult to seal which necessitated extensive development from 1950s to early 1990s. Liquid metal freeze seals with life equivalent to reactor prevailed as primary barrier (France, Japan, U.S.S.R.) during pre-1980s in spite of bulk, cost and complexity due to the abilities to meet zero leakage and resist core disruptive accident (CDA). Redefinition of CDA as beyond design basis accident, tolerable leakage and enhanced economisation drive during post-1980s established elastomeric inflatable seal as primary barrier excepting in U.S.S.R. (MOX fuel, freeze seal) and U.S.A. (metallic fuel). Choice of inflatable seal for PFBR RPs considers these perspectives, inherent advantages of elastomers and those of inflatable seals which maximise seal life. Choice of elastomeric backup seal as secondary barrier was governed by reliability and minimisation as well as distribution of load (temperature, radiation, mist) to maximise seal life. The compact sealing combination brings the hanging RPs at about the same elevation to reduce

  3. Choice of rotatable plug seals for prototype fast breeder reactor: Review of historical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.in; Raj, Baldev, E-mail: baldev.dr@gmail.com

    2015-09-15

    Highlights: • Choice and arrangement of elastomeric inflatable and backup seals as primary and secondary barriers. • With survey (mid-1930s onwards) of reactor, sealing, R&D and rubber technology. • Load, reliability, safety, life and economy of seals and reactors are key factors. • PFBR blends concepts and experience of MOX fuelled FBRs with original solutions. • R&D indicates inflatable seal advanced fluoroelastomer pivotal in unifying nuclear sealing. - Abstract: Choice and arrangement of elastomeric primary inflatable and secondary backup seals for the rotatable plugs (RPs) of 500 MW (e), sodium cooled, pool type, 2-loop, mixed oxide (MOX) fuelled Prototype Fast Breeder Reactor (PFBR) is depicted with review of various historical perspectives. Static and dynamic operation, largest diameters (PFBR: ∼6.4 m, ∼4.2 m), widest gaps and variations (5 ± 2 mm) and demanding operating requirements make RP openings on top shield (TS) the most difficult to seal which necessitated extensive development from 1950s to early 1990s. Liquid metal freeze seals with life equivalent to reactor prevailed as primary barrier (France, Japan, U.S.S.R.) during pre-1980s in spite of bulk, cost and complexity due to the abilities to meet zero leakage and resist core disruptive accident (CDA). Redefinition of CDA as beyond design basis accident, tolerable leakage and enhanced economisation drive during post-1980s established elastomeric inflatable seal as primary barrier excepting in U.S.S.R. (MOX fuel, freeze seal) and U.S.A. (metallic fuel). Choice of inflatable seal for PFBR RPs considers these perspectives, inherent advantages of elastomers and those of inflatable seals which maximise seal life. Choice of elastomeric backup seal as secondary barrier was governed by reliability and minimisation as well as distribution of load (temperature, radiation, mist) to maximise seal life. The compact sealing combination brings the hanging RPs at about the same elevation to reduce

  4. BN-350 decommissioning problems of radioactive waste management

    International Nuclear Information System (INIS)

    Pursuant of modern concept on radioactive waste management applied in IAEA Member States all radioactive wastes produced during the BN-350 operation and decommissioning are subject to processing in order to be transformed to a form suitable for long-term storage and final disposal. The first two priority objectives for BN-350 reactor are as follows: cesium cleaning from sodium followed by sodium drain, and processing; processing of liquid and solid radioactive waste accumulated during BN-350 operation. Cesium cleaning from sodium and sodium processing to NaOH will be implemented under USA engineering and financial support. However the outputted product might be only subject to temporary storage under special conditions. Currently the problem is being solved on selection of technology for sodium hydroxide conversion to final product incorporated into cement-like matrix ready for disposal pursuant to existing regulatory requirements. Industrial installation is being designed for liquid radioactive waste processing followed by incorporation to cement matrix subject to further disposal. The next general objective is management of radioactive waste expected from BN-350 decommissioning procedure. Complex of engineering-radiation investigation that is being conducted at BN-350 site will provide estimation of solid and liquid radioactive waste that will be produced during the course of the BN-350 decommission. Radioactive wastes that will be produced may be shared for primary (metal structures of both reactor and reactor plant main and auxiliary systems equipment as well as construction wastes of dismantled biological protection, buildings and structures) and secondary (deactivation solutions, tools, materials, cloth, special accessory, etc.). Processing of produced radioactive wastes (including high activity waste) requires the use of special industrial facilities and construction of special buildings and structures for arrangement of facilities mentioned as well as for

  5. Internal welding of tube-to-tubesheet joints of steam generator for sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    In the steam generator for a sodium-cooled fast breeder reactor, there are many joints of tubes and tube sheets. For the internal welding of small diameter, thick walled tubes and tubesheets, welding method has been developed, which gives high quality welding with good reproducibility. In this method, the pressure of shield gas is controlled suitably, and consideration is given to the composition of the shield gas. As a means to ensure the quality of welds, the technique of internal radiographic test has also been established. Both the welding method and the test were able to be applied successfully to the steam generator of practical size. (Mori, K.)

  6. High-definition radiography of tube-to-tubesheet welds of steam generator of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    In the steam generator of the Prototype Fast Breeder Reactor (PFBR), steam is generated by the transfer of heat from secondary sodium to water. Due to the inherent dangers of sodium-water reaction, the integrity of weld joints separating sodium and water/steam is of paramount importance. This is particularly true and very important for the tube-to-tubesheet joints. This paper discusses the use of projective magnification technique by microfocal radiography for the quality evaluation and optimisation of the welding parameters of such small tube-to-tubesheet welds of the steam generator of PFBR. (author)

  7. Level monitoring system with pulsating sensor--application to online level monitoring of dashpots in a fast breeder reactor.

    Science.gov (United States)

    Malathi, N; Sahoo, P; Ananthanarayanan, R; Murali, N

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation. PMID:25725884

  8. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    Science.gov (United States)

    Malathi, N.; Sahoo, P.; Ananthanarayanan, R.; Murali, N.

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation.

  9. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Malathi, N.; Sahoo, P., E-mail: sahoop@igcar.gov.in; Ananthanarayanan, R.; Murali, N. [Real Time Systems Division, Electronics, Instrumentation and Radiological Safety Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2015-02-15

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation.

  10. Level monitoring system with pulsating sensor--application to online level monitoring of dashpots in a fast breeder reactor.

    Science.gov (United States)

    Malathi, N; Sahoo, P; Ananthanarayanan, R; Murali, N

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation.

  11. Economic performance of liquid-metal fast breeder reactor and gas-cooled fast reactor radial blankets

    International Nuclear Information System (INIS)

    The economic performance of the radial blanket of a liquid-metal fast breeder reactor (LMFBR) and a gas-cooled fast reactor (GCFR) has been studied based on the calculation of the net financial gain as well as the value of the levelized fuel cost. The necessary reactor physics calculations have been performed using the code CITATION, and the economic analysis has been carried out with the code ECOBLAN, which has been written for that purpose. The residence time of fuel in the blanket is the main variable of the economic analysis. Other parameters that affect the results and that have been considered are the value of plutonium, the price of heat, the effective cost of money, and the holdup time of the spent fuel before reprocessing. The results show that the radial blanket of both reactors is a producer of net positive income for a broad range of values of the parameters mentioned above. The position of the fuel in the blanket and the fuel management scheme applied affect the monetary gain. There is no significant difference between the economic performance of the blanket of an LMFBR and a GCFR

  12. Level-2 PSA for the prototype fast breeder reactor MONJU applied to the accident management review

    International Nuclear Information System (INIS)

    An accident management guideline (AMG) of the prototype fast breeder reactor MONJU has been presented to Nuclear and Industry Safety Agency (NISA) of METI by Japan Atomic Energy Agency (JAEA) with an evaluation result of an effectiveness of the AMG by employing Level-1 and Level-2 PSAs. Japan Nuclear Energy Safety Organization (JNES) evaluated the three events - PLOHS, LORL and ATWS events - and scrutinized the results of the Level-2 PSA carried out by JAEA from the view point of an accident management (AM) review. Regarding ATWS events, we have carried out a qualitative evaluation of the results of JAEA's evaluation and carried out a quantitative evaluation of the containment failure frequency (CFF) in relation to Protected-Loss-of-Heat-Sink (PLOHS) and Loss-of-Reactor-Level (LORL) events. Evaluation of the containment failure probability CFF has been conducted based on the results of the Level-1 PSA by employing the code system developed by JNES. We conducted a close examination of the procedure that JAEA followed to evaluate CFFs in PLOHS and LORL events. It was confirmed that JAEA's Level-2 PSA quantified the phenomenal event trees was expanded in the three processes - the plant response process, the core damage process and the containment vessel response process - based on various analytical and experimental evidence and otherwise followed much the same basic evaluation procedures employed by JNES. As for PLOHS and LORL, quantitative evaluation of CFF was conducted according to the following procedures: Development of an event flow diagram, Development of a phenomenal event tree, Quantification of the phenomenal event tree, Evaluation of containment failure frequencies, and Evaluation of the effectiveness of the AM measures. In the evaluation of the PLOHS and LORL events, the following analytical codes were used; Plant dynamic characteristic analytical code (NALAP-II), Nuclear characteristics analytical system (ARCADIAN-FBR/MVP), Nuclear dynamics analysis code

  13. Status of the fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands

    International Nuclear Information System (INIS)

    In 1967 and 1968 the Federal Republic of Germany, the Kingdom of Belgium and the Kingdom of the Netherlands (''DeBeNe'') agreed to develop, in a joint program, breeder reactors to the point of commercial maturity. The following research organizations take part in this effort: Kernforschungszentrum Karlsruhe (KfK); INTERATOM, Bergisch Gladbach; ALKEM, Wolfgang near Hanau; SCK/CEN, Mol; Belgonucleaire, Brussels; ECN, Petten; TNO, Apeldoorn; NERATOOM, The Hague. The three German institutions mentioned above have been interrelated since 1977 by the Entwicklungsgemeinschaft (EG) Schneller Brueter. Between KfK, INTERATOM, and the French Commissariat a l'Energie Atomique contracts were concluded in 1977 about close cooperation in the Fast Breeder field, with association of the Belgian and Dutch partners. The results of research and development activities carried out by the DeBeNe partners in 1981 have been compiled in this report. The report begins with a short survey of the fast reactor plants, followed by an R and D summary. The bulk of the report gives more detailed information about those plants and about results reported by the Working Groups of the R and D Program Working Committee of the Fast Breeder Project. In an additional chapter a survey is given of international cooperation. (author)

  14. Development of standards and investigation of safety examination items for advancement of safety regulation of fast breeder reactor

    International Nuclear Information System (INIS)

    The purposes of this study are to prepare the fuel technical standard and the structure and materials standard of fast breeder reactors (FBRs), and to develop the requirements in a reactor establishment permission. The objects of this study are mainly the Monju high performance core and a demonstration FBR. In JFY 2012, the following results were obtained. As for the fuel technical standard, the fuel technical standard adapting the examination of integrity of the FBR fuels was prepared based on the information and data obtained in this study. As for the structure and material standard, the investigation of the revised parts of the standard was carried out. And as for the examination of the safety requirements, safety evaluation items for the future FBR plant and the fission products to be considered in a reactor establishment permission were investigated and examined. (author)

  15. Investigation of stability of multi free surfaces at transient operation for fast breeder demonstration reactors in Japan

    International Nuclear Information System (INIS)

    The Japanese demonstration fast breeder reactor (JDFBR) is composed of a reactor vessel, intermediate heat exchangers and pump vessels. Every component has a free surface of sodium. Transient operation of the pumps may cause variations of the sodium levels. For the stability of the multiple surfaces, a 1/15 scale model of the JDFBR with 4 loops with a 1000 MWe output power was made to experimentally investigate the stability of 9 free surfaces. In addition, we have developed a computer code to calculate it. The results of the experiments and the calculations agree well with each other. The computer code was successfully verified. The cover gas has an important role to suppress the vibrations of the free surfaces in transient conditions. The sodium level of the JDFBR is stable in all operating conditions, even beyond the design base conditions. (author)

  16. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    Science.gov (United States)

    Malathi, N.; Sahoo, P.; Ananthanarayanan, R.; Murali, N.

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are Rod Drive Mechanism during reactor operation.

  17. Theoretical and experimental studies of non-linear structural dynamics of fast breeder reactor fuel elements

    International Nuclear Information System (INIS)

    Descriptions are presented of theoretical and experimental studies of the deformation behaviour of fast-breeder fuel elements as a consequence of extreme impulsive stresses produced by an incident. The starting point for the studies is the assumption that local disturbances in a fuel element have resulted in a thermal interaction between fuel and sodium and in a corresponding increase in pressure. On the basis of the current state of knowledge, the possibility cannot be ruled out that this pressure build-up may lead to the bursting of the fuel-element wrapper, to the propagation of pressure in the core, and to coherent structural movements and deformations. A physical model is established for the calculation of the dynamic response of elastic-plastic beam systems, and the differential equations of p motion for the discrete equivalent system are derived with the aid of D'Alembert's principle. On this basis and with the aid of a semi-empirical pin-bundle model, an appropriate computer program allows a static and dynamic analysis to be obtained for a complete fuel element. In the experimental part of the study, a description is given of static and impulsive loading tests on 1:1 SNR-like fuel-element models. Making use of measured impact forces and of known material characteristics, it was possible to a large extent for the experiments to be reproduced by calculations. In agreement with existing experience from explosion experiments on 1:1 core models, the results (of relevance for fast-breeder safety and in particular the SNR-300) show that only local limited deformations occur and that the compact fuel-element and core structure constitutes an effective inherent barrier in the presence of extreme incident stresses. (author)

  18. Evaluation of symbiotic energy system between gas-cooled fast breeder reactor (GCFR) and multi-purpose very high temperature reactor (VHTR), (4)

    International Nuclear Information System (INIS)

    The conceptual design study of 1000 MWe gas-cooled fast breeder reactor (GCFR), which is used in the GCFR-VHTR symbiotic energy system, has been performed. In this report, the transient response of the GCFR core to accident events has been analyzed and safety performance of the 1000 MWe GCFR has been evaluated considering the analyses. A depressurization accident caused by failure of a primary coolant system and a reactivity insertion accident due to withdrawal of a control rod have been analyzed using nuclear and thermo-hydraulic coupled program MR-X developed for kinetics analysis of gas-cooled fast breeder reactors. The maximum fuel and cladding temperatures are most important problem to be analysed during a trangient of a gas-cooled fast breeder reactors. The analyses show that reliable reactor shutdown and emergency cooling systems are most important to achieve successful cold shutdown well before leading to core damage and also that no severe failures of fuel pin and cladding occures by working above mentioned safety systems well during the accidents. (author)

  19. Carbon transport in a bimetallic sodium loop simulating the intermediate heat transport system of a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Carbon transport data from a bimetallic sodium loop simulating the intermediate heat transport system of a Liquid Metal Fast Breeder Reactor are discussed. The results of bulk carbon analyses after 15,000 hours' exposure indicate a pattern of carburization of Type 304 stainless steel foils which is independent of loop sodium temperature. A model based on carbon activity gradients accounting for this behavior is proposed. Data also indicate that carburization of Type 304 stainless steel is a diffusion-controlled process; however, decarburization of the ferritic 2 1/4 Cr-1Mo steel is not. It is proposed that the decarburization of the ferritic steel is controlled by the dissolution of carbides in the steel matrix. The differences in the sodium decarburization behavior of electroslag remelted and vacuum-arc remelted 2 1/4 Cr-1Mo steel are also highlighted

  20. A knowledge based on-line diagnostic system for the fast breeder reactor KNKII

    International Nuclear Information System (INIS)

    In the nuclear research center at Karlsruhe, a diagnostic expert system is developed to supervise a fast breeder process (KNKII). The problem is to detect critical phases in the beginning state before fault propagation. The expert system itself is integrated in a computer network (realized by a local area network), where different computers are involved as special detection systems (for example acoustic noise, temperature noise, covergas monitoring and so on), which produce partial diagnoses, based on intelligent signal processing techniques like pattern recognition. Additional to the detection systems a process computer is integrated as well as a test computer, which simulates hypothetical and real fault data. On the logical top level the expert system manages the partial diagnoses of the detection systems with the operating data of the process computer and to produce a final diagnosis including the explanation part for operator support. The knowledge base is developed by typical Artificial Intelligence tools. Both fact based and rule based knowledge representations are stored in form of flavors and predications. The inference engine operates on a rule based approach. Specific detail knowledge, based on experience about any years, is available to influence the decision process by increasing or decreasing of the generated hypotheses. In a meta knowledge base, a rule master triggers the special domain experts and contributes the tasks to the specific rule complexes. Such a system management guarantees a problem solving strategy, which operates event triggered and situation specific in a local inference domain. (author). 3 refs, 6 figs, 2 tabs

  1. Investigations on the mechanical interaction between fuel and cladding (FCMI) in fast breeder reactor fuel pins

    International Nuclear Information System (INIS)

    The relation between FCMI and plastic cladding distensions of Fast-Breeder pins with oxide as well as carbide fuel was analyzed theoretically and experimentally. This resulted in the possibility of plastic cladding straining caused by differential swelling of fuel and cladding material under stationary power conditions or differential thermal expansion at power changes. At stationary operating conditions the FCMI in oxide pins is limited by an irradiation-induced creep deformation into inner void volume and thus the fuel swelling pressure will never cause clad distensions worth mentioning. However, the cladding of carbide pins can be strained under stationary conditions because of the comparatively low fuel plastification under irradiation. Plastic straining of oxide pins may follow from differential thermal expansion at power changes. The amount of strain is primarily dependent upon magnitude and rate of the power increase, the starting conditions, and the clad material strength. The parameter dependence of the strains and the limiting conditions for their avoidance are reported. The model calculations are carried out by means of a special computer code which was developed following closely the results of irradiation experiments. It was proved experimentally that a considerably high geometrical swelling occurs after a power reduction until the fuel has come into contact with the cladding again. (orig.)

  2. Gas-cooled fast breeder reactor. Quarterly progress report, February 1-April 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Information is presented concerning the reactor vessel; reactivity control mechanisms and instrumentation; reactor internals; primary coolant circuits;core auxiliary cooling system; reactor core; systems engineering; and reactor safety and reliability;

  3. Numerical analysis of grid plate melting after a severe accident in a Fast-Breeder Reactor (FBR)

    Indian Academy of Sciences (India)

    A Jasmin Sudha; K Velusamy

    2013-12-01

    Fast breeder reactors (FBRs) are provided with redundant and diverse plant protection systems with a very low failure probability (<10-6/reactor year), making core disruptive accident (CDA), a beyond design basis event (BDBE). Nevertheless, safety analysis is carried out even for such events with a view to mitigate their consequences by providing engineered safeguards like the in-vessel core catcher. During a CDA, a significant fraction of the hot molten fuel moves downwards and gets relocated to the lower plate of grid plate. The ability of this plate to resist or delay relocation of core melt further has been investigated by developing appropriate mathematical models and translating them into a computer code HEATRAN-1. The core melt is a time dependent volumetric heat source because of the radioactive decay of the fission products which it contains. The code solves the nonlinear heat conduction equation including phase change. The analysis reveals that if the bottom of grid plate is considered to be adiabatic, melt-through of grid plate (i.e., melting of the entire thickness of the plate) occurs between 800 s and 1000 s depending upon the initial conditions. Knowledge of this time estimate is essential for defining the initial thermal load on the core catcher plate. If heat transfer from the bottom of grid plate to the underlying sodium is taken into account, then melt-through does not take place, but the temperature of grid plate is high enough to cause creep failure.

  4. Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands - February 1985

    International Nuclear Information System (INIS)

    In 1967 and 1968, the Federal Republic of Germany, the Kingdom of Belgium and the Kingdom of the Netherlands (''DeBeNe'') agreed to develop breeder reactors in a joint program. The following research organizations have taken part in this effort: Kernforschungszentrum Karlsruhe (KfK); INTERATOM, Bergisch Gladbach; ALKEM, Wolfgang near Hanau; SCK/CEN, Mol; Belgonucleaire, Brussels; ECN, Petten; TNO, Apeldoorn; NERATOOM, The Hague. The three Germany institutions mentioned above have been associated since 1977 in the Entwicklungsgemeinschaft (EG) Schneller Brueter. KfK, INTERATOM, and the French Commissariat a l'Energie Atomique entered into contracts in 1977 about close cooperation in the fast breeder field, to which the Belgian and Dutch partners acceded. The results of activities carried out by the DeBeNe partners in 1984 have been compiled in this report. The report begins with a survey of the fast reactor plants followed by a R and D summary. In an additional chapter, a survey is given of international cooperation in 1984

  5. Report to the Congress: liquid metal fast breeder reactor program--past, present, and future, Energy Research and Development Administration

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-28

    The past, present, and future of the liquid metal fast breeder reactor (LMFBR) program, the Nation's highest priority energy program, are studied. ERDA anticipates that the operation of the first large commercial breeder will start in 1987, and that 186 commercial-size breeders will be in operation by the year 2000. The breeder program is made up of six major areas, each dealing with an important element of technology: reactor physics; fuels and materials; fuel recycle; safety; component development; plant experience; and facilities used in the LMFBR program. ERDA is implementing a new system for administering, managing, and controlling the breeder program that will provide increased program visibility and control. Federal funding for breeder development was $168 million in FY 1971, accounting for 40% of the total Federal R and D energy budget; in FY 1976 Federal funding for this program will be $474 million, only 26% of total Federal funding for energy research. Besides Federal funds, over half a billion dollars have been or will be invested by industry over the next 5 to 10 years to develop the breeder and to build a demonstration plant. Five other nations--the United Kingdom, France, Japan, West Germany, and the Soviet Union--have a high priority national energy program for developing the LMFBR. These foreign breeder programs could contribute important data and information to the U.S. program. (BYB)

  6. Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and The Netherlands - February 1984

    International Nuclear Information System (INIS)

    In 1967 and 1968 the Federal Republic of Germany, the Kingdom of Belgium and the Kingdom of the Netherlands (''DeBeNe'') agreed to develop breeder reactors in a joint program. The following research organizations have taken part in this effort: Kernforschungszentrum Karlsruhe (KfK); INTERATOM, Bergisch Gladbach; ALKEM, Wolgang near Hanau; SCK/CEN, Mol; Belgonucleaire, Brussels; ECN, Petten; TNO, Apeldoorn; NERATOOM, The Hague. The three German institutions mentioned above have been connected since 1977 in the Entwicklungsgemeinschaft (EG) Schneller Brueter. KfK, INTERATOM, and the French Commissariat a l'Energie Atomique entered into contracts in 1977 about close cooperation in the fast breeder field, to which the Belgian and Dutch partners acceded. The results of activities carried out by the DeBeBe partners in 1983 have been compiled in this report. The report begins with a survey of the fast reactor plants followed by an R and D summary. In an additional chapter, a survey is given of international cooperation in 1983

  7. Method of locating a leaking fuel element in a fast breeder power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Honekamp, John R. (Downers Grove, IL); Fryer, Richard M. (Idaho Falls, ID)

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  8. Method of locating a leaking fuel element in a fast breeder power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Honekamp, J.R.; Fryer, R.M.

    1978-03-21

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of /sup 134/Xe to /sup 133/Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  9. Status of National Programmes on Fast Breeder Reactors. International Working Group on Fast Reactors, Twentieth Annual Meeting, Vienna, 24-27 March 1987

    International Nuclear Information System (INIS)

    The Agenda of the meeting was as follows: 1. Approval of the Agenda. 2. Approval of the minutes of the 19th meeting of the IWGFR. 3. Report of the Scientific Secretary regarding the WD activities of the Working Group. 4. Presentations and discussions on national programmes on fast breeder reactors. 5. Consideration of conferences on fast breeder reactors. a. ANS-ENS International Conference on Fast Breeder Systems Experience Gained and Path to Economical Power Generation, Richland, Washington, USA, 13-17 September 1987. b. International Conference on Liquid Metal Engineering and Technology, Avignon, France, 17-20 October 1988. c. Other meetings of interest to IWGFR members. 6. Consideration of major recommendations of some of the WD IWGFR Specialists' Meetings. 7. Consideration of arrangements for Specialists' Meetings in 1987. a. Specialists' Meeting on Fission and Corrosion Products Behaviour in Primary Circuits of LMFBRs, Karlsruhe, Fed. Rep. of Germany, May 1987. b. Specialists' Meeting on LMFBR Reactor Block Antiseismic Design and Verification, Bologna, Italy, October 1987. 8. Selection of topics for Specialists' Meetings to be held in 1988 and suggestions of the IWGFR on other Specialists' Meetings and their justifications. 9. Consideration of joint research activities: a. Coordinated Research Programme on a Comparative Assessment of Processing Techniques for Analysis of Sodium Boiling Noise Detection Data. b. Coordinated Research Programme on Intercomparison of LMFBR Core Mechanics Codes. c. New Topics of CRP. d. Other Activities. 10. Updating of ''LMFBR Plant Parameters''. 11. Informal discussion on ''Safety Criteria for Fast Reactors in IWGFR Countries''. 12. The date and place of the 21th Annual Meeting of the IWGFR

  10. Safety and core design of large liquid-metal cooled fast breeder reactors

    OpenAIRE

    Qvist, Staffan Alexander

    2013-01-01

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cyc...

  11. Experiences with fast breeder reactor education in laboratory and short course settings

    International Nuclear Information System (INIS)

    The breeder reactor industry throughout the world has grown impressively over the last two decades. Despite the uncertainties in some national programs, breeder reactor technology is well established on a global scale. Given the magnitude of this technological undertaking, there has been surprisingly little emphasis on general breeder reactor education - either at the university or laboratory level. Many universities assume the topic too specialized for including appropriate courses in their curriculum - thus leaving students entering the breeder reactor industry to learn almost exclusively from on-the-job experience. The evaluation of four course presentations utilizing visual aids is presented

  12. Crystal chemistry of immobilization of fast breeder reactor (FBR) simulated waste in sodium zirconium phosphate (NZP) ceramic matrix

    Energy Technology Data Exchange (ETDEWEB)

    Chourasia, Rashmi [Department of Chemistry, Dr. H.S. Gour University, Sagar 470 003 (India); Shrivastava, O.P., E-mail: dr_ops11@rediffmail.co [Department of Chemistry, Dr. H.S. Gour University, Sagar 470 003 (India); Ambashta, R.D.; Wattal, P.K. [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2010-02-15

    Fuel from the fast breeder reactor waste is reprocessed and subjected to cooling for a period of about one year. Fission and activation products of the fuel are the major constituents of this waste. Sodium zirconium phosphate (hereafter NZP) has been identified as a potential material for immobilization of long lived heat generating radio nuclides. It was found that most of the elements present in the radioactive waste could be immobilized in this ceramic matrix without significant changes of the three-dimensional framework of the host material. Simulated NZP waste forms synthesized by ceramic route at 1200 deg. C crystallize in the rhombohedral system (space group R-3c). The crystal chemistry of 0-35 wt.% waste loaded NZP waste forms have been investigated using General Structure Analysis System (GSAS) programming of the step analysis powder diffraction data. Rietveld refinement of crystal data on the waste oxide (WO{sub x}) loaded waste forms gives a satisfactory convergence of R-factors. The particle size along prominent reflecting planes ranges between 68 and 141 nm. The polyhedral distortions and effective valence calculations from bond strength data are also reported. Morphological examination by scanning electron microscopy (SEM) reveals that the size of almost rectangular parallelepiped shaped grains varies between 0.2 and 5 mum. The EDX analysis provides analytical evidence of immobilization of effluent cations in the matrix.

  13. Effect of geometric factors on performance of a sodium to air heat exchanger in a fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • A heat exchanger analysis (HE) before scale up reduces excess heat transfer area. • Representative Elementary Volume analysis of a HE speeds up the solution. • The error in air temperature rise prediction by numerical across HE is within 5%. • When both pitches are reduced, the maximum increase in heat flux is experienced. • The experience has resulted in better design of next level heat exchangers. - Abstract: Prototype fast breeder reactor (PFBR) has a safety grade decay heat removal system whose performance depends on the effective functioning of natural convection heat exchangers called sodium to air heat exchangers. The development of Representative Elementary Volume (REV) model for the sodium to air heat exchanger is necessary to envisage its design and to study the effect of various factors for continuous improvement in design. With a Representative Elementary Volume, the hydrodynamic and heat transfer characteristics of the heat exchanger was studied and the results agree well with experimental data. The effect of longitudinal pitch and transverse pitch on the heat exchanger performance has been studied and an improvement of 22% in heat transfer is predicted

  14. Linearized model for the hydrodynamic stability investigation of molten fuel jets into the coolant of a Liquid Metal Fast Breeder Reactor (LMFBR)

    Science.gov (United States)

    Hartel, K.

    1986-02-01

    The hydrodynamic stability of liquid jets in a liquid continuum, both characterized by low viscosity was analyzed. A linearized mathematical model was developed. This model enables the length necessary for fragmentation of a vertical, symmetric jet of molten fuel by hydraulic forces in the coolant of a liquid metal fast breeder reactor to be evaluated. On the basis of this model the FRAG code for numerical calculation of the hydrodynamic fragmentation mechanism was developed.

  15. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    International Nuclear Information System (INIS)

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases

  16. Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape

    International Nuclear Information System (INIS)

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed

  17. Level-2 PSA for the Prototype Fast Breeder Reactor MONJU Applied to the Accident Management Review

    International Nuclear Information System (INIS)

    JNES independently evaluated the three events it selected - PLOHS, LORL and ATWS events - and reviewed the results of the Level 2 PSA carried out by JAEA. Regarding ATWS events, the organization carried out a qualitative evaluation of the results of JAEA's evaluation and carried out a quantitative evaluation of the containment failure frequency (CFF) in relation to PLOHS and LORL events. In JNES's independent evaluation of PLOHS and LORL events, accident scenarios in the three phases - the plant response phase, the core damage phase and the containment vessel response phase - were analyzed. The phenomenal event trees were quantified by applying the information about phenomena specific to fast reactors, including plant thermal-hydraulic analysis at the time of core damage, boundary structure analysis, analysis of the characteristics of the disrupted core, the results of sodium-concrete reaction tests, and the results of hydrogen diffusion induced combustion tests, to the PRDs. As the result, the total CFF before the preparation of the AM measures was rated at 9.2E-9/reactor year (CDF at 2.7E-7/reactor year), and it has been confirmed that these numerical values are well below the power reactor performance goal indicator values (CDF: 10-4/year or so; CFF: 10-5/year or so) even before the preparation of the AM measures. (author)

  18. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.R.

    1985-10-01

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.

  19. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    International Nuclear Information System (INIS)

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences

  20. Enhanced passive safety features against ATWS of fast breeder reactors with capabilities of MA incineration

    Energy Technology Data Exchange (ETDEWEB)

    Ninokata, Hisashi; Sawada, Tetsuo; Sato, Manabu [Tokyo Institute of Technology (Japan)] [and others

    1997-12-01

    The paper gives an outline of the general and simple reactivity correlation method to identify the region of the major design parameters that assures power stabilization and passive shutdown of sodium-cooled large fast reactors under ATWS conditions. Based on the model developed, general design guidelines are shown that enhance passive capabilities being aimed at preventing sodium boiling and fuel failures in the events of ULOF and UTOP. Discussions extend to the influences of minor actinides loading in the core onto the passive safety features. 6 refs., 1 fig., 1 tab.

  1. Development of a transfer model for design of sodium purification systems for Fast Breeder Reactors

    International Nuclear Information System (INIS)

    Operating a Sodium Fast Reactor (SFR) in reliable and safe conditions requires to master the quality of the sodium fluid coolant, regarding oxygen and hydrogen impurities contents. A cold trap is a purification unit in SFR, designed for maintaining oxygen and hydrogen contents within acceptable limits. The purification of these impurities is based on crystallization of sodium hydride on cold walls and sodium oxide or hydride on wire mesh packing. Indeed, as oxygen and hydrogen solubilities are nearly nil at temperatures close to the sodium fusion point, i.e. 97.8 C, on line sodium purification can be performed by crystallization of sodium oxide and hydride from liquid sodium flows. However, the management of cold trap performances is necessary to prevent from unforeseen maintenance operations, which could induce shut-down of the reactor. It is thus essential to understand how a cold trap fills up with impurities crystallization in order to optimize the design of this system and to overcome any problems during nominal operation. The objective is to develop a design and simulation tool for cold traps able to predict the location and the amount of the impurities deposited. Crystallization model involve phenomena coupling in a porous medium with hydrodynamics, heat and mass transfer, distinguishing nucleation and growth phases for each impurity. It enables to understand how thermo hydraulic conditions and growing impurities interact on each other. This analysis will adapt operating and management conditions in order to optimize purification requirements. (author)

  2. Significance of coast down time on safety and availability of a pool type fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • Plant dynamics studies for quantifying the benefits of flow coast down time. • Establishment of minimum flow coast down time required for safety. • Assessment of influence of flow coast down on enhancing plant availability. • Synthesis of thermo mechanical benefits of flow coast down time on component design. - Abstract: Plant dynamic investigation towards establishing the influence of flow coast down time of primary and secondary sodium systems on safety and availability of plant has been carried out based on one dimensional analysis. From safety considerations, a minimum flow coast down time for primary sodium circuit is essential to be provided to limit the consequences of loss of flow event within allowable limits. Apart from safety benefits, large primary coast down time also improves plant availability by the elimination of reactor SCRAM during short term power failure events. Threshold values of SCRAM parameters also need optimization. By suitably selecting the threshold values for SCRAM parameters, significant reduction in the inertia of pumping systems can be derived to obtain desirable results on plant availability. With the optimization of threshold values and primary flow coast down behaviour equivalent to a halving time of 8 s, there is a possibility to eliminate reactor SCRAM during short term power failure events extending up to 0.75 s duration. Benefits of secondary flow halving on reducing transient thermal loading on components have also been investigated and mixed effects have been observed

  3. Uncertainty evaluation of reliability of safety grade decay heat removal system of Indian prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • Uncertainty analysis of failure frequency of SGDHRS of a medium sized fast reactor is studied. • Lognormal distribution of failure rate of components is taken with error factor of 3. • The error factor in the distribution of failure frequency in most cases is 3. • The relative importance of the safety components is brought out. - Abstract: Deterministic and probabilistic safety assessment of nuclear power reactor technology is very important in assuring that the design is robust and safety systems perform as per requirement. The parameters required as input data for such analysis have uncertainties associated with them. Their impact is to be assessed on the results obtained for such analyses and it affects the overall decision making process. Safety Grade Decay Heat Removal System (SGDHRS) is one of the safety systems in fast breeder reactors and itremoves decay heat after reactor shutdown. It is a critical safety system; hence failure frequency for SGDHR is targeted to be less than 1.0 × 10−7 per reactor year. By bringing diversity in some of the components of SGDHRS, such as sodium-to-sodium decay heat exchanger (DHX), sodium to air heat exchanger (AHX) and valves, one can achieve the targeted low failure frequency of SGDHRS. We perform uncertainty analysis of the reliability of such SGDHRS here. Uncertainty in failure rate (of components of SGDHRS) is assumed to follow the log-normal distribution with error factor of three. Monte Carlo method of sampling is used in MATLAB environment. Results are obtained in terms of mean, median and standard deviation values of failure frequency. Percentile and confidence interval analysis of mean values are also obtained. These provide 95 and 98 percentile and confidence interval values of 98%, 99% and 99.8%. It is found that error factor of failure frequency of SGDHRS is found to be less than 3 in all the cases except the one in which DHX, AHX and Valves are designed with diversity in design. It is to

  4. Power excursion models applied to the study of secundary excursion in sodium cooled fast breeder reactors

    International Nuclear Information System (INIS)

    An evaluation of the energy that a secondary power excursion could release has been sought throughout the present work. A parametric study was therefore made by means of a power excursion code in fast reactors. The work submitted is therefore made up of the three following parts: Part 1. - (a), the secondary excursion is situated in the generally envisaged programmes and (b) the role of the principal parameters is studied in the calculation effected by the nuclear excursion code that was available at the start of the study. Part 2. - the results obtained for the power excursion calculations made are presented, Part 3. - the insufficient modelling of the reactivity present during the secondary power excursion is deduced from the parametric study just made. A definition is made of the characteristics of a model adapted to the calculation of this hypothetical accident and a new model as worked out within the scope of this work is submitted

  5. Utilization of OR method toward realization of better fast breeder reactor cycle

    International Nuclear Information System (INIS)

    Fast Reactor Cycle Technology Development (FaCT) Project was now started aiming at commercialization of new nuclear power plants system. In parallel with development of component technology and technology demonstration by test, development of comprehensive evaluation method of the FBR cycle system is under way and scenario study, discounted cash flow (DCF) method, analytic hierarchy process (AHP), real option, supply chain management (SCM) and others are used. Since commercialized FBR cycle would request long-term and large-scale development contributed by so many participants, modeling of nuclear system and knowledge management are beneficial even for development of evaluation method and further utilization of OR technology is highly expected. Comprehensive evaluation methods now utilized or developing were overlooked from the standpoint of OR, 'Science of Better'. (T. Tanaka)

  6. Ultrasonic inspection of liquid-metal fast breeder reactor steam generator duplex tubing

    International Nuclear Information System (INIS)

    Two ultrasonic inspections of the Experimental Breeder Reactor II steam generator duplex tubing have been completed. Inspections performed on one evaporator in 1976 provided baseline data, and a subsequent inspection in 1978 revealed no change in tube condition. With the completion of the 1978 inspection, all available tubes in one evaporator have been inspected. The steam generator contains duplex tubes fabricated from 2 1/4 Cr-1 Mo ferritic steel. Access to the bore (water) side of the tubes was gained through the steam outlet piping. The inspection included a complete volumertic (100% of the tube material) examination, measurement of wall thickness, and evaluation of the condition of the braze bonding the two walls of the tube together. The test equipment was routinely calibrated against a standard containing artificial flaws. Artificial flaws as small as 1.6 mm long x 0.25 mm deep were readily detected

  7. Studies on gas entrainment due to vortex activation at free surface of fast breeder reactor

    International Nuclear Information System (INIS)

    Fast Reactor systems consist of many cylindrical components which are partially submerged in liquid sodium and partially exposed to argon gas, maintained above the sodium pool. Horizontal sodium flows past these components leads to the formation of von Kármán vortices. These vortices form dimples of argon gas that leads to entrainment. The present work is focused on to identify the criteria for onset of gas entrainment. In order to understand this, interactions between free surface waves and underlying viscous wakes are investigated for flow past a surface piercing cylinder incorporating volume of fluid (VOF) method. The results show that the free surface inhibits the vortex generation near the interface for all range of Froude numbers (FrD). For various inflow velocities, the re-submergence angles are measured. It is found that, for FrD ≤ 0.5, and re-submergence angle < 12°, there is no risk of entrainment due to vortex activation. (author)

  8. Materials accounting in a fast-breeder-reactor fuels-reprocessing facility: optimal allocation of measurement uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Dayem, H.A.; Ostenak, C.A.; Gutmacher, R.G.; Kern, E.A.; Markin, J.T.; Martinez, D.P.; Thomas, C.C. Jr.

    1982-07-01

    This report describes the conceptual design of a materials accounting system for the feed preparation and chemical separations processes of a fast breeder reactor spent-fuel reprocessing facility. For the proposed accounting system, optimization techniques are used to calculate instrument measurement uncertainties that meet four different accounting performance goals while minimizing the total development cost of instrument systems. We identify instruments that require development to meet performance goals and measurement uncertainty components that dominate the materials balance variance. Materials accounting in the feed preparation process is complicated by large in-process inventories and spent-fuel assembly inputs that are difficult to measure. To meet 8 kg of plutonium abrupt and 40 kg of plutonium protracted loss-detection goals, materials accounting in the chemical separations process requires: process tank volume and concentration measurements having a precision less than or equal to 1%; accountability and plutonium sample tank volume measurements having a precision less than or equal to 0.3%, a shortterm correlated error less than or equal to 0.04%, and a long-term correlated error less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having a precision less than or equal to 0.4%, a short-term correlated error less than or equal to 0.1%, and a long-term correlated error less than or equal to 0.05%. The effects of process design on materials accounting are identified. Major areas of concern include the voloxidizer, the continuous dissolver, and the accountability tank.

  9. Materials accounting in a fast-breeder-reactor fuels-reprocessing facility: optimal allocation of measurement uncertainties

    International Nuclear Information System (INIS)

    This report describes the conceptual design of a materials accounting system for the feed preparation and chemical separations processes of a fast breeder reactor spent-fuel reprocessing facility. For the proposed accounting system, optimization techniques are used to calculate instrument measurement uncertainties that meet four different accounting performance goals while minimizing the total development cost of instrument systems. We identify instruments that require development to meet performance goals and measurement uncertainty components that dominate the materials balance variance. Materials accounting in the feed preparation process is complicated by large in-process inventories and spent-fuel assembly inputs that are difficult to measure. To meet 8 kg of plutonium abrupt and 40 kg of plutonium protracted loss-detection goals, materials accounting in the chemical separations process requires: process tank volume and concentration measurements having a precision less than or equal to 1%; accountability and plutonium sample tank volume measurements having a precision less than or equal to 0.3%, a shortterm correlated error less than or equal to 0.04%, and a long-term correlated error less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having a precision less than or equal to 0.4%, a short-term correlated error less than or equal to 0.1%, and a long-term correlated error less than or equal to 0.05%. The effects of process design on materials accounting are identified. Major areas of concern include the voloxidizer, the continuous dissolver, and the accountability tank

  10. Development of magnetic flux leakage technique for examination of steam generator tubes of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • For non-destructive detection of small localized defects in SG tubes of PFBR, tandem GMR array sensors based MFL technique developed. • 3D-finite element modeling performed for optimization of magnetizing current and spacing between the magnetizing coils. • The optimized magnetizing structure with ferrite core and guides detected 0.54 mm deep OD circumferential notch, 0.56 mm deep flat bottom hole, and 1.08 mm diameter hole in the tube with a SNR better than 6 dB. • Images of notches have been obtained using the tandem GMR array sensor. • The use of MFL and remote field eddy current techniques is expected to ensure comprehensive inspection of SG tubes of PFBR. - Abstract: For non-destructive examination of small diameter (outer diameter, OD 17.2 mm) and thick walled (wall thickness, 2.3 mm) ferromagnetic Modified 9Cr–1Mo steel steam generator (SG) tubes of Prototype Fast Breeder Reactor (PFBR), this paper proposes magnetic flux leakage (MFL) technique. Three dimensional finite element (3D-FE) modeling has been performed to optimize the magnetizing unit and inter-coil spacing of bobbin coils used for axial magnetization of the tube. The performance of the technique has been evaluated experimentally by measuring the axial (Ba) component of the leakage fields from localized machined defects in SG tubes. The MFL technique has shown capability to detect and image tube outside defects with a signal-to-noise ratio (SNR) better than 6 dB. Study reveals that Inconel support plates surrounding the SG tubes do not influence the MFL signals. As the MFL technique can detect localized defects in the presence of support plates as well as sodium and the remote field eddy current technique is sensitive to distributed wall thinning, their combined use will ensure comprehensive inspection of the SG tubes

  11. Status of national programmes on fast breeder reactors. Twenty-fifth annual meeting of the International Working Group on Fast Reactors. Summary report. Working material

    International Nuclear Information System (INIS)

    At present nuclear power accounts for approximately 17% of total electricity generation worldwide. Given continuing population growth and the needs of the third world and developing countries to improve their economic performance and standard of living, energy demand is expected to continue to grow through the 21st century. The proportion of energy supplied as electricity is also expected to continue to increase. Although fossil fuelled electricity generation is the option preferred by several countries for the short term, there are rising concerns over climatic consequences caused by extended burning of fossil fuels as a result of the demands of a fast expanding world population. In this situation nuclear electricity will become more and more important and the known reserves of uranium would be consumed quite quickly by thermal reactors. It would be possible to sustain a large nuclear programme only by introducing fast reactors. One can conclude that there are strategic reasons for pursuing the development of fast breeder reactors. It will become desirable essential, to have this technology available for introduction. The experience of the various prototypes presently in operation has confirmed the operability and benign characteristics of the LMFR and has given ground for confidence in the future. Current fast reactor designs offer very large margins of safety and by virtue of redundant and diverse safety systems the potential for an energetic core disruptive accident or for fast reactor core meltdown has been essentially eliminated. Several international forums reviewed the current trends in the fast reactor development. The view was reaffirmed that fast breeder reactors still remain the most practical tool for effective utilization of uranium resources for the future energy needs. Achievement of competitiveness with LMRs is still the first priority condition for the future deployment of this type of reactor. The recycling of plutonium into LMFBRs would allow

  12. Thorium utilization in fast breeder reactors and in cross-progeny fuel cycles

    International Nuclear Information System (INIS)

    Thorium fuel cycles have to be closed since the benefit is obtained only when the 233U is used. India is the only country in the world, which has extensive facilities for reprocessing of irradiated Uranium and Thorium-based fuels, thermal reactors moderated by light and heavy water and 500 MWe LMFBRs. The cross-progeny fuel cycles would be a natural vision to pursue for India. This paper was written in 1982 and presented at the U.S. Japan Seminar on Thorium fuel cycle held in October 1982. The calculations performed and the results quoted in this paper are of that vintage. However, the cross section data for Th and other materials has not changed significantly since that time. The same holds for the methodologies in computer codes, diffusion theory and the other methodologies employed in this paper, versus those in computer codes currently in use. This paper is being submitted to remind the community that with the introduction of GEN IV LMFBRs, other possibilities for thorium utilization could spring forth and should be studied further and in more depth

  13. Status of fast breeder reactor development in the United States of America - April 1984

    International Nuclear Information System (INIS)

    The Breeder Technology program continues to produce viable information on fuel performance, nuclear systems technology, and power conversion technology. The unique testing capabilities design into the FFTF have resulted in well-validated materials and fuels irradiation information that has confirmed and extended previous data bases. Current directions for the research and development program are to improve the technology for power conversion systems, components, instrumentation, and materials technology to the point where cost reduction and reliability potentials are realized. Operation of the breeder test facility complex at the Hanford Engineering Development Laboratory (HEDL), the Energy Technology Engineering Center (ETEC), and the Argonne National Laboratory (ANL) continues to provide the experience base and test capability for the breeder R and D effort. International cooperation will be even more important in the future than in the past for several reasons. Significant new investments still have to be made in breeder R and D to improve designs, achieve economic competitiveness and to develop practical breeder fuel cycle capabilities. Progress can be accelerated, redundancies avoided, and economics achieved if nations coordinate their programs, and where possible, divide up the work. In addition, there is clear mutual benefit in encouraging the countries involved in breeder development to harmonize standards and regulations related to safety. It is also important that the advanced nations work together closely in assuring that adequate international safeguards, export controls, and national physical security measures keep pace with breeder reactor and fuel cycle developments

  14. Radiation, welding, temperature and strain rate influence of material properties in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Albertini, C.; Montagnani, M. (J.R.C., ISPRA Establishment, ISPRA); Cenerini, R.; Curioni, S. (Bologna Univ. (Italy))

    1980-01-01

    Dynamic monoaxial tensile tests were performed to determine stress-strain diagrams for strain rates between 10/sup -2/ and 10/sup 3/ s/sup -1/. Temperatures were ambinet, 400deg and 550degC. The techniques used at high strains rate were that of the Hopkinson bar with pre-stressed bar loading device, and a hydropneumatic machine. Low strain rates were obtained with conventional testing machines. Test pieces for the investigation of the effects of welding were manufactured in order to observe the mechanical properties of weld material and of the heat-affected zone. The irradiation was performed in the Rapsodie reactor, up to a damage of 2.2 dpa, in a sodium environment at a temperature of 400degC. The irradiation was continued in the HFR, up to a damage of 10 and 30 dpa. The results of these later irradiations are not yet available. As far as welding is concerned, it should be noted that: at both room and high temperatures, the high deformation rate induces remarkable instabilities in the flow curves of weld and H.A.Z. materials as compared with the virgin material and with the ''static'' flow curve of the same material; at high temperature both the weld and H.A.Z. materials show strain rate sensitivities of opposite signs with respect to the virgin material. It is possible to observe that the strength of the two welded materials decreases and that of the virgin material increases or remains constant as the strain rate increases. Furthermore, the fracture strain of the weld and H.A.Z. materials decreases while that of the virgin material remains constant as strain rate increases. The main effects of irradiation are the substantial increase in the flow stress in tests performed at ambinet temperature and the drastic reduction in ductility with respect to the virgin and thermally aged material. At high temperature the flow stress of the irradiated material tends to decrease slightly with increasing strain rate.

  15. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  16. Development of safety evaluation methods and analysis codes applied to the safety regulations for the design and construction stage of fast breeder reactor

    International Nuclear Information System (INIS)

    The purposes of this study are to develop the safety evaluation methods and analysis codes needed in the design and construction stage of fast breeder reactor (FBR). In JFY 2012, the following results are obtained. As for the development of safety evaluation methods needed in the safety examination conducted for the reactor establishment permission, development of the analysis codes, such as core damage analysis code, were carried out following the planned schedule. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  17. Multiple recycling of fuel in prototype fast breeder reactor in a closed fuel cycle with pressurized heavy-water reactor external feed

    Indian Academy of Sciences (India)

    G Pandikumar; A John Arul; P Puthiyavinayagam; P Chellapandi

    2015-10-01

    A fast breeder reactor (FBR) closed fuel cycle involves recycling of the discharged fuel, after reprocessing and refabrication, in order to utilize the unburnt fuel and the bred fissile material. Our previous study in this regard for the prototype fast breeder reactor (PFBR) indicated the possibility of multiple recycling with self-sufficiency. It was found that the change in Pu composition becomes negligible (less than 1%) after a few cycles. The core-1 Pu increases by 3% from the beginning of cycle-0 to that of recycle-1, the Pu increase from the beginning of the 9th cycle to that of the 10th by only 0.3%. In this work, the possibility of multiple recycling of PFBR fuel with external plutonium feed from pressurized heavy-water reactor (PHWR) is examined. Modified in-core cooling and reprocessing periods are considered. The impact of multiple recycling on PFBR core physics parameters due to the changes in the fuel composition has been brought out. Instead of separate recovery considered for the core and axial blankets in the earlier studies, combined fuel recovery is considered in this study. With these modifications and also with PHWR Pu as external feed, the study on PFBR fuel recycling is repeated. It is observed that the core-1 initial Pu inventory increases by 3.5% from cycle-0 to that of recycle-1, the Pu increase from the beginning of the 9th cycle to that of the 10th is only 0.35%. A comparison of the studies done with different external plutonium options viz., PHWR and PFBR radial blanket has also been made.

  18. The Role of Energetic Mixed-Oxide-Fuel-Sodium Thermal Interactions in Liquid Metal Fast Breeder Reactor Safety

    International Nuclear Information System (INIS)

    Recent efforts dealing with the consequence assessment of low-probability core-disruptive accidents (CDAs) in liquid-metal fast breeder reactors (LMFBRs) suggest that unrealistic physical processes must be postulated in order to achieve energetic prompt burst conditions leading to a true hydrodynamic disassembly of the reactor core. Such calculations are, however, being used in the licensing process in order to provide an estimate of safety margins provided by a given design. Figure 1 illustrates calculations for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR), where the prompt critical excursion and associated ramp rates are induced by postulating various amounts and rates of collapsing fuel in a largely molten core (recriticality accident), and the mode of energy release considered is the expansion of fuel vapor resulting in sodium-slug impact on the reactor vessel head. The VENUS-II code is used to calculate the disassembly motion and power histories during disassembly Elementary thermodynamic calculations provide the source term based upon expansion of the fuel from an initial temperature distribution specified by VENUS calculations, and the REXCO series of codes provide a hydrodynamic calculation of the pressure propagation coupled with an analysis of the structural response of the important system components. The work potential resulting from fuel collapse and hydrodynamic disassembly is very sensitive to small variations in the ramp rate. Since material motions associated with postulated conditions leading to energetic prompt critical excursions cannot be described with sufficient accuracy to provide reasonable bounds on ramp rates, an adequate margin of safety with current design is difficult to claim if these conditions cannot be ruled out. This implies that in addition to coherent gravity collapse, the possibility of pressure-driven (fuel-coolant interaction) collapse must be considered. Furthermore, the work potential

  19. A report on (interim) evaluation of research and development subjects in fiscal year 2000. Evaluation subject on the 'Safety research in fast breeder reactor'

    International Nuclear Information System (INIS)

    Safety research as a basis R and D supporting development of the fast breeder reactor (FBR) has been practiced at aims of development, admittance and operation/maintenance of a fast experimental reactor, 'Joyo' and a fast breeder prototype reactor, 'Monju' and of reflection to a proof reactor plan promoted by the electric utility. However, at present, in order to reflect FBR cycle actual use strategy survey research, decision of importance in research is promoted to effectively reflect their research results to judgment and investigation on consistency of various candidate concepts. Here was carried out on some evaluations on research program and practicing method of coming five years on conventional research results, reflection to the second period of the actual use strategy survey research, and practice of national safety research yearly plan at a center of past five years on contribution to FBR development and safety regulation in Japan. Here were described on aim and meaning of the R and D, establishment of target, planning, practicing system, and results. (G.K.)

  20. Critical review of the literature on high energy release during hypothetical core disruptive accidents in sodium-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Upon the request of the ''Enquete-Kommission'' on Future Nuclear Energy Policy set up by the German Federal Parliament, a literature survey has been compiled on all scientific studies of Bethe-Tait accidents with high potentials of mechanical energy releases (''Literaturuebersicht zu allen wissenschaftlichen Arbeiten ueber Bethe-Tait-Stoerfaelle mit hohem mechanischem Energiefreisetzungspotential''). The study is a critical review of all relevant scientific publications and studies by the international scientific community in this field, which are devoted to high mechanical energy releases from major accidents in sodium cooled fast breeder reactors, or at least indicate the potential for high energy releases. These publications are evaluated with respect to their relevance to the design base levels of the SNR 300. In accordance with the wishes expressed by the ''Enquete-Kommission'', the study not only deals with the arguments and findings by scientists from national research centers and from the fast breeder development association, but also takes into account the arguments and findings by working groups in Germany and abroad, which represent different attitudes vis-a-vis the utilization of nuclear power and the fast breeder reactor. The study was handed over to the ''Enquete-Kommission'' in 1982. The present version differs in some minor points from the original version. The conclusion to be drawn from the examination of the bulk of the above mentioned information is this: - For the SNR 300 the occurence of major accidents with mechanical energy releases exceeding the design limit of 370 MWs can be excluded with a probability verging on certainty, i.e., to all practical intents and purposes. (orig.)

  1. Design and manufacture of tube to tubesheet joints of steam generator for 500 MWe Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR) is 500 MWe pool type sodium cooled fast reactor. Presently this reactor is at advanced stage of construction at Kalpakkam. The main function of the steam generator is to extract the reactor heat through secondary sodium system and convert the feed water into superheated steam in the tubes of steam generators. The steam generator is a vertical shell and tube type heat exchanger with liquid sodium in the shell side and water/steam in the tube side. Operating experience of FBRs have shown that steam generator (SG) holds the key to commercial success of such reactors. Tube leakage is a serious problem and the prevention of sodium water reaction incident in the SG is essential to maintain the plant availability. In case of crack/failure in tube, high pressure water/steam reacts with shell side sodium and results in exothermic reaction with evolution of hydrogen, corrosive reaction products and intense local heat depending on leak size. This high reactive nature of sodium with water/steam requires that sodium to water/steam boundaries of steam generators must possess a high degree of reliability against failure. This is achieved in design and manufacturing by maximising the tube integrity and more importantly by proper selection of tube to tubesheet joint configuration. The principal material of construction of SG is Modified 9Cr-1Mo steel. The tubes are seamless and produced by electric arc melting followed by Electro Slag Refining (ESR) with tight control on inclusion content. Ultrasonic and eddy current testing is done on entire tube length in accordance with ASME SEC III Class I. Long seamless tubes (each 23m) are used in order to reduce the number of tube to tubesheet welds.Each SG has 547 tubes and there are 9 SG in the reactor including one spare module. There is no tube to tube joint as the aim is to minimise the number of welds to increase reliability.Tube to tubesheet joint selected for PFBR steam generator is of internal

  2. Development of variable-width ribbon heating elements for liquid-metal and gas-cooled fast breeder reactor fuel-pin simulators

    International Nuclear Information System (INIS)

    Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relate this profile to that generated by the coils in completed fuel pin simulators

  3. Study on laser welding of fuel clad tubes and end plugs made of modified 9Cr-1Mo steel for metallic fuel of Fast Breeder Reactors

    Science.gov (United States)

    Harinath, Y. V.; Gopal, K. A.; Murugan, S.; Albert, S. K.

    2013-04-01

    A procedure for Pulsed Laser Beam Welding (PLBW) has been developed for fabrication of fuel pins made of modified 9Cr-1Mo steel for metallic fuel proposed to be used in future in India's Fast Breeder Reactor (FBR) programme. Initial welding trials of the samples were carried out with different average power using Nd-YAG based PLBW process. After analyzing the welds, average power for the weld was optimized for the required depth of penetration and weld quality. Subsequently, keeping the average power constant, the effect of various other welding parameters like laser peak power, pulse frequency, pulse duration and energy per pulse on weld joint integrity were studied and a procedure that would ensure welds of acceptable quality with required depth of penetration, minimum size of fusion zone and Heat Affected Zone (HAZ) were finalized. This procedure is also found to reduce the volume fraction delta-ferrite in the fusion zone.

  4. Conceptual design of a uranyl nitrate fueled reactor for the destructive testing of liquid metal fast breeder reactor fuel subassemblies

    International Nuclear Information System (INIS)

    A preliminary design of a uranyl nitrate test reactor is developed, with emphasis placed on the core neutronics and cross section development. ENDF/B-IV cross section data and the AMPX system were used to develop a 25 group neutron cross section library. A series of one-dimensional transport calculations were made in order to arrive at a reference design. Power densities of 16.5 Kw/1 appear to be attainable in the 217 pin FFTF test subassembly, with a peak neutron flux in the test zone of 2.4 x 1014 n/cm2-sec. Other engineering features pertinent to the overall system design are discussed, including: (1) corrosion, (2) treatment of radiolytic gas, (3) heat removal, and (4) reactor control

  5. Analysis of unprotected transients with control and safety rod drive mechanism expansion feedback in a medium sized oxide fuelled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyasheela, T., E-mail: sheela@igcar.gov.in; Natesan, K.; Srinivasan, G.S.; Devan, K.; Puthiyavinayagam, P.

    2015-09-15

    Highlights: • Possibilities of enhancing safety under ULOF and UTOP accidents. • CSRDM expansion feedbacks under unprotected transients. • CSRDM expansion feedback enhances the safety of fast reactors. • CSRDM expansion feedbacks ensuring enough time for initiating safety actions. - Abstract: Possibilities of enhancing core safety under unprotected loss of flow (ULOF) and unprotected transient over power (UTOP) accidents with control and safety rod drive mechanism (CSRDM) expansion feedbacks are explored in a medium sized oxide fuelled fast breeder reactor. This feedback is expected to take the reactor to a safe shutdown under ULOF and to an another steady state under UTOP where there is no significant fuel melting. Under ULOF, with CSRDM feedback net reactivity was maintained negative throughout the transient (up to 2000 s) and the power dropped to a level of heat removal capacity of decay heat removal system based on natural circulation. Similarly, under UTOP with the above feedback reactor power goes to a lower peak value. The fuel temperature is just touching the melting temperature and the melt fraction does not cross 5%. With CSRDM expansion feedbacks both ULOF and UTOP transients prolong beyond 2000 s. It ensures, availability of time for initiating any safety actions against the transients, and thus it helps to preclude core disruptive accidents (CDA) in a medium sized oxide fuelled reactors.Classification: L. safety and risk analysis.

  6. The radiological consequences of notional accidental releases of radioactivity from fast breeder reactors: sensitivity to the dose-effect relationships adopted for early biological effects

    International Nuclear Information System (INIS)

    This study considered the sensitivity to the dose-response relationships adopted for the estimation of early biological effects from notional accidental releases of radioactivity from fast breeder reactors. Two distinct aspects were considered: the sensitivity of the predicted consequences to variation in the dose-mortality relationships for irradiation of the bone marrow and the lung; and the influence of simple supportive medical treatment in reducing the incidence of early deaths in the exposed population. The numbers of early effects estimated in the initial study were relatively insensitive to variation in the dose-mortality relationships within the bounds proposed. The few exceptions concerned releases of particular nuclide composition, and the variation in the predicted consequences could be around an order of magnitude; the absolute numbers of effects however were in general small when the sensitivity was most pronounced. The reduction in the incidence of early deaths when using simple supportive treatment varied markedly with the nuclide composition of the release. Areas of uncertainty were identified where further research and investigation might most profitably be directed with a view to improving the reliability of the dose-effect relationships adopted and hence of the predicted consequences of the release considered. (author)

  7. Diagnostic agent using parasitic discrete wavelet transform for the hybrid diagnostic agent system for the fast-breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    In order to detect anomalies in rotating machines such as pumps at an early stage, we developed a system using wavelet transform. The pump diagnostic experiment equipment was designed taking into consideration the structure of the pump used for the water-steam system of the fast breeder reactor 'Monju'. For improving detection capability, it is desirable to use a mother wavelet (MW) whose shape is similar to the anomaly signal that is required to be detected. We call the constructed MW on the basis of the real signal the real mother wavelet (RMW). The parasitic discrete wavelet transform (P-DWT) that has a large flexibility in design of the MW and a high processing speed was applied for detecting process signals. The vibration and sound signals were measured using the pump diagnostic experiment equipment when three types of anomalies (injection of an object, change of a balance of the impeller, and damage to the axis of the impeller) occur. Complex RMWs were constructed on the basis of the measured signals, and subsequently, parasitic filters were constructed. Signal detection was performed by calculating the fast wavelet instantaneous correlation using the parasitic filter. We evaluated three types of anomalies, and found that P-DWT is useful for detecting these anomalies. Furthermore, we developed a diagnostic agent using P-DWT as one of the diagnostic agents of our hybrid diagnostic agent system, which is intended to work together with the 'Monju' distributed diagnostic agent system. (author)

  8. Comparative analysis of quality assurance systems which effectively control, review and verify the quality of components manufactured for liquid metal cooled fast breeder reactors within the EEC

    International Nuclear Information System (INIS)

    Comparative analyses are made of Quality Assurance Systems, by techniques and the methodology used, for the manufacture of component parts for the Liquid Metal Cooled Fast Breeder Reactor (LMFBR) within the EEC. Two differing alternative systems are presented in the analysis. First, a tabulated analytical treatment which analyses 14 codes and standards relating to Quality Assurance which can be applied to LMFBR's. The comparison equates equivalent clauses between codes and standards followed by an analysis of individual clauses in tabular form, the International Standard ISO 6215. A statistical summary and recommendations conclude this analysis. The second alternative system used in the comparison is a descriptive analytical method applied to 9 selected codes and standards relating to Quality Assurance based on the 13 criteria of the International IAEA Code of Practice no. 50 C.QA entitled ''Quality Assurance for Safety in Nuclear Power Plants''. An investigation is then made of the state of the art on the subject of classification of component parts bearing generally on Quality Assurance. The method of classification is segregated into General, Safety and Inspection categories. A summary of destructive and non destructive controls that may be applied during the manufacture of LMFBR components is given, together with tests that may be applied to selected components, namely Primary Tank, Secondary Sodium Pump and the Primary Cold Trap allocated to Safety Classes, 1, 2 and 3 respectively. The report concludes with a summary of typical records produced at the delivery of a component

  9. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) neat transport system dynamics and steam generator control

    Science.gov (United States)

    Brukx, J. F. L. M.

    1982-06-01

    Loop type LMFBR heat transport system dynamics after reactor shutdown and during subsequent decay heat removal are considered with emphasis on steam generator dynamics including the development and evaluation of various post-scram steam generator control systems, and natural circulation of the sodium coolant, including the influence of superimposed free convection on forced convection heat transfer and pressure drop. The normal operating and decay heat removal functions of the overall heat transport system are described.

  10. 快堆钠回路水锤程序开发与应用%Waterhammer Program Development and Application for Fast Breeder Reactor's Sodium Circus

    Institute of Scientific and Technical Information of China (English)

    文静; 栾霖; 金德圭; 陆道纲; 汤荣铭

    2001-01-01

    研究开发了快堆钠回路水锤分析专用程序WHA。该程序在一维特征线法(MOC)传统的压力波传播数学模型中补充了钠腔-气腔外边界模型,并采用气泡离散模型模拟低压液柱分离中的蒸汽穴的生成与溃灭。程序用FORTRAN90语言对快堆实验钠回路ESPRESSO中由于阀门的快速开启与关闭引起的压力波传播进行了分析计算。计算结果表明:将钠腔-气腔引入水锤压力波传播的数学模型进行程序计算的结果是合理的。%Based on one-dimensional method of characteristics(MOC), anumerical model of pressure-wave progation is presented in the paper. A special code is programmed to analyze and calculate waterhammer resulted from rapid opening or closing of valve in the experimental sodium circus of fast breeder reactor(FBR). In the model, a new outer boundary condition, sodium-cavity is included. Model of bubble's discrete distribution is adopted to simulate generation and collapse of the bubble with the pressure's decreasing and increasing. The results demonstrate that the model of pressure-wave progation is valid.

  11. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    Basic elements of the ex-reactor part of the fuel cycle (reprocessing, fabrication, waste handling and transportation) are described. Possible technical and proliferation measures are evaluated, including current methods of accountability, surveillance and protection. The reference oxide based cycle and advanced cycles based on carbide and metallic fuels are considered utilizing conventional processes; advanced nonaqueous reprocessing is also considered. This contribution provides a comprehensive data base for evaluation of proliferation risks

  12. Nuclear reactors. To breed or not to breed. A Pugwash debate on fast breeder reactors held at the Royal Society, London, on 28 September 1976 under the chairmanship of Sir Alec Merrison

    International Nuclear Information System (INIS)

    The debate which is reported was timed to coincide with the publication of the Report of the (UK) Royal Commission on Environmental Pollution: 'Nuclear Power and Environment'. The volume comprises an introductory section, a report of an address by the Chairman of the Royal Commission and invited papers on fast breeder reactors in relation to energy requirements, on the safety of a commercial fast reactor, on processing and reprocessing of fuel, on radioactive waste management, and on diversion of plutonium and proliferation of nuclear weapons. An edited version of the discussion is presented under the following heads: comments on the report of the Royal Commission; projections of future energy requirement; thermal pollution; safety and insurance of reactors; reprocessing of fuel; storage and disposal of wastes; energy from fusion; utilization of coal; and proliferation of weapons and diversion of plutonium. The six invited papers are considered to be within INIS scope and separate abstracts have been prepared. (U.K.)

  13. Fast-Breeder-Blanket Project: FBBF. Final report

    International Nuclear Information System (INIS)

    This report is the final report for DOE contract DE-AC02-76ET37237 with the Purdue Fast Breeder Blanket Project. The Project was initiated to investigate the uncertainties in Fast Breeder Reactor blanket calculations. Absolute measurements of key neutron reaction rates, neutron spectra, and gamma-ray energy depositions were made in simulated FBF blankets in the Fast Breeder Blanket Facility (FBBF), a Cf-252 driven subcritical facility. Calculation of the spectra and integral reaction rates were made using methods, computer codes, and cross section data typical of those currently used in the design of FBR's. Comparisons of calculated to experimental integral neutron reaction rates give good agreement at the inner portions of the blanket by diverge to C/E ratios of about 0.65 at the outer edge of the blanket for reactions sensitive to the neutron density

  14. Development of safety evaluation methods and analysis codes applied to the safety regulations for the design and construction stage of fast breeder reactor (Annual safety research report, JFY 2011)

    International Nuclear Information System (INIS)

    The purposes of this study are to develop the safety evaluation methods and analysis codes needed in the design and construction stage of fast breeder reactor (FBR). In JFY 2011, the following results are obtained. As for the development of safety evaluation methods needed in the safety examination achieved for the reactor establishment permission, development of the analysis codes such as core seismic analysis code, core safety analysis code and core damage analysis code were earned out according to the plan. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied, and the seismic PSA to evaluate residual risk was studied. (author)

  15. Fast breeders role in the energy supply of the EC

    International Nuclear Information System (INIS)

    The investigation summarized in this article was initiated by a work team of the International Society of Power Generators (UNIPEDE) and the EC-commission. The first part presents the results of the possible introduction of fast breeder reactors in the EC for power generation and describes its effects on the demand for natural uranium. The second part describes the present development level of reprocessing of breeder reactor fuel, a part of the fuel cycle which is of very special importance. With the assumption of a rather undisturbed utilization of nuclear energy the investigation comes to the result that the development of the fast breeders and their fuel cycle in the EC must be promoted in any case. And, in the future, the available means should be used for a balanced development of both the reactor system and the fuel cycle. (orig.)

  16. A method for improvement of safety features of large fast breeder reactors. Numerical simulation of unprotected loss-of-flow accident in an LMFBR equipped with gas-expansion modules

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Masayoshi [Hitachi Engineering Co. Ltd., Ibaraki (Japan); Murakami, Tomoko; Kawashima, Katsuyuki; Watari, Yoshio; Nakao, Noboru; Miura, Masanori

    1995-04-01

    Numerical simulation of an unprotected loss-of-flow (ULOF) accident has been performed for a large liquid-metal-cooled fast breeder reactor (LMFBR) equipped with gas expansion modules (GEMs) in the radial periphery of the reactor core. The effectiveness of the GEMs in small fast reactors was demonstrated already in the passive safety testing in the Fast Flux Test Facility. According to neutronic calculations based on the transport theory, even in large reactors of electrical power 600 to 1,300 MW, the reactivity worth of GEMs, which replace one layer of radial blanket fuel subassemblies, ranges from -1.9$ to -1.4$, depending on the size of the core. A simulation of ULOF transient was performed with a 5.5s flow-halving time in a 600 MWe LMFBR equipped with GEMs of -1.9$ reactivity worth. The result showed that, if 10% of the rated core coolant flow by pony motors was available following the main pump coastdown, the GEM reactivity alone could bring the reactor subcritical and the predicted maximum coolant temperature was substantially lower than the sodium boiling point. The reactivity worth calculations, a modeling of gas expansion behavior, and ULOF simulation together with needs of further development for the GEM application are described. (author).

  17. On the history of the Fast Breeder Project

    International Nuclear Information System (INIS)

    The evolution of the Fast Breeder Project from its beginning at the Karlsruhe Nuclear Research Center to the present cooperation of various organisations especially in the Federal Republic of Germany, the Netherlands, Belgium and France is described in its historical context. Where as the emphasis was on physical studies of fast neutron cores in the early phase, technological and safety problems gained importance in the subsequent development. The increasing collaboration with industry and the support by government funds resulted in the design and start of construction of the prototype SNR 300. The objectives and the reasoning underlying important intermediate decisions are described. In the meantime, licensing and funding problems have become decisive for the project schedule. The present report also gives an account of the international and national political aspects which influence the breeder reactor development. In the annex all fast breeder publications of the Karlsruhe Nuclear Research Center are listed. (orig.)

  18. Status of fast breeder development in Germany

    International Nuclear Information System (INIS)

    The German Minister for Research and Technology (BMFT), Dr. Heinz Riesenhuber, announced on March 20, 1991 that SNR 300, the fast breeder power plant at Kalkar, shall be abandoned. This message followed a top level meeting between BMFT officials and senior managers of Siemens, RWE, PreuBenElektra und Bayernwerk. BMFT, vendor Siemens and the three utilities had carried the interim finance costs of DM 105 million yearly since 1989. The licensing procedure had been obstructed during a long time by the responsible authorities. For several years the licensing process for the last permits on nuclear operation of KKW Kalkar had been held up by the government of the state of North Rhine-Westphalia (NWR). Licensing of nuclear power plants is the responsibility of the states, according to the German Atomic Act. The state of NRW turned against the SNR 300 project when the Social Democratic Party (SPD) started questioning nuclear power in 1985. Until then 17 partial licenses for SNR 300 had been granted, each time including an overall project approval. One of the consequences of the demise of SNR-300 was that Interatom GmbH, a subsidiary of Siemens AG, has been integrated into the division KWU of the Siemens AG on 1 October, 1991. For SNR 300 the turn-key contracts to the supplier company were cancelled by the operator on April 10, 1991 following the political termination of the SNR-300 Project. On August 23, 1991 after the termination of the SNR project, KfK decided to shutdown the KNK II reactor for final decommissioning

  19. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors; Analyse d'images tridimensionnelles ultrasonores pour l'inspection en service des reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Dancre, M

    1999-11-01

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  20. A contribution to the analysis of the thermal behaviour of Fast Breeder fuel rods with UO{sub 2}-PuO{sub 2} fuel; Contribucion al analisis del comportamiento termico de las barras combustibles de UO{sub 2}-PuO{sub 2} de los reactores rapidos

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, J.; Elbel, H.

    1977-07-01

    The fuel of Fast Breeder Reactors which consists of Uranium and Plutonium dioxide is mainly characterized by the amount and distribution of void volume and Plutonium and the amount of oxygen. Irradiation experiments carried out with this fuel have shown that initial structure of the fuel pellet is subjected to large changes during operation. These are consequences of the radial and axial temperature gradients within the fuel rods. (Author) 54 refs.

  1. Fuel Cycle Economics of Fast Breeders with Plutonium

    International Nuclear Information System (INIS)

    Pu-fuelled fast breeder systems are characterized by their attractive fuel cycle economics. Basically, the economics are influenced by a number of reactor parameters like fissile material rating, fuel bum-up, breeding ratio and thermal efficiency, on the one hand, and by a number of economic parameters like the plutonium price, the interest rate and the fabrication and reprocessing costs on the other. To a certain extent, the two sets of parameters are interdependent and the cost parameters are influenced by the existing nuclear industry as well. In the present paper it is shown, with the help of a number of specific examples, that the fuel cycle of Pu fast breeders is not a static and isolated property of the reactor but is dynamic in nature. Depending on the cost situation and other conditions, the fuel cycle can always be optimized anew to fit into the existing overall economics. A high Pu price, for example, requires a high fissile rating or a high breeding ratio, whereas, if the Pu price falls, neither a high rating nor a high breeding ratio is necessary to keep the fuel cycle costs low. The influence of fabrication costs may be regulated to some extent by varying the burn-up. The effect of reprocessing costs may be made comparatively insignificant provided reprocessing can be carried out in large centrally located multi-purpose plants for converter elements. Because of the high flexibility of the fuel cycle of Pu fast breeders, the attractiveness of their fuel cycle economics can be retained under a wide range of competitive conditions. (author)

  2. Evaluation for the effects of a ring plate device to eliminate free surface gradients in liquid metal fast breeder reactor vessel using multi-dimensional thermohydraulics computer code

    Energy Technology Data Exchange (ETDEWEB)

    Gao Ming Qing

    1997-02-01

    There is a free surface at the upper plenum in a reactor vessel of LMFBR. The free surface has spatial gradient caused by the internal coolant flow. This is a disadvantageous factor to engineering from the view point of gas entrainment into coolant. To eliminate the free surface gradients, ring plates about 20 cm wide are fitted at about 1 meter under the free surface. They interfere fluid flow, and decrease the component velocity in vertical direction. To investigate the efficiency of the ring plates, analyses with the AQUA-VOF code were carried out. For contrast, three conditions were given: Case-1: Without ring plates. Case-2: Ring plates, fitted at 1.125 m under the free surface. Case-3: Ring plates, fitted at 1.5 m under the free surface. The results shown that the ring plates have a sufficiently high potential to eliminate the free surface gradients due to disperse the momentum along reactor vessel axis to radial direction. In the calculations with ring plate (Cases-2 and -3), the maximum free surface height differences and the maximum gradients of free surface were decreased to less than 15% and 64% compared with the case without ring plates, respectively. (author)

  3. Studies on sodium boiling phenomena in out of pile rod bundles for various accidental situations in Liquid Metal Fast Breeder Reactors (LMFBR) experiments and interpretations

    Science.gov (United States)

    Seiler, J. M.; Rameau, B.

    Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.

  4. Comparative study of unprotected loss of flow accident analysis of 1000 MWe and 500 MWe Fast Breeder Reactor Metal (FBR-M) cores and their inherent safety

    International Nuclear Information System (INIS)

    Research highlights: → ULOF analysis of metal (U-Pu-6% Zr) fuelled 500 MWe and 1000 MWe pool type FBR. → Uncertainties (typically 20%) on the sensitive feedback parameters. → Sensitive parameters - core radial feedback and sodium void reactivity effect. → Transient behavior of both 500 MWe and 1000 MWe core are benign under ULOFA. → For 1000 MWe inherent safety is assured with limited sodium void reactivity. - Abstract: Unprotected loss of flow (ULOF) analysis of metal (U-Pu-6% Zr) fuelled 500 MWe and 1000 MWe pool type FBR are studied to verify the passive shutdown capability and its inherent safety parameters. Study is also made with uncertainties (typically 20%) on the sensitive feedback parameters such as core radial expansion feedback and sodium void reactivity effect. Inference of the study is, nominal transient behavior of both 500 MWe and 1000 MWe core are benign under unprotected loss of flow accident (ULOFA) and the transient power reduces to natural circulation based Safety Grade Decay Heat Removal (SGDHR) system capacity before the initiation of boiling. Sensitivity analysis of 500 MWe shows that the reactor goes to sub-critical and the transient power reduces to SGDHR system capacity before the boiling initiation. In the sensitivity analysis of 1000 MWe core, initiation of voiding and fuel melting occurs. But, with 80% core radial expansion reactivity feedback and nominal sodium expansion reactivity feedback, the reactor was maintained substantially sub-critical even beyond when net power crosses the SGDHR system capacity. From the study, it is concluded that if the sodium void reactivity is limited (4.6 $) then the inherent safety of 1000 MWe design is assured, even with 20% uncertainty on the sensitive parameters.

  5. 用于池式快堆系统分析的钠池三维模型开发%Development of Three-Dimensional Sodium Pool Model for System Analysis of Pool-Type Liquid Metal Fast Breeder Reactor

    Institute of Scientific and Technical Information of China (English)

    隋丹婷; 陆道纲; 张盼

    2012-01-01

    由于池式快堆钠池内的热工水力学特性对反应堆的安全运行有重要影响,本文采用基于交错网格的SIMPLE算法开发直角坐标系和柱坐标系下钠池三维计算软件.应用CFX软件进行验证之后,完成了三维流场分析程序与系统分析软件SAC-CFR的耦合,并用耦合后的程序分析日本文殊快堆45%功率稳态运行工况上腔室内的流场分布,初步验证了堆芯上腔三维化的SAC-CFR用于系统分析的有效性,为进一步开发事故模型、非能动余热排出系统模型做准备.%As the thermal-hydraulic characteristic in sodium pool is crucial for safety operation of liquid metal fast breeder reactor (LMFBR), a three-dimensional sodium pool thermal-hydraulic analysis code was developed based on SIMPLE algorithm on stagger grid under Cartesian coordinates and cylindrical coordinates. After the validation with CFX, coupling between the analysis code and SAC-CFR was completed) and then the coupled code was applied to the flow field analysis in upper plenum of Monju Plant at 45% thermal power steady-state operation condition, which preliminary shows the effectiveness of the system analysis with coupled code and makes preparations for further development of accident analysis model and passive residual heat removal system.

  6. Liquid Metal Fast Breeder Reactors: a bibliography

    International Nuclear Information System (INIS)

    This bibliogralphy includes 5465 selected citations on LMFBR development. The citations were compiled from the DOE Energy Data Base covering the period January 1978 (EDB File No. 78R1087) through August 1980 (EDB File No. 80C79142). The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. Report citations are arranged alphanumerically by report number; nonreport literature citations are arranged chronologically. Corporate, Personal Author, Subject, and Report Number Indexes are provided in Volume 2

  7. Liquid Metal Fast Breeder Reactors: a bibliography

    International Nuclear Information System (INIS)

    This bibliography includes 5465 selected citations on LMFBR development. The citations were compiled from the DOE Energy Data Base covering the period January 1978 (EDB File No. 78R1087) through August 1980 (EDB File No. 80C79142). The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. Report citations are arranged alphanumerically by report number; nonreport literature citations are arranged chronologically. Corporate, Personal Author, Subject, and Report Number Indexes are provided in Volume 2

  8. Liquid Metal Fast Breeder Reactors: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, H.D. (ed.)

    1980-11-01

    This bibliography includes 5465 selected citations on LMFBR development. The citations were compiled from the DOE Energy Data Base covering the period January 1978 (EDB File No. 78R1087) through August 1980 (EDB File No. 80C79142). The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. Report citations are arranged alphanumerically by report number; nonreport literature citations are arranged chronologically. Corporate, Personal Author, Subject, and Report Number Indexes are provided in Volume 2.

  9. Liquid Metal Fast Breeder Reactors: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, H.D. (ed.)

    1980-11-01

    This bibliogralphy includes 5465 selected citations on LMFBR development. The citations were compiled from the DOE Energy Data Base covering the period January 1978 (EDB File No. 78R1087) through August 1980 (EDB File No. 80C79142). The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. Report citations are arranged alphanumerically by report number; nonreport literature citations are arranged chronologically. Corporate, Personal Author, Subject, and Report Number Indexes are provided in Volume 2.

  10. Monte-Carlo Modeling of Parameters of a Subcritical Cascade Reactor Based on MSBR and LMFBR Technologies

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; Polanski, A; Sosnin, A N; Khudaverdyan, A H

    2001-01-01

    Parameters of a subcritical cascade reactor driven by a proton accelerator and based on a primary lead-bismuth target, main reactor constructed analogously to the molten salt breeder (MSBR) reactor core and a booster-reactor analogous to the core of the BN-350 liquid metal cooled fast breeder reactor (LMFBR). It is shown by means of Monte-Carlo modeling that the reactor under study provides safe operation modes (k_{eff}=0.94-0.98), is apable to transmute effectively radioactive nuclear waste and reduces by an order of magnitude the requirements on the accelerator beam current. Calculations show that the maximal neutron flux in the thermal zone is 10^{14} cm^{12}\\cdot s^_{-1}, in the fast booster zone is 5.12\\cdot10^{15} cm^{12}\\cdot s{-1} at k_{eff}=0.98 and proton beam current I=2.1 mA.

  11. Plutonium Worlds. Fast Breeders, Systems Analysis and Computer Simulation in the Age of Hypotheticality

    OpenAIRE

    Sebastian Vehlken

    2014-01-01

    This article examines the media history of one of the hallmark civil nuclear energy programs in Western Germany – the development of Liquid Metal Fast Breeder Reactor (LMFBR) technology. Promoted as a kind of perpetuum mobile of the Atomic Age, the "German Manhattan Project" not only imported big science thinking. In its context, nuclear technology was also put forth as an avantgarde of scientific inquiry, dealing with the most complex and critical technological endeavors. In the face of the ...

  12. Study of mechanisms and kinetics of Sodium-CO2 interactions. Contribution to the evaluation of an energy conversion system with supercritical CO2 for sodium fast breeder reactors

    International Nuclear Information System (INIS)

    This PhD study consisted in studying reactive mechanisms and kinetics of sodium-CO2 interactions, in the frame of the assessment of an energy conversion system with supercritical CO2 for fast breeder reactors cooled by sodium. The approach was the following. First of all, the interactions between sodium and CO2 have been brought to light by laboratory experiments associated with products analysis. They have enabled the establishment of a coherent mechanism, in agreement with literature data, and gave preliminary indications on the reaction kinetics. In order to estimate a more detailed reaction kinetics, we tried to approach the phenomenon that appears in the case of a leak in a sodium-CO2 heat exchanger. Geometry of such heat exchangers is not fixed for the moment, even if the development of compact exchangers is foreseen. Then, free jets of CO2 in liquid sodium have been modeled in order to obtain, by identification, kinetics parameters of the reaction. Those parameters, estimated with such a geometry, will remain valid with a much complex geometry, that will better represent the real exchanger. An experimental bench has been defined and built to realize those jets. The first laboratory experiments have concluded in the existence of different reactive mechanisms according to the temperature level. A threshold has been brought to light around 500 C. Below this one, reaction appears moderated, or even, slow, with a medium exothermicity, and appears after an induction period that depends on the temperature,and which duration could reach several hours. At contrary, above this threshold, it seems rapid and more exothermic. Below 500 C, sodium oxalate is produced, and then reacts with sodium in an exothermic way, following the reactions: CO2 + Na →1/4 Na2C2O4 + 1/4 CO + 1/4 Na2CO3 (5) 4 Na + Na2C2O4 → 3 Na2O + CO + C (6) Above 500 C, sodium carbonate is produced, and can then possibly react with sodium in an endothermic way, following the reactions: 4 Na + 3 CO2

  13. The History of the Construction and Operation of the German KNK II Fast Breeder Power Plant

    International Nuclear Information System (INIS)

    The report gives a historical review of the German KNK fast breeder project, from its beginnings in 1957 up to permanent plant shutdown in 1991. The original design was for the sodium cooled thermal reactor KNK I, which was commissioned on the premises of the Karlsruhe Nuclear Research Center. The conversion into a fast nuclear power plant however was a process, which had to overcome considerable licensing difficulties. KNK II attained high fuel element burnups, and the completion of the fuel cycle was achieved. Various technical problems encountered in specific components are described in detail. After the termination of the SNR 300 fast breeder project in Kalkar for political reasons, KNK II was shutdown in August 1991

  14. The history of the construction und operation of the KNK II German Fast Breeder Power Plant

    International Nuclear Information System (INIS)

    This report describes the German KNK fast breeder project from its beginnings in 1957 until permanent shutdown in 1991. The initial design provided for a sodium-cooled, but thermal reactor. Already during the commissioning of KNK I on the premises of the Karlsruhe Nuclear Research Center modification into a fast nuclear power plant was decided. Considerable difficulties in licensing had to be overcome. KNK II reached high burnup values in the fuel elements and closing of the fuel cycle was achieved. A number of technical problems concerning individual components are described in detail. After the politically motivated discontinuation of the SNR 300 fast breeder project at Kalkar, KNK II was shut down for good in August 1991. (orig.)

  15. Irradiation creep and stress-enhanced swelling of Fe-16Cr-15Ni-Nb austenitic stainless steel in BN-350

    Energy Technology Data Exchange (ETDEWEB)

    Vorobjev, A.N.; Porollo, S.I.; Konobeev, Yu.V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)] [and others

    1997-04-01

    Irradiation creep and void swelling will be important damage processes for stainless steels when subjected to fusion neutron irradiation at elevated temperatures. The absence of an irradiation device with fusion-relevant neutron spectra requires that data on these processes be collected in surrogate devices such as fast reactors. This paper presents the response of an annealed austenitic steel when exposed to 60 dpa at 480{degrees}C and to 20 dpa at 520{degrees}C. This material was irradiated as thin-walled argon-pressurized tubes in the BN-350 reactor located in Kazakhstan. These tubes were irradiated at hoop stresses ranging from 0 to 200 MPa. After irradiation both destructive and non-destructive examination was conducted.

  16. Plutonium Worlds. Fast Breeders, Systems Analysis and Computer Simulation in the Age of Hypotheticality

    Directory of Open Access Journals (Sweden)

    Sebastian Vehlken

    2014-09-01

    Full Text Available This article examines the media history of one of the hallmark civil nuclear energy programs in Western Germany – the development of Liquid Metal Fast Breeder Reactor (LMFBR technology. Promoted as a kind of perpetuum mobile of the Atomic Age, the "German Manhattan Project" not only imported big science thinking. In its context, nuclear technology was also put forth as an avantgarde of scientific inquiry, dealing with the most complex and critical technological endeavors. In the face of the risks of nuclear technology, German physicist Wolf Häfele thus announced a novel epistemology of "hypotheticality". In a context where traditional experimental engineering strategies became inappropiate, he called for the application of advanced media technologies: Computer Simulations (CS and Systems Analysis (SA generated computerized spaces for the production of knowledge. In the course of the German Fast Breeder program, such methods had a twofold impact. One the one hand, Häfele emphazised – as the "father of the German Fast Breeder" – the utilization of CS for the actual planning and construction of the novel reactor type. On the other, namely as the director of the department of Energy Systems at the International Institute for Applied Systems Analysis (IIASA, Häfele advised SA-based projections of energy consumption. These computerized scenarios provided the rationale for the conception of Fast Breeder programs as viable and necessary alternative energy sources in the first place. By focusing on the role of the involved CS techniques, the paper thus investigates the intertwined systems thinking of nuclear facilities’s planning and construction and the design of large-scale energy consumption and production scenarios in the 1970s and 1980s, as well as their conceptual afterlives in our contemporary era of computer simulation.

  17. DeBeNe Test Facilities for Fast Breeder Development

    International Nuclear Information System (INIS)

    This report gives an overview and a short description of the test facilities constructed and operated within the collaboration for fast breeder development in Germany, Belgium and the Netherlands. The facilities are grouped into Sodium Loops (Large Facilities and Laboratory Loops), Special Equipment including Hot Cells and Reprocessing, Test Facilities without Sodium, Zero Power Facilities and In-pile Loops including Irradiation Facilities

  18. Chemical operational experience with the water/steam-circuit at KNK II; Presentation at the meeting on Experience exchange on operational experience of fast breeder reactors, Karlsruhe/Bensberg/Kalkar, June 18. - 22. 1990

    International Nuclear Information System (INIS)

    The availability of sodium cooled reactors depends essentially from the safety and reliability of the sodium heated steam generator. The transition from experimental plants with 12-20 MW electrical power to larger plants with 600 MW (BN-600) or 1200 MW (Superphenix) required the change from modular components to larger and compact steam generators with up to 800 MW. Defects of these large components cause extreme losses in availability of the plant and have to be avoided. In view of this request, a comprehensive test program has been performed at KNK II in addition to the normal control of the water/steam-circuit to compile all operational data on the water and steam side of the sodium heated steam generator. This paper describes the plant and the water/steam-circuit with its mode of operation. The experience with the surveillance and different methods of the conditioning are discussed in detail in this presentation

  19. Development of an innovative plate-type SG for fast breeder reactor. Proposal of the concept and the evaluation of the fabricating method by the test fabrication of the partial model

    International Nuclear Information System (INIS)

    The concept of an innovative plate type SG for the fast reactor fabricated by using the HIP (Hot Isostatic Pressing) method was proposed. The heat transfer plate, which is assembled with rectangular tubes and is fabricated by HIP method, is surrounded by leakage detection spaces. It is possible to apply it to both the pool-type and the loop-type LMFR. In this report, the fabrication technique was studied about the concept for the loop-type LMFR, and the following results were obtained. Hip tests, tensile tests, and structure observation were performed to clarify the suitable HIP condition for the modified 9Cr-1Mo steel. As a result, the optimum condition of 1150 deg C x 1200 kgf/cm2 x 3 hr was found. Nickel-type solder (BNi-5) and gold-type solder (BAu-4) were selected as a joining material to laminate the heat transfer tube plates. Through the comparison of tensile tests, BAu-4 that showed a more excellent joining performance was selected on the assumption of the margin of 5 mm from the welding line. After buckling load had been clarified, the BAu-4 brazing of the heat transfer tube plates was performed using a hot pressing method. Problems were not observed in the welding of simulated header, and in the fabricating of the partial model of SG. (author)

  20. Monte Carlo Modeling Electronuclear Processes in Cascade Subcritical Reactor

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; Polyanskii, A A; Sosnin, A N; Khudaverdian, A G

    2000-01-01

    Accelerator driven subcritical cascade reactor composed of the main thermal neutron reactor constructed analogous to the core of the VVER-1000 reactor and a booster-reactor, which is constructed similar to the core of the BN-350 fast breeder reactor, is taken as a model example. It is shown by means of Monte Carlo calculations that such system is a safe energy source (k_{eff}=0.94-0.98) and it is capable of transmuting produced radioactive wastes (neutron flux density in the thermal zone is PHI^{max} (r,z)=10^{14} n/(cm^{-2} s^{-1}), neutron flux in the fast zone is respectively equal PHI^{max} (r,z)=2.25 cdot 10^{15} n/(cm^{-2} s^{-1}) if the beam current of the proton accelerator is k_{eff}=0.98 and I=5.3 mA). Suggested configuration of the "cascade" reactor system essentially reduces the requirements on the proton accelerator current.

  1. Thermal Expansion Measurements on Boron Carbide for Fast Breeder Reactor

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    1.9ThermalExpansionMeasurementsonBoronCarbideforFastBreederReactorZhangLili;HuangYingB_4Cisneutronabsorbermaterialforcontrolr...

  2. Innovations in Equipment Erection of Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    • PFBR equipment erection was a challenging task where thin walled vessels had transported and handled with utmost precautions to avoid redial forces on the vessels, which could buckle the vessels. • There was a real challenge in lifting the vessels without swing, placement of large size and heavy vessel at a distance of 57 meters where the crane operator has no line of sight to equipment's being erected. • Lot of care had been taken during lifting, handling and erection of thin walled ODC with innovative methods used for lifting fixtures, guiding arrangements, alignment fixtures and achieved the stringent erection tolerances

  3. Method of advancing research and development of fast breeder reactors

    International Nuclear Information System (INIS)

    In the long term plan of atomic energy development and utilization, FBRs are to be developed as the main of future nuclear power generation in Japan, and when the development is advanced, it is positivity aimed at building up the plutonium utilization system using FBRs superior to the uranium utilization system with LWRs. Also it was decided that it is necessary to exert incessant effort for the development of FBRs under the proper cooperation system of the government and people for a considerable long period, and as for the concrete development, hereafter, the deliberation is advanced by the expert subcommittee on FBR development project of the Atomic Energy Commission in succession. The subcommittee was founded in May, 1986, to carry out the deliberation on the long term promotion measures for the development of FBRs, the promotion measures for the research and development, the evaluation and examination of the basic specification of a demonstration FBR, the promotion measures for the international cooperation and other important matters related to the development of FBRs. The construction of the prototype FBR 'Monju' is in progress aiming at the criticality in 1992, and the start of construction of a demonstration FBR is expected in the latter half of 1990s. The situation around the development of FBRs, the fundamentals for promoting the research and development, and the subjects of the research and development are reported. (Kako, I.)

  4. 快堆蒸汽发生器热力参数对泄漏探测系统响应特性的影响%Effects of Thermodynamics Parameters of Steam Generator on the Response Behavior of Leak Detection System for Liquid Metal-cooled Fast Breeder Reactor

    Institute of Scientific and Technical Information of China (English)

    段日强; 王洲; 杨献勇; 罗锐; 张勇

    2001-01-01

    The one dimension mathematics model is established for thediffusion of sodium-water reaction products in steam generator (SG) and leak detection system (LDS) for liquid metal-cooled fast breeder reactor.The effects of sodium temperature and flowrate of SG and LDS are analyzed and the useful results are obtained from numerical calculations and experiments in a sodium loop.The results show that increasing the sodium flowrate of SG and LDS,the response time of LDS is decreased,but the sensitivity is lowered.The effect of sodium temperature of SG on the response time of LDS is less than that of sodium flowrate in SD,however,it can make the sensitivity of LDS higher when the sodium temperature is raised.%研究建立了水泄漏引起的钠水反应产物在快堆蒸汽发生器和取样支路传输扩散的一维数学模型,分析了蒸汽发生器流量、钠温度和取样支路流量对泄漏探测系统响应特性的影响。模型计算和实验结果表明:蒸汽发生器流量的增加将缩短系统的响应时间,但却降低了蒸汽发生器钠出口处的氢离子浓度,使系统探测水泄漏的灵敏度降低;蒸汽发生器钠温度对系统的响应时间影响不大,钠温升高,OH-离子的离解速率加快,探测系统的灵敏度提高;增大取样支路流量可改善系统的响应特性。

  5. Operational and decommissioning experience with fast reactors. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    For three decades, several countries had large and vigorous fast breeder reactor development programmes. In most cases, fast reactor development programmes were at their peaks by 1980. From that time onward, fast reactor development in general began to decline. The effort essentially disappeared for fast breeder reactor development. Similarly, programmes in other nations were terminated or substantially reduced. In France, Superphenix was shut down at the end of 1998; SNR-300 in Germany was completed but not taken into operation, and KNK-II was permanently shut down in 1991 after 17 years of operation, and is scheduled to be dismantled by 2004; in the UK, PFR was shut down in 1994; BN-350 in Kazakhstan was shut down in 1998. It is difficult to argue that fast breeder reactors will be built in the near term when no commercial market exists and there is a plentiful supply of cheap uranium. Nevertheless, it is reasonable to assume that, were nuclear energy to remain an option as part of the long term world energy supply mix, meeting the sustainability requirements vis-a-vis natural resources and long lived radioactive waste management will require deploying systems involving several reactor types and fuel cycles operating in symbiosis. Apart from cost effectiveness, simplification, and safety considerations, a basic requirement to these reactor types and fuel cycles will be flexibility to accommodate changing objectives and boundary conditions. This flexibility can only be assured with the deployment of the fast neutron spectrum reactor technology, and reprocessing. At the same time that the interest in the fast reactor waned, the retirement of many of the developers of this technology reached its peak, between 1990 and 2000, and hiring diminished in parallel. Moreover, R and D programmes are being discontinued, and facilities falling in disuse. Under these circumstances, the loss of the fast reactor knowledge should be taken seriously. One particularly important

  6. A contribution to the analysis of the thermal behaviour of Fast Breeder fuel rods with UO2-PuO2 fuel

    International Nuclear Information System (INIS)

    The fuel of Fast Breeder Reactors which consists of Uranium and Plutonium dioxide is mainly characterized by the amount and distribution of void volume and Plutonium and the amount of oxygen. Irradiation experiments carried out with this fuel have shown that initial structure of the fuel pellet is subjected to large changes during operation. These are consequences of the radial and axial temperature gradients within the fuel rods. (Author) 54 refs

  7. Fast reactor programme in India

    Indian Academy of Sciences (India)

    P Chellapandi; P R Vasudeva Rao; Prabhat Kumar

    2015-09-01

    Role of fast breeder reactor (FBR) in the Indian context has been discussed with appropriate justification. The FBR programme since 1985 till 2030 is highlighted focussing on the current status and future direction of fast breeder test reactor (FBTR), prototype fast breeder reactor (PFBR) and FBR-1 and 2. Design and technological challenges of PFBR and design and safety targets with means to achieve the same are the major highlights of this paper.

  8. Distinctive features of proposed technical guidelines for the design of seismically isolated fast breeder (FBR) plants

    International Nuclear Information System (INIS)

    The application of seismic isolation technology to fast breeder reactor (FBR) plants is expected to reduce earthquake load to both the building and apparatus of the plants. It is also expected to facilitate the development of a rational approach to all phases of the earthquake-proof design work. Seismic isolation technology has already been applied painstakingly to non-nuclear industrial facilities and civil structures. The design method has been partially verified for the specific applications. However, the application of the technology to nuclear power reactor plants requires greater reliability than needed for ordinary buildings. Under request from the Ministry of International Trade and Industry (MITI) of Japan, the Central Research Institute of the Electric Power Industry (of Japan) has performed verification tests on seismic isolation technology, and worked toward establishing and proposing technical guidelines for FBR plant design. This project has been performed over seven years, from 1987 to 1993. Results of previous studies and data of the verification tests conducted in this project are reflected in the proposed guidelines presented here. Major features of the proposed guidelines are outlined below

  9. Distinctive features of proposed technical guidelines for the design of seismically isolated fast breeder (FBR) plants

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Katsuhiko; Yabana, Shuichi [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Earthquake Engineering Group; Shibata, Heki [Yokohama National Univ., Kanagawa (Japan)

    1995-12-01

    The application of seismic isolation technology to fast breeder reactor (FBR) plants is expected to reduce earthquake load to both the building and apparatus of the plants. It is also expected to facilitate the development of a rational approach to all phases of the earthquake-proof design work. Seismic isolation technology has already been applied painstakingly to non-nuclear industrial facilities and civil structures. The design method has been partially verified for the specific applications. However, the application of the technology to nuclear power reactor plants requires greater reliability than needed for ordinary buildings. Under request from the Ministry of International Trade and Industry (MITI) of Japan, the Central Research Institute of the Electric Power Industry (of Japan) has performed verification tests on seismic isolation technology, and worked toward establishing and proposing technical guidelines for FBR plant design. This project has been performed over seven years, from 1987 to 1993. Results of previous studies and data of the verification tests conducted in this project are reflected in the proposed guidelines presented here. Major features of the proposed guidelines are outlined below.

  10. IAMBUS, a computer code for the design and performance prediction of fast breeder fuel rods

    International Nuclear Information System (INIS)

    IAMBUS is a computer code for the thermal and mechanical design, in-pile performance prediction and post-irradiation analysis of fast breeder fuel rods. The code deals with steady, non-steady and transient operating conditions and enables to predict in-pile behavior of fuel rods in power reactors as well as in experimental rigs. Great effort went into the development of a realistic account of non-steady fuel rod operating conditions. The main emphasis is placed on characterizing the mechanical interaction taking place between the cladding tube and the fuel as a result of contact pressure and friction forces, with due consideration of axial and radial crack configuration within the fuel as well as the gradual transition at the elastic/plastic interface in respect to fuel behavior. IAMBUS can be readily adapted to various fuel and cladding materials. The specific models and material correlations of the reference version deal with the actual in-pile behavior and physical properties of the KNK II and SNR 300 related fuel rod design, confirmed by comparison of the fuel performance model with post-irradiation data. The comparison comprises steady, non-steady and transient irradiation experiments within the German/Belgian fuel rod irradiation program. The code is further validated by comparison of model predictions with post-irradiation data of standard fuel and breeder rods of Phenix and PFR as well as selected LWR fuel rods in non-steady operating conditions

  11. Technical meeting on 'Operational and decommissioning experience with fast reactors'. Working material

    International Nuclear Information System (INIS)

    For three decades, several countries had large and vigorous fast breeder reactor development programs. In most cases, fast reactor development programs were at their peaks by 1980. Fast test reactors [Rapsodie (France), KNK-II (Germany), FBTR (India), JOYO (Japan), DFR (UK), BR-10, BOR-60 (Russia), EBR-II, Fermi, FFTF (U.S.A.)] were operating in several countries, with commercial size prototype reactors [Phenix, Superphenix (France), SNR-300 (Germany), MONJU (Japan), PFR (UK), BN-350 (Kazakhstan), BN-600 (Russia)] just under construction or coming on line. From that time onward, fast reactor development in general began to decline. By 1994 in the USA, the Clinch River Breeder Reactor (CRBR) had been cancelled, and the two fast reactor test facilities, FFTF and EBR-II had been shutdown - with EBR-II permanently, and FFTF in a standby condition. Thus, effort essentially disappeared for fast breeder reactor development. Similarly, programs in other nations were terminated or substantially reduced. In France, Superphenix was shut down at the end of 1998; SNR-300 in Germany was completed but not taken into operation, and KNK-II was permanently shut down in 1991 after 17 years of operation, and is scheduled to be dismantled by 2004; in the UK, PFR was shut down in 1994; BN-350 in Kazakhstan was shut down in 1998. It is difficult to argue that fast breeder reactors will be built in the near term when no commercial market exists and there is a plentiful supply of cheap uranium. Nevertheless, it is reasonable to assume that, were nuclear energy to remain an option as part of the long-term world energy supply mix, meeting the sustainability requirements vis-a-vis natural resources and long-lived radioactive waste management will require deploying systems involving several reactor types and fuel cycles operating in symbiosis. Apart from cost effectiveness, simplification, and safety considerations, a basic requirement to these reactor types and fuel cycles will be flexibility

  12. The development of fast neutron power reactors with a sodium coolant and ways in which their technical and economic performance can be improved

    International Nuclear Information System (INIS)

    During the years that have elapsed since the commissioning of power units with fast neutron BN-350 reactors (1973) and BN-600 reactors (1980), considerable experience has been acquired in the operation of fuel elements, sodium equipment and mechanisms and steam generators. Operating experience has confirmed the reliability and safety of both types of facilities. Nevertheless, during the last few years a number of improvements have been introduced in the operating mode, in the equipment design solutions and in the system flow sheets. These solutions were aimed at further increasing the reliability, safety and profitability of the power units. The BN-800 reactor is based to a considerable extent on the scientific and technical ideas and design development of the BN-600 reactor. During its design, considerable attention was paid to developing reliable equipment which would ensure a higher level of fuel burnup than that of the BN-600 and to mastering the closed fuel cycle. The BN-1600 reactor constitutes a new step in the development and creation of a fast breeder reactor with sodium coolant. However, even in its design, the basic scientific and technical ideas developed for the BN-600 and BN-800 reactors were maintained to a considerable degree. The experience of developing and operating fast sodium cooled reactors in the USSR has confirmed the expected positive safety characteristics of this type of reactor. At the same time, there are significant reserves for further improving the safety characteristics and this does not present any major difficulties. (author). 5 refs, 1 fig., 4 tabs

  13. The SNR 300 fast breeder in the ups and downs of its history

    International Nuclear Information System (INIS)

    The Fast Breeder Project was founded in Karlsruhe in 1960. After an initial period of fundamental research, industry assumed responsibility for designing the SNR 300. Construction of the Kalkar Nuclear Power Station was hampered by a variety of political influences, but finally completed in 1985. As a consequence of the North Rhine-Westphalian party-in-government's opting out of nuclear power, no startup permit was issued for the SNR 300. Consequently, the Kalkar Nuclear Power Station project was discontinued for political reasons in March 1991. The report is the English translation of KFK--4466. (orig./HP)

  14. The Fast Breeder SNR 300 in the ups and downs of its history

    International Nuclear Information System (INIS)

    The Fast Breeder Project was founded in 1960 at Karlsruhe. After an initial period of basic research, the industry took over the design of SRN 300. Affected by various political influences, the construction of the nuclear power plant Kalkar was disturbed and delayed, but was finally completed in 1985. However, since the governing party of Nordrhein-Westfalen decided to drop out of nuclear energy, the authorisation for starting up the SNR 300 could not be obtained. Therefore, the Kalkar project was cancelled for political reasons in March 1991. (orig.)

  15. Federal Constitutional Court affirms admissibility of decision in the matter of the Fast Breeder Kalkar

    International Nuclear Information System (INIS)

    In the case of the examination of the constituionality of section 7 Atomic Energy Act, in as far as this article enables the licensing of nuclear power plants of the type called Fast Breeder, the Second Senate of the Federal Constitutional Court has answered the OVG Muenster's motion to stay proceedings dated Aug 18th, 1977, with the following 'interim decision' - 2 B v L 8/77 - dated Jan 31st, 1978: 'The action is admissible'. The verdict was unanimous. The main grounds upon which the interim judgment is based are given in full. (orig./HP)

  16. Investigation of the growth rate for joint fast breeder reactor and light water reactor operation

    International Nuclear Information System (INIS)

    An investigation of fuel consumption and breeding characteristics of FBR-LWR joint operation is presented. The FBR operates in a closed cycle with joint-reprocessing of core and blanket material. The LWR-portion that runs on FBR plutonium operates in an open cycle. The growth rate of the system is defined based upon the fact that the discharge from the system will make up a fraction of an identical system; the system growth rate is found to have an almost linear dependence on the fraction of the LWR fed by plutonium from the FBR. The LWR growth rate, which is negative, is a constant and represents the fraction of the fuel burnt in the LWR-fraction that runs on FBR plutonium per year

  17. Fast Breeder Blanket Facility FBBF. Annual report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    This annual report contains a summmary of fission rate, spectra, and gamma-ray heating rate measurements made in the first blanket of the Purdue Fast Breeder Blanket Facility. The first blanket consisted of aluminum clad, natural UO2 fuel rods with a secondary cladding of stainless steel or aluminum. The blanket was arranged in two concentric regions around the neutron source and converter regions. A neutron diffusion code, 2DB, and a Monte Carlo code, VIM, both using homogeneous cross section groups have been used to calculate the reaction rates. Calculated to experimental values for a number of important reactions are presented. A modified method of applying Bondarenko self-shielding factors to correct for the self shielding of resonance energy neutrons in aluminum, stainless steel and UO2 has improved the agreement between the calculations and experiment, but does not account for all of the differences

  18. Thermal-performance study of liquid metal fast breeder reactor insulation

    Energy Technology Data Exchange (ETDEWEB)

    Shiu, Kelvin K.

    1980-09-01

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations.

  19. Seismic design principles for the German fast breeder reactor SNR2

    International Nuclear Information System (INIS)

    The leading aim of a seismic design is, besides protection against seismic impacts, not to enhance the overall risk in the absence of seismic vibrations and, secondly, to avoid competition between operational needs and a seismic structural design. This approach is supported by avoiding overconservatism in the assumption of seismic loads and in the calculation of the structural response. Accordingly the seismic principles are stated as follows: restriction to German or equivalent low seismicity sites with intensities (SSE) lower VIII at frequency lower than 10-4/year; best estimate of seismic input-data without further conservatism; no consideration of OBE. The structural design principles are: 1. The secondary character of the seismic excitation is explicitly accounted for; 2. Energy absorption is allowed for by ductility of materials and construction. Accordingly strain criteria are used for failure predictions instead of stress criteria. (author). 1 fig

  20. Beacon: A three-dimensional structural analysis code for bowing history of fast breeder reactor cores

    International Nuclear Information System (INIS)

    The core elements of an LMFBR are bowed due to radial gradients of both temperature and neutron flux in the core. Since all hexagonal elements are multiply supported by adjacent elements or the restraint system, restraint forces and bending stresses are induced. In turn, these forces and stresses are relaxed by irradiation enhanced creep of the material. The analysis of the core bowing behavior requires a three-dimensional consideration of the mechanical interactions among the core elements, because the core consists of different kinds of elements and of fuel assemblies with various burnup histories. A new computational code BEACON has been developed for analyzing the bowing behavior of an LMFBR's core in three dimensions. To evaluate mechanical interactions among core elements, the code uses the analytical method of the earlier SHADOW code. BEACON analyzes the mechanical interactions in three directions, which form angles of 600 with one another. BEACON is applied to the 600 sector of a typical LMFBR's core for analyzing the bowing history during one equilibrium cycle. 120 core elements are treated, assuming the boundary condition of rotational symmetry. The application confirms that the code can be an effective tool for parametric studies as well as for detailed structural analysis of LMFBR's core. (orig.)

  1. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  2. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    International Nuclear Information System (INIS)

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection

  3. Final environmental statement, Liquid Metal Fast Breeder Reactor Program. Volume 2

    International Nuclear Information System (INIS)

    Included are copies of fifty-six comment letters on the Proposed Final Environmental Statement together with the ERDA replies to these letters. The letters were received from Federal, State, and local agencies, environmental and public interest groups, members of the academic and industrial communities, and individual citizens

  4. Irradiation effect on mechanical properties in structural materials of fast breeder reactor plant

    Science.gov (United States)

    Nagae, Yuji; Takaya, Shigeru; Wakai, Eiichi; Aoto, Kazumi

    2011-07-01

    The effects of displacement per atom (dpa) level, helium content, and the ratio of helium content to dpa level on the tensile and creep properties have been investigated in the assumed irradiation damage range of FBR structural materials. The assumed irradiation damage range is up to about 1 dpa and about 30 appm for helium content. Austenitic stainless steel and high-chromium martensitic steel are considered as FBR structural materials. As a result, it is shown that the dpa level is a promising index for evaluating neutron irradiation damage.

  5. Final environmental statement, Liquid Metal Fast Breeder Reactor Program. Volume 3

    International Nuclear Information System (INIS)

    Included are copies of thirty-four comment letters on the Proposed Final Environmental Statement together with the ERDA replies to these letters. The letters were received from Federal, State, and local agencies, environmental and public interest groups, members of the academic and industrial communities, and individual citizens

  6. Feasibility studies for production of 89Sr in the Fast Breeder Test Reactor (FBTR)

    International Nuclear Information System (INIS)

    89Sr, a pure beta emitter with half life of 50.53 d is used as its chloride solution for palliative care of bone metastases. This paper describes the feasibility studies that have been conducted at FBTR, IGCAR for production of this radionuclide using the 89Y(n, p)89Sr reaction. Yttria pellets were irradiated in a special subassembly at the core centre for a total of 73 d in two steps of 35 d and 38 d with a time gap of 38 d. The irradiated yttria target was dissolved in nitric acid and the bulk Y was separated by solvent extraction using the TBP-HNO3 complex. The 89Sr fraction was purified using the cation exchange resin DOWEX 50W x 8 (100-200 mesh size) from the other radioactive impurities seen. The eluted 89Sr fraction was assayed using a GM counting system. The 89Sr activity produced in 1 g of yttria pellet was found to be 19 mCi. (orig.)

  7. Feasibility studies for production of {sup 89}Sr in the Fast Breeder Test Reactor (FBTR)

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Debasish; Vithya, J.; Ashok Kumar, G.V.S.; Swaminathan, K.; Kumar, R.; Venkata Subramani, C.R.; Vasudeva Rao, P.R. [Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam (India). Fuel Chemistry Div.

    2013-07-01

    {sup 89}Sr, a pure beta emitter with half life of 50.53 d is used as its chloride solution for palliative care of bone metastases. This paper describes the feasibility studies that have been conducted at FBTR, IGCAR for production of this radionuclide using the {sup 89}Y(n, p){sup 89}Sr reaction. Yttria pellets were irradiated in a special subassembly at the core centre for a total of 73 d in two steps of 35 d and 38 d with a time gap of 38 d. The irradiated yttria target was dissolved in nitric acid and the bulk Y was separated by solvent extraction using the TBP-HNO{sub 3} complex. The {sup 89}Sr fraction was purified using the cation exchange resin DOWEX 50W x 8 (100-200 mesh size) from the other radioactive impurities seen. The eluted {sup 89}Sr fraction was assayed using a GM counting system. The {sup 89}Sr activity produced in 1 g of yttria pellet was found to be 19 mCi. (orig.)

  8. AB INITIO STUDY OF ADVANCED METALLIC NUCLEAR FUELS FOR FAST BREEDER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Landa, A; Soderlind, P; Grabowski, B; Turchi, P A; Ruban, A V; Vitos, L

    2012-04-23

    Density-functional formalism is applied to study the ground state properties of {gamma}-U-Zr and {gamma}-U-Mo solid solutions. Calculated heats of formation are compared with CALPHAD assessments. We discuss how the heat of formation in both alloys correlates with the charge transfer between the alloy components. The decomposition curves for {gamma}-based U-Zr and U-Mo solid solutions are derived from Ising-type Monte Carlo simulations. We explore the idea of stabilization of the {delta}-UZr{sub 2} compound against the {alpha}-Zr (hcp) structure due to increase of Zr d-band occupancy by the addition of U to Zr. We discuss how the specific behavior of the electronic density of states in the vicinity of the Fermi level promotes the stabilization of the U{sub 2}Mo compound. The mechanism of possible Am redistribution in the U-Zr and U-Mo fuels is also discussed.

  9. Analysis of structural materials for fast-breeder reactors by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    A procedure for the X-ray spectrometric determination of Co, Cr, Cu, Mn, Mo, Nb, Ni, P, S, Si and Ti in stainless steels and some nickel-base alloys, such as incoloy-800, is described. The use of different sets of standards has allowed the calculation of the inter-element influence coefficients for the correction of matrix effects, making the method suited for wide concentration range determinations. The efficiency of X-ray tubes with Cr and W targets has been studied, the former allowing the determination of all the above-named elements. The average relative error is 3.7%, except for P and S, where the determinations are semiquantitative. The use of a programmable spectrometer interfaced with a 16 K computer facilitates considerably the treatment of data with a proper mathematic model and furthermore provides an automatic performance of the analyses. (author)

  10. Final environmental statement, Liquid Metal Fast Breeder Reactor Program. Volume 1

    International Nuclear Information System (INIS)

    Information is presented under the following section headings: LMFBR program options and their compatibility with the major issues affecting commercial development, Proposed Final Environmental Statement for the LMFBR program, December 1974, WASH-1535, supplemental material, and material relating to Proposed Final Environmental Statement review

  11. Liquid-metal fast-breeder reactors: Preliminary safety and environmental information document. Volume VI

    International Nuclear Information System (INIS)

    Information is presented concerning LMFBR design characteristics; uranium-plutonium/uranium recycle homogeneous core; uranium-plutonium/uranium spiked recycle heterogeneous core; uranium-plutonium/uranium spiked recycle homogeneous core; uranium-plutonium/thorium spiked recycle heterogeneous core; uranium-plutonium/thorium spiked recycle homogeneous core; thorium-plutonium/thorium spiked recycle homogeneous core; denatured uranium-233/thorium cycle homogeneous core; safety consideration for the LMFBR; and environmental considerations

  12. Design and development of microblaze processor based Remote Terminal Units for Fast Breeder Reactors

    International Nuclear Information System (INIS)

    Remote Terminal Units (RTUs) are single board remote data acquisition and control systems that are widely used in FBRs during all states of plant operation. Distributed Digital Control System (DDCS) architecture is being followed for the plant control and operation, which mandates the need for multiple sockets support in TCPIP Ethernet communication in an embedded system. Existing RTUs are 89C51 microcontroller based systems where the TCPIP communication is done using Wiznet Module. These modules can support maximum of four sockets and are already obsolete from the market. In this paper a new RTU design is described where the complete digital logic of a board is implemented in one single FPGA device using Soft-core processor and EMAC controller with multiple socket support for the Ethernet communication. This makes design more reliable and immune to obsolescence. (author)

  13. Creep-fatigue evaluation and damage characterization for structural materials of advanced fast breeder reactor

    International Nuclear Information System (INIS)

    Creep-fatigue (Creep fatigue and fatigue) tests of Mod. 9Cr-1Mo steel have been performed by varying stress holding time at 550degC. Creep-fatigue properties are affected by stress holding, and strain rate increases with increasing stress holding time. In Vickers hardness measurements Vickers hardness of creep fatigue damaged specimen is larger than that of fatigue damaged specimen. In magnetic characterization the saturated magnetic flux density and permeability of creep fatigue damaged specimens are larger than those of fatigue damaged specimen. And in MFM observation the standard deviation value of creep fatigue damaged specimen is larger than that of fatigue damaged specimen. By TEM observation, the effect of stress holing time on these creep-fatigue properties can be explained by the difference of dislocation structures. (author)

  14. Investigations by model theory of fast breeder reactor fuel pins and application to special safety experiments

    International Nuclear Information System (INIS)

    This paper makes a contribution to the development of the fuel rod model theory for describing transient loads up to and including very fast accidents. In three successive sections the state of knowledge is subjected to critical discussion, improvements are presented and, finally, possibilities of application indicated by the example of experiment analysis. Within the framework of further developments a consistent compilation is given of all relevant material data for describing UC and (U, Pu) C-fuels and models are derived on the fission gas behavior and on swelling. A literature search is made on the restructuring of oxide fuels and it is shown above all with respect to transient calculations which models can be employed here. (orig./RW)

  15. Reflections on the political economy of large-scale technology using the example of German fast-breeder development

    International Nuclear Information System (INIS)

    Proceeding from Anglo-Saxon opinions which, from a liberal point of view, criticize the German practice of research policy - state centres of large-scale research and state subventions for research and development in industry - to be inefficient, the author empirically verified these statements taking the German fast breeder project as an example. If the case of the German fast breeder can be generalized, this had consequences for the research political practice and for other technologies. Supporters as well as opponents of large-scale technology today proceed from the assumption that almost every technology can be made commercially viable when using sufficient amounts of money and persons. This is a migth which owes its existence to the technical success of great projects in non-commercial fields. The German fast breeder project confirms the opinion that the recipes for success of these non-commercial projects cannot be applied to the field of commercial technology. The results of this study suggest that practice and theory of technology policy can be misdirected if they are uncritically oriented according to the form of state intervention so far used in large-scale technology. (orig./HSCH)

  16. Review of fast reactor activities in India

    International Nuclear Information System (INIS)

    It may be recalled that In the presentation at the last meeting of the IWGFR (13th Annual meeting), a broad outline of India's nuclear energy programme and the role of fast breeders in the programme has been provided. The steps taken to enable the fast breeders to fulfil their role have also been described. In brief, fast breeder reactors are considered as an essential and integral part of the programme of nuclear energy and constitute the second step in the programme, the first being the construction of natural uranium heavy water moderated reactors which will consume natural uranium but will produce plutonium to fuel fast breeder reactors. This basic position has remained unchanged and the Government is now taking steps to build a large number of heavy water reactors, say 10 million Kw capacity in the next 20 years. This defines the time frame for developing the fast breeder technology in the country. It has therefore been decided to mobilise the efforts towards design, construction and operation of a medium sized (about 500 M We) reactor by mid-nineties. Thus, the climate for fast breeder reactors is good and there is a good deal of enthusiasm amongst the scientists and engineers working in the field although the actual implementation of the programme during the year had to face certain difficulties

  17. 3. Interindustry conference on reactor materials science

    International Nuclear Information System (INIS)

    This document contains abstracts on papers presented at the Third Interindustry Conference on Reactor Materials Science (Dimitrovgrad, 27-30 October 1992). The subject scope of the papers is a follows: fuel and fuel elements of power reactors; structural materials of fast breeder reactors and thermonuclear reactors; structural materials of WWER and RBMK type reactors; absorbers and moderators

  18. [Radiation ecological environment in the Republic of Kazakhstan in the vicinity of the reactors and on the territory of the Semipalatinsk Test Site].

    Science.gov (United States)

    Kim, D S

    2012-01-01

    The results of research into the environmental conditions in the regions of location of the pressurized water reactor WWR-K, fast neutron breeder BN-350 and on the territory of the Semipalatinsk Test Site are represented. The effects of the exposure to aerosol emissions from WWR-K and BN-350 reactors on the environment are summarized. We present some arguments in favor of the safe operation of fission reactors in compliance with the rules and norms of nuclear and radiation protection and the efficient disposal of radioactive waste on the territory of the Republic.

  19. Back-to-back technical meetings (TMs): 'TM on the coordinated project (CRP) analyses of and lessons learned from the operational experience with fast reactor equipment and systems' and 'TM to coordinate the Agency's fast reactor knowledge preservation international project in Russia'. Working material

    International Nuclear Information System (INIS)

    Since the early 1960's, several countries have undertaken important fast breeder reactor development programs. Fast test reactors were constructed and successfully operated in a number of countries, including Rapsodie (France), KNK-II (Germany), FBTR (India), JOYO (Japan), DFR (UK), BR-10, BOR-60 (Russia), and EBR-II, Fermi, FFTF (USA). This was followed by commercial size prototypes (Phenix, Superphenix (France), SNR-300 (Germany), MONJU (Japan), PFR (UK), BN-350 (Kazakhstan), BN-600 (Russia)], either just under construction, coming on line, or experiencing long term operation. However, from the 1980s onward, and mostly for economical and political reasons, fast reactor development in general began to decline. By 1994, in the USA, the Clinch River Breeder Reactor (CRBR) had been cancelled, and the two fast reactor test facilities, FFTF and EBR-II had been shutdown - EBRII permanently, and FFTF, until recently, in standby condition, but now also facing permanent closure. Thus, in the U.S., effort essentially disappeared for fast breeder reactor development. Similarly, programs in other nations were terminated or substantially reduced. In France, Superphenix was shut down at the end of 1998; SNR-300 in Germany was completed but not taken into operation, and KNK-II was permanently shut down in 1991 (after 17 years of operation) and is scheduled to be dismantled by 2004. In the UK, PFR was shut down in 1994, and in Kazakhstan, BN-350 was shut down in 1998. As the interest and activity in the fast breeder reactor diminished, the retirement of many of the developers and acknowledged experts of this technology reached its peak, between 1990 and 2000. The effort and investment required to replace these skills also diminished in parallel. In addition, the facilities (e.g., hot cells, fuel fabrication and inspection lines, seismic test rigs) required to develop and maintain the fast reactor program are drifting into a degraded state or are being shut down. This leads to the

  20. Vented target elements for use in an isotope-production reactor. [LMFBR

    Science.gov (United States)

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

  1. Indian fast reactor technology: Current status and future programme

    Indian Academy of Sciences (India)

    S C Chetal; P Chellapandi

    2013-10-01

    The paper brings out the advantages of fast breeder reactor and importance of developing closed nuclear fuel cycle for the large scale energy production, which is followed by its salient safety features. Further, the current status and future strategy of the fast reactor programme since the inception through 40 MWt/13 MWe Fast Breeder Test Reactor (FBTR), is highlighted. The challenges and achievements in science and technology of FBRs focusing on safety are described with the particular reference to 500 MWe capacity Prototype Fast Breeder Reactor (PFBR), being commissioned at Kalpakkam. Roadmap with comprehensive R&D for the large scale deployment of Sodium Cooled Fast Reactor (SFRs) and timely introduction of metallic fuel reactors with emphasis on breeding gain and enhanced safety are being brought out in this paper.

  2. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) heat transport system dynamics and steam generator control: Figures

    Science.gov (United States)

    Brukx, J. F. L. M.

    1982-06-01

    Dynamic modeling of LMFBR heat transport system is discussed. Uncontrolled transient behavior of individual components and of the integrated heat transport system are considered. For each component, results showing specific dynamic features of the component and/or model capability were generated. Controlled dynamic behavior for alternative steam generator control systems during forced and natural sodium coolant circulation was analyzed. Combined free and forced convection of laminar and turbulent vertical pipe flow of liquid metals was investigated.

  3. IAEA specialist meeting on flow induced vibrations in fast breeder reactors, Paris, France, 22-24 October 1986

    International Nuclear Information System (INIS)

    The Specialists' Meeting on ''Flow Induced Vibrations in FBRs for LMFBR Applications'' was held in Paris under the auspices of the French CEA on 21-24 October 1982. The meeting was sponsored by the IAEA on the recommendation of the 14th Meeting of the IWGFR and was attended by 31 participants from France, the Federal Republic of Germany, India, Italy, Japan, the United Kingdom, the Union of Soviet Socialist Republics, the United States of America and one international organization (IAEA). The meeting was presided over by Pr. R.J. Gibert of France. After the first session on review of national positions in the subject field (7 papers), the meeting was divided into five technical sections as follows: fluid-structures interaction, calculation methods (3 papers); tubes bundles vibration and weir (4 papers); instability (6 papers); induced vibrations in the pumps (2 papers). A separate abstract was prepared for each of these papers

  4. Trace metal assay of fast breeder test reactor fuel using D.C. arc and plasma emission spectrometry

    International Nuclear Information System (INIS)

    This report describes the methods developed and used for the trace metal assay of the first charge of the FBTR fuel using a glove-box adapted direct reading emission spectrometer. The group of medium and highly volatile elements are determined in (U,Pu)C fuel samples by d.c. arc carrier distillation technique while the group of lanthanide elements are determined by ICP excitation mode with prior chemical separation from the major matrix. The statistical treatment of the analytical data collected from the analysis of about one hundred samples has indicated good purity of samples and consistent and satisfactory performance of the direct reading spectrometer and associated systems during this period. (author)

  5. Improved analysis on multiple recycling of fuel in prototype fast breeder reactor in a closed fuel cycle

    Indian Academy of Sciences (India)

    G Pandikumar; V Gopalakrishnan; P Mohanakrishnan

    2011-08-01

    An FBR closed fuel cycle involves recycling of the discharge fuel, after reprocessing and refabrication, to utilize the unburnt fuel remains and the freshly bred fissile material. Our previous study in this regard for the PFBR indicated a comfortable feasibility of multiple recycling with selfsufficiency. In the present work, more refined estimations are done using the most recent nuclear data, viz. ENDF/B-VII.0, and with the most recent specification of the fuel composition. Among others, this paper brings out the importance of taking into account the energy self-shielding effects in the cross-section averages used in the study. While self-shielded averages lead to realistic predictions, unshielded averages significantly overpredict breeding in the blankets and underpredict loss in the cores.

  6. Implementation of a model reference adaptive control system using neural network to control a fast breeder reactor evaporator

    International Nuclear Information System (INIS)

    Artificial intelligence is foreseen as the base for new control systems aimed to replace traditional controllers and to assist and eventually advise plant operators. This paper discusses the development of an indirect model reference adaptive control (MRAC) system, using the artificial neural network (ANN) technique, and its implementation to control the outlet steam temperature of a sodium to water evaporator. The ANN technique is applied in the identification and in the control process of the indirect MRAC system. The emphasis is placed on demonstrating the efficacy of the indirect MRAC system in controlling the outlet steam temperature of the evaporator, and on showing the important function covered by the ANN technique. An important characteristic of this control system is that it relays only on some selected input variables and output variables of the evaporator model. These are the variables that can be actually measured or calculated in a real environment. The results obtained applying the indirect MRAC system to control the evaporator model are quite remarkable. The outlet temperature of the steam is almost perfectly kept close to its desired set point, when the evaporator is forced to depart from steady state conditions, either due to the variation of some input variables or due to the alteration of some of its internal parameters. The results also show the importance of the role played by the ANN technique in the overall control action. The connecting weights of the ANN nodes self adjust to follow the modifications which may occur in the characteristic of the evaporator model during a transient. The efficiency and the accuracy of the control action highly depends on the on-line identification process of the ANN, which is responsible for upgrading the connecting weights of the ANN nodes. (J.P.N.)

  7. Experimental investigations of local flow parameters near the walls of fuel elements of fast breeder reactors. Pt. 2

    International Nuclear Information System (INIS)

    The here presented material is the result of the first stage of experiments performed on the NEM-2 model, with the initial comparative values for evaluation of the effects of the geometry dimensions in the cluster upon the fluid-dynamic conditions being concerned in the main. The investigation of those effects (presence of displacement bodies, displacement of single rods or rod groups etc.) will be subject of further experimental works. (orig.)

  8. Department of Energy Nuclear Material Protection, Control, and Accounting Program at the Mangyshlak Atomic Energy Complex, Aktau, Republic of Kazakhstan

    International Nuclear Information System (INIS)

    As part of the Cooperative Threat Reduction Nuclear Material Protection, Control, and Accounting (MPC and A) Program, the US Department of Energy and Mangyshlak Atomic Energy Complex (MAEC), Aktau, Republic of Kazakstan have cooperated to enhance existing MAEC MPC and A features at the BN-350 liquid-metal fast-breeder reactor. This paper describes the methodology of the enhancement activities and provides representative examples of the MPC and A augmentation implemented at the MAEC

  9. Assessment of the thorium fuel cycle in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled.

  10. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  11. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    The research and development work in the field of core thermal-hydraulics, experimental and analytical physics and carbide fuel development carried out 1978 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  12. A review of fast reactor programme in Japan

    International Nuclear Information System (INIS)

    The fast breeder reactor development project in Japan made progress in the past year, and will be continued in the next fiscal 1981. The scale of efforts both in budget and personnel will be similar to those in fiscal 1980. The budget for R and D works and for the construction of the fast breeder prototype reactor ''Monju'' will be approximately 20 billion yen and 27 billion yen, respectively, excluding the wage of the personnel concerned. The number of the technical personnel currently engaging in fast breeder reactor development in the Power Reactor and Nuclear Fuel Development Corp. is about 530. As for the experimental fast reactor ''Joyo'', three operational cycles at 75 MWt have been completed in August, 1980, and the fourth cycle has started in March, 1981. As for the prototype reactor ''Monju'', progress was made toward the construction, and the environmental impact statement on the reactor was approved by the authorities concerned. The studies on the preliminary design of large LMFBRs have been made by the PNC and also by power companies. The design study carried out by the PNC is concerned with a 1000 MWe plant of loop type by extrapolating the technology to be developed by the time of the commissioning of ''Monju''. The highlights and topics in the development activities for fast breeder reactors in the past twelve months are summarized in this report. (Kako, I.)

  13. Gas cooled fast reactor research and development program

    International Nuclear Information System (INIS)

    The research and development work in the field of core thermal-hydraulics, steam generator research and development, experimental and analytical physics and carbide fuel development carried out 1978 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  14. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities in the Division of Reactor Engineering in fiscal 1977 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committee on Reactor Physics. (Author)

  15. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Department of Reactor Engineering in fiscal 1983 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  16. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  17. Review of fast reactor operating experience gained in 1998 in Russia. General trends of future fast reactor development

    International Nuclear Information System (INIS)

    Review of the general state of nuclear power in Russia as for 1998 is given in brief in the paper. Results of operation of BR-10, BOR-60 and BN-600 fast reactors are presented as well as of scientific and technological escort of the BN-350 reactor. The paper outlines the current status and prospects of South-Urals and Beloyarskaya power unit projects with the BN-800 reactors. The main planned development trends on fast reactors are described concerning both new projects and R and D works. (author)

  18. Basic cable routing guidelines for a fast reactor plant

    International Nuclear Information System (INIS)

    In this paper the guidelines evolved for cable routing in 500 MWe Prototype Fast Breeder Reactor (PFBR) are presented. Safety related redundant system cables in a nuclear plant shall not become unavailable due to cable fire. This is ensured by proper cable routing in the plant in addition to the other general fire protection measures

  19. Compatibility of sodium with ceramic oxides employed in nuclear reactors

    International Nuclear Information System (INIS)

    This work is a review of experiments carried out up to the present time on the corrosion and compatibility of ceramic oxides with liquid sodium at temperatures corresponding to those in fast breeder reactors. The review also includes the results of a thermo-dynamic/liquid sodium reactions. The exercise has been conducted with a view to effecting experimental studies in the future. (Author)

  20. Compatibility of sodium with ceramic oxides employed in nuclear reactors; Compatibilidad del sodio con oxidos ceramicos utilizados en reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Acena Moreno, V.

    1981-07-01

    This work is a review of experiments carried out up to the present time on the corrosion and compatibility of ceramic oxides with liquid sodium at temperatures corresponding to those in fast breeder reactors. The review also includes the results of a thermo-dynamic/liquid sodium reactions. The exercise has been conducted with a view to effecting experimental studies in the future. (Author)

  1. Failure analysis of primary argon storage tanks for fast breeder test reactor (FBTR) at Reactor Research Centre, Kalpakkam [Paper IIIA-e

    International Nuclear Information System (INIS)

    An attempt is made to bring out the details of the 'Failure Analysis' carried out on the four numbers of primary argon storage tanks made from AISI type 304L stainless steel for FBTR Project, after receipt at site. After inspection at site before erection, it was found that all the four tanks had suffered severe pitting and crevice corrosion on the inside surface. The study revealed that the corrosion from inside was caused by the presence of crevices formed due to weld spatters and excess or non-uniform penetration of weld beads along with the service water with a high chloride content, which had not been drained out fully, after the hydrostatic testing at the manufacture's shop. The water had remained in these tanks for about 12 months which caused the damage. Due to the severity of the corrosion attack, all the four tanks were rejected, new tanks were fabricated with modification suiting the requirement and since erected. (author)

  2. Failure analysis of primary argon storage tanks for fast breeder test reactor (FBTR) at Reactor Research Centre, Kalpakkam (Paper IIIA-e)

    Energy Technology Data Exchange (ETDEWEB)

    Madeswaran, R.

    1986-01-01

    An attempt is made to bring out the details of the Failure Analysis carried out on the four numbers of primary argon storage tanks made from AISI type 304L stainless steel for FBTR Project, after receipt at site. After inspection at site before erection, it was found that all the four tanks had suffered severe pitting and crevice corrosion on the inside surface. The study revealed that the corrosion from inside was caused by the presence of crevices formed due to weld spatters and excess or non-uniform penetration of weld beads along with the service water with a high chloride content, which had not been drained out fully, after the hydrostatic testing at the manufacture's shop. The water had remained in these tanks for about 12 months which caused the damage. Due to the severity of the corrosion attack, all the four tanks were rejected, new tanks were fabricated with modification suiting the requirement and since erected. 4 figures.

  3. Nuclear reactors - the inevitable energy option

    International Nuclear Information System (INIS)

    The demand for energy in India is sure to rise year after year. Every possible energy source needs to be utilized to its fullest potential to bridge the gap between the demand and supply of electricity. Even while deciding the energy option, the availability of natural resources for future generation and effect of environment for the energy option chosen are to be taken care of. Out of the non conventional sources of electricity, nuclear electricity has greatest potential. Robust and safe energy option has to be harnessed to its potential. We have to bring down the cost of electricity. Even among nuclear reactors, electricity through Fast Breeder Reactors has greater potential. The Prototype Fast Breeder Reactor is a trend setter for moving into an era of electricity generation in the country. The paper brings details of the safety features, accomplishments of the technical challenges and the efforts on hand to reduce the unit energy cost by Nuclear Reactors. The paper also touches upon advantages, environmental impact of Fast Breeder Reactors for this abundant energy resources. Paper will also give a glimpse on technological challenges in design, construction and the preservation. (author)

  4. Reactor Engineering Department annual report, April 1, 1985 - March 31, 1986

    International Nuclear Information System (INIS)

    Research and development activities in the Department of Reactor Engineering in fiscal 1985 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor, High Conversion Light Water Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, reactor physics experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, reactor decommissioning technology, and activities of the Committee on Reactor Physics. (author)

  5. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    International Nuclear Information System (INIS)

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies

  6. Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Margaret L.; Gelles, David S.; Lobsinger, Ralph J.; Johnson, Gerald D.; Brown, W. F.; Paxton, Michael M.; Puigh, Raymond J.; Eiholzer, Cheryl R.; Martinez, C.; Blotter, M. A.

    2000-02-28

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report.

  7. Gas-cooled fast reactor program. Progress report, January 1, 1980-June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.

    1981-09-01

    Since the national Gas-Cooled Fast Breeder Reactor Program has been terminated, this document is the last progress report until reinstatement. It is divided into three sections: Core Flow Test Loop, GCFR shielding and physics, and GCFR pressure vessel and closure studies. (DLC)

  8. Fast-power-reactor optimization by the game theory

    International Nuclear Information System (INIS)

    In the first stage of the use of fast breeder reactor - because fissile-material amounts are small - we are interested in fast breeder reactors which achieve minimum fissile-material mass, with maximum power. This problem shows a two-matrix-game structure. First, we determine a competive-game solution and second, a cooperative-game solution, obtaining in this way the optimum distribution of the fissile and fertile materials in the multizone fast reactors. Another optimization problem which is solved in this paper is finding the reactor structure for which the power non-uniformity factor and the flux non-uniformity factor are minimum. This is, also, a mathematical two-matrix game and it is solved as above. The two optimization problems have different solutions. (author)

  9. Decommissioning the Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I)

    International Nuclear Information System (INIS)

    The Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I) was decommissioned at the Los Alamos National Laboratory, Los Alamos, New Mexico, in 1980. The LAMPRE I was a sodium-cooled reactor built to develop plutonium fuels for fast breeder applications. It was retired in the mid-1960s. This report describes the decommissioning procedures, the health physics programs, the waste management, and the costs for the operation

  10. Comparison of multigroup and few-group calculations of fast power reactor parameters

    International Nuclear Information System (INIS)

    The basic parameters of a fast breeder reactor in two-dimensional cylindrical geometry and in multi- and few-group diffusion approximation were calculated and compared. Two different types of reactor were considered, viz., homogeneous and heterogeneous. The results can serve as a quantitative aid for the choice of the proper number of groups for the calculations of various reactor parameters with required accuracy. (author)

  11. The BLOW-3A: A theoretical model to describe transient two phase flow conditions in Liquid Metal Fast Breeder Reactor (LMFBR) coolant channels

    Science.gov (United States)

    Bottoni, M.; Struwe, D.

    The theoretical background of the BLOW-3A program is reported, including the basic equations used to determine temperature fields in the fuel, clad, coolant and structure material as well as the coolant dynamics in single and two-phase flow conditions. The two-phase flow model assumes an annular flow regime. Special aspects to calculate two-phase pressure drops for these conditions are discussed. Examples of the experimental validation of the program are given.

  12. Status of safety technology for radiological consequence assessment of postulated accidents in liquid metal fast breeder reactors, Canoga Park, California, 29 July--31 July 1975

    International Nuclear Information System (INIS)

    State-of-the-art capabilities are examined for prediction and mitigation of radiological consequences of postulated LMFBR accidents. The following topics are treated: radioactive source terms, sodium reactions, aerosol behavior, radiological dose assessment, and engineered safeguards. (U.S.)

  13. 钠冷快堆钠池火事故数值模拟%Numerical Simulation of Sodium Pool Fires in Liquid Metal-Cooled Fast Breeder Reactor

    Institute of Scientific and Technical Information of China (English)

    张斌; 朱继洲

    2005-01-01

    为了估计和预测钠火事故的后果,构建了以"有火焰薄层"为理论基础的燃烧模型和热传输模型,给出了程序计算结果与试验值的比较.比较结果证实,该计算结果可信、模型合理.程序可用来分析和预测钠池火事故.

  14. Fast breeder reactor core concept consistent with fuel cycle system during the transition period from LWR to FBR cycles in Japan

    International Nuclear Information System (INIS)

    During the transition period from the LWR cycle to a FBR cycle, the Pu needed for FBR start-up will be obtained from the next reprocessing facility. Therefore, from the economic viewpoint, it would be better if the FBR core in the next reprocessing facility had a lower Pu inventory. A design concept study was carried out for an FBR core with a lower Pu inventory that is consistent with the fuel cycle system during the transition period. The Pu from LWR spent fuel will be used for FBR start-up at least for the initial core cycle and succeeding first few cycles during the transition period. An FBR core loaded with Pu from LWR spent fuel has higher burnup reactivity than one loaded with Pu from FBR multi-recycling fuel composition. The increased burnup reactivity may reduce the cycle length of the FBR core. We chose loading of minor actinides (MAs) into the FBR MOX fuel as the countermeasure to the increased burnup reactivity from the viewpoint of utilizing nuclear characteristics of the MAs. The maximum MA content in the MOX fuel was set to 5% on the basis of irradiation test results. MAs recovered from the LWR spent fuel that provides Pu for FBR start-up are loaded into the initial loading fuel assemblies and exchanged fuel assemblies for several cycles until equilibriumis reached. The average MA content of the initially loaded fuel was assumed to be 3%, and that of the exchanged fuel was assumed to be 5%. The core performance including burnup characteristics and reactivity coefficient were also evaluated, and it was confirmed that the transient core from the initial loading until the equilibrium cycle for loaded Pu from LWR spent fuels could maintain performance neary equal to that of an FBR multi-recycling core. (author)

  15. CASY: a dynamic simulation of the gas-cooled fast breeder reactor core auxiliary cooling system. Volume II. Example computer run

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    A listing of a CASY computer run is presented. It was initiated from a demand terminal and, therefore, contains the identification ST0952. This run also contains an INDEX listing of the subroutine UPDATE. The run includes a simulated scram transient at 30 seconds.

  16. The radiological consequences of notional accidental releases of radioactivity from fast breeder reactors: sensitivity to the choice of atmospheric dispersion model

    International Nuclear Information System (INIS)

    The radiological consequences of a wide range of notional accidental releases from a 1300 MW(e) LMFBR were assessed in a study published in 1977 (NRPB - R53). In that study representative values were in general adopted for each of the important parameters while recognising that in reality they could vary considerably. The present study is concerned with the sensitivity of the predicted consequences to the choice of atmospheric dispersion models. A comparison is made of the air concentrations predicted by a number of atmospheric models (which have found broad application) for releases of activity in selected meteorological conditions. The implications, in terms of the radiological consequences of particular releases, of differences in the air concentrations predicted by the respective models are assessed semi-quantitatively. In general the radiological consequences are shown to be relatively insensitive to the choice of atmospheric dispersion model. This is particularly so for the incidence of late biological effects; for early biological effects the sensitivity is more pronounced although of the models considered, that adopted in the initial study would yield results at the upper end of the predicted range. (author)

  17. Physics model describing the melting, the motion and the relocation of the clad after an undercooling accident in a liquid-metal fast breeder reactor

    International Nuclear Information System (INIS)

    In this note, we present a physics model describing after an accidental loss of flow in a annular channel, the melting, the motion and the relocalisation of the clad, with (or without) centering grids for the pin. The heating of the fuel and centering grids is also described. The equations of the model, their difference approximations and their resolution as well as the flow chart of the code are indicated. The possibilities of the code ALFA are illustrated by some examples and in particular with some calculations concerning the experiments CABRI B1 and CEFUS TR 3.1. The calculated and experimental results are in good agreement: the phenomena chronology is well described and the post morten geometry is found

  18. A review of the UK fast reactor programme, March 1979

    International Nuclear Information System (INIS)

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments

  19. Reactor Engineering Department annual report

    International Nuclear Information System (INIS)

    Research and development activities in the Department of Reactor Engineering in fiscal 1982 are described. The work of the Department is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and Fusion Reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Since fiscal 1982, Systematic research and development work on safeguards technology has been added to the activities of the Department. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and safeguards technology, and activities of the Committee on Reactor Physics. (author)

  20. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  1. Physics aspects of metal fuelled fast reactors with thorium blanket

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, D.K., E-mail: dina@igcar.gov.in; Singh, S.S.; Riyas, A.; Mohanakrishnan, P.

    2013-12-15

    Metal fuelled fast breeder reactors (MFBR) with high breeding ratio will play a major role in meeting the high nuclear power growth envisaged in India. In this regard several conceptual reactor designs with alloys of U–Pu–Zr fuel have been suggested for commercial operations. This study focusses on the physics design aspects of a sodium cooled U–Pu–6%Zr fuelled 1000 MWe fast breeder reactor, which can attain a breeding ratio of nearly 1.5. The calculation results on reactor kinetics and safety parameters of the 1000 MWe MFBR are presented. The changes in the breeding ratio by introduction of thorium in the blankets of the MFBR are also investigated. Burnup analyses are carried out to compare the core burnup effects in MOX and metal fuelled FBRs. Since the MOX fuelled 500 MWe prototype fast breeder is getting constructed at IGCAR, for burnup comparisons a MFBR of similar design is considered. The results of this study indicate that the loss of reactivity in the metal core with burnup is less than half that of a MOX core and its breeding ratio remains nearly constant. It is also found that the isotopic composition of plutonium (Pu-vector composition) remains more steady with burnup in a metal core.

  2. Twelfth annual meeting of the International Working Group on Fast Reactors. Summary report. Part II

    International Nuclear Information System (INIS)

    Examining several alternative nuclear power scenarios through the long term it showed the comparative needs of advanced reactors for uranium and for supporting services, thereby establishing the basis for further development of uranium resources and specific reactor systems. Even with dramatic increases in known resources, nuclear power would be able to play only a temporary role in satisfying world energy needs. The use of advanced fast breeders can do much to reduce the total rate of depletion of uranium resources. Breeder reactors would provide a virtually inexhaustible source of energy supply within foreseeable extensions of known uranium resources. This document includes status reports on activities related to research, development, construction, operation, experimental data, safety issues of fast breeder reactors in Germany, Italy, European Union, USSR, OECD, Japan, USA, UK, France

  3. Technology of steam generators for gas-cooled reactors. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    The activity of the IAEA in the field of the technology of gas-cooled reactors was formalized by formation of an International Working Group on Gas-Cooled Reactors (IWGCR). The gas cooled reactor program considered by the IWGCR includes carbon-dioxide-cooled thermal reactors, helium cooled thermal high temperature reactors for power generation and for process heat applications and gas-cooled fast breeder reactors. This report covers the papers dealing with operating experience, steam generators for next generation of gas-cooled reactors, material development and corrosion problems, and thermohydraulics

  4. Evaluation of the breed/burn fast reactor concept

    International Nuclear Information System (INIS)

    A core design concept and fuel management strategy, designated breed/burn, has been evaluated for heterogeneous fast breeder reactors. In this concept internal blanket assemblies after fissile material is bred in over several incore cycles, are shuffled into a moderated radial blanket and/or central island. The most promising materials combination identified used thorium in the internal blankets (due to the superior performance of epithermal Th-U233 systems) and zirconium hydride (ZrH16) as the moderator

  5. Instrumentation and control for reactor power setback in PFBR

    International Nuclear Information System (INIS)

    In Prototype Fast Breeder Reactor (PFBR), a 500 MWe plant, Reactor Power Setback is a special operation envisaged for bulk power reduction on occurrence of certain events in Balance of Plant. The bulk power reduction requires a large negative reactivity perturbation if reactor is operating on nominal power. This necessitates a reliable monitoring system with fault tolerant I and C architecture in order to inhibit reactor SCRAM on negative reactivity trip signal. The impact of above events on the process is described. Design of a functional prototype module to carry out RPSB logic operation and its interface with other instruments has been discussed. (author)

  6. A review of fast reactor progress in Japan

    International Nuclear Information System (INIS)

    The fast reactor development project in Japan is continuing at a slightly increased scale of effort in budget. The total budget for LMFBR development for fiscal year 1978 was 24 billion yen. In August 1977 major industries engaged in LMFBR have set up an office where design work can be jointly conducted. Highlights and topics of the fast reactor development activities cover description of JOYO reactor, its first criticality experiment, and the prototype fast breeder MONJU. Research and development programmes dealt with fission products release and its possible interaction with the soodium coolant, inspection of reactor components, experiments simulating sodium leakage, development of steam generator

  7. Startup of the FFTF sodium cooled reactor

    International Nuclear Information System (INIS)

    The Fast Flux Test Facility (FFTF), located on the Department of Energy (DOE) Hanford Reservation near Richland, Washington, is a 3 Loop 400 MW(t) sodium cooled fast reactor with a primary mission to test fuels and materials for development of the Liquid Metal Fast Breeder Reactor (LMFBR). Bringing FFTF to a condition to accomplish this mission is the goal of the Acceptance Test Program (ATP). This program was the mechanism for achieving startup of the FFTF. Highlights of the ATP involving the system inerting, liquid metal and inerted cell testing and initial ascent to full power are discussed

  8. Fast Reactor Knowledge Management at IGCAR, India

    International Nuclear Information System (INIS)

    The Process Architecture: → Acquire: Solicitation; Voluntary submission; Mandatory requirements; Interview/Observation; → Quality Control: Review/Editing; Certification; Quality index; → Disseminate: Publish through the Technology architecture; Formal/Informal Meetings; COPs; → Utilize: Projects; Day-to-day activities; → Maintenance; → Retirement. Mission: To conduct a broad based multidisciplinary programme of scientific research and advanced engineering development, directed towards the establishment of the technology of Sodium Cooled Fast Breeder Reactors (FBR) and associated fuel cycle facilities in the Country. The mission includes the development and applications of new and improved materials, techniques, equipment and systems for FBRs, pursue basic research to achieve breakthroughs in Fast Reactor technology

  9. Which future for 3. and 4. generation reactors?

    International Nuclear Information System (INIS)

    After having briefly recalled some characteristics of energy producing nuclear reactors by presenting their three main components (fuel, heat transfer fluid, moderator), and outlined that about twenty types of reactors have been historically tested as prototypes in the USA, Russia, UK and France, the author addresses third generation reactors. He states that these reactors do not display an important technological break with respect to PWRs which are presently exploited in France, but that technical advances are such that one can say they belong to a new generation. He states that the EPR (European pressurized reactor) is amongst the best reactors presently on the market. He outlines its technological advances: safety, increased containment, performance, adaptation to various fuel types, availability, reduction of workers exposure, easier maintenance). Of course, the author evokes construction delays and costs for the Finnish and French reactors. Then, he addresses fourth-generation reactors which comprise six types of system: supercritical water reactors, very high temperature reactors (for non electricity generation applications), and four fast neutron systems. These systems have already been experimented in the past and some will be operated in India and Russia. However, due to the relatively low price of uranium and to the high level of uranium reserves, these fast breeders are not really needed on the short or on the medium term. The author outlines France's commitment in the field of fast breeders

  10. Current status on fast reactor program in Kazakhstan

    International Nuclear Information System (INIS)

    Kazakhstan Atomic Scientific and Industrial Complex consists of uranium mining, fuel production, and power industry. On the territory of the former Semipalatinsk Nuclear Test Site, there are three research reactors (EWG-1M, thermal light water heterogeneous vessel reactor with light water moderator and coolant, beryllium reflector, maximum thermal power, 35 MW, 4 hours period of continuous operation at maximum power; IGR, impulse homogeneous uranium-graphite thermal reactor with graphite reflector, maximum heat release is 5.2 GJ (1 GJ in a pulse), maximum thermal neutron flux is 0.7*1017 cm-2s-1; RA, about 0.5 MW thermal high temperature heterogeneous reactor with air coolant, zirconium hydride moderator, and beryllium reflector), and one non-reactor test facility (EAGLE, reactor fuel element melting testing). One research reactor and sub-critical assembly near Almaty (VVR-K, 10 MW light water reactor) is used primarily for nuclear safety investigations. Following a Presidential decree, Kazakhstan will establish the following technology centres: Centre of Information Technologies, based at the Nuclear Physics Institute in Altau; Centre of Biotechnologies, based at the former military centre in Stepnogorsk; and the Centre of Nuclear Technologies, based at the National Nuclear Centre in Kurchatov City. The experimental reactor TOKOMAK will be constructed at Kurchatov City in support of the International Thermonuclear Experimental Reactor (ITER) project. Works have already started. The General Plan for the BN-350 decommissioning was developed within the framework of a Kazakh - US project. At the end of March 2003, the Plan was presented for final review to a IAEA group of experts. Due to a new US DOE initiative, of the Feasibility Study Report on the possibility to use 120 t metal-concrete casks for BN-350 spent fuel transportation and long-term storage was performed at the end of 2002. These casks shall be designed and manufactured in Russia. The content (NaK) of the

  11. Neutron cross-section libraries in the AMPX master interface format for thermal and fast reactors

    International Nuclear Information System (INIS)

    Neutron cross-section libraries in the AMPX master interface format have been created for three reactor types. Included are an 84-group library for use with light-water reactors, a 27-group library for use with heavy-water CANDU reactors and a 126-group library for use with liquid metal fast breeder reactors. In general, ENDF/B data were used in the creation of these libraries, and the nuclides included in each library should be sufficient for most neutronic analyses of reactors of that type. Each library has been used successfully in fuel depletion calculations

  12. Role of research in non-destructive evaluation for life management of Indian fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rao, B.P.C.; Jayakumar, T.; Kumar, A.; Raj, B. [Non Destructive Evaluation Div., Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2007-07-01

    The successful design, construction and operation of fast breeder test reactor at Indira Gandhi Center for Atomic Research, demonstrating the technological viability of fast breeder reactors (FBRs) has paved the way for stepping into the commercial phase of the second stage of the Indian nuclear power programme. The important role of NDE is ensuring quality assurance of components during manufacture and in-service inspection (ISI) of installed components. In the area of NDE, several new technologies have been developed for inspection of in-core and out-of-core components and implemented in field. These include quality assurance of steam generator tubes and tube-to-tube sheet welds; ISI of welds in main vessel and safety vessel; ISI of inspection of steam generators; ISI of core support structure; inspection of concrete; detection of intergrannular corrosion; and under-sodium viewing. This paper demonstrates how these developments enable effective plant management of Indian FBRs. (orig.)

  13. Role of research in non-destructive evaluation for life management of Indian fast reactors

    International Nuclear Information System (INIS)

    The successful design, construction and operation of fast breeder test reactor at Indira Gandhi Center for Atomic Research, demonstrating the technological viability of fast breeder reactors (FBRs) has paved the way for stepping into the commercial phase of the second stage of the Indian nuclear power programme. The important role of NDE is ensuring quality assurance of components during manufacture and in-service inspection (ISI) of installed components. In the area of NDE, several new technologies have been developed for inspection of in-core and out-of-core components and implemented in field. These include quality assurance of steam generator tubes and tube-to-tube sheet welds; ISI of welds in main vessel and safety vessel; ISI of inspection of steam generators; ISI of core support structure; inspection of concrete; detection of intergrannular corrosion; and under-sodium viewing. This paper demonstrates how these developments enable effective plant management of Indian FBRs. (orig.)

  14. Binary breeder reactor: an option for Brazilian energy future

    International Nuclear Information System (INIS)

    To assure a continued supply of electric energy beyond a few decades from now, developmemnt of fast breeder reactors is a necessity. Binary fueled LMFBRs combine an improvement in the inherent safety of fast reactors and an efficient use of the abundant thorium. A nuclear system that starts with PWRs and gradually shifts to a FBR system or to a FBR-PWR symbiotic system appears to be the most reasonable one for Brazil. Natural uranium requirements and possible sequences of reactor introductions are discussed for some postulated Brazilian situations. A permanent system of approx. 100 GWe capacity can be established based on the estimated resource of natural uranium. (Author)

  15. Binary breeder reactor an option for Brazilian energy future

    International Nuclear Information System (INIS)

    To assure a continued supply of electric energy beyond a few decades from now, development of fast breeder reactors is a necessity. Binary fueled LMFBRs combine an improvement in the inherent safety of fast reactors and an efficient use of the abundant thorium. A nuclear system that starts with PWRs and gradually shifts to a FBR system or to a FBR-PWR symbiotic system appears to be the most resonable one for Brazil. Natural uranium requirements and possible sequences of reactor introductions are discussed for some postulated Brazilian situations. A permanent system of approximatelly 100 GWe capacity can be established based on the estimated resource of natural uranium. (Author)

  16. Fast reactors using molten chloride salts as fuel

    International Nuclear Information System (INIS)

    This report deals with a rather exotic ''paper reactor'' in which the fuel is in the form of molten chlorides. (a) Fast breeder reactor with a mixed fuel cycle of thorium/uranium-233 and uranium 238/plutonium in which all of the plutonium can be burned in situ and in which a denatured mixture of uranium-233 and uranium-238 is used to supply further reactors. The breeding ratio is relatively high, 1.58 and the specific power is 0.75 GW(th)/m3 of core. (b) Fast breeder reactor with two and three zones (internal fertile zone, intermediate fuel zone, external fertile zone) with an extremely high breeding ratio of 1.75 and a specific power of 1.1 GW(th)/m3 of core. (c) Extremely high flux reactor for the transmutation of the fission products: strontium-90 and caesium-137. The efficiency of transmutation is approximately 15 times greater than the spontaneous beta decay. This high flux burner reactor is intended as part of a complex breeder/burner system. (d) Internally cooled fast breeder in which the cooling agent is the molten fertile material, the same as in the blanket zone. This reactor has a moderate breeding ratio of 1.38, a specific power of 0.22 GW(th)/m3 of core and very good inherent safety properties. All of these reactors have the fuel in the form of molten chlorides: PuCl3 as fissile, UCl3 as fertile (if needed) and NaCl as dilutent. The fertile material can be 238UCl3 as fertile and NaCl as dilutent. In mixed fuel cycles the 233UCl3 is also a fissile component with 232ThCl4 as the fertile constituent

  17. Quality assessment on FBTR reactor vessel

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13MWe, mixed carbide fueled, sodium cooled, loop type reactor built at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam. The Reactor Vessel (RV) is manufactured using modified AISI 316 austenitic stainless steel material as per FBTR specification. The acceptance criteria for non-destructive examination, quality of weld, test requirement, tolerances on various dimensions etc. specified in FBTR specification are very stringent compared to ASME Section III, Div. I, Class I components and other international codes applicable to pressure vessels and nuclear power plant components. During the manufacture and inspection of the Reactor Vessel, a systematic approach has been adopted towards the improvement of various procedures to achieve very high reliability of the Reactor Vessel. This paper explains the details of results achieved on fabrication tolerances, destructive and non-destructive testing on materials and welds and final tests on the reactor vessel. (author)

  18. Quality assessment on FBTR reactor vessel

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, K.; Chandramohan, R.; Ramamurthy, M.K. [Indira Gandhi Centre for Atomic Research (IGCAR), Technical Coordination and Quality Assurance Group, Kalpakkam (India)

    1997-08-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13MWe, mixed carbide fueled, sodium cooled, loop type reactor built at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam. The Reactor Vessel (RV) is manufactured using modified AISI 316 austenitic stainless steel material as per FBTR specification. The acceptance criteria for non-destructive examination, quality of weld, test requirement, tolerances on various dimensions etc. specified in FBTR specification are very stringent compared to ASME Section III, Div. I, Class I components and other international codes applicable to pressure vessels and nuclear power plant components. During the manufacture and inspection of the Reactor Vessel, a systematic approach has been adopted towards the improvement of various procedures to achieve very high reliability of the Reactor Vessel. This paper explains the details of results achieved on fabrication tolerances, destructive and non-destructive testing on materials and welds and final tests on the reactor vessel. (author).

  19. Design and layout decisions for refuelling system of advanced fast neutron reactor

    International Nuclear Information System (INIS)

    The experience in operation of BOR-60, BN-350 and BN-600 power units, as well as development of refuelling systems for BN-800 power unit, allows developing of refuelling system for BN-1200 advanced reactor of new generation. The refuelling system was developed on the basis of possible technical decisions aimed at improvement of safety and technical-and-economic indices. Structural layout of BN-1200 reactor refuelling system is given. Main differences in BN-1200 reactor refuelling system as compared with BN-800 reactor are given. Design features of refuelling equipment are: - BN-1200 reactor has a split large rotating plug to allow transporting of its components by railway with subsequent assembling at site; - the refuelling box is fabricated in the form of sectional parallelepiped to allow transporting of its components by railway with subsequent assembling at site; - one 'direct' refuelling mechanism and one cantilever' refuelling mechanism are used to refuel rarely replaced protection assemblies that allows reducing of overall dimensions of rotating plugs; - the vertical elevator is arranged on the oval plug installed on the reactor cover. The upper structure with elevator drive rotates together with the elevator plug under rotary drive located on the oval plug. The vertical elevator allows sufficient reduction of refuelling box; - the refuelling machine runs on straight-line rails. The vertical elevator, gas gate valve on reactor refuelling channel, non-use of spent FA drum and enhanced radiation protection on the column of refuelling box machine allows reduction of specific materials consumption of BN-1200 reactor refuelling system by more than 10 times as compared with BN-800 reactor. To verify refuelling equipment operability the following experiments are planned: - mastering of gripper design for 'direct' refuelling mechanism and refuelling machine; - mastering of 'cantilever' for refuelling mechanism; - mastering of fresh FA conveyor design. As for the

  20. Outline of the safety research results, in the power reactor field, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has promoted the safety research in fiscal year of 1996 according to the Fundamental Research on Safety Research (fiscal year 1996 to 2000) prepared on March, 1996. Here is described on the research results in fiscal year 1996, the first year of the 5 years programme, and whole outline of the fundamental research on safety research, on the power reactor field (whole problems on the new nuclear converter and the fast breeder reactor field and problems relating to the power reactor in the safety for earthquake and probability theoretical safety evaluation field). (G.K.)

  1. Startup of the FFTF sodium cooled reactor. [Acceptance Test Program

    Energy Technology Data Exchange (ETDEWEB)

    Redekopp, R.D.; Umek, A.M.

    1981-03-01

    The Fast Flux Test Facility (FFTF), located on the Department of Energy (DOE) Hanford Reservation near Richland, Washington, is a 3 Loop 400 MW(t) sodium cooled fast reactor with a primary mission to test fuels and materials for development of the Liquid Metal Fast Breeder Reactor (LMFBR). Bringing FFTF to a condition to accomplish this mission is the goal of the Acceptance Test Program (ATP). This program was the mechanism for achieving startup of the FFTF. Highlights of the ATP involving the system inerting, liquid metal and inerted cell testing and initial ascent to full power are discussed.

  2. A comparative study of kinetics of nuclear reactors

    Directory of Open Access Journals (Sweden)

    Obaidurrahman Khalilurrahman

    2009-01-01

    Full Text Available The paper deals with the study of reactivity initiated transients to investigate major differences in the kinetics behavior of various reactor systems under different operating conditions. The article also states guidelines to determine the safety limits on reactivity insertion rates. Three systems, light water reactors (pressurized water reactors, heavy water reactors (pressurized heavy water reactors, and fast breeder reactors are considered for the sake of analysis. The upper safe limits for reactivity insertion rate in these reactor systems are determined. The analyses of transients are performed by a point kinetics computer code, PKOK. A simple but accurate method for accounting total reactivity feedback in kinetics calculations is suggested and used. Parameters governing the kinetics behavior of the core are studied under different core states. A few guidelines are discussed to project the possible kinetics trends in the next generation reactors.

  3. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U3O8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  4. Future fuel cycle development for CANDU reactors

    International Nuclear Information System (INIS)

    The CANDU reactor has proven to be safe and economical and has demonstrated outstanding performance with natural uranium fuel. The use of on-power fuelling, coupled with excellent neutron economy, leads to a very flexible reactor system with can utilize a wide variety of fuels. The spectrum of fuel cycles ranges from natural uranium, through slightly enriched uranium, to plutonium and ultimately thorium fuels which offer many of the advantages of the fast breeder reactor system. CANDU can also burn the recycled uranium and/or the plutonium from fuel discharged from light water reactors. This synergistic relationship could obviate the need to re-enrich the reprocessed uranium and allow a simpler reprocessing scheme. Fule management strategies that will permit future fuel cycles to be used in existing CANDU reactors have been identified. Evolutionary design changes will lead to an even greater flexibility, which will guarantee the continued success of the CANDU system. (author)

  5. Reactor control rod

    International Nuclear Information System (INIS)

    Object: To enable quick descent of a control rod body even when some relative phase deviation between upper drive means and wrapper tube is produced, while permitting a coolant to effectively flow into a protective tube irrespective of the position of the control rod body. Structure: In a control rod used for a nuclear reactor such as a fast breeder, an orifice which dispenses with a cylindrical guide tube and has a greater inner diameter than the outer diameter of the protective tube of the control rod body is provided on the inner side of a wrapper tube, thus permitting smooth operation of the control rod body and also permitting the coolant to effectively flow into the protective tube irrespective of the control rod body. (Horiuchi, T.)

  6. Reactor Engineering Department annual report (April 1, 1987 - March 31, 1988)

    International Nuclear Information System (INIS)

    This report summarizes the research and development activities in the Department of Reactor Engineering during the fiscal year of 1987 (April 1, 1987 - March 31, 1988). The major activities in the Department concerns the programs of the high temperature gas-cooled reactor, the high conversion light water reactor, the advanced fission reactor system and the fusion reactor at JAERI and the fast breeder reactor at PNC. The report contains the latest progress in nuclear data and group constants, theoretical methods and code development, reactor physics experiments and analyses, fusion neutronics, shielding, reactor and nuclear instrumentation, reactor control/diagnosis and robotics, as well as the new topics from this fiscal year on advanced reactors system design studies and technique developments related the facilities in the Department. Also described are the activities of the Research Committee on Reactor Physics. (author)

  7. Activity report of Reactor Physics Section - 1985

    International Nuclear Information System (INIS)

    This Activity Report contains brief summaries of different studies made in Reactor Physics Section during the year 1985. These are presented under the headings Nuclear Data Processing and Validation, Reactor Design and Analysis, Safety and Noise Analysis, Radiation Transport and Shielding, Reactor Physics Experiments and Statistical Physics. The work on nuclear data during this period comprises primarily of validation of data of 232Th and 233U as a part of participation in the Co-ordinated Research Programme (CRP) under IAEA research contract. The most significant event during 1985 at this centre has been the first criticality of FBTR (Fast Breeder Test Reactor), which was achieved on the 18th of October. Reactor Physics Section has played a key role in this event by carrying out the first approach to criticality with fuel loading in a safe manner and conducting some low power reactor physics experiments which are discussed. The studies made in the field reactor safety and shielding are also connected mainly with the FBTR problems in addition to some work on the PFBR (Prototype Fast Breeder Reactor) detailed design of which has been just started. Studies pertaining to the other two Co-ordinated Research Programmes (CRP) under IAEA contract, namely (1) on the comparative assessment of processing techniques for the analysis of sodium boiling noise detection and, (2) on the contribution of advanced reactors to energy supply have been continued during this year. At the end of this report, a list of publications made by the members of the section and also the sectional seminars held during this period is included. (author)

  8. Moon base reactor system

    Science.gov (United States)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  9. Chernobyl reactor transient simulation study

    International Nuclear Information System (INIS)

    This paper deals with the Chernobyl nuclear power station transient simulation study. The Chernobyl (RBMK) reactor is a graphite moderated pressure tube type reactor. It is cooled by circulating light water that boils in the upper parts of vertical pressure tubes to produce steam. At equilibrium fuel irradiation, the RBMK reactor has a positive void reactivity coefficient. However, the fuel temperature coefficient is negative and the net effect of a power change depends upon the power level. Under normal operating conditions the net effect (power coefficient) is negative at full power and becomes positive under certain transient conditions. A series of dynamic performance transient analysis for RBMK reactor, pressurized water reactor (PWR) and fast breeder reactor (FBR) have been performed using digital simulator codes, the purpose of this transient study is to show that an accident of Chernobyl's severity does not occur in PWR or FBR nuclear power reactors. This appears from the study of the inherent, stability of RBMK, PWR and FBR under certain transient conditions. This inherent stability is related to the effect of the feed back reactivity. The power distribution stability in the graphite RBMK reactor is difficult to maintain throughout its entire life, so the reactor has an inherent instability. PWR has larger negative temperature coefficient of reactivity, therefore, the PWR by itself has a large amount of natural stability, so PWR is inherently safe. FBR has positive sodium expansion coefficient, therefore it has insufficient stability it has been concluded that PWR has safe operation than FBR and RBMK reactors

  10. Data description for coordinated research project on benchmark analyses of sodium natural convection in the upper plenum of the MONJU reactor vessel under supervisory of technical working group on fast reactors, International Atomic Energy Agency

    International Nuclear Information System (INIS)

    This document provides a set of engineering data for an international benchmark analysis in the area of coolant thermal hydraulics of fast breeder reactors. The target phenomenon is temperature stratification of liquid sodium in the reactor vessel upper plenum of Japanese Prototype Fast Breeder Reactor 'Monju', observed at a turbine trip test from 40% power output conditions conducted in December 1995. Structural integrity of sodium-cooled fast reactors should be secured against high temperature conditions and against sharp temporal and spatial temperature gradient due to high thermal conductivity and to small specific heat of liquid sodium. This brings special importance of single phase liquid thermal hydraulics on FR designs. Japanese prototype fast breeder reactor Monju is now a precious facility capable to provide actual information on crucial issues on FR safety to other FR developing countries. Japan Nuclear Cycle Development Institute (JNC, predecessor of Japan Atomic Energy Agency) sought for fruitful way of contribution to the IAEA/TWG-FR member states for their FR development effort since a technical meeting in Tsuruga, 1st and 2nd, Dec. 2004, to reach conclusion that provision of opportunity of benchmark analysis of thermal stratification in Monju reactor vessel upper plenum is one of the best proposals along with discussions in TWG-FR annual meetings in 2005 and 2006, considering that reactor vessel is a common component among various plant configurations of FRs, and that thermal stratification inside plenum is also a common safety issue among various FR designs. This proposal was approved at the IAEA General Conference in September 2007. The set of engineering data consists of the 'Monju' plant major features, outline of the turbine trip test at December 1995, geometry of the reactor vessel upper plenum, and flow inlet boundary conditions at the reactor core top surface. (author)

  11. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  12. Evaluation of the breed/burn fast reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Atefi, B.; Driscoll, M.J.; Lanning, D.D.

    1979-12-01

    A core design concept and fuel management strategy, designated breed/burn, has been evaluated for heterogeneous fast breeder reactors. In this concept internal blanket assemblies after fissile material is bred in over several incore cycles, are shuffled into a moderated radial blanket and/or central island. The most promising materials combination identified used thorium in the internal blankets (due to the superior performance of epithermal Th-U233 systems) and zirconium hydride (ZrH/sub 16/) as the moderator (because of the compact assembly and core designs it permitted).

  13. Fast reactor development strategy targets study in China

    International Nuclear Information System (INIS)

    China is a big developing Country who needs a huge energy resources and a rapid growing rate. Considering energy resources limited and environment issues it is sure that the nuclear energy will be becoming one of the main energy resources. The Government has decided to develop the nuclear power capacity to 40 GW in 2020. It is envisaged that it will reach to 240 GW in 2050. It is stimulate us to consider conscientiously the development of the fast breeder reactor's and related closed nuclear fuel cycle by the limitation of Uranium resources and uncertainties of international Uranium market. Followings are the proposed strategic targets of fast reactor development in China. (1) To realize the operation of commercial fast breeder reactors with an unit size of 800-900 MWe and one site-multi reactors in 2030. (2) To develop the nuclear power capacity to 240 GW in 2050. (3) To replace step by step the fossil fuel utilization in large scale by nuclear energy beyond 2050. (authors)

  14. Design, implementation and cost-benefit analysis of a dynamic testing program in the Experimental Breeder Reactor-II

    International Nuclear Information System (INIS)

    Dynamic tests have been performed for many years in commercial pressurized and boiling water reactors. The purpose of this study was to evaluate the technological and economical feasibility of extending the current light water reactor testing procedures to both present and future liquid metal fast breeder reactors. A 38 node linearized, lumped parameter, EBR-II system model was developed. This model was analyzed to obtain the predicted system time and frequency response for reactivity perturbations, intermediate heat exchanger secondary inlet sodium temperature perturbation frequency response, and various system nodal frequency response sensitivities

  15. 24. annual meeting of the International working group on fast reactors, Tsuruga, Japan, 15-18 April 1991

    International Nuclear Information System (INIS)

    The agenda of the meeting included approval of the minutes of the 23rd meeting of the IWGFR, report of the Scientific Secretary regarding the activities of the Working Group, short presentation on national situation in nuclear energy and in the fast reactor field in particular, consideration of conferences on fast breeder reactors, consideration of arrangements for specialists' meetings in 1991, selection of topics for specialists' meetings to be held in 1992, consideration of joint research activities, informal discussion on ''The Economics of Fast Reactors''

  16. Reactor control rod timing system. [LMFBR

    Science.gov (United States)

    Wu, P.T.K.

    1980-03-18

    A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  17. Quality assurance in technology development for The Clinch River Breeder Reactor Plant Project

    International Nuclear Information System (INIS)

    The Clinch River Breeder Reactor Plant Project is the nation's first large-scale demonstration of the Liquid Metal Fast Breeder Reactor (LMFBR) concept. The Project has established an overall program of plans and actions to assure that the plant will perform as required. The program has been established and is being implemented in accordance with Department of Energy Standard RDT F 2-2. It is being applied to all parts of the plant, including the development of technology supporting its design and licensing activity. A discussion of the program as it is applied to development is presented

  18. Assumed mode approach to fast reactor core seismic analysis

    International Nuclear Information System (INIS)

    The need for a time history approach, rather than a response spectrum approach, to the seismic analysis of fast breeder reactor core structures is described. The use of a Rayleigh-Ritz/Assumed Mode formalism for developing mathematical models of reactor cores is presented. Various factors including structural nonlinearity, fluid inertia, and impact which necessitate abandonment of response spectrum methods are discussed. The use of the assumed mode formalism is described in some detail as it applies to reactor core seismic analysis. To illustrate the use of this formal approach to mathematical modeling, a sample reactor problem with increasing complexities of modeling is presented. Finally, several problem areas--fluid inertia, fluid damping, coulomb friction, impact, and modal choice--are discussed with emphasis on research needs for use in fast reactor seismic analysis

  19. Fast reactor programme

    International Nuclear Information System (INIS)

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  20. OECD - HRP Summer School on Light Water Reactor Structural Materials. August 26th - 30th, 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on Light Water Reactor Structural Materials in the period August 26 - 30, 2002. The summer school was primarily intended for people who wanted to become acquainted with materials-related subjects and issues without being experts. It is especially hoped that the summer school served to transfer knowledge to the ''young generation'' in the field of nuclear. Experts from Halden Project member organisations were solicited for the following programme: (1) Overview of The Nuclear Community and Current Issues, (2) Regulatory Framework for Ensuring Structural Integrity, (3) Non-Destructive Testing for Detection of Cracks, (4) Part I - Basics of Radiation and Radiation Damage, (5) Part II - Radiation Effects on Reactor Internal Materials, (6) Water Chemistry and Radiolysis Effects in LWRs, (7) PWR and Fast Breeder Reactor Internals, (8) PWR and Fast Breeder Reactor Internals, (9) Secondary Side Corrosion Cracking of PWR Steam Generator Tubes, (10) BWR Materials and Their Interaction with the Environment, (11) Radiation Damage in Reactor Pressure Vessels.

  1. OECD - HRP Summer School on Light Water Reactor Structural Materials. August 26th - 30th, 2002

    International Nuclear Information System (INIS)

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on Light Water Reactor Structural Materials in the period August 26 - 30, 2002. The summer school was primarily intended for people who wanted to become acquainted with materials-related subjects and issues without being experts. It is especially hoped that the summer school served to transfer knowledge to the ''young generation'' in the field of nuclear. Experts from Halden Project member organisations were solicited for the following programme: (1) Overview of The Nuclear Community and Current Issues, (2) Regulatory Framework for Ensuring Structural Integrity, (3) Non-Destructive Testing for Detection of Cracks, (4) Part I - Basics of Radiation and Radiation Damage, (5) Part II - Radiation Effects on Reactor Internal Materials, (6) Water Chemistry and Radiolysis Effects in LWRs, (7) PWR and Fast Breeder Reactor Internals, (8) PWR and Fast Breeder Reactor Internals, (9) Secondary Side Corrosion Cracking of PWR Steam Generator Tubes, (10) BWR Materials and Their Interaction with the Environment, (11) Radiation Damage in Reactor Pressure Vessels

  2. Structural analysis of reactor fuel elements

    International Nuclear Information System (INIS)

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  3. Structural analysis of reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design.

  4. Application of phase equilibria and chemical thermodynamics to the preparation, farbiration, and performance of advanced fast reactor fuel materials

    International Nuclear Information System (INIS)

    Described are some phase equilibria and chemical thermodynamics of systems relevant to the production and operation of the so-called ''advanced'' fast breeder reactor fuels. The systems discussed include UPu carbides, nitrides, oxycarbides and carbonitrides. Some examples of the application of these phase equilibria to the preparation, fabrication and behaviour of the materials in temperature gradients appropriate to reactor conditions are presented. Finally, aspects of the complex four and five component, U-C-O-N and U-Pu-C-O-N systems are discussed, a detailed knowledge of which is required for an analysis of advanced fuel behaviour

  5. The Last Twenty Years of Experience with Fast Reactors in Japan

    International Nuclear Information System (INIS)

    Fast reactor development experience gained in Japan in the last twenty years is summarized in this paper. In this twenty years, the safety, reliability and economic goals of fast reactors have become more ambitious than in the past. However, twenty years of progress have shown that the domestic commercialized sodium cooled fast reactor (SFR) concept, the Japanese SFR, could achieve those targets discussed in the Feasibility Study on Commercialized Fast Reactor Cycle Systems (FS) and the Fast Reactor Cycle Technology Development (FaCT) projects. The Monju prototype fast breeder reactor is finally going to restart by the end of this Japanese fiscal year (March 2010) and will take on the role of a technology and human resource development centre from both a domestic and an international point of view. (author)

  6. Quality assurance experience in the manufacture of PFBR reactor vessel during technology development work

    International Nuclear Information System (INIS)

    An efficient and proper implementation of quality assurance in the technology development works of Prototype Fast Breeder Reactor (PFBR) main vessel was undertaken to achieve the desired quality and dimensional accuracy of main vessel. In this paper an attempt has been made to bring out the methods and procedures adopted to implement the quality assurance programme on important activities including approval of documents, material, general requirements for manufacture of SS components, inspection procedures, forming and welding of petals, non-destructive testing etc. (author)

  7. Fast Reactor Knowledge Organization System: Implementation and challenges

    International Nuclear Information System (INIS)

    For three decades, several countries had large and vigorous fast breeder reactor development programmes, which had their peaks by 1980. From that time onward, Fast Reactor (FR) development generally began to decline and efforts for FR reactor development essentially disappeared by 1994. This development stagnation continued until 2003. In September 2003, in Resolution GC(47)/RES/10.B, the International Atomic Energy Agency (IAEA) General Conference recognised the vitality of nuclear knowledge. The loss of FR knowledge has been taken seriously and the IAEA took the initiative to coordinate the efforts of the member states in the preservation of knowledge in FRs. In the framework of this initiative, the IAEA intends to create an international inventory combining information from different member states on FRs and organized in the knowledge system in a systematic and structured manner

  8. Design considerations for an inertial confinement fusion reactor power plant

    International Nuclear Information System (INIS)

    To further define the engineering and economic concerns for inertial confinement fusion reactors (ICR's), a conceptual design study was performed by Bechtel Group Incorporated under the direction of Lawrence Livermore National Laboratory (LLNL). The study examined alternatives to the LLNL HYLIFE concept and expanded the previous balance of plant design to incorporate information from recent liquid metal cooled fast breeder reactor (LMFBR) power plant studies. The majority of the effort was to incorporate present laser and target physics models into a reactor design with a low coolant flowrate and a high driver repetition rate. An example of such a design is the LLNL JADE concept. In addition to producing a power plant design for LLNL using the JADE example, Bechtel has also examined the applicability of the EAGLE (Energy Absorbing Gas Lithium Ejector) concept

  9. Evaluation of sodium fast reactor operations in the world; Bilan du fonctionnement des reacteurs rapides sodium dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J. [CEA Saclay, DRI, 91 - Gif-sur-Yvette (France); Martin, L. [CEA Cadarache, DEN, 13 - Saint-Paul-lez-Durance (France); Giraud, B. [Electricite de France (France); Sauvage, J.F.; Prele, G. [Electricite de France (EDF/SEPTEN), 69 - Villeurbanne (France)

    2010-05-15

    18 sodium fast reactors have been operating in the world, 6 were dedicated to the production of electricity among which 2 are still in operation. The 6 reactors follow: PFR (United-Kingdom, 1974 - 1994), Phenix (France, 1973 - 2009), Superphenix (France, 1985 - 1997), BN-350 (Kazakhstan, 1972 - 1999), BN-600 (Russia, 1980 - ), Monju (Japan, 1994 - ). A total of 403 years of operational period have cumulated for sodium fast reactors. The operational period of the Superphenix reactor can be divided into 3 parts: 53 months of operation, 25 months of no-operation because of mainly 3 important problems, and 54 months of no-operation because the reactor was not allowed to operate while it was able to. The feedback experience shows that the engineers have to be very cautious for the choice of the materials, for the quality of the construction, for the monitoring of the reactor and for the reactor maintenance. It also appears that the first reactor of a series requires a period of setting, of adjusting and of validation of the options. A detailed study on the availability rates of Phenix, Superphenix and BN-600 shows that the availability rate of future sodium reactors will near that of today's PWR. 3 sodium reactors are under construction: BN-800 (Russia), CEFR (China) and PFBR (India). (A.C.)

  10. Examination of fast-reactor fuels and FBR analytical quality-assurance standards and methods. Progress report, October 1-December 31, 1980

    International Nuclear Information System (INIS)

    This project is directed toward the examination and comparison of the effects of neutron irradiation on Liquid Metal Fast Breeder Reactor (LMFBR) Program fuel materials. Unirradiated and irradiated materials will be examined as requested by the Reference Fuels System Branch of the Division of Reactor Research and Technology (DRRT). Capabilities have been established and are being expanded for providing conventional preirradiation and postirradiation examinations. Nondestructive tests will be conducted in a hot-cell facility specifically modified for examining irradiated prototype fuel pins at a rate commensurate with schedules established by DRRT

  11. International Working Group on Fast Reactors Second Annual Meeting. Summary Report

    International Nuclear Information System (INIS)

    The Agenda of the Meeting was as follows: Opening of the meeting. 2. Appraisal of the IWGFB's activity for the period from the first annual meeting of the Group. 3. Comments on national programmes on fast breeder reactors. 4. Presentation of general findings and conclusions of national and regional meetings on fast reactor problems held in represented countries and international organisations last year. 5. Comments on the programmes of international meetings on fast reactors to be held in 1969. 6. Consideration of a schedule for meetings on fast reactors in 1970. 7. Suggestions for the topics and location of specialists' meetings in 1969-1970. 8. Suggestions for reviews and studies in the field of fast reactors. 9. The time and place of the third annual meeting of the IWGFR. 10. Closing of the meeting

  12. Annual progress report for 1982 of Theoretical Reactor Physics Section

    International Nuclear Information System (INIS)

    The progress of work done in the Theoretical Reactor Physics Section of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1982 is reported in the form of write-ups and summaries. The main thrust of the work has been to master the neutronic design technology of four different types of nuclear reactor types, namely, pressurized heavy water reactors, boiling light water reactors, pressurized light water reactors and fast breeder reactors. The development work for the neutronic analysis, fuel design, and fuel management of the BWR type reactors of the Tarapur Atomic Power Station has been completed. A new reactor simulator system for PHWR design analysis and core follow-up was completed. Three dimensional static analysis codes based on nodal and finite element methods for the design work of larger size (500-750 MWe) reactors have been developed. Space link kinetics codes in one, two and three dimensions for above-mentioned reactor systems have been written and validated. Fast reactor core disruptive analysis codes have been developed. In the course of R and D work concerning various types of reactor projects, investigations were also carried in the allied areas of Monte Carlo techniques, integral transform methods, path integral methods, high spin states in heavy nuclei and a hydrodynamics model for a laser driven fusion system. (M.G.B.)

  13. Trial visualization of fast reactor design knowledge

    International Nuclear Information System (INIS)

    In design problems of large-scale systems like fast breeder reactors, inter-relations among design specifications are very important where a selected specification option is transferred to other specification selections as a premise to be taken account in engineering judgments. These inter-relations are also important in design case studies with the hypothetical adoption of rejected design options for the evaluation of deviation propagations among design specifications. Some of these rejected options have potential worth for future reconsideration by some circumstance changes (e.g., advanced simulations to exclude needs for mock-up tests, etc.), to contribute to flexibility in system designs. In this study, a computer software is built to visualize a design problem structure by representing engineering knowledge nodes on individual specification selections along with inter-relations of design specifications, to validate the knowledge representation method and to derive open problems. (author)

  14. Analysis of three-dimensional thermo-hydraulic phenomena in the reactor core of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, S.; Lee, Y. B.; Jang, W. P.; Ha, K. S.; Jung, H. Y. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    The mismatch between power and flow under the transient condition of LMFBR (Liquid Metal cooled Fast Breeder Reactor) core results in thermal stratification in hot pool. Since the fluid of hot pool enters IHXs, the temperature distribution of hot pool can alter the overall system response, therefore three-dimensional analysis of thermo-hydraulic phenomena is necessary. In this study, the thermo-hydraulic phenomena under normal operating condition and unprotected transient condition of LMFBR is investigated using which is the three-dimensional analysis code, COMMIX-1AR/P. The basic input data is based on the design data of KALIMER-600, which is sodium-cooled fast breeder reactor developed by KAERI. COMMIX-1AR/P code has not a reactivity model and the power and core flowrate must be supplied in the input data. In this study, results of SSC-K calculation is used. The temperature and velocity distributions are calculated and compared with those of SSC-K calculation results. The UTOF(Unprotected Loss Of Flow) accident is calculated using COMMIX-1AR/P and the temperature and velocity distributions in the total reactor core are calculated and the natural circulation mode under this transient condition is investigated.

  15. Dynamic simulation of the air-cooled decay heat removal system of the German KNK-II experimental breeder reactor

    International Nuclear Information System (INIS)

    A Dump Heat Exchanger and associated feedback control system models for decay heat removal in the German KNK-II experimental fast breeder reactor are presented. The purpose of the controller is to minimize temperature variations in the circuits and, hence, to prevent thermal shocks in the structures. The basic models for the DHX include the sodium-air thermodynamics and hydraulics, as well as a control system. Valve control models for the primary and intermediate sodium flow regulation during post shutdown conditions are also presented. These models have been interfaced with the SSC-L code. Typical results of sample transients are discussed

  16. Status of Fast Reactor Research and Technology Development

    International Nuclear Information System (INIS)

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  17. Thermophysical and thermochemical properties of fast reactor materials

    International Nuclear Information System (INIS)

    The physical and chemical properties of materials occurring within the core of a liquid sodium cooled fast breeder reactor (LMFBR) are reviewed. Properties particularly relevant to predicting the reactor's behaviour under various accident scenarios and during normal operations are considered and recommendations in a form suitable for use in computer codes which model such situations are put forward. Included in the review are the following properties: (a) Oxide fuels: density and thermal expansion, temperature of fusion, enthalpy and specific heat, vapour pressure, viscosity, diffusion and creep, emissivity, thermal conductivity, surface tension and energy. (b) AISI M316 stainless steel: composition, thermal expansion, temperature of fusion, enthalpy and specific heat, thermal conductivity, vapour pressure, viscosity. (c) Sodium: density, enthalpy and specific heat, vapour pressure, emissivity, diffusion, thermal conductivity, surface tension, viscosity, equation of state, critical constants

  18. Status of reactor shielding research in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bartine, D.E.

    1983-01-01

    Shielding research in the United States continues to place emphasis on: (1) the development and refinement of shielding design calculational methods and nuclear data; and (2) the performance of confirmation experiments, both to evaluate specific design concepts and to verify specific calculational techniques and input data. The successful prediction of the radiation levels observed within the now-operating Fast Flux Test Facility (FFTF) has demonstrated the validity of this two-pronged approach, which has since been applied to US fast breeder reactor programs and is now being used to determine radiation levels and possible further shielding needs at operating light water reactors, especially under accident conditions. A similar approach is being applied to the back end of the fission fuel cycle to verify that radiation doses at fuel element storage and transportation facilities and within fuel reprocessing plants are kept at acceptable levels without undue economic penalties.

  19. Study on mixed convective flow penetration into subassembly from reactor hot plenum in FBRs

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, J.; Ohshima, H.; Kamide, H.; Ieda, Y. [Power Reactor and Nuclear Fuel Development Corporation, Ibaraki (Japan)

    1995-09-01

    Fundamental experiments using water were carried out in order to reveal the phenomenon of mixed convective flow penetration into subassemblies from a reactor`s upper plenum of fast breeder reactors. This phenomenon appears under a certain natural circulation conditions during the operation of the direct reactor auxiliary cooling system for decay heat removal and might influence the natural circulation head which determines the core flow rate and therefore affects the core coolability. In the experiment, a simplified model which simulates an upper plenum and a subassembly was used and the ultrasonic velocity profile monitor as well as thermocouples were applied for the simultaneous measurement of velocity and temperature distributions in the subassembly. From the measured data, empirical equations related to the penetration flow onset condition and the penetration depth were obtained using relevant parameters which were derived from dimensional analysis.

  20. Lessons learned from the licensing process for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    This paper presents the experience of licensing a specific liquid-metal fast breeder reactor (LMFBR), the Clinch River Breader Reactor Plant (CRBRP). It was a success story in that the licensing process was accomplished in a very short time span. The actions of the applicant and the actions of the US Nuclear Regulatory Commission (NRC) in response are presented and discussed to provide guidance to future efforts to license unconventional reactors. The history is told from the perspective of the authors. As such, some of the reasons given for success or lack of success are subjective interpretations. Nevertheless, the authors' positions provided them an excellent viewpoint to make these judgements. During the second phase of the licensing process, they were the CRBRP Technical Director and the Licensing Manager, respectively, for the Westinghouse Electric Corporation, the prime contractor for the reactor plant

  1. ORIGEN2 model and results for the Clinch River Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A G; Bjerke, M A

    1982-06-01

    Reactor physics calculations and literature information acquisition have led to the development of a Clinch River Breeder Reactor (CRBR) model for the ORIGEN2 computer code. The model is based on cross sections taken directly from physics codes. Details are presented concerning the physical description of the fuel assemblies, the fuel management scheme, irradiation parameters, and initial material compositions. The ORIGEN2 model for the CRBR has been implemented, resulting in the production of graphical and tabular characteristics (radioactivity, thermal power, and toxicity) of CRBR spent fuel, high-level waste, and fuel-assembly structural material waste as a function of decay time. Characteristics for pressurized water reactors (PWRs), commercial liquid-metal fast breeder reactors (LMFBRs), and the Fast Flux Test Facility (FFTF) have also been included in this report for comparison with the CRBR data.

  2. Report of the evaluation by the project evaluation committee on upgrade of MOX fuels for advanced thermal reactor. Result evaluation in fiscal year 2001

    International Nuclear Information System (INIS)

    Japan Nuclear Cycle Development Institute (JNC) consulted a post evaluation on the 'Upgrade of MOX fuels for advanced thermal reactor' to the Committee on projects evaluation of research and development' (committee on projects evaluation of fast breeder reactors and fuels cycle) on bases of the National guideline on the method of evaluation for government R and D (stipulated by the Prime Minister of Japan on August 7, 1997), the Guidelines on external evaluation of researches and developments' in JNC (enacted on October 1, 1998), and so on. On response to this, the committee on projects evaluation of fast breeder reactors and fuel cycle evaluated this projects on a base of its explanatory documents, and supplementary ones proposed by JNC and discussions at the committee, according to evaluation procedures set by this committee. As a result of its general evaluation, it could be judged that an aim to develop high performance MOX fuels for demonstration reactors was almost established on its narrow meaning. However, by losing the plan of development on the demonstration reactors, by its conservative target setting, and so on, its effect must be said to be restrictive. Nevertheless, it was highly evaluated to produce MOX fuels, irradiate them, test them, and accumulate some know-hows on them by using its independent technologies. (G.K.)

  3. BDDR, a new CEA technological and operating reactor database

    Energy Technology Data Exchange (ETDEWEB)

    Soldevilla, M.; Salmons, S.; Espinosa, B. [CEA-Saclay, CEA/DEN/DANS/DM2S/SERMA, 91191 Gif-sur-Yvette (France); Clanet, M.; Boudin, X. [CEA-Bruyeres-le-Chatel, 91297 Arpajon (France)

    2013-07-01

    The new application BDDR (Reactor database) has been developed at CEA in order to manage nuclear reactors technological and operating data. This application is a knowledge management tool which meets several internal needs: -) to facilitate scenario studies for any set of reactors, e.g. non-proliferation assessments; -) to make core physics studies easier, whatever the reactor design (PWR-Pressurized Water Reactor-, BWR-Boiling Water Reactor-, MAGNOX- Magnesium Oxide reactor-, CANDU - CANada Deuterium Uranium-, FBR - Fast Breeder Reactor -, etc.); -) to preserve the technological data of all reactors (past and present, power generating or experimental, naval propulsion,...) in a unique repository. Within the application database are enclosed location data and operating history data as well as a tree-like structure containing numerous technological data. These data address all kinds of reactors features and components. A few neutronics data are also included (neutrons fluxes). The BDDR application is based on open-source technologies and thin client/server architecture. The software architecture has been made flexible enough to allow for any change. (authors)

  4. Technical meeting on decommissioning of fast reactors after sodium draining. Working material

    International Nuclear Information System (INIS)

    The objective of the technical meeting was to provide a forum for in-depth scientific and technical exchange on topics related to the decommissioning experience with fast reactors, in particular with regard to the decommissioning of components after sodium draining. Accordingly, the scope of the meeting covers the review and analyses of the experience gained from the decommissioning of both active sodium loops and sodium cooled fast reactors (e.g., KNK II, Superphenix, RAPSODIE, EBR-II, FERMI, BN-350, BR-10). It is expected that the outcome of the meeting will contribute to the Agency initiative to preserve fast reactor data and knowledge. The main focus of the technical meeting was given on the decommissioning of both active loop and reactor components (e.g., the primary vessel of a sodium-cooled reactor) that have been drained of sodium, but that still conserve some residual amounts of sodium (e.g., films covering the entire surface of the component, or particular sodium heels that cannot be drained)

  5. Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors

    International Nuclear Information System (INIS)

    CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR’s). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R and D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U–20 wt%UO2, U–25 wt%UO2 and U–30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U–UO2 compositions.

  6. Decay heat removal in pool type fast reactor using passive systems

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, U. [Thermal Hydraulics Section, Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sundararajan, T. [Department of Mechanical Engineering, IIT-Madras, Chennai 600 036 (India); Balaji, C., E-mail: balaji@iitm.ac.in [Department of Mechanical Engineering, IIT-Madras, Chennai 600 036 (India); Velusamy, K.; Chellapandi, P.; Chetal, S.C. [Thermal Hydraulics Section, Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Three dimensional thermal hydraulic analysis of decay heat system in a fast reactor model predictions compared with experimental results from PHENIX. Black-Right-Pointing-Pointer Calculations confirm adequacy of natural convection in decay heat removal. Black-Right-Pointing-Pointer Inter-wrapper flow found to reduce peak temperatures by 50 K in the blanket zone. - Abstract: Post shutdown decay heat removal in a fast reactor is one of the most important safety functions which must be accomplished with a very high reliability. To achieve high reliability, the fast breeder reactor design has emphasized on passive or near passive decay heat removal systems utilizing the natural convection in the heat removal path. A typical passive decay heat removal system used in recent designs of fast breeder reactors consists of a sodium to sodium heat exchanger and sodium to air heat exchanger which together remove heat directly from the hot pool to the final heat sink, which is air. Since these are safety systems, it is necessary to confirm the design with detailed numerical analysis. The numerical studies include pool hydraulics, natural convection phenomena in closed loops, flow through narrow gaps between SA, multi-scale modeling, etc. Toward understanding the evolution of thermal hydraulic parameters during natural convection decay heat removal, a three-dimensional CFD model for the primary system coupled with an appropriate one-dimensional model for the secondary system is proposed. The model has been validated against the results of natural convection test conducted in PHENIX reactor. Adopting the model for the Indian PFBR, six different decay heat removal cases have been studied which bring out the effect of safety grade decay heat removal system (SGDHRS) capacity, secondary sodium inventory and inter-wrapper flow heat transfer on the subassembly outlet temperatures that are important for safety evaluation of the reactor. From the

  7. Decay heat removal in pool type fast reactor using passive systems

    International Nuclear Information System (INIS)

    Highlights: ► Three dimensional thermal hydraulic analysis of decay heat system in a fast reactor model predictions compared with experimental results from PHENIX. ► Calculations confirm adequacy of natural convection in decay heat removal. ► Inter-wrapper flow found to reduce peak temperatures by 50 K in the blanket zone. - Abstract: Post shutdown decay heat removal in a fast reactor is one of the most important safety functions which must be accomplished with a very high reliability. To achieve high reliability, the fast breeder reactor design has emphasized on passive or near passive decay heat removal systems utilizing the natural convection in the heat removal path. A typical passive decay heat removal system used in recent designs of fast breeder reactors consists of a sodium to sodium heat exchanger and sodium to air heat exchanger which together remove heat directly from the hot pool to the final heat sink, which is air. Since these are safety systems, it is necessary to confirm the design with detailed numerical analysis. The numerical studies include pool hydraulics, natural convection phenomena in closed loops, flow through narrow gaps between SA, multi-scale modeling, etc. Toward understanding the evolution of thermal hydraulic parameters during natural convection decay heat removal, a three-dimensional CFD model for the primary system coupled with an appropriate one-dimensional model for the secondary system is proposed. The model has been validated against the results of natural convection test conducted in PHENIX reactor. Adopting the model for the Indian PFBR, six different decay heat removal cases have been studied which bring out the effect of safety grade decay heat removal system (SGDHRS) capacity, secondary sodium inventory and inter-wrapper flow heat transfer on the subassembly outlet temperatures that are important for safety evaluation of the reactor. From the results, it is concluded that the delay in initiation of SGDHRS, replacement

  8. Knowledge Management in Fast Reactors and Related Fuel Cycles

    International Nuclear Information System (INIS)

    The 21st century is ushering in a new phase of economic and social development which can be referred as 'Knowledge Economy' in which knowledge has become the key asset in determining the organization's success or failure. Nuclear technology is very complex and a highly technical endeavor. It relies on innovative creation, storage and dissemination of knowledge. The nuclear technology is also characterized by long time scales and technological excellence. Nuclear Knowledge Management is a critical input to Nuclear Power Industry, the associated fuel cycle activities and nuclear applications in medicine, industry and agriculture. In an R and D Organization like Indira Gandhi Centre for Atomic Research (IGCAR) specializing in the areas of Fast Reactor Technology and associated Fuel Cycle Facilities, Knowledge Management plays a vital role. IGCAR is operating successfully the Fast Breeder Test Reactor (FBTR) for the last 24 years with a unique Pu-U Carbide Fuel. The paper highlights the various success stories, lessons learnt from FBTR, knowledge accrued, disseminated and reused. With intensive R and D and innovations, the processes have been developed and FBTR's spent carbide fuel of 155 GWd/t burn up has been reprocessed successfully. The paper covers the knowledge that has been created through extensive analysis and validation for the design of a 500 MWe Prototype Fast Breeder Reactor (PFBR) which is under construction at Kalpakkam. The Centre has developed world class expertise in the areas of sodium technology, material development, non-destructive evaluation, instrumentation etc. This paper gives some examples of how the knowledge generated is used for PFBR. (author)

  9. Fast reactor of 1.000 MWt started with U-Zr

    International Nuclear Information System (INIS)

    A U-Zr fueled 1000 MWt liquid metal reactor (LMR) to be used in a second step of the fast breeder reactor development program that we propose for Brazil is studied. Initially, principal technological aspects and cost trends are reviewed in order to place this type of reactors in a proper perspective regarding their application to electric power generation. Then two models are compared and one is selected for cycle-by-cycle analysis isotopic evolution and parameters of interest such as the Doppler effect, sodium void reactivity, control requirement and availability, resources consumption, and enrichment requirement. The analysed model is quite adequate for the phase for which it is considered due to its high degree of inherent safety, which should contribute to a better public acceptance of nuclear energy. In addition, its introduction with enriched uranium, available in the country, allows an autonomous development of LMR which is a better alternative to the PWR meeting for future power demand. (author)

  10. Study on a decay heat removal system of light water reactors using air coolers

    International Nuclear Information System (INIS)

    In the present work, a passive decay heat removal system for light water reactors (LWRs) based on a new concept is studied referring to an air cooling system (ACS) of the fast breeder reactor Monju. The present study will contribute to the reduction of severe accident risks of nuclear power plants. In this system, a blower for an air cooler (AC) is operated using the rotation of a small steam turbine by generated steam in order to cool heat transfer tubes by forced convection of air. The purpose of the present work is to investigate the plant transient caused by a station blackout (SBO) using the plant system code NETFLOW++ and decay heat removal characteristics. A calculation model is the Advanced Boiling Water Reactor (ABWR) in Japan. (author)

  11. KNK II, Compact Sodium-Cooled Reactor in the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    The report gives an overview of the project of the sodium-cooled fast reactor KNK II in the nuclear research center KfK in Karlsruhe. This test reactor was the preparatory stage of the prototype plant SNR 300 and had several goals: to train operating personal, to practice the licensing procedures in Germany, to get experience with the sodium technology and to serve as a test bed for fast breeder core components. The report contains contributions of KfK as the owner and project managing organization, of INTERATOM as the design and construction company and of the KBG as the plant operating organization. Experience with and results of relevant aspects of the project are tackled: project management, reactor core and component design, safety questions and licensing, plant design and test programs

  12. Nuclear data needs for the analysis of generation and burn-up of actinide isotopes in nuclear reactors

    International Nuclear Information System (INIS)

    A reliable prediction of the in-pile and out-of-pile physics characteristics of nuclear fuel is one of the objectives of present-day reactor physics. The paper describes the main production paths of important actinides for light water and fast breeder reactors. The accuracy of recent nuclear data is examined by comparisons of theoretical predictions with the results from post-irradiation analysis of nuclear fuel from power reactors, and partly with results obtained in zero-power facilities. A world-wide comparison of nuclear data to be used in large fast power reactor burn-up and long term considerations is presented. The needs for further improvement of nuclear data are discussed. (orig.)

  13. USSR experience of the safe operation of nuclear power plants with fast reactors

    International Nuclear Information System (INIS)

    Experience of the operation of nuclear power plants with fast reactors in the USSR is based on the results of work with BN-350 and BN-600 reactors. This experience affords evidence of extremely satisfactory safety characteristics from the point of view both of reliable heat removal from the reactor cores and of the hazard to plant personnel, the environment and population at large from exposure to radiation. The paper gives information concerning the power regime at which the facility is operated and about the most characteristic and dangerous situations which have occurred during operation. A comparison is made between a list of the most dangerous initiating events which are analysed in connection with the design of nuclear power stations with fast reactors (in accordance with USSR standards documents now in force) and the events which were observed in the process of operation. Reference is made to the important role of the more probable initiating events in the overall problem of ensuring the safety of nuclear power plants, especially when this is related to action by the staff which is not provided for in instructions and to possible errors on the part of personnel. (author)

  14. Enhanced safe reactor plant KLT-40 for nuclear ships and power - Desalination complexes

    International Nuclear Information System (INIS)

    OKB Mechanical Engineering (OKBM) is a designer of the reactor plant. OKBM has a long-term experience in development and High qualifications of OKBM research and personnel, advanced engineering equipment, vast experience of reactor plant development and operation ensure high quality of the design. Central Design Bureau (CDB) 'Airbags' is the author of the ship's design that houses the reactor plant and desalination unit. CDB 'Airbags' is the general designer of all soviet nuclear-powered icebreakers. EKATERINBIRG Research And Development Institute Of Chemical Machine Engineering is the chief designer of distillation desalination plant. The Institute has acquired a vast experience of research, development and technical supervision of virtually all operated including the desalination plant in the city of Actau (Kazakstan) currently operated in combination with the reactor plant BN-350. Production Association 'Baltic Works' is the builder of the plant. This enterprise's engaged in building nuclear ships. All currently operated nuclear-powered icebreakers: 'Sibir', 'Rossiya', 'soviet Union', 'Temary' and 'Vaigach' have been built there

  15. Detection of steam leaks into sodium in fast reactor steam generators by acoustic techniques - An overview of Indian programme

    International Nuclear Information System (INIS)

    Realising the potential of acoustic leak detection technique, an experimental programme was initiated a few years back at Indira Gandhi Centre for Atomic Research (IGCAR) to develop this technique. The first phase of this programme consists of experiments to measure background noise characteristics on the steam generator modules of the 40 MW (thermal) Fast Breeder Test Reactor (FBTR) at Kalpakkam and experiments to establish leak noise characteristics with the help of a leak simulation set up. By subjecting the measured data from these experiments to signal analysis techniques, a criterion for acoustic leak detection for FBTR steam generator will be evolved. Second phase of this programme will be devoted to developing an acoustic leak detection system suitable for installation in the 500 MWe Prototype Fast Breeder Reactor (PFBR). This paper discusses the first phase of the experimental programme, results obtained from measurements carried out on FBTR steam generators and results obtained from leak simulation experiments. Acoustic leak detection system being considered for PFBR is also briefly described. 4 refs, 8 figs, 1 tab

  16. Build-up and decay of fuel actinides in the fuel cycle of nuclear reactors

    International Nuclear Information System (INIS)

    For boiling water reactors, pressurized light-water reactors, pressure-tube-type heavy water reactors, high-temperature gas-cooled reactors, and sodium-cooled fast breeder reactors, uranium fueled and mixed-oxide fueled, each of 1000 MWe, the following have been studied: (1) quantities of plutonium and other fuel actinides built up in the reactor, (2) cooling behaviors of activities of plutonium and other fuel actinides in the spent fuels, and (3) activities of plutonium and other fuel actinides in the high-level reprocessing wastes as a function of storage time. The neutron cross section and decay data of respective actinide nuclides are presented, with their evaluations. For effective utilization of the uranium resources and easy reprocessing and high-level waste management, a thermal reactor must be fueled with uranium; the plutonium produced in a thermal reactor should be used in a fast reactor; and the plutonium produced in the blanket of a fast reactor is more appropriate for a fast reactor than that from a thermal reactor. (auth.)

  17. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    International Nuclear Information System (INIS)

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials

  18. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials.

  19. Perspectives of nuclear desalination of seawater by small and medium reactors (SMRs)

    International Nuclear Information System (INIS)

    Interest in nuclear desalination has been growing in many Member States over the past decade. Following the review of the state-of-the-art technologies of nuclear and seawater desalination using experience from plants in operation, and taking into account feasibility studies under site-specific conditions, several nuclear desalination demonstration programmes are already under way or being planned by IAEA Member States. The energy required for desalination can be provided by nuclear reactors in the form of low-grade heat and/or electricity. In this paper, various factors, which support the attractiveness of nuclear desalination by small and medium reactors (SMRs), are identified and discussed (e.g. growing concerns about the environmental effects of burning fossil fuels; recognition of the benefits of diversification of energy sources; expected spin-off effects in industrial development and the development of new advanced reactor concepts in the small- and medium-power range). It is further illustrated that many nuclear reactor types can provide the energy requirements for various desalination processes. Operating experience with nuclear desalination, which has been gained by a liquid-metal cooled fast reactor BN-350 in Kazakhstan and several Pressurized Water Reactor (PWR) units in Japan, is discussed. Other reactor types, which are also being evaluated for application (i.e. integral type PWRs, nuclear heating reactors (HTGRs) and a Boiling Water Reactor (BWR)), are also discussed. Economic analyses of nuclear desalination using specialized computer software were carried out in order to demonstrate the competitiveness of this technology relative to fossil fuel-powered desalination operations. Guidelines are also given for the preparation of site-specific user requirements documents. (author)

  20. Development of materials and manufacturing technologies for Indian fast reactor programme

    International Nuclear Information System (INIS)

    Fast Breeder Reactors (FBRs) are vital towards meeting security and sustainability of energy for the growing economy of India. The development of FBRs necessitates extensive research and development in domains of materials and manufacturing technologies in association with a wide spectrum of disciplines and their inter-twining to meet the challenging technology. The paper highlight the work and the approaches adopted for the successful deployment of materials, manufacturing and inspection technologies for the in-core and structural components of current and future Indian Fast Breeder Reactor Programme. Indigenous development of in-core materials viz. Titanium modified austenitic stainless steel (Alloy D9) and its variants, ferritic/martensitic oxide-dispersion strengthened (ODS) steels as well as structural materials viz. 316L(N) stainless steel and modified 9Cr-1Mo have been achieved through synergistic interactions between Indira Gandhi Centre for Atomic Research (IGCAR), education and research institutes and industries. Robust manufacturing technology has been established for forming and joining of various components of 500 MWe Prototype Fast Breeder Reactor (PFBR) through 'science-based technology' approach. To achieve the strict quality standards of formed parts in terms of geometrical tolerances, residual stresses and microstructural defects, FEM-based modelling and experimental validation was carried out for estimation of spring-back during forming of multiple curvature thick plantes. Optimization of grain boundary character distribution in Alloy D9 was carried out by adopting the grain boundary engineering approach to reduce radiation induced segregation. Extensive welding is involved in the fabrication of reactor vessels, piping, steam generators, fuel sub-assemblies etc. Activated Tungsten Inert Gas Welding process along with activated flux developed at IGCAR has been successfully used in fabrication of dummy fuel subassemblies (DFSA) required for testing

  1. Development of materials and manufacturing technologies for Indian fast reactor programme

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Baldev; Jayakumar, T.; Bhaduri, A.K.; Mandal, Sumantra [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    Fast Breeder Reactors (FBRs) are vital towards meeting security and sustainability of energy for the growing economy of India. The development of FBRs necessitates extensive research and development in domains of materials and manufacturing technologies in association with a wide spectrum of disciplines and their inter-twining to meet the challenging technology. The paper highlight the work and the approaches adopted for the successful deployment of materials, manufacturing and inspection technologies for the in-core and structural components of current and future Indian Fast Breeder Reactor Programme. Indigenous development of in-core materials viz. Titanium modified austenitic stainless steel (Alloy D9) and its variants, ferritic/martensitic oxide-dispersion strengthened (ODS) steels as well as structural materials viz. 316L(N) stainless steel and modified 9Cr-1Mo have been achieved through synergistic interactions between Indira Gandhi Centre for Atomic Research (IGCAR), education and research institutes and industries. Robust manufacturing technology has been established for forming and joining of various components of 500 MWe Prototype Fast Breeder Reactor (PFBR) through 'science-based technology' approach. To achieve the strict quality standards of formed parts in terms of geometrical tolerances, residual stresses and microstructural defects, FEM-based modelling and experimental validation was carried out for estimation of spring-back during forming of multiple curvature thick plantes. Optimization of grain boundary character distribution in Alloy D9 was carried out by adopting the grain boundary engineering approach to reduce radiation induced segregation. Extensive welding is involved in the fabrication of reactor vessels, piping, steam generators, fuel sub-assemblies etc. Activated Tungsten Inert Gas Welding process along with activated flux developed at IGCAR has been successfully used in fabrication of dummy fuel subassemblies (DFSA) required

  2. Liquid-metal pumps for large-scale breeder-reactor plant (prototype pump)

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, M. (comp.)

    1976-07-01

    This report presents the recommended pump design for use in Large Scale Liquid Metal Fast Breeder Reactor plants. The base design for the pump will circulate 127,000 GPM of liquid sodium at temperatures up to 850/sup 0/F and with a total discharge head at the design point of 500 feet Na with an impeller that is 40 feet below the sodium seal. The pump design is predicated on developing an impeller design which will have a suction specific speed (S/sub n/) of about 20,000 with 20 feet NPSH available, which will result in a pump speed of 530 RPM at design conditions. The design is based on the technology developed in the design and fabrication of FFTF pumps, the design efforts for the Clinch River Breeder Reactor Pump design study and other technology.

  3. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors

    Science.gov (United States)

    Rowcliffe, A. F.; Mansur, L. K.; Hoelzer, D. T.; Nanstad, R. K.

    2009-07-01

    Because of their superior high temperature strength and corrosion properties, a set of Ni-base alloys has been proposed for various in-core applications in Gen IV reactor systems. However, irradiation-performance data for these alloys is either limited or non-existent. A review is presented of the irradiation-performance of a group of Ni-base alloys based upon data from fast breeder reactor programs conducted in the 1975-1985 timeframe with emphasis on the mechanisms involved in the loss of high temperature ductility and the breakdown in swelling resistance with increasing neutron dose. The implications of these data for the performance of the Gen IV Ni-base alloys are discussed and possible pathways to mitigate the effects of irradiation on alloy performance are outlined. A radical approach to designing radiation damage-resistant Ni alloys based upon recent advances in mechanical alloying is also described.

  4. Sodium natural convection testing in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility

    International Nuclear Information System (INIS)

    A comparison is made between experimental data and analytical results for a single-phase natural convection test in an experimental sodium loop. The test was conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale high temperature sodium loop at the Oak Ridge National Laboratory (ORNL), used for thermal-hydraulic testing of simulated Liquid Metal Fast Breeder Reactor (LMFBR) subassemblies at normal and off-normal operating conditions. Electrical heating in the 19-pin assembly during the test was typical of decay heat levels. The test chosen for analysis in this paper was one of seven natural convection runs conducted in the facility. In this test the bypass line was open to simulate a parallel heated assembly and the test was begun with a pump coastdown from a small initial forced flow

  5. Internal fluid flow management analysis for Clinch River Breeder Reactor Plant sodium pumps

    International Nuclear Information System (INIS)

    The Clinch River Breeder Reactor Plant (CRBRP) sodium pumps are currently being designed and the prototype unit is being fabricated. In the design of these large-scale pumps for elevated temperature Liquid Metal Fast Breeder Reactor (LMFBR) service, one major design consideration is the response of the critical parts to severe thermal transients. A detailed internal fluid flow distribution analysis has been performed using a computer code HAFMAT, which solves a network of fluid flow paths. The results of the analytical approach are then compared to the test data obtained on a half-scale pump model which was tested in water. The details are presented of pump internal hydraulic analysis, and test and evaluation of the half-scale model test results

  6. Knowledge management in fast reactors and related fuel cycles

    International Nuclear Information System (INIS)

    regarding BFS-1, BFS-2 and KOBR and post irradiation experience. In UK a super archive was prepared. In USA, TREAT and ZPPR data are currently on a magnetic tape and hard copies with some transfer to electronic files. It is therefore subject to loss. Hence selected ZPR and ZPPR log books are being scanned and selected critical configurations are being preserved. It is needless to emphasize that in R and D organizations like Indira Gandhi Centre for Atomic Research (IGCAR) with a mandate to conduct broad based multi disciplinary programme of scientific research and advanced engineering directed towards fast reactor technology and associated fuel cycle facilities, knowledge management plays a vital role. It also helps in our vision to achieve world class leadership in the fields of Fast Reactor technology and related Fuel Cycles. Also, India would like to achieve energy security through Fast Breeder Reactors. IGCAR has been operating a Fast Breeder Test Reactor (FBTR) successfully for the last 23 years with a unique Pu-U carbide fuel. The Centre has developed and nurturing world class expertise in the areas of fast reactor engineering, reactor safety and analysis, sodium technology, materials development and characterization, non destructive evaluation, in service inspection, reactor instrumentation, computer modeling etc. The centre had successfully reprocessed the Pu-U carbide fuel from FBTR of 150,000 MWd/t burn up. A lot of knowledge has been created in these domains and is being effectively managed and utilized. Learning from 380 reactor years of knowledge base of international experience and knowledge accrued from our own Fast Breeder Test Reactor through successful operation for 20 years and with major engineering experiments in fast reactor technology conducted, IGCAR has indigenously designed 500 MWe Prototype Fast Breeder Reactor (PFBR) and the reactor is under construction. With creative management of knowledge of the centre a Fast Reactor Fuel Cycle Facility is

  7. Seismic isolation for a modular liquid metal reactor concept (PRISM)

    International Nuclear Information System (INIS)

    This paper reports on the development of a conceptual design for an advanced liquid metal fast breeder reactor with features to reduce plant construction and operating costs and to further enhance plant passive safety features. A standardized modular construction approach with extensive, high quality factory fabrication of plant modules will be employed for the nine reactor module plant arranged in three 465 MWe power blocks. Inherent plant safety characteristics were optimized to provide self-correction of abnormal plant states independent of operator intervention or external power supply. A seismic isolation system for the individual reactor modules has been included to enhance structural margins and to support plant standardization. The isolators are high damping, steel laminated rubber bearings which efficiently decouple the reactor module from the horizontal earthquake ground motion and provide a rigid body, first mode response at the selected isolator frequency of 0.75 Hz with significantly reduced horizontal loads. No vertical isolation of the small diameter, compact, and vertically very stiff reactor module is required. In this paper, its key advantages, site selection considerations, and the status of the qualification program are described

  8. Tritium migration in the materials proposed for fusion reactors: Li{sub 2}TiO{sub 3} and beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Kulsartov, T.V., E-mail: kulsartov@nnc.kz [Institute of Atomic Energy NNC RK, 071100, Krasnoarmeiskay St., 10, Kurchatov (Kazakhstan); Gordienko, Yu.N.; Tazhibayeva, I.L. [Institute of Atomic Energy NNC RK, 071100, Krasnoarmeiskay St., 10, Kurchatov (Kazakhstan); Kenzhin, E.A. [Shakarim Semey State University, 071412, Glinka St., 20b, Semey (Kazakhstan); Barsukov, N.I.; Sadvakasova, A.O. [Institute of Atomic Energy NNC RK, 071100, Krasnoarmeiskay St., 10, Kurchatov (Kazakhstan); Kulsartova, A.V. [Nuclear Technology Safety Center, 050020, L. Chaikina 4, Almaty (Kazakhstan); Zaurbekova, Zh.A. [Institute of Atomic Energy NNC RK, 071100, Krasnoarmeiskay St., 10, Kurchatov (Kazakhstan)

    2013-11-15

    The results of tritium and helium gas release from lithium ceramics samples Li{sub 2}TiO{sub 3} irradiated at the WWR-K reactor (Almaty, Kazakhstan) and from beryllium samples irradiated at the BN-350 reactor (Aktau, Kazakhstan) and the IVG.1M reactor (Kurchatov, Kazakhstan) are presented. Experimentally obtained thermal desorption (TDS) spectra have shown that the dependence of tritium release from lithium ceramics has a complicated behavior and to a large extent depends on lithium ceramics type. Nevertheless, it was found that the total amount of tritium released from all types of lithium ceramics has the same order of magnitude, equal to about 10{sup 11} Bq/kg. It was found that in the temperature range from 523 K to 1373 K the process of tritium release from lithium ceramics involves volume diffusion and thermoactivated tritium release from the accumulation centers generated under irradiation. TDS of beryllium samples enables us to obtain characteristics of tritium and helium release during linear heating, to determine integrated quantities of generated helium and tritium, and to determine parameters of release processes.

  9. Supplement to Final Environmental Statement related to construction and operation of Clinch River Breeder Reactor Plant, Docket No. 50-537

    International Nuclear Information System (INIS)

    In February 1977, the Office of Nuclear Reactor Regulation issued a Final Environmental Statement (FES) (NUREG-0139) related to the construction and operation of the proposed Clinch River Breeder Reactor Plant (CRBRP). Since the FES was issued, additional data relative to the site and its environs have been collected, several modifications have been made to the CRBRP design, and its fuel cycle, and the timing of the plant construction and operation has been affected in accordance with deferments under the DOE Liquid Metal Fast Breeder Reactor (LMFBR) program. These changes are summarized and their environmental significance is assessed in this document. The reader should note that this document generally does not repeat the substantial amount of information in the FES which is still current; hence, the FES should be consulted for a comprehensive understanding of the staff's environmental review of the CRBRP project

  10. Research activities on fast reactors in Switzerland

    International Nuclear Information System (INIS)

    The current domestic Swiss electricity supply is primarily based on hydro power (approximately 61%) and nuclear power (about 37%). The contribution of fossil systems is, consequently, minimal (the remaining 2%). In addition, long-term (but limited in time) contracts exist, securing imports of electricity of nuclear origin from France. During the last two years, the electricity consumption has been almost stagnant, although the 80s recorded an average annual increase rate of 2.7%. The future development of the electricity demand is a complex function of several factors with possibly competing effects, like increased efficiency of applications, changes in the industrial structure of the country, increase of population, further automation of industrial processes and services. Due to decommissioning of the currently operating nuclear power plants and expiration of long-term electricity import contracts there will eventually open a gap between the postulated electricity demand and the base supply. The assumed projected demand cases, high and low, as well as the secured yearly electric energy supply are shown. The physics aspects of plutonium burning fast reactor configurations are described including first results of the CIRANO experimental program. Swiss research related to residual heat removal in fast breeder reactors is presented. It consists of experimental ana analytic investigations on the mixing between two horizontal fluid layers of different velocities and temperatures. Development of suitable computer codes for mixing layer calculation are aimed to accurately predict the flow and temperature distribution in the pools. A satisfactory codes validation based on experimental data should be done

  11. History of fast reactor fuel development

    Science.gov (United States)

    Kittel, J. H.; Frost, B. R. T.; Mustelier, J. P.; Bagley, K. Q.; Crittenden, G. C.; Van Dievoet, J.

    1993-09-01

    The first fast breeder reactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s.

  12. Pulsed magnetic welding application of fast breeder austenitic pins plugging

    International Nuclear Information System (INIS)

    For specific nuclear needs, we had to develop pulsed magnetic welding on high resistivity coefficient alloys as austenitic steels. The magnetic force produced by an explosive inductor is transmitted on weld pieces by the use of an aluminium driver. A theoretical work carried out permitted to compare pulsed magnetic welding with explosive welding. With specific recordings, it was possible to study electrical and magnetical behavior during the active welding phase. By means of these informations, we are able to specify and to realize, with the financial help of ANVAR organization, a low impedance high velocity generator permitting to weld with a non destructible inductor. 6 refs

  13. Opening Address [FR09: International Conference on Fast Reactors and Related Fuel Cycles: Challenges and Opportunities, Kyoto (Japan), 7-11 December 2009

    International Nuclear Information System (INIS)

    Full text: Good morning, distinguished delegates, ladies and gentlemen. I would like to express my deep gratitude for your presence at the 'International Conference on Fast Reactors and Related Fuel Cycles: Challenges and Opportunities' organized by the IAEA. I would like to make a brief opening address on behalf of MEXT1. Firstly, I would like to welcome all who have travelled the long distance to Japan, and to express my thanks to people in Japan for their usual acceptance and for their cooperation on the research, development and use of nuclear technology. I would also like to thank the staff of the IAEA, the Japan Atomic Energy Agency and the commissions for their commitment to organizing this meeting. Today, humankind faces global issues on a scale never before seen, including global warming and energy resource security. Under such circumstances, ensuring the energy supply is essential for solving both the energy problem and global climate change simultaneously. This is increasingly being recognized all over the world. Sharing the recognition, we promote research, development and the use of nuclear energy as the major source of electrical power. We are aiming at the establishment of the fast breeder reactor cycle, which will ensure a long term energy supply, through efficient use of uranium resources. At MEXT, we continue to promote research and development in order to achieve the early commercialization of the fast breeder reactor cycle, by utilizing the prototype Monju fast breeder reactor. We are now doing our utmost to restart Monju by the end of March 2010, with the acceptance and cooperation of the local community. After the restart, we will enhance the reliability of Monju as an operational power plant, drawing upon operational experience. At the same time, we will continue research and development of radioactive waste reduction for topics such as minor actinide burning, as well as the enhancement of nuclear non-proliferation. We hope that Monju will

  14. Status of Phenix operation and of sodium fast reactors in the world

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; Martin, L. [Phenix plant, 30 - Bagnols sur Ceze (France); Courtois, C. [CEA Marcoule 30 (France)

    2007-07-01

    The French fast breeder reactor (FBR) Phenix restarted in 2003 after 6 years of safety reevaluation procedures. The goal of the experiments performed at Phenix is, first, to demonstrate the technical feasibility of transmutation of minor actinides and long-life products in a fast reactor and secondly, to acquire knowledge on structure materials for future energy systems and on innovative nuclear fuel concepts. After several years of Generation IV discussions, many countries have announced or confirmed their priority for the fast sodium reactor as a reference design. These countries today include Japan, China, Korea, India and Russia (simultaneously with lead reactors). The United States have announced a project for a waste-burning reactor. In France, within the scope of the law of 28 June 2006, the country has announced and confirmed the decision of building a prototype scheduled for operation in 2020. These declarations are all sustained in a very practical manner by ongoing events in this field. Following the excellent results obtained by the BN-600 (600 MWe), Russia has re-launched the BN-800 project. China is currently in the process of building a 75 MWt research reactor, scheduled for divergence in 2009. In Japan, work is underway on MONJU (250 MWe) for divergence in 2008. In India, a 1200 MWt power reactor is under construction, scheduled for divergence in 2010, the first of 3 planned sodium reactors.

  15. Simple analysis of an External Vessel Cooling Thermosyphon for a Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    KALIMER has three different DHR systems: two non-safety grade systems and one safety grade system. The non-safety grade systems are an IRACS (Intermediate Reactor Auxiliary Cooling System) and a steam/feedwater system. The safety grade system is a PDRC (Passive Decay Heat Removal Circuit). In case of the foreign reactor designs, ABTR (Advanced Burner Test Reactor) has a DRACS (Direct Reactor Auxiliary Cooling System), a PFBR (Indian Prototype Fast Breeder Reactor) has an SGDHRS (Safety Grade Decay Heat Removal System), and an EFR (European Fast Reactor) has DRC (Direct Reactor Cooling). Those designs have advantage on relatively high decay heat removal capacity. However, larger vessel size due to subsidiary in-vessel structure and possible accident propagation to reactor induced by sodium fire. In this paper, an ex-vessel thermosyphon design was proposed for the removal of decay heat for an iSFR. The proposed ex-vessel thermosyphon was designed to remove decay heat in both transient cases and BDBA cases, such as vessel failure. Proper working fluid was selected based on thermodynamic properties and chemical stability. Mercury was chosen as the working fluid, and SUS 314 was used for the corresponding structure material. Possible chemical reactions and adverse effects from using the thermosyphon were inherently eliminated by the system layout. A model for a high-temperature thermosyphon and numerical algorithms were used for the analysis. As a result of the simulation, the thermosyphon design was optimized, and it showed sufficient DHR performance to maintain core integrity

  16. An analysis on the breeding capability and safety related parameters of advanced fast reactor fuels using recent cross-section set

    International Nuclear Information System (INIS)

    Highlights: • Breeding ratio of fast reactor fuels is computed with latest cross-section set. • Safety related parameters are also evaluated. • It is found that there are better prospects of utilization of thorium resources. • With large fast reactors, Th–233U fuel combination gives better B.G. -- Abstract: This study focuses on the evaluation of breeding capability as well as safety related neutronic parameters of advanced fast reactor fuels which comprises of fissile–fertile combination of metal, oxide, carbide and nitride, using the recent neutron cross-section set ENDF/B-VI.7. Sodium cooled fast breeder reactor similar to prototype Fast Breeder Reactor (PFBR) is used to evaluate the performance of various fuel types involving fissile isotopes of 233U and Pu and fertile isotopes of Th and 238U. The analysis is restricted to a comparison of neutronic parameters of a fresh core and does not take into account the effects of burnup and fission products. The breeding potential of the fuels are also compared with European cross-section set JEFF-3.1. The breeding ratio of advanced fuels evaluated with ENDF/B-VI.7 and JEFF-3.1 was found to be in good agreement. From this study, it is found that Th–233U combination for almost all fuel types with the present geometry and composition gives a lower breeding ratio value. Safety neutronic parameters such as effective delayed neutron fraction, Doppler defect and sodium void reactivity were also computed. In terms of breeding potential and safety neutronic parameters, the performance of Th–Pu system especially the metal fuel type can be a better option for future large fast reactors. The large negative Doppler feedback along with a negative sodium void reactivity for metal and hybrid combinations of Th–233U system makes it an attractive fuel cycle option even though there is a penalty over its breeding capability

  17. Review of reactor physics activities relevant to FBR and ATR programmes in PNC, Japan, June 1977 to October 1978

    International Nuclear Information System (INIS)

    Reactor physics works in Power Reactor and Nuclear Fuel Development Corporation (PNC) are carried out in support of the FBR and ATR development programmes. The works are in progress with high efficiency, in cooperation of other related organizations in Japan and also overseas. The experimental fast reactor ''Joyo'' reached its full power of 50 MWt, being operated now to obtain technical data and experiences. The prototype fast breeder reactor ''Monju'' is nearing completion of its final design, and the surveys on its proposed site have been finished. The advanced thermal reactor ''Fugen'', a heavy water-moderated and boiling light water-cooled, reactor reached the criticality, and the power generation was successfully achieved. The data to be obtained are used for the development of a large demonstration reactor. After describing on these types of reactors briefly, the works on reactor physics are described as follows: for fast reactors, mockup experiment and analysis, evaluation of actinide nuclear data, development of core analytical method, and research on shielding; and for ATR, research with a deuterium critical assembly. (Mori, K.)

  18. Evaluation of the Community's nuclear reactor safety research programme

    International Nuclear Information System (INIS)

    This report describes an evaluation of the 1980-85 CEC reactor safety programme prepared, at the invitation of the Commission, by a panel of six independent experts by means of examining the relevant document and by holding hearings with the responsible CEC staff. It contains the recommendations made by the panel on the following topics: the need for the JRC to continue to make its competence in the reactor safety field available to the Community; the importance of continuity in the JRC and shared-cost action programmes; the difficulty of developing reactor safety research programmes which satisfy the needs of users with diverse needs; the monitoring of the utilization of the research results; the maintenance of the JRC computer codes used by the Member States; the spin-off from research results being made available to other industrial sectors; the continued contact between the JRC researchers and the national experts; the coordination of LWR safety research with that of the Member States; and, the JRC work on fast breeders to be planned with regard to the R and D programmes of the Fast Reactor European Consortium

  19. A review of the Indian fast reactor programme

    International Nuclear Information System (INIS)

    Development of Fast Breeder activities is being done mainly at the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam and the total Scientific and Technical staff working at the Centre for development of FBRs is about 1200. The development work relating to the fuel fabrication and design and development for some of the fuel handling equipment is being done at the Bhabha Atomic Research Centre, Trombay, Bombay. Complete recovery from the fuel handling incident of FBTR was achieved during the beginning of 1989. Damaged guide tube and bent subassemblies were replaced, the incident was analysed in detail and appropriate remedial measures, viz., modifications in the fuel handling machine control logic and plug rotation logic were implemented to prevent its recurrence. Safety clearances for the restart of the reactor were obtained from the Atomic Energy Regulatory Board in May 1989. As steam generators were not valved in the secondary sodium system, the reactor power during this phase of operation was limited to 500 KWt. The main objectives during this phase were to complete the balance low power physics experiments and to operate the reactor for a sufficiently long time to assess the performance of various systems, in particular the neutronic instrumentation, control rod drive and safety logic system which were not in active service for the two years. From May to July, 1989, the reactor was successfully operated up to a power level of 500 KWt with 50% operating time. Design of PFBR is progressing intensively. (author). 1 tab

  20. Cause elucidation of sodium leakage incident at `Monju` reactor. Vibration of thermometer due to fluid force

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Koji; Wada, Yusaku; Morishita, Masaki; Yamaguchi, Akira; Ichimiya, Masakazu [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-01-01

    This is a report of summarized results of investigation and analysis on fracture of thermometer which is direct reason of sodium leakage incident at the second main cooling system of fast breeder reactor `Monju`. Various surveys such as on various damage factors, on flowing power vibrational features containing flowing power vibrational test of thermometer, on evaluation of high cycle fatigue due to flowing power vibration and details on propagation of and fracture due to fatigue crack, on why only said thermometer damaged, and so forth were executed. As results of these examinations, a decision was arrived that high cycle fatigue due to vibration formed by fluid force (fluid force vibration) was a direct cause of the thermometer damage. (G.K.)

  1. Developments in fabrication of annular MOX fuel pellet for Indian fast reactor

    International Nuclear Information System (INIS)

    Mechanical rotary presses along with adoption of core rod feature were inducted for fabrication of intricate annular Mixed Oxide (MOX) pellets for Prototype Fast Breeder Reactor (PFBR). In the existing tooling, bottom plungers contain core rod whereas top plungers contain a central hole for the entry of core rod during compaction. Frequent manual clean up of top plungers after few operations were required due to settling of powder in the annular hole of top plungers during compaction. Delay in cleaning can also result in breakage of tooling apart from increase in the dose to extremities of personnel. New design of tooling has been introduced to clean up the top plungers online during the operation of rotary press. It leads to increase in the productivity, reduces the spillage of valuable nuclear material and also reduces man-rem to operators significantly. The present paper describes the modification in tooling design and compaction sequence established for online cleaning of top plungers. (author)

  2. Development of an emergency air-cleaning system for liquid-metal reactors

    International Nuclear Information System (INIS)

    A novel air cleaning concept has been developed for potential use in venting future commercial liquid metal fast breeder reactor containment buildings in the unlikely event of postulated core disruptive accidents. The passive concept consists of a submerged gravel bed to collect the bulk of particulate contaminates carried by the vented gas. A fibrous scrubber could be combined with the submerged gravel scrubber to enhance collection efficiencies for the smaller sized particles. The submerged gravel scrubber is unique in that water flow through the packed bed is induced by the gas flow, eliminating the need for an active liquid pump. In addition, design gas velocities through the packed bed are 10 to 20 times higher than for a conventional sand bed filter

  3. Potential of thorium use in the HTR reactor

    International Nuclear Information System (INIS)

    In this investigation, several types of reactors and fuel circulations are dealt with as they refer to the region of the Federal Republic of Germany and are compared with each other as to their need for uranium and their costs until 2100. This includes also an investigation covering the effects of a postponed application of uranium-saving reactors, a delayed reprocessing and two variants of the nuclear energy's contribution to electricity generation. After today's light water reactor (LWR) of the pressure water reactor type (DWR) and the sodium-cooled fast breeder (SBR) which is being developed, the technically rather developed helium-cooled high temperature reactor (HTR) is dealt with as another system. The high temperature reactor is, because of its high coolant temperatures, not only suitable as a nuclear power plant, but can also be used to substitute fossile energy sources on the heat market and is being developed in Germany also for use as process heat reactor for nuclear coal gasification. Here the application of nuclear energy is only considered with regard to the region of power generation. Besides the case of the LWR and HTR-operation without reprocessing and fuel recycling for all reactor systems, the calculations also take into consideration the case of the closed fuel recycling. While LWR and SBR are based on the uranium-plutonium-fuel recycling, the thorium-uranium fuel circulation is considered for the HTR with globular fuel elements. As investigations made until today are generally restricted to the system LWR/SBR and the uranium-plutonium circulation, a main concern of the investigations presented here is to show the potential of the Thorium-utilization in high-temperature reactors and to determine how this system can also be applied during the time period concerned to set up a nuclear energy strategy which is safe and profitable as far as the uranium supply is concerned. (orig./UA) 891 UA/orig.- 892 HIS

  4. Linear regression and sensitivity analysis in nuclear reactor design

    International Nuclear Information System (INIS)

    Highlights: • Presented a benchmark for the applicability of linear regression to complex systems. • Applied linear regression to a nuclear reactor power system. • Performed neutronics, thermal–hydraulics, and energy conversion using Brayton’s cycle for the design of a GCFBR. • Performed detailed sensitivity analysis to a set of parameters in a nuclear reactor power system. • Modeled and developed reactor design using MCNP, regression using R, and thermal–hydraulics in Java. - Abstract: The paper presents a general strategy applicable for sensitivity analysis (SA), and uncertainity quantification analysis (UA) of parameters related to a nuclear reactor design. This work also validates the use of linear regression (LR) for predictive analysis in a nuclear reactor design. The analysis helps to determine the parameters on which a LR model can be fit for predictive analysis. For those parameters, a regression surface is created based on trial data and predictions are made using this surface. A general strategy of SA to determine and identify the influential parameters those affect the operation of the reactor is mentioned. Identification of design parameters and validation of linearity assumption for the application of LR of reactor design based on a set of tests is performed. The testing methods used to determine the behavior of the parameters can be used as a general strategy for UA, and SA of nuclear reactor models, and thermal hydraulics calculations. A design of a gas cooled fast breeder reactor (GCFBR), with thermal–hydraulics, and energy transfer has been used for the demonstration of this method. MCNP6 is used to simulate the GCFBR design, and perform the necessary criticality calculations. Java is used to build and run input samples, and to extract data from the output files of MCNP6, and R is used to perform regression analysis and other multivariate variance, and analysis of the collinearity of data

  5. Utilisation of the Rapsodie reactor for the measurement of the doppler effect; Utilisation du reacteur rapsodil pour la mesure de l'effet doppler

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, C.P.; Abdon, R.; Ladet, J.; Ping, I.; Steven, L. [Association Euratom-CEA Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    This report shows how a special loading of a 400 liters core in the reactor 'Rapsodie' could simulate the same neutronic conditions as those encountered in power fast reactors. Various methods designed to measure the Doppler effect in this core are described and compared. In particular, a computation of the errors involved is set. This computation would bring us to think that such an experiment could give a valid estimation of the Doppler coefficient of large fast reactors. The neutronic computations set for this study are described in an annex. - This report(the annex excepted) has already been presented by Freddy STORRER at the conference on breeding: Economics and safety in large fast breeder reactors at Argonne National Laboratory, october 1963 and published in the Proceedings (ANL 6792). (authors) [French] On indique comment la mise en place dans Rapsodie d'un coeur special de 400 L permettrait de realiser des conditions ncutroniques analogues a celles des piles rapides de puissance. Les methodes de mesure du coefficient Doppler dans ce coeur sont ensuite examinees et comparees entre elles. On effectue en particulier des calculs d'erreur qui conduisent a penser qu'une telle experimentation conduirait a une estimation valable du coefficient Doppler des grandes piles rapides. Enfin les calculs neutroniques menes a bien a l'occasion de cette etude sont presentes en annexe. Ce rapport a l'exception de l 'annexe a fait l'objet d'une communication presentee par Freddy STORRER au Congres d'Argonne d'octobre 1963 (Conference on breeding. Economies and safety in large fast breeder Reactors) et publiee dans les compte-rendus de ce congres (ANL 6792). (auteurs)

  6. Fuel and target programs for the transmutation at Phenix and other reactors; Programmes combustibles et cibles pour la transmutation dans Phenix et autres reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard-Groleas, G

    2002-07-01

    The fuels and targets program for transmutation, performed in the framework of the axis 1 of the December 1991 law about the researches on the management of long-lived radioactive wastes, is in perfect consistency with the transmutation scenario studies carried out in the same framework. These studies put forward the advantage of fast breeder reactors (FBR) in the incineration of minor actinides and long-lived fission products. The program includes exploratory and technological demonstration studies covering the different design options. It aims at enhancing our knowledge of the behaviour of materials under irradiation and at ensuring the mastery of processes. The goals of the different experiments foreseen at Phenix reactor are presented. The main goal is to supply a set of results allowing to precise the conditions of the technical feasibility of minor actinides and long-lived fission products incineration in FBRs. (J.S.)

  7. Creep buckling problems in fast reactor components

    International Nuclear Information System (INIS)

    Creep buckling analyses for two important components of 500 M We Prototype Fast Breeder Reactor (PFBR), viz. Intermediate Heat Exchanger (IHX) and Inner Vessel (IV), are reported. The INCA code of CASTEM system is used for the large displacement elasto-plastic-creep analysis of IHX shell. As a first step, INCA is validated for a typical benchmark problem dealing with the creep buckling of a tube under external pressure. Prediction of INCA is also compared with the results obtained using Hoff's theory. For IV, considering the prohibitively high computational cost for the actual analysis, a simplified analysis which involves only large displacement elastoplastic buckling analysis is performed using isochronous stress strain curve approach. From both of these analysis is performed using isochronous stress strain curve approach. From both of these analysis, it has been inferred that creep buckling failure mode is not of great concern in the design of PFBR components. It has also been concluded from the analysis that Creep Cross Over Curve given in RCC-MR is applicable for creep buckling failure mode also. (author). 8 refs., 9 figs., 1 tab

  8. Minor actinides transmutation strategies in sodium fast reactors

    International Nuclear Information System (INIS)

    In minor actinides transmutation strategies for fast spectrum reactors, different possibilities regarding the core loading are considered. We study both homogeneous patterns (HOM) with various minor actinides (MA) content values and heterogeneous schemes (HET) with higher percentages of MA (Np, Am and Cm) at the periphery of reactor. We analyze the capability of transmutation of each design and the reactivity coefficients such as the Doppler constant, void worth and the fraction of delayed neutrons. The EVOLCODE2 code is the computational tool used in this study. It is based on MCNPX and ORIGEN/ACAB codes and allows carrying out burn-up calculations to get the isotopic evolution of fuel composition. Among the three strategies studied (HOM 2.5 %, HOM 4% and HET 20 %) for a possible design of a Sodium Cooled Fast Breeder Reactor, the one with better transmutation results is the HOM 4%, which shows higher absolute and relative values (12 Kg-MA/TWe, 29% respectively). Concerning transmutation in blankets with 20% MA content, results show a very little or no transmutation values when considering Np, Am and Cm together, though a positive small value for Np and Am is obtained

  9. Application of nitrogen alloyed steels for Indian Fast Reactor programme

    International Nuclear Information System (INIS)

    Towards building fast reactors for fulfilling energy requirements through second stage of nuclear power program planned by Department of Atomic Energy, a 500 MWe Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam, a coastal site. Nitrogen alloyed types 304LN and 316LN austenitic Stainless Steels have been selected for out of core components except for the steam generator primarily due to inclusion in the design codes favourable effect of nitrogen on mechanical strength and sensitization, and excellent weldability. For the once through steam generator design selected from economics and safety, modified 9Cr-1 Mo (Gr 91) has been selected from inclusion in the design codes, adequate mechanical strength, sound industrial experience and carbon transfer considerations. The presentation highlights the application of nitrogen alloyed types 304LN and 316LN SS, as well as modified 9Cr-1Mo steel for PFBR, and the influence of increased nitrogen alloying on mechanical properties on SS 316L for application to future fast reactors. (author)

  10. Economics of an advanced pressurized water reactor (APWR)

    International Nuclear Information System (INIS)

    Limited natural uranium resources together with their low utilization in current lightwater reactors (LWR) on the one hand and the high capital investments for a LWR and fast breeder reactor system resulting in a high fuel utilization are the most important reasons for research and development (R+D) work related to a high converting APWR system. It is the main task of this analysis to study the economic behaviour of an APWR combining its technical and physical parameters with an economic data base. After introductional remarks chapter II presents the potential improvements of the uranium utilization and their importance for a whole national economy. Chapter III shows the micro-economic aspects for an electricity producing utility using such an APWR plant. The chapter is restricted to the fuel cycle costs and their dependence on various parameters. The corresponding costs of other nuclear power plants are described in chapter IV and compared to those of the APWR in chapter V. Finally a cost comparison on the basis of the electricity generating costs will complete the economic picture of an advanced pressurized water reactor. (orig./UA)

  11. Testing and Commissioning of a Multifunctional Tool for the Dismantling of the Activated Internals of the KNK Reactor Shaft - 13524

    International Nuclear Information System (INIS)

    The Compact Sodium Cooled Reactor Facility Karlsruhe (KNK), a prototype reactor to demonstrate the Fast Breeder Reactor Technology in Germany, was in operation from 1971 to 1991. The dismantling activities started in 1991. The project aim is the green field in 2020. Most of the reactor internals as well as the primary and secondary cooling loops are already dismantled. The total contaminated sodium inventory has already been disposed of. Only the high activated reactor vessel shielding structures are remaining. Due to the high dose rates these structures must be dismantled remotely. For the dismantling of the primary shielding of the reactor vessel, 12 stacked cast iron blocks with a total mass of 90 Mg and single masses up to 15.5 Mg, a remote-controlled multifunctional dismantling device (HWZ) was designed, manufactured and tested in a mock-up. After successful approval of the test sequences by the authorities, the HWZ was implemented into the reactor building containment for final assembling of the auxiliary equipment and subsequent hot commissioning in 2012. Dismantling of the primary shielding blocks is scheduled for early 2013. (authors)

  12. Testing and Commissioning of a Multifunctional Tool for the Dismantling of the Activated Internals of the KNK Reactor Shaft - 13524

    Energy Technology Data Exchange (ETDEWEB)

    Rothschmitt, Stefan; Graf, Anja [WAK Rueckbau- und Entsorgungs- GmbH, P.O.Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany); Bauer, Stefan; Klute, Stefan; Koselowski, Eiko [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Hendrich, Klaus [Ingenieurbuero Hendrich, Moerikeweg 14, 75015 Bretten (Germany)

    2013-07-01

    The Compact Sodium Cooled Reactor Facility Karlsruhe (KNK), a prototype reactor to demonstrate the Fast Breeder Reactor Technology in Germany, was in operation from 1971 to 1991. The dismantling activities started in 1991. The project aim is the green field in 2020. Most of the reactor internals as well as the primary and secondary cooling loops are already dismantled. The total contaminated sodium inventory has already been disposed of. Only the high activated reactor vessel shielding structures are remaining. Due to the high dose rates these structures must be dismantled remotely. For the dismantling of the primary shielding of the reactor vessel, 12 stacked cast iron blocks with a total mass of 90 Mg and single masses up to 15.5 Mg, a remote-controlled multifunctional dismantling device (HWZ) was designed, manufactured and tested in a mock-up. After successful approval of the test sequences by the authorities, the HWZ was implemented into the reactor building containment for final assembling of the auxiliary equipment and subsequent hot commissioning in 2012. Dismantling of the primary shielding blocks is scheduled for early 2013. (authors)

  13. Status of national programmes on fast reactors 1995-1996. Working material

    International Nuclear Information System (INIS)

    At present nuclear power accounts for approximately 17% of total electricity generation worldwide. Given continuing population growth and the needs of the third world and developing countries to improve their economic performance and standard of living, energy demand is expected to continue to grow through the 21st century. The proportion of energy supplied as electricity is also expected to continue to increase. Although fossil-fuelled electricity generation is the option preferred by several countries for the short term, there are rising concerns over climatic consequences caused by extended burning of fossil fuels as a result of the demands of a fast expanding world population. In this situation nuclear electricity will become more and more important and the known reserves of uranium would be consumed quite quickly by thermal reactors. It would be possible to sustain a large nuclear programme only by introducing fast reactors. One can conclude that there are strategic reasons for pursuing the development of fast breeder reactors. It will become desirably essential to have this technology available for introduction. The recycling of plutonium into LMFRs would allow 'burning' of the associated extremely long-life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. This additional important mission for the LMFR is gaining worldwide interest. In the framework of disarmament of nuclear weapons and the utilization of the nuclear material or peaceful purposes a role for fast reactors can be also considered. Over the past 29 years, the IAEA has actively encouraged and advocated international co-operation in Fast Breeder Reactor Technology. The present publication contains information on the status of fast reactor development and on worldwide activities in this advanced nuclear power technology during 1995, as reported at the 29th Annual

  14. Applications of neural networks in reactor diagnosis and monitoring

    International Nuclear Information System (INIS)

    The Sodium temperature estimation in intermediate Heat Exchanger is very significant for nuclear power generation in fast breeder test reactor (FBTR). Hence accurate evaluation of sodium temperature is a major concern both in case of offline and online operation of nuclear power plant (NPP). This section addresses the training of artificial neural network model to precisely estimate the sodium temperature of Sodium-Sodium (Na-Na) Intermediate Heat exchanger and studying its behavior at transient conditions. Severely unbalanced flow conditions in addition to steady state condition are investigated to generate sufficient number of dataset. Based on the in house data gathered from Quadratic Upstream Interpolation for Convective Kinetics code (QUICK), a three layer neural network model is developed for training and subsequent validation. The back propagation (BP) algorithm is used for training the network. Further a model based on Radial Basis Function (RBF) neural network is developed and trained and the results are compared with standard back propagation algorithm. From the comparison studies of earlier models, it is found that the network trained with RBF converges faster than BP network. Training and testing results of some work related to this issues show the successful modeling of plant dynamics of the reactor with improved accuracy. ANN can be an alternative to the conventional model as it predicts the physical parameters without much complex calculations as used in conventional model

  15. European Fast Reactor IWGFR/FRCC-report. A review of the collaborative programme on the European Fast Reactor (EFR)

    International Nuclear Information System (INIS)

    The design work for the 1500 MWe European Fast Reactor EFR was started in 1988. Two years during phase 1 were devoted to the concept design; the subsequent concept validation phase 2 will last until March 1993. In autumn 1991 the 'concept design '91, CD91, was put forward; its major design features and the R and D support are described briefly together with the organisational structures. The European Fast Reactor Utilities Group 'EFRUG' presently comprises EdF (France), ENEL (Italy), Nuclear Electric (UK) and Bayernwerk, PreulsenElektra and RWE (Germany). For design and construction of EFR the group 'EFR Associates' is responsible, combining the companies Siemens (formerly Interatom, Germany), NNC Ltd. (UK) and Framatome/Div. Novatome (France). The necessary R and D support is given by CEA (France), UKAEA (UK) and KfK/Siemens (Germany). The R and D work is executed in the various national research centres ranging from Dounreay via Bensberg and Karlsruhe to Cadarache. The design work is done at Bensberg, Lyon and Risley. The present programme of design work extends to early 1993 and is aimed at producing a detailed consistent design for the nuclear part of the plant and a non site specific safety report. By that date the basic feasibility of the main design features will have been underwritten by the joint R and D programme and there will be an informal assessment of the general licensibility of the concept by the Ad Hoc Safety Club. In follow-up the utilities will then be in the position to decide whether to proceed with the next steps. The key issues of this phase will include the specification of the plant, the siting, the detailed engineering, licensing with possibly a public enquiry and the question of ownership and financing. In the international arena the collaboration with USSR is proceeding well on the basis of an USSR-Europe Agreement from January 8, 1991; it foresees review and specialists meetings in the field of fast breeder research. On the occasion of

  16. Thermal-hydraulic analysis for the lead-bismuth eutectic cooled reactor. System analysis by MSG-COPD code

    International Nuclear Information System (INIS)

    The feasibility study for fast breeder reactors (FBRs) including related nuclear fuel cycle systems has been started from the 1999 fiscal year by Japan Nuclear Cycle Development Institute (JNC). Phase 1 studies were finished at the end of March, 2000. Various options of FBRs plant systems was studied and concept of Lead-Bismuth Eutectic (LBE) cooled FBRs have been selected as one of these options. In the United States, the LBE cooled reactor has been examined by Generation IV. Plant dynamics analyses on 2 type of LBE-cooled reactors, forced circulation type which designed by JNC and natural circulation type which was designed by University of California, Berkeley, have been performed to understand the basic thermal-hydraulic characteristics of the reactors. As a result of the analysis on JNC forced circulation reactor, it has been clarified that hot coolant remains in the upper plenum by the thermal stratification in case of a manual trip condition. And the characteristics of pump coast down influences core exit high-temperature in case of a loss of power condition. In addition, as a result of analysis on the natural circulation reactor, the flow-redistribution effect in ductless core channels by the buoyancy force has been evaluated for a candidate duct core channels. (author)

  17. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    Science.gov (United States)

    Afifah, Maryam; Miura, Ryosuke; Su'ud, Zaki; Takaki, Naoyuki; Sekimoto, H.

    2015-09-01

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don't need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  18. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki [Nuclear Research Group, FMIPA, Bandung Institute of Technology Jl. Ganesha 10, Bandung 40132 (Indonesia); Miura, Ryosuke; Takaki, Naoyuki [Department of Nuclear Safety Engineering, Tokyo City University 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557 (Japan); Sekimoto, H. [Emerritus Prof. of Research Laboratory for Nuclear Reactors, Tokyo Inst. of Technology (Japan)

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  19. Summary of the 4th workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsuka, Toru; Ishikawa, Nobuyuki; Iwamura, Takamichi (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    The research on Reduced-Moderation Water Reactors (RMWRs) has been performed in JAERI for the development of future innovative reactors. The workshop on the RMWRs has been held every year since fiscal 1997 aimed at information exchange between JAERI and other organizations such as universities, laboratories, utilities and vendors. The 4th workshop was held on March 2, 2001 under the joint auspices of JAERI and North Kanto branch of Atomic Energy Society of Japan. The workshop began with three lectures on recent research activities in JAERI entitled 'Recent Situation of Research on Reduced-Moderation Water Reactor', 'Analysis on Electricity Generation Costs of Reduced Moderation Water Reactors' and 'Reprocessing Technology for Spent Mixed-Oxides Fuel from LWR'. Then five lectures followed: 'Micro Reactor Physics of MOX Fueled LWR' which shows the recent results of reactor physics, Fast Reactor Cooled by Supercritical Light Water' which is another type of reduced-moderation reactor, 'Phase 1 of Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC), 'Integral Type Small PWR with Stand-alone Safety' which is intended to suit for the future consumers' needs, and Utilization of Plutonium in Reduced-Moderation Water Reactors' which dictates benefits of plutonium utilization with RMWRs. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture, as well as presentation handouts, program and participant list as appendixes. The 8 of the presented papers are indexed individually. (J.P.N.)

  20. Summary of the 3rd workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nobuyuki; Nakatsuka, Tohru; Iwamura, Takamichi [eds.

    2000-06-01

    The research activities of a Reduced-Moderation Water Reactor (RMWR) are being performed for a development of the next generation water-cooled reactor. A workshop on the RMWR was held on March 3rd 2000 aiming to exchange information between JAERI and other organizations such as universities, laboratories, utilities and vendors. This report summarizes the contents of lectures and discussions on the workshop. The 1st workshop was held on March 1998 focusing on the review of the research activities and future research plan. The succeeding 2nd workshop was held on March 1999 focusing on the topics of the plutonium utilization in water-cooled reactors. The 3rd workshop was held on March 3rd 2000, which was attended by 77 participants. The workshop began with a lecture titled 'Recent Situation Related to Reduced-Moderation Water Reactor (RMWR)', followed by 'Program on MOX Fuel Utilization in Light Water Reactors' which is the mainstream scenario of plutonium utilization by utilities, and 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC). Also, following lectures were given as the recent research activities in JAERI: 'Progress in Design Study on Reduced-Moderation Water Reactors', 'Long-Term Scenarios of Power Reactors and Fuel Cycle Development and the Role of Reduced Moderation Water Reactors', 'Experimental and Analytical Study on Thermal Hydraulics' and Reactor Physics Experiment Plan using TCA'. At the end of the workshop, a general discussion was performed about the research and development of the RMWR. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture and general discussion, as well as presentation viewgraphs, program and participant list as appendixes. The 7 of the presented papers are indexed individually. (J.P.N.)

  1. Microstructural characterization and model of hardening for the irradiated austenitic stainless steels of the internals of pressurized water reactors; Caracterisation microstructurale et modelisation du durcissement des aciers austenitiques irradies des structures internes des reacteurs a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Pokor, C

    2003-07-01

    The core internals of Pressurized Water Reactors (PWR) are composed of SA 304 stainless steel plates and CW 316 stainless steel bolts. These internals undergo a neutron flux at a temperature between 280 deg C and 380 deg C which modifies their mechanical properties. These modifications are due to the changes in the microstructure of these materials under irradiation which depend on flux, dose and irradiation temperature. We have studied, by Transmission Electron Microscopy, the microstructure of stainless steels SA 304, CW 316 and CW 316Ti irradiated in a mixed flux reactor (OSIRIS at 330 deg C between 0,8 dpa et 3,4 dpa) and in a fast breeder reactor at 330 deg C (BOR-60) up to doses of 40 dpa. Moreover, samples have been irradiated at 375 deg C in a fast breeder reactor (EBR-II) up to doses of 10 dpa. The microstructure of the irradiated stainless steels consists in faulted Frank dislocation loops in the [111] planes of austenitic, with a Burgers vector of [111]. It is possible to find some voids in the solution annealed samples irradiated at 375 deg C. The evolution of the dislocations loops and voids has been simulated with a 'cluster dynamic' model. The fit of the model parameters has allowed us to have a quantitative description of our experimental results. This description of the microstructure after irradiation was coupled together with a hardening model by Frank loops that has permitted us to make a quantitative description of the hardening of SA 304, CW 316 and CW 316Ti stainless steels after irradiation at a certain dose, flux and temperature. The irradiation doses studied grow up to 90 dpa, dose of the end of life of PWR internals. (author)

  2. Secondary Loop Pressure Propagation Caused by Large Leak Sodium-water Reaction in Steam Generator of Liguid Metal-cooled Fast Breeder Reactor%蒸汽发生器大泄漏钠-水反应引起的二回路压力波传播

    Institute of Scientific and Technical Information of China (English)

    骆焱; 张建民; 单建强; 朱继洲

    2000-01-01

    研究建立了钠冷快堆蒸汽发生器在单管束发生双端断裂情况下钠-水反应中气泡从球形到柱状的变温绝热生长模型,及采用一维特征线方法建立的压力波在快堆二回路中的传播模型.模型中考虑了爆破膜、管壁弹性变形和气蚀的影响.对在两相汽水混合区发生大泄漏后有、无爆破膜情况下的钠-水反应和二回路压力传播瞬态进行了计算,定性分析了其影响以及爆破膜在钠-水反应中的安全保护作用.

  3. Estimation of post-buckling fatigue damage for LMFBR reactor vessel under seismic load

    Energy Technology Data Exchange (ETDEWEB)

    Ogiso, S.; Sasaki, T.; Oooka, Y. [Kawasaki Heavy Industries, Ltd., Tokyo (Japan). Nuclear Systems Div.; Nakamura, H. [Central Research Inst. of Electric Power Industry, Chiba (Japan)

    1995-12-31

    Estimation of fatigue damage caused by buckling deformation is important to evaluate safety margin in a seismic buckling design criterion for LMFBR reactor vessels, in addition to limiting the buckling strength. An advanced buckling design guideline draft including the seismic margin criterion has been proposed under the sponsorship of MITI to date. An ultimate state in this criterion was defined as the condition that the maximum global displacement {delta}{sub max} reaches a critical displacement {delta}{sub u}. The authors have previously proposed an estimation method of the fatigue damage based on the post buckling fatigue tests 304 s.s. cylinders at room temperature. However, adoption of a modified 316 s.s named 316FR s.s is under development as the material of reactor vessel of the updated design of the Demonstration Fast Breeder Reactor. The buckling tests with 316FR s.s cylinders were performed under high temperature to obtain the skeleton curve of the relation between load and displacement. And the buckling behaviors under the cyclic loading were compared with those of 304 s.s. Objectives of the present study are: to apply the proposed estimation method to a reactor vessel made of 316FR s.s., and clarify the correlation between {delta}{sub max} and fatigue failure; to verify structural soundness of the ultimate state derived from the seismic margin criterion against the fatigue failure due to the buckling deformation. (author). 7 refs., 12 figs., 1 tab.

  4. Application of reactor scram experience in reliability analysis of shutdown systems

    International Nuclear Information System (INIS)

    Scram experience at a liquid-metal-cooled fast breeder reactor (LMFBR) and 14 commercial light-water reactors (LWRs) has been reviewed and analyzed for application in the reliability analysis of LMFBR shutdown systems. The date and reactor power for each scram were compiled from monthly plant operating reports and personal communications with plant operating personnel. The scram frequency in the Experimental Breeder Reactor II (EBR-II) has been higher than that in commercial LWRs because of its conservative shutdown system design which leads to more scrams from minor causes. The scram frequency of the EBR-II has declined rapidly with operating experience as some of the overly conservative scrams are eliminated. The EBR-II data trend and other facts suggest that the scram frequency for large LMFBRs is likely to be in the same general range as that for commercial LWRs. The scram frequency curve in LWRs resembles a reliability bathtub curve, with the useful-life phase of operation leveling off at approximately 2.5 scrams per year. A Weibull distribution appears to represent the data well in the early-life portion of the curve. No sign of a wear-out phase is evident after 16 years of operation

  5. Fast Reactor Development for a Sustainable Nuclear Energy Supply in China

    International Nuclear Information System (INIS)

    Nuclear energy is a new member of the energy supply family in China. Satisfactory operating records of all 11 nuclear power plants in China encourage its stepwise and large scale use and the PWR-FBR route matched with a closed nuclear fuel cycle forms a basic strategy. The sufficient utilization of nuclear resources and the treatment of highly radioactive waste by transmutation in fast reactors are the key issues for a sustainable development of nuclear energy. As the first step in FBR engineering development, the 65 MW(th) China Experimental Fast Reactor is approaching startup, the conceptual design of the 600-900 MW(e) China Demonstration Fast Reactor (CDFR) has been started and the 1000-1500 MW(e) China Demonstration Fast Breeder Reactor is under consideration. Three FBR development strategy targets are as follows: (1) To start realizing CDFR type commercial utilization in small batches by 2030; (2) To increase nuclear capacity to 240-250 GW(e), representing about 16%, mainly through FBRs by 2050; (3) To replace coal fired plants by nuclear power on a large scale in the period 2050-2100. (author)

  6. Challenges in the design of Waste Management Plant (WMP) for Fast Reactor Fuel Cycle Facility (FRFCF)

    International Nuclear Information System (INIS)

    A 500 MW, Prototype Fast Breeder Reactor (PFBR) is being constructed by DAE at Kalpakkam, Tamilnadu. Fast Reactor Fuel Cycle Facility (FRFCF) is also being planned as an integrated facility in close proximity to PFBR to cater to the need of closing the fast reactor fuel cycle. The design of waste management plant of FRFCF is one of the important and challenging tasks in FRFCF. The high burn up, short cooling period and high fissile content of spent fuel input from fast Reactors to FRFCF are the main reasons for the difficulties / challenges posed in the management of wastes from FRFCF. Separation of actinides and Platinum Group Metals (PGM) from high level liquid wastes, higher waste oxide loading in vitrified waste product from high level liquid waste management, development of better sorbent and chemical treatment method for achieving higher decontamination factors in the treatment of low and intermediate level liquid wastes and separation of plutonium from spent / de-graded solvent waste are some of the challenges which are addressed in this paper. Solid waste management is also associated with major challenges because of high volume of alpha contaminated wastes. Proper segregation, assaying, conditioning and treatment for volume reduction are planned. Management of significant amount of solid wastes generated as fuel hardware components (alpha and non-alpha) through proper storage and retrieval for future conditioning / disposal are also addressed in this paper. This paper describes the challenges faced during the design and solutions provided for each system. (author)

  7. Development of the supporting system of the Monju advanced reactor simulator (MARS)

    International Nuclear Information System (INIS)

    The MARS has been operating for operator training and operation procedure's verification of the prototype fast breeder reactor 'Monju' since April 1991. In order to carry out the above results more effectively, the MARS supporting system which consists of several computer system has being developed. This report covers the following three supporting systems developed from 1994 to 2001 and study on evaluation method of Monju operator training data. Expanded Monju visual animation system. The Monju visual animation system was developed to visualize the inner structure of equipments and the parameters without measuring points. This system is used for training form 1993. And then, the training limits of the system has been extended. Development of the Monju min simulator for reactor core analysis. Development of the Monju min simulator which analyzes thermo-hydraulic behavior in the Monju reactor in detail is proceeding with the aims; of upgrading Monju operator training effect. The obtained results will be reflected to remodeling of MARS's reactor core analysis mode. Development of the severe accident CAI (Computer Assisted Instruction) system. The prototype system which supports study on accident management was developed. This system will be converted when the severe accident procedure of Monju is fixed, and it will be used for training. Study on evaluation method of Monju operate training data. In order to reconstruct the operator training system, the evaluation method of training data was considered. The availability has been checked as a result of evaluating crew communication using this method. (author)

  8. The breeder reactor in electricity supply

    International Nuclear Information System (INIS)

    Forecasts are made of Britain's energy prospects in the year 2000. It is concluded that fossil fuels and renewable energy sources will leave an energy gap and that dependence on nuclear power will be substantial. There will, however have been a rapid depletion of readily available uranium ore reserves and a growing availability of plutonium from thermal reactors. Britain's resources of plutonium and depleted uranium which the fast breeder reactor can use - will equal many thousand million tonnes of coal. Our nuclear programme should therefore include one or two FBRs. Resources should be pooled internationally and plants built to prove alternative options and consolidate an already highly developed technology. In Britain our earliest nuclear (Magnox) stations have served as well. In Scotland, where next year an estimated 30% of electricity output will be nuclear, Hunterston 'B' AGR has had a splendid first year of operation, and pumped storage capacity in Scotland has extended the benefits of low-cost generation. The FBR has many very satisfactory engineering features and is eminently controllable and well behaved. It is compact, with relatively low cooling-water requirements and it could be built, one hopes, close to our load centres. There can be confidence that it will be proved safe. An order for an FBR, on the earliest timescale that fits in with evidence of successful operation of the Dounreay PFR and an agreed international programme, would serve the national interest and ensure the survival of our plant manufacturers, so badly hit by the effects of stagnation of the U.K. economy. (author)

  9. Design and evaluation of materials for space reactors

    International Nuclear Information System (INIS)

    The French programme envisages a 20 kWe reactor, project ERATO, with three technological options. The first option is a sodium cooled reactor, derived from the fast breeder reactor technology, (upper core outlet temperature of 7000C). The second option is based on the High Temperature Gas-cooled Reactor technology (outlet temperature range 7000C-9000C). The third option is the reference solution, lithium cooled and UN fuelled fast spectrum reactor, (outlet temperature as high as 12000C). The choice is essentially dominated by material considerations, and more specifically by the problems related to the compatibility with the cooling medium and to the high temperature creep resistance. For the first system limited work will be needed as the technology used is well experimented and there is a wealth of information on the austenitic stainless steel Type 316L-SPH. For the second system, most of the work has been concentrated on characterization of existing commercial alloys. This has included the preselection and the testing of a number of superalloys irradiated or not. The results obtained from high temperature tensile and creep tests have allowed selection of Haynes 230 as the primary candidate material and have also permitted calculation of allowable design stresses for this alloy. For the very high temperature system the French R and D programme has focused on Mo-Re alloys. The results obtained to this date from microstructural examinations and mechanical tests performed on different alloy compositions have allowed selection of Mo-25%Re for future optimization work. They have also shown the need for evaluation of creep properties at low stresses where microstructural instabilities are likely to occur as a result of long exposure to high temperature

  10. Future Scenarios for Fission Based Reactors

    Science.gov (United States)

    David, S.

    2005-04-01

    The coming century will see the exhaustion of standard fossil fuels, coal, gas and oil, which today represent 75% of the world energy production. Moreover, their use will have caused large-scale emission of greenhouse gases (GEG), and induced global climate change. This problem is exacerbated by a growing world energy demand. In this context, nuclear power is the only GEG-free energy source available today capable of responding significantly to this demand. Some scenarios consider a nuclear energy production of around 5 Gtoe in 2050, wich would represent a 20% share of the world energy supply. Present reactors generate energy from the fission of U-235 and require around 200 tons of natural Uranium to produce 1GWe.y of energy, equivalent to the fission of one ton of fissile material. In a scenario of a significant increase in nuclear energy generation, these standard reactors will consume the whole of the world's estimated Uranium reserves in a few decades. However, natural Uranium or Thorium ore, wich are not themselves fissile, can produce a fissile material after a neutron capture ( 239Pu and 233U respectively). In a breeder reactor, the mass of fissile material remains constant, and the fertile ore is the only material to be consumed. In this case, only 1 ton of natural ore is needed to produce 1GWe.y. Thus, the breeding concept allows optimal use of fertile ore and development of sustainable nuclear energy production for several thousand years into the future. Different sustainable nuclear reactor concepts are studied in the international forum "generation IV". Different types of coolant (Na, Pb and He) are studied for fast breeder reactors based on the Uranium cycle. The thermal Thorium cycle requires the use of a liquid fuel, which can be reprocessed online in order to extract the neutron poisons. This paper presents these different sustainable reactors, based on the Uranium or Thorium fuel cycles and will compare the different options in term of fissile

  11. Los Alamos experiments and their impacts on fast reactor safety

    International Nuclear Information System (INIS)

    Results of two sets of recent Los Alamos transition-phase experiments are reported herein. The two sets of experiments addressed two different behaviors of boiling pools of molten fuel, molten steel and steel vapor, in the transition phase of a core-disruptive accident (CDA) in a liquid-metal fast breeder reactor (LMFBR). The transient boilup experiments simulated the recriticality-induced motions of a boiling pool within a single subassembly during the subassembly-pool subphase of the transition phase. The melting wall experiments simulated the melting and entrainment of subassembly duct wall steel into a boiling pool during the same subphase. From the results of the transient boilup experiment we identified behaviors and phenomena that argue against an energetic disassembly from the subassembly-pool subphase. From the melting wall experiments we determined that a stable boiling pool is unlikely by showing that significant amounts of wall steel would likely be rapidly entrained and lead to pool collapse. 8 refs., 3 figs

  12. Analysis of deficiencies in fast reactor blanket physics predictions

    International Nuclear Information System (INIS)

    This analysis addresses a deviation between experimental measurements and fast reactor blanket physics predictions. A review of worldwide results reveals that reaction rates in the blanket are underpredicted with the discrepancy increasing with penetration into the blanket. The analysis of this discrepancy involves two parts: quantifying possible error reductions using the most advanced methods and investigating deficiencies in current methodology. The source of these discrepancies was investigated by application of ''state-of-the-art'' group constant generation and flux prediction methodology to flux calculations for the Purdue University Fast Breeder Blanket Facility (FBBF). Refined group constant generation methods yielded a significant reduction in the blanket deviations; however, only about half of the discrepancy can be accounted for in this manner. Transport theory calculations were used to predict the blanket neutron transmission problem. The surprising result is that transport theory predictions utilizing diffusion theory group constants did not improve the blanket results. Transport theory predictions exhibited blanket underpredictions similar to the diffusion theory results. The residual blanket discrepancies not explained using advanced methods require a refinement of the theory. For this purpose an analysis of deficiencies in current methodology was performed

  13. Calibration of a fuel-to-cladding gap conductance model for fast reactor fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.B.

    1978-05-01

    The report presents refined methods for calculation of fuel temperatures in PuO/sub 2/-UO/sub 2/ fuel in Fast Breeder Reactor (FBR) fuel pins. Of primary concern is the calculation of the temperature changes across the fuel-to-cladding gap of pins with fuel burnups that range from 60 to 10,900 MWd/MTM (0.006 to 1.12 at.%). Described in particular are: (1) a proposed set of heat transfer formulations and corresponding material properties for modeling radial heat transfer through the fuel and cladding; and (2) the calibration of a fuel-to-cladding gap conductance model, as part of a thermal performance computer code (SIEX-M1) which incorporates the proposed heat transfer expressions, using integral thermal performance data from two unique in-reactor experiments. The test data used are from the HEDL P-19 and P-20 experiments which were irradiated in the Experimental Breeder Reactor Number Two (EBR-II), for the Hanford Engineering Development Laboratory (HEDL).

  14. Proceedings of the third specialist meeting on sodium/fuel interaction in fast reactors

    International Nuclear Information System (INIS)

    This specialist meeting, sponsored by the OECD-NEA and organized by the Power Reactor and Nuclear Fuel Development Corporation, was attended by 56 delegates from 6 countries and the CEC (Commission of the European Communities). The purpose of the meeting was to bring together and discuss in depth the Fuel-Sodium Interaction, a phenomenon of major importance in the assessment of the Hypothetical Core Disruptive Accident in the Liquid Metal Fast Breeder Reactor. The meeting was essentially a follow-up of an earlier meeting held at Ispra in December 1973. In all, 29 papers were presented, covering the following topics: 1. Current perspective on sodium-fuel interaction in LMFBR safety; 2. Basic experimental and theoretical studies including other materials; 3. In-pile and out-of-pile experimental studies on sodium-fuel interaction; 4. Theoretical models for the interpretation of experiments and for application to reactor situations. The meeting is considered useful in narrowing down the chain of events necessary to get energetic interaction, large work potential, but many points are being clarified on the gap between the basic vapor explosions and the real fuel sodium interactions in the HCDA scenario of LMFBR. Finally another meeting of the same nature as this one has been recommended

  15. Homogenization of the internal structures of a reactor with the cooling fluid

    Energy Technology Data Exchange (ETDEWEB)

    Robbe, M.F. [CEA Saclay, SEMT, 91 - Gif sur Yvette (France); Bliard, F. [Socotec Industrie, Service AME, 78 - Montigny le Bretonneux (France)

    2001-07-01

    To take into account the influence of a structure net among a fluid flow, without modelling exactly the structure shape, a concept of ''equivalent porosity method'' was developed. The structures are considered as solid pores inside the fluid. The structure presence is represented by three parameters: a porosity, a shape coefficient and a pressure loss coefficient. The method was studied for an Hypothetical Core Disruptive Accident in a Liquid Metal Fast Breeder Reactor, but it can be applied to any problem involving fluid flow getting through a solid net. The model was implemented in the computer code CASTEM-PLEXUS and validated on an analytical shock tube test, simulating an horizontal slice of a schematic LMFBR in case of a HCDA (bubble at high pressure, liquid sodium and internal structures of the reactor). A short parametric study shows the influence of the porosity and the structure shape on the pressure wave impacting the shock tube bottom. These results were used to simulate numerically the HCDA mechanical effects in a small scale reactor mock-up. (author)

  16. Reports on the research projects in the field of reactor safety sponsored by the Federal Ministry for Science and Technology

    International Nuclear Information System (INIS)

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the safety program 'Reactor Safety' are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT - Secretary of State for Research and Technology). Objective of this program is to continue improving the safety of LWRs, in order to minimize the risk for the environment. With grant assistance from the Bundesminister des Innern (BMI - Secretary of State for Home Affairs) research contracts in the field of reactor safety are being performed. Results of these projects should contribute to resolving questions arising from nuclear licensing procedures. The Forschungsbetreuung (FB - research supervision department) at the Institute for Reactor Safety (IRS), as consultants to BMFT and BMI, provides information about the progress of investigations. Individual reports will be prepared and put into standard forms by the research contractors. Each report gives information on: 1) the work accomplished, 2) the results obtained, 3) the work planned to be continued. Initial reports of research projects describe in addition the purpose of the work. A BMFT-research program on the safety of Fast Breeders (Schneller Brutreaktor - SBR) is presently under discussion. In order to define several problems, investigations included in the present compilation (RS 139, 140, 143, 162) will be previously performed. (orig./HP)

  17. Reports on the research projects in the field of reactor safety sponsored by the Federal Ministry for Science and Technology

    International Nuclear Information System (INIS)

    Investigations on the safety of Light Water Reactors (LWR) being performed in the framework of the safety program 'Reactor Safety' are sponsored by the Bundesminister fuer Forschung und Technologie (BMFT - Secretary of State for Research and Technology). Objective of this program is to continue improving the safety of LWRs, in order to minimize the risk for the environment. With grant assistance from the Bundesminister des Innern (BMI - Secretary of State for Home Affairs) research contracts in the field of reactor safety are being performed. Results of these projects should contribute to resolving questions arising from nuclear licensing procedures. The Forschungsbetreuung (FB - research supervision department) at the Institute for Reactor Safety (IRS), as consultants to BMFT and BMI, provides information about the progress of investigations. Individual reports will be prepared and put into standard forms by the research contractors. Each report gives information on: 1) the work accomplished, 2) the results obtained, 3) the work planned to be continued. Initial reports of research projects describe in addition the purpose of the work. A BMFT-research program on the safety of Fast Breeders (Schneller Brutreaktor - SBR) is presently under discussion. In order to define several problems, investigations included in the present compilation (RS 139, 140, 143, 162) will be previously performed. (orig.)

  18. Demonstration test of the holding stability of the self actuated shutdown system in the experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Self actuated shutdown system (SASS) with a Curie point electromagnet (CPEM) has been developed for use in a large scale fast breeder reactor (FBR) in order to establish the passive shutdown capability against anticipated transient without scram (ATWS) events. The basic characteristics of SASS have already been investigated by various out-of-pile tests for material elements. As the final stage of the development, the stability of SASS needs to be confirmed under the actual reactor-operational environment with high temperature, high neutron flux, and flowing sodium in order to ensure the high plant availability factor. For this purpose, the demonstration test of holding stability using the reduced-scale experimental equipment of SASS was conducted in the 1st and 2nd operational cycles of the experimental fast reactor JOYO MK-III. As a result of this study, the rod-holding stability and the rod-recovering functions of the driving system to re-connect and pull out the separated control rod were fully confirmed. The results also indicate there is no essential problem for the practical use of SASS about its operational trouble involving the unexpected drop during reactor operation. (author)

  19. Physical and economical aspects of Pu multiple recycling on the basis of REMIX reprocessing technology in thermal reactors

    Directory of Open Access Journals (Sweden)

    Teplov Pavel S.

    2016-01-01

    Full Text Available The basic strategy of Russian nuclear energy is propagation of a closed fuel cycle on the basis of fast breeder and thermal reactors, as well as the solution of the spent nuclear fuel accumulation and resource problems. The three variants of multiple Pu and U recycling in Russian pressurized water reactor concept reactors on the basis of REgenerated MIXture of U, Pu oxides (REMIX reprocessing technology are considered in this work. The REMIX fuel is fabricated from an unseparated mixture of uranium and plutonium obtained during spent fuel reprocessing with further makeup by enriched natural U or reactor grade Pu. This makes it possible to recycle several times the total amount of Pu obtained from the spent fuel. The main difference in Pu recycling is the concept of 100% or partial fuel loading of the core. The third variant is heterogeneous composition of enriched uranium and uranium–plutonium mixed oxide fuel pins in one fuel assembly. It should be noted that all fuel assemblies with Pu require the involvement of expensive technologies during manufacturing. These three variants of the full core loadings can be balanced on zero Pu accumulation in the cycle. The various physical and economical aspects of Pu and U multiple recycling in selected variants are observed in the given work.

  20. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  1. Neutron spectra in thorium and depleted uranium-plutonium-loaded light water reactors

    International Nuclear Information System (INIS)

    The technical feasibility of using plutonium mixed with natural uranium in one-third of the cores of light water reactors (LWRs) has been sufficiently demonstrated. A number of reactors in Europe are currently operated with one-third mixed-oxide cores. If the option of burning excess plutonium in conventional LWR reactors in this country is selected, it has been estimated that the long-term disposition of the excess plutonium would take many decades. This time can be significantly reduced if the plutonium is burned in a fast breeder reactor. However, in the present economic and political climate, such an approach is difficult to implement. On the other hand, if the neutron spectrum in an LWR core is hardened, the well-developed and well-understood LWR can accomplish the goal of effectively burning excess plutonium to convert to proliferation-resistive fuel such as 233U. The authors present some fundamental characteristics of thorium and depleted uranium-plutonium-fueled LWRs. High fuel burnup levels can be achieved by tightening the lattice of an LWR loaded with thorium and depleted uranium and plutonium (nitride or oxide) and increasing the plutonium content. The neutron spectrum in such a reactor is very hard and tends to approach that of a Na-cooled fast reactor. Instead of Zircaloy, stainless steel can be used as fuel cladding and structural material since it has a low fast neutron capture cross section. Supercritical steam, generated at high pressures, can be used as coolant. If the cladding and structural materials used in this reactor can withstand corrosion in water under high-irradiation conditions, high conversion ratios of thermal heat to electricity will be possible

  2. Gel-sphere-pac reactor fuel fabrication and its application to a variety of fuels

    International Nuclear Information System (INIS)

    The gel-sphere-pac fuel fabrication option was evaluated for its possible application to commercial scale fuel fabrication for 19 fuel element designs that use oxide fuel in metal clad rods. The dry gel spheres are prepared at the reprocessing plant and are then calcined, sintered, inspected, and loaded into fuel rods and packed by low-energy vibration. A fuel smear density of 83 to 88% theoretical can be obtained. All fuel fabrication process steps were defined and evaluated from fuel receiving to finished fuel element shipping. The evaluation also covers the feasibility of the process, the current status of technology, estimates of the required time and cost to develop the technology to commercial status, and the safety and licensability of commercial scale plants. The primary evaluation was for a Light-Water Reactor fuel element containing (U,Pu)O2 fuel. The other 18 fuel element types - 3 for Light-Water Reactors, 1 for a Heavy-Water Reactor, 1 for a Gas-Cooled Fast Reactor, 7 for Liquid-Metal-Cooled Fast Breeder Reactors, and 3 pairs for Light-Water Prebreeder and Breeder Reactors - were compared with the Light-Water Reactor. The gel-sphere-pac option was found applicable to 17 of the 19 element types; the characteristics of a commercial scale plant were defined for these for making cost estimates for such plants. The evaluation clearly shows the gel-sphere-pac process to be a viable fuel fabrication option. Estimates indicate a significant potential fabrication cost advantage for the gel-sphere-pac process if a remotely operated and remotely maintained fuel fabrication plant is required

  3. Fast reactor safety and related physics. Volume I. Invited papers; panels; summary

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Separate abstracts were prepared for each of the twenty invited papers included. The papers covered sessions on licensing aspects of safety design bases, safety of demonstration plants, safety aspects of large commercial fast breeders, and safety test facilities.

  4. Vapor pressures of oxide reactor fuels above 3000 K: Review and perspective

    International Nuclear Information System (INIS)

    Vapor pressures of liquid oxide reactor fuels are among the most important material data required for theoretical analyses of Hypothetical Core Disruptive Accidents in Fast Breeder Reactors. This report is an attempt to completely summarize and critically review the numerous theoretical and experimental results published for the pressure-temperature and pressure-energy relation of unirradiated UO2 and (U,Pu)O2. First - to define the research goal - the precision in the saturation vapor pressure is quantified which is required for the purpose of HCDA calculations. Then the various theoretical and experimental methods used for the determination of p-T and p-U data are reviewed with respect to their principles, results and uncertainties. The achievements of the individual methods are discussed in the light of the research goal and - in view of the widely scattered data - recommendations are made concerning the p-T and p-U relation of UO2. Finally, the most important future research areas are identified, including some specific research proposals which aim at reducing the still large uncertainties in fuel vapor pressures down to the desired level. (orig.)

  5. Benchmark Tests of the Multigroup Cross Section Libraries for Fast Reactors

    International Nuclear Information System (INIS)

    In Korea, a design study for a fast breeder reactor named KALIMER (Korea Advanced LIquid MEtal Reactor) has been carried out. The simulations of the KALIMER core have been performed with the JEF-2.2- based 80-group neutron library KAFAX-F22 or the ENDF/B-VI.6-based 150-group neutron library KAFAXE66. Recently, newly evaluated nuclear data files such as ENDF/B-VII (beta 0 and 1), JEFF-3.1, and JENDL-3.3 have been released. And thus there is a need to update the libraries for the KALIMER by using the new data files. In this study, the fast cross section sets with 150 groups were prepared based on ENDF/B-VII beta 0, JEFF-3.1, and JENDL-3.3. The validations of the libraries have been carried out for 14 Cross Section Evaluation Working Group (CSEWG) fast benchmark problems through the 1-D and 2-D DANTSYS calculations. The effective multiplication factors (keff's) and central spectral indices have been compared with the experimental values and the results by the MCNPX calculations

  6. A review of fast reactor program in Japan (April 2001 - March 2002)

    International Nuclear Information System (INIS)

    This report describes the research and development activities on fast reactors in Japan thru April 2001 to March 2002. In December 2001, the Cabinet decided the Plan for Reorganization of Government-funded Corporations including the merger of JNC and the Japan Atomic Energy Research Institute (JAERI). A law to set up a new entity is supposed to be submitted to the National Diet by the Japanese Fiscal Year (JFY) 2004. In the Experimental Fast Reactor Joyo, thirty-five duty cycle operations and thirteen special tests with the MK-II core were completed by June 2000 without any fuel pin failures or serious plant trouble. The reactor is currently being upgraded to the MK-III core. Though a fire broke out in the maintenance building of Joyo in October 2001, the Mk-III construction work was restarted in February 2002. In the Prototype Fast Breeder Reactor Monju, countermeasures against sodium leakage have already been drawn up based on Monju comprehensive safety review. The safety licensing examination for the plant modification of Monju is undergoing. As for the Feasibility Study on Commercialized Fast Reactor Cycle Systems, JFY2001 was the first year of its second phase. A three-year period from JFY2001 to 2003 is the initial term of this phase. During this term, research activities are being focused on the design of the candidate concepts and fundamental tests of key technologies. An interim summary of these activities will be checked and reviewed, and based on the results; the research for JFY 2004 to 2005 will be conducted in order to narrow down the number of alternatives for the fast reactor cycle. (author)

  7. Demonstration of control rod holding stability of the self actuated shutdown system in Joyo for enhancement of fast reactor inherent safety

    International Nuclear Information System (INIS)

    Self actuated shutdown system (SASS) with a Curie point electromagnet (CPEM) has been developed for use in a large-scale liquid metal cooled fast breeder reactor (LMFBR) in order to establish the passive shutdown capability against anticipated transient without scram (ATWS) events. The basic characteristics of SASS have already been investigated by various out-of-pile tests for material elements. As the final stage of the development, the stability of SASS needs to be confirmed under the actual reactor-operational environment with high temperature, high neutron flux, and flowing sodium to ensure the high plant availability factor. For this purpose, the demonstration test of holding stability using the reduced-scale experimental equipment of SASS was conducted in the 1st and 2nd operational cycles of the experimental fast reactor Joyo MK-III. The rod-holding stability and the rod-recovering functions of the driving system to re-connect and pull out the separated control rod were fully confirmed. The results also indicate there is no essential problem for the practical use of SASS about its operational trouble involving the unexpected drop during reactor operation. (author)

  8. Development calculational procedures for the neutron physics design of advanced pressurized water reactors (APWR) with tight triangular lattices in hexagonal fuel assemblies

    International Nuclear Information System (INIS)

    The new procedures for the calculation of infinite reactor zones build a synthesis of wellknown fast breeder (FBR) and light water reactor (LWR) methods. The data libraries are based on the 69 energy group structure of the WIMS code for thermal reactors and use the flexible storage mode of the FBR libraries. For the calculation of effective cross sections in the energy of neutron resonances, being very important in the APWR with its strongly epithermal neutron spectrum, several options are available. In most applications improved selfshielding tabulation formalisms (f-factor concept) are used. For more accurate investigations the fine flux programs ULFISP (own development) or RESABK (IKE, Stuttgart) may be selected. All cross section calculations use a modified version of the FBR code GRUCAL. Particularly the calculation of voided lattices may be improved at 69 groups with the program REMOCO or with a new 334 group library. The new calculational procedures could be qualified for a large number of LWR, APWR and FBR applications. The fuel assembly and whole core calculations are performed with available FBR methods. A new reactor core simulation program ARCOSI has been developed for the investigation of an APWR equilibrium core. The required cross sections come from fast interpolations of fuel assembly data on code-own libraries. The whole core calculations are performed with the fast nodal code HEXNODK, adopted from KWU. All calculational procedures are part of the powerful FBR code system KAPROS. (orig.)

  9. Modelling fuel behaviour in a reactor park using fuel cycle kinetics

    International Nuclear Information System (INIS)

    In this thesis the theory of fuel cycle kinetics is re-examined. The fuel cycle kinetics theory is a powerful tool to describe the time-dependent fuel behaviour of large populations of nuclear reactors. The fuel cycle kinetics theory is based on the point kinetics theory and the principles of a reactor park. The point kinetics theory is a simplification of the space-, energy-and time-dependent diffusion balance equation to only a time-dependent equation. A reactor park is the description of the interconnections between a population of nuclear reactors with various designs. In the fuel cycle kinetics theory the point kinetics theory is used as a model to simplify space- energy- and time-dependent burn-up equations of the reactors in a reactor park to a set of only time-dependent equations, one for every reactor type. The fuel cycle kinetics theory is verified by means of a number of test cases. In the first test case the same symbiotic system is used as was used by Maudlin. There is no difference between the two obtained results. The second test case is that of only Fast Breeder Reactor, FBR, deployment. Here the result of the fuel cycle kinetics equation is checked against the result obtained from TRITON. TRITON is a module of the SCALE code system that is used for depletion analysis of 3-D reactor models. With the use of the pseudo-initial condition the results of the fuel cycle kinetics and TRITON calculations are almost identical. The pseudo-initial condition is a correction on the initial condition to adjust for neglecting the time dependency of the parameters in the fuel cycle kinetics equations. In the third case a symbiotic system of FBRs and Pressurised Water Reactors, PWRs, is researched. There is only a small difference in the asymptotic growth between the fuel cycle kinetics results and the TRITON results. In the last test case the same system of FBRs and PWRs is used to investigate two demanded asymptotic growths obtained from the upper and lower

  10. Shutdown and Closure of the Experimental Breeder Reactor - II

    International Nuclear Information System (INIS)

    The Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to maintain the Experimental Breeder Reactor - II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The EBR-II is a pool-type reactor. The primary system contained approximately 325 m3 (86,000 gallons) of sodium and the secondary system contained 50 m3 (13,000 gallons). In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility was built to react the sodium to a solid sodium hydroxide monolith for burial as a low level waste in a land disposal facility. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in circuits and components must be passivated, inerted, or removed to preclude future concerns with sodium-air reactions that could generate potentially explosive mixtures of hydrogen and leave corrosive compounds. The passivation process being implemented utilizes a moist carbon dioxide gas that generates a passive layer of sodium carbonate/sodium bicarbonate over any quantities of residual sodium. Tests being conducted will determine the maximum depths of sodium that can be reacted using this method, defining the amount that must be dealt with later to achieve RCRA clean closure. Deactivation of the EBR-II complex is on schedule for a March, 2002, completion. Each system associated with EBR-II has an associated lay-up plan defining the system end state, as well as instructions for achieving the lay-up condition. A goal of system-by-system lay-up is to minimize surveillance and

  11. Shutdown and closure of the experimental breeder reactor - II

    International Nuclear Information System (INIS)

    The Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to maintain the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The EBR-II is a pool-type reactor. The primary system contained approximately 325 m3 (86,000 gallons) of sodium and the secondary system contained 50 m3 (13,000 gallons). In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility was built to react the sodium to a solid sodium hydroxide monolith for burial as a low level waste in a land disposal facility. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in circuits and components must be passivated, inerted, or removed to preclude future concerns with sodium-air reactions that could generate potentially explosive mixtures of hydrogen and leave corrosive compounds. The passivation process being implemented utilizes a moist carbon dioxide gas that generates a passive layer of sodium carbonate/sodium bicarbonate over any quantities of residual sodium. Tests being conducted will determine the maximum depths of sodium that can be reacted using this method, defining the amount that must be dealt with later to achieve RCRA clean closure. Deactivation of the EBR-II complex is on schedule for a March, 2002, completion. Each system associated with EBR-II has an associated layup plan defining the system end state, as well as instructions for achieving the layup condition. A goal of system-by-system layup is to minimize surveillance and

  12. A new approach to nuclear reactor design optimization using genetic algorithms and regression analysis

    International Nuclear Information System (INIS)

    Highlights: • This paper presents a new method useful for the optimization of complex dynamic systems. • The method uses the strengths of; genetic algorithms (GA), and regression splines. • The method is applied to the design of a gas cooled fast breeder reactor design. • Tools like Java, R, and codes like MCNP, Matlab are used in this research. - Abstract: A module based optimization method using genetic algorithms (GA), and multivariate regression analysis has been developed to optimize a set of parameters in the design of a nuclear reactor. GA simulates natural evolution to perform optimization, and is widely used in recent times by the scientific community. The GA fits a population of random solutions to the optimized solution of a specific problem. In this work, we have developed a genetic algorithm to determine the values for a set of nuclear reactor parameters to design a gas cooled fast breeder reactor core including a basis thermal–hydraulics analysis, and energy transfer. Multivariate regression is implemented using regression splines (RS). Reactor designs are usually complex and a simulation needs a significantly large amount of time to execute, hence the implementation of GA or any other global optimization techniques is not feasible, therefore we present a new method of using RS in conjunction with GA. Due to using RS, we do not necessarily need to run the neutronics simulation for all the inputs generated from the GA module rather, run the simulations for a predefined set of inputs, build a multivariate regression fit to the input and the output parameters, and then use this fit to predict the output parameters for the inputs generated by GA. The reactor parameters are given by the, radius of a fuel pin cell, isotopic enrichment of the fissile material in the fuel, mass flow rate of the coolant, and temperature of the coolant at the core inlet. And, the optimization objectives for the reactor core are, high breeding of U-233 and Pu-239 in

  13. Opening Address: Japan's Nuclear Reactor Strategy

    International Nuclear Information System (INIS)

    published by the OECD Nuclear Energy Agency in 20081. In other words, the growth of nuclear power in the global power sector will not be able to keep pace with the growth in global electricity demand, at least in the medium term. Then what should the global nuclear community do before 'dawn', preparing for the day when nuclear energy will play the leading role in global energy supply. My answer is, let us promote carefully planned yet highly aggressive actions across three different time frames: short term, medium term and long term. The major short term action should be to continue to operate existing reactors safely and reliably, maintaining the public's trust in both plant operators' safety management and the government's regulatory activities for safety and security. In the case of Japan, urgent action in this category is to complete the reevaluation of the seismic safety of every nuclear facility in Japan, taking into consideration lessons learned from the July 2007 seismic event at the Kashiwazaki-Kariwa nuclear power plant on the propagation of the seismic wave generated in a nearby fault, in which the seismic input to the plant significantly exceeded the level of the design basis seismic input. It is to be hoped that this review for the prototype Monju fast breeder reactor will be completed very soon. The major medium term actions in the case of Japan are to add new generating capacity steadily, to operate the Rokkasho Reprocessing Plant steadily and to construct intermediate spent fuel storage facilities in a timely manner, to provide assistance to countries that are considering introducing nuclear power to build the necessary infrastructure and to train a young generation of nuclear scientists and engineers who are to sustain the development and utilization of nuclear energy in the future. One of the major long term actions should be to promote research and development programmes that exploit nuclear energy's innate feature, namely, its economically harvestable

  14. Inducer pumps for liquid metal reactor plants

    International Nuclear Information System (INIS)

    Pumps proposed for liquid metal reactor plants typically use centrifugal impellers as the rotating element and are required to maintain a relatively low speed to keep the suction specific speed low enough to operate at the available net positive suction head (HPSH) and to avoid cavitation damage. These low speeds of operation require that the pump diameter increase and/or multiple stages be used to achieve the design head. This frequently results in a large, heavy, complex pump design. In addition, the low speed results in a larger drive motor size so that the resultant penalty to the plant designer is multiplied. The heavier pump can also result in further complications as, e.g., the difficulty in maintaining the first critical speed sufficiently above the pump operating range to provide margin for rotor dynamic stability. To overcome some of these disadvantages, it was proposed the use of inducer pumps for Liquid Metal Fast Breeder Reactor (LMFBR) plants. This paper discusses some of the advantages of the inducer pump and the development history of designing and testing these pumps both in water and sodium. The inducer pump is seen to be a sound concept with a strong technology base derived from the aerospace and ship propulsion industries. The superior suction performance capability of the inducer offers significant system design advantages, primarily a smaller, lighter weight, less complex pump design with resulting saving in cost. Extensive testing of these pumps has been conducted in both sodium and water to demonstrate the long-life capability with no cavitation damage occurring in those designs based on Rockwell's current design criteria. These tests have utilized multiple inspection and measurement approaches to accurately assess and identify any potential for cavitation damage, and these approaches have all concluded that no damage is occurring. Therefore, it is concluded that inducer pumps can be safely designed for long life operation in sodium with

  15. Review of fast reactor physics activities relevant to LMFBR programme in PNC, Japan, June 1976 - May 1977

    International Nuclear Information System (INIS)

    Fast reactor physics activities performed during a year from June, 1976, to May, 1977, along with the programme in PNC are reviewed. The first topic is the start up of JOYO which attained the criticality on April 24, 1977. Present status of the design of MONJU and the design study of the demonstration fast breeder reactor are briefly reviewed in the second part. The rest of this report presents the results of more specific studies as follows. (1) Mockup experiment in FCA and analysis to support MONJU design. (2) Parameter study on the breeding characteristics of a 1000 MWe class LMFBR. (3) Evaluation of actinide nuclear data. (4) Detailed analysis of sodium void experiments. (5) The improvement of LSQ program for sensitivity analysis. (6) Effect of size of the critical mockup on the extrapolation errors in predicting neutronic properties of a 1000 MWe core. (7) Research on the two-dimensional calculational method for shielding, and application to MONJU design and to the evaluation of neutrons streaming through a primary sodium duct of JOYO. (Aoki, K.)

  16. Diametral strain of fast reactor MOX fuel pins with austenitic stainless steel cladding irradiated to high burnup

    Science.gov (United States)

    Uwaba, Tomoyuki; Ito, Masahiro; Maeda, Koji

    2011-09-01

    The C3M irradiation test, which was conducted in the experimental fast reactor, "Joyo", demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, "Monju". The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and 137Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.

  17. A comparative study of the MONJU fast reactor physics tests with the ERANOS and JAEA code systems

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, T. [NESI Inc., Shiraki 2-1, Tsuruga-shi, Fukui, 919-1279 (Japan); Usami, S.; Nishi, H. [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency JAEA, Shiraki 1, Tsuruga-shi, Fukui, 919-1279 (Japan); Tommasi, J. [CEA, CE Cadarache, 13108 Saint Paul lez Durance Cedex (France)

    2006-07-01

    MONJU is the prototype fast breeder reactor in Japan. Criticality and control rod worth measurements, performed as part of the MONJU fast reactor system start-up tests (1994), has been analyzed with the JAEA and ERANOS code systems. In spite of differences in the nuclear data and methods used in either system, the calculation results have been found to agree with each other, and with the measured values within the analysis accuracy. The library effect has also been checked (JENDL-3.2 and JEF-2.2 libraries both used with the JAEA code system). It has been found that the JENDL-3.2 library overestimates the criticality and also the control rod reactivity worth compared with the JEF-2.2 library. With regard to this difference, the contribution for all the nuclides has been checked by carrying out a sensitivity analysis. In criticality, Pu-239 v, Pu-239 fission, and Fe capture mainly showed a large contribution. It was clarified that the contribution of Fe was due to the difference between JENDL-3.2 and JEF-2.2. (authors)

  18. Life extension activities and modernization strategies for instrumentation ampersand control systems of research and power reactors in India

    International Nuclear Information System (INIS)

    Based on three and half decades of experience gained in the operation and maintenance of Instrumentation and Control Systems of nuclear reactors in India, specific investigations were made to understand various aspects of aging. The analysis of the failure rates of various instruments, plant outage figures and obsolescence of components have necessitated the replacement of instrumentation to improve the reliability and performance. The aging models available were used to determine the extent of performance degradation and to formulate maintenance strategies. The nuclear instrumentation of the aging research reactors at Bhabha Atomic Research Centre (BARC) has been replaced with high reliability equipment using modern integrated circuits. This has resulted in an improvement in the mean time between failure (MTBF) by a factor of five. The neutronic instrumentation of Fast Breeder Test Reactor (FBTR) at Madras is currently being upgraded with the introduction of microprocessor based safety units for reactivity computation and online testing of safety logic with Fine Impulse Technique. The operating experience has also indicated the necessity of developing online surveillance methods and status monitoring of various systems to detect aging. Online cable insulation measurement technique and noise analysis methods for vibration monitoring have been developed. Campbell method of signal processing has been successfully used in extending the useful life of Local Power Range monitors in the Boiling Water Reactor at Tarapur. In order to improve reliability, accuracy and provide efficient man machine interface, microprocessor based systems with online testing features have been installed in power reactors. These include the high performance reactor regulating system and centralised radiation monitoring systems commissioned at Kakrapara power station. The paper describes the above systems and the modernization strategies for nuclear instrumentation and control

  19. Contribution to the study of thermal-hydraulic problems in nuclear reactors

    International Nuclear Information System (INIS)

    In nuclear reactors, whatever the type considered, Pressurized Water Water Reactors (PWRs), Fast Breeder reactors (FBRs)..., thermal-hydraulics, the science of fluid mechanics and thermal behaviour, plays an essential role, both in nominal operating and accidental conditions. Fluid can either be the primary fluid (liquid or gas) or a very specific fluid called corium, which, in case of severe accident, could result from core and environning structure melting. The work reported here represents a 20-year contribution to thermal-hydraulic issues which could occur in FBRs and PWRs. Working on these two types of reactors, both in nominal and severe accident situations, has allowed me to compare the problems and to realize the importance of communication between research teams. The evolution in the complexity of studied problems, unavoidable in order to reduce costs and significantly improve safety, has led me from numerical modelling of single-phase flow turbulence to high temperature real melt experiments. The difficulties encountered in understanding the observed phenomena and in increasing experimental databases for computer code qualification have often entailed my participation in specific measurement device developments or adaptations, in particular non-intrusive devices generally based on optical techniques. Being concerned about the end-use of this research work, I actively participated in 'in-situ' thermalhydraulic experiments in the FBRs: Phenix and Super-Phenix, of which I appreciated their undeniable scientific contribution. In my opinion, the thermal-hydraulic questions related to severe accidents are the most complex as they are at the cross-roads of several scientific specialities. Consequently, they require a multi-disciplinary approach and a continuous see-saw motion between experimentalists and modelling teams. After a brief description of the various problems encountered, the main ones are reported. Finally, the importance for research teams to

  20. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-10-06

    tube film evaporation design used successfully with the BN-350 nuclear plant in Aktau, Kazakhstan. Parametric studies have been performed to optimize the balance of plant design. Also, an economic analysis has been performed, which shows that IRIS-D should be able to provide electricity and clean water at highly competitive costs.

  1. Program status of the high temperature reactor development in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    The status of the HTR development program in the Federal Republic of Germany in 1984 is characterized by the beginning of a transition phase from a national program to a commercial program. In the last 20 years the HTR technology program was strongly, nearly completely supported by the Federal Government and the State Government of North-Rhine-Westfalia. Funding of the program up to now exceeded 5 billion DM. Within this framework it was possible to establish competent-reactor-system companies, to enable industries to supply HTR- specific components including fuel elements and nuclear graphites, to maintain the strong engagement of the national centre KFA Juelich in general R and D activities, to build and operate the AVR-plant for more than 16 years, to erect the demonstration plant THTR-300 now approaching completion and to build and operate many efficient test facilities. Thereby the HTR technology development achieved a stage of maturity which is not only considered to be most advanced, but is also ready now for commerical deployment. The assessment report which comprised both the fast breeder and the HTR development included all major impacts, such as history, status, prospects, benefits, industrial aspects and international developments of the technology. The program description is facilitated by distinguishing the five major program elements: AVR, THTR-300, THTR follow-up plant, nuclear process heat program, fuel cycle activities

  2. Calculations of sodium aerosol concentrations at breeder reactor air intake ports

    International Nuclear Information System (INIS)

    This report describes the methodology used and results obtained in efforts to estimate the sodium aerosol concentrations at air intake ports of a liquid-metal cooled, fast-breeder nuclear reactor. A range of wind speeds from 2 to 10 m/s is assumed, and an effort is made to include building wake effects which in many cases dominate the dispersal of aerosols near buildings. For relatively small release rates on the order of 1 to 10 kg/s, it is suggested that the plume rise will be small and that estimates of aerosol concentrations may be derived using the methodology of Wilson and Britter (1982), which describes releases from surface vents. For more acute releases with release rates on the order of 100 kg/s, much higher release velocities are expected, and plume rise must be considered. Both momentum-driven and density-driven plume rise are considered. An effective increase in release height is computed using the Split-H methodology with a parameterization suggested by Ramsdell (1983), and the release source strength was transformed to rooftop level. Evaluation of the acute release aerosol concentration was then based on the methodology for releases from a surface release of this transformed source strength

  3. Aktau Plastics Plant Explosives Material Report

    Energy Technology Data Exchange (ETDEWEB)

    CASE JR.,ROGER S.

    1999-12-01

    The U.S. Department of Energy (DOE) has been cooperating with the Republic of Kazakhstanin Combined Threat Reduction (CTR) activities at the BN350 reactor located at the Mangyshlak Atomic Energy Complex (MAEC) in the city of Aktau, Kazakhstan since 1994. DOE contract personnel have been stationed at this facility for the last two years and DOE representatives regularly visit this location to oversee the continuing cooperative activities. Continued future cooperation is planned. A Russian news report in September 1999 indicated that 75 metric tons of organic peroxides stored at the Plastics Plant near Aktau were in danger of exploding and killing or injuring nearby residents. To ensure the health and safety of the personnel at the BN350 site, the DOE conducted a study to investigate the potential danger to the BN350 site posed by these materials at the Plastics Plant. The study conclusion was that while the organic peroxides do have hazards associated with them, the BN350 site is a safe distance from the Plastics Plant. Further, because the Plastics Plant and MAEC have cooperative fire-fighting agreements,and the Plastics Plant had exhausted its reserve of fire-fighting foam, there was the possibility of the Plastics Plant depleting the store of fire-fighting foam at the BN350 site. Subsequently, the DOE decided to purchase fire-fighting foam for the Plastics Plant to ensure the availability of free-fighting foam at the BN350 site.

  4. N Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The last of Hanfordqaodmasdkwaspemas7ajkqlsmdqpakldnzsdflss nine plutonium production reactors to be built was the N Reactor.This reactor was called a dual purpose...

  5. Numerical Model Analysis of Fluid-Elastic Instability of Thin Rectangular Plate Due to Overflow

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A circular thermal baffle weir is located close to the main vessel of liquid sodium cooled pool type fast breeder reactors (fast reactor for short thereafter). During operation of the fast reactor, a little part of liquid sodium flows from

  6. Application of the GIF PR and PP methodology to a commercial fast reactor system for a preliminary analysis of PR scenarios

    International Nuclear Information System (INIS)

    The Generation IV International Forum (GIF) Proliferation Resistance and Physical Protection (PR and PP) Working Group has developed a methodology for the PR and PP evaluation of the next generation Nuclear Energy Systems (NESs). Following the methodology proposed by the working group, applicable to assessing the proliferation resistance of an NES and its individual elements, the main objective of this work is to apply the methodology to show an example of how its results could be used by designers to improve the PR of the system. In this study, the reactor site of a hypothetical and commercial sodium‑cooled fast neutron nuclear reactor system (SFR) was used as the target NES for the application of the methodology. The design of this SFR is based on the layout of the Japanese Sodium Fast Reactor (JSFR) with a safeguards design based on the safeguards approach of the Japanese prototype fast breeder reactor Monju. The methodology is applied to all the PR scenarios described in the methodology: diversion, misuse and breakout. The methodology was first applied to the SFR to check if this system meets the target of PR as described in the GIF goal; secondly, a comparison between the SFR and a light water reactor (LWR) with an open fuel cycle was performed to evaluate if and how it would be possible to improve the PR and PP of the SFR. The LWR layout is based on the European Pressurized Water Reactor. The comparison was implemented according to the following example development target: achieving proliferation resistance to material diversion similar or superior to domestic and international advanced LWR. Three main actions were performed: implement the evaluation methodology based on its assumptions; characterize the PR and PP for the nuclear energy system applying the methodology to the SFR; and identify recommendations for system designers through comparing the SFR with the LWR.

  7. An investigation of thermal-hydraulics behavior of MONJU reactor upper plenum under 40%-rated steady state

    International Nuclear Information System (INIS)

    Japanese prototype sodium-cooled fast breeder reactor, MONJU, has some areas in which thermal hydraulic behavior is complicated. One of the areas is the reactor upper plenum. Thermal-hydraulics analyses of the reactor upper plenum had been performed in IAEA/Monju-CRP from 2008 to 2012. In this study we re-evaluated the thermal-hydraulics by changing inlet boundary condition (subassembly outlets), turbulent models, mesh partitioning and numerical scheme. The method of re-evaluation was following: first, we analyzed flow rate of each subassembly using total flow rate measured under the plant operation. Then we calculated the temperature at the outlet by the inlet temperature of the reactor vessel and thermal power of each subassembly. We used STAR-CCM+, a commercial CFD code. The mesh number was approximately 27 million. The mesh partitioning was precise enough to model the geometry except the honey comb structure, which was modeled as a porous media. The surfaces of the structures except the inner barrel were modeled as adiabatic walls. The turbulent model was realizable k-ε model. We compared the calculated temperature distribution on the thermocouple plug with the measured data. These temperature distributions agreed well with each other. We also compared the calculated temperature on fingers, which are placed over each of the subassembly outlets, with the measured data. The temperature of the analysis result had good agreement with the measured data. From these results we concluded that mesh partitioning and a numerical scheme did not affect largely to the thermal-hydraulics, and also concluded that the most important factor affected to the temperature distribution on the TC plug was the inlet condition. (author)

  8. Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor

    International Nuclear Information System (INIS)

    The Gas Cooled Fast Reactor (GCFR)is one of the Generation IV reactor concepts. This concept specifically targets sustainability of nuclear power generation. In nuclear reactors fertile material is converted to fissile fuel. If the neutrons inducing fission are highly energetic, the opportunity exists to convert more than one fertile nucleus per fission, thereby effectively breeding new nuclear fuel. Reactors operating on this principle are called ‘Fast Breeder Reactor’. Since natural uranium contains 99.3%of the fertile isotope 238U, breeding increases the energy harvested from the nuclear fuel. If nuclear energy is to play an important role as a source of energy in the future, fast breeder reactors are essential for breeding nuclear fuel. Fast neutrons are also more efficient to destruct heavy (Minor Actinide, MA) isotopes, such as Np, Am and Cm isotopes, which dominate the long-term radioactivity of nuclear waste. So the waste life-time can be shortened if the MA nuclei are destroyed. An important prerequisite of sustainable nuclear energy is the closed fuel cycle, where only fission products are discharged to a final repository, and all Heavy Metal (HM) are recycled. The reactor should breed just enough fissile material to allow refueling of the same reactor, adding only fertile material to the recycled material. Other key design choices are highly efficient power conversion using a direct cycle gas turbine, and better safety through the use of helium, a chemically inert coolant which cannot have phase changes in the reactor core. Because the envisaged core temperatures and operating conditions are similar to thermal-spectrum High Temperature Reactor (HTR) concepts, the research for this thesis initially focused on a design based on existing HTR fuel technology: coated particle fuel, assembled into fuel assemblies. It was found that such a fuel concept could not meet the Generation IV criteria set for GCFR: self-breeding is difficult, the temperature

  9. Numerical approach for quantification of self wastage phenomena in sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sung Hyun; Takata, Takashi [Graduate School of Engineering, Osaka University, Osaka (Japan); Yamaguchi, Akira [Graduate School of Engineering, The University of Tokyo, Ibaraki (Japan); Uchbori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki [Japan Atomic Energy Agency, Ibaraki (Japan)

    2015-10-15

    Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called 'self-wastage phenomena'. A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodium-water reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm)

  10. Modeling minor actinide multiple recycling in a lead-cooled fast reactor to demonstrate a fuel cycle without long-lived nuclear waste

    Directory of Open Access Journals (Sweden)

    Stanisz Przemysław

    2015-09-01

    Full Text Available The concept of closed nuclear fuel cycle seems to be the most promising options for the efficient usage of the nuclear energy resources. However, it can be implemented only in fast breeder reactors of the IVth generation, which are characterized by the fast neutron spectrum. The lead-cooled fast reactor (LFR was defined and studied on the level of technical design in order to demonstrate its performance and reliability within the European collaboration on ELSY (European Lead-cooled System and LEADER (Lead-cooled European Advanced Demonstration Reactor projects. It has been demonstrated that LFR meets the requirements of the closed nuclear fuel cycle, where plutonium and minor actinides (MA are recycled for reuse, thereby producing no MA waste. In this study, the most promising option was realized when entire Pu + MA material is fully recycled to produce a new batch of fuel without partitioning. This is the concept of a fuel cycle which asymptotically tends to the adiabatic equilibrium, where the concentrations of plutonium and MA at the beginning of the cycle are restored in the subsequent cycle in the combined process of fuel transmutation and cooling, removal of fission products (FPs, and admixture of depleted uranium. In this way, generation of nuclear waste containing radioactive plutonium and MA can be eliminated. The paper shows methodology applied to the LFR equilibrium fuel cycle assessment, which was developed for the Monte Carlo continuous energy burnup (MCB code, equipped with enhanced modules for material processing and fuel handling. The numerical analysis of the reactor core concerns multiple recycling and recovery of long-lived nuclides and their influence on safety parameters. The paper also presents a general concept of the novel IVth generation breeder reactor with equilibrium fuel and its future role in the management of MA.

  11. Radiation hazardous facilities at the Caspian regions of Kazakhstan

    International Nuclear Information System (INIS)

    , typical for a given region, at the except of several localised spots. Atomic power reactor BN-350 (Aktau) Industrial fast breeder reactor BN-350 is located in Aktau Mangistau province. The radionuclide composition of soils, underground and surface water, plants and sediments including Pu-238, 239+240, Sr-90, Cs-137, Mn-54, Co-60, Eu-152, Na-22 has been determined. Tritium content in water was measured additionally Radiation environment in the territories adjacent to the BN-350 reactor facility was being formed as a result of radioactive gas and aerosol carry-over to the near-surface layer of the atmosphere and sewage water discharge. So, the results of radionuclide analysis of the soil accumulating atmospheric radioactive fall outs as well as of the water and bottom sediments from Karakol Sor where sewage water was being discharged after decontamination is of special attention. Obtained quantitative data make error-free conclusion possible that technogenic radionuclide content of the environmental assay totality sampled within the buffer area and the radiation-control area of the BN-350 reactor facility is no more than background values, i.e. correspond to the average level of global radionuclide fall-outs in the West Kazakhstan territory (see Table). Radionuclide content range in the samples studied, Bq/kg level of global radionuclide Fall-outs (for the West Kazakhstan), Bq/kg Cs-137 2.1 - 33.5 0.5 - 50 Sr-90 5 - 10.5 5 - 30 Eu-152 1.4 - 2.5 s not measured Pu-239; Pu-240 0.05 - 0.55 0.05 - 5. To ascertain the source of plutonium inflow to the environment the Pu-238 / Pu-239; Pu-240 isotope ratio was studied in the samples as well. In should be noted that by the assessments of different authors (3-4) the mentioned ratio stipulated by global radionuclide fall-outs for the Northern Hemisphere is about 0.02-0.06. Analogous data obtained by INP specialists for a range of Western Kazakhstan objects are within the limits. Pu-238 / Pu-239; Pu-240 isotope ratio for the

  12. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  13. The anxiety reactor. Kalkar, chronicle of a perpetual promise; De angstreactor. Kalkar, kroniek van een eeuwige belofte

    Energy Technology Data Exchange (ETDEWEB)

    Van den Bosch, K.

    2006-07-01

    An overview is given of the history of the never commissioned fast breeder reactor in Kalkar, Germany, near the Dutch eastern border. The opposition against the Kalkar reactor was the start of the anti-nuclear pressure group in the Netherlands. The anxiety reactor is a story about dreams and ideals, starting in 1957 in Karlsruhe, Germany, and ending in an amusement park in Kalkar. The book is based on interviews with people involved, classified memo's and documents. [Dutch] Beschrijft de geschiedenis van de duurste fabriek ter wereld, verteld door de planners, de bouwers, de demonstranten en de politici. Spionage, de atoomstaat, plutoniumeconomie, terrorisme, de bom en een bijna oneindige energiebron: waarmee is de naam Kalkar eigenlijk niet verbonden? Twee ongelukken, Harrisburg in 1979 en Tsjernobyl in 1986, leken de kernenergie in het Westen de nekslag te geven. Maar onlangs stelden voorstanders dat kernenergie noodzakelijk is voor economische groei en reductie van broeikasgas, terwijl anderen juist becijferen dat we gemakkelijk zonder kunnen. Het lijkt een herhaling van de discussie die begin jaren zeventig begon. Toen besloot Nederland mee te doen met de bouw van een snelle kweekreactor in Kalkar. Het verzet tegen die kerncentrale was de opmaat voor een brede antikernenergiebeweging. De angstreactor is een verhaal over dromen en idealen, dat begint in 1957 in het naoorlogse Duitsland in Karlsruhe en in 1995 eindigt in het pretpark van Kalkar. Kees van den Bosch interviewde alle betrokkenen en kreeg de beschikking over geheime nota's en documenten, met als resultaat een spannend boek waarin veel actuele thema's aan de orde komen.

  14. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  15. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  16. Positive Experience with Small and Medium Sized Reactors in India, Lessons Learned in the Previous Two Decades and Future Plans. Annex IV

    International Nuclear Information System (INIS)

    India has limited uranium resources and about one third of the world's thorium resources. With a view to utilizing these resources in the country for electricity generation, a long term three stage programme has been evolved as a strategy. At the second International Conference on Peaceful Uses of Atomic Energy in Geneva in September 1957, H. Bhabha and N.B. Prasad presented a paper on a study of the contribution of atomic energy to a power programme in India. This paper elaborated the three stage programme of natural uranium fuelled pressurized heavy water reactors (PHWRs) in the first stage, fast breeder reactors (FBRs) using the spent fuel of the second stage, and thorium based reactor systems in the third stage. This three stage programme has been accepted over the years and still holds good, even today. The focus in India, from the very beginning of the programme, has been to make nuclear power self-reliant. Towards this objective, development of human resources, research and development for all aspects of the nuclear fuel cycle, and establishment of an infrastructure for the manufacturing of nuclear components within the country were targeted well before launching the nuclear power programme. Some of the initial activities, over a period of time, have been shaped as industrial units of the government, as well as industries in the country. Such an approach has greatly contributed to the self-reliance of the nuclear power programme, in addition to the benefits to the overall industrial infrastructure in the country. The establishment of research reactors, facilities and laboratories to support the nuclear power programme and related fuel cycle activities at the Bhabha Atomic Research Centre, and the Indira Gandhi Centre for Atomic Research for the FBR programme has made a significant contribution to the national capacity in the frontier areas of nuclear science and technology

  17. Contribution to the study of thermal-hydraulic problems in nuclear reactors; Contribution a l`etude de problemes de thermohydraulique dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G

    1998-07-07

    In nuclear reactors, whatever the type considered, Pressurized Water Water Reactors (PWRs), Fast Breeder reactors (FBRs)..., thermal-hydraulics, the science of fluid mechanics and thermal behaviour, plays an essential role, both in nominal operating and accidental conditions. Fluid can either be the primary fluid (liquid or gas) or a very specific fluid called corium, which, in case of severe accident, could result from core and environning structure melting. The work reported here represents a 20-year contribution to thermal-hydraulic issues which could occur in FBRs and PWRs. Working on these two types of reactors, both in nominal and severe accident situations, has allowed me to compare the problems and to realize the importance of communication between research teams. The evolution in the complexity of studied problems, unavoidable in order to reduce costs and significantly improve safety, has led me from numerical modelling of single-phase flow turbulence to high temperature real melt experiments. The difficulties encountered in understanding the observed phenomena and in increasing experimental databases for computer code qualification have often entailed my participation in specific measurement device developments or adaptations, in particular non-intrusive devices generally based on optical techniques. Being concerned about the end-use of this research work, I actively participated in `in-situ` thermalhydraulic experiments in the FBRs: Phenix and Super-Phenix, of which I appreciated their undeniable scientific contribution. In my opinion, the thermal-hydraulic questions related to severe accidents are the most complex as they are at the cross-roads of several scientific specialities. Consequently, they require a multi-disciplinary approach and a continuous see-saw motion between experimentalists and modelling teams. After a brief description of the various problems encountered, the main ones are reported. Finally, the importance for research teams to

  18. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  19. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  20. Sol–gel composite coatings as anti-corrosion barrier for structural materials of lead–bismuth eutectic cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp; Dou, Peng, E-mail: pengdou11@gmail.com

    2013-09-15

    In order to protect the structural components of lead–bismuth eutectic (LBE) cooled fast breeder reactors (FBRs) from liquid metal corrosion, advanced aluminum–yttrium nano- and micro-composite coatings were developed using an improved sol–gel process, which includes dipping specimens in a Y-added sol–gel solution dispersed with ultrafine α-Al{sub 2}O{sub 3} powders prepared by mechanical milling. Scanning electron microscopy (SEM) and field emission electron probe microprobe analyzer (FE-EPMA) analyses revealed that the coatings are composed of alumina with high density. Accelerated corrosion tests were conducted on coated specimens in liquid LBE at 650 °C under dynamic conditions. After the corrosion tests, no cracking, spallation, erosion and liquid metal (e.g., lead) penetration occurred to the coatings, indicating that the coatings possess an enhanced dynamic LBE corrosion resistance. The superior LBE corrosion resistance is due to the presence of the nano-structured composite particles integrated into the coatings and the addition of trace amount of yttrium.

  1. Research reactor status for future nuclear research in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Patrick; Bignan, Gilles; Guidez, Joel [Commissariat a l' Energie Atomique - CEA (France)

    2010-07-01

    During the 1950's and 60's, the European countries built several research reactors, partially to support their emerging nuclear-powered electricity programs. Now, over forty years later, the use and operation of these reactors have both widened and grown more specialized. The irradiation reactors test materials and fuels for power reactors, produce radio-isotopes for medicine, neutro-graphies, doping silicon, and other materials. The neutron beam reactors are crucial to science of matter and provide vital support to the development of nano-technologies. Other reactors are used for other specialized services such as teaching, safety tests, neutron physics measurements... The modifications to the operating uses and the ageing of the nuclear facilities have led to increasing closures year after year. Since last ENC, for example, we have seen, only in France, the closure of the training reactor Ulysse in 2007, the closure of the safety test dedicated reactor Phebus in 2008 and recently the Phenix reactor, last fast breeder in operation in the European Community, has been shut down after a set of 'end of life' technological and physical tests. For other research reactors, safety re-evaluations have had to take place, to enable extension of reactor life. However, in the current context of streamlining and reorganization, new European tools have emerged to optimally meet the changing demands for research. However the operation market of these reactors seems now increasing in all fields. For the neutron beams reactors (FRMII, ORPHEE, ILL, ISIS,..) the experimental needs are increasing years after years, especially for nano sciences and bio sciences new needs. The measurement of residual stress on manufactured materials is also more and more utilised. All these reactors have increasing utilizations, and their future seems promising. A new project project based on a neutron spallation is under definition in Sweden (ESSS: European Spallation Source

  2. JNC-JAERI united research report. A study on degradation of structural materials under irradiation environment in nuclear reactors

    International Nuclear Information System (INIS)

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Energy Research Institute (JAERI) have started a JNC-JAERI united research program cooperatively in fiscal year 2003, which has been aimed for efficient progress and synergistic effect on the research activities of both Institutes in order to lead the facing task of unification between JNC and JAERI. This study has been chosen one of the united research themes because it has been common objective for both Institutes in the research field of structural materials such as Fast Breeder Reactor and Light Water Reactors components. The purpose of the study is to clarify damage mechanism of structural materials under irradiation, and then to develop the methods for damage evaluation and detection in earlier stage of progressing process of damage along grain boundaries. In fiscal year 2003, magnetic flux density distribution (JNC) and micro-corrosion (JAERI) measurement apparatus were newly developed and equipped in Hot Facilities in two Institutes, respectively. The former apparatus, supersensitive Flux Gate sensor was installed, could detector leaked magnetic flux from material damaged by neutron irradiation. The latter one, Atomic Force Microscope was installed, could detect grain boundary corrosion loss after an electrochemical corrosion test of irradiated material. These apparatus were designed and produced in consideration of radiation resistance and remote-controlled operation to equip in hot cells. As the results of preliminary studies using Ni ion irradiated specimen, damage detection by corrosion property in grain boundary was possible but magnetic property change could not detect. We will start the study on neutron irradiation damage by employing the two apparatus as the next step. (author)

  3. Effect of nitrogen on high temperature mechanical properties of type 316LN SS for fast reactor applications

    International Nuclear Information System (INIS)

    Long term creep, low cycle fatigue and creep-fatigue interaction properties as well as compatibility with liquid sodium coolant, govern the choice of materials for out-of-core structural components of sodium cooled fast reactors (SFRs). 316 L(N) SS containing 0.07 Wt.% nitrogen is the current preferred material for all the high temperature structural components of SFRs. For the prototype Fast Breeder Reactor also, which is nearing commissioning at Kalpakkam, 316 LN (SS) has been used for all the major high temperature structural components. It is proposed to design future SFRs for a life of at least 60 years. Therefore materials with higher creep and low cycle fatigue strength are required. Increasing the nitrogen content in 316L(N) SS is one of the approaches being pursued at Indira Gandhi Centre for Atomic Research (IGCAR) to develop a SFR structural material suitable for 60 years design life. Towards this, a strong R and D programme is currently underway at IGCAR. The effect of nitrogen in the range of 0.07 to 0.22 Wt.% on the tensile creep and low cycle fatigue behavior of 316 LN SS has been extensively investigated. Both tensile and creep strength were found to increase with increase in nitrogen content. High temperature low cycle fatigue life was found to peak in 316LN SS containing 0.14 Wt.%. The paper discusses the monotonic and cyclic deformation and fracture mechanisms by which nitrogen improves the creep and low cycle fatigue properties of 316 LN SS. (author)

  4. Reactor building

    International Nuclear Information System (INIS)

    The whole reactor building is accommodated in a shaft and is sealed level with the earth's surface by a building ceiling, which provides protection against penetration due to external effects. The building ceiling is supported on walls of the reactor building, which line the shaft and transfer the vertical components of forces to the foundations. The thickness of the walls is designed to withstand horizontal pressure waves in the floor. The building ceiling has an opening above the reactor, which must be closed by cover plates. Operating equipment for the reactor can be situated above the building ceiling. (orig./HP)

  5. Status of fast reactor development in India (April 1996 - March 1997)

    International Nuclear Information System (INIS)

    India generated 395 TWh of electricity during, 4 April 1996 to March 1997. Oil import bill during the year was $9.3 billion. The operating performance of the thermal power reactors has considerably improved during the year and has enhanced the confidence level in nuclear energy in the government and the public. Construction of 4x220 MWe PHWR is continued at two locations. Start of construction of 2x220 MWe PHWR, 2x500 MWe PHWR and 2x1000 MWe WWER (Russian collaboration) and 500 MWe PFBR have been proposed in the IX Plan (1997- 2002). The 13 party coalition government is discussing the IX plan proposals in the power sector. Operation of FBTR at 10.5 MWt is continued The maximum fuel burnup reached is 32,000 MWd/t without any failure. Targeted burnup is 50,000 MWd/t. Post irradiation examination has been completed on one fuel subassembly taken out at 25,000 MWd/t. The performance of the fuel is very good. Turbine was rolled up to synchronous speed of 3000 rpm several times during the year and operation was found to be smooth. TG synchronisation with grid will be achieved during the reactor operation at 12.5 MWt, with the addition of fuel subassemblies in the core. All the activities related to the revision of conceptual design from 4 loop to 2 loop concept are almost complete for the 500 MWe Prototype Fast Breeder Reactor. The main options for the reactor are sodium coolant, pool type, MOX fuel, 2 primary sodium pumps, 2 secondary loops with 4 SG in each loop. The important design activities carried out during the year are plant dynamic studies, decay heat removal analysis, design of pump to grid plate pipe, scram and LOR parameters, location of secondary sodium pump in the secondary sodium circuit and design of fuel handling machines. Important experimental R and D work carried out during the year were testing of prototype primary sodium pump in water, operation of a large sodium test rig to study the heat and mass transfer in the cover gas, testing of dummy fuel

  6. Simulation of a reactor FBR with hexagonal-Z geometry using the code PARCS 3.1; Simulacion de un reactor FBR con geometria hexagonal-Z usando el codigo PARCS 3.1

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, M. C.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, U.P. Adolfo Lopez Mateos, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Filio L, C., E-mail: rf.melisa@gmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    The nuclear reactor core type FBR (Fast Breeder Reactor) was modeled in three dimensions of hexagonal-Z geometry using the code PARCS (Purdue Advanced Reactor Core Simulator) version 3.1 developed by Purdue University researchers. To carry out the modeling of the mentioned reactor was taken the corresponding information to one of the described benchmarks in the document NEACRP-L-330 (3-D Neutron Transport Benchmarks, 1991); fundamentally the corresponding to the geometric data and the cross sections. Being a quick reactor of breeding, known as the Knk-II, for which are considered 4 energy groups without dispersions up. The reactor core is formed by prismatic elements of hexagonal transversal cut where part of them only corresponds to nuclear fuel assemblies. This has four reflector rings and 6 identical control elements that together with the active part of the core is configured with 8 different types of elements.With the extracted information of the mentioned document the entrance file was prepared for PARCS 3.1 only considering a sixth part of the core due to the symmetry that presents their configuration. The NEACRP-L-330 shows a wide range of results reported by those who collaborated in its elaboration using different solution techniques that go from the Monte Carlo method to the approaches S{sub 2} and P{sub 1}. Of all the results were selected those obtained with the code HEXNOD, to which were carried out a comparison of the effective multiplication factor, being smaller differences to the 300 pcm, for three different scenarios: a) with the control bars extracted totally, b) with the semi-inserted control bars and c) with the control bars inserted completely and two different axial meshes, a thick mesh with 14 slices and another fine with 38, that which implies that the results can be considered very similar among if same. Radial maps and axial profiles are included, as much of the power as of the neutrons flow. (Author)

  7. Study on improvement of core management and irradiations field characterization methods of the experimental fast reactor Joyo (Thesis)

    International Nuclear Information System (INIS)

    This thesis describes the research study to develop the core management method and irradiation field characterization method of the experimental fast reactor Joyo. Improvements of the methods through comparison with measured data from the reactor core physics performance tests of Joyo and post irradiation examination (PIE) of tests conducted in the Joyo irradiation test facility complex are also described. There are eight chapters. Chapter 1 describes the objectives of this study, along with a brief history of the Joyo test reactor and an explanation of the role and importance of developing the sodium cooled fast breeder reactor (FBR) in Japan from the view point of providing the future energy source. Chapter 2 explains the core management method of the Joyo Mark-II irradiation core, which had been modified from the first Mark-I breeder core. The core management method modifications of Joyo included changing the refueling scheme by employing an in-out fuel shuffling method and re-examination of the thermal design margin of the driver fuel by reducing the hot spot factor based on the evaluation of the Joyo Mark-II core and plant performance tests. Chapter 3 describes the development of improved methods for evaluating the neutron and gamma flux distributions by including energy spectrum information in order to meet the requirements for their accuracy. These developments included modifying the analytical method and developing the new neutron dosimetry method of helium accumulation fluence monitor (HAFM). These improvements were validated by comparison with the measured reaction rates obtained by the conventional multiple foil activation method. Chapters 4 and 5 describe the design of the upgrade of the Joyo core and cooling system, called the Mark-III project, in order to increase the neutron flux 1.3 times higher than the original design maximum of the Joyo Mark-II core. The modified Mark-III core and plant performance test evaluations that were used to validate the

  8. BOR-60 reactor as an instrument for experimental substantiation of fuel rods for advanced NPPs

    International Nuclear Information System (INIS)

    . The principle task was to provide the required temperature conditions on specimens. This was achieved through the use of the thermal insulation gaps, intense cooling or additional heating at the expense of radiation energy release or fuel fission. As a result the reactor is used for testing various advanced types of fuel and structural materials at high thermal loads (100kW/m), temperatures (100 deg. C), burnups (33% h.a.) and fluences (1.8·1023cm-2 with E>0.1MeV). In case of necessity, the temperature can be stabilized by changing the thermal resistance in the heat transfer or heat removal intensification scheme using the liquid metal kept in the boiling condition. These units also provide the specified height and azimuthal temperature nonuniformity. The experimental facilities can be used for testing the fuel rods of up to 15 mm in diameter placed in different grids (triangular, square etc.) and environments (sodium, lithium, lead, various gases etc.). Due to the availability of the experimental facility for reprocessing of irradiated fuel and production of fast reactor fuel and fuel rods, the reactor is used for the experiments related the closed fuel cycle, such as testing of refabricated fuel with involvement of minor actinides and long-lived fission products into the fuel cycle. The BOR-60 demonstrated an effective operation as a MA burner as well as a power and weapon grade burner. This allows us to solve the important tasks of the nuclear power engineering, in particular to reduce the fuel cost and the quantity of radioactive waste and improve the environmental situation. The BOR-60 reactor has great experience in irradiation of oxide, metal, ceramic, carbide and nitride fuel compositions for reactors of different purposes, in particular for fast sodium reactors. Such fuel properties as regularities of gas release, shape change and structure formation were studied. The results obtained allowed us to substantiate the use of fuel rods for the BN-350 and BN-600

  9. Neutron Physics Division progress report for period ending October 31, 1975

    International Nuclear Information System (INIS)

    Included are 127 abstracts and summaries of papers and reports published or presented at scientific meetings during the reporting period, which extends from August 31, 1974 to October 31, 1975. The primary areas of study are the liquid-metal fast breeder reactor program, the gas cooled fast breeder reactor program, the controlled thermonuclear reactor program, the high-energy accelerator shielding program, and the defense nuclear agency program

  10. Some basic considerations about the brazilian nuclear program

    International Nuclear Information System (INIS)

    In order to assure the continued utilization of fission energy development of fast breeder reactors is a necessity. Binary fueled LMFBRs are proposed as the best type for future Brazilian nuclear systems. The inherent safety characteristics are superior to current fast breeder reactors and an efficient utilization of thorium can be realized. A possible strategy for the development of the reactor and related technologies are discussed. (Author)

  11. Compact Reactor

    International Nuclear Information System (INIS)

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date

  12. International conference on fast reactors and related fuel cycles (FR09): Challenges and opportunities. Book of extended synopses

    International Nuclear Information System (INIS)

    Renewed interest in nuclear energy is driven by the need to develop carbon free energy sources, by demographics and development in emerging economies, as well as by security of supply concerns. It is expected that nuclear energy will deliver huge amounts of energy to both emerging and developed economies. However, acceptance of large scale contributions would depend on satisfaction of key drivers to enhance sustainability in terms of economics, safety, adequacy of natural resources, waste reduction, non-proliferation and public acceptance. Fast spectrum reactors with recycle enhance the sustainability indices significantly. This has led to the focus on fast spectrum reactors with recycle in the Generation IV International Forum (GIF) and the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) initiative of the IAEA. It is expected that 2009 will register major events in the domain of fast spectrum reactors, that is, the restart of Monju in Japan, the first criticality of the China Experimental Fast Reactor in China, as well as new insights through end-of-life studies in Phenix, France. New fast reactors are expected to be commissioned in the near future: the 500 MW(e) Prototype Fast Breeder Reactor in India and the BN-800 unit in the Russian Federation. Moreover, China, France, India, Japan, Republic of Korea and the United States of America are preparing advanced prototypes/ demonstrations and/or commercial reactors for the 2020-2030 horizon. The necessary condition for successful fast reactor deployment in the near and mid-term is the understanding and assessment of innovative technological and design options, based on both past knowledge and experience, as well as on ongoing research and technology development efforts. In this respect, the need for in-depth international information exchange is underscored by the fact that the last large international fast reactor conference was held as far back as 1991. Since then, progress in research

  13. Prospects for the establishment of plutonium recycle in thermal reactors in the Foratom countries. Status and assessment

    International Nuclear Information System (INIS)

    fast breeder reactor, the cost and availability of uranium ore and the desirability of recycling plutonium from security considerations. (author)

  14. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  15. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  16. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  17. NUCLEAR REACTOR

    Science.gov (United States)

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  18. Nuclear reactor

    International Nuclear Information System (INIS)

    In order to reduce neutron embrittlement of the pressue vessel of an LWR, blanked off elements are fitted at the edge of the reactor core, with the same dimensions as the fuel elements. They are parallel to each other, and to the edge of the reactor taking the place of fuel rods, and are plates of neutron-absorbing material (stainless steel, boron steel, borated Al). (HP)

  19. Opening Address [FR09: International Conference on Fast Reactors and Related Fuel Cycles: Challenges and Opportunities, Kyoto (Japan), 7-11 December 2009

    International Nuclear Information System (INIS)

    Full text: Distinguished guests, ladies and gentlemen. It is my honour to address participants at this opening session of the International Conference on Fast Reactors and Related Fuel Cycles: Challenges and Opportunities, organized by the IAEA and hosted by the Japan Atomic Energy Agency. Fast reactor technology has the potential to ensure that energy resources which would last hundreds of years with the technology we are using today will actually last several thousand years. In other words, it can satisfy enormous increases in demand. This innovative technology also reduces the risk to the environment and helps to limit the burden that will be placed on future generations in the form of waste products. The coming year will be an exciting one for the development of fast spectrum nuclear reactors. We expect to reach several important milestones: (a) The first criticality of the China Experimental Fast Reactor; (b) The restart of the Monju prototype fast reactor in Japan; (c) The new insights we will gain through the end-of-life studies at the Phenix reactor in France. In the near future, new fast reactors will be commissioned: the 500 MW(e) Prototype Fast Breeder Reactor in India, the first in a series of five of the same type, and the BN-800 reactor in the Russian Federation. Moreover, China, France, India, Japan and the Republic of Korea are preparing advanced prototypes and demonstration or commercial reactors for the 2020-2030 period. Nuclear power is set to become an increasingly important part of the global energy mix in the coming decades as demand for energy grows. A number of countries in both the developed and developing world have told the IAEA that they are interested in introducing nuclear power. The 30 countries which already have nuclear power reactors are set to build more. This trend is likely to be accompanied by accelerated deployment of fast reactors. Continued advances in research and technology development are necessary to ensure improved

  20. Corrosion fatigue of 2-1/4Cr-1 Mo steel in caustic at 316 C

    International Nuclear Information System (INIS)

    Studies were initiated to determine the extent of damage under alternating loads and chemical conditions which simulate the departure from nucleate boiling (DNB) region of the evaporator section of a liquid metal fast breeder reactor. 9 refs