WorldWideScience

Sample records for bn-350 fast-breeder reactor

  1. Gamma-ray spectra of fast-breeder spent nuclear fuel from the BN-350 reactor

    International Nuclear Information System (INIS)

    Gamma-ray measurements of spent nuclear fuel (SNF) from a fast breeder reactor have been obtained with a High-Purity Germanium (HPGe) Detector. The HPGe measurements were performed inside a hot cell using an adjustable collimator to restrict the viewing angle of the HPGe to a small region of the SNF assembly. In addition Ion Chamber (IC) measurements were performed underwater using a lead shielded IC 15-cm in active length. We are going to present HPGe measurement results of the distribution of fission product and activation products along the assembly. We will also compare the gamma-ray profiles of the HPGe and IC measurements to those of the neutron profiles measured with a 3 He tube based neutron counter

  2. The passive nondestructive assay of the plutonium content of spent-fuel assemblies from the BN-350 fast-breeder reactor in the city of Aqtau, Kazakhstan

    CERN Document Server

    Lestone, J P; Rennie, J A; Sprinkle, J K; Staples, P; Grimm, K N; Hill, R N; Cherradi, I; Islam, N; Koulikov, J; Starovich, Z

    2002-01-01

    The International Atomic Energy Agency is presently interested in developing equipment and techniques to measure the plutonium content of breeder reactor spent-fuel assemblies located in storage ponds before they are relocated to more secure facilities. We present the first quantitative nondestructive assay of the plutonium content of fast-breeder reactor spent-fuel assemblies while still underwater in their facility storage pond. We have calibrated and installed an underwater neutron coincidence counter (Spent Fuel Coincidence Counter (SFCC)) in the BN-350 reactor spent-fuel pond in Aqtau, Kazakhstan. A procedure has been developed to convert singles and doubles (coincidence) neutron rates observed by the SFCC into the total plutonium content of a given BN-350 spent-fuel assembly. The plutonium content has been successfully determined for spent-fuel assemblies with a contact radiation level as high as approx 10 sup 5 Rads/h. Using limited facility information and multiple measurements along the length of spe...

  3. The passive nondestructive assay of the plutonium content of spent-fuel assemblies from the BN-350 fast-breeder reactor in the city of Aqtau, Kazakhstan

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency is presently interested in developing equipment and techniques to measure the plutonium content of breeder reactor spent-fuel assemblies located in storage ponds before they are relocated to more secure facilities. We present the first quantitative nondestructive assay of the plutonium content of fast-breeder reactor spent-fuel assemblies while still underwater in their facility storage pond. We have calibrated and installed an underwater neutron coincidence counter (Spent Fuel Coincidence Counter (SFCC)) in the BN-350 reactor spent-fuel pond in Aqtau, Kazakhstan. A procedure has been developed to convert singles and doubles (coincidence) neutron rates observed by the SFCC into the total plutonium content of a given BN-350 spent-fuel assembly. The plutonium content has been successfully determined for spent-fuel assemblies with a contact radiation level as high as ∼105 Rads/h. Using limited facility information and multiple measurements along the length of spent-fuel assemblies, the combined measurement and facility declaration error is ∼8%. A simplified one-point measurement procedure leads to a combined measurement and facility declaration error of ∼13%

  4. Planning of the BN-350 reactor decommissioning

    International Nuclear Information System (INIS)

    The experimental and commercial BN-350 NPP equipped with a fast neutron sodium cooled reactor is located in Kazakhstan near the Aktau city on the Caspian Sea coast. It was commissioned in 1973 and intended for weapon-grade plutonium production and as stream supply to a water desalination facility and the turbines of the Mangyshlak Atomic Energy Complex. Taking into account technical, financial and political issues, the Government of Kazakhstan enacted the Decree no. 456 'On Decommissioning of the Reactor BN-350 in the Aktau City of the Mangystau Region'. Because the decision on reactor decommissioning was adopted before the end of scheduled operation (2003), the plan to decommission the BN-350 reactor has not yet been developed. To determine the activities required for ensuring reactor safety and in preparation for decommission in the period prior, the development and ensuring approval by the Republic of Kazakhstan Government of the decommissioning plan, a 'Plan of Priority Actions for BN-350 Reactor Decommissioning' was developed and approved. Actions provided for in the plan include the following: Development of BN-350 Reactor Decommissioning Plan; Accident prevention during the period of transition; Unloading nuclear fuel from reactor and draining the coolant from the heat exchange circuits. Decommission is defined as a complex of administrative and technical actions taken to allow the removal of some or all of regulatory controls over a nuclear facility. These actions involve decontamination, dismantling and removal of radioactive materials, waste, components and structures. They are carried out to achieve a progressive and systematic reduction in radiological hazards and are undertaken on the basis of planning and assessment in order to ensure safety decommissioning operations. In accordance with the decision of Kazakhstan Government, three basic stages for BN-350 reactor decommissioning are envisaged: First stage - Placement of BN-350 into long-term storage

  5. Fast Breeder Reactor studies

    International Nuclear Information System (INIS)

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  6. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  7. k-eff of the Bn-350 reactor fuel by transportation

    International Nuclear Information System (INIS)

    There is packaging of nuclear fuel on the BN-350 fast breeder reactor, Actau, now. The analysis of criticality while this procedure was done in the Safety Analysis Report . Keeping in mind the planning displacement of the fuel to a site of long-term storage, the criticality assessment of the fuel packed into transportation cask carried out in this paper

  8. Reactor BN-350 spent fuel handling

    International Nuclear Information System (INIS)

    In pursuance with the Decree No. 456 of the Government of Kazakhstan, dated 22 April of 1999, BN-350 reactor shall be converted to SAFSTOR state for 50 years period followed by dismantling and disposal. Nuclear fuel unloading and safe arrangement for long-term storage in a specially constructed storage facility outside the reactor plant is one of the main criteria of reactor conversion of SAFSTOR state. In accordance with principles of nonproliferation and cancellation of 'nuclear test sites' the 'Baikal-1' bench-top complex located at National Nuclear Center of the Republic of Kazakhstan site is defined by Kazakhstan side decision as a location for long-term storage of BN-350 spent fuel. Project of BN-350 spent fuel transportation and arrangement for long-term storage includes several stages for completion. Currently the spent fuel is unloaded and packed into sealed jackets filled with inert gas. Thus the first Project stage - spent fuel preparation for transportation and provision of necessary temporary storage condition in BN-350 ponds till the moment of transportation is completed. Spent fuel transportation to the place of long-term storage is suggested to conduct in transport packaging casks (TPC) by railway to Kurchatov station where casks will be reloaded for transportation by auto-trailers. For the second Project stage the works have to be carried out on development of the following features: TPC design, technological process of transportation, design of storage facility and both nuclear fuel loading and reloading platforms. This part of this stage is yet completed and main project and technical solution are reported (TPC based on the one pack metal cask, technological process of TPC handling, Silo-type storage facility. As one of the option the TPC is reported based on heavy metal-concrete cask and indented for spent fuel transportation and storage (up to seven canisters with SFAs). Advantages and disadvantages of these TPC are reported compared to that of

  9. Conceptual problems of decommissioning of the reactor plant BN-350

    International Nuclear Information System (INIS)

    The reactor plant BN-350 located on the seaside of Caspian Sea is a part of the industrial complex of the Mangyshlak Nuclear Power Plant with a fast breeder loop reactor with three-circuit cooling system. The coolant of first two circuits is a liquid metal sodium, of the third circuit - is water-steam. The Reactor Plant was intended to supply steam to turbogenerators (about 150 M watt) and sea water desalination (about 120 000 t/day) and accumulation of auxiliary nuclear fuel (plutonium) for atomic energy. BN-350 reactor plant has been in operation since 1973. The reactor operation was stopped in 1998 after 25 years service. The information on financial and material expenses, doze rates on the personnel and radiation impacts on the population during decommissioning works must be collected, processed, analyzed, systematized and submitted in a form possible to be used in the future decommissioning projects. The structure provided available information form can be found by dividing of works: planning, radioactive waste management, radiation protection, dismantling, public relation

  10. Fast breeder reactor

    International Nuclear Information System (INIS)

    The fluid-cooled fast breeder reactor described includes an outer cylindrical boundary wall, a plurality of canless fuel elements and breeder material elements received within the boundary wall and being in an array therein forming a fissionable fuel zone and a breeder material zone coaxially surrounding the fissionable fuel zone, a coolant supply system for applying fluid coolant at uniform pressure to the entire cross section within the cylindrical boundary wall, and flow guide devices extending substantially horizontally and disposed at different levels one above the other within the breeder material zone which coaxially surrounds the fissionable fuel zone, means for elastically securing the flow guide devices at alternate levels within the breeder material to the boundary wall, the flow guide devices at the levels intermediate the alternate levels being spaced by an annular gap from the boundary wall. 7 claims, 7 drawing figures

  11. Nuclear power in Kazakhstan and current status of the BN-350 fast reactor

    International Nuclear Information System (INIS)

    Atomic scientific-industrial complex of the Republic of Kazakhstan consists of: Uranium mining, production and power industry which includes enterprises of uranium ores geological searching and a number of natural mines (using the mining and underground leaching techniques); two plants of U3O8 production at the towns Aktau and Stepnogorsk; metallurgical plant producing uranium fuel pellets for fuel assemblies of RBMK and WWER reactors types; energy plant at Aktau (MAEK) is used for production of heat, electricity and desalination of water and based on three energy blocks using natural gas and one nuclear unit with fast breeder reactor BN-350. The fast breeder reactor BN-350 at Aktau was commissioned in November 1972 and finally stopped in April 1999. Three different types of the research reactors on the territory of the former Semipalatinsk Nuclear Test Site and one research reactor and sub critical assembly nearly Almaty are exploited for the investigation in field of reactors nuclear safety and other type of investigations. These are: WWR-K - light water reactor, power - 10 MW; EWG-1M thermal light water heterogeneous vessel reactor with light water moderator and coolant, beryllium reflector, maximum thermal power - 35 MW; RA - thermal neutron high temperature gas heterogeneous reactor with air coolant, zirconium hydride moderator, and beryllium reflector. A brief description of the project on BN-350 spent fuel storage is included with the calculations on safety validity during packaging and storage of the spent fuel elements

  12. Operating experience of fast breeder reactors in the USSR

    International Nuclear Information System (INIS)

    The operating experience results of BN-600, BN-350, BOR-60 and BR-10 fast breeder reactors are presented. The fast reactors design and operation experience in the USSR has demonstrated their high operational qualities, safety, reserves of improvement. After 11 years' operation the BN-600 and 18 years' operation the BN-350 these two nuclear plants present a very satisfactory global loading rate of above 65%. The operation flexibility of the nuclear power plants and, in particular, the possibility of operation at 2/3 nominal power (BN-600) and at 4/5 and/or 3/5 nominal power (BN-350) have allowed for these loading rates to be reached in spite of numerous steam generators and pumps replacement. (J.P.N.)

  13. Fast breeder reactor research

    International Nuclear Information System (INIS)

    , Italy, in April or May 1977. Recognizing the importance of international co-ope ration within the framework of IWGFR for preparing surveys, proposals and recommendations concerning sodium cooled fast breeder reactors, the Working Group prepared a number of joint documents with the help of experts from the participating countries, discussed them at the Eighth Annual Meeting and made recommendations on the preparation of subsequent joint documents. (author)

  14. BN-600 and BN-350 reactors

    International Nuclear Information System (INIS)

    The nuclear power plant (NPP) BN-600 has been operating since 1980 as the Beloyarsk-3 power plant. The NPP construction cost was ∼ 312 million Rubles [1980] [approximately 620 million US$ (1980)]. The planned budget was exceeded by less than 5%. First criticality was reached on 26 February 1980. The basic result of the physical startup in March 1980 (213 low (21%) enrichment fuel subassemblies (FSAs), 143 high (33%) enrichment FSAs and 13 permanent reactivity compensators) showed that the measured physical characteristics of the reactor were correspondent with the design values. Measurement of sodium flow through each FSA was carried out two times: before and after the power startup of the reactor

  15. Fast breeder reactor

    International Nuclear Information System (INIS)

    This paper outlined the present status of FBR development in six countries and reviewed Japanese activities on FBR development. Joyo experimental FBR has accumulated a lot of technical data including irradiation tests of advanced fuels and was now long shut down due to the partial obstruction of rotating plug movement. Monju prototype FBR reactor experienced a sodium leakage in its secondary heat transfer system during performance tests in December 1995 and had been shut down until May 2010. Feasibility study on commercialized FBR cycle system ended in March 2006 and proposed the concept of commercialized FBR cycle technologies. In order to plan a demonstration reactor, research and development of innovative technologies are conducted as the FaCT (Fast Reactor Cycle Technology Development) Project. In connection with the results of this research and development, a 5-party council of Japan was established to discuss processes of demonstration and commercialization of FBR cycle systems in Japan. Joint efforts were made for a demonstration reactor to be committed in 2015, in addition to start operation around 2025 aiming at the commercialization of FBR before 2050. (T. Tanaka)

  16. Nuclear power in Kazakhstan and current status of the BN-350 fast reactor

    International Nuclear Information System (INIS)

    Atomic scientific-industrial complex of Republic of Kazakhstan consist of: Number of natural uranium mines, two plants of U3O8 production at Aktau and Stepnogorsk towns, metallurgical plant producing fuel pellets for RBMK and WWER fuel assemblies. Fast breeder reactor with sodium coolant BN - 350 at Aktau. The average share of BN-350 in total electricity production is 0.7%. Taking into account common condition industrial in Kazakhstan have no significant improvement the total electricity production on goal and oil station stayed on the same level as in 1996. According to government decision in 1998 the following structure of atomic complex have been established. Several rather serious events should be mentioned. In January 1998 the Provision of licensing in nuclear field was signed by Prime Ministry and now Kazakhstan have all necessary acts for starting this process. In April 1998 the General Program of development atomic scientific and industrial complex of Kazakhstan had been reported to Government and got approval in whole. In particular this program are including the design and construction NPP for electricity production on the lake Balhash, and two NPP for heating Almaty and new capital Akmola. In April 1998 the law on Radiation protection had got approval of Parliament and now President should sign it. In January the Nuclear Technologies Safety Center (NTSC) had been established by group of organizations such as KAEA, NNC, University, Nuclear Society of Kazakhstan, Center of standardization and Almaty local administration. NTSC have established as a society independent experts in the field nuclear safety. With cooperation with ANL an expertise on nuclear safety of BN-350 will be done related to long-term spent fuel storage

  17. Thermal and neutronic calculation for fast breeder reactor FBR

    International Nuclear Information System (INIS)

    This research included studying of thermal and neutronic calculation for fast breeder nuclear reactor, to putting the optimum design for this reactor. So a Soviet type (BN-350) was chosen, which has its core composed of two enrichment zones, and with blanket that contains depleted uranium. A group of thermal calculation programs was made by using personal computer, to obtain core and blanket reactor dimensions and volume fractions of reaction input material and number and dimensions of fuel rods which were used for neutron calculations. Several core and blanket enrichments were used to study neutron flux behaviour for two reactors different conditions. First when control rods exist in the core reactor and second when the rods are out of the core. Breeding ratio was also studied for different core and blanket enrichment. 30 tabs.; 24 figs.; 34 refs.; 3 apps

  18. Fast breeder reactors an engineering introduction

    CERN Document Server

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  19. Studies validating of BN-350 reactor decommissioning operations

    International Nuclear Information System (INIS)

    The major tasks performed at the first stage of BN-350 decommissioning (transfer to a safe stage) are as follows: placement of the spent fuel for a long-term storage; processing and placement for a long-term storage of accumulated operational nuclear wastes; draining and processing of radioactive sodium coolant, placement of the processing products for storage. To enhance the fuel physical protection, it is packed into sealed canisters containing four/six fuel assemblies (FAs) each. By now executed packaging operations and planned transportation and placement ones are radiation/nuclear hazardous. That is way, at the stage of canister designing and fuel packaging, close attention was devoted to analysis and validation of canister design safety and this of SFAs loading, transportation and storing technologies. The calculation performed shows that the canister design and selected technologies provide for nuclear safety in both normal and emergency mode with all possible configurations of individual and grouped canisters with SFAs keff<0.95. Basing on analysis of the existing liquid RW processing technologies, it was assumed that the most appropriate for the wastes accumulated in the BN-350 reactor LRW storage facility is that of selective sorption with following cementing. Basic circuit and constructive decision were developed for LRW processing facility, and preliminary analysis to validate safety of the proposed facility was performed. Results of the system-logical analysis and calculation assessment demonstrate that effect of hazards on personnel and public existing in the normal mode of the work flow and in emergency does not exceed the limits specified by regulating documents currently in force in Kazakhstan. The proposed technical and design decisions, safety measures and system assure the required safety level in the course of LRW processing applying the selective sorption with following cementing technology. From the safety viewpoint, the problem of the

  20. UK contributions to the decommissioning of the BN-350 reactor in Kazakhstan: 2002 – 2011

    International Nuclear Information System (INIS)

    UK assistance with the decommissioning of BN-350 has cost ~£8.9 million over ten years, ~£4 million spent directly in Kazakhstan. The Programme has immobilised key wastes, contributed to irreversible shutdown of the reactor and addressed issues associated with sodium coolant processing. The Programme funded the operations to load spent fuel canisters into casks at BN-350, together with their despatch from site and receipt at the secure storage facility. The Programme also delivered technical and project management training, assisted in the production of the BN-350 Decommissioning Plan and contributed to the radiation survey effort in the STS

  1. Nuclear power in Kazakhstan and current status of the BN-350 fast reactor

    International Nuclear Information System (INIS)

    The BN-350 reactor has not been operating since 1998. The reactor was under long-term outage for fulfillment of regular maintenance and works on safety justification program for annual permission. The work done in 1998 was related to safety justification for further operation and spent fuel management. Taking into account the energy consumption decrease in the Mangystau region, the government decision on decommissioning of the BN-350 was taken in April 1999. Since the BN-350 has completed its active period, considering future development of fast breed reactors and taking into account the desire of some countries to share their experience, the BN-350 decommissioning process is going to be made into an international project

  2. The fast breeder reactor Rapsodie (1962)

    International Nuclear Information System (INIS)

    In this report, the authors describe the Rapsodie project, the French fast breeder reactor, as it stands at construction actual start-up. The paper provides informations about: the principal neutronic and thermal characteristics, the reactor and its cooling circuits, the main handling devices of radioactive or contaminated assemblies, the principles and means governing reactor operation, the purposes and locations of miscellaneous buildings. Rapsodie is expected to be critical by 1964. (authors)

  3. Gas-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  4. Improved fuel element for fast breeder reactor

    International Nuclear Information System (INIS)

    The invention, in which the United States Department of Energy has participated as co-inventor, relates to breeder reactor fuel elements, and specifically to such elements incorporating 'getters', hereafter designated as fission product traps. The main object of the invention is the construction of a fast breeder reactor fuel pin, free from local stresses induced in the cladding by reactions with cesium. According to the invention, the fast breeder fuel element includes a cladding tube, sealed at both ends by a plug, and containing a fissile stack and a fertile stack, characterized by the interposition of a cesium trap between the fissile and fertile stacks. The trap is effective at reactor operating temperatures in retaining and separating the cesium generated in the fissile material and preventing cesium reaction with the fertile stack. Depending on the construction method adopted, the trap may consists of a low density titanium oxide or niobium oxide pellet

  5. Improved structural materials for fast breeder reactors

    International Nuclear Information System (INIS)

    Electricity plays a crucial role in the economic development of our country. Coal is the primary fuel for generation of electricity in India as in many other countries. In India, generation of power by nuclear reactors is very important because of (i) availability of large thorium resource, (ii) constraints on setting up of fossil fuel based power plants and (iii) the negligibly small green house gas emissions by nuclear energy. The nuclear programme of the country is being implemented in three stages: (i) pressurized heavy water reactors of the CANDU type, (ii) sodium-cooled fast reactors and (iii) thorium-based reactors. Sodium-cooled fast reactor (SFR) technology is envisioned to make use of the large thorium reserves available. India has undertaken and made rapid strides in developing SFR technology and building of fast reactors for energy generation. A Fast Breeder Test Reactor (FBTR) of 40 MWt is operating successfully for over 25 years at Indira Gandhi Centre for Atomic Research. Based on the design, construction and operational experience, a 500 MWe Prototype Fast Breeder Reactor (PFBR) has been designed indigenously and is in an advanced stage of construction. Its design is being further optimised for enhanced economy with respect to cost of electricity production, for use in commercial reactors. Currently, several R and D programmes are under implementation for the development of new materials required for improved economy of commercial fast reactors

  6. Liquid metal cooled fast breeder nuclear reactor

    International Nuclear Information System (INIS)

    A liquid metal cooled fast breeder nuclear reactor has a core comprising a plurality of fuel assemblies supported on a diagrid and submerged in a pool of liquid metal coolant within a containment vessel, the diagrid being of triple component construction and formed of a short cylindrical plenum mounted on a conical undershell and loosely embraced by a fuel store carrier. The plenum merely distributes coolant through the fuel assemblies, the load of the assemblies being carried by the undershell by means of struts which penetrate the plenum. The reactor core, fuel store carrier and undershell provide secondary containment for the plenum. (UK)

  7. Coatings for fast breeder reactor components

    International Nuclear Information System (INIS)

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  8. Prototype fast breeder reactor main options

    International Nuclear Information System (INIS)

    Fast reactor programme gets importance in the Indian energy market because of continuous growing demand of electricity and resources limited to only coal and FBR. India started its fast reactor programme with the construction of 40 MWt Fast Breeder Test Reactor (FBTR). The reactor attained its first criticality in October 1985. The reactor power will be raised to 40 MWt in near future. As a logical follow-up of FBTR, it was decided to build a prototype fast breeder reactor, PFBR. Considering significant effects of capital cost and construction period on economy, systematic efforts are made to reduce the same. The number of primary and secondary sodium loops and components have been reduced. Sodium coolant, pool type concept, oxide fuel, 20% CW D9, SS 316 LN and modified 9Cr-1Mo steel (T91) materials have been selected for PFBR. Based on the operating experience, the integrity of the high temperature components including fuel and cost optimization aspects, the plant temperatures are recommended. Steam temperature of 763 K at 16.6 MPa and a single TG of 500 MWe gross output have been decided. PFBR will be located at Kalpakkam site on the coast of Bay of Bengal. The plant life is designed for 30 y and 75% load factor. In this paper the justifications for the main options chosen are given in brief. (author). 2 figs, 2 tabs

  9. Fast breeder reactor fuel reprocessing in France

    International Nuclear Information System (INIS)

    Simultaneous with the effort on fast breeder reactors launched several years ago in France, equivalent investigations have been conducted on the fuel cycle, and in particular on reprocessing, which is an indispensable operation for this reactor. The Rapsodie experimental reactor was associated with the La Hague reprocessing plant AT1 (1 kg/day), which has reprocessed about one ton of fuel. The fuel from the Phenix demonstration reactor is reprocessed partly at the La Hague UP2 plant and partly at the Marcoule pilot facility, undergoing transformation to reprocess all the fuel (TOR project, 5 t/y). The fuel from the Creys Malville prototype power plant will be reprocessed in a specific plant, which is in the design stage. The preliminary project, named MAR 600 (50 t/y), will mobilize a growing share of the CEA's R and D resources, as the engineering needs of the UP3 ''light water'' plant begins to decline. Nearly 20 tonnes of heavy metals irradiated in fast breeder reactors have been processed in France, 17 of which came from Phenix. The plutonium recovered during this reprocessing allowed the power plant cycle to be closed. This power plant now contains approximately 140 fuel asemblies made up with recycled plutonium, that is, more than 75% of the fuel assemblies in the Phenix core

  10. The fast breeder reactor. v. 1

    International Nuclear Information System (INIS)

    The Energy Committee's report was prepared after hearing evidence (the minutes of which are published in Volume II) from the Central Electricity Generating Board, the United Kingdom Atomic Energy Authority and the Department of Energy. Memoranda received from other interested bodies or individuals were also considered and members of the Committee visited fast breeder projects in France, West Germany and Japan. As well as the development of the fast reactors, the economics and timescale were reviewed. The particular case of the fast breeder reactor and proposed fuel reprocessing plant at Dounreay was considered. The main conclusion is that major expenditure on fast reactor programmes can only be justified if there is a potential economic case, i.e. if the fuel cycle costs are lower than for PWRs. This would only be the case if uranium costs increased greatly. It is not considered worthwhile to participate in the European Fast Reactor although this should be reviewed in 1993 and 1997. The Committee agree with the Government's decision to cease funding the PFR in 1994 and endorses the need to regenerate the local economy which will be affected by this decision. (UK)

  11. Measurement of coolant flowrate through the fuel assemblies in BN 350 and BN 600 reactors

    International Nuclear Information System (INIS)

    Methods of the primary circuit coolant flowrate measurement in BN 350 and BN 600 reactors are described. Flowmeter design and parameters are outlined. Flowmeter application during reactor, conditions and the results of measurement are presented. Details of the modified flowmeter to be used in BN 600 reactors, that enables its verification during reactor operation by the correlation method have been briefly treated. (author). 1 ref., 1 fig

  12. An experience of cleaning and decontamination of the BN-350 reactor components

    International Nuclear Information System (INIS)

    In the course of start-up, adjustment and operation of the BN-350 reactor there arose a need for cleaning from sodium and decontamination of primary and secondary equipment components. Design schemes of the systems provided for this purpose as well as those specially designed for cleaning of steam generator evaporators are considered. Technological processes of cleaning and decontamination for some reactor components (removable parts of circulating pumps, evaporators, valves) are described, the results are presented. (author)

  13. Safeguards in Prototype Fast Breeder Reactor Monju

    International Nuclear Information System (INIS)

    The assemblies loaded in the core and stored in the ex-vessel storage tank (EVST) are in liquid sodium in the Japanese prototype fast breeder reactor (FBR) Monju. Since it is difficult to apply a direct verification procedure for the fuel assemblies in these areas, a dual containment and surveillance system consisting of two monitoring devices such as surveillance camera and radiation monitor that are functionally independent has been applied. In addition, the Monju Remote Monitoring System was developed to strengthen the continuous surveillance and to reduce the load of the inspection activities. Furthermore, the ex-vessel transfer machine radiation monitor (EVRM) and the exit gate monitor (EXGM) were upgraded to strengthen the monitoring of spent blanket fuel assemblies and to improve the reliability of distinguishing between fuel assemblies and non-fuel items. As the result, the integrated safeguards was introduced in November 2009, and the effective safeguards activities have been implemented in Monju. (author)

  14. Liquid metal tribology in fast breeder reactors

    International Nuclear Information System (INIS)

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.)

  15. Operating experience of Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) is a 40 MWt / 13.2 MWe sodium cooled, loop type mixed carbide fuelled reactor. Its main aim is to gain experience in the design, construction and operation of fast reactors and to serve as an irradiation facility for development of fuel and structural material for future fast reactors. The reactor achieved first criticality in October 1985 with small indigenously designed and fabricated Mark I core (70% PuC-30% UC). The reactor power was subsequently raised in steps to 17.4 MWt by addition of Mark II fuel subassemblies (55% PuC-45% UC) and with the Mark I fuel operating at the designed linear heat rating of 400 W/cm. The turbo-generator was synchronized with the grid in July 1997. The achieved peak burn-up is 137 000 MWd/t so far without any fuel-clad failure. Presently the reactor is being operated at a nominal power of 15.7 MWt for irradiation of a test fuel subassembly of the Prototype Fast Breeder Reactor, which is coming up at Kalpakkam. It is also planned to irradiate test subassemblies made of metallic fuel for future fast reactor program. Being a small reactor, all feed back coefficients of reactivity including void coefficient are negative and hence the reactor is inherently safe. This was confirmed by carrying out physics tests. The capability to remove decay heat under various incidental conditions including natural convection was demonstrated by carrying out engineering tests. Thermo couples are provided for on-line monitoring of fuel SA outlet temperature by dedicated real time computer and processed to generate trip signals for the reactor in case of power excursion, increase in clad hot spot temperature and subassembly flow blockage. All pipelines and capacities in primary main circuit are provided with segmented outer envelope to minimize and contain radioactive sodium leak while ensuring forced cooling through reactor to remove decay heat in case of failure of primary boundary. In secondary circuit, provision is

  16. Unusual occurrences in fast breeder test reactor

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe sodium cooled mixed carbide fuelled reactor. Its main aim is to generate experience in the design, construction and operation of fast reactors including sodium systems and to serve as an irradiation facility for the development of fuel and structural materials for future fast reactors. It achieved first criticality in Oct 85 with Mark I core (70% PuC - 30% UC). Steam generator was put in service in Jan 93 and power was raised to 10.5 MWt in Dec 93. Turbine generator was synchronised to the grid in Jul 97. The indigenously developed mixed carbide fuel has achieved a burnup of 44,000 MW-d/t max at a linear heat rating of 320 W/cm max without any fuel clad failure. The commissioning and operation of sodium systems and components have been smooth and performance of major components, viz., sodium pumps, intermediate heat exchangers and once through sodium heated steam generators (SG) have been excellent. There have been three minor incidents of Na/NaK leaks during the past 14 years, which are described in the paper. There have been no incident of a tube leak in SG. However, three incidents of water leaks from water / steam headers have been detailed. The plant has encountered some unusual occurrences, which were critically analysed and remedial measures, in terms of system and procedural modifications, incorporated to prevent recurrence. This paper describes unusual occurrences of fuel handling incident of May 1987, main boiler feed pump seizure in Apr 1992, reactivity transients in Nov 1994 and Apr 1995, and malfunctioning of the core cover plate mechanism in Jul 1995. These incidents have resulted in long plant shutdowns. During the course of investigation, various theoretical and experimental studies were carried out for better understanding of the phenomena and several inspection techniques and tools were developed resulting in enriching the technology of sodium cooled reactors. FBTR has 36 neutronic and process

  17. Fast-breeder-power reactor records in the INIS database

    International Nuclear Information System (INIS)

    This report presents a statistical analysis of more than 19,700 records of publications concerned with research and technology in the field of fast breeder power fission reactors which are included in the INIS Bibliographic Database for the period from 1970. to 1999. The main objectives of this bibliometric study were: to make an inventory of the fast breeder power reactor related records in the INIS Database; to provide statistics and scientific indicators for the INIS users, namely science managers, researchers, engineers, operators, scientific editors and publishers, decision-makers in the field of fast breeder power reactors related subjects; to extract other useful information from the INIS Bibliographic Database about articles published in fast breeder reactors research and technology. The quantitative data in this report are obtained for various properties of relevant INIS records such as year of publication, secondary subject categories, countries of publication, language, publication types, literary types, etc. (author)

  18. Immobilization of Cesium Traps from the BN-350 Fast Reactor (Aktau, Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Michelbacher; C. Knight; O. G. Romanenko; I. L. Tazhibaeva; I. L. Yakovlev; A. V. Rovneyko; V. I. Maev; D. Wells; A. Herrick

    2011-03-01

    During BN-350 reactor operations and also during the initial stages of decommissioning, cesium traps were used to decontaminate the reactor’s primary sodium coolant. Two different types of carbon-based trap were used – the MAVR series, low ash granulated graphite adsorber (LAG) contained in a carrier designed to be inserted into the reactor core during shutdown; and a series of ex-reactor trap accumulators(TAs) which used reticulated vitreous carbon (RVC) to reduce Cs-137 levels in the sodium after final reactor shutdown. In total four MAVRs and seven TAs were used at BN-350 to remove an estimated cumulative 755 TBq of cesium. The traps, which also contain residual sodium, need to be immobilized in an appropriate way to allow them to be consigned as waste packages for long term storage and, ultimately, disposal. The present paper reports on the current status of the implementation phase, with particular reference to the work done to date on the trap accumulators, which have the most similarity with the cesium traps used at other reactors.

  19. Experience, status and perspectives of material testing researches within frameworks of BN-350 reactor decommissioning

    International Nuclear Information System (INIS)

    Characterization and analysis of post-operational status of hexahedral casing of BN-350 reactor spent fuel assemblies of screen and fuel type are presented. Results of earlier fulfilled a wide complex of material testing studies on structure change and physical-mechanical properties of stainless steels 12Cr18Ni10Ti and 08Cr16Ni11Mo3 and 12Cr13Mo2BFR are taken into attention. Constructional materials of active core are exploited in fast reactor at comparatively low temperatures (280-420 deg. C), and were irradiated up to damage doses within range 18-23 dpa with velocities of its acceleration comparable with values characteristic for energy reactors (∼10-8-10-7 dpa/s) and are placed in storage pool for from 2 to 25 years. Among obtained results experimental data on swelling, strengthening, embrittlement, corrosion, phase-structural transformations, induced neutron transformations are discussing the most completely. Requirements to planned experiments with application of steels irradiated in BN-350 reactor are formulated

  20. The design of the Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    India has a moderate uranium reserve and a large thorium reserve. The primary energy resource for electricity generation in the country is coal. The potential of other resources like gas, oil, wind, solar and biomass is very limited. The only viable and sustainable resource is the nuclear energy. Presently, Pressurised Heavy Water Reactors utilizing natural uranium are in operation/under construction and the plutonium generated from these reactors will be multiplied through breeding in fast breeder reactors. The successful construction, commissioning and operation of Fast Breeder Test Reactor at Kalpakkam has given confidence to embark on the construction of the Prototype Fast Breeder Reactor (PFBR). This paper describes the salient design features of PFBR including the design of the reactor core, reactor assembly, main heat transport systems, component handling, steam water system, electrical power systems, instrumentation and control, plant layout, safety and research and development

  1. BN-350 Reactor Sodium and Sodium-Potassium Removal and Passivation. Appendix II

    International Nuclear Information System (INIS)

    Removal of the physical and chemical hazard represented by the liquid metal coolant of a fast reactor is a key element of the initial decommissioning of this type of nuclear power plant. At BN-350, work has been in progress to achieve this objective since the final shutdown of the reactor in 1999. The overall aim of the BN-350 Liquid Metal Coolant decommissioning project is to process or passivate all the major inventories of sodium (Na) or sodiumpotassium alloy (NaK) to allow the plant to be put into a “Safe Store” condition—a long period of storage with surveillance to allow radioactive decay before final dismantling. The strategy of reducing activity levels by removing caesium from the primary sodium and for maximising the amount of bulk sodium able to be drained from the reactor simplifies the processing of bulk and residual sodium. Much of the reactor’s low activity secondary circuit sodium was re-used in other industrial processes, thereby minimizing the amounts of solid radioactive waste which will be produced. The Sodium Processing Facility is now operational and can be used in trial mode until the planned Geocement Stone Facility becomes available to allow processing of primary sodium to begin in earnest. Residual sodium in the main coolant circuits was passivated and studies are in hand to develop plans for the remaining Naor NaK-contaminated plant items. International collaboration has been a major feature of BN-350’s liquid metal coolant decommissioning activities. This initially brought in experience from the US EBR-II project, together with substantial US funding assistance for caesium removal, sodium draining, sodium processing and residual sodium process development. Latterly, it has been supplemented with United Kingdom experience from decommissioning of the Dounreay reactors, as well as funding assistance from the British Government. The combination of knowledge from abroad with the expertise of nuclear specialists in Kazakhstan has been

  2. Determination of tritium in the metallic sodium - the BN-350 reactor coolant

    International Nuclear Information System (INIS)

    In the paper the results on tritium determination in the metallic sodium samples - BN-350 reactor coolant - are presented. Tritium activity measurement was carried out on liquid scintillation spectrometer - TriCarb-3100 ('Canberra'). For the spectrometer calibration the solutions prepared on the base NIS USA standards was used. One of principal difficulties in tritium determination in metallic sodium is sodium hydride extraction into solution. Interaction of metallic sodium with water leads to vigorous energy release, heating and explosion. A few methods of sodium dissolution were tested. The sodium dissolution in isopropyl alcohol with small water quantity addition is the most effective sodium dissolution method. Thr process is proceeding smoothly enough, and 1 gram sodium dissolution goes during 1-2 hours. Tritium determination limit estimated by the measurements results makes up 0.1 Bq/g

  3. Symposium on key questions about the fast breeder reactor

    International Nuclear Information System (INIS)

    Except for several introductions on various aspects of the fast breeder reactor development this paper contains the full texts of the discussions held in the sub-groups panels on resp. technical matters, environment and health, society, politics and economics. The main issues of each discussion are summarized

  4. Concept of BN-350 reactor spent fuel handling during its storage after shutdown

    International Nuclear Information System (INIS)

    Full text: According to the Kazakhstan Government Decree (456; Apr 22, 1999), the fast BN-350 reactor has been shutdown in 1999 and the plan of its decommissioning has been started. By a decision of the Kazakhstan Government is defined that its spent fuel must be placed into 50 year's long-term safe storage with following dismantling and final disposal. This plan most important part is the concept of the spent fuel handling during its storage after shutdown. Next main stages of this concept are discussed here: discharge of the fuel, spent fuel packaging into special canisters, temporary storage of these canisters in the rector pool, to choose the site for long-term spent fuel storage and transport cask, making a choice of safety technique for canisters dry storage during 50 years. At first stage the fuel has been removed from the core and placing into reactor pool. The second stage lasted practically about two years. During this period all spent fuel has been packaged into special sealed canisters filled with inert gas. On next stage the site outside of the reactor one for long-term storage of these canisters and the way to ship them into the casks were chosen. The selected site is placed within the territory of former Semipalatinsk nuclear site. But the casks for spent fuel ought to be shipping as by rail and trailer vehicles too. Until its shipping will be started the canisters have been temporary stored under the water into BN-350 reactor pool. The following step is to define the transport cask design and the way to store the canisters at the site during long-term period about 50 years. There are two projects, which have been under consideration. The first is to use single-canister iron cask designed for shipping only. In this case the canisters with spent fuel ought to be transporting to the site into these casks and then transshipped into special 'silo'-type storage. Each canister has to be placed into individual near surface silo. The goal of this way is to

  5. Radiation effects in the WWR-K and BN-350 atomic reactors construction materials

    International Nuclear Information System (INIS)

    The brief review of the research works in the field of reactor material testing fulfilled at the Institute of Nuclear Physics of the National Nuclear Center of the Republic of Kazakhstan for the last years is given. The principal attention was paid to consideration of structure change and mechanical properties of stainless steels and alloys (12Cr18Ni10Ti, 08Cr16Ni11Mo3Ti, 12Cr13Mo2BFR, Cr16Ni15Mo3T, Cr20Ni45Mo4BRTs, SAV-1), as well as pure metals (Cu, Ni, Mo, Nb, Fe), irradiated at the WWR-K and BN-350 reactors or implanted by helium at the U-150 cyclotron. For these operations fulfilling the automation multipurpose experimental equipment complex with distance control was implemented. The complex provides to conduction of precision mechanical tests and simultaneously determine the valid strength parameters and plasticity, magnetization change, thermal effects accompanying the deformation process, and etc. The microstructure change examination of the each irradiated and deformed material were carried out with help of metallographic, as well as scanning and transmission electron microscopy. In this paper basically three radiation effects (hardening, embrittlement and corrosion) accompanying processes and following irradiated materials storage are considered

  6. Status of fast breeder reactor development in the United States

    International Nuclear Information System (INIS)

    This document was prepared by the Office of the Program Director for Nuclear Energy, U.S. Department of Energy (USDOE). It sets forth the status and current activities for the development of fast breeder technology in the United States. In April 1977 the United States announced a change in its nuclear energy policy. Concern about the potential for the proliferation of nuclear weapons capability emerged as a major issue in considering whether to proceed with the development, demonstration and eventual deployment of breeder reactor energy systems. Plutonium recycle and the commercialization of the fast breeder were deferred indefinitely. This led to a reorientation of the nuclear fuel cycle program which was previously directed toward the commercialization of fuel reprocessing and plutonium recycle to the investigation of a full range of alternative fuel cycle technologies. Two major system evaluation programs, the Nonproliferation Alternative Systems Assessment Program (NASAP), which is domestic, and the International Nuclear Fuel Cycle Evaluation (INFCE), which is international, are assessing the nonproliferation advantages and other characteristics of advanced reactor concepts and fuel cycles. These evaluations will allow a decision in 1981 on the future direction of the breeder program. In the interim, the technologies of two fast breeder reactor concepts are being developed: the Liquid Metal Fast Breeder Reactor (LMFBR) and the Gas Cooled Fast Reactor (CFR). The principal goals of the fast breeder program are: LMFBR - through a strong R and D program, consistent with US nonproliferation objectives and anticipated national electric energy requirements, maintain the capability to commit to a breeder option; investigate alternative fuels and fuel cycles that might offer nonproliferation advantages; GCFR - provide a viable alternative to the LMFBR that will be consistent with the developing U.S. nonproliferation policy; provide GCFR technology and other needed

  7. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    The twenty-second Annual Meeting of the International Working Group on Fast Reactors took place in Vienna, 18-21 April 1989. Nineteen representatives from twelve Member States and International Organizations attended the Meeting. This publication is a collection of presentations in which the participants reported the status of their national programmes on fast breeder reactors. A separate abstract was prepared for each of the twelve papers from this collections. Refs, figs, tabs and 1 graph

  8. A fast breeder reactor development scheme for Brazil

    International Nuclear Information System (INIS)

    Fast breeder reactors will be necessary in the next century in order to meet increasing demands for electricity resulting from industrialization and general improvement of standards of living. A scheme for the development of liquid metal fast breeder reactors in Brazil is proposed. Emphasis are placed on reactor safety in order to promote public acceptance, on utilization of thorium that is abundant in the country, and on consistency and smoothness of the development. The initial step is the construction and operation of a 5 MW experimental fast reactor in order to acquire basic experiences and technologies. The second step is the construction of a series of small power plants which should assure a ssound technological development. The reactor is designed with particular emphasis on safety and ease of operation. Demonstration of safety and reliability with small units would enhance public acceptance. In the final phase, when fast breeder reactors are to play a central role in electricity generation, large power plants that utilize both uranium and thorium fuel cycles will be built to establish a practically permanent power system. (Author)

  9. Fast breeder reactors: Experience and trends. V. 2

    International Nuclear Information System (INIS)

    The IAEA Symposium on ''Fast Breeder Reactors: Experience and Future Trends'' was held, at the invitation of the Government of France, in Lyons, France, on 22-26 July 1985. It was hosted by the French Commissariat a l'energie atomique and Electricite de France. The purpose of the Symposium was to review the experience gained so far in the field of LMFBRs, taking into account the constructional, operational, technological, economic and fuel cycle aspects, and to consider the developmental trends as well as the international co-operation in fast breeder reactor design and utilization. The Symposium was attended by almost 400 participants (340 participants, 35 observers and 20 journalists) from 25 countries and five international organizations. More than 80 papers were presented and discussed during six regular sessions and four poster sessions. A separate abstract was prepared for each of these papers

  10. Strengthening of nuclear weapon non-proliferation by means of International cooperation: the role of BN-350 reactor

    International Nuclear Information System (INIS)

    Beginning from 1996 US Department of Energy jointly with National Laboratories is working with Kazakhstan on non-proliferation problems and nuclear safety related to the BN-350 reactor. The first cooperative work has included the modernization of system for nuclear materials accounting and control on the reactor as well as creation of the Centre of Nuclear Technologies Safety for coordination of jobs related with the reactor and the others issues of safety. Hereupon fulfillment of two joint project were began. The first one includes safety provision for spent fuel in the dry safe depository. At present joint teams have completed the fuel package procedures. The second project is a irreversible withdrawal of the BN-350 reactor and it transfer into safe disposal condition for 50 years. This prevents a possibility of nuclear material production at the reactor those would be used for an unforeseen aims. The paper shows, that USA and Kazakhstan are working out the second project and it gives presentation about of status of conducting jobs. An especial attention was paid to cooperation between Kazakhstan and USA which is the part of works on the BN-350 reactor decommissioning

  11. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    The present document contains information on the status of fast breeder reactor development and on worldwide activities in this advanced nuclear power technology during 1989 as reported at the 23rd meeting of the IWGFR in Vienna, April 1990. The publication is intended to provide information regarding the current status of LMFBR development in IAEA Member States. A separate abstract was prepared for each of the 11 papers presented by the participants of this meeting. Refs, figs and tabs

  12. Status of national programmes on fast breeder reactors

    International Nuclear Information System (INIS)

    The present document contains information on the status of fast breeder reactor development and on worldwide activities in this advanced nuclear power technology during 1990 as reported at the 24th meeting of the IWGFR in Tsuruga, Japan, 15-18 April 1991. The publication is intended to provide information regarding the current status of LMFBR development in IAEA Member States and CEC. Figs and tabs

  13. The fast breeder reactor fuel cycle

    International Nuclear Information System (INIS)

    This paper outlines the current national fast reactor program in France and U.K and describes the increasing plant operational experience being acquired in the two countries for fuel reprocessing and the European project of a series of demonstration reprocessing plants of sufficient capacity to serve the needs of several commercially sized fast reactors. The key futures of France and U.K. programs are: fuel dismantling and pin cropping, dissolution, fuel dissolvers, liquor clarification, plutonium accountancy, solvent extraction, product preparation and packaging, wastes and emissions and fuel fabrication (initial blending, milling, pellet pressing, etc...)

  14. Status of the DEBENE fast breeder reactor development, March 1979

    International Nuclear Information System (INIS)

    Status report of the Fast-breeder reactor development in Germany covers the following: description of the political situation in Federal republic of germany during 1978; international cooperation in the field of fast reactor technology development; operation description of the KNK-II fast core experimental power plant; status of construction of the SNR-300; results of the research and development programs concerned with fuel element, cladding, absorber rods and core structural materials development; sodium effects; neutron irradiation effects on SS properties; reactor physics related to experiments in fast critical assemblies; fast reactor safety issues; core disruption accidents; sodium boiling experiments, measuring methods developed; component tests

  15. Development of devices for handling with BN-350 radioactive waste

    International Nuclear Information System (INIS)

    The package of activity performed proves the correctness of the concept accepted by the Government of the Republic of Kazakhstan on the BN-350 decommissioning (three successive steps above) targeted at minimization of cost, exposure and amount of radioactive waste. Decommissioning of the high power fast breeder reactor plant is carried out for the first time and therefore the normative documents and design decisions elaborated, accepted technologies and estimation of capital expenditure and maintenance costs may enrich the database and serve as orientation for decommissioning of similar units. According to the concept accepted the BN-350 decommissioning is the process of top level of complexity that is characterized with the requirement of concurrent execution of a large scope of work by means of international teams from Kazakhstan, Russia, USA, EC, etc. Such approach needs the creation of modern effective organization schemes of interfaces and management of the Projects and will be further used in other complicated Projects

  16. 04 - Sodium cooled fast breeder fourth-generation reactors - The experimental reactor ALLEGRO, the other ways for fast breeder fourth-generation reactors

    International Nuclear Information System (INIS)

    The authors first present the technology of gas-cooled fast breeder reactors (basic principles, specific innovations, feasibility studies, fuel element, safety) and notably the ALLEGRO project (design options and expected performances, preliminary safety demonstration). Then, they present the lead-cooled fast-breeder reactor technology: interests and obstacles, return on experience, the issue of lead density, neutron assessment, transmutation potential, dosimetry, safety chemical properties and compatibility with the fuel, water, air and steels. The next part addresses the technology of molten-salt fast-breeder reactors: choice of the liquid fuel and geometry, reactor concept (difficulties, lack of past R and D), demonstration and demonstrators, international context

  17. Alternate fuel cycles for fast breeder reactors

    International Nuclear Information System (INIS)

    In this contribution to the syllabus for Subgroup 5D, a full range of alternate breeder fuel cycle options is developed and explored as to energy supply capability, resource utilizations, performance characteristics and technical features that pertain to proliferation resistance. Breeding performance information is presented for designs based on Pu/U, Pu/Th, 233 U/U, etc. with oxide, carbide or metal fuel; with lesser emphasis, heterogeneous and homogeneous concepts are presented. A potential proliferation resistance advantage of a symbiotic system of a Pu/U core, Th blanket breeder producing 233 U for utilization in dispersed LWR's is identified. LWR support ratios for various reactor and fuel types and the increase in uranium consumption with higher support ratios are identified

  18. Sodium technology for fast breeder reactors

    International Nuclear Information System (INIS)

    Sodium, because of its good heat transfer and nuclear properties, is used as a coolant in fast reactors. It is also used largely as a reducing agent in pharmaceutical, perfumery and general chemical industries. Its affinity to react with air and water is a strong disadvantage. However, this is fully understood and the design of engineering systems take care of this aspect. With several experimental and test facilities established over the years in this country as well as abroad, the 'sodium technology' has reached a level of maturity. The design of sodium systems considering all the physical and chemical properties and the developmental work carried out at Indira Gandhi Centre for Atomic Research are broadly covered in this report. (author)

  19. Elements for evaluation of fast breeder reactor's potential in Argentina

    International Nuclear Information System (INIS)

    Fast Breeder Reactors (FBR) main features are presented in a general form, including their physical principles, the history of their evolution, their relevant technological aspects and the basis for their comparison to other energy sources. This is completed with descriptions of typical reactors and a model of FBR penetration in the Argentine electrical network. It is recommended to form a multidisciplinary board to study which position should be taken with respect to this type of reactors. In the author's opinion a Research activity should be started and gradually increased for passing to Development activities after a short while. (Author)

  20. Integral measurement of fission products capture in fast breeder reactors

    International Nuclear Information System (INIS)

    For the SUPERPHENIX reactor project, it was necessary to know fission products capture with about 10% accuracy in the fast breeder reactor spectra. In this purpose, integral measurements have been carried out on the main separated products by different experimental technics (oscillation, activation and irradiation methods), but particularly on irradiated fuel pins from RAPSODIE and PHENIX reactors in order to directly obtain total effect of fission products. Same tendencies have been observed for both enriched uranium fuel and LMFBR characteristic plutonium fuel. All experimental results have been introduced in CARNAVAL cross section set

  1. Challenges and achievements - Prototype Fast Breeder Reactor construction

    International Nuclear Information System (INIS)

    Prototype fast breeder reactor presently under construction poses several challenges in materials, design and construction. The civil structure and equipment are of very large size and complex in nature. This paper presents the features of the design and construction of the PFBR excavation, raft, civil structure of the nuclear island connected buildings and reactor vault. This paper also brings out the details of the large size equipment of special stainless steel and handling structure for their lifting and placement inside the reactor vault. The paper is divided into three parts viz. introduction, challenges and achievements during construction of civil structures and erection of large size components. (author)

  2. Multiple recycling of fuel in prototype fast breeder reactor

    Indian Academy of Sciences (India)

    G Pandikumar; V Gopalakrishnan; P Mohanakrishnan

    2009-05-01

    In a thermal neutron reactor, multiple recycle of U–Pu fuel is not possible due to degradation of fissile content of Pu in just one recycle. In the FBR closed fuel cycle, possibility of multi-recycle has been recognized. In the present study, Pu-239 equivalence approach is used to demonstrate the feasibility of achieving near constant input inventory of Pu and near stable Pu isotopic composition after a few recycles of the same fuel of the prototype fast breeder reactor under construction at Kalpakkam. After about five recycles, the cycle-to-cycle variation in the above parameters is below 1%.

  3. Development of fuels and structural materials for fast breeder reactors

    Indian Academy of Sciences (India)

    Baldev Raj; S L Mannan; P R Vasudeva Rao; M D Mathew

    2002-10-01

    Fast breeder reactors (FBRs) are destined to play a crucial role inthe Indian nuclear power programme in the foreseeable future. FBR technology involves a multi-disciplinary approach to solve the various challenges in the areas of fuel and materials development. Fuels for FBRs have significantly higher concentration of fissile material than in thermal reactors, with a matching increase in burn-up. The design of the fuel is an important aspect which has to be optimised for efficient, economic and safe production of power. FBR components operate under hostile and demanding environment of high neutron flux, liquid sodium coolant and elevated temperatures. Resistance to void swelling, irradiation creep, and irradiation embrittlement are therefore major considerations in the choice of materials for the core components. Structural and steam generator materials should have good resistance to creep, low cycle fatigue, creep-fatigue interaction and sodium corrosion. The development of carbide fuel and structural materials for the Fast Breeder Test Reactor at Kalpakkam was a great technological challenge. At the Indira Gandhi Centre for Atomic Research (IGCAR), advanced research facilities have been established, and extensive studies have been carried out in the areas of fuel and materials development. This has laid the foundation for the design and development of a 500 MWe Prototype Fast Breeder Reactor. Highlights of some of these studies are discussed in this paper in the context of our mission to develop and deploy FBR technology for the energy security of India in the 21st century.

  4. The United States of America fast breeder reactor program

    International Nuclear Information System (INIS)

    The reasons for the development of the fast breeder reactor in the United States are outlined, and the LMFBR program is discussed in detail, under the following headings: program objectives, reactor physics, fuel and materials development, fuel recycle, safety, components, plant experience program (Near Commercial Breeder Reactor). The special facilities to be used at each stage of the program are described. It is planned that the Near Commercial Breeder Reactor will be complete in 1986, and commercial plants should follow in rapid succession. An alternate fast reactor concept (Gas Cooled Fast Reactor) is outlined. The Environmental Impact Statement for the proposed program is summarized, and the cost benefit analysis supplied as part of the Environment Statement is also summarized. (U.K.)

  5. Liquid metal cooled fast breeder nuclear reactor constructions

    International Nuclear Information System (INIS)

    A description is given of a liquid metal cooled fast breeder nuclear reactor construction of the pool kind in which the primary vessel incorporates an annular yoke fabricated from arcuate segments. The yoke is suspended from the roof structure of the vault by a first annular series of tie straps arranged outside the primary vessel whilst a strongback on which the fuel assembly sits inside the primary vessel is supported from the yoke by a second series of tie straps. The yoke has upwardly and downwardly extending legs which are extended by upper and lower strakes respectively of the primary vessel. (U.K.)

  6. Blanket management method for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    A method for reducing thermal striping in liquid metal fast breeder reactors by reducing temperature gradients between adjacent fuel and blanket assemblies by shuffling blanket assemblies at each refueling outage so as to progressively shuffle the blanket assemblies to the core periphery through multiple moves and to generally locate fresh blanket assemblies adjacent to exposed fuel assemblies and exposed blanket assemblies adjacent to fresh fuel. Additionally, assembly orificing is altered to provide less flow to blanket assemblies needing less flow due to an otherwise decreased temperature gradient and providing additional flow to fuel assemblies which need more flow to sufficiently reduce temperature gradients to prevent thermal striping. (author)

  7. Base isolation system for prototype fast breeder reactor

    International Nuclear Information System (INIS)

    The use of seismic isolation specially in the high seismic regions has gained increasing interest as a viable and efficient solution to earthquake ground motion both within and outside the nuclear field. A feasibility study to see the effect of laminated rubber bearing pads for the 500 MWe pool type fast breeder reactor has been carried out. The results show that there is 2 to 2.5 times reduction in floor response spectra peak and the seismic loads on the components are considerably reduced. The problem areas include the potential for the large sloshing amplitudes, accommodating large displacements in the piping etc. (author)

  8. Fabrication of metallic fuel for fast breeder reactor

    International Nuclear Information System (INIS)

    Natural uranium oxide fuelled PHWRs comprises of first stage of Indian nuclear power programme. Liquid metal fast breeder reactors fuelled by Pu (from PHWR's) form the second stage. A shorter reactor doubling time is essential in order to accelerate the nuclear power growth in India. Metallic fuels are known to provide shorter doubling times, necessitating to be used as driver fuel for fast breeder reactors. One of the fabrication routes for metallic fuels having random grain orientation, is injection casting technique. The technique finds its basis in an elementary physical concept - the possibility of supporting a liquid column within a tube, by the application of a pressure difference across the liquid interface inside and outside the tube. At AFD, BARC a facility has been set-up for injection casting of uranium rods in quartz tube moulds, demoulding of cast rods, end-shearing of rods and an automated inspection system for inspection of fuel rods with respect to mass, length, diameter and diameter variation along the length and internal and external porosities/voids. All the above facilities have been set-up in glove boxes and have successfully been used for fabrication of uranium bearing fuel rods. The facility has been designed for fabrication and inspection of Pu-bearing metallic fuels also, if required

  9. Fast breeder reactors: experience and trends. V. 1

    International Nuclear Information System (INIS)

    The IAEA Symposium on ''Fast Breeder Reactors: Experience and Future Trends'' was held, at the invitation of the Government of France, in Lyons, France, on 22-26 July 1985. It was hosted by the French Commissariat a l'energie atomique and Electricite de France. The purpose of the Symposium was to review the experience gained so far in the field of LMFBRs, taking into account the constructional, operational, technological, economic and fuel cycle aspects, and to consider the developmental trends as well as the international co-operation in fast breeder reactor design and utilization. The Symposium presentations were divided into sessions devoted to the following topics: Experience of LMFBR construction and operation and resultant development strategies (6 papers); LMFBR plant startup and commissioning tests and general behaviour (8 papers); Core performance experience for high burnup and core design trends (8 papers); Experience and trends in the LMFBR fuel cycle (4 papers); Core design and behaviour (3 papers); Fuels and materials (7 papers). A separate abstract was prepared for each of these papers

  10. Study of short-time mechanical properties changes for BN-350 reactor spent fuel assemblies jacket material from vacancy swelling

    International Nuclear Information System (INIS)

    Variations of mechanical properties (ultimate strength and limit of plasticity) for irradiated stainless steels, materials of BN-350 reactor cased fuel assemblies tubes, namely: 12X18H10T MTO, 08X16H11M3 MTO, 10X17H13M2T, 12X13M2BRF from vacancy swelling and neutron damaging doze have been studied. Flat samples cut out from hexagonal fuel assemblies casing were tested. The data on casing profilometry, and also the results from hydrostatic weighing of steel samples, were used to evaluate swelling. All measurements and testing were made at temperature 25 degrees C

  11. Computational intelligent systems for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Nearly 15000 process signals are digitized by physically and functionally distributed embedded systems in Prototype Fast Breeder Reactor (PFBR). Digitized signals are processed and relevant information is displayed through Large video display systems at Control Room. It is necessary that correct and reliable information need to be provided to the plant operator. Computational intelligent systems play a major role in enhancing the safe operation of the Nuclear reactor. The paper explains the features of three such systems, one for on-line validation of neutronic power channel through on-line thermal balance calculation and another for detection of anomalous reactivity addition through on-line reactivity balance computation and third for on-line computation of Reactor power from fluctuations of core thermocouple signals. (author)

  12. Characterizing the tribological behaviour of fast breeder reactor materials

    International Nuclear Information System (INIS)

    The object of these tests is to define the behaviour of material couples working in conditions as representative as possible of reactor operation. For this purpose a certain number of test installations have been developed to simulate the most typical cases of friction encountered: plane to plane geometry, rotational bearings, guiding bearings. Endurance tests have also been carried out on ball bearings and ballscrews samples. As said before, the test conditions attempt to reproduce as faithfully as possible the environment of the materials used in fast breeder reactors, particularly in: - using purified liquid sodium, and maintaining it isotherm, respectively at three temperature levels: 180, 400 and 5500C; - or using argon containing sodium aerosol particles. Some typical values of friction coefficients and rates of wear obtained during the tests with certain couples of materials are given here as examples. The aims which are currently guiding the direction of the tests are also briefly described

  13. A linear model of the Fast Breeder Test Reactor Plant

    International Nuclear Information System (INIS)

    A linear analysis of the Fast Breeder Test Reactor System, consisting of the reactor, intermediate heat exchanger, steam generator and connected piping is presented. The problem of variable boundaries in the steam generator is reduced to a problem of fixed boundaries by dividing the steam generator into six zones. Based upon this, one can obtain the transfer function of any input/output combination. Starting with the time domain non-linear partial differential equations, the problem is reduced to a system of linear equations in complex variables, which can be solved basically by Gaussian elimination process. The results of this work will be useful in determining a suitable control scheme for waterflow in the steam generator and the control parameters. (auth.)

  14. Optimisation of safety parameters in fast breeder test reactor

    International Nuclear Information System (INIS)

    Full text: Optimisation of safety parameters is an important aspect to be considered in the design of nuclear power plant and also becomes extremely important activity to be followed up during the commissioning and operating phases of the plant taking into account the operational feed back and review of incidental situations and available diversity and reliability. Otherwise, the spurious/ superfluous trips on the reactor besides affecting the availability of the plant, initiate plant transients causing stress for the plant equipment resulting in reduction of plant life. This activity has a significant role to play in attaining the maximum availability of the plant, without compromising safety. The study and evolution of optimisation process in fast breeder test reactor (FBTR); at Kalpakkam has been an interesting and rewarding experience

  15. Immediate relation of ING to fast breeder reactor programs

    International Nuclear Information System (INIS)

    The future large-scale use of nuclear energy is linked in the United States and other major countries to their fast breeder reactor development. Very serious basic problems have been discovered within the last two years, limiting the life in the high fast neutron flux at appropriate temperatures of materials, in particular of metals suitable for fuel cladding in sodium coolant. There is therefore a most urgent need for materials testing facilities under controlled conditions of temperature and neutron flux at sufficiently high ratings to match or surpass those required in commercially competitive fast breeder reactors. None of the test facilities yet planned for 1976 or sooner in the western world appears to match these conditions. The problem is mainly the difficulty of providing the high neutron flux effectively continuously. The spallation reaction in heavy elements was chosen as the basis of ING - the intense neutron generator, because it is the only known reaction that promises a fast neutron source density that is higher than can be controlled from the fission process. It is suggested that several countries will wish to consider urgently whether they should also explore the spallation reaction for the purpose of a fast neutron irradiation test facility. In view of the discontinuance of the ING project in Canada a favourable opportunity will exist over the next few months 10 obtain from Canada by direct personal contact details of the significant study that has been carried on for ING over the last five years. In the event that satisfactory materials are established within the lifetime of the spallation facilities they may continue to be used for the production of selected isotopes more profitably produced in high neutron fluxes. The facilities may be also used for the desirable preirradiation of thorium reactor fuel. The other research purposes planned for ING could also be served. (author)

  16. Designing a SCADA system simulator for fast breeder reactor

    Science.gov (United States)

    Nugraha, E.; Abdullah, A. G.; Hakim, D. L.

    2016-04-01

    SCADA (Supervisory Control and Data Acquisition) system simulator is a Human Machine Interface-based software that is able to visualize the process of a plant. This study describes the results of the process of designing a SCADA system simulator that aims to facilitate the operator in monitoring, controlling, handling the alarm, accessing historical data and historical trend in Nuclear Power Plant (NPP) type Fast Breeder Reactor (FBR). This research used simulation to simulate NPP type FBR Kalpakkam in India. This simulator was developed using Wonderware Intouch software 10 and is equipped with main menu, plant overview, area graphics, control display, set point display, alarm system, real-time trending, historical trending and security system. This simulator can properly simulate the principle of energy flow and energy conversion process on NPP type FBR. This SCADA system simulator can be used as training media for NPP type FBR prospective operators.

  17. Innovations in Equipment Erection of Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR) is sodium cooled, pool type reactor with generating capacity of 1250 MWt/500 MWe. Reactor assembly consists of large dimensional vessels like Safety vessel (13.54 m diameter, 12.8 m height and weight approximately 155 MT) and Main vessel (12.9 m diameter, 12.94 m height and weight approximately 202 MT including core catcher, core support structure and cooling pipes) and Steam generator (26 m length, 1.5 m diameter, and weight approximately 35 MT). PFBR reactor equipment erection was a challenging task where thin walled vessels had transported and handled with utmost precaution to avoid radial forces on the vessels which could buckle the vessels. There was a real challenge in lifting the vessels without swing, placement of large size and heavy vessel at a distance of 57 m where the crane operator had no line of site to the equipment being erected. To handle such over dimensional reactor components many mock-up tests had been carried out before erection and gained lot of confidence. Lot of care had been taken during lifting, handling and erection of thin walled over dimensional reactor components with innovative methods used for lifting fixtures, guiding arrangements, alignment fixtures and achieved the stringent erection tolerances. This paper discusses the first ever experiences gained during the handling and erection of such thin walled, over dimensional reactor components at PFBR site. (author)

  18. Analysis of a sustainable gas cooled fast breeder reactor concept

    International Nuclear Information System (INIS)

    Highlights: • A Thorium-GFBR breeder for actinide recycling ability, and thorium fuel feasibility. • A mixture of 232Th and 233U is used as fuel and LWR used fuel is used. • Detailed neutronics, fuel cycle, and thermal-hydraulics analysis has been presented. • Run this TGFBR for 20 years with breeding of 239Pu and 233U. • Neutronics analysis using MCNP and Brayton cycle for energy conversion are used. - Abstract: Analysis of a thorium fuelled gas cooled fast breeder reactor (TGFBR) concept has been done to demonstrate the self-sustainability, breeding capability, actinide recycling ability, and thorium fuel feasibility. Simultaneous use of 232Th and used fuel from light water reactor in the core has been considered. Results obtained confirm the core neutron spectrum dominates in an intermediate energy range (peak at 100 keV) similar to that seen in a fast breeder reactor. The conceptual design achieves a breeding ratio of 1.034 and an average fuel burnup of 74.5 (GWd)/(MTHM) . TGFBR concept is to address the eventual shortage of 235U and nuclear waste management issues. A mixture of thorium and uranium (232Th + 233U) is used as fuel and light water reactor used fuel is utilized as blanket, for the breeding of 239Pu. Initial feed of 233U has to be obtained from thorium based reactors; even though there are no thorium breeders to breed 233U a theoretical evaluation has been used to derive the data for the source of 233U. Reactor calculations have been performed with Monte Carlo radiation transport code, MCNP/MCNPX. It is determined that this reactor has to be fuelled once every 5 years assuming the design thermal power output as 445 MW. Detailed analysis of control rod worth has been performed and different reactivity coefficients have been evaluated as part of the safety analysis. The TGFBR concept demonstrates the sustainability of thorium, viability of 233U as an alternate to 235U and an alternate use for light water reactor used fuel as a blanket for

  19. Fast Breeder Test Reactor: 15 years of operating experience

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe sodium cooled, loop type, mixed carbide-fuelled reactor. Its main aim is to gain experience in the design, construction and operation of fast reactors including sodium systems and to serve as an irradiation facility for development of fuel and structural materials for future fast reactors. It achieved first criticality in Oct 1985 with Mark I core (70% PuC - 30% UC). Steam generator was put in service in Jan 1993 and power was raised to 10.5 MWt in Dec 1993. Turbine generator was synchronized to the grid in Jul 1997. The indigenously developed mixed carbide fuel has achieved a peak burn up of 88,000 MWd/t till now at a linear heat rating of 320 W/cm and reactor power of 13.4 MWt without any fuel-clad failure. The paper presents operating and decontamination experience, performance of fuel, steam generator and sodium circuits, certain unusual occurrences encountered by the plant and various improvements carried out in reactor systems to enhance plant availability. (author)

  20. Fast breeder reactor-block antiseismic design and verification

    International Nuclear Information System (INIS)

    The Specialists' Meeting on ''Fast Breeder Reactor-Block Antiseismic Design and Verification'' was organized by the ENEA Fast Reactor Department in co-operation with the International Working Group (IWGFR) of the International Atomic Energy Agency (IAEA), according to the recommendations of the 19th IAEA/IWGFR Meeting. It was held in Bologna, at the Headquarters of the ENEA Fast Reactor Department, on October 12-15, 1987, in the framework of the Celebrations for the Ninth Centenary of the Bologna University. The proceedings of the meeting consists of three parts. Part 1 contains the introduction and general comments, the agenda of the meeting, session summaries, conclusions and recommendations and the list of participants. Part 2 contains 8 status reports of Member States participating in the Working Group. Contributed papers were published in Part 3 and were further subdivided into 5 sessions as follows: whole reactor-block analysis (4 papers); whole reactor-block analysis (sloshing and buckling, seismic isolation effects) (8 papers); detailed core analysis (6 papers); shutdown systems and core structural and functional verifications (6 papers); component and piping analysis (7 papers). A separate abstract was prepared for each of the 8 status reports and 31 contributed papers. Refs, figs and tabs

  1. Experience with the generating plant at fast breeder test reactor

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) is a 40 MWth/13.2 MW(e) sodium cooled, loop type, mixed carbide-fuelled reactor. Its main aim is to gain experience in the design, construction and operation of fast reactors including sodium systems and generating systems and to serve as an irradiation facility for development of fuel and structural materials for future fast reactors. It achieved first criticality in Oct.1985 with Mark-I core (70 % PUC-30 % UC). FBTR heat transport system consists of two primary sodium loops, two secondary sodium loops and one common tertiary steam and water circuit. Heat generated in the reactor core is transported to the tertiary loop by primary and secondary sodium loops. The steam water system mainly consists of a once through steam generator, which produces super heated steam at a pressure of 120 bars and temperature of 480 degC, feed water system and condensate system. The steam produced is supplied to a condensing turbine. The turbine in turn is coupled to an alternator. The steam generator was put in service in Jan.1993 and turbine generator was synchronized to the grid in July 1997. The paper presents operating experience with generating plant consisting of steam water circuit, condensing turbine and its associated systems and the alternator, various modifications carried out to improve system reliability and availability and certain incidents taken place in the generating plant. (author)

  2. Liquid metal fast breeder reactor: an environmental and economic critique

    International Nuclear Information System (INIS)

    Economic and environmental arguments made by the AEC and others for the liquid metal fast breeder reactor (LMFBR) as a central component of the U. S. electrical energy system are discussed. The LMFBR appears to have no environmental advantage over the currently operating light water reactor and especially not over the high temperature gas reactor. The principle environmental argument for the rapid introduction of LMFBRs is that they will provide a virtually inexhaustible fuel source, and reduce the demand for strip-mining the limited reserves of high grade U ore. A 20-yr delay in the construction of LMFBRs would result in an increase of only 50 mi2 of strip mining over the next 50 yr, and the cost of reclamation of this land would be about 0.1 mill/kw-hr. Uranium from which fuel has been extracted for use by nonbreeder reactors can still be used by breeders, thus breeders could still be introduced in the future, if fusion is not developed in time, and extract the same overall energy from a given supply of U as if they had been introduced earlier. Economic arguments in favor of the LMFBR are based on models highly sensitive to changes on some of the most critical input variables: nuclear power plant capital costs, fuel cycle costs, performance characteristics of LMFBR designs, electrical energy demand, and U ore costs. There is no basis for concluding that the LMFBR will be economical in the 1980s or early 1990s. (Pollut. Abstr.)

  3. Status of fast breeder reactor development in Germany

    International Nuclear Information System (INIS)

    The KNK, the sodium cooled compact reactor is an experimental nuclear power plant of 20 MW electric power. Since 1977, it has been operated with fast reactor cores as KNK II. The KNK II/3 core was designed. The core fabrication has been largely completed. In 1990, the KNK II plant achieved a time availability of 56%. On January 8, 1991 KNK II was shut down for inspection. Since pre-nuclear commissioning was completed the Kalkar Nuclear Power Station SNR 300 has been operated in a mode similar to that of a power station. In March 1991 the financing partners decided not to prolong the standby phase because they do not think that the last construction permit and the operation permit will be issued within a definite period of time. The partners were convinced that the lack of progress in the licensing procedure was not caused by basic safety deficiencies of the project but by the way the licensing procedure was executed. The German fast breeder programme is now concentrated on contributions to the European Fast Reactor. (author)

  4. The use of waveguide acoustic probes for void fraction measurement in the evaporator of BN-350-Type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, V.I.; Nigmatulin, B.I.

    1995-09-01

    The present paper deals with some results of the experimental studies which have been carried out to investigate the steam generation dynamics in the Field tubes of sodium-water evaporators used in the BN-350 reactors. The void fraction measurements have been taken with the aid of waveguide acoustic transducers manufactured in accordance with a specially designed technology (waveguide acoustic transducers-WAT technology). Presented in this paper also the transducer design and calibration methods, as well as the diagram showing transducers arrengment in the evaporator. The transducers under test featured a waveguide of about 4 m in length and a 200-mm long sensitive element (probe). Besides, this paper specifies the void fraction data obtained through measurements in diverse points of the evaporator. The studies revealed that the period of observed fluctuations in the void fraction amounted to few seconds and was largely dependent on the level of water in the evaporator.

  5. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  6. Development of chemical sensors for Fast Breeder Reactor Technology

    International Nuclear Information System (INIS)

    Fast breeder reactors use liquid sodium as heat transfer medium and generate high pressure steam at the steam generator to run the turbine. This high pressure steam is separated from sodium coolant by ferritic steel tubes of 4 to 5 mm wall thickness. Development of any material defect in these heat exchanger tubes during their service would result in the ingress of high pressure steam into the sodium circuit leading to sodium-water reactions. A high temperature electrochemical hydrogen sensor based on CaBr2-CaHBr solid electrolyte and capable of measuring ppb levels of dissolved hydrogen in sodium has been developed at the laboratory. A very sensitive system, using thermal conductivity detector and semiconducting oxide based sensor has also been developed for continuous monitoring of hydrogen levels in argon cover gas. An electrochemical carbon sensor using a molten carbonate electrolyte and an oxygen sensor based on yttria doped thoria oxide electrolyte are also under advanced stage of development for measuring carbon and oxygen levels in sodium. Materials chemistry issues involved in developing these sensors and their operational experience in sodium system are highlighted in this presentation

  7. Feasibility studies on commercialized fast breeder reactor cycle system

    International Nuclear Information System (INIS)

    JNC (Japan Nuclear Cycle Development Institute) and the electric utilities in Japan have established a new organization to develop a commercialized fast breeder reactor (FBR) cycle system since July 1, 1999, feasibility studies (F/S) have been undertaken in order to determine the promising concepts and to define the necessary R and D tasks. In the first two-year phase, a number of candidate concepts will be selected from various options, featuring innovative technologies. In the F/S, the options are evaluated and conceptual designs are examined considering the attainable perspectives for following: 1) ensuring safety, 2) economic competitiveness to future LWRs, 3) efficient utilization of resources, 4) reduction of environmental burden and 5) enhancement of nuclear non-proliferation. The F/S should also guide the necessary R and D to commercialize FBR cycle system. In particular enhanced technologies should be integrated in order to ensure nuclear non-proliferation. In the second five-year phase of the F/S, scaled engineering tests will be conducted. Based on the test data, a comprehensive evaluation will be conducted to confirm the technical attainability of candidate concepts. A few proposals for the commercialization of the FBR cycle system will be proposed. (author)

  8. Method of advancing research and development of fast breeder reactors

    International Nuclear Information System (INIS)

    In the long term plan of atomic energy development and utilization, fast breeder reactors are to be developed as the main of the future nuclear power generation in Japan, and when their development is advanced, it has been decided to positively aim at building up the plutonium utilization system using FBRs superior to the uranium utilization system using LWRs. Also it has been decided that the development of FBRs requires to exert incessant efforts for a considerable long period under the proper cooperation system of government and people, and as for its concrete development, hereafter the deliberation is to be carried out in succession by the expert subcommittee on FBR development projects of the Atomic Energy Commission. The subcommittee was founded in May, 1986, to deliberate on the long term promotion measures for FBR development, the measures for promoting the research and development, the examination of the basic specification of a demonstration FBR, the measures for promoting international cooperation, and other important matters. As the results of investigation, the situation around the development of FBRs, the fundamentals at the time of promoting the research and development, the subjects of the research and development and so on are reported. (Kako, I.)

  9. Manufacturing of prototype fast breeder reactor components: challenges and achievements

    International Nuclear Information System (INIS)

    In the presentation, three components of 500 MWe Prototype Fast Breeder Reactor (PFBR), viz. grid plate, roof slab and fuel handling systems, are focused, which have been responsible for the considerable delay of the project schedule. The manufacturing challenges of grid plate mainly originated from large number of sleeves resulting in higher self weight and hard facing of large diameter sleeves. Machining of large diameter plates and shell assembly to the required tight tolerances on dimensions, hard facing with nickel based cobalt free hard facing material on continuous, large diameter (6.7 m) annular tracks, heat treatment of large austenitic stainless steel parts at 1050℃ with controlled rates of cooling and heating together with control on temperature gradient across the parts, complex assembly of a large number of parts (∼14900) meeting the important requirements on verticality of sleeve assemblies (Ø0.1 mm) and delicate handling and transportation are truly challenging activities in the manufacturing technology. In case of roof slab, complex manufacturing process, especially welding between the shell and stiffeners caused lamellar tearing problems and extensive testing time. Inclined fuel transfer machine, multiple repairs, heavy weight and testing strategy resulted in long manufacturing and testing time. Some general lessons learnt are also brought out in this presentation. Technology development prior to start of construction is essential for long delivery components. Judicious choice of tolerances, number and location of welds and inspections has to be made. Robust criteria need to be applied for the acceptance of manufacturing deviations and material compositions. Indigenous materials should be used after qualifications of manufacturing process of direct relevance apart from routine standards. From the rich experience gained through the manufacture and erection of reactor assembly components of PFBR, important guidelines and approaches were derived

  10. Status of liquid metal cooled fast breeder reactors

    International Nuclear Information System (INIS)

    This document represents a compilation of the information on the status of fast breeder reactor development. It is intended to provide complete and authoritative information for academic, energy, industrial and planning organizations in the IAEA Member States. The Report also provides extended reference and bibliography lists. A summarized overview of the national programmes of LMFBR development is given in Chapter II. Chapter III on LMFBR experience provides a brief description and purpose of all fast reactors - experimental, demonstration and commercial size - that have been or are planned for construction and operation. Fast reactor physics is dealt with in Chapter IV. Besides the basic facts and definitions of neutronics and the compilation and measurement of nuclear data, a broad range of the calculation methods, codes, and the state of the art is described. In Chapter V, fuels and materials are described. The emphasis is on the design and development experience gained with mixed oxide fuel pins and subassemblies. Structural materials, blanket elements and absorber materials are also discussed. Chaper VI presents a broad overview of the technical and engineering aspects of LMFBR power plants. LMFBR core design is described in detail, followed by the components of the main heat transport system, the refuelling equipment, and auxiliary systems. Chapter VII on safety is a compilation of the current safety design concepts of LMFBRs and new trends in safety criteria and safety goals. The chapter concludes with risk analyses of LMFBR technology. In Chapter VIII, the systems approach has been emphasized in the consideration of the whole LMFBR fuel cycle. Special emphasis is placed on safeguards aspects and the environmental impact of the LMFBR fuel cycle. Chapter IX describes deployment considerations of LMFBRs. Special emphasis is placed on economic aspects of the LMFBR power plant and its related fuel cycle. Finally, Chapter X provides an overall summary and a

  11. Progress report on fast breeder reactor development in Japan

    International Nuclear Information System (INIS)

    In the power increase performance test of the experimental fast reactor ''Joyo'', which was in progress since April, the first stage of the rated thermal output of 50 MW has been accomplished on July 5. Thereafter, the continuous opeation test at 50 MW for 100 hours was performed for the verification of its overall operational performance from August 13 to 16. The safety evaluation for power increase up to 75 MW and 100 MW, which was under way since September, last year, was completed, and the power increase was licensed on September 20. Concerning the design of the prototype fast breeder reactor ''Monju'', the studies on the specifications of the Construction Preliminary Design (2) have been finished. In respect of the analysis and preparation of materials for the Safety Licensing by the Committee, the developments of the analytical codes for rupture propagation in the heat transfer tubes of steam generators and for decay heat have been conducted. In the construction site surveys, the third geological structure survey and beach deformation survey have all ended, while the meteorological and seismic observations, the prediction of the diffusion of drained warm water, the survey of river flow, etc. are now under way. A report on the survey conducted on the construction site in Shiraki was received by the Fukui prefectural government in July, and the copies of a report on the assessment of environmental effect were submitted in August to both the national government and the Fukui prefectural government. The situations of progress of the research and development works on reactor physics, structural components, instrumentation and control, sodium technology, fuel materials, structural materials, safety and steam generators are reported. (Nakai, Y.)

  12. Health physics experiences in the operation of Fast Breeder Test Reactor (FBTR)

    International Nuclear Information System (INIS)

    This paper presents the health physics experience gained with the operation of the Fast Breeder Test Reactor (FBTR), which was made critical in October 1985. Major operations that were carried out and the associated health physics surveillance are highlighted. (author)

  13. Defect assessment procedure: A french approach for fast breeder reactors

    International Nuclear Information System (INIS)

    As a result of a collaborative effort between Commissariat a l'Energie Atomique, Electricite de France, and NOVATOME to produce and improve rules for fast breeder reactors, RCC-MR, an interim defect assessment procedure is now available in the first draft version (appendix A16). This procedure addresses defects detected during in-service inspection for reactor components operating at moderate or high temperature conditions. Three stages have been considered: initiation, propagation under cyclic loading with or without holdtime and crack instability by ductile and creep rupture. For each of these topics, procedures and rules based on fracture mechanics are proposed. Prediction of initiation is obtained by a simplified method named σd method which relies on the evaluation of the real stress-strain history on a small distance d (d = 0.05 mm for 316L(N) austenitic steel) close to the crack front and material characteristics (limiting stresses) that are available in nuclear codes. This method has been developed for fatigue, creep and creep-fatigue conditions. Defect growth assessment is performed for fatigue and creep-fatigue conditions. For creep-fatigue conditions, fatigue and creep crack growth per cycle are calculated separately and the total crack extension is taken as the sum of the two contributions. Extensive use of simplified method for estimating J (Js method) is made and developed when mechanical and thermal loadings are specified. On the final defect size, assessment may be made in order to avoid crack instability by ductile and creep rupture and collapse load on the remaining. The organization and contents of the present version of this appendix A16 is described. An overview of each specific rule is given

  14. Status of fast breeder reactor development in the United States

    International Nuclear Information System (INIS)

    The energy policy of the United States is aimed at shifting as rapidly as practicable from an oil dependent economy to one that relies heavily on other fuels and energy sources. Nuclear power Is now and is expected to continue to be an important factor in achieving this goal. If nuclear power is to contribute to a solution of future energy needs, demonstration of the breeder reactor as a viable source of essentially inexhaustible energy supply is essential. The US DOE program for development of the fast breeder reactor has witnessed some notable events in the past year. Foremost among these Is the successful operational testing of the Fast Flux Test Facility (FFTF), located at.the Hanford Engineering Development Laboratory. The reactor reached full design power of 400 MW(t) on December 21, 1980, and has performed remarkably close to design specifications. Design of the Clinch River Breeder Reactor Plant (CRBRP), a 375 MW(e) LMFBR, is now over 80 percent complete. About $530 million in components have been ordered; component deliveries total approximately $124 million; work-in-process totals another $204 million. Construction of the plant, however, has been suspended since 1977. With the concurrence of the U.S. Congress and approvals from the appropriate authorities work on the safety review and site clearing for construction can resume. The Conceptual Design Study for a large, 1000 MW(e) LMFBR Large Developmental Plant was recently completed on a schedule commensurate with submission of a full report to the Congress at the end of March, 1981. This report is the culmination of a study which began in October, 1978 and involved contributions from U.S. reactor manufacturers and US DOE laboratories. The US DOE is carrying forward a comprehensive technology development program. This effort provides direct support to the FFTF and CRBRP projects and to the LDP. It also supports technology development which is generic to the overall LMFBR program. Funding for breeder

  15. Development of Genetic Algorithm based Neural Network model for parameter estimation of Fast Breeder Reactor Subsystem

    OpenAIRE

    Subhra Rani Patra; R. Jehadeesan; Rajeswari, S.

    2012-01-01

    This work provides the construction of Genetic Algorithm based Neural Network for parameter estimation of Fast Breeder Test Reactor (FBTR) Subsystem. The parameter estimated here is temperature of Intermediate Heat Exchanger of Fast Breeder Test Reactor. Genetic Algorithm based Neural Network is a global search algorithm having less probability of being trapped in local minimum problem as compared to Standard Back Propagation algorithm which is a local search algorithm. The various developmen...

  16. Gas-cooled fast breeder reactor shielding benchmark calculation

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, C.A.; Mathews, D.R.; Koch, P.K.

    1977-01-01

    This report summarizes the results of a shielding benchmark calculation performed by General Atomic (GA) and Oak Ridge National Laboratory (ORNL). The problem analyzed was a neutron-coupled gamma ray transport calculation of the core blanket shield of the 300-MW(e) gas-cooled fast breeder reactor (GCFR). Comparison of the initial GA and ORNL results indicated good agreement for fast fluxes (E greater than 0.9 MeV and E greater than 0.086 MeV) but poor agreement for epithermal and thermal neutron fluxes. Examination of the results revealed that a deficiency in the GA fine-group cross section preparation code was responsible for the differences in the GA and ORNL iron cross sections. Modification of the GA cross sections to include self-shielding was accomplished, and the updated GA benchmark calculation performed with the self-shielded iron cross sections was in excellent agreement with the ORNL results for fast neutron fluxes with E greater than 0.9 MeV and E greater than 0.086 MeV and in good agreement for epithermal and thermal fluxes. The agreement of the gamma heating rates also improved significantly. Thus, it was concluded that the good agreement of the GA and ORNL neutron-coupled gamma ray transport calculation indicates that (1) the methods and cross sections used by both laboratories were compatible and consistent and (2) the use of 24 neutron energy groups and 15 gamma energy groups by GA was adequate compared with the use of 51 neutron energy groups and 25 gamma energy groups by ORNL.

  17. Network Representation of Design Knowledge of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    A method of design knowledge representation was studied for the Japanese fast breeder reactor Monju, aiming at enhanced understanding of engineering considerations with mutual relations. Taking over design knowledge of Monju to next generation designers/engineers to be in charge of design of future FRs is by no means easy, in contrast with operation and maintenance knowledge which can be acquired in the real plant operation and maintenance. Specifications of the as-is Monju contains only a small part of the entire design knowledge, mainly by two reasons. Firstly, reasons for selecting the as-is specifications can not be understood until reaching proper knowledge source. Secondly, there are many rejected options on the design specifications. Design specifications are selected along with technical dependencies among a huge number and diversified specification items. Decisions design are made basically along with these dependencies which can hardly be traced in the currently available database or document libraries. Reasons for the rejections of options need to be profoundly understood, because those are not certainly due to technical inferiority. Some of rejected options can be worth reconsidering in the future, possibly by technical advances in materials, high-precision prediction software tools, rationalized standards/code, etc. The authors propose a new design knowledge representation approach based on networking of knowledge nodes along with the mutual dependencies. A prototype software has been developed and a basic performance test was made to visualize the dependency network. An additional function to enable design case studies on hypothetical adoptions of rejected options is now under consideration. (author)

  18. Argon entrainment into liquid sodium in fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: ► In the present work, different types of entrainment mechanisms have been studied. ► Onset of entrainment could be characterized with turbulent intensities. ► For vortex type entrainment, a correlation has been proposed. - Abstract: Gas entrainment in pool type sodium cooled fast breeder reactors has been a subject of great interest for a quite long time now. The issue of entrainment of argon cover gas in LMFBR's is being addressed by fundamental studies. Present work focuses on characterization of onset of shear type entrainment and liquid fall type entrainment based on mean velocity and turbulent kinetic energy at liquid surface. Study also includes characterization of onset of vortex type entrainment based on mean velocities (time averaged) in the outlet pipe. Experiments were carried out to characterize shear type entrainment in stirred tank with different impeller geometries with air–water and xylene–water systems. Onset of liquid fall type entrainment was studied with cylindrical tank with a nozzle whose input angle varied. Mean and r.m.s. velocity profiles near the liquid surface were measured with the help of ultrasonic velocity profiler (UVP). The results are compared with other literature. It is observed that the onset of entrainment can be characterized by the turbulent kinetic energy near the free liquid surface. Re-submergence angle was measured and r.m.s. velocities found to be in the same range as in case of shear type of entrainment. Cylindrical tank with tangential inlet and bottom outlet was used to study onset of vortex formation. Effect of different parameters like outlet diameter, tank diameter and liquid height in the tank on critical velocity was studied and correlation has been proposed.

  19. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    International Nuclear Information System (INIS)

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and 233U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles

  20. Y2K issues for real time computer systems for fast breeder test reactor

    International Nuclear Information System (INIS)

    Presentation shows the classification of real time systems related to operation, control and monitoring of the fast breeder test reactor. Software life cycle includes software requirement specification, software design description, coding, commissioning, operation and management. A software scheme in supervisory computer of fast breeder test rector is described with the twenty years of experience in design, development, installation, commissioning, operation and maintenance of computer based supervision control system for nuclear installation with a particular emphasis on solving the Y2K problem

  1. Development of high nitrogen electrodes for fast breeder reactor applications

    International Nuclear Information System (INIS)

    Austenitic stainless steels of AISI type 316 (316 SS) and its variants are used extensively as structural material for the components of fast reactors operating at temperature up to 823 K. SS 316LN has been chosen as the major structural material for the construction of Prototype Fast Breeder Reactor (PFBR) with a targeted service life of 40 years. To reduce the risk of sensitization in SS 316LN, the carbon content has been reduced to less than 0.03 wt%, and the nitrogen content has been specified as 0.08 wt% to compensate the loss in strength due to the reduced carbon content. An improved version of this alloy with nitrogen content of 0.14 wt% in a frilly austenite matrix has been developed for the future FBRs, to enhance the service life of the structural components up to 60 years. Indigenously developed modified E3 16-1 5 electrodes were used for the fabrication of PFBR components to enhance the structural reliability of the components. The modifications from AWS/ASME SFA 5.4 include stringent composition limits, narrow range of ferrite content, and impact toughness after aging at 1023K for 100h, tensile properties at elevated (service) temperatures and intergranular corrosion (IGC) test as per ASTM A262 Practice E. Since the improved version alloy is rich in nitrogen content than the existing alloy, it has become necessary to develop a welding consumable with reasonably good weldability that is suitable for the fabrication of future FBR components. At present there are no commercially available welding consumables to weld these steels and the development is under way. In this work, a matching consumable methodology was adopted to develop the welding consumable. However, as per specification targeting the chemistry, solidification mode and delta ferrite was challenging, since the solidification mode of the weld metal shifts to fully austenitic region due to dilution of nitrogen from the base metal, which may increase the risk of hot cracking susceptibility

  2. Experience and results of material science research conducted on spent fuel assemblies from the BN-350 fast reactor

    International Nuclear Information System (INIS)

    Full text of publication follows: The BN-350 fast reactor was commissioned in 1973, ran successfully for many years and is now in the decommission stage. Its unique operational parameters (low temperature of sodium at the input, wide range of damage rates, etc. ) allowed the investigation of a number of new radiation effects on both austenitic and ferritic-martensitic steels. The latter class of steel was extensively employed as wrappers for fuel assemblies. Much of the accumulated experience in BN-350 is relevant to development of fusion devices. Results are presented on post-operational research of steels 12Cr18Ni10Ti, 08Cr16Ni11Mo3, and 12Cr13Mo2BFR, all serving as hexagonal shrouds of fuel assemblies. Structural materials in the active core zone operated at temperatures of 280-430 deg. C, and were irradiated the range of 0.25-83 dpa with damage rates of 10-9 - 10-6 dpa/s). Investigations of irradiated hexagonal shroud materials were performed with using traditional techniques of transmission and scanning electron microscopy, metallography, mechanical tests, hydrostatic weighing, magnetometry, etc. Additionally, new techniques have been developed and employed with great success on these highly irradiated materials, such as optical computer extensometry, and magnetization cartography. Typical results to be covered in this presentation are: a) In 12Cr18Ni10Ti steel irradiated at a low dose rate of 0.12 x 10-8 dpa/s voids were found at 281 deg. C after only 0.65 dpa, demonstrating once again the acceleration of swelling at low dpa rates observed in other steels. b) Data on helium release during annealing of highly irradiated sample are presented. c) Differences in deformation-induced hardening between the shroud's corners and faces leads to post-irradiation differences in swelling and mechanical properties. d) During room temperature mechanical tests of 12Cr18Ni10Ti steel at ∼56 dpa at 350 deg. C it was found that ductility lost at lower doses recovers, yielding

  3. Degrading the Plutonium Produced in Fast Breeder Reactor Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jor-Shan; Kuno, Yusuke [Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2009-06-15

    Plutonium quality, defined as the plutonium isotopic composition, is an important measure for proliferation-resistance (PR) of a nuclear energy system. The quality of the plutonium produced in the blanket assemblies of a fast breeder reactor could be as good as or better than the weapons-grade (WG). The presence of such good quality plutonium is a proliferation concern. There are various options to degrade the plutonium produced in the breeder blanket. The obvious one is to blend the blanket plutonium with those produced from the reactor core during reprocessing. Other options try to prevent the generation of good quality plutonium (Pu). The Protected Plutonium Production (P{sup 3}) Project proposed by Tokyo Institute of Technology (TIT)1,2,3 advocates the doping of certain amount of neptunium (Np), or americium (Am) in fresh blanket fuel for irradiation. The increased production of {sup 238}Pu, {sup 240}Pu and {sup 242}Pu by neutron capture in {sup 237}Np and Am would degrade the blanket plutonium. However, as {sup 237}Np is a controlled material according to IAEA, its use as doping material in fresh blanket fuel presents a concern for nuclear proliferation. In addition, the fabrication of fresh blanket fuel with inclusion of americium would be complicated due to the emission of intense low-energy gamma radiation from {sup 241}Am. Am is normally accompanied by Cm since the separation of those 2 elements is very difficult. Fuel containing both Am and Cm may make Safeguards measurement difficult. A variation would be doping the fresh blanket fuel with minor actinide (e.g., a group of neptunium, americium, and curium), or with separated reactor-grade (RG) plutonium. The drawback of such schemes would be the need for glove boxes in fresh blanket fuel fabrication. It is possible to fuel the breeder blankets with recycled (reprocessed) uranium oxide. The recycled uranium, recovered from reprocessing, contains {sup 236}U, which when irradiated in the blanket would

  4. The present status of the fast breeder reactor industrialization in western Europe

    International Nuclear Information System (INIS)

    The development of the liquid metal fast breeder reactor in Europe started in the mid-fifties, after the successful operation of EBR-1 at ARCO, Idaho, in 1951. A more and more integrated development among the countries of the European Community culminated in 1986 with the beginning to power of the 1200 MWe SUPERPHENIX plant at Creys-Malville, France. The road is now open towards the full industrialization of the liquid metal fast breeder reactor at the moment, in 2005, when the first European thermal neutron power reactor station will have to be decommissioned and replaced. The European programme aims at providing the utilities at that time with a clear choice between thermal neutron reactors and fast breeder reactors, both economical but very different in their use of the limited natural resource that uranium is. (author)

  5. Present status of the fast breeder reactor industrialization in western Europe

    International Nuclear Information System (INIS)

    The development of the liquid metal fast breeder reactor in Europe started in the mid-fifties, after the successful operation of EBR-1 at ARCO, Idaho, in 1951. A more and more integrated development among the countries of the European Community culminated in 1986 with the startup of the 1200 MWe SUPERPHENIX plant at Creys-Malville, France. The road is now open towards the full industrialization of the liquid metal fast breeder reactor at the moment, in 2005, when the first European thermal neutron power reactor station will have to be decommissioned and replaced. The European programme aims at providing the utilities at that time with a clear choice between thermal neutron reactors and fast breeder reactors, both economical but very different in their use of the limited natural resources that uranium

  6. Reflections on the introduction of fast breeder reactors in the DeBeNeLux states

    International Nuclear Information System (INIS)

    This report gives a survey of the impact of introducing sodium-cooled fast breeder reactors in the Federal Republic of Germany and the BeNeLux countries (DeBeNeLux region). The supply situation with respect to electric and thermal energy is studied in particular, together with aspects of economy and environmental impact. The potential and consequences of a breeder economy, the present status and future r+d work are discussed. In addition to sodium-cooled fast breeder reactors with oxide or carbide fuel, alternative solutions are touched: 1) light water and high temperature reactors, 2) helium-cooled fast breeder reactors, 3) geothermal energy, solar energy and fusion energy. (orig.)

  7. Theoretical researches of swelling dependence from dose of construction steels mechanical properties changes of constructional steels of BN-350 reactor

    International Nuclear Information System (INIS)

    In the present work the theoretical calculations of BN-350 construction steels swelling in dependence of irradiation dose are carried out. For calculation the kinetic model is proposed. The model is developed in the frameworks of velocities reactions defining the changes of interstitial atom concentration variations, vacancies, helium atoms (in the interstitial state and in the state of replacement), gaseous pores and interstitial loops

  8. Fast breeder reactors insertion in a D2O - natural U nuclear power plants park

    International Nuclear Information System (INIS)

    A model for the evolution of Argentine's installed nuclear power for the next 40 years is presented. The consequences of fast breeder reactors' introduction are studied in both autarchic Pu cycle and a limited reprocessing system. The passage of a reactor park like the national, of natural U - heavy water to one of fast breeder reactors, can only be obtained in a very long term due, fundamentally, to the need of Pu produced for those to feed the last ones. (M.E.L.)

  9. Current status of development of Demonstration Fast Breeder Reactor and prospect of FBR commercialization

    International Nuclear Information System (INIS)

    The Demonstration Fast Breeder Reactor (DFBR) is the next step of FBR development following the prototype fast breeder reactor 'MONJU'. The DFBR is now under development by The Japan Atomic Power Co. (JAPC) under the sponsorship of 9 Japanese electric power companies and Electric Power Development Co., Ltd. The JAPC has been performing the design study and R and D for DFBR in cooperation with Power Reactor and Nuclear Fuel Development Corp. (PNC), Central Research Institute of Electric Power Industry (CRIEPI) and Japan Atomic Energy Research Institute (JAERI). This report describes the prospect of FBR commercialization and the current status of new technology for DFBR and innovative technology FBR commercialization. (author)

  10. IAEA note on multi-national fuel cycle centres as related to fast breeder reactors

    International Nuclear Information System (INIS)

    The significant aspects of associating fast breeder reactor fuel cycles with the concept of regional fuel cycle centres, as studied earlier by the IAEA, are identified. The results of the RFCC Study Project are presented, and how in particular non-proliferation and safeguards, radioactive waste management and economic considerations would be effected by inclusion of fast breeder reactor fuel cycle facilities and possibly fast breeder reactors as well in such centres, are discussed. The current effort of the IAEA to develop a computer programme which models the material flows in the nuclear fuel cycle which could be applied to the analysis of alternative siting strategies for FBR and its fuel cycle facilities is discussed

  11. Network representation of design knowledge of prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    A method of design knowledge representation was studied for the Japanese fast breeder reactor Monju, aiming at enhanced understanding of engineering considerations with mutual relations. Taking over design knowledge of Monju to next generation designers/engineers to be in charge of design of future FRs is by no means easy, in contrast with operation and maintenance knowledge which can be acquired in the real plant operation and maintenance. Specifications of the as-is Monju contains only a small part of the entire design knowledge, mainly by two reasons. Firstly, reasons for selecting the as-is specifications can not be understood until reaching proper knowledge source. Secondly, there are many passed-over options on the design specifications. Reasons for passing-over these options are not always technical inferiority. A large part of the current specifications are selected because the worst possible technical value can be foreseeable or guaranteed to be acceptable within limited R and D period and resource, not because the expected value is estimated to be the lower. In other words, in the future where new materials with improved properties, faster and more accurate analysis/prediction methods, rationalized technical standards or regulatory requirements, and/or some other environment for thorough comparison among specification options are available, these passed-over options are likely to be worth reconsidering. There are a huge number of technical documents on diversified engineering studies, such as calculation of maximum possible temperature gradient of important structures, necessary sodium flow rate in particular sub-assemblies, etc. for validation of each decision making in design. A large part of these documents are scanned and stored in a data base with each catalogue data for electronic browse. The authors propose a network representation of these items of design decision making, where the items are mutually connected by directed arcs, where nodes stand

  12. Approaches to measurement of thermal-hydraulic parameters in liquid-metal-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    This lecture considers instrumentation for liquid-metal-cooled fast breeder reactors (LMFBR's). Included is instrumentation to measure sodium flow, pressure, temperature, acoustic noise, and sodium purity. It is divided into three major parts: (1) measurement requirements for sodium cooled reactor systems, (2) in-core and out-of-core measurements in liquid metal systems, and (3) performance measurements of water steam generators

  13. Calculations of two-phase flows in the liquid metal cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Mathematical models used for the safety analysis of liquid metal cooled fast breeder reactors are considered. Models, taking into account sodium boiling in reactor channels (one-dimensional and many-dimensional approaches), fuel cladding melting, and movement of molten materials during loss of coolant, accidents are described

  14. On the development of fast breeder reactors and the use of thorium in Brazil

    International Nuclear Information System (INIS)

    This work presents a discussion on the possibility of construction of fast breeder reactors in Brazil. It is specially concerned with the use of thorium which is abundant in our country. The main advantages of this projects are: develop fuel and reactor technology in Brazil, increase thorium research, demonstrate the safety of LMFBR and promote its public acceptance. (A.C.A.S.)

  15. Design evaluation system for class 1 component of fast breeder reactor plants

    International Nuclear Information System (INIS)

    The development of a new type of nuclear power plant called Fast Breeder Reactor has been greatly promoted of late by the Power Reactor and Nuclear Fuel Development Corporation (PNC) and others in hopes of replacing Light Water Reactors so far prevailing in Japan. Fast Breeder Reactor, unlike Light Water Reactor, is subjected to elevated temperature within the creep temperature range for long duration, thus requiring higher structural standards for reliability as well as for safety. In this connection, PNC has been conducting many years' research and development to establish reliable design methods based on an advanced analysis taking into consideration elevated temperature properties of materials, and finally worked out Structural Design Guide for Class 1 Components of the prototype of Fast Breeder Reactor in elevated temperature service. The POST-DS system in this paper has been developed as an design evaluation system based on the above design guide, by Mitsui Engineering and Shipbuilding Co., Ltd. since 1979 in accordance with a commission given by PNC. Using the results of the heat transfer analysis and stress analysis for Class 1 Components of Fast Breeder Reactor, this system can evaluate the following factors. 1) Primary stress limit, 2) Strain limit, 3) Creep Fatigue damage. (author)

  16. Reactor shutdown system of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Full text: The shutdown system of PFBR is designed to assure a very high reliability by employing well known principles of redundancy, diversity and independence. The failure probability of the shutdown system limited to -6/ ry. Salient features of the shutdown system are: Two independent shutdown systems, each of them able to accommodate an additional single failure and made up of a trip system and an associated absorber rod group. Diversity between trip systems, rods and mechanisms. Initiation of SCRAM by two diverse physical parameters of the two shutdown systems for design events leading potentially to unacceptable conditions is the core. The first group of nine rods called control and safety rods (CSR) is used for both shutdown as well as power regulation. The second group consisting of three rods known as diverse safety rods (DSR) is used only for shutdown. Diversity between the two groups is ensured by varying the operating conditions of the electromagnets and the configurations of the mobile parts. The reactivity worth of the absorber rods have been chosen such that each group of rods would ensure cold shutdown on SCRAM even when the most reactive rod of the group fails to drop. Together the two groups ensure a shutdown margin of 5000 pcm. The speed and individual rod worth of the CSR is chosen from operational and safety considerations during reactor start up and raising of power. Required drop time of rods during SCRAM depends on the incident considered. For a severe reactivity incident of 3 $/s this has to be limited to 1s and is ensured by limiting electromagnet response time and facilitating drop by gravity. Design safety limits for core components have been determined and SCRAM parameters have been identified by plant dynamic analysis to restrict the temperatures of core components within the limits. The SCRAM parameters are distributed between the two systems appropriately. Fault tree analysis of the system has been carried out to determine the

  17. Status of national programmes on fast breeder reactors. Eighteenth annual meeting, Vienna, Austria, 16-19 April 1985

    International Nuclear Information System (INIS)

    The Eighteenth Annual Meeting on the Status of National Programmes in Member States of the IAEA on Fast Breeder Reactors had been held in April 1985. The representatives of the Member States and international organizations reported status and activities in the field of fast breeder reactors development and operation. A separate abstract was prepared for each of the 12 presentations of the meeting

  18. Compilation of data and descriptions for United States and foreign liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    This document is a compilation of design and engineering information pertaining to liquid metal cooled fast breeder reactors which have operated, are operating, or are currently under construction, in the United States and abroad. All data has been taken from publicly available documents, journals, and books

  19. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-2: Liquid Metal Fast Breeder Reactors.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical liquid metal fast breeder reactor (LMFBR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating the use with a simplified model. The heart of the module is…

  20. Engineering review of the core support structure of the Gas Cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    The review of the core support structure of the gas cooled fast breeder reactor (GCFR) covered such areas as the design criteria, the design and analysis of the concepts, the development plan, and the projected manufacturing costs. Recommendations are provided to establish a basis for future work on the GCFR core support structure.

  1. Operation and maintenance experience with control rod and their drive mechanisms of fast breeder test reactor

    International Nuclear Information System (INIS)

    This paper explains the functional and construction features of Control Rod Drive Mechanism (CRDM) and control rod used in Fast Breeder Test Reactor (FBTR) which is a 40 MWt loop type sodium cooled fast reactor. It discusses all safety related incidents and failures encountered during its service in reactor, the solutions evolved and modifications carried out to prevent recurrence. It also details the maintenance activities and periodical surveillance carried out. The results of a reliability analysis done are also discussed. (author)

  2. Radiation thermal processes in Cr13Mo2NbVB steel - the material of the fuel assembly shell in reactor BN-350 under mechanical tests

    OpenAIRE

    Larionov, A. S.; Dikov, А. S.; Poltavtseva, V. P.; Kislitsin, S. B.; Kuimova, Marina Valerievna; Chernyavski (Chernyavskiy), Aleksandr Viktorovich

    2015-01-01

    Regularities of changes of structural-phase state and mechanical properties of steel 13Mo2NbVB - the material of the fuel assembly shell in reactor BN-350 after various mechanical tests at 350°C are experimentally studied. The formation of microprecipitations FeMo, enriched or depleted with molybdenum was found in the short-time mechanical tests, which is the cause of thermal hardening of irradiated Cr13Mo2NbVB steel and its destruction by the ductile-brittle mechanism. On the basis of long-t...

  3. Fuel pins and core response under liquid-metal fast breeder reactor transient overpower accident conditions

    International Nuclear Information System (INIS)

    Since the earlier liquid-metal fast breeder reactor transient overpower assessments were done (1975), new experimental data and modeling improvements have occurred that indicate later failures and more molten fuel squirted into the channel with a higher propensity for plugging. An initial sweepout still occurs, and an analysis shows that even if coherent instead of the expected stochastic failures occur, the blockages are partial, the reactor is strongly shut down, and a coolable geometry exists. Hence, the overall consequences would be benign

  4. Overview of pool hydraulic design of Indian prototype fast breeder reactor

    Indian Academy of Sciences (India)

    K Velusamy; P Chellapandi; S C Chetal; Baldev Raj

    2010-04-01

    Thermal hydraulics plays an important role in the design of liquid metal cooled fast breeder reactor components, where thermal loads are dominant. Detailed thermal hydraulic investigations of reactor components considering multi-physics heat transfer are essential for choosing optimum designs among the various possibilities. Pool hydraulics is multi-dimensional in nature and simple one-dimensional treatment for the same is often inadequate. Computational Fluid Dynamics (CFD) plays a critical role in the design of pool type reactors and becomes an increasingly popular tool, thanks to the advancements in computing technology. In this paper, thermal hydraulic characteristics of a fast breeder reactor, design limits and challenging thermal hydraulic investigations carried out towards successful design of Indian Prototype Fast Breeder Reactor (PFBR) that is under construction, are highlighted. Special attention is paid to phenomena like thermal stratification, thermal stripping, gas entrainment, inter-wrapper flow in decay heat removal and multiphysics cellular convection. The issues in these phenomena and the design solutions to address them satisfactorily are elaborated. Experiments performed for special phenomena, which are not amenable for CFD treatment and experiments carried out for validation of the computer codes have also been described.

  5. Reprocessing of fast breeder reactor fuels in France

    International Nuclear Information System (INIS)

    The reprocessing of breeder reactor fuels is a direct technical descendant of the reprocessing of thermal reactor fuels which was developped first. The process used is in both cases the PUREX process, which consists in dissolution by nitric acid followed by selective extraction using TBP. In France, the application of this technique to breeder reactor fuels greatly benefited from the scientific and industrial experience initially acquired with metallic fuels of the MAGNOX type and then with oxide fuels of the LWR type

  6. The Last Twenty Years of Experience with Fast Breeder Reactors: Lessons Learnt and Perspectives

    International Nuclear Information System (INIS)

    India has made significant achievements in the design and development of sodium cooled fast breeder reactors over the last twenty years. Attaining a maximum burnup of 165 GW.d/t for the plutonium-rich carbide fuel without any cladding failure, coupled with excellent performance of sodium components, including primary pumps, heat exchangers and steam generators over the last 24 years, reprocessing of carbide fuel with a burnup of 150 GW.d/t and engineering tests performed for validating the plant dynamics computer codes, are the achievements from the successful operation of the 40 MW(th) capacity loop type fast breeder test reactor. Indigenous design of the 500 MW(e) Prototype Fast Breeder Reactor (PFBR), executing high quality multidisciplinary R and D and successful manufacturing and erection of large dimensioned thin walled shell structures are the achievements in PFBR development. These achievements, apart from providing confidence in the PFBR project, are instrumental for the design of innovative future reactors. National and international collaboration established with R and D establishments and academic institutions would go a long way towards helping India to attain world leadership by 2020. (author)

  7. Tube sheet structural analysis of intermediate heat exchanger for fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    The Prototype Fast Breeder Reactor 'Monju' is the first power generating fast breeder reactor in Japan. We have been designing the components of the plant for manufacturing. Among these is the intermediate heat exchanger (IHX) which exchanges heat between primary and secondary sodium loop. The tube sheet of IHX (shell to ligament junction) is a difficult area from the view point of structural strength design under elevated temperature. To validate the structural integrity of tube sheet we performed the series of inelastic analysis and tube sheet thermal shock test using test pieces and half scale model of actual design. The results of inelastic analyses showed there is little progressive deformation around shell to ligament structural discontinuous junction. Furthermore, thermal shock tests showed no increase of an accumulative deformation. By these analyses and experiments, structural reliability of tube sheet could be shown. (author)

  8. Analysis of principle possibilities of intermediare storage of fast breeder reactor fuel elements

    International Nuclear Information System (INIS)

    The principle possibilities of intermediate storage of fast breeder reactor fuel elements were analyzed and compared on the basis of 4 different concepts of storage. The SNR-2 fuel element was chosen as reference. Only the pool (wet) storage could be used to store fuel elements of less than 18 months precooling time. The other concepts (dry storage and container storage) have distinct advantages at precooling times longer than 18 months. (orig./HP) With 22 tabs., 8 figs

  9. Accident consequence studies for large fast breeder reactor containments built of concrete or steel

    International Nuclear Information System (INIS)

    A numerical analysis of accident consequences in a fast breeder reactor of commercial size after complete loss-of-heat-sink was performed, using the CONTAIN code. Two containment types were studied, which differ in the material used for shielding, support and confinement structures. It was found that the replacement of concrete as principal construction material by steel offers a significant potential for consequence mitigation in terms of thermal and pressure loads and of retention capability

  10. Research and developments on nondestructive testing in fabrications of fast breeder reactor structural components in Japan

    International Nuclear Information System (INIS)

    Research and developments (R and D) have been conducted on the nondestructive testing techniques necessary for the construction of fast breeder reactor (FBR). Radiographic tests have been made on tube-tube plate welds and small-diameter tube welds, etc. Ultrasonic tests have been conducted on austenitic stainless steel welds. In the penetrant tests and magnetic particle tests, the investigations have been performed on the effects of various test factors on the test results

  11. Operating safety experience of fast breeder test reactor

    International Nuclear Information System (INIS)

    Full text: Operational safety criteria for nuclear reactors are very stringent and it is essential to incorporate adequate inherent and engineered safety features in the design to ensure safe operation of the reactor. Commissioning and operation of FBTR, being first of its kind in India based on nuclear chain reaction maintained by fast neutrons and use of high temperature liquid sodium as coolant, was a challenging task. Safe operation of the reactor for the past 17 years with good performance of sodium systems and the indigenous plutonium rich carbide fuel, touching a burn up level of 100 GWd/t has underlined the high level of design and operation competence achieved

  12. Exploding the myths about the fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.

    1979-01-01

    This paper discusses the facts and figures about the effects of conservation policies, the benefits of the Clinch River Breeder Reactor demonstration plant, the feasibility of nuclear weapons manufacture from reactor-grade plutonium, diversion of plutonium from nuclear plants, radioactive waste disposal, and the toxicity of plutonium. The paper concludes that the U.S. is not proceeding with a high confidence strategy for breeder development because of a variety of false assumptions.

  13. Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands

    International Nuclear Information System (INIS)

    Problems of public acceptance of nuclear power have affected the development of fast breeder reactors in the Federal Republic of Germany. Besides cooperation with UK, USA and Japan, the most outstanding event in the field of international fast breeder cooperation was a set of the agreements between Germany and France. These agreements opened the possibility of joint fast breeder development by Germany together with Belgium and the Netherlands. Most activities on the site of Compact Sodium Cooled Nuclear Reactor KNK-II were concerned with commissioning of the plant and final construction work. Criticality was achieved in Oct. 1977 and low-power tests performed. This paper includes a description of the status of construction of SNR-300 reactor and the results of research and development programmes performed. These were concerned with fuel elements development and results of irradiation experiments; development of cladding materials and core element structural materials; interaction between fuel and cladding; sodium tests; development and verification of computer codes; experiments in fast critical assemblies; fast rector safety; core disruptive accidents; development of instrumentation; thermodynamics od fuel assemblies; fluid dynamics

  14. Liquid Metal Fast Breeder Reactor program. Volume III. Environmental statement

    International Nuclear Information System (INIS)

    The various alternative technologies, nuclear as well as nonnuclear, that might be utilized in conjunction with or instead of the LMFBR to satisfy the Nation's future electric power requirements are examined. The options considered include the further implementation of various types of nuclear power reactors such as the already existing light water reactor and high temperature gas-cooled reactor, as well as the development of alternative breeder reactors such as the gas-cooled fast reactor, light water breeder reactor and molten salt breeder reactor. The development of another potential nuclear energy system, controlled thermonuclear fusion, is also addressed. The possibilities of increased emphasis on the use of conventional fossil fuels, namely coal, oil and natural gas, and the development of unconventional fossil fuels such as oil shale and domestic tar sands are discussed, followed by consideration of the further development of additional nonnuclear energy sources such as hydroelectric power systems, geothermal energy, solar energy, and other potential sources of power. Each option is examined as to the extent of its energy resource base, the research and development program that would be required (if any) to bring the option into commercial use, the environmental implications of its utilization and the costs and benefits associated with its use, in order to assess its capability for satisfying projected energy requirements. The use of improved energy conversion and storage devices such as gas turbines, fuel cells and magnetohydrodynamics is discussed. An examination of the various elements of a potential national effort in energy conservation to assess their capabilities for reducing projected energy demands and thereby replacing partially or entirely the need for additional power sources such as the LMFBR is presented. (U.S.)

  15. Anticipated transients without scram for light water reactors: implications for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    In the design of light water reactors (LWRs), protection against anticipated transients (e.g., loss of normal electric power and control rod withdrawal) is provided by a highly reliable scram, or shutdown system. If this system should become inoperable, however, the transient could lead to a core meltdown. The Nuclar Regulatory Commission (NRC) has proposed, in NUREG-0460 [1], new requirements (or acceptance criteria) for anticipated transients without scram (ATWS) events and the manner in which they could be considered in the design and safety evaluation of LWRs. This note assesses the potential impact of the proposed LWR-ATWS criteria on the liquid metal fast breeder reactor (LMFBR) safety program as represented by the Clinch River Breeder Reactor Plant

  16. World energy resources, demand and supply of energy, and the prospects for the fast breeder reactor

    International Nuclear Information System (INIS)

    In the past it was taken for granted that the prime role of fast breeder reactors was to complement light water reactors, mainly because of their similar and compatible fuel cycles. In particular, the plutonium converted in LWRs is most intelligently disposed of and used in FBRs. Evaluation of the time horizon of such reactor strategies generally extended only to the year 2000. It is important to realize, however, that the salient task in the breeder field after 2000 - besides electricity generation - will be to substitute for conventional ''cheap'' oil. Electricity today makes up only 10% to 12% of the total secondary energy, while liquids essentially command up to about 50%. Thus the future application of the FBR technology will have to be geared more to the production of a liquid secondary energy carrier than to electricity. A new yardstick for all these considerations is the strongly rising energy prices. They may double, for example, leading to an oil price of US 24/bbl. Under these circumstances it is prudent to generalize the scope for future fast breeders. The key element of such a new fast breeder strategy would be the production of hydrogen by electrolysis or thermolysis or a combination of both. For example, methanol synthesized from hydrogen and residual fossil fuels would thus become economically attractive. The FBR breeding gain, on the other hand, would be used for the continued supply of LWRs generating electricity. The paper identifies order-of-magnitude considerations most important for such a fast breeder application against a global energy demand scenario for the year 2030. (author)

  17. Applicability of three dimensional diffusion theory programmes based on coarse mesh methods to calculating nuclear characteristics of fast breeder reactors

    International Nuclear Information System (INIS)

    Hexagonal coarse mesh methods in three dimensional diffusion theory programme have been examined for calculating in detail nuclear characteristics of fast breeder reactors composed of hexagonal fuel assemblies, comparing with more accurate triangular fine mesh method. The fast breeder reactors considered here are LMFBRs with different core configurations including heterogeneous core and GCFRs in different burnup states. The nuclear characteristics investigated in the comparative study are effective multiplication factor, power and neutron flux distributions, breeding ratio, reactivity effects and control rod reactivity worth. The comparative study indicates that the conventional coarse mesh method is not adeguate to detailed evaluation on nuclear characteristics of fast breeder reactors, and that the improved coarse mesh method developed by T. Takeda et al. is very useful for this purpose, though some problems exists in evaluation of power distribution and breeding ratio of the extremely composite fast breeder reactors, such as the radially heterogeneous core LMFBR. (author)

  18. Liquid-metal fast breeder reactor structural materials design considerations

    International Nuclear Information System (INIS)

    This paper gives a brief overview of the LMFBR, to describe its key components, addresses two key structural problems, reviews high-temperature materials utilized, and places bounds on expected operating conditions. The current status of materials utilization in the LMFBR is summarized as follows: with the exception of the reactor upper internals, design needs for the LMFBR can be met with currently approved Code materials; Inconel 718 can potentially solve the thermal striping problems in the reactor upper internals; temperature, stress-strain levels, and design lifetime of the LMFBR push currently approved Code materials toward their limits of usefulness

  19. Mechanical properties and microstructure of three Russian ferritic/martensitic steels irradiated in BN-350 reactor to 50 dpa at 490 oC

    International Nuclear Information System (INIS)

    Ferritic/martensitic (F/M) steels are being considered for application in fusion reactors, intense neutron sources, and accelerator-driven systems. While EP-450 is traditionally used with sodium coolants in Russia, EP-823 and EI-852 steels with higher silicon levels have been developed for reactor facilities using lead-bismuth coolant. To determine the influence of silicon additions on short-term mechanical properties and microstructure, ring specimens cut from cladding tubes of these three steels were irradiated in sodium at 490 oC in the BN-350 reactor to 50 dpa. Post-irradiation tensile testing and microstructural examination show that EI-852 steel (1.9 wt% Si) undergoes severe irradiation embrittlement. Microstructural investigation showed that the formation of near-continuous χ-phase precipitates on grain boundaries is the main cause of the embrittlement

  20. Status of the fast breeder reactor technology in China

    International Nuclear Information System (INIS)

    According to the Chinese long-term energy strategy the FBR development is strongly supported. In the near term nuclear programme it is intended to build the experimental First Fast Reactor (FFR) in the year 2000. Design work is in progress. (author). 1 ref., 6 figs, 8 tabs

  1. Present status and problems of development of fast breeder reactors

    International Nuclear Information System (INIS)

    The development of FBRs in Japan now reached the stage to conclude on the development organization for a demonstration reactor positioning one step before a practical reactor. FBRs can be operated while converting uranium-238 existing in natural uranium by 99.3% to fissile plutonium-239, as the result, the nuclear fuel more than that consumed can be produced. However, there are various technical difficulties in FBRs, and the construction cost is estimated to be considerably higher as compared with that of LWRs. Also the plutonium obtained by reprocessing spent fuel is used for FBRs, accordingly, the development of FBRs is inseparable from the establishment of nuclear fuel cycle. In order to get rid of the burden of enormous development cost for FBRs, the trend of international joint development is conspicuous. The Superphenix with 1200 MWe output under construction centering around SERENA is expected to attain the criticality in the spring of 1985. For the development of a demonstration reactor, it is necessary to increase the role of private businesses, and the smooth transfer of know-how accumulated in Power Reactor and Nuclear Fuel Development Corp. to civilian side is an important problem. (Kako, I.)

  2. Progress report on fast breeder reactor development in Japan

    International Nuclear Information System (INIS)

    As for the experimental fast reactor ''Joyo'', the power increase test has been carried out since April, and the power output was raised stepwise up to 40 MW. The power output, core behavior, plant characteristics as well as shielding integrity were measured at each power level. The examination for licensing the power increase to 75 and 100 MW is still continued by the Committee No. 130. The preparation of various codes required for the core characteristic analysis is in progress. As for the development of the prototype fast reactor ''Monju'', the Construction Preliminary Design (1) was evaluated, and the studies on the specifications of the Construction Preliminary Design (2) are carried out. In respect to the analysis for the Safety Licensing, the analysis of decay heat, the development of an analytical code regarding the rupture propagation in heat transfer tubes for steam generators and others are under way. Technological investigation is carried out to obtain the overseas informations on the safety standards for FBRs and LMFBR technologies. The technical specifications for the preliminary design of the demonstration fast reactor are being prepared. The researches and developments of reactor physics, the structural components of ''Joyo'' and ''monju'', instrumentation and control, sodium technology, fuel materials, structural materials, safety and steam generators are reported, respectively. (Kako, I.)

  3. Fast Breeder Reactor Development in France During 1987

    International Nuclear Information System (INIS)

    On March 8, 1987, a ''sodium leak'' alarm signal was received in the Creys-Malville control room. By the end of March, it had been established beyond all doubt that sodium was, in fact, leaking into the fuel storage drum inter-vessel gap. The reactor has been shut down since May 26. The origin of the leak was located on September 5, after complete drainage of the main tank. Despite the fact that the leak was confined, had had no radiological consequences and cast no doubts on the safe operation of the reactor, the impact of this incident on public opinion, both in France and in the neighbouring European states, was considerable. Two facts would appear to have been decisive. The first was that the reactor had not been shut down immediately, the second was that the leak was only detected and localized in September: it was difficult for people to understand that before its exact position could be determined, certain operations (transfer of a few subassemblies to the reactor core, unloading of the fuel storage drum) had to be performed

  4. An option for the Brazilian nuclear project: necessity of fast breeder reactors and core design for an experimental fast reactor

    International Nuclear Information System (INIS)

    Aiming to assure the continued utilization of fission energy, the development of fast breeder reactors (FBRs) is a necessity. Binary fueled LMFBRs are proposed, as the best type for the Brazilian nuclear system in the future. The inherent safety characteristics are superior to current fast breeder reactors and an efficient utilization of thorium can be realized. The construction and operation of an experimental fast reactor is the first step and a basic tool for the development of FBRs technologies. A serie of core design for an 90 MW FBR is studied and the possible options and sizes of the main parameters are identified. (E.G.)

  5. Status of national programmes on fast breeder reactors. Nineteenth annual meeting, Kalpakkam, India, 11-14 March 1986

    International Nuclear Information System (INIS)

    The Nineteenth Annual Meeting on the Status of National Programmes in Member States of the IAEA on Fast Breeder Reactors had been held in March 1986. The representatives of the Member States and international organizations reported status and activities in the field of fast breeder reactors development and operation. A report on uranium supply and demand was also presented by the NEA/OECD. A separate abstract was prepared for each of the 11 presentations of the meeting

  6. Status of fast breeder reactor development in India

    International Nuclear Information System (INIS)

    The energy scenario and economic conditions in India are presented. India needs considerable energy for its rapid industrialisation with the liberal economic policy. Nuclear energy with FBR is the only large scale energy resource other than coal, available in the country. The present economic constraints have delayed the construction of new NPPs. The performance of operating reactors has improved considerably during the year. Operating experience of FBTR has been detailed particularly the reactivity incident and its investigations. Updated design of 500 MWe PFBR is presented. Various R and D works in support of FBR in the engineering, metallurgy, chemistry, reprocessing, safety etc. are detailed. (author)

  7. Seismic analysis of liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    This report is a general survey of the recent methods to predict the seismic structural behaviour of LMFBRs. It shall put into evidence the impact of seismic analysis on the design of the different structures of the reactor. This report is addressed to specialists and institutions of governmental organizations in industrialized and developing countries responsible for the design and operation of LMFBRs. The information presented should enable specialists in the R and D institutions and industries likely to be involved, to establish the correct course of the design and operation of LMFBRs. Also, the safety aspect of seismic risk are emphasized in the report. Refs and figs

  8. Cladding and wrapper development for fast breeder reactor high performance

    International Nuclear Information System (INIS)

    In order to ensure economic performance, of both the existing reactors and the future EFR, much recent research has been carried out within the framework of the European R and D agreement to examine the properties of various wrapper and cladding alloys. This paper reviews the status of the European research and development programmes on these steels and highlights the most striking results. For the cladding alloys, results on dimensional stability and tensile properties for fuel pin cladding irradiated in PFR or Phenix will be given. As for wrappers the presently available results of those wrappers irradiated in Phenix and PFR show that both ferritic steels are very good candidates and that on the basis of our present knowledge most of the properties are satisfactory for wrapper applications

  9. Liquid Metal Fast Breeder Reactor Program (LMFBR): facility profiles

    International Nuclear Information System (INIS)

    A description is presented of the experimental test facilities involved in the conduct of the LMFBR research and development program. Existing facilities and those under construction or authorized as of October 1975 are described. Each profile presents brief descriptions of the overall facility and its test area and data relating to its experimental and testing capability. Introductory material for each section includes site and facility maps and an alphabetical list of the profiles contained in the section. A glossary of acronyms and letter designations in common usage to describe organizations, reactor and test facilities, components, etc. involved in the LMFBR program is included. Alphabetical, organizational, and programmatic indexes are provided as a convenient method of identifying the facilities with their locations and with their principal uses in the LMFBR program

  10. Control rod calibration methods for fast breeder reactors applied to Phenix

    International Nuclear Information System (INIS)

    The control and the emergency shutdown of a fast breeder reactor depends essentially on control rods. For this reason, it is imperative to know exactly how much anti reactivity is introduced with the rods in the reactor core. Different methods have been compared in order to see if they are compatible with Phenix reactor. Their limits have been studied. The shadow and anti shadow effects that can the rods make one to the other and then their effective weight of the rods screen have been clarified. (N.C.)

  11. Development of metallic fuels for Indian Fast Breeder Reactors

    International Nuclear Information System (INIS)

    The neutronic performance of metal fuel based on binary U-Pu alloy or ternary U-Pu-Zr alloys are better than conventional uranium plutonium mixed oxide or high density carbide ceramic fuel. The growing energy demand in India needs faster growth of nuclear power and warrants introduction of fast reactors based on metallic fuels in future. Physics calculation showed that fast reactor based on metallic fuels results in higher breeding ratio and lower doubling time compare to mixed oxide or carbide fuels. Moreover inclusion of pyro-processing of the fuel in the fuel cycle is expected to make metal fuel option more economical. As part of metal fuel development programme for future FBR's in India, capsule irradiation of metal fuel based on sodium bonded U-Pu-Zr alloy and metal (Zircaloy) bonded binary U-Pu (Pu ∼ 15 %) alloy are being actively pursued. For this purpose two design concepts have been proposed : one based on sodium bonded ternary alloy fuel of U-Pu-Zr (2-10 wt%) in modified T91 cladding material and the other is U-Pu binary alloy mechanically bonded to modified T91 cladding material with 'Zircaloy' as a liner between the fuel alloy and the clad. The Zircaloy liner act as a barrier in reducing the fuel clad chemical interaction. It also helps in transfer of heat from the fuel to the clad. The smear density of metal bonded pin will be between 70% - 85% and that for sodium bonded pin will be ∼ 70%. In metal bonded fuel pin design two/four semi-circular grooves of diameter ∼1.0 mm, will be provided in diametrically opposite directions in the fuel cross section to accommodate fuel swelling. A comparison has been made on the relative merits and demerits of these two fuel pin designs. The material for the axial blanket will be 'U' or U-Zr (Zr upto 10wt %) alloy based on the results of the out-of-pile thermal cycling behavior and irradiation performance. In the present investigation out-of-pile experiments have been carried out to address some of the issues of

  12. Decay Heat Removal for the Liquid Metal Fast Breeder Reactor

    International Nuclear Information System (INIS)

    The functional and reliability requirements of the decay heat removal systems are described. The reliability requirement and its rationale as adequate assurance that public health and safety are safeguarded are presented. The means by which the reliability of the decay heat removal systems are established to meet their requirement are identified. The heat removal systems and their operating characteristics are described. The discussion includes the overflow heat removal service and its role in decay heat removal if needed. The details of the systems are described to demonstrate the elements of redundancy and diversity in the systems design. The quantitative reliability assessment is presented, including the reliability model, the most important assumptions on which the analysis is based, sources of failure data, and the preliminary numerical results. Finally, the qualitative analyses and administrative controls will be discussed which ensure reliability attainment in design, fabrication, and operation, including minimization of common mode failures. A component test program is planned to provide reliability data on selected critical heat removal system equipment. This test plan is described including a definition of the test parameters of greatest interest and the motivation for the test article selection. A long range plan is also in place to collect plant operational data and the broad outlines of this plan are described. The paper closes with a statement of the high reliability of the Clinch River Breeder Reactor Plant decay heat removal systems and a summary of the supporting arguments. (author)

  13. Fast breeder reactor fuel reprocessing R and D: technological development for a commercial plant

    International Nuclear Information System (INIS)

    The technological developments undertaken by the CEA are applied to a plant project of a 50 t/y capacity, having to reprocess in particular the SUPERPHENIX 1 reactor fuel. French experience on fast breeder reactor fuel reprocessing is presented, then the 50 t/y capacity plant project and the research and development installations. The R and D programs are described, concerning: head-end operations, solvent extractions, Pu02 conversion and storage, out-of-specification Pu02 redissolution, fission products solution vitrification, conditioning of stainless steel hulls by melting, development of remote operation equipments, study of corrosion and analytical problems

  14. Studies of the restructuring of fast breeder test reactor fuel by out-of-pile simulation

    International Nuclear Information System (INIS)

    The fast breeder test reactor (FBTR) at Kalpakkam, India, currently employs a mixed carbide of uranium and plutonium with a Pu/(Pu + U) ratio of 0.70 as fuel. The behavior of this fuel in a thermal gradient is investigated. An out-of-pile simulation facility is designed, set up, and commissioned. Experiments are conducted on FBTR fuel pellets to study the restructuring of the fuel at various levels of linear power and its cracking behavior in a thermal gradient. The results are discussed in terms of their significance for reactor operation

  15. Helium Leak Detection of Vessels in Fuel Transfer Cell (FTC) of Prototype Fast Breeder Reactor (PFBR)

    Science.gov (United States)

    Dutta, N. G.

    2012-11-01

    Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpak am, Chennai. In this very important and prestigious national programme Special Product Division (SPD) of M/s Kay Bouvet Engg.pvt. ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies like- Under Water trolley (UWT), Airlocks (PAL, EAL) Container and Storage Rack (CSR) Vessels in Fuel Transfer Cell (FTC) etc for PFBR. SPD of KBEPL caters to the requirements of Government departments like - Department of Atomic Energy (DAE), BARC, Defense, and Government undertakings like NPCIL, BHAVINI, BHEL etc. and other precision Heavy Engg. Industries. SPD is equipped with large size Horizontal Boring Machines, Vertical Boring Machines, Planno milling, Vertical Turret Lathe (VTL) & Radial drilling Machine, different types of welding machines etc. PFBR is 500 MWE sodium cooled pool type reactor in which energy is produced by fissions of mixed oxides of Uranium and Plutonium pellets by fast neutrons and it also breeds uranium by conversion of thorium, put along with fuel rod in the reactor. In the long run, the breeder reactor produces more fuel then it consumes. India has taken the lead to go ahead with Fast Breeder Reactor Programme to produce electricity primarily because India has large reserve of Thorium. To use Thorium as further fuel in future, thorium has to be converted in Uranium by PFBR Technology.

  16. Helium Leak Detection of Vessels in Fuel Transfer Cell (FTC) of Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500MW Prototype Fast Breeder Reactor (PFBR) at Kalpak am, Chennai. In this very important and prestigious national programme Special Product Division (SPD) of M/s Kay Bouvet Engg.pvt. ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies like- Under Water trolley (UWT), Airlocks (PAL, EAL) Container and Storage Rack (CSR) Vessels in Fuel Transfer Cell (FTC) etc for PFBR. SPD of KBEPL caters to the requirements of Government departments like – Department of Atomic Energy (DAE), BARC, Defense, and Government undertakings like NPCIL, BHAVINI, BHEL etc. and other precision Heavy Engg. Industries. SPD is equipped with large size Horizontal Boring Machines, Vertical Boring Machines, Planno milling, Vertical Turret Lathe (VTL) and Radial drilling Machine, different types of welding machines etc. PFBR is 500 MWE sodium cooled pool type reactor in which energy is produced by fissions of mixed oxides of Uranium and Plutonium pellets by fast neutrons and it also breeds uranium by conversion of thorium, put along with fuel rod in the reactor. In the long run, the breeder reactor produces more fuel then it consumes. India has taken the lead to go ahead with Fast Breeder Reactor Programme to produce electricity primarily because India has large reserve of Thorium. To use Thorium as further fuel in future, thorium has to be converted in Uranium by PFBR Technology.

  17. Vibration analysis of reactor assembly internals for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Vibration analysis of the reactor assembly components of 500 MWe Prototype Fast Breeder Reactor (PFBR) is presented. The vibration response of primary pump as well as dynamic forces developed at its supports are predicted numerically. The stiffness properties of hydrostatic bearing are determined by formulating and solving governing fluid and structural mechanics equations. The dynamic forces exerted by pump are used as input data for the dynamic response of reactor assembly components, mainly inner vessel, thermal baffle and control plug. Dynamic response of reactor assembly components is also predicted for the pressure fluctuations caused by sodium free level oscillations. Thermal baffle (weir shell) which is subjected to fluid forces developed at the associated sodium free levels is analysed by formulating and solving a set of non-linear equations for fluids, structures and fluid structure interaction (FSI). The control rod drive mechanism is analysed for response under flow induced forces on the parts subjected to cross flow in the zone just above the core top, taking into account FSI between sheaths of control and safety rod and absorber pin bundle. Based on the analysis results, it is concluded that the reactor assembly internals are free from any risk of mechanical as well as flow induced vibrations. (author)

  18. Plutonium breeding in liquid-metal fast breeder reactors and light water reactors

    International Nuclear Information System (INIS)

    The possibilities of breeding in liquid-metal fast breeder reactors (LMFBRs) and light water reactors (LWRs) are compared in two ways. The feasibility of breeding has been demonstrated in the Phenix reactor with a measured gain of 0.14. The gain in Superphenix will amount to about0.20. The studies show that while maintaining the performance of commercial reactors their breeding gain can be further increased either by the concept of heterogeneous cores or by using carbide or nitride fuel (breeding gain about0.35). Recently, the old idea of breeding in advanced pressurized water reactors (PWRs) has been taken up again with the objective of attaining a gain of 0.05. Unfortunately, these objectives had to be limited to a conversion ratio of 0.9 for safety reasons, and it is not certain whether operation will be rewarding economically. The strategy of substituting PWRs is examined using the French example. By gradually introducing LMFBRs, the cumulated uranium supplies in France can be kept within reasonable limits, which means that they attain three to four times the home resources. This is not possible with advanced LWRs, which can be considered only as a possible backup solution for plutonium recycling into PWRs

  19. Fast breeder reactor reference system classification for the ENEA data bank

    International Nuclear Information System (INIS)

    This report contains the Reference System Classification (RSC) of fast breeder reactors: it provides a functional system breakdown of the reactor. For each system the following important characteristics are reported: the main function, the mode of operation, its location in the reactor, the main interface system, its main components and the component working environment (fluid and/or atmosphere type). The RSC represent a basic step in organizing the ENEA data bank for the registration and processing of reliability data on typical fast reactor components; it provides a functional component breakdown and represent a plant-unique identification in the process of omogenization of event-data coming from different reactors. In this report it was tried to take into account different generations of nuclear power plants, different plant layouts and solutions: in particular loop and pool reactors are separately treated

  20. A supercritical steam cooled fast breeder reactor with negative reactivity characteristics against voiding and flooding

    International Nuclear Information System (INIS)

    The steam cooled fast breeder reactor with negative reactivity characteristic against voiding and flooding is feasible under the supercritical pressure. The breeding ratio is 1.04. A flat core with the zirconium hydride layer is adopted for mitigating the void reactivity. The thermal efficiency of the indirect cycle system is improved 9 % relatively from the current PWR's. The core should be cooled in 10 seconds after the large break loss of coolant accident (LOCA). The coast down time should be larger than 30 seconds to overcome the loss of flow (LOF) by the trip of all blowers. (author)

  1. Compendium of computer codes for the safety analysis of fast breeder reactors

    International Nuclear Information System (INIS)

    The objective of the compendium is to provide the reader with a guide which briefly describes many of the computer codes used for liquid metal fast breeder reactor safety analyses, since it is for this system that most of the codes have been developed. The compendium is designed to address the following frequently asked questions from individuals in licensing and research and development activities: (1) What does the code do. (2) To what safety problems has it been applied. (3) What are the code's limitations. (4) What is being done to remove these limitations. (5) How does the code compare with experimental observations and other code predictions. (6) What reference documents are available

  2. Comparison of diffusion and transport theory analysis with experimental results in fast breeder test reactor

    International Nuclear Information System (INIS)

    A systematic analysis has been performed by 3 dimensional diffusion and transport methods to calculate the measured control rod worths and subassembly wise power distribution in fast breeder test reactor. Geometry corrections (rectangular to hexagonal and diffusion to transport corrections are estimated for multiplication factors and control rod worths. Calculated control rod worths by diffusion and transport theory are nearly the same and 10% above measured values. Power distribution in the core periphery is over predicted (15%) by diffusion theory. But, this over prediction reduces to 8% by use of the SN method. (authors). 9 refs., 4 tabs., 3 fig

  3. Analysis for mechanical consequences of a core disruptive accident in Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    The mechanical consequences of a core disruptive accident (CDA) in a fast breeder reactor are described. The consequences are development of deformations and strains in the vessels, intermediate heat exchangers (IHX) and decay heat exchangers (DHX), impact of sodium slug on the bottom surface of the top shield, sodium release to reactor containment building through top shield penetrations, sodium fire and consequent temperature and pressure rise in reactor containment building (RCB). These are quantified for 500 MWe Prototype Fast Breeder Reactor (PFBR) for a CDA with 100 MJ work potential. The results are validated by conducting a series of experiments on 1/30 and 1/13 scaled down models with increasing complexities. Mechanical energy release due to nuclear excursion is simulated by chemical explosion of specially developed low density explosive charge. Based on these studies, structural integrity of primary containment, IHX and DHX is demonstrated. The sodium release to RCB is 350 kg which causes pressure rise of 12 kPa in RCB. (author)

  4. Tentative design-philosophy for bellows in sodium cooled fast breeder reactors pipings

    International Nuclear Information System (INIS)

    Expansion joints have proved to be reliable components, when properly designed and realized, in normal industrial equipment. But nevertheless bellows have not been employed widely in nuclear reactors and almost not in sodium cooled fast breeder reactors, where use of expansion-joints could considerably shorten the length of pipelines and, in consequence, lower the cost of the power plant. In the framework of its research and development program on fast reactors the French Atomic Energy.Commission, in cooperation with the industry, develops guidelines, backed up by experiments, to allow a safe design of pipe-lines and compensating-devices. The main points of these guidelines are discussed in this paper with the understanding, that they are tentative rules subject to changes. The guidelines are a complement to existing rules, like ASME - Code III, Code Case 1481, standards of the EJMA Preliminary Draft for Code Case Class I, Expansion Joints in Piping systems and suppliers' rules for the special case of application to sodium cooled fast breeder reactors. Relatively small diameters and easily accessible expansion joints, on control rods and valves for example, are not concerned. These guidelines do not apply to the bellows which are used as an integral part of a component

  5. Plutonium bearing oxide fuels for recycling in thermal reactors and fast breeder reactors

    International Nuclear Information System (INIS)

    Programs carried out in the past two decades have established the technical feasibility of using plutonium as a fuel material in both water-cooled power reactors and sodium-cooled fast breeder reactors. The problem facing the technical community is basically one of demonstrating plutonium fuel recycle under strict conditions of public safety, accountability, personnel exposure, waste management, transportation and diversion or theft which are still evolving. In this paper only technical and economic aspects of high volume production and the demonstration program required are discussed. This paper discusses the role of mixed oxide fuels in light water reactors and the objectives of the LMFBR required for continual growth of nuclear power during the next century. The results of studies showing the impact of using plutonium on uranium requirements, power costs, and the market share of nuclear power are presented. The influence of doubling time and the introduction date of LMFBRs on the benefits to be derived by its commercial use are discussed. Advanced fuel development programs scoped to meet future commerical LMFBR fuel requirements are described. Programs designed to provide the basic technology required for using plutonium fuels in a manner which will satisfy all requirements for public acceptance are described. Included are the high exposure plutonium fabrication development program centered around the High Performance Fuels Laboratory being built at the Hanford Engineering Development Laboratory and the program to confirm the technology required for the production of mixed oxide fuels for light water reactors which is being coordinated by Savannah River Laboratories

  6. Experience in the maintenance of sodium systems of fast breeder test reactor

    International Nuclear Information System (INIS)

    The fast breeder test reactor (FBTR) is a loop type sodium cooled fast reactor located at Kalpakkam in India and that has been operating for 25 years. The reactor has been operated up to a power level of 18.6 MWt with a sodium outlet temperature of 482 C. degrees. Several modifications were carried out in the sodium systems to improve the plant performance. During the course of operation of the reactor, a number of sodium laden components like pumps, valves, cold traps, rupture disks, level probes, shielding plugs, control rod drive mechanisms, experimental assemblies, piping... were removed for various maintenance, modification and replacement jobs which has given the operators a valuable experience in handling large scale sodium systems. This paper details the special procedures followed during the handling of active and inactive sodium laden components

  7. Safety requirements expected to the prototype fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    In July 2013, Nuclear Regulation Authority (NRA) has enforced new regulatory requirements in consideration of severe accidents for the commercial light water reactors (LWR) and also prototype power generation reactors such as the sodium-cooled fast reactors (SFR) of 'Monju' based on TEPCO Fukushima Daiichi nuclear power plant accident (hereinafter referred to as '1F accident') occurred in March 2011. Although the regulatory requirements for SFR will be revised by NRA with consideration for public comments, Japan Atomic Energy Agency (JAEA) set up 'Advisory Committee on Monju Safety Requirements' consisting of fast breeder reactor (FBR) and safety assessment experts in order to establish original safety requirements expected to the prototype FBR 'Monju' considering severe accidents with knowledge from JAEA as well as scientific and technical insights from the experts. This report summarizes the safety requirements expected to Monju discussed by the committee. (author)

  8. Numerical simulation of convection of argon gas in fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • Turbulent convective motion of Argon gas in the annulus of fast breeder reactor. • Circumferential temperature difference (CTD) is proportional to the Rayleigh Number. • A pair of ascending and descending rolls that move azimuthally in the annulus. • Observed flow reversals. • Temperature fluctuations decrease with the height of the annulus. - Abstract: In this paper, we present the results of numerical simulations of the turbulent convection in the Argon gas present in the annulus of a fast breeder reactor. We employ RANS scheme with k–∊ model and solve the equations using an open-source software OpenFOAM. The Rayleigh numbers Ra of our simulations lie in the range of 108 to 1010. We observe a pair of rolls with a hot plume rising from one end, and a cold plume descending from the opposite end of the annulus. This feature results because the aspect ratio of the geometry is near unity. We also find that the circumferential temperature difference (CTD) is proportional to Ra

  9. Comparison of material property specifications of austenitic steels in fast breeder reactor technology

    International Nuclear Information System (INIS)

    Austenitic stainless steels are very widely used in components for European Fast Breeder Reactors. The Activity Group Nr.3 ''Materials'', within Working Group ''Codes and Standards'' of the Fast Reactor Co-Ordination Committee of the European Communities, has decided to initiate a study to compare the material property specifications of the austenitic stainless steel used in the European Fast Breeder Technology. Hence, this study would allow one to view rapidly the designation of a particular steel grade in different European countries and to compare given property values for a same grade. There were dissimilarities, differences or voids appear, it could lead to an attempt to complete and/or to uniformize the nationally given values, so that on a practical level interchangeability, availability and use ease design and construction work. A selection of the materials and of their properties has been made by the Working Group. Materials examined are Stainless Steel AISI 304, 304 L, 304 LN, 316, 316 L, 316 LN, 316''Ti stab.'', 316''Nb stab''., 321, 347

  10. Radiation effects in stainless steel 08Crl6NillMo3, the material of spent fuel assembly of BN-350 nuclear reactor

    International Nuclear Information System (INIS)

    The paper presents and discusses new experimental results on studying the state of structural material of hexagonal fuel assembly ducts exposed first to long-term nuclear reactor irradiation while being in contact with liquid sodium and then to post-irradiation 'wet' storage at BN-350 fast nuclear reactor. The changes in microstructure and physico-mechanical properties of austenitic steel 08Crl6Ni11Mo3 (analog of AISI 316) have been studied; the steel samples of 50x10x2 mm were cut off from the duct of fuel assembly H-214(11) at various levels away from the center of the core: -1200, - 900, - 500, 0,+500 mm. There were performed calculations that enabled to gain information about the irradiation regimes at each level; according to that, minimal temperature during irradiation did not exceed 280 Deg.C (at the level -1200mm) and maximal damaging dose comprised 15.6 dpa at the level '0'. Changes in microstructure and phase composition of the steel were studied by the methods of optical, transmission (TEM) and scanning (SEM) electron microscopy as well as by means of X-ray structure analysis. Besides, there were studied changes in mechanical properties when performing both mechanical tensile tests and microhardness measurements. For each level along the duct there were determined values of hydrostatic density and content of trans-mutative helium, which are dependent on damage dose and irradiation temperature. Metallographic investigations have revealed that each investigated sample is characterized by considerable nonuniformity in the sizes of grains. At the same time TEM method revealed pores at all levels except -1200 mm in the irradiated steel. Precision mechanical tests of highly-radioactive microsamples revealed the dependence of mechanical strength and plasticity characteristics of the steel on damage dose and irradiation temperature, which supports the model of stage-by-stage process of radiation hardening and embrittlement. Theoretical analysis takes into

  11. Thermochemical study of material compatibility for sodium cooled fast breeder reactor application

    International Nuclear Information System (INIS)

    In fast breeder reactors, liquid sodium is preferred as a coolant due to its high thermal conductivity, high specific heat, low viscosity, wide liquid range, remarkable thermal stability. However, it must be in the pure form to be compatible with structural materials in which chemical compounds of Austenitic stainless used include carbon, chromium, nickel, molybdenum, iron, niobium, zirconium and so on. Traces of impurities play an important role in corrosion, mass transport loops of the reactor. Corrosion of structural materials in liquid sodium is deeply affected by the oxygen concentration. Some of these corrosion products which find their way into sodium can cause risk when they deposit on parts like heat exchangers and pumps, which have to be periodically maintained. Thus one must not only control and monitor the oxygen impurity level, but also understand the mechanism of the chemical reaction in the reactor. In this way, thermodynamic approach is obtained by analyzing compatibility of chemical compounds of structural materials with liquid sodium

  12. The fast breeder reactor Rapsodie (1962); Le reacteur rapide surregenerateur rapsodie (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Vautrey, L.; Zaleski, C.P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1962-07-01

    In this report, the authors describe the Rapsodie project, the French fast breeder reactor, as it stands at construction actual start-up. The paper provides informations about: the principal neutronic and thermal characteristics, the reactor and its cooling circuits, the main handling devices of radioactive or contaminated assemblies, the principles and means governing reactor operation, the purposes and locations of miscellaneous buildings. Rapsodie is expected to be critical by 1964. (authors) [French] Dans ce rapport, les auteurs font le point du projet RAPSODIE (reacteur francais surregenerateur a neutrons rapides), au moment du debut effectif de sa construction. On y trouvera decrits: les principales caracteristiques neutroniques et thermiques, le bloc pile et les circuits de refroidissement, les principaux moyens de manutention des ensembles actifs ou contamines, les principes et les moyens qui regissent la conduite du reacteur, les fonctions et l'implantation des divers batiments. La divergence de RAPSODIE est prevue pour 1964. (auteurs)

  13. Conjugate heat transfer analysis of multiple enclosures in prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Velusamy, K.; Balaubramanian, V.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Prototype Fast Breeder Reactor (PFBR) is a 500 MWe sodium cooled reactor under design. The main vessel of the reactor serves as the primary boundary. It is surrounded by a safety vessel which in turn is surrounded by biological shield. The gaps between them are filled with nitrogen. Knowledge of temperature distribution prevailing under various operating conditions is essential for the assessment of structural integrity. Due to the presence of cover gas over sodium free level within the main vessel, there are sharp gradients in temperatures. Also cover gas height reduces during station blackout conditions due to sodium level rise in main vessel caused by temperature rise. This paper describes the model used to analyse the natural convection in nitrogen, conduction in structures and radiation interaction among them. Results obtained from parametric studies for PFBR are also presented.

  14. Review of ORNL-TSF shielding experiments for the gas-cooled Fast Breeder Reactor Program

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L.S.; Ingersoll, D.T.; Muckenthaler, F.J.; Slater, C.O.

    1982-01-01

    During the period between 1975 and 1980 a series of experiments was performed at the ORNL Tower Shielding Facility in support of the shield design for a 300-MW(e) Gas Cooled Fast Breeder Demonstration Plant. This report reviews the experiments and calculations, which included studies of: (1) neutron streaming in the helium coolant passageways in the GCFR core; (2) the effectiveness of the shield designed to protect the reactor grid plate from radiation damage; (3) the adequacy of the radial shield in protecting the PCRV (prestressed concrete reactor vessel) from radiation damage; (4) neutron streaming between abutting sections of the radial shield; and (5) the effectiveness of the exit shield in reducing the neutron fluxes in the upper plenum region of the reactor.

  15. Programme and status of the development of the fast breeder reactor system in France

    International Nuclear Information System (INIS)

    The fundamental justification for fast breeder reactors is based on their breeding ability, and the development of this reactor line is a matter of national importance because there is no reasonable and adequate alternative that could both cover the increasing future energy requirements and provide energy independence for France. The 250MW(e) Phenix power plant has been satisfactorily operated as a demonstration plant for two years now. This proof of the validity of the system was necessary. It underlined its reliability and confirmed the value of the process to the constructors and to the domestic utility, EDF, who confidently decided on industrial and commercial commitment to the new reactor line. This attitude is demonstrated in the following actions in France: (a) the construction by Nersa of the Super-Phenix power plant, a 1200MW(e) prototype commercial power plant which will provide experience in building and operating large fast-neutron power plants; (b) the firm intention of EDF to proceed and bring breeders into operation in the 1990s, representing about 8000MW(e); (c) the creation of a strong industrial organization: the creation in France of the Novatome Company corresponds to this objective - Novatome is now responsible for the industrial development of fast breeder reactors with Creusot-Loire as industrial basis and with all the know-how owned by CEA; (d) the Compagnie generale des matieres nucleaires, Cogema, a CEA subsidiary, is reviewing the actions necessary to reach industrial levels for the cost of the whole fuel cycle. On the other hand, the negotiation of international agreements adds the knowledge and experience gained in the R and D programmes of the various countries concerned. They improve the value and the technical, industrial and commercial basis of this new type of reactor, thus enlarging the prospects of development and commercialization. (author)

  16. Liquid metal seal (LMS) - challenges for fast breeder test reactor (FBTR)

    International Nuclear Information System (INIS)

    In Fast Breeder Test reactor (FBTR), Liquid Metal Seal (LMS) is being used to maintain leak tightness between reactor vessel and rotating plugs. It is a eutectic mixture of 42% tin and 58% bismuth. This paper describes measurements of melting point of LMS using Differential Scanning Calorimeter (DSC), Make: Setaram; Model- 131 evo. The instrument was calibrated using Indium as standard with different heating rates, 5 °C/min, 10 °C/min, 15°C/min and 20 °C/min. The observed value of melting point was found to be in agreement with the literature value. The melting point of as received and used LMS (LMSH8, LMSH10 and LMSH12) from three locations of FBTR were studied using DSC with different heating rates as above. The results are presented and it can be clearly seen that LMS has undergone some modifications during the continuous usage in FBTR

  17. Single assembly preliminary analysis for horizontal seismic analysis on fast breeder reactor core

    International Nuclear Information System (INIS)

    Seismic analysis is one of important parts of fast breeder reactor (FBR) core design. It is necessary for structural integrity assessment and analysis of variation of reactivity under the earthquake. Moreover some important data for qualification of the scram capability of the control rods during the earthquake. Moreover some important data for qualification of the scram capability of the control rods during the earthquake could be provided. In the paper, FINAS, one finite element code developed by Japanese engineers, was used. The calculation model and method were studied on single assembly in China Experimental Fast Reactor (CEFR), as an example. Some preliminary analyses were carried out, which prepare for the seismic analysis on multiple assemblies in FBR core. (authors)

  18. Steam condenser optimization using Real-parameter Genetic Algorithm for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Highlights: → We model design optimization of a vital reactor component using Genetic Algorithm. → Real-parameter Genetic Algorithm is used for steam condenser optimization study. → Comparison analysis done with various Genetic Algorithm related mechanisms. → The results obtained are validated with the reference study results. - Abstract: This work explores the use of Real-parameter Genetic Algorithm and analyses its performance in the steam condenser (or Circulating Water System) optimization study of a 500 MW fast breeder nuclear reactor. Choice of optimum design parameters for condenser for a power plant from among a large number of technically viable combination is a complex task. This is primarily due to the conflicting nature of the economic implications of the different system parameters for maximizing the capitalized profit. In order to find the optimum design parameters a Real-parameter Genetic Algorithm model is developed and applied. The results obtained are validated with the reference study results.

  19. Experience of secondary cooling system modification at prototype fast breeder reactor MONJU (Translated document)

    International Nuclear Information System (INIS)

    The prototype fast breeder reactor MONJU has been shut down since the secondary sodium leak accident that occurred in December 1995. After the accident, an investigation into the cause and a comprehensive safety review of the plant were conducted, and various countermeasures for sodium leak were examined. Modification work commenced in September 2005. Since sodium, a chemically active material, is used as coolant in MONJU, the modification work required work methods suitable for the handling of sodium. From this perspective, the use of a plastic bag when opening the sodium boundary, oxygen concentration control in a plastic bag, slightly-positive pressure control of cover gas in the systems, pressing and cutting with a roller cutter to prevent the incorporation of metal fillings, etc. were adopted, with careful consideration given to experience and findings from previous modification work at the experimental fast reactor JOYO and plants abroad. Owing to these work methods, the modification work proceeded close to schedule without incident. (author)

  20. Design of Central Sub Assembly Temperature Monitoring System for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    The Central Sub Assembly Temperature Monitoring (CSATM) System for 500 MWe Prototype Fast Breeder Reactor (PFBR) is a safety critical system. It is an independent, standalone, hardwired and diversified system to neutronic parameters. The detection of integrity of the subassembly plays a major role, because of high power density and compact core structure of PFBR fuel. To achieve this, CSATM system is provided for the measurement and detection of overshoot for Central Sub Assembly temperature. It protects the reactor from various incidents such as transient overpower at low power and high power, blockage of coolant, pipe rupture etc. CSATM system with triple modular redundancy is employed to measure the central sub-assembly outlet temperature (θCSA) and safety action will be initiated if temperature reaches beyond SCRAM threshold level. (author)

  1. Equipment cell liners for liquid-metal-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Concepts and practices used in the design of equipment cell liners for liquid-metal-cooled fast breeder reactor (LMFBR) systems were surveyed to ascertain the manner by which the functional requirements were satisfied, the severity of sodium spills the liners were designed to accommodate, and the problems encountered in design and construction. The survey was limited to ''loop-type'' LMFBRs, with primary interest on recently constructed plants. Steel-lined concrete structures are discussed; cell-liner designs used in several LMFBR plants are described with particular emphasis on the Southwest Experimental Fast Oxide Reactor (SEFOR), which uses a fixed liner, and the Fast Flux Test Facility (FFTF), which uses a free-floating liner; and research and development work believed necessary to permit a rational and thorough assessment of cell-liner design concept is identified

  2. Significance of the SNR 300 fast breeder reactor in terms of research policy

    International Nuclear Information System (INIS)

    The publication consists of the following documents: (1) Compact version of the expert opinion on the benefit to be gained for the research policy of the FRG from the FBR prototype reactor station SNR 300. (2) Speech of the Federal Minister for Research and Technology, Dr. Heinz Riesenhuber, in the German Bundestag (September 22, 1988). (3) Survey of fast breeder reactor development and of the SNR 300. (4) Statement concerning the proposal to use the Kalkar nuclear power station (SNR 300) as a 'waste management facility' for plutonium and other actinides. (5) Reply of the Federal Government to an interpellation filed by the deputies Mr Wetzel, Mr Stratmann, Mrs Tauber, Dr. Daniels (Regensburg), and the parliamentary party of the Greens. (orig./UA)

  3. Fast current pulse amplifier for neutron flux monitoring system of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    The neutron flux monitoring system (NFMS) for Prototype Fast Breeder Reactor (PFBR) measures the neutron power and the reactivity changes in the core in all the states such as shut down, fuel handling, reactor startup, intermediate and power ranges using high temperature cylindrical fission chambers, four section fission counter and high temperature boron coated counter. Fast Current Pulse Amplifier has been developed to use in NFMS of PFBR that amplifies single/four numbers of input current pulses independently, discriminates and electronically wire - OR them to give differential pulse output along with the Campbell output. The paper describes the design, development of integrated single/Quad channel fast current pulse amplifier based on in-house developed ASIC, Hybrid IC, in built test features, LV and HV supplies. (author)

  4. Design optimization of backup seal for sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: ► Design arrived from fourteen geometric options by finite element analysis. ► Seal geometry, size, compression, contact pressure, stress and compression load optimized. ► Effects of reduced fluoroelastomer strength at 110 °C, strain rate and stress-softening incorporated. ► Ageing, friction, tolerances, batch-to-batch/production variations in fluoroelastomer considered. ► Procedure applicable to other elastomeric seals of Fast Breeder Reactors. -- Abstract: Design optimization of static, fluoroelastomer backup seals for the 500 MWe, Prototype Fast Breeder Reactor (PFBR) is depicted. 14 geometric variations of a solid trapezoidal cross-section were studied by finite element analysis (FEA) to arrive at a design with hollowness and double o-ring contours on the sealing face. The seal design with squeeze of 5 mm assures failsafe operation for at least 10 years under a differential pressure of 25 kPa and ageing influences of fluid (air), temperature (110 °C) and γ radiation (23 mGy/h) in reactor. Hybrid elements of 1 mm length, regular integration, Mooney–Rivlin material model and Poisson’s ratio of 0.493 were used in axisymmetric analysis scheme. Possible effects of reduced fluoroelastomer strength at 110 °C, ageing, friction, tolerances in reactor scale, testing conditions during FEA data generation and batch-to-batch/production variations in seal material were considered to ensure adequate safety margin at the end of design life. The safety margin and numerical prediction accuracy could be improved further by using properties of specimens extracted from seal. The approach is applicable to other low pressure, moderate temperature elastomeric sealing applications of PFBR, mostly operating under maximum strain of 50%.

  5. Correlation of Yield Stress And Microhardness in 08cr16ni11mo3 Irradiated To High Dose In The Bn-350 Fast Reactor

    International Nuclear Information System (INIS)

    The relationship between values of the microhardness and the engineering yield stress in steel 08Cr16Ni11Mo3 (Russian analog of AISI 316) heavily irradiated in the BN-350 reactor has been experimentally derived. It agrees very well with the previously published correlation developed by Toloczko for unirradiated 316 in a variety of cold-work conditions. Even more importantly, when the correlation is derived in the Kδ format where the correlation involves changes in the two properties, we find excellent agreement with a universal Kδ correlation developed by Busby and coworkers. With this Kδ correlation, one can predict the value of yield stress in irradiated material based on measured values of microhardness. The technique is particularly suitable when the material of interest is in an inconvenient location or configuration, or when significant gradients in mechanical properties are anticipated over small dimensions. This approach makes it possible to reduce the labor input and risk when conducting such work. It appears that the derived correlation is equally applicable to both Russian and Western austenitic steel, and also in both irradiated and unirradiated conditions. Additionally, this report points out that microhardness measurements must take into account that high temperature sodium exposure alters the metal surface to produce ferrite, and therefore the altered layers should be removed prior to testing

  6. Recovery of tritium dissolved in sodium at the steam generator of fast breeder reactor

    International Nuclear Information System (INIS)

    The tritium recovery technique in steam generators for fast breeder reactors using the double pipe concept was proposed. The experimental system for developing an effective tritium recovery technique was developed and tritium recovery experiments using Ar gas or Ar gas with 10-10000 ppm oxygen gas were performed using D2 gas instead of tritium gas. It was found that deuterium permeation through two membranes decreased by installing the double pipe concept with Ar gas. By introducing Ar gas with 10000 ppm oxygen gas, the concentration of deuterium permeation through two membranes decreased by more than 1/200, compared with the one pipe concept, indicating that most of the deuterium was scavenged by Ar gas or reacted with oxygen to form a hydroxide. However, most of the hydroxide was trapped at the surface of the membranes because of the short duration of the experiment. (authors)

  7. Development of an ISI Robot for the Fast Breeder Reactor MONJU Primary Heat Transfer System Piping

    International Nuclear Information System (INIS)

    This paper describes the development of a new inspection robot for the In-Service Inspection of the heat transfer system of the Fast Breeder Reactor MONJU. The inspection was carried out using a tire type ultrasonic sensor for volumetric tests at high temperature (atmosphere 55 degree C, Piping Surface 80 degree C) and radiation exposure condition (dose rate 10 mGy/h, piping surface dose rate 15 mGy/h). It was developed an inspection robot using a new tire type for the ultrasonic testing sensor and a new control method. A signal to noise ratio S/N over 2 was obtained during the functional test for a calibration defect with depth 50%t (from the tube wall thickness). (author)

  8. C-scope under-sodium viewer for sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    A C-scope under-sodium viewer has been developed for monitoring the interior of sodium-cooled fast breeder reactors. Consisting of a transducer that emits and receives ultrasonic waves under liquid sodium, a mechanism that drives the transducer under liquid sodium and an image displaying section, it inspects the fuel assembly through its image in optically opaque high-temperature (3000C) liquid sodium. The results of its evaluation test are: (1) The transducer could continue satisfactory operation under 3500C (at the highest) sodium for more than a month. (2) The driving mechanism, though it was the first of the kind appearing in Japan, has been proved that it could continue operation for a week under 3000C sodium. (3) The image displaying section, in spite of the low speed of the transducer (below 20 rpm), could display stable and clear images. (4) The image in 3000C was as clear as that in room-temperature water. (auth.)

  9. Fission and corrosion product behaviour in liquid metal fast breeder reactors (LMFBRs)

    International Nuclear Information System (INIS)

    It is intended that this review will be useful not only to scientists but also to those concerned with design, day-to-day operation of plant, with liquid metal fast breeder reactors (LMFBRs), safety and decommissioning. Because of this, the review has been widened to include not only the mass transfer behaviour of the various radionuclides in experimental and operating systems, but also the monitoring of the various species, the methods of measurement and the development of methods to control the build-up of the more important long half-life species in operating plants. The information used in the review has been taken from open literature sources to provide an up-to-date presentation of the behaviour of the various isotopes in LMFBRs. 172 refs, 14 figs, 22 tabs

  10. Numerical simulation of sodium pool fires in liquid metal-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    In Liquid Metal-Cooled Fast Breeder Reactor (LMFBR), the leakage of sodium can result in sodium fires. Due to sodium's high chemical reactivity in contact with air and water, sodium fires will lead to an immediate increase of the air temperature and pressure in the containment. This will harm the integrity of the containment. In order to estimate and foresee the sequence of this accident, or to prevent the accident and alleviate the influence of the accident, it is necessary to develop programs to analyze such sodium fire accidents. Based on the work of predecessors, flame sheet model is produced and used to analyze sodium pool fire accidents. Combustion model and heat transfer model are included and expatiated. And the comparison between the analytical and experimental results shows the program is creditable and reasonable. This program is more realistic to simulate the sodium pool fire accidents and can be used for nuclear safety judgement. (authors)

  11. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Issa Cherif [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Bose, Tanmoy [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Pekpe, Komi Midzodzi, E-mail: midzodzi.pekpe@univ-lille1.fr [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Cassar, Jean-Philippe [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Mohanty, A.R. [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Paumel, Kévin [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-15

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected.

  12. Development of a nuclear information system for the MONJU Fast Breeder Reactor

    International Nuclear Information System (INIS)

    At the MONJU Fast Breeder Reactor information is collected on a continuous basis. This information consists of measured data, design data, simulations data, maintenance data etc. which may be in any kind of electronic form, i.e. text documents, code input files, reports or even scanned documents. The amount and nature of these data has introduced the need for a software system, which will provide an efficient infrastructure for the maintenance of and operations on the data. Thus a Nuclear Information System for the MONJU Fast Breeder Reactor is under development. The system consists of remote databases hosting the information along with clients for handling them, remote clients providing the users with an interface and a local server for handling the client requests and the communication between the database and user clients. The system is composed of independent server, database and user modules, which communicates using the RMI-IIOP (Remote Method Invocation - Internet InterORB Protocol) technology. The RMI-IIOP is a CORBA (Common Object Request Broker Architecture) compliant subset of the RMI thereby facilitating the possibility of implementing the database and user modules in any kind of programming language and on any kind of operating system by providing a standard, platform independent communications interface. The user interface consists of dynamic HTML web pages which instantiates servlets in the user module when the user submits queries. The database module consists of controllers for handling the communication with the user module and database drivers for handling the connections with the databases. In this paper the overall system design and schemes for data flow and remote method invocations are presented and the requirements imposed on the system are discussed. (author)

  13. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    International Nuclear Information System (INIS)

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected

  14. Prototype fast breeder reactor main and safety vessel surfaces in-service inspection mobile robot

    International Nuclear Information System (INIS)

    Periodic inspection of Prototype Fast Breeder Reactor (PFBR) main vessel and safety vessel is important to assess their structural integrity and to take remedial measures, if needed. PFBR is a pool type reactor and a safety vessel is provided in the design, which envelops the main reactor vessel. As the reactor inside is inaccessible, inspection can only be performed from outside the main vessel. Division of Remote Handling and Robotics, Bhabha Atomic Research Centre (BARC) in collaboration with Indira Gandhi Centre for Atomic Research (IGCAR) is working on the design of a proto-type mobile robot that would do the inspection of reactor vessel surfaces through the annular gap using friction grip when the reactor is in shutdown condition. This mobile robot will be inserted through the access holes at the top of the reactor vault leading to the annular space and moves around the vessel, carrying visual camera, lighting system and ultrasonic testing modules as accessories and also positions and orients them to do ISI of main and safety vessel surfaces. The details of the configuration of the VENTURE, method of achieving mobility around the vessel for coverage and adaptation to the variation in annular gap and other salient design features required to perform the ISI are briefed in this paper. (author)

  15. Implications of nuclear physics in the development of Fast Breeder Reactors

    International Nuclear Information System (INIS)

    The purpose of this paper is to point out the involved aspects of nuclear physics in the calculation and design of the fast reactors. After a brief description of the advantages of using the fast reactors in the national economy, the national programs concerning this activity are presented. The structure and operation conditions of the liquid metal fast breeder reactor (LMFBR) are also reviewed. Then, the methods aimed to calculate the core, the burn-up, the reactor dynamics, the analysis of accidents, the shielding, as well as, the materials required in the fast reactor calculation, are shortly given. Further on, it deals with the nuclear data types connected to the fast reactor calculations, with accuracy requirements for nuclear data, as well as, with the present stage of nuclear data for fissile, fertile and structural materials. The requirements for new differential data measurements, new integral data and benchmark experiments are presented. Data adjustement methods are also summarized. Some aspects of the structural material behaviour in intense gamma radiation and neutron fields existing into a fast reactor are also presented in the last part of this paper. The concluding remarks are mentioned at the end of the paper. (author)

  16. Hydrodynamic and elastoplastic structural analysis of fast breeder reactor core accident

    International Nuclear Information System (INIS)

    This paper describes the principles and examples of applications of an explicit Lagrangian coupled finite difference-finite element code HEMP-ESI developed in order to calculate the structural consequences of hypothetical core disruptive accidents (HCDA) in nuclear reactors. The explicit solution algorithm of the finite difference scheme used to discretize the hydrodynamic fluid domains is shown to be very similar to that used for the solution of the finite element discretized shell structures, hence permitting an easy and efficient coupling. Two examples of simulation show the applicability of the method to nuclear reactor core safety analysis (test problem). Core explosion in a loop-type reactor including a shell containment: the calculation shows the energy absorbing function of the shell and enables the evaluation of the forces acting on the reactor containment. Hypothetical Core Disruptive Accident in a fast breeder reactor: the calculation shows the main features of this accident: lifting of the liquid sodium above the explosion and impact on the cover head inducing upward deformations; radial outflow of the sodium which induces large deformations of the inner and outer shell; zones of compressive circumferential stresses in the main shell at the junction of the spherical head and the cylindrical part

  17. Development of remotely controlled in-service inspection equipment for fast breeder reactor vessels

    International Nuclear Information System (INIS)

    For the operation of fast breeder reactors, one of the most important aspects is the need to control the functioning of the components. It is a characteristic of FBRs that the reactor vessel and in particular the guard vessel operate under very severe conditions. Therefore, an improved remotely controlled inspection system would be needed. On the basis of its experience with light water reactors, Mitsubishi Heavy Industries (MHI) has developed versatile systems for in-service inspection (ISI) of the reactor vessel and its ancillary components. The paper describes what could become the most important part of the ISI system, namely a special mobile vehicle or robot, called the MOLE (Mitsubishi Original LocomobilE). This vehicle can run freely over the annulus sections of the reactor vessel and its guard vessel and can carry out various tests. The results so far have been satisfactory and have encouraged MHI to make further tests in order to confirm that the access to the vessel is sufficient for performing the necessary inspections. (author)

  18. Development of sodium facilities for NSRR fast breeder reactor fuel tests. 2. Sodium capsule

    International Nuclear Information System (INIS)

    In order to commercialize fast reactors, which are expected to be long-term transmutes of plutonium and long half life radioactive wastes (such as americium) from light water reactors, safety research under accident conditions and establishment of the safety guidelines are essential. Sodium facilities, such as, (1) Purification/charging loop and test loop, and (2) Proto-type Sodium capsule, were developed and fabricated in order to pulse irradiate fast breeder reactor fuels in the Nuclear Safety Research Reactor (NSRR) of JAERI for investigation on fuel behavior under transient over-power conditions. This report presents the purpose, outlines, specifications, capabilities and operation results of the proto-type sodium capsule. Two kinds of capsule, i.e., the stagnant sodium capsule and the sodium loop, were designed to pulse irradiate Fast Reactor (FR) fuels in the NSRR under sodium cooling conditions with and without flow, respectively. Because the capsules have to safely contain chemically active sodium at high temperature and stand the pressure pulses by the sodium hummer which might be generated at fuel failure, the development of the capsule is essential for realizing the research. Thus, proto-type sodium loop, which consisted of doubly sealed container, sodium pump and flow meter, was developed. In addition, two type of flange structure for the stagnant capsule and loop was leak tested at high pressures, in order to confirm its sealing capability at room and high temperature conditions. (author)

  19. Development of advanced in-service inspection technologies for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Periodic in-service inspection (ISI) is a mandatory requirement for all nuclear power facilities due to the steadily increasing obligations to provide evidence that plant and equipment is consistently satisfying safety and integrity requirements. Periodic ISI will ensure that service-induced defects and abnormalities are detected and remedied at an early stage. Further, the ISI data will be immensely useful for arriving at appropriate decision on the life extension of the plants. In view of the high radiation and temperature prevailing in the nuclear plants, customized remote handling technologies coupled with robotic devices are a must for carrying out ISI of critical components in these plants. The 500 MWe Prototype Fast Breeder Reactor(PFBR), which is under construction at Kalpakkam, Tamil Nadu, India is a pool type reactor comprising of main vessel, safety vessel, and reactor roof structure confining the primary coolant and cover gas with any associated radioactivity. PFBR is designed with provisions for continuous monitoring and surveillance of the structures forming the primary containment. Supplementing the continuous surveillance and monitoring, the integrity of the reactor vessels has to be assessed periodically by ISI during the reactor shutdown conditions and a comprehensive ISI system capable of functioning at 150 deg C has been conceived and formulated to meet this mandatory requirement. The comprehensive ISI system comprises of two remote-controlled four-wheeled robotic devices with non-destructive examination modules for volumetric and visual examinations and each device has a location-specific inspection requirements. The remote-controlled devices can move around the annulus of the main vessel and safety vessel with inspection modules for carrying out the inspection. An essential feature of the ISI of the PFBR vessels is the formulation and establishment of permanent reference markers on the MV and SV to identify the location of the ISI device in

  20. Fast breeder reactor. The past, the present and the future. (7) History of fast reactor development in Japan - 2

    International Nuclear Information System (INIS)

    History and present state of fast breeder reactor was reviewed in series. As a history of fast reactor development in Japan - 2, this seventh lecture presented the development of the prototype FBR (MONJU) and design studies of the demonstration reactor. The MONJU started operation in 1994, but a sodium leakage in its secondary heat transfer system occurred during performance tests in 1995. It has not operated since and activities for restart are conducted. Since 1997 design studies of the demonstration FBR have been conducted to reflect the MONJU sodium leakage accident and also establish its economic competitiveness with advanced LWR. (T. Tanaka)

  1. In-reactor experiments in fast breeder test reactor for assessment of core structural materials

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, India is a sodium cooled reactor with neutron flux level of the order of 1015 n/cm2/s and temperature of coolant in the range of 650-790K (380-520oC). This reactor is being used as a test bed for the development of fuel and structural materials required for Indian Fast Reactor Programme. FBTR is also used as a test facility to carry out accelerated irradiation tests on thermal reactor structural materials. In-reactor experiments on core structural materials are being carried out by subjecting prefabricated specimens to desired conditions of temperature and neutron fluence levels in FBTR. Non-instrumented irradiation capsules that can be loaded at any location of FBTR core are used for the experiments. Pressurised capsules of zirconium alloys have been developed and subjected to irradiation in FBTR to determine the irradiation creep rate of indigenously developed zirconium alloys (Zircaloy-2 and Zr-2.5%Nb alloy) for life assessment of pressure tubes of Indian Pressurised Heavy Water Reactors (PHWRs). Technology development of pressurised capsules was carried out at IGCAR. These pressurised capsules were filled with argon and a small fraction of helium at a high pressure (5.0-6.5 MPa at room temperature) in such a way that the target stresses were attained in the walls of the pressurised capsules at the desired temperature of irradiation in the reactor. FBTR was operated at a low power of 8 MWt during this irradiation campaign to have an inlet temperature of about 579 K (306oC) which was close to the temperature of pressure tubes at full power in PHWR. Irradiation of thirty pressurised capsules was carried out in FBTR using six irradiation capsules for different durations (upto 79 days). The fluence levels attained by the pressurised capsules were up to 1.1 x 1021 n/cm2 (E> 1 MeV) at temperatures of 579 to 592 K. Post-irradiation increase in diameter of the pressurised

  2. Status of National Programmes on Fast Breeder Reactors. International Working Group on Fast Reactors Twenty-First Annual Meeting, Seattle, USA, 9-12 May 1988

    International Nuclear Information System (INIS)

    The following papers on the status of national programmes on fast breeder reactors are presented in this report: Fast breeder reactor development in France during 1987; Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands; A review of the Indian fast reactor programme; A review of the Italian fast reactor programme; A review of the fast reactor programme in Japan; Status of fast reactor activities in the USSR; A review of the United Kingdom fast reactor programme; Status of liquid metal reactor development in the United States of America; Review of activities of the Commission of European Communities relating to fast reactors in 1987; European co-operation in the field of fast reactor research and development — 1987 progress report; A review of fast reactor activities in Switzerland

  3. Fabrication and quality control of MOX fuel for Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    Full text: Uranium-Plutonium mixed oxide (MOX) fuel for both thermal and fast reactors have been fabricated by Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, India. MOX fuel bundles fabricated by AFFF have been loaded in Boiling Water Reactors (BWRs) and Pressurised Heavy Water Reactors (PHWRs) and have been discharged after successful irradiation. An experimental fuel subassembly containing 37 MOX pins is being irradiated in Fast Breeder Test Reactor (FBTR) at Kalpakkam near Chennai and has seen a burn up of more than 80000 MWD/T. MOX fuel pins containing 44% Pu02 have been recently loaded as a part of the hybrid core of FBTR. AFFF has now taken up the manufacture of MOX fuel pins for the Prototype Fast Breeder Reactor (BHAVINI) coming up at Kalpakkam. The core consists of 181 sub assemblies containing 217 MOX fuel pins each. It is required to fabricate nearly 40,000 MOX fuel pins (3 meter long) for the first core. The Prototype Fast Breeder Reactor is designed with two different fissile enrichment zones to be loaded with MOX subassemblies with a nominal composition of 21% and 28% of PuO2. The fuel pellets of required composition are made using conventional powder metallurgy processes. The pellets are annular with an inner hole of 1.8mm diameter and outside diameter of 5.5mm. AFFF has developed the technology of making annular MOX fuel pellets for PFBR and optimized conditions of fabrication. Multistation rotary presses have been used for compaction of the pellets. The fuel pin consists of a MOX stack of 1000mm and axial blanket of deeply depleted uranium dioxide of length 300mm on either side. New techniques have been used at different stages of fabrication of the fuel pins namely pelletisation, welding and wire wrapping. Studies have been made to use laser welding technique for welding of endplugs. Automation has been introduced in a number of process steps in the fabrication line. A detailed quality control plan is prepared

  4. Fabrication and quality control of MOX fuel for Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    Uranium-Plutonium mixed oxide (MOX) fuel for both thermal and fast reactors have been fabricated by Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, India. MOX fuel bundles fabricated by AFFF have been loaded in Boiling Water Reactors (BWRs) and Pressurised Heavy Water Reactors (PHWRs) and have been discharged after successful irradiation. An experimental fuel subassemby containing 37 MOX pins is being irradiated in Fast Breeder Test Reactor (FBTR) at Kalpakkam near Chennai and has seen a burn up of more than 92000 MWd/t. MOX fuel pins containing 44% PuO2 have been recently loaded as a part of the hybrid core of FBTR. AFFF has now taken up the manufacture of MOX fuel pins for the Prototype Fast Breeder Reactor (PFBR) coming up at Kalpakkam . The core consists of 181 sub assemblies containing 217 MOX fuel pins each. Prototype Fast Breeder Reactor is designed with two different fissile enrichment zones to be loaded with MOX subassemblies with a nominal composition of 21% and 28% of PuO2.The fuel pellets of required composition are made using conventional powder metallurgy processes. The pellets are annular with an inner hole of 1.8 mm diameter and outside diameter of 5.5 mm. AFFF has developed the technology of making annular MOX fuel pellets for PFBR and optimized conditions of fabrication. Multistaion rotary presses have been used for compaction of the pellets. The fuel pin consists of a MOX stack of 1000 mm and axial blanket of deeply depleted uranium dioxide of length 300 mm on either side. New techniques have been used at different stages of fabrication of the fuel pins namely pelletisation, welding and wire wrapping. Studies have been made to use laser welding technique for welding of endplugs. Automation has been introduced in a number of process steps in the fabrication line. A detailed quality control plan is prepared based on the specifications and advanced process and quality control procedures have been incorporated to

  5. FPGA based pump speed measurement system for prototype fast breeder reactor

    International Nuclear Information System (INIS)

    In Prototype Fast Breeder Reactor (PFBR), the heat generated in the reactor core by nuclear fission is extracted by circulating liquid sodium through it using two Primary Sodium Pumps (PSP). The FPGA-based PSP Speed measurement system is a safety critical system provided to protect the reactor in the event of a PSP seizure. The function of the system is to measure the PSP speed and initiate safety action if there is a reduction in speed below a specified set point. Variable Reluctance Sensor (VRS) is used for measuring the PSP speed. This sensor outputs a voltage signal, whose amplitude and frequency are proportional to the pump speed. The frequency of the sensor signal is measured, translated to the pump speed, and compared with user-specified set points for generating the required alarm and trip (safety action) signals. This paper explains the system requirements, system architecture, implementation and qualification tests carried out on the system. Since the timing requirements on the system are stringent, a pipelined architecture is used for improving the system response time, which is detailed in this paper. Since the system is safety critical, various safety and failsafe features are incorporated in the system which are also explained. (author)

  6. Dynamic modeling of steam water system of prototype fast breeder reactor using RELAP code

    International Nuclear Information System (INIS)

    Highlights: • Dynamic modeling of steam water system of an LMBFR using RELAP5 code. • Analysis of events managed by power setback procedure in the plant. • Selection of parameters and their thresholds for the power setback procedure. - Abstract: The safety of a fast breeder reactor based nuclear power plant with an intermediate coolant loop between the primary and tertiary circuit, depends on the correct functioning of actions initiated by the balance-of-plant (tertiary) systems. Comfortable time will be available for such actions to ensure reactor safety. Perturbations in the Balance-of-Plant (BoP) influence the transient sequence of safety-relevant parameters of the plant in a benign manner. However, for complete and realistic prediction of transient behavior of the whole plant, dynamic models for BoP systems are required to be developed. This paper describes modeling of BoP system of PFBR using RELAP5/MOD 3.4 code. Some of the important transients in the BoP system, which are managed by reactor power setback procedure have been analysed using this code to verify the effectiveness of the procedure adopted

  7. Design and fabrication of steam generators (superheaters) for the prototype fast breeder reactor 'MONJU'

    International Nuclear Information System (INIS)

    In liquid metal-cooled fast breeder reactors, steam generators are one of the important equipments, and emphasis has been placed on their development in various countries in the world. Also in Japan, centering around the Power Reactor and Nuclear Fuel Development Corp., the research and development in the wide range from the fundamentals on heat transfer and flow, materials and strength for steam generators to the manufacture, operation and various tests of large mock-ups including a 50 MW steam generator have been carried out. Further, as for the manufacture and inspection, the improvement of the method of welding tubes and tube plates, the adoption of a fine focus X-ray inspection apparatus and others were carried out. Moreover, as the maintenance technique, the ultrasonic flaw detection probes for the heating tubes were developed. The steam generators (superheaters) for the FBR 'Monju' power station are the heat exchangers of helical coil tube-shell type using SUS 321 steel as the heating tube material. Based on the results of these research and development, the design and manufacture of these superheaters and their installation in the reactor auxiliary building of the FBR 'Monju' power station were completed. The outline of the design, the research and development and the manufacture of the steam generators (superheaters) are reported. (K.I.)

  8. Fast breeder reactor. The past, the present and the future. (6) History of fast reactor development in Japan - 1

    International Nuclear Information System (INIS)

    History and present state of fast breeder reactor was reviewed in series. As a history of fast reactor development in Japan - 1, this sixth lecture presented the start of FBR development, and construction and operation of the experimental FBR (JOYO). The JOYO began operation in 1977 and now is being operated at 140 MWt after two times of upgraded modification. The JOYO is aimed at (1) advancement of technology through and experiment, (2) conducting irradiation tests on fuels and materials and (3) validation of innovative technology for development of a future FBR. (T. Tanaka)

  9. Fabrication of MOX Fuel elements for irradiation in Fast Breeder Test Reactor (FBTR)

    International Nuclear Information System (INIS)

    Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur is fabricating Uranium - Plutonium Mixed Oxide Fuel (MOX) for different types of reactors. Recently MOX fuel pins for an experimental fuel subassembly of 37 pins has been fabricated for irradiation in Fast Breeder Test Reactor (FBTR) at Kalpakkam near Chennai. MOX fuel pins containing 44% PuO2 have also been also made for the hybrid core of FBTR. The experimental sub-assembly for irradiation testing in FBTR consisted of 37 short length Prototype Fast Breeder Reactor (PFBR) MOX fuel elements. The composition of the fuel was (0.71 U - 0.29 Pu) O2 with U233 O2 content of 53.5% of total UO2. Uranium enriched with U233 was used to simulate the heat flux of PFBR in FBTR neutron spectrum. MOX fuel pellets were made by powder metallurgy process consisting of pre-compaction, granulation, final compaction and sintering at high temperature. Initially U3233 O8 / U233 O3 powder was subjected to heat treatment. The pellets were sintered at reducing atmosphere at 1650oC for 4 hours to obtain acceptable quality pellets. Over sized pellets were centrelessly ground.without using a liquid coolant. During the fabrication of pins for experimental subassembly, technology was developed and conditions were optimized for making annular pellets, TIG welding of D9 tubes with SS 316 end plugs and wire wrapping. Quality control procedures and process control procedures at different stages of fabrication were developed. The hybrid core of FBTR consists of Mixed Carbide (MC) sub-assemblies containing (0.70 Pu - 0.30 U) C pellets and MOX fuel sub-assemblies containing (0.44 Pu - 0.56 U) O2. Studies were made to fabricate fuel containing higher percentage of Plutonium and the conditions were established. This paper describes the development of flowsheet for making annular MOX fuel pellets containing plutonium and U233, the technology for welding of D-9 clad tubes, wire wrapping and inspection. The paper also

  10. Development of high temperature fission counter-chamber(FC)S for a top entry loop type fast breeder reactor

    International Nuclear Information System (INIS)

    Prototype high temperature fission counter-chambers have been made as neutron detectors for installation in the reactor vessel of the 600MWe-class top entry loop type fast breeder reactor. Using these prototypes as samples, a high-temperature endurance test has been conducted. The validity of the prototypes has been established by the test results, which show that the prototypes nearly satisfy the design performance. (author)

  11. 03 - Sodium cooled fast breeder fourth-generation reactors - The technological demonstrator ASTRID

    International Nuclear Information System (INIS)

    After a discussion of the past experience gained on fast breeder reactors in the world (benefits, difficulties and problematics), the authors discuss the main improvement domains and the associated R and D advances (reactor safety, prevention and mitigation of severe accidents, the sodium-water risk, detection of sodium leaks, increased availability, instrumentation and inspection, control and repairability, assembly handling and washing). Then, they describe the technical requirements and safety objectives of the ASTRID experimental project, notably with its reactivity management, cooling management, and radiological containment management functions. They describe and discuss requirements to be met and choices made for Astrid, and the design options for its various components (core and fuels, nuclear heater, energy conversion system, fuel assembly handling, instrumentation and in-service inspection, control and command). They present the installations which are associated with the ASTRID cycle, evoke the development and use of simulations and codes, describe the industrial organization and the international collaboration about the ASTRID project, present the planning and cost definition

  12. Real Time Computer for Plugging Indicator Control of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR) is in the advanced stage of construction at Kalpakkam, India. Liquid sodium is used as coolant to transfer the heat produced in the reactor core to steam water circuit. Impurities present in the sodium are removed using purification circuit. Plugging indicator is a device used to measure the purity of the sodium. Versa Module Europa bus based Real Time Computer (RTC) system is used for plugging indicator control. Hot standby architecture consisting of dual redundant RTC system with switch over logic system is the configuration adopted to achieve fault tolerance. Plugging indicator can be controlled in two modes namely continuous and discontinuous mode. Software based Proportional-Integral-Derivative (PID) algorithms are developed for plugging indicator control wherein the set point changes dynamically for every scan interval of the RTC system. Set points and PID constants are kept as configurable in runtime in order to control the process in very efficient manner, which calls for reliable communication between RTC system and control station, hence TCP/IP protocol is adopted. Performance of the RTC system for plugging indicator control was thoroughly studied in the laboratory by simulating the inputs and monitored the control outputs. The control outputs were also monitored for different PID constants. Continuous and discontinuous mode plots were generated. (authors)

  13. Status of Fast Breeder Reactor Development in the Federal Republic of Germany, Belgium and the Netherlands

    International Nuclear Information System (INIS)

    In 1967 and 1968, the Federal Republic of Germany, the Kingdom of Belgium and the Kingdom of the Netherlands (''DeBeNe'') agreed to develop breeder reactors in a joint program. The following research organizations have taken part in this effort: - Kernforschungszentrum Karlsruhe (KfK) - Interatom, Bergisch Gladbach Alkem, Hanau - SCK/CEN, Mol - Belgonucleaire, Brussels - ECN, Petten - TNO, Apeldoorn - Neratoom, The Hague. The first three institutions mentioned above have been associated in the Entwicklungsgemeinschaft Schneller Brüter since 1977. KfK, INTERATOM, and the French Commissariat à l'Energie Atomique entered into contracts in 1977 about close cooperation in the fast breeder field, to which the Belgian and Dutch partners acceded. The results of activities carried out by the DeBeNe partners in 1987 have been compiled in this report. The report begins with a survey of the fast reactor plants, which is followed by an R&D summary. In an additional chapter, a survey is given of international cooperation in 1987

  14. Considerations of the effects of azimuthal fuel motion in a fast breeder reactor accident

    International Nuclear Information System (INIS)

    A sizeable reactivity feedback can result from material movement in a large liquid metal fast breeder reactor (LMFBR). Previous investigations considered mainly fuel slumping under gravity and outward radial motion. Very little work has been done on azimuthal motion. Furthermore, studies of the effects of material motion either use point kinetics or very expensive space-time differencing solutions. This work was undertaken to develop an intermediate approach between point kinetics and the full space-time finite difference solutions. The approach was then applied to sample problems with azimuthal and radial material motion under possible accident conditions. Specifically, the objectives of the work were to: (a) develop a technique for treating space-time neutron kinetics during postulated accident conditions which include material motion; (b) apply the technique to sample problems. The technique was developed based on the use of the finite element method (FEM) for the spatial differencing of the multigroup, time dependent diffusion equation. The FEM was chosen for three reasons. First, the FEM gives good accuracy with relatively fewer unknowns than the finite difference method. Second, the FEM is very flexible in setting up a mesh for the geometry of concern. Last, the FEM could handle the spatial differencing of a mesh which became distorted as the material in the reactor moved. This material motion was handled by specifying the FEM mesh nodes as a function of time and periodically updating the spatial matrices. Finally, the method used to solve the time dependence was Gear's variable order predictor corrector scheme

  15. Characteristics of fission products behavior on a severe accident in fast breeder reactor

    International Nuclear Information System (INIS)

    Japan Nuclear Energy Safety Organization (JNES) has been developing the ACTOR code for the analysis of the fission products behavior under the severe accident condition to apply the probabilistic safety assessment to fast breeder reactor plants. Major analysis models of the ACTOR code were validated and adjusted by related experimental results. The fission products behavior on PLOHS (Protected Loss of Heat Sink) sequence which is one of the typical severe accidents in FBR plant was analyzed by using the ACTOR code. It was confirmed that the ACTOR had an enough capability to analyze the fission products behavior during severe accident. From the analysis results of PLOHS, it was confirmed that cesium is transferred to the cover gas region much more than iodine because iodine which is one of halogen connects to sodium easily and is retained in the coolant. Therefore, cesium is important and it is needed to examine the necessity to treat cesium as one of FPs considered in reactor establishment permission for FBR plant. Thus, cesium transfer behavior in sodium during the rare gas bubbles rise from fuel to the cover gas region was confirmed to be very important. And JNES started study including validation test about cesium transfer behavior with Hokkaido University. (author)

  16. NDT services of Prototype Fast Breeder Reactor PFBR - a contribution from Blue Star Ltd towards growth

    International Nuclear Information System (INIS)

    Prototype fast breeder reactor is 500MWe sodium cooled reactor of pool type design. Three classes of steels namely austenitic stainless steel (304LN and 316LN), Ferritic steel (Modified 9Cr 1 Mo) and Carbon steel materials (A48P2) were used for manufacturing of different nuclear steam supply system (NSSS) components. The components are in different product forms such as castings, forgings, plates, rounds, Hollow bars, Seamless tubes and pipes for fitness-for- purpose applications. Due to the criticality of the design, stringent quality control measures were to be adopted for component integrity. The collaboration of Blue Star Ltd with major players of fabrication such as M/s. Larsen and Toubro Ltd (main and safety vessels, sodium tanks), Kirloskar Brothers (primary sodium pump forgings), Walchand Nagar Industries (grid plate assembly), Bharat Heavy Electricals (inner vessel and thermal baffle), MTAR Technologies (grid plate sleeves) and Omplas Systems (colmonoy hard facing of various core components) had witnessed many challenges in achieving the required quality. Different code based (RCCMR and ASME) approaches for acceptance criteria had to be adopted for evaluation of the components that are large in dimensions and quantities. This paper discusses the knowledge gained through different procedural developments for these critical components and provided suggestion of remedial measures in achieving the required quality. (author)

  17. Design and fabrication of sodium test facility for fast breeder reactor

    International Nuclear Information System (INIS)

    The purpose of the promotion policy for energy research and development base construction plan (priority facility) of the Japanese government in FY2009 is 'to construct in Tsuruga City the research and development base for plant operation technology for the practical use of fast breeder reactor where researchers in and out of Japan gather, and to contribute to the development and revitalization of the region as the base with international characteristics.' In conformity to this purpose, the Japan Atomic Energy Agency built 'sodium engineering research facilities' in Tsuruga. This paper describes the design, fabrication, and installation of interior equipment that were carried out by Kawasaki Heavy Industries. 'Sodium engineering research facilities' are the test and research facilities to conduct research and development related to sodium, while reflecting the experiences of operation and maintenance of 'Monju,' which aims at the commercialization of fast reactor. The facilities specialize in the handling technology of sodium to meet the needs in and out of Japan, and were completed in June 2015. The facilities consist of six units including tank-loop test equipment, mini-loop test equipment, sodium purification and supply equipment, etc. For the tank-loop test equipment, a sodium transfer test of about 5.5 tons, and a subsequent comprehensive function test using sodium are scheduled. (A.O.)

  18. Methodical study of cost-benefit analyses of the liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Six American cost-benefit analyses (CBA) of nuclear energy and, in particular, of the Liquid Metal Fast Breeder Reactor (LMFBR) were analysed under the aspect of their methodical difficulties. Two different methodical approaches can be discerned which are related to two completely different applications, according to which the advantages and disadvantages of the breeder reactor are estimated in line with the basic concept of cost-benefit analysis. The analytical methods used to justify the continuation of the breeder-related research programme reveal that the specific energy-related technological and economic conditions of the geographic region considered have to be taken into account. The results of a CBA performed for the USA can therefore not be transferred to the Federal Republic of Germany. Due to the in part strongly differing quantitative results the analyses reviewed do not suggest a clear and final decision in favour of the continuation of the American LMFBR research programme to the extent envisaged. In addition, neither by a positive nor by a negative overall result of the analysis can it be concluded that no other advanced electricity generating technology would have a more favourable cost-benefit ratio, or that the breeder-related research activities, which have been pursued for several years already, should be discontinued. (orig.)

  19. Testing and qualification of Control and Safety Rod and its drive mechanism of Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR) has two independent fast acting diverse shutdown systems. The absorber rod of the first system is called Control and Safety Rod (CSR). CSR and its Drive Mechanism (CSRDM) are used for reactor control and for safe shutdown of the reactor by scram action. In view of the safety role, the qualification of CSRDM is one of the important requirements. CSR and CSRDM were qualified in two stages by extensive testing. In the first stage, the critical subassemblies of the mechanism, such as scram release electromagnet, hydraulic dashpot and dynamic seals and CSR subassembly, were tested and qualified individually simulating the operating conditions of the reactor. Experiments were also carried out on sodium vapour deposition in the annular gaps between the stationary and mobile parts of the mechanism. In the second stage, full-scale CSRDM and CSR were subjected to all the integrated functional tests in air, hot argon and subsequently in sodium simulating the operating conditions of the reactor and finally subjected to endurance tests. Since the damage occurring in CSRDM and CSR is mainly due to fatigue cycles during scram actions, the number of test cycles was decided based on the guidelines given in ASME, Section III, Div. 1. The results show that the performance of CSRDM and CSR is satisfactory. Subsequent to the testing in sodium, the assemblies having contact with liquid sodium/sodium vapour were cleaned using CO2 process and the total cleaning process has been established, so that the mechanism can be reused in sodium. The various stages of qualification programmes have raised the confidence level on the performance of the system as a whole for the intended and reliable operation in the reactor.

  20. Reactor physics and reactor strategy investigations into the fissionable material economy of the thorium and uranium cycle in fast breeder reactors and high temperature reactors

    International Nuclear Information System (INIS)

    In this work the properties governing the fissionable material economy of the uranium and thorium cycles are investigated for the advanced reactor types currently under development - the fast breeder reactor (FBR) and the high temperature reactor (HTR) - from the point of view of the optimum utilization of the available nuclear fuel reserves and the continuance of supply of these reserves. For this purpose, the two reactor types are first of all considered individually and are subsequently discussed as a complementary overall system

  1. Development of fluorocarbon rubber for backup seals of sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: → Negligible chemical degradation of seal compound during ageing (in unstrained state) in air at 140/170/200 oC for 32 weeks. → Cross-link exchange, Joule-Gough effect and ionic interaction during ageing in unstrained state. → Enhanced physical/chemical degradation of compound during ageing under strain. → Capability of compound to withstand heat, radiation, air and mechanical load in reactor for 10 years. → Negligible chemical dose rate effect and gas evolution from compound during seal operation. -- Abstract: The development of a fluorohydrocarbon rubber compound for static backup seals of 500 MWe, Prototype Fast Breeder Reactor (PFBR) is depicted. Variations of a previously developed Viton A-401C based formulation were subjected to processability tests, accelerated heat ageing in air, mechanical characterization and production trials. Finite element analysis and literature data extrapolation were combined with long term ageing to ascertain the life (minimum 10 years) of chosen formulation in reactor under synergistic influences of 110 oC, 23 mGy/h (γ dose rate) and air considering postulated accidental conditions. Validation of test seals and quality assessment indicate that composition and properties of the validated laboratory compound has been translated effectively to the reactor seals, installed recently in PFBR. The tensile and hardness specimens indicated negligible degradation and exceptional thermo-oxidative stability of the seal compound during ageing (32 weeks at 140/170/200 oC) even though interesting manifestations of cross-link exchange and ionic interactions were observed. Compression set results, showing definite trends of change under ageing and stain, were used in Arrhenius and Williams Landel Ferry equations for realistic life prediction. The development provides a foundation to simplify and standardize the design, development and operation of major elastomeric sealing applications of Indian nuclear reactors based on a

  2. Stress Analysis of Steam Generator Shell Nozzle Junction for Sodium cooled Fast Breeder Reactor

    Directory of Open Access Journals (Sweden)

    Mani N,

    2010-07-01

    Full Text Available The Steam Generators (SG decides the capacity factor in Sodium cooled Fast breeder Reactor (SFR plants and hence they are designed with high reliability. One of the critical locations in SG is the shell nozzle junction. This junction is subjected to an end bending moment and internal pressure. Since the shell nozzle junction is the critical location of SG a double-ended guillotine rupture will result in leakage of large quantity of sodium, which is not desirable. The material of construction is modified 9Cr-1Mo. Hence safety equirements demand that Leak Before Break criteria with assumed initial flaw have to be demonstrated. To demonstrate LBB, the basic requirement is to predict the state of stress precisely in the shell nozzle junction under various loading conditions. An efficient finiteelement modeling for shell nozzle junction has been presented in which shell elements are employed to idealize the whole region. These results are used for the analysis of leak before break concept.

  3. Power supply for control and instrumentation in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    The design and operation of the four 'no-break' power supplies for control and instrumentation in the Fast Breeder Test Reactor (FBTR), Kalpakkam, are described. Interruptions in the power supplies are eliminated by redundancy and battery back-up source while voltage dips and transients are taken care by automatic regulation system. The four power supplies are : (1) 24 V D.C. exclusively for neutronic and safety circuits, (2) 48 V D.C. for control logic indication lamps and solenoid valves, (3) 220 V D.C. for switchgear control, control room emergency lighting and D.C. flushing oil pump for the turbine and (4) 220 V A.C. single-phase 50 H/Z for computers and electronics of control and instrumentation. Stationary lead-acid batteries (lead antimony type) in floating mode operation with rectifier/charger are used for emergency back-up. All these power supplies are fed by 415 V, 3-phase, 50 HZ emergency supply buses which are provided with diesel generator back-up. Static energy conversion system (in preference to mechanical rotation system) is used for A.C. to D.C. and also for A.C. to A.C. conversion. (M.G.B.)

  4. Blowdown transient for sodium-steam water SG for prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lele, H.G.; Srivastava, A.; Majumdar, P.; Mukhopadhyay, D.; Gupta, S.K. [Reactor Safety Div., Bhabha Atomic Research Centre, Tromblay (India); Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Associate Director, Reactor Group, Chennai (India)

    2001-07-01

    Prototype Fast Breeder Test Reactor (PFBR) Steam Generator is once through steam generator in which water flows from bottom to top in 547 tubes, changing its state from highly subcooled to superheated state as it receives heat from sodium flowing from top to bottom in the shell side. Depressurization of steam generator from the dump valve provided at bottom is protective action. It prevents further possibility of water steam leak into sodium and subsequent sodium - water reaction. To perform depressurization transient analysis of PFBR appropriate thermal hydraulic modeling of SG is essential. Correct thermal hydraulic modelling needs simulation of sodium system, steam water system with different states from highly subcooled to superheated, coupling between sodium and steam-water system, SG tube and shell and different valve action. The computer code DPPFBR is developed with capability to simulate all these systems and phenomena encountered during transient. Different models of the code have been validated and code has been used for analysing depressurization transient. This paper describes various models used in the code and results of analysis for typical scenario. (author)

  5. Effect of yttrium additions on void swelling in Liquid Metal Fast Breeder Reactor candidate cladding alloys

    International Nuclear Information System (INIS)

    Candidate Liquid Metal Fast Breeder Reactor cladding alloys AL1 (Fe-26% Ni-9% Cr) and AL2 (Fe-35% Ni-12% Cr) without and with the addition of 0.1% yttrium were bombarded by 4 MeV56Fe2+ ions without and with simultaneous bombardment by 0.4 MeV 4He+ ions. These bombardments were conducted at various irradiation temperatures to determine the effect of yttrium on void swelling. The addition of yttrium decreased peak swelling for 4 MeV 56Fe2+ ion bombarded AL1 and AL2 by 28% and 20%, respectively. In all cases where similar sample comparisons were made (i.e., undoped with undoped and doped with doped) and where bombardment conditions were similar (i.e., single with single beam and dual with dual beam), AL1 showed less peak swelling than did AL2. Simultaneously implanting helium during heavy-ion bombardment increased peak swelling in undoped and doped AL1 by factors of 2.3 and 2.6, respectively

  6. Development of an ISI robot for the fast breeder reactor MONJU primary heat transfer system piping

    International Nuclear Information System (INIS)

    This paper describes the development of a new inspection robot for the In-Service Inspection of the heat transfer system of the Fast Breeder Reactor MONJU. The inspection was carried out using a tire-type ultrasonic sensor for volumetric tests at high temperature (atmosphere, 55degC; piping surface, 80degC) and radiation exposure condition (dose rate, 10 mGy/h; piping surface dose rate, 15 mGy/h). An inspection robot using a new tire type for the ultrasonic testing sensor and a new control method was developed. A signal-to-noise ratio S/N over 2 was obtained during the functional test for a calibration defect with a depth of 50%t (from the tube wall thickness). In the automatic inspection test, an EDM slit with a depth of 9% from the pipe thickness was detectable and with an S/N ratio = 4.0 (12.0 dB). (author)

  7. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors

    International Nuclear Information System (INIS)

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  8. Leakage limits for inflatable seals of sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • All possible types/modes of gas escape covered. • Limits include simultaneous contributions from bypass and permeation leakage modes. • Leakage of radioactive cover gas with fission products assumed. • Possibility of sodium frost deposition in sealed gap considered. • Cover gas activity decay during fuel handling and relative importance of types/modes of leakage considered for realistic results and simpler seal design. -- Abstract: Estimation and stipulation of allowable leakage for inflatable seals of 500 MWe Prototype Fast Breeder Reactor is depicted. Leakage limits are specified using a conservative approach, which assumes escape of radioactive cover gas with fission products across the seals in bypass and permeation modes and possibility of sodium frost deposition in sealed gaps because of permeation leakage of inflation gas. Procedures to arrive at the allowable leakages of argon cover gas (normal-operation/fuel-handling: 10−3/10−2 scc/s/m length of seal) and argon inflation gas (10−3 scc/s/m length of seal) is described

  9. Phase 1 of feasibility studies on commercialized fast breeder reactor cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Konomura, Mamoru [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-09-01

    The situation of the feasibility study on commercialized fast breeder reactor cycle system is reported. This is the joint study of JNC and major domestic electric power companies. The study intends to construct and propose the concept of candidate FBR cycle responding various needs in 21 century. The target of the study is to extract plural candidates of commercialized FBR cycle system including FBR plant, reprocessing facility and fuel fabrication facility and to propose realization scenario such as R and D schedule. The study settles on the comprehensive evaluation guideline on not only safety but also on economy, effective utilization of resources, reduction of environmental load and non-proliferation of nuclear materials. Based on the guideline, the design target items are established. During the Phase 1 (FY1999 and 2000), the extensive FBR systems are surveyed in the study. As coolant, Na heavy metals such as Pb, PbBi, gases such as CO2, He and water (H2O and D2O) are surveyed. As fuel, pin type such as oxide, metal and nitride, coated particle type of oxide and nitride and liquid fuel are considered combined with coolant. The final report of Phase 1 will be published shortly. In Phase 2 of the study starting FY2001 until FY2005, the extraction of the candidates will be performed. (K. Tsuchihashi)

  10. Phase 1 of feasibility studies on commercialized fast breeder reactor cycle system

    International Nuclear Information System (INIS)

    The situation of the feasibility study on commercialized fast breeder reactor cycle system is reported. This is the joint study of JNC and major domestic electric power companies. The study intends to construct and propose the concept of candidate FBR cycle responding various needs in 21 century. The target of the study is to extract plural candidates of commercialized FBR cycle system including FBR plant, reprocessing facility and fuel fabrication facility and to propose realization scenario such as R and D schedule. The study settles on the comprehensive evaluation guideline on not only safety but also on economy, effective utilization of resources, reduction of environmental load and non-proliferation of nuclear materials. Based on the guideline, the design target items are established. During the Phase 1 (FY1999 and 2000), the extensive FBR systems are surveyed in the study. As coolant, Na heavy metals such as Pb, PbBi, gases such as CO2, He and water (H2O and D2O) are surveyed. As fuel, pin type such as oxide, metal and nitride, coated particle type of oxide and nitride and liquid fuel are considered combined with coolant. The final report of Phase 1 will be published shortly. In Phase 2 of the study starting FY2001 until FY2005, the extraction of the candidates will be performed. (K. Tsuchihashi)

  11. Properties of structural materials for sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    For the selection of the structural materials for superheaters and reheaters of sodium-cooled fast breeder reactors, it is important to grasp the change of strength due to the complex change of material properties, such as the combination of surface corrosion, the decarbonization of 2-1/4 Cr-1Mo steel, the carburization of austenitic stainless steel, the structural change due to heating history, etc. in sodium environment. The stress corrosion cracking of austenitic materials in water must be studied also. The materials taken up in this paper are austenitic stainless steels such as SUS 304, SUS 316, SUS 321, and SUS 347, iron-based superalloy Incoloy 800, and ferritic alloy steel 2-1/4Cr-1Mo steel. The data on the above described properties of the materials are given. Also the tensile strength, creep rupture and fatigue characteristics of the parent materials in the amount of corrosion in sodium. The strength of ferritic alloy steel is lowered owing to the decarbonization in sodium, but the change of strength due to carburization was not observed. There is some possibility that the unstabilized steels such as SUS 304 and SUS 316 become sensitive to stress corrosion cracking, and the stabilized steels such as SUS 321 and SUS 347 become sensitive to it in long hour heating. The tensile strength of welded joints is almost same as that of parent materials, but the elongation decreases by about 10%. (Kako, I.)

  12. Performance characterization of geopolymer composites for hot sodium exposed sacrificial layer in fast breeder reactors

    International Nuclear Information System (INIS)

    Highlights: • Performance evaluation of geopolymers subjected to hot liquid sodium is performed. • Apart from mechanical properties, micro-analytical techniques are used for material characterization. • The geopolymer composite showed comparatively lesser damage than conventional cement composites. • Geopolymer technology can emerge as a new choice for sacrificial layer in SCFBRs. - Abstract: A sacrificial layer of concrete is used in sodium cooled fast breeder reactors (SCFBRs) to mitigate thermo-chemical effect of accidentally spilled sodium at and above 550 °C on structural concrete. Performance of this layer is governed by thermo-chemical stability of the ingredients of sacrificial layer concrete. Concrete with limestone aggregate is generally used as a sacrificial layer. Conventional cement based systems exhibit instability in hot liquid sodium environment. Geo-polymer composites are well known to perform excellently at elevated temperatures compared to conventional cement systems. This paper discusses performance of such composites subjected to exposure of hot liquid sodium in air. The investigation includes comprehensive evaluation of various geo-polymer composites before any exposure, after heating to 550 °C in air, and after immersing in hot liquid sodium initially heated to 550 °C in air. Results from the current study indicate that hot liquid sodium produces less damage to geopolymer composites than to the existing conventional cement based system. Hence, the geopolymer technology has potential application in mitigating the degrading effects of sodium fires and can emerge as a new choice for sodium exposed sacrificial layer in SCFBRs

  13. Pulsed Nd-YAG laser welding of Prototype Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    End plug welding of Prototype Fast Breeder Reactor (PFBR) fuel elements involves welding of fully Austenitic Stainless Steel (ASS) of grade D9 clad tube with 316M end plug. Pulsed Gas Tungsten Arc Welding (GTAW) is being used for the production of PFBR fuel elements at Advanced Fuel Fabrication Facility (AFFF). GTAW is an established process for end plug welding and hence adopted by many countries. GTAW has got certain limitations like heat input, arc gap sensitivity and certain sporadic defects like tungsten inclusion. Experiments have been carried out at AFFF to use Laser Beam Welding (LBW) technique as LBW offers a number of advantages over the former process. This report mainly deals with the optimization of laser parameters for welding of PFBR fuel elements. To facilitate pulsed Nd-YAG laser spot welding, parameters like peak power, pulse duration, pulse energy, frequency and defocusing of laser beam on to the work piece have been optimized. On the basis of penetration requirement laser welding parameters have been optimized. (author)

  14. A study of parameters on marking of Prototype Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor Fuel (PFBR) elements are identified with a permanent unique marking. Identification of the fuel elements is very much necessary for traceability during initial fabrication as well as for post irradiation examination. Marking on fuel element has to be permanent and capable of being identified after irradiation. Laser marking is a relatively new method as compared to other marking technologies such as ink marking, mechanical engraving and electro chemical methods. It is used for the product identification and traceability during its service life. Laser marking has many advantages compared to other conventional marking. In laser marking process, mark quality is a very important factor, which depends on so many variables like input current, pulse frequency, marking speed and number of passes. The influence of the pulse frequency and the speed of travel of the laser beam on the mark depth and width have been studied in this paper. An optical microscope, scanning electron microscope were used to measure the effects of pulse frequency on the mark depth and width. It has been found that the mark depth and width depend on the interaction process of the laser beam and the material, which was influenced by the pulse frequency. Micro hardness testing is carried out to report Heat Affected Zone (HAZ) variation with parameters. Marking speed and input current selected for suitable depth and width were mentioned in the present study. (author)

  15. Seismic analysis of primary sodium pump of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    This paper deals with seismic analysis of primary sodium pump of 500 MWe Prototype Fast Breeder Reactor (PFBR) by time history analysis. The associated fluid mechanics equations for determining stiffness coefficients for hydrostatic bearing (HSB) are formulated and solved by integrating with the governing structural dynamics equations. Thus, the stiffness coefficients of HSB are computed as function of eccentricity, speed and angular orientation of shaft at every solution time step. The maximum stress intensity values in the flywheel-motor support shell, pump shell and shaft are insignificant (<20 MPa). Hence, the structural integrity is assured for pump parts. The seizure of pump is found to be a critical issue under seismic events. The eccentricity of 60 μ experienced by the shaft during normal operation, increases to 250 μ under SSE. Since it is < 400 μ, the radial clearance, there is no problem of pump seizure. However, at speeds lower than 265 rpm, the eccentricity of shaft is higher than radial clearance and hence shaft can impact on the shell. Under OBE, up to 20 % speed (∼120 rpm), there is no impact. The peak impact force experienced by shaft and shell at HSB at 235 rpm under SSE is < 3 t, which may not cause pump seizure. This needs to be confirmed by experiments. (author)

  16. Thermal hydraulics in the hot pool of Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Sodium cooled Fast Breeder Test Reactor (FBTR) of 40 MWt/13 MWe capacity is in operation at Kalpakkam, near Chennai. Presently it is operating with a core of 10.5 MWt. Knowledge of temperatures and flow pattern in the hot pool of FBTR is essential to assess the thermal stresses in the hot pool. While theoretical analysis of the hot pool has been conducted by a three-dimensional code to access the temperature profile, it involves tuning due to complex geometry, thermal stresses and vibration. With this in view, an experimental model was fabricated in 1/4 scale using acrylic material and tests were conducted in water. Initially hydraulic studies were conducted with ambient water maintaining Froude number similarity. After that thermal studies were conducted using hot and cold water maintaining Richardson similitude. In both cases Euler similarity was also maintained. Studies were conducted simulating both low and full power operating conditions. This paper discusses the model simulation, similarity criteria, the various thermal hydraulic studies that were carried out, the results obtained and the comparison with the prototype measurements.

  17. Blowdown transient for sodium-steam water SG for prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Test Reactor (PFBR) Steam Generator is once through steam generator in which water flows from bottom to top in 547 tubes, changing its state from highly subcooled to superheated state as it receives heat from sodium flowing from top to bottom in the shell side. Depressurization of steam generator from the dump valve provided at bottom is protective action. It prevents further possibility of water steam leak into sodium and subsequent sodium - water reaction. To perform depressurization transient analysis of PFBR appropriate thermal hydraulic modeling of SG is essential. Correct thermal hydraulic modelling needs simulation of sodium system, steam water system with different states from highly subcooled to superheated, coupling between sodium and steam-water system, SG tube and shell and different valve action. The computer code DPPFBR is developed with capability to simulate all these systems and phenomena encountered during transient. Different models of the code have been validated and code has been used for analysing depressurization transient. This paper describes various models used in the code and results of analysis for typical scenario. (author)

  18. Optimal measurement uncertainties for materials accounting in a fast breeder reactor spent-fuel reprocessing plant

    International Nuclear Information System (INIS)

    Optimization techniques are used to calculate measurement uncertainties for materials accountability instruments in a fast breeder reactor spent-fuel reprocessing plant. Optimal measurement uncertainties are calculated so that performance goals for detecting materials loss are achieved while minimizing the total instrument development cost. Improved materials accounting in the chemical separations process (111 kg Pu/day) to meet 8-kg plutonium abrupt (1 day) and 40-kg plutonium protracted (6 months) loss-detection goals requires: process tank volume and concentration measurements having precisions less than or equal to 1%; accountability and plutonium sample tank volume measurements having precisions less than or equal to 0.3%, short-term correlated errors less than or equal to 0.04%, and long-term correlated errors less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having precisions less than or equal to 0.4%, short-term correlated errors less than or equal to 0.1%, and long-term correlated errors less than or equal to 0.05%

  19. Sodium and steam generator leak detection for prototype fast breeder reactor (PFBR)

    International Nuclear Information System (INIS)

    The construction of the Prototype Fast Breeder Reactor (PFBR) a 500 MWe pool type sodium cooled breeder reactor with MOX fuel has started at Kalpakkam. The Instrumentation and Control of PFBR is designed for safe, reliable and economic operation of the plant. Special feature of breeder reactors is sodium instrumentation. Leaks in sodium systems have the possibility of being exceptionally hazardous due to the reaction of liquid sodium with oxygen and water vapour in the air. In addition, leakage from primary systems can cause radioactive contamination. Potential regions of leakage are near welds and high stress areas. Sodium also reacts with concrete releasing hydrogen and leading to damage and loss of strength of concrete structures. Leaking sodium catches fire depending on its temperature. Sodium temperature in the plant ranges from 423 K at filling condition to 820 K at reactor nominal power operating condition. Leak detectors are provided on pipelines, tanks and other capacities. Sodium leak detection systems are designed to meet requirements of ASME section XI- division 3 which specifies that sodium leak at the rate of 100 g/h are to be detected in 20 h for air filled vaults and 250 h for inert vaults. Diverse leak detection methods are employed for active and non-active sodium equipment and pipes. For detection of water leaks into Sodium in steam generators, Hydrogen in Sodium Detectors (HSD) are used. Hydrogen in Argon Detectors (HAD) are used for sodium temperatures below 623 K as HSD is not effective below this temperature due to non-dissolution of hydrogen formed. Choice and challenges posed in implementation of above leak detection requirements are discussed in this paper. (authors)

  20. Status of fast breeder reactors and associated fuel cycle in India

    International Nuclear Information System (INIS)

    Full text: India is the largest democracy with the current population of about 1.05 billion and is on a road to rapid growth in economy. An impressive average domestic product (GDP) growth rate of about 8 % per year has been achieved in 2006-07 and it is targeted to touch 10 % per year for the next 10 years. Towards realizing this targeted growth, development activities are planned based on well-conceived road map and clear vision. Like elsewhere, the energy and electricity growth in India are also closely linked to growth in economy. Indices of socio-economic development like literacy, longevity, GDP and human development are directly dependent upon the per capita energy consumption of a country. India is aiming to reach at least per capita energy consumption equal to the present world average (2200 kWh/a) by 2030 from the current value of (660 kWh/a). The current installed capacity of ∼138 GW(e) needs to be increased to about 600 GWe by 2030 assuming the population of about 1.4 billion. Energy strategists in the country have realized the importance of judicious mix of energy resources to meet this challenge. A large share of nuclear energy is an inevitable choice in this judicious energy mix from resources, sustainability and environment considerations. The nuclear is expected to contribute about 63 GWe by 2030, which will be steadily increased to 275 GWe by 2052, against the total projected capacity of 1344 GWe. The three stage visionary programme of India envisages Water Reactors (first stage), Fast Breeders with high breeding (second stage) and Thorium based Reactors as third stage. Closed fuel cycle in all stages is an essential ingredient. The success of each stage depends upon expeditious maturity of the earlier stage as India has limited indigenous resources of uranium, but vast resources of thorium. India ranks high in nuclear technology scale with strong R and D, high quality human resources, sound infrastructure, unwavering Government support and

  1. Fast breeder reactor blanket management: comparison of LMFBR and GCFR blankets

    International Nuclear Information System (INIS)

    The economic performance of the fast breeder reactor blanket, considering different fuel management schemes was studied. To perform this, the investigation started with a standard reactor physics calculation. Then, two economic models for evaluation of the economic performance of the radial blanket were developed. These models formed the basis of a computer code, ECOBLAN, which computes the net economic gain and the levelized fuel cost due to the radial blanket. The net gain in terms of dollars and $/kgHM-y and the levelized fuel cost in mills/kWhe were obtained as a function of blanket thickness and a residence time of the fuel in the blanket. A LMFBR and a GCFR were the reactor models considered in this study. The optimum radial blanket of a GCFR consists of two rows, that of a LMFBR consists of three rows. Regarding the different fuel management schemes, the fixed blanket was found to be more favorable than reshuffled blanket. Out-in and in-out reshuffled blanket offer almost the same net gain. In all the cases, the burnup calculated for the fuel was found to be less than the acceptable limit. There is an optimum residence time for the fuel in the blanket which depends on the position of the fuel in the blanket and the fuel management scheme studied. As expected, except for very short residence times (less than 2.5 years), the radial blanket is a net income producer. There is no significant difference between the economic performance of the blanket of a LMFBR and a GCFR

  2. Analysis of the conceptual shielding design for the upflow Gas-Cooled Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.; Reed, D.A.; Cramer, S.N.; Emmett, M.B.; Tomlinson, E.T.

    1981-01-01

    Conceptual Shielding Configuration III for the Gas-Cooled Fast Breeder Reactor (GCFR) was analyzed by performing global calculations of neutron and gamma-ray fluences and correcting the results as appropriate with bias factors from localized calculations. Included among the localized calculations were the radial and axial cell streaming calculations, plus extensive preliminary calculations and three final confirmation calculations of the plenum flow-through shields. The global calculations were performed on the GCFR mid-level and the lower and upper plenum regions. Calculated activities were examined with respect to the design constraint, if any, imposed on the particular activity. The spatial distributions of several activities of interest were examined with the aid of isoplots (i.e., symbols are used to describe a surface on which the activity level is everywhere the same). In general the results showed that most activities were below the respective design constraints. Only the total neutron fluence in the core barrel appeared to be marginal with the present reactor design. Since similar results were obtained for an earlier design, it has been proposed that the core barrel be cooled with inlet plenum gas to maintain it at a temperature low enough that it can withstand a higher fluence limit. Radiation levels in the prestressed concrete reactor vessel (PCRV) and liner appeared to be sufficiently below the design constraint that expected results from the Radial Shield Heterogeneity Experiment should not force any levels above the design constraint. A list was also made of a number of issues which should be examined before completion of the final shielding design.

  3. Analysis of the conceptual shielding design for the upflow Gas-Cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Conceptual Shielding Configuration III for the Gas-Cooled Fast Breeder Reactor (GCFR) was analyzed by performing global calculations of neutron and gamma-ray fluences and correcting the results as appropriate with bias factors from localized calculations. Included among the localized calculations were the radial and axial cell streaming calculations, plus extensive preliminary calculations and three final confirmation calculations of the plenum flow-through shields. The global calculations were performed on the GCFR mid-level and the lower and upper plenum regions. Calculated activities were examined with respect to the design constraint, if any, imposed on the particular activity. The spatial distributions of several activities of interest were examined with the aid of isoplots (i.e., symbols are used to describe a surface on which the activity level is everywhere the same). In general the results showed that most activities were below the respective design constraints. Only the total neutron fluence in the core barrel appeared to be marginal with the present reactor design. Since similar results were obtained for an earlier design, it has been proposed that the core barrel be cooled with inlet plenum gas to maintain it at a temperature low enough that it can withstand a higher fluence limit. Radiation levels in the prestressed concrete reactor vessel (PCRV) and liner appeared to be sufficiently below the design constraint that expected results from the Radial Shield Heterogeneity Experiment should not force any levels above the design constraint. A list was also made of a number of issues which should be examined before completion of the final shielding design

  4. Reliability analysis of safety grade decay heat removal system of Indian prototype fast breeder reactor

    International Nuclear Information System (INIS)

    The 500 MW Indian pool type Prototype Fast Breeder Reactor (PFBR), is provided with two independent and diverse Decay Heat Removal (DHR) systems viz., Operating Grade Decay Heat Removal System (OGDHRS) and Safety Grade Decay Heat Removal System (SGDHRS). OGDHRS utilizes the secondary sodium loops and Steam-Water System with special decay heat removal condensers for DHR function. The unreliability of this system is of the order of 0.1-0.01. The safety requirements of the present generation of fast reactors are very high, and specifically for DHR function the failure frequency should be less than ∼1E-7/ry. Therefore, a passive SGDHR system using four completely independent thermo-siphon loops in natural convection mode is provided to ensure adequate core cooling for all Design Basis Events. The very high reliability requirement for DHR function is achieved mainly with the help of SGDHRS. This paper presents the reliability analysis of SGDHR system. Analysis is performed by Fault Tree method using 'CRAFT' software developed at Indira Gandhi Centre for Atomic Research. This software has special features for compact representation and CCF analysis of high redundancy safety systems encountered in nuclear reactors. Common Cause Failures (CCF) are evaluated by β factor method. The reliability target for SGDHRS arrived from DHR reliability requirement and the ultimate number of demands per year (7/y) on SGDHRS is that the failure frequency should be ≤1.4E-8/de. Since it is found from the analysis that the unreliability of SGDHRS with identical loops is 5.2E-6/de and dominated by leak rates of components like AHX, DHX and sodium dump and isolation valves, options with diversity measures in important components were studied. The failure probability of SGDHRS for a design consisting of 2 types of diverse loops (Diverse AHX, DHX and sodium dump and isolation valves) is 2.1E-8/de, which practically meets the reliability requirement

  5. Web-enabled work permit system for fast breeder test reactor

    International Nuclear Information System (INIS)

    The objective of this project is to computerize and web-enable the Work Permit System for the Fast Breeder Test Reactor (FBTR) at IGCAR, Kalpakkam. The existing Work Permit System at FBTR was studied in detail. Since all the formalities were paper-based, the risk of human error in scrutinizing all permits before reactor start-up was high. Compilation of reports (daily, monthly, yearly etc.) was tedious. The work permit system was therefore automated in order to enable the operation group manage the maintenance work carried out in the plant systematically with entries. The entire project was classified into five permit modules -maintenance, transfer, return, cancellation and reissue. Each module takes care of the entry and maintenance of data in their respective fields in their respective tables. The user is also provided with an option to take a hard copy of the report of his/her choice. A client/server based system was designed to web-enable the entire project. The server program was designed using VB 6.0 as the front-end and MS Access database as the back end to store the data. The client software was developed using Active Server Pages and published using personal web server in the Intranet. A number of administrative tools have been incorporated in the software to ensure access security and integrity of the database. An online help feature with search facilities was added to the software. The work permit system software is now already being used at FBTR and has been deemed to be an invaluable aid in empowering the availability of the reactor and determining the performance history of the equipment. (author)

  6. Modeling and Simulation of Operator Training Simulator for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Often the challenge faced by the Nuclear Power Industry is the availability of well trained human resource for efficient power plant monitoring and control. Safety of the plant purely depends upon the plant knowledge acquired, understanding of plant dynamics and the skills possessed by the operators through systematic training. Generally the operators are given class room and field training before deploying them in the operation crew. But, for handling emergency and abnormal conditions, the formal class room training and field training have proved to be inadequate according to the expert estimates. The state- of- art computer based operator training simulators covering the full spectrum of the plant have become an essential element in bridging the gap between the inadequacy and efficiency. Gradually the training simulators are getting embedded in the operator training programme and started playing a crucial role in enhancing the ability of the operators.This paper discusses about the operator training simulator called KALBR- SIM i.e. Kalpakkam Breeder Simulator that has been built at IGCAR for training the Prototype Fast Breeder Reactor (PFBR) operators. It is a Full Scope Replica Operator Training Simulator built to replicate PFBR. The scope of the paper covers the basic modules necessary for building each process model of the simulator, design and development of the reactor sub systems like Neutronics, Primary Sodium, Secondary Sodium, Decay Heat Removal, Steam Water, Electrical systems and the associated logics and controls. It is followed by a detailed discussion on replication aspects of Simulator Control Room and its advantages, the Hardware Architecture, Instruction Station facility and loading of scenarios. It further elaborates on Steady State and Bench Mark Transients tests conducted on the Operator Training Simulator like One primary sodium pump trip, one primary pump seizure, Primary pipe rupture, one boiler feed pump trip and Station Black Out. (author)

  7. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored

  8. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Manimaran, M., E-mail: maran@igcar.gov.in; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-10-15

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored.

  9. Engineering design and development for prototype fast breeder reactor (PFBR) shielding experiments at Apsara

    International Nuclear Information System (INIS)

    Prototype fast breeder reactor (PFBR) houses radial shields inside the reactor vessel which consists of many layers of steel and borated graphite within sodium coolant so as to reduce the neutron flux impingement on Intermediate Heat Exchanger (IHX) (also located inside the reactor vessel) to an acceptable limit. In order to cross check the uncertainties involved in theoretical shielding calculations and neutron cross-section data used, IGCAR proposed to carry out various shielding experiments at Apsara reactor to simulate the theoretical shielding configuration. The experiments would also provide bias factors for detailed shielding design calculations. The shielding experiments were planned to be carried out at Apsara shielding corner with reactor core brought to C-dash (C) position. The neutron flux intensity in the shielding corner was inadequate for the purpose of carrying out experiments. Hence the neutron flux level was enhanced to the order of 1010 n/cm2/s by replacing the water column between the core edge and SS liner of Apsara pool on the shielding corner side with an air filled leak tight aluminium box. The fuel loading in the reactor core was also modified to increase neutron flux intensity towards aluminium box. The neutron flux emerging out of the pool into the shielding corner is essentially a thermal neutron spectrum, which was converted into a typical fast reactor leakage neutron spectrum with the help of converter assemblies (CAs ). The converter assemblies were made of depleted uranium and the assemblies were installed on a CA trolley. The CA trolley was positioned outside Apsara pool in the shielding corner. The models of proposed shields manufactured from various shielding materials viz. sodium, steel, borated graphite and boron carbide were installed on a shield model (SM) trolley. The SM trolley was positioned behind CA trolley. Shield models had provisions for irradiating in any foils which were used for measuring the neutron attenuation

  10. Deterioration of limestone aggregate mortars by liquid sodium in fast breeder reactor environment

    International Nuclear Information System (INIS)

    Highlights: • Limestone mortars were exposed to liquid sodium exposure at 550 °C. • Micro-analytical techniques were used to characterize the exposed specimens. • The performance of limestone mortar was greatly influenced by w/c. • The fundamental degradation mechanisms of limestone mortars were identified. - Abstract: Hot liquid sodium at 550 °C can interact with concrete in the scenario of an accidental spillage of sodium in liquid metal cooled fast breeder reactors. To protect the structural concrete from thermo-chemical degradation, a sacrificial layer of limestone aggregate concrete is provided over it. This study investigates the fundamental mechanisms of thermo-chemical interaction between the hot liquid sodium and limestone mortars at 550 °C for a duration of 30 min in open air. The investigation involves four different types of cement with variation of water-to-cement ratios (w/c) from 0.4 to 0.6. Comprehensive analysis of experimental results reveals that the degree of damage experienced by limestone mortars displayed an upward trend with increase in w/c ratios for a given type of cement. Performance of fly ash based Portland pozzolana cement was superior to other types of cements for a w/c of 0.55. The fundamental degradation mechanisms of limestone mortars during hot liquid sodium interactions include alterations in cement paste phase, formation of sodium compounds from the interaction between solid phases of cement paste and aggregate, modifications of interfacial transition zone (ITZ), decomposition of CaCO3, widening and etching of rhombohedral cleavages, and subsequent breaking through the weakest rhombohedral cleavage planes of calcite, staining, ferric oxidation in grain boundaries and disintegration of impurity minerals in limestone

  11. Development of electromagnetic pumps for natrium coolant of liquid metal fast breeder reactor (2)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hee; Su, Soo Won; Kin, Hee Lyeong; Lee, Sang Doo; Seo, Joom Ho [Electrical Engineering and Science Research Institute, Seoul (Korea, Republic of)

    1994-07-15

    Present work on the development of annular linear induction pumps of externally-supported-duct type are to create domestic electromagnetic pumps by our own design and manufacturing technique and to secure the technological experience and data for the production of large scale electromagnetic pumps for natrium coolant loop system of liquid metal fast breeder reactor in the future. Two annular induction pumps, a small-sized one of 400 deg C and 60 l/min and a medium-sized one of 600 deg C and 800 l/min for their maximum operating temperatures and flowrates, respectively, are designed and fabricated. Conceptual and detailed designs for annular linear induction pumps with 60 l/min and 800 l/min flowrates, respectively, have been done by finding the optimum geometrical and operational parameters based on an equivalent-circuit analysis method. The measurements of the flowrates and pressures of the assembled pumps are done for confirming their characteristics and performance and comparing electrical input powers with those obtained from calculations. The cooling method developed in this study can be used in parallel with natural convection cooling without compressed air injection, and improves cooling efficiency and simplification of the pump structure. Experimental results measured by a free-fall indirect method and a EM flowmeter are and the design value of flowrate of each pump is confirmed by comparing measured one from indirect measurements. A center-return type pump for visualizing natrium pumping are also built with one pole pitch, eight outer core versions and six slots. Its natrium loop for pumping exhibition is assembled with instruments, heating equipment, leak sensing and pneumatic valve, and operated by a remote control. Magnetic flux distribution analysis is performed analytically and numerically for axial and radial directions in each case with or without end effects and consequently finds electromagnetic body force and pump efficiency.

  12. Fault tolerant distributed real time computer systems for I and C of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • Architecture of distributed real time computer system (DRTCS) used in I and C of PFBR is explained. • Fault tolerant (hot standby) architecture, fault detection and switch over are detailed. • Scaled down model was used to study functional and performance requirements of DRTCS. • Quality of service parameters for scaled down model was critically studied. - Abstract: Prototype fast breeder reactor (PFBR) is in the advanced stage of construction at Kalpakkam, India. Three-tier architecture is adopted for instrumentation and control (I and C) of PFBR wherein bottom tier consists of real time computer (RTC) systems, middle tier consists of process computers and top tier constitutes of display stations. These RTC systems are geographically distributed and networked together with process computers and display stations. Hot standby architecture comprising of dual redundant RTC systems with switch over logic system is deployed in order to achieve fault tolerance. Fault tolerant dual redundant network connectivity is provided in each RTC system and TCP/IP protocol is selected for network communication. In order to assess the performance of distributed RTC systems, scaled down model was developed with 9 representative systems and nearly 15% of I and C signals of PFBR were connected and monitored. Functional and performance testing were carried out for each RTC system and the fault tolerant characteristics were studied by creating various faults into the system and observed the performance. Various quality of service parameters like connection establishment delay, priority parameter, transit delay, throughput, residual error ratio, etc., are critically studied for the network

  13. BN-350 decommissioning problems of radioactive waste management

    International Nuclear Information System (INIS)

    Pursuant of modern concept on radioactive waste management applied in IAEA Member States all radioactive wastes produced during the BN-350 operation and decommissioning are subject to processing in order to be transformed to a form suitable for long-term storage and final disposal. The first two priority objectives for BN-350 reactor are as follows: cesium cleaning from sodium followed by sodium drain, and processing; processing of liquid and solid radioactive waste accumulated during BN-350 operation. Cesium cleaning from sodium and sodium processing to NaOH will be implemented under USA engineering and financial support. However the outputted product might be only subject to temporary storage under special conditions. Currently the problem is being solved on selection of technology for sodium hydroxide conversion to final product incorporated into cement-like matrix ready for disposal pursuant to existing regulatory requirements. Industrial installation is being designed for liquid radioactive waste processing followed by incorporation to cement matrix subject to further disposal. The next general objective is management of radioactive waste expected from BN-350 decommissioning procedure. Complex of engineering-radiation investigation that is being conducted at BN-350 site will provide estimation of solid and liquid radioactive waste that will be produced during the course of the BN-350 decommission. Radioactive wastes that will be produced may be shared for primary (metal structures of both reactor and reactor plant main and auxiliary systems equipment as well as construction wastes of dismantled biological protection, buildings and structures) and secondary (deactivation solutions, tools, materials, cloth, special accessory, etc.). Processing of produced radioactive wastes (including high activity waste) requires the use of special industrial facilities and construction of special buildings and structures for arrangement of facilities mentioned as well as for

  14. Two decades of experience with steam-water chemistry maintenance of fast breeder test reactor

    International Nuclear Information System (INIS)

    Fast Breeder Test Reactor (FBTR) at Kalpakkam is a 40 MWt, loop type, sodium cooled fast reactor. The fission heat generated in the core is extracted by primary sodium circuit and the thermal energy is transferred to non-radioactive liquid sodium in the secondary circuit which in turn, heats Once Through-type shell and tube counter current Steam Generator (OTSG) for producing super heated steam at 480 °C and 125 kg/cm2. This secondary circuit is provided to avoid the ingress of hydrogenous materials and pressure surges reaching the core in the event of SG tube leak. Corrosion related problems are very less in the sodium circuits due to the absence of electrochemical reaction. The OTSG consists of four modules each of 12.5 MWt rating. OTSG was chosen due to its higher thermal efficiency and lesser inventory of steam/water in OTSG as it reduces the severity of sodium-water reaction, in case of tube leak. From the point of view of corrosion and deposition, the chemistry specifications are more stringent for OTSG than those of drum type boilers because 100 % conversion of feed water into steam takes place in OTSG. The chemistry requirements are achieved by providing ion exchange resin based online condensate polishing to remove ionic and suspended impurities. Dissolved Oxygen and pH are maintained by all volatile treatment (AVT) using hydrazine and ammonia respectively. Being a test reactor, a dump condenser with 100 % steam dump facility with cupro-nickel tubes is available for uninterrupted reactor operation during the non-availability of turbine. Regenerative feed heating by the exhausted steam from the turbine is also available to stage heaters and deaerator. Efficient water chemistry control plays important role in minimizing corrosion related failures of steam generator tubes and ensuring steam generator tube integrity. This paper describes the operational difficulties such as premature exhaustion of CPU, impurity pick up from the system, silica excursion

  15. Design of fuel fabrication plant of Fast Reactor Fuel Cycle Facility for reload requirement of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    India's economic growth is on a fast growth track. The energy demand is expected to grow rapidly in the coming decades. The growth in population and economy is creating huge demand for energy which has to be met with environmentally benign technologies. Nuclear energy is best suited to meet this demand in a sustainable manner without causing undue environmental impact. Fast reactors are expected to be major contributors in sufficing this demand to a great extent. As an effort to achieve the objective, a Prototype Fast Breeder Reactor is being constructed at Kalpakkam. This paper also highlights the design features of FFP, unit operations, scheme of automation, branched layout of glove box train, shielding arrangement on glove boxes, accident consequence analysis etc.

  16. Effects of nuclear island connected buildings on seismic behaviour of reactor internals in a pool type fast breeder reactor

    International Nuclear Information System (INIS)

    The seismic analysis of reactor assembly housing the primary circuit of a typical 500 MWe capacity pool type fast breeder reactor (PFBR) is reported. The reactor assembly is supported on the reactor vault within the nuclear island connected buildings (NICB). The seismic responses, viz. critical displacements, sloshing heights, stresses and strain energy values in the vessels are determined for the reactor assembly by detailed finite element analysis including the fluid-structure interaction and sloshing effects. Analysis is carried out to quantify the effects of inter-connection of the reactor vault with the adjacent buildings under the assumptions that the reactor vault along with reactor assembly is: (1) an isolated structural system from the adjacent buildings within reactor containment building (RCB) and (2) connected with the adjacent civil structures through floor slabs. Analysis indicates that, by inter-connecting the vault with the NICB, there are overall increases of all the governing parameters which decide the seismic design criteria. The significant effects are increases of: (1) radial and axial displacements of core top and absorber rods and vertical accelerations of core subassemblies which are of concern to reactor safety, (2) primary membrane stress intensities for the inner vessel and (3) strain energies developed at the critical portions which can enhance the buckling risks of main vessel, inner vessel and thermal baffles. Hence, it is preferable to isolate the reactor vault, directly constructing from the base raft without inter-connecting it with the NICB, from the seismic loading considerations

  17. Uncertainty in the breeding ratio of a large liquid-metal fast breeder reactor: theory and results

    International Nuclear Information System (INIS)

    Using an extensive data base of sensitivities and evaluated covariances, this work incorporates 11 fast-reactor benchmark experiments and 2 neutron-field benchmark experiments into the adjustment of a 26-group cross-section library based primarily on Evaluated Nuclear Data File (ENDF)/B-IV. The adjustments of the group cross sections are examined in detail. The results of the adjustment are applied to the determination of the uncertainties in the multiplication factor and in the breeding ratio of a large liquid-metal fast breeder reactor design model fixed by the Lartge Core Code Evaluation Working Group. 71 refs

  18. Development of an ISI robot for the fast breeder reactor MONJU primary heat transfer system piping

    International Nuclear Information System (INIS)

    The fast breeder reactor (FBR) 'MONJU' carry out in-service inspection (ISI) in important components for safety. ISI of the primary heat transfer system (PHTS) piping is performed by sodium leak monitoring, a visual testing with ITV camera and a volumetric testing with ultrasonic. The volumetric testing inspect maximum part of stress concentration in PHTS pipe by using ultrasonic. ISI use remote control robot on the grounds of high temperature (atmosphere 55 deg. C, pipe surface 80 deg. C) and radiation exposure condition (dose rate 10mGy/h, pipe surface dose rate 15mGy/h). Moreover, volumetric testing use tire type ultrasonic sensor on the grounds of a sodium boundary which chemically reacts with water and oil. Light-water reactors (LWR) can be inspected by ultrasonic that uses water and oil. Purpose. This development of inspection system is intended to use new control robot and new tire type ultrasonic sensor. The robot control adopt teaching control method. The target is reproducibility of less than ±5mm. The new tire type ultrasonic sensor adopt double oscillators, because of the multipath reflection wave from contact rubber etc., the noise level decreases and consequently S/N ratio well. The defective detection target was decided to be a depth 50% electrical discharge machining (EDM) slit from pipe wall thickness (t=11.1mm) with a signal per noise ratio (S/N) not less than 2 (6dB). Results and Conclusions We developed a new inspection system for the in-service inspection of PHTS of the FBR 'MONJU'. Moreover, we carried out performance test about new inspection system. The control performance of the new robot driving confirmed it was about less than 5mm by the experiment. The detection performance of new tire sensor confirmed it was detectable an EDM slit with depth 10% from pipe thickness and with a S/N ratio not less than 4.0 (12.0dB). The robot and new tire sensor that developed as a result of the experiment confirmed the performance that was able to be

  19. Social and ethical aspects of the liquid-metal fast breeder reactor

    International Nuclear Information System (INIS)

    Development of liquid fast breeder reactors not only indirectly entails (through commitments of time and resources that foreclose other options), but also directly entails large-scale centralized electrification. The massive economic commitments of such a policy, wether or not it is a nuclear policy, demand and cause major social changes, bypass traditional market mechanisms, concentrate political and economic power, persistently distort political structures and social priorities, compromise professional ethics, are probably inimical to greater distributional equity within and among nations, enhance vulnerability and the paramilitarization of civilian life, introduce major economic and social risks, and reinforce current trends toward centrifugal politics. Deployment of fission technology produces further social and ethical problems, since attempts to reduce potential hazards from operating accidents, from escape of nuclear wastes, or from nuclear violence and coercion will have socio-political side-effects even if they succeed, not to mention the side-effects if they fail. These side-effects, many of which would be worse with fast than with thermal reactors, include repressiveness, abrogation of civil liberties, social rigidity and homogeneity, elitist technocracy, dirigiste autarchy, and suppression of ethical objections. The inability of modern political institutions to cope with the persistent hazards of toxic and explosive nuclear materials strains the competence and perceived legitimacy of those institutions as they try to compromise between individual liberties and public safety and to subject to democratic decision technically tinged policy questions that turn largely on unknown or unknowable information. There is no scientific basis for calculating the likelihood on the maximum long-term of nuclear mishaps, nor for guaranteeing that the effects will not exceed a particular level; it is only known that all precautions are, for fundamental reasons

  20. Choice of rotatable plug seals for prototype fast breeder reactor: Review of historical perspectives

    International Nuclear Information System (INIS)

    Highlights: • Choice and arrangement of elastomeric inflatable and backup seals as primary and secondary barriers. • With survey (mid-1930s onwards) of reactor, sealing, R&D and rubber technology. • Load, reliability, safety, life and economy of seals and reactors are key factors. • PFBR blends concepts and experience of MOX fuelled FBRs with original solutions. • R&D indicates inflatable seal advanced fluoroelastomer pivotal in unifying nuclear sealing. - Abstract: Choice and arrangement of elastomeric primary inflatable and secondary backup seals for the rotatable plugs (RPs) of 500 MW (e), sodium cooled, pool type, 2-loop, mixed oxide (MOX) fuelled Prototype Fast Breeder Reactor (PFBR) is depicted with review of various historical perspectives. Static and dynamic operation, largest diameters (PFBR: ∼6.4 m, ∼4.2 m), widest gaps and variations (5 ± 2 mm) and demanding operating requirements make RP openings on top shield (TS) the most difficult to seal which necessitated extensive development from 1950s to early 1990s. Liquid metal freeze seals with life equivalent to reactor prevailed as primary barrier (France, Japan, U.S.S.R.) during pre-1980s in spite of bulk, cost and complexity due to the abilities to meet zero leakage and resist core disruptive accident (CDA). Redefinition of CDA as beyond design basis accident, tolerable leakage and enhanced economisation drive during post-1980s established elastomeric inflatable seal as primary barrier excepting in U.S.S.R. (MOX fuel, freeze seal) and U.S.A. (metallic fuel). Choice of inflatable seal for PFBR RPs considers these perspectives, inherent advantages of elastomers and those of inflatable seals which maximise seal life. Choice of elastomeric backup seal as secondary barrier was governed by reliability and minimisation as well as distribution of load (temperature, radiation, mist) to maximise seal life. The compact sealing combination brings the hanging RPs at about the same elevation to reduce

  1. Choice of rotatable plug seals for prototype fast breeder reactor: Review of historical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.in; Raj, Baldev, E-mail: baldev.dr@gmail.com

    2015-09-15

    Highlights: • Choice and arrangement of elastomeric inflatable and backup seals as primary and secondary barriers. • With survey (mid-1930s onwards) of reactor, sealing, R&D and rubber technology. • Load, reliability, safety, life and economy of seals and reactors are key factors. • PFBR blends concepts and experience of MOX fuelled FBRs with original solutions. • R&D indicates inflatable seal advanced fluoroelastomer pivotal in unifying nuclear sealing. - Abstract: Choice and arrangement of elastomeric primary inflatable and secondary backup seals for the rotatable plugs (RPs) of 500 MW (e), sodium cooled, pool type, 2-loop, mixed oxide (MOX) fuelled Prototype Fast Breeder Reactor (PFBR) is depicted with review of various historical perspectives. Static and dynamic operation, largest diameters (PFBR: ∼6.4 m, ∼4.2 m), widest gaps and variations (5 ± 2 mm) and demanding operating requirements make RP openings on top shield (TS) the most difficult to seal which necessitated extensive development from 1950s to early 1990s. Liquid metal freeze seals with life equivalent to reactor prevailed as primary barrier (France, Japan, U.S.S.R.) during pre-1980s in spite of bulk, cost and complexity due to the abilities to meet zero leakage and resist core disruptive accident (CDA). Redefinition of CDA as beyond design basis accident, tolerable leakage and enhanced economisation drive during post-1980s established elastomeric inflatable seal as primary barrier excepting in U.S.S.R. (MOX fuel, freeze seal) and U.S.A. (metallic fuel). Choice of inflatable seal for PFBR RPs considers these perspectives, inherent advantages of elastomers and those of inflatable seals which maximise seal life. Choice of elastomeric backup seal as secondary barrier was governed by reliability and minimisation as well as distribution of load (temperature, radiation, mist) to maximise seal life. The compact sealing combination brings the hanging RPs at about the same elevation to reduce

  2. An investigation of nuclear physics characteristics of fast breeder reactors (LMFBR and GCFBR) with various fuel cycles

    International Nuclear Information System (INIS)

    The primary emphasis on the study has been placed on comparing neutronic characteristics, e.g. fissile inventory, breeding and safety, of fast breeder reactors with uranium-plutonium and thorium-uranium fuel cycles. The study was performed using identical calculation methods and consistent data basis. As the reference fast breeder reactor, two different types of 1,200 MWe PuO2-UO2 fuelled fast reactors were chosen, which are sodium-cooled fast breeder reactor (LMFBR) and helium-cooled fast breeder reactor (GCFBR). The following four fuel utilisation models were investigated for each of LMFBR and GCFBR. (1) PuO2-UO2 core, and UO2 axial and radial blankets, (2) PuO2-UO2 core, UO2 axial blanket and ThO2 radial blanket, (3) 233UO2-UO2 core, and ThO2 axial and radial blankets, (4) 233UO2-ThO2 core, and ThO2 axial and radial blankets. The main results obtained are summarised as follows: (1) Pu fuelled LMFBR provides sufficiently high breeding gain, but has unfavourable characteristics of considerably large positive sodium-void reactivity effect. (2) U-233 fuelled LMFBR provides the favourable characteristics of negative sodium-void reactivity effect, but provides either negative or very low breeding gain. (3) Pu fuelled GCFBR has the desirable characteristics from the viewpoints investigated in the study, i.e. relatively low fissile inventory, very large breeding gain, sufficiently negative Doppler reactivity effect and negative steam ingress reactivity effect. (4) Use of U-233 in the core of GCFBR is not preferable, because of substantially low breeding gain and terribly large positive steam ingress reactivity effect. (5) Use of ThO2 in the core of LMFBR and GCFBR instead of UO2 leads to increase of fissile inventory and decrease of breeding gain. (6) Use of ThO2 in the blanket of LMFBR and GCFBR instead of UO2 does not give any significant influence on the neutronic characteristics

  3. Analysis of passive shutdown capability for a loss of flow accident in a medium sized liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    The passive shutdown capability of a medium sized (500 MWe) liquid-metal fast breeder reactor with oxide, carbide and metal fuels has been analysed for a loss of flow accident using static and dynamic analysis methods. The carbide fuel is assumed to be He-bonded as well as Na-bonded. The dependence of the passive safety on the flow halving time constant of the loss of flow incident and the feedback components, like radial core expansion due to subassembly spacer pad heating and differential control rod expansion due to heating of the control rod suspension mechanism, is highlighted. (author)

  4. Internal welding of tube-to-tubesheet joints of steam generator for sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    In the steam generator for a sodium-cooled fast breeder reactor, there are many joints of tubes and tube sheets. For the internal welding of small diameter, thick walled tubes and tubesheets, welding method has been developed, which gives high quality welding with good reproducibility. In this method, the pressure of shield gas is controlled suitably, and consideration is given to the composition of the shield gas. As a means to ensure the quality of welds, the technique of internal radiographic test has also been established. Both the welding method and the test were able to be applied successfully to the steam generator of practical size. (Mori, K.)

  5. High-definition radiography of tube-to-tubesheet welds of steam generator of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    In the steam generator of the Prototype Fast Breeder Reactor (PFBR), steam is generated by the transfer of heat from secondary sodium to water. Due to the inherent dangers of sodium-water reaction, the integrity of weld joints separating sodium and water/steam is of paramount importance. This is particularly true and very important for the tube-to-tubesheet joints. This paper discusses the use of projective magnification technique by microfocal radiography for the quality evaluation and optimisation of the welding parameters of such small tube-to-tubesheet welds of the steam generator of PFBR. (author)

  6. Level monitoring system with pulsating sensor--application to online level monitoring of dashpots in a fast breeder reactor.

    Science.gov (United States)

    Malathi, N; Sahoo, P; Ananthanarayanan, R; Murali, N

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation. PMID:25725884

  7. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    Science.gov (United States)

    Malathi, N.; Sahoo, P.; Ananthanarayanan, R.; Murali, N.

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control & Safety Rod Drive Mechanism during reactor operation.

  8. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Malathi, N.; Sahoo, P., E-mail: sahoop@igcar.gov.in; Ananthanarayanan, R.; Murali, N. [Real Time Systems Division, Electronics, Instrumentation and Radiological Safety Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2015-02-15

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation.

  9. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    International Nuclear Information System (INIS)

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are <0.01 mm, ∼100 Hz/mm, ∼1 s, and ∼0.03 mm, respectively. The influence of temperature on liquid level is studied and the temperature compensation is provided in the instrument. The instrument qualified all recommended tests, such as environmental, electromagnetic interference and electromagnetic compatibility, and seismic tests prior to its deployment in nuclear reactor. With the evolution of this level measurement approach, it is possible to provide dashpot oil level sensors in fast breeder reactor for the first time for continuous measurement of oil level in dashpots of Control and Safety Rod Drive Mechanism during reactor operation

  10. Development of inflatable seals for the rotatable plugs of sodium cooled fast breeder reactors. A review. Pt. I. Key areas

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Nilay K. [Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu (India). Dept. of Atomic Energy (DAE); Raj, Baldev [P.S. Govindaswamy Naidu (PSG) Institutions, Coimbatore, Tamilnadu (India)

    2013-11-15

    Identification of development areas and their implementation for rotatable plug (RP) inflatable seals of Na cooled, 500 Mw (e) Prototype Fast Breeder Reactor (PFBR) and 40 MW (t) Fast Breeder Test Reactor (FBTR) are described, largely based on a late 1990s survey of cover gas seal development (1950s - early 1990s) which defined a set of shortlisted design options and developmental strategy to minimize effort, cost and time. Comparative studies of top shield sealing and evolving FBR designs suggest suitability of inflatable seal as primary barrier in RPs. International experience identified choice and qualification of seal elastomer under synergistic degrading environment of reactor as the prime element of development. The low pressure, non-reinforced, unbeaded, PFBR inflatable seal (made of 50/50 blend of Viton {sup registered} GBL 200S/600S) developed for 10 y life provides a unification scheme for nuclear elastomeric sealing based on 5 peroxide cured fluoroelastomer blend formulations, 1 finite element analysis approach, 1 Teflon-like plasma coating technique and 2 manufacturing processes promising significant gains in standardization, economy and safety. Uniqueness was ab initio development in the absence of established industry or ready-made supply. Part I addresses key areas of design shortlisting, strategy, development and unification with a backdrop of international evolution. (orig.)

  11. Fabrication of MOX Fuel elements for irradiation in Fast Breeder Test Reactor (FBTR)

    International Nuclear Information System (INIS)

    Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur is fabricating Uranium - Plutonium Mixed Oxide Fuel (MOX) for different types of reactors. Recently an experimental fuel subassembly of 37 pins has been fabricated for irradiation in Fast Breeder Test Reactor at Kalpakkam near Chennai. MOX fuel pins containing 45% PUO2 have also been also made for the hybrid core of FBTR. The experimental sub-assembly for irradiation testing in FBTR consists of 37 short length PFBR MOX fuel elements. The composition of the fuel was (0.71 U - 0.29 Pu) O2 with U233 O2 content of 53.5% of total UO 2. Uranium enriched with U233 was used to stimulate the heat flux of PFBR in FBTR neutron spectrum. MOX fuel pellets were made by powder metallurgy process consisting of pre-compaction, granulation, final compaction and sintering at high temperature. Initially U3233 O8 / U233 O3 powder was subjected to heat treatment. MOX powder were mixed, milled, pre-compacted and granulated. The final compaction was done using a multistation rotary press with suitable tooling for making annular MOX pellets. The technology for making annular pellets was developed for this purpose. The pellets were sintered at reducing atmosphere at 1650 deg. C for 4 hours to obtain acceptable quality pellets. Over sized pellets were centrelessly ground without using a liquid coolant. The acceptable pellets were degassed before encapsulation. MOX fuel stack, UO2 insulation pellets, plenum spring and spring support were loaded in bottom endplug welded clad tube. The end plug welding was carried out by TIG welding technique. The welded elements after inspection were wire wrapped. During the fabrication of pins for experimental subassembly, technology was developed and conditions were optimized for making annular pellets, TIG welding of D9 tubes with SS 316 end plugs and wire wrapping. Quality control procedures and process control procedures at different stages of fabrication were developed. The

  12. Economic performance of liquid-metal fast breeder reactor and gas-cooled fast reactor radial blankets

    International Nuclear Information System (INIS)

    The economic performance of the radial blanket of a liquid-metal fast breeder reactor (LMFBR) and a gas-cooled fast reactor (GCFR) has been studied based on the calculation of the net financial gain as well as the value of the levelized fuel cost. The necessary reactor physics calculations have been performed using the code CITATION, and the economic analysis has been carried out with the code ECOBLAN, which has been written for that purpose. The residence time of fuel in the blanket is the main variable of the economic analysis. Other parameters that affect the results and that have been considered are the value of plutonium, the price of heat, the effective cost of money, and the holdup time of the spent fuel before reprocessing. The results show that the radial blanket of both reactors is a producer of net positive income for a broad range of values of the parameters mentioned above. The position of the fuel in the blanket and the fuel management scheme applied affect the monetary gain. There is no significant difference between the economic performance of the blanket of an LMFBR and a GCFR

  13. Level-2 PSA for the prototype fast breeder reactor MONJU applied to the accident management review

    International Nuclear Information System (INIS)

    An accident management guideline (AMG) of the prototype fast breeder reactor MONJU has been presented to Nuclear and Industry Safety Agency (NISA) of METI by Japan Atomic Energy Agency (JAEA) with an evaluation result of an effectiveness of the AMG by employing Level-1 and Level-2 PSAs. Japan Nuclear Energy Safety Organization (JNES) evaluated the three events - PLOHS, LORL and ATWS events - and scrutinized the results of the Level-2 PSA carried out by JAEA from the view point of an accident management (AM) review. Regarding ATWS events, we have carried out a qualitative evaluation of the results of JAEA's evaluation and carried out a quantitative evaluation of the containment failure frequency (CFF) in relation to Protected-Loss-of-Heat-Sink (PLOHS) and Loss-of-Reactor-Level (LORL) events. Evaluation of the containment failure probability CFF has been conducted based on the results of the Level-1 PSA by employing the code system developed by JNES. We conducted a close examination of the procedure that JAEA followed to evaluate CFFs in PLOHS and LORL events. It was confirmed that JAEA's Level-2 PSA quantified the phenomenal event trees was expanded in the three processes - the plant response process, the core damage process and the containment vessel response process - based on various analytical and experimental evidence and otherwise followed much the same basic evaluation procedures employed by JNES. As for PLOHS and LORL, quantitative evaluation of CFF was conducted according to the following procedures: Development of an event flow diagram, Development of a phenomenal event tree, Quantification of the phenomenal event tree, Evaluation of containment failure frequencies, and Evaluation of the effectiveness of the AM measures. In the evaluation of the PLOHS and LORL events, the following analytical codes were used; Plant dynamic characteristic analytical code (NALAP-II), Nuclear characteristics analytical system (ARCADIAN-FBR/MVP), Nuclear dynamics analysis code

  14. Summary of estimated doses and risks resulting from routine radionuclide releases from fast breeder reactor fuel cycle facilities

    International Nuclear Information System (INIS)

    A project is underway at Oak Ridge National Laboratory to assess the human health and environment effects associated with operation of Liquid Metal Fast Breeder Reactor fuel cycle. In this first phase of the work, emphasis was focused on routine radionuclide releases from reactor and reprocessing facilities. For this study, sites for fifty 1-GW(e) capacity reactors and three reprocessing plants were selected to develop scenarios representative of US power requirements. For both the reactor and reprocessing facility siting schemes selected, relatively small impacts were calculated for locality-specific populations residing within 100 km. Also, the results of these analyses are being used in the identification of research priorities. 13 refs., 2 figs., 3 tabs

  15. Estimated doses and risks resulting from routine radionuclide releases from fast breeder reactor fuel cycle facilities: a summary

    International Nuclear Information System (INIS)

    A project has been carried out at Oak Ridge National Laboratory to assess the human health and environmental effects associated with the operation of a liquid-metal fast breeder reactor fuel cycle. In this first phase of the work, emphasis was on routine radionuclide releases from reactor and reprocessing facilities. Sites for 51 1-GW(e) capacity reactors and 3 reprocessing plants were selected to develop scenarios representative of US power requirements. For both the reactor and the reprocessing facility siting schemes selected, relatively small impacts were calculated for locality-specific populations residing within 100 km. Also the results of these analyses are being used in the identification of research priorities

  16. Status of the fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands

    International Nuclear Information System (INIS)

    In 1967 and 1968 the Federal Republic of Germany, the Kingdom of Belgium and the Kingdom of the Netherlands (''DeBeNe'') agreed to develop, in a joint program, breeder reactors to the point of commercial maturity. The following research organizations take part in this effort: Kernforschungszentrum Karlsruhe (KfK); INTERATOM, Bergisch Gladbach; ALKEM, Wolfgang near Hanau; SCK/CEN, Mol; Belgonucleaire, Brussels; ECN, Petten; TNO, Apeldoorn; NERATOOM, The Hague. The three German institutions mentioned above have been interrelated since 1977 by the Entwicklungsgemeinschaft (EG) Schneller Brueter. Between KfK, INTERATOM, and the French Commissariat a l'Energie Atomique contracts were concluded in 1977 about close cooperation in the Fast Breeder field, with association of the Belgian and Dutch partners. The results of research and development activities carried out by the DeBeNe partners in 1981 have been compiled in this report. The report begins with a short survey of the fast reactor plants, followed by an R and D summary. The bulk of the report gives more detailed information about those plants and about results reported by the Working Groups of the R and D Program Working Committee of the Fast Breeder Project. In an additional chapter a survey is given of international cooperation. (author)

  17. Outline of structural design guide for Class 1 components of prototype fast breeder reactor for elevated temperature service

    International Nuclear Information System (INIS)

    This paper presents an outline of the high temperature structural design guide which is to be used for the design of Class 1 components of the prototype fast breeder reactor Monju. The design guide for the Class 1 components of the prototype fast breeder reactor for elevated temperature service is established based on the knowledge and experience obtained from the results of bench mark and mock-up experiments, on reference to foreign codes and design rules such as ASME codes, etc. The basics of the high temperature structural design guide consists of the following 9 items. 1) Conformance with current domestic legal rules. 2) Reference to foreign high temperature structural design standards. 3) Consideration of failure modes to be prevented. 4) Application of the results obtained from the research and development activities. 5) Specification of design method. 6) Evaluation of environmental effects. 7) Consideration for the inherent design features of Monju. 8) Incorporation of the guide line of allowable stresses for seismic loads. 9) Incorporation of material strength tables. (author)

  18. Development of standards and investigation of safety examination items for advancement of safety regulation of fast breeder reactor

    International Nuclear Information System (INIS)

    The purposes of this study are to prepare the fuel technical standard and the structure and materials standard of fast breeder reactors (FBRs), and to develop the requirements in a reactor establishment permission. The objects of this study are mainly the Monju high performance core and a demonstration FBR. In JFY 2012, the following results were obtained. As for the fuel technical standard, the fuel technical standard adapting the examination of integrity of the FBR fuels was prepared based on the information and data obtained in this study. As for the structure and material standard, the investigation of the revised parts of the standard was carried out. And as for the examination of the safety requirements, safety evaluation items for the future FBR plant and the fission products to be considered in a reactor establishment permission were investigated and examined. (author)

  19. Manufacturing experience for mixed uranium-plutonium carbide fuels for fast breeder test reactor

    International Nuclear Information System (INIS)

    The plutonium rich mixed uranium-plutonium carbide pellets of two compositions, namely (U0.3Pu0.70)C (MK-I) and (U0.45Pu0.55)C (MK-II), are used as the fuel for the Indian Fast Breeder Test Reactor (FBTR) at Kalpakkam. These fuels were developed and are being fabricated and characterized at Bhabha Atomic Research Centre (BARC) and have performed very well with peak burn-up exceeding 155GWd/t. This achievement has been possible through a combination of stringent fuel specifications, quality control during fabrication and inputs obtained from the detailed post irradiation examination of fuel at different stages combined with the modeling of the behaviour of the fuel clad and wrapper materials. The high burn-up and short cooled fuel has also been reprocessed successfully in the reprocessing facility at IGCAR. The fissile material (Pu) recovered from reprocessing has now been used for fabrication of fresh mixed carbide fuel which will be loaded in FBTR in the next reload schedule. Closing the carbide fuel cycle is an important milestone in the fast reactor fuel cycle. Bhabha Atomic Research Centre, Trombay developed the fabrication flow sheet for MK-I and MK-II carbide fuels for FBTR. Since carbide fuel is pyrophoric and susceptible to hydrolysis, the fabrication has to be carried out in high purity nitrogen cover gas in leak tight glove boxes. Moreover, adequate shielding is provided to minimize the personnel exposure. The carbide fuel are made using powder metallurgy route with UO2, PuO2 and graphite as the staring material. The homogeneously mixed oxide and graphite powders are compacted into small tablets at low pressure in order to have handling strength and intimate contact between oxide and graphite particles, and to have sufficient porosities for the easy removal of carbon monoxide. The vacuum and temperature for carbothermic reduction are controlled in order to minimize plutonium losses by vaporization and also to have oxygen, nitrogen, carbon, higher carbide

  20. Post-irradiation examination of mixed (Pu, U)C fuels irradiated in the fast breeder reactor

    International Nuclear Information System (INIS)

    The Fast Breeder Test Reactor (FBTR) at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, India, using mixed (Pu,U)C fuel has completed eleven years of operation. One fuel subassembly which has seen more than 25,000 MWd/t burn-up has been discharged from this reactor taken up for post-irradiation examination. The PIE carried out on this fuel subassembly has established that the fuel has performed satisfactorily and it is capable of being taken to higher levels of burn-up and linear heat ratings. The facilities available for PIE of advanced fuels and the PIE work carried out are discussed in detail in this paper. (author)

  1. Level monitoring system with pulsating sensor—Application to online level monitoring of dashpots in a fast breeder reactor

    Science.gov (United States)

    Malathi, N.; Sahoo, P.; Ananthanarayanan, R.; Murali, N.

    2015-02-01

    An innovative continuous type liquid level monitoring system constructed by using a new class of sensor, viz., pulsating sensor, is presented. This device is of industrial grade and it is exclusively used for level monitoring of any non conducting liquid. This instrument of unique design is suitable for high resolution online monitoring of oil level in dashpots of a sodium-cooled fast breeder reactor. The sensing probe is of capacitance type robust probe consisting of a number of rectangular mirror polished stainless steel (SS-304) plates separated with uniform gaps. The performance of this novel instrument has been thoroughly investigated. The precision, sensitivity, response time, and the lowest detection limit in measurement using this device are Rod Drive Mechanism during reactor operation.

  2. Investigation of stability of multi free surfaces at transient operation for fast breeder demonstration reactors in Japan

    International Nuclear Information System (INIS)

    The Japanese demonstration fast breeder reactor (JDFBR) is composed of a reactor vessel, intermediate heat exchangers and pump vessels. Every component has a free surface of sodium. Transient operation of the pumps may cause variations of the sodium levels. For the stability of the multiple surfaces, a 1/15 scale model of the JDFBR with 4 loops with a 1000 MWe output power was made to experimentally investigate the stability of 9 free surfaces. In addition, we have developed a computer code to calculate it. The results of the experiments and the calculations agree well with each other. The computer code was successfully verified. The cover gas has an important role to suppress the vibrations of the free surfaces in transient conditions. The sodium level of the JDFBR is stable in all operating conditions, even beyond the design base conditions. (author)

  3. Theoretical and experimental studies of non-linear structural dynamics of fast breeder reactor fuel elements

    International Nuclear Information System (INIS)

    Descriptions are presented of theoretical and experimental studies of the deformation behaviour of fast-breeder fuel elements as a consequence of extreme impulsive stresses produced by an incident. The starting point for the studies is the assumption that local disturbances in a fuel element have resulted in a thermal interaction between fuel and sodium and in a corresponding increase in pressure. On the basis of the current state of knowledge, the possibility cannot be ruled out that this pressure build-up may lead to the bursting of the fuel-element wrapper, to the propagation of pressure in the core, and to coherent structural movements and deformations. A physical model is established for the calculation of the dynamic response of elastic-plastic beam systems, and the differential equations of p motion for the discrete equivalent system are derived with the aid of D'Alembert's principle. On this basis and with the aid of a semi-empirical pin-bundle model, an appropriate computer program allows a static and dynamic analysis to be obtained for a complete fuel element. In the experimental part of the study, a description is given of static and impulsive loading tests on 1:1 SNR-like fuel-element models. Making use of measured impact forces and of known material characteristics, it was possible to a large extent for the experiments to be reproduced by calculations. In agreement with existing experience from explosion experiments on 1:1 core models, the results (of relevance for fast-breeder safety and in particular the SNR-300) show that only local limited deformations occur and that the compact fuel-element and core structure constitutes an effective inherent barrier in the presence of extreme incident stresses. (author)

  4. The design and fabrication of an optical periscope for core viewing of fast breeder test reactor (FBTR)

    International Nuclear Information System (INIS)

    A FBTR (Fast Breeder Test Reactor) periscope has been designed and fabricated indigenously for viewing and photography/ video recording the objects in the reactor core. The periscope consists of a scanning prism mechanism, zoom lens objective, a system of relay lenses and an eyepiece sub-assembly for viewing the objects. The objective of the periscope is a zoom lens system for obtaining a continuously varying magnification from 2X to 5X. Zoom lens objective system has a variable focal length from 100 mm to 250 mm with an aperture varying from 10 mm to 25 mm respectively. This covers a semi- field angle of 3 deg for the objective lens of focal length of 250 mrn and 4 deg for the objective of focal length of l00 mm. Two prisms of 45 deg -90 deg -45 deg types are used for scanning the object space in vertical direction. One prism is fixed, whereas the prism facing the object can be rotated about the horizontal axis through an angle of 110 deg. The rotation of the entire periscope assembly along the vertical axis scans the object space on the horizontal plane. The combination of these two rotations is used to scan the field of interest. It may be noted here that it is absolutely essential to introduce a Pechan prism before each eyepiece. Pechan prism is used for the rotation of the image, which is produced due to the rotation of the scanning prisms. The measured value of the linear resolution of the instrument is 0.7 mm at an object distance of 2.5 meter from the zoom lens objective system. The periscope has two arm labeled I and II. The arm I is used for visual inspection, while the arm II is used for video recording/photography. The periscope will be used as an in-service instrument for Fast Breeder Test Reactor, IGCAR, Kalpakkam. (author)

  5. An advanced multidimensional method for structural and hydrodynamic analysis of liquid-metal fast breeder reactor piping systems

    International Nuclear Information System (INIS)

    An advanced multidimensional method for structural and hydrodynamic analysis of piping systems of liquid-metal fast breeder reactors under various accident loads is described. The method couples a two-dimensional finite difference hydrodynamic technique with a three-dimensional finite element structural dynamics program. In the analysis, an elbow hydrodynamic model has been developed to account for the effect of global elbow motion. Treatment is provided for calculating fluid motion in the vicinity of the isolated flow region, rigid obstacle, and baffle plates, which commonly occurs in the in-line components. Also, an implicit time-integration scheme has been developed for structural analysis under long-duration accident loads. Three sample problems are given, dealing with analyses of (a) multidimensional fluid-structure interaction, (b) hydrodynamics in the in-line components, and (c) seismic response of a pipe-elbow loop

  6. Carbon transport in a bimetallic sodium loop simulating the intermediate heat transport system of a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Carbon transport data from a bimetallic sodium loop simulating the intermediate heat transport system of a Liquid Metal Fast Breeder Reactor are discussed. The results of bulk carbon analyses after 15,000 hours' exposure indicate a pattern of carburization of Type 304 stainless steel foils which is independent of loop sodium temperature. A model based on carbon activity gradients accounting for this behavior is proposed. Data also indicate that carburization of Type 304 stainless steel is a diffusion-controlled process; however, decarburization of the ferritic 2 1/4 Cr-1Mo steel is not. It is proposed that the decarburization of the ferritic steel is controlled by the dissolution of carbides in the steel matrix. The differences in the sodium decarburization behavior of electroslag remelted and vacuum-arc remelted 2 1/4 Cr-1Mo steel are also highlighted

  7. Methods for assessment of defect tolerance of fast breeder reactor components at high temperature including short cracks

    International Nuclear Information System (INIS)

    This work investigates the application of fracture mechanics methods to study the tolerance of defects in high temperature stainless steel structures designed to such codes as RCC-MR. A state of the art description of high temperature defect assessment methods used in France and the UK is given together with their application on Fast Breeder Reactors (FBRs). It is concluded that the French and UK procedures should be combined to give one method covering crack initiation and growth. A further section reviews material investigations undertaken on the behaviour and evaluation of ''short'' fatigue crack growth data and assessment of design code margins based on the above ''short'' and ''long'' crack data. The results show that design guidance is conservative and crack initiation unlikely for FBR components designed within the present design code limits. (authors). 4 refs., 4 figs

  8. Evaluation of symbiotic energy system between gas-cooled fast breeder reactor (GCFR) and multi-purpose very high temperature reactor (VHTR), (4)

    International Nuclear Information System (INIS)

    The conceptual design study of 1000 MWe gas-cooled fast breeder reactor (GCFR), which is used in the GCFR-VHTR symbiotic energy system, has been performed. In this report, the transient response of the GCFR core to accident events has been analyzed and safety performance of the 1000 MWe GCFR has been evaluated considering the analyses. A depressurization accident caused by failure of a primary coolant system and a reactivity insertion accident due to withdrawal of a control rod have been analyzed using nuclear and thermo-hydraulic coupled program MR-X developed for kinetics analysis of gas-cooled fast breeder reactors. The maximum fuel and cladding temperatures are most important problem to be analysed during a trangient of a gas-cooled fast breeder reactors. The analyses show that reliable reactor shutdown and emergency cooling systems are most important to achieve successful cold shutdown well before leading to core damage and also that no severe failures of fuel pin and cladding occures by working above mentioned safety systems well during the accidents. (author)

  9. Investigations on the mechanical interaction between fuel and cladding (FCMI) in fast breeder reactor fuel pins

    International Nuclear Information System (INIS)

    The relation between FCMI and plastic cladding distensions of Fast-Breeder pins with oxide as well as carbide fuel was analyzed theoretically and experimentally. This resulted in the possibility of plastic cladding straining caused by differential swelling of fuel and cladding material under stationary power conditions or differential thermal expansion at power changes. At stationary operating conditions the FCMI in oxide pins is limited by an irradiation-induced creep deformation into inner void volume and thus the fuel swelling pressure will never cause clad distensions worth mentioning. However, the cladding of carbide pins can be strained under stationary conditions because of the comparatively low fuel plastification under irradiation. Plastic straining of oxide pins may follow from differential thermal expansion at power changes. The amount of strain is primarily dependent upon magnitude and rate of the power increase, the starting conditions, and the clad material strength. The parameter dependence of the strains and the limiting conditions for their avoidance are reported. The model calculations are carried out by means of a special computer code which was developed following closely the results of irradiation experiments. It was proved experimentally that a considerably high geometrical swelling occurs after a power reduction until the fuel has come into contact with the cladding again. (orig.)

  10. A knowledge based on-line diagnostic system for the fast breeder reactor KNKII

    International Nuclear Information System (INIS)

    In the nuclear research center at Karlsruhe, a diagnostic expert system is developed to supervise a fast breeder process (KNKII). The problem is to detect critical phases in the beginning state before fault propagation. The expert system itself is integrated in a computer network (realized by a local area network), where different computers are involved as special detection systems (for example acoustic noise, temperature noise, covergas monitoring and so on), which produce partial diagnoses, based on intelligent signal processing techniques like pattern recognition. Additional to the detection systems a process computer is integrated as well as a test computer, which simulates hypothetical and real fault data. On the logical top level the expert system manages the partial diagnoses of the detection systems with the operating data of the process computer and to produce a final diagnosis including the explanation part for operator support. The knowledge base is developed by typical Artificial Intelligence tools. Both fact based and rule based knowledge representations are stored in form of flavors and predications. The inference engine operates on a rule based approach. Specific detail knowledge, based on experience about any years, is available to influence the decision process by increasing or decreasing of the generated hypotheses. In a meta knowledge base, a rule master triggers the special domain experts and contributes the tasks to the specific rule complexes. Such a system management guarantees a problem solving strategy, which operates event triggered and situation specific in a local inference domain. (author). 3 refs, 6 figs, 2 tabs

  11. Gas-cooled fast breeder reactor. Quarterly progress report, February 1-April 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Information is presented concerning the reactor vessel; reactivity control mechanisms and instrumentation; reactor internals; primary coolant circuits;core auxiliary cooling system; reactor core; systems engineering; and reactor safety and reliability;

  12. An estimate of the radiological consequence of notional accidental releases of radioactivity from a fast breeder reactor

    International Nuclear Information System (INIS)

    In this report an assessment is made of the radiological consequences of notional accidental releases of activity from a fast breeder reactor under certain circumstances. It was prepared under contract to the Nuclear Installations Inspectorate (Health and Safety Executive) to assist them in making a preliminary safety assessment of fast reactors. The range of releases considered in the report was specified by the Inspectorate and comprises the vaporisation and release of varying fractions of the core of a 1300 MW(e) reactor. Two cases are evaluated depending on assumptions relating to the remainder of the core. No attempt is made to assign any probability to the occurrence of a given release; the report provides no more than a part of the information necessary for a safety assessment and is to be considered only within this limited context. The subject is dealt with under the following headings: introduction; parameters used in the assessment; atmospheric dispersion; pathways of exposure and dosimetric models; doses associated with the release of one tonne of fuel; biological effects; consequences of releases in which the nuclide composition differs from that in the fuel. (U.K.)

  13. The Code RCC-MR: Rules for design and construction of fast breeder liquid metal cooled reactors

    International Nuclear Information System (INIS)

    The Regles de Conception et de Construction des Materiels Mecaniques des ilots nucleaires RNR (RCC-MR) is a compendium of design and construction rules for liquid metal fast breeder components. It is not a regulation but rather a codification of the know-how gained in France from the construction of the Rapsodie, Phenix and Super Phenix reactors. In the first part of the paper, a general layout of the code is given. The authors focus upon some features which are mostly related to some relevant characteristics of large pool type liquid metal reactors (LMRs). It is shown that the utmost was done to refer mainly to the different kinds of damages and to clarify as far as possible the modes of failure likely to occur, at least for Class 1 and Class 2 components. In the second part of the paper, some salient LMR design problems as treated by the RCC-MR initial edition and recent addenda are presented. Among them are the determination of significant creep effects, appraisal of progressive deformation, fatigue and creep assessment, and the buckling analysis. An outline is given of the work in progress inside the committee of experts. It is shown that the code is open ended and has undergone changes since the first issue. The status together with the future of the code are discussed in the framework of the European sharing of R and D and possible erection of a common reactor. (author). 4 refs, 5 figs, 2 tabs

  14. Proposed method of the modeling and simulation of corrosion product behavior in the primary cooling system of fast breeder reactors

    International Nuclear Information System (INIS)

    Radioactive corrosion products (CP) are main cause of personal radiation exposure during maintenance without fuel failure in FBR plants. In order to establish the techniques of radiation dose estimation for worker in radiation-controlled area, Program SYstem for Corrosion Hazard Evaluation code 'PSYCHE' has been developed. The PSYCHE is based on the Solution-Precipitation model. The CP transfer calculation using the Solution-Precipitation model needs a fitting factor for the calculation of the precipitation of CP. This fitting factor must be determined based on the measured values in reactors that have operating experience. For this reason, the inability to make accurate predictions for reactor without measured values is a major issue. In this study, in addition to existing Solution-Precipitation model in PSYCHE, a transfer-model of CP species in particle form was applied to calculations of CP behavior in the primary cooling system of fast breeder reactor MONJU. Based on the calculated results, we estimated the contribution of CP deposition in the particle-form. It was suggested that the improved model including transfer-model of CP species in particle-form could be used for evaluation of CP transfer and radiation-source distribution in place of conventional Solution-Precipitation model with fitting factor in the PSYCHE. Moreover, it was predicted that CP particles would tend to be deposited in region with high-flow rate of coolant. (author)

  15. Assessment of a core meltdown in the gas-cooled fast breeder reactor with an upflow core

    International Nuclear Information System (INIS)

    This paper discusses the chronological sequence of events and supporting analysis of a postulated total loss of all coolant circulation in the gas-cooled fast breeder reactor (GCFR) with an upflow core. Redundant and diverse cooling systems are provided for decay heat removal, including pressurized natural circulation in the core auxiliary cooling system, which reduce the probability of this postulated event below the range of plant design bases. Nevertheless, this postulated accident has been considered so that the potential for consequence mitigation and containment margin could be investigated. Two distinct phases of the sequence are discussed: (1) the core response to a total loss of forced and natural coolant circulation and (2) the capability of the prestressed concrete reactor vessel (PCRV) to retain molten fuel debris. Specific design features of the GCFR which prevent recriticality and fuel vaporization due to fuel slumping are under investigation. Analytical work has been initiated to determine the potential for consequence mitigation in the PCRV and the containment. Several concepts for postaccident fuel containment have been identified and appear technically feasible

  16. Numerical analysis of grid plate melting after a severe accident in a Fast-Breeder Reactor (FBR)

    Indian Academy of Sciences (India)

    A Jasmin Sudha; K Velusamy

    2013-12-01

    Fast breeder reactors (FBRs) are provided with redundant and diverse plant protection systems with a very low failure probability (<10-6/reactor year), making core disruptive accident (CDA), a beyond design basis event (BDBE). Nevertheless, safety analysis is carried out even for such events with a view to mitigate their consequences by providing engineered safeguards like the in-vessel core catcher. During a CDA, a significant fraction of the hot molten fuel moves downwards and gets relocated to the lower plate of grid plate. The ability of this plate to resist or delay relocation of core melt further has been investigated by developing appropriate mathematical models and translating them into a computer code HEATRAN-1. The core melt is a time dependent volumetric heat source because of the radioactive decay of the fission products which it contains. The code solves the nonlinear heat conduction equation including phase change. The analysis reveals that if the bottom of grid plate is considered to be adiabatic, melt-through of grid plate (i.e., melting of the entire thickness of the plate) occurs between 800 s and 1000 s depending upon the initial conditions. Knowledge of this time estimate is essential for defining the initial thermal load on the core catcher plate. If heat transfer from the bottom of grid plate to the underlying sodium is taken into account, then melt-through does not take place, but the temperature of grid plate is high enough to cause creep failure.

  17. Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands - February 1985

    International Nuclear Information System (INIS)

    In 1967 and 1968, the Federal Republic of Germany, the Kingdom of Belgium and the Kingdom of the Netherlands (''DeBeNe'') agreed to develop breeder reactors in a joint program. The following research organizations have taken part in this effort: Kernforschungszentrum Karlsruhe (KfK); INTERATOM, Bergisch Gladbach; ALKEM, Wolfgang near Hanau; SCK/CEN, Mol; Belgonucleaire, Brussels; ECN, Petten; TNO, Apeldoorn; NERATOOM, The Hague. The three Germany institutions mentioned above have been associated since 1977 in the Entwicklungsgemeinschaft (EG) Schneller Brueter. KfK, INTERATOM, and the French Commissariat a l'Energie Atomique entered into contracts in 1977 about close cooperation in the fast breeder field, to which the Belgian and Dutch partners acceded. The results of activities carried out by the DeBeNe partners in 1984 have been compiled in this report. The report begins with a survey of the fast reactor plants followed by a R and D summary. In an additional chapter, a survey is given of international cooperation in 1984

  18. Report to the Congress: liquid metal fast breeder reactor program--past, present, and future, Energy Research and Development Administration

    International Nuclear Information System (INIS)

    The past, present, and future of the liquid metal fast breeder reactor (LMFBR) program, the Nation's highest priority energy program, are studied. ERDA anticipates that the operation of the first large commercial breeder will start in 1987, and that 186 commercial-size breeders will be in operation by the year 2000. The breeder program is made up of six major areas, each dealing with an important element of technology: reactor physics; fuels and materials; fuel recycle; safety; component development; plant experience; and facilities used in the LMFBR program. ERDA is implementing a new system for administering, managing, and controlling the breeder program that will provide increased program visibility and control. Federal funding for breeder development was $168 million in FY 1971, accounting for 40% of the total Federal R and D energy budget; in FY 1976 Federal funding for this program will be $474 million, only 26% of total Federal funding for energy research. Besides Federal funds, over half a billion dollars have been or will be invested by industry over the next 5 to 10 years to develop the breeder and to build a demonstration plant. Five other nations--the United Kingdom, France, Japan, West Germany, and the Soviet Union--have a high priority national energy program for developing the LMFBR. These foreign breeder programs could contribute important data and information to the U.S. program

  19. Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and The Netherlands - February 1984

    International Nuclear Information System (INIS)

    In 1967 and 1968 the Federal Republic of Germany, the Kingdom of Belgium and the Kingdom of the Netherlands (''DeBeNe'') agreed to develop breeder reactors in a joint program. The following research organizations have taken part in this effort: Kernforschungszentrum Karlsruhe (KfK); INTERATOM, Bergisch Gladbach; ALKEM, Wolgang near Hanau; SCK/CEN, Mol; Belgonucleaire, Brussels; ECN, Petten; TNO, Apeldoorn; NERATOOM, The Hague. The three German institutions mentioned above have been connected since 1977 in the Entwicklungsgemeinschaft (EG) Schneller Brueter. KfK, INTERATOM, and the French Commissariat a l'Energie Atomique entered into contracts in 1977 about close cooperation in the fast breeder field, to which the Belgian and Dutch partners acceded. The results of activities carried out by the DeBeBe partners in 1983 have been compiled in this report. The report begins with a survey of the fast reactor plants followed by an R and D summary. In an additional chapter, a survey is given of international cooperation in 1983

  20. ULOF transient behaviour of metal-fuelled fast breeder reactor cores as a function of core size and perturbation methods

    International Nuclear Information System (INIS)

    Highlights: • Metal fuel FBR safety can be assessed by its response to unprotected transients. • Safety during unprotected loss of flow accident (ULOF) is important for FBR cores. • ULOF analyses are carried out as a function of core size and perturbation method. • Smaller metal cores are found to be safer with respect to the ULOF accidents. • 1st order perturbation method gives conservative results in an ULOF accident. - Abstract: The safety behaviour of metal-fuelled fast breeder reactor cores may be assessed by their transient behaviour during anticipated unprotected transients. Out of such transients, unprotected loss of flow accident (ULOFA) has been recognized as an event important for determining reactor safety due to the positive sodium void coefficient of reactivity and the remote possibility of complete power failure as initiator. Reactor safety under ULOFA condition is particularly based on the inherent feedbacks, which is calculated using the removal worths and Doppler constants. As the removal worth is a strong function of reactor size, ULOF analyses are carried out in three different reactor size viz. 120 MWe, 500 MWe and 1000 MWe. The study reveals that smaller metal cores are safer than larger cores with respect to the ULOF accidents in the pre-disassembly phase. The present study also shows that the use of exact perturbation based reactivity worths introduce no significant changes in the safety behaviour of metal fuel reactor compared to that with the use of first order perturbation worths in pre-disassembly phase. The first order approximation is found to be valid as the expansion of materials in the core during ULOFA is small before the core enters the disassembly phase

  1. ULOF transient behaviour of metal-fuelled fast breeder reactor cores as a function of core size and perturbation methods

    Energy Technology Data Exchange (ETDEWEB)

    Riyas, A., E-mail: rias@igcar.gov.in [111B, CDO, Reactor Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Mohanakrishnan, P. [Adjunct Professor, Manipal University, Manipal (India)

    2014-10-15

    Highlights: • Metal fuel FBR safety can be assessed by its response to unprotected transients. • Safety during unprotected loss of flow accident (ULOF) is important for FBR cores. • ULOF analyses are carried out as a function of core size and perturbation method. • Smaller metal cores are found to be safer with respect to the ULOF accidents. • 1st order perturbation method gives conservative results in an ULOF accident. - Abstract: The safety behaviour of metal-fuelled fast breeder reactor cores may be assessed by their transient behaviour during anticipated unprotected transients. Out of such transients, unprotected loss of flow accident (ULOFA) has been recognized as an event important for determining reactor safety due to the positive sodium void coefficient of reactivity and the remote possibility of complete power failure as initiator. Reactor safety under ULOFA condition is particularly based on the inherent feedbacks, which is calculated using the removal worths and Doppler constants. As the removal worth is a strong function of reactor size, ULOF analyses are carried out in three different reactor size viz. 120 MWe, 500 MWe and 1000 MWe. The study reveals that smaller metal cores are safer than larger cores with respect to the ULOF accidents in the pre-disassembly phase. The present study also shows that the use of exact perturbation based reactivity worths introduce no significant changes in the safety behaviour of metal fuel reactor compared to that with the use of first order perturbation worths in pre-disassembly phase. The first order approximation is found to be valid as the expansion of materials in the core during ULOFA is small before the core enters the disassembly phase.

  2. Status of National Programmes on Fast Breeder Reactors. International Working Group on Fast Reactors, Twentieth Annual Meeting, Vienna, 24-27 March 1987

    International Nuclear Information System (INIS)

    The Agenda of the meeting was as follows: 1. Approval of the Agenda. 2. Approval of the minutes of the 19th meeting of the IWGFR. 3. Report of the Scientific Secretary regarding the WD activities of the Working Group. 4. Presentations and discussions on national programmes on fast breeder reactors. 5. Consideration of conferences on fast breeder reactors. a. ANS-ENS International Conference on Fast Breeder Systems Experience Gained and Path to Economical Power Generation, Richland, Washington, USA, 13-17 September 1987. b. International Conference on Liquid Metal Engineering and Technology, Avignon, France, 17-20 October 1988. c. Other meetings of interest to IWGFR members. 6. Consideration of major recommendations of some of the WD IWGFR Specialists' Meetings. 7. Consideration of arrangements for Specialists' Meetings in 1987. a. Specialists' Meeting on Fission and Corrosion Products Behaviour in Primary Circuits of LMFBRs, Karlsruhe, Fed. Rep. of Germany, May 1987. b. Specialists' Meeting on LMFBR Reactor Block Antiseismic Design and Verification, Bologna, Italy, October 1987. 8. Selection of topics for Specialists' Meetings to be held in 1988 and suggestions of the IWGFR on other Specialists' Meetings and their justifications. 9. Consideration of joint research activities: a. Coordinated Research Programme on a Comparative Assessment of Processing Techniques for Analysis of Sodium Boiling Noise Detection Data. b. Coordinated Research Programme on Intercomparison of LMFBR Core Mechanics Codes. c. New Topics of CRP. d. Other Activities. 10. Updating of ''LMFBR Plant Parameters''. 11. Informal discussion on ''Safety Criteria for Fast Reactors in IWGFR Countries''. 12. The date and place of the 21th Annual Meeting of the IWGFR

  3. Main regularities in variations of mechanical properties and microstructure of fuel element assembly can material (steel EhP-450) irradiated in BN-600 and BN-350 reactors

    International Nuclear Information System (INIS)

    The complex of mechanical properties of steel EhP-450 fuel assembly cans irradiated in fast reactors was under study. The steel is shown to possess a high resistance to swelling as well as acceptable values of mechanical properties under tension and impact bending. Based on the results obtained a conclusion is made that in a low-temperature zone of BN-600 reactor fuel assembly cans at 15% burnup the most essential change in mechanical properties should be expected in the vicinity of a lower reactor core boundary at damaging doses of 20-40 dpa

  4. Finite element analysis of inelastic thermal stress and damage estimation of Y-structure in liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    LMFBR(Liquid Metal Fast Breeder Reactor) vessel is operated under the high temperatures of 500-550 deg C. Thus, transient thermal loads were severe enough to cause inelastic deformation due to creep-fatigue and plasticity. For reduction of such inelastic deformations, Y-piece structure in the form of a thermal sleeve is used in LMFBR vessel under repeated start-up, service and shut-down conditions. Therefore, a systematic method for inelastic analysis is needed for design of the Y-piece structure subjected to such loading conditions. In the present investigation, finite element analyses of heat transfer and inelastic thermal stress were carried out for the Y-piece structure in LMFBR vessel under service conditions. For such analyses, ABAQUS program was employed based on the elasto-plastic and Chaboche viscoplastic constitutive equations. Based on numerical data obtained form the analyses, creep-fatigue damage estimation according to ASME code case N-47 was made and compared to each other. Finally, it was found out that the numerical prediction of damage level due to creep based on Chaboche unified viscoplastic constitutive equation was relatively better compared to elasto-plastic constitutive formulation. (author)

  5. Crystal chemistry of immobilization of Fast Breeder Reactor (FBR) simulated waste in Sodium Zirconium Phosphate (NZP) based ceramic matrix

    International Nuclear Information System (INIS)

    Full text: Sodium zirconium phosphate (hereafter NZP) is a potential material for immobilization of long lived heat generating radio nuclides. Possibility for the incorporation of simulated waste of fast breeder reactor origin in NZP was examined. It was found that most of the elements could be immobilized in this ceramic matrix without significant changes of the three-dimensional framework of the host material. All simulated waste forms synthesized by ceramic route at 1200 deg C crystallize in the rhombohedral system (space group R-3c). The crystal chemistry of 0-35% waste loaded NZP waste forms have been investigated using General Structure Analysis System (GSAS) programming of the step analysis powder diffraction data of the waste forms. Rietveld refinement of crystal data on the WOx loaded waste forms (NZPI-NZPVII) gives a satisfactory convergence of R-factors. The particle size along prominent reflecting planes calculated by Scherrer's formula varies between 68-141nm. The polyhedral distortions and effective valence calculations from bond strength data are also reported. Morphological examination by SEM reveals that the size of almost rectangular parallelepiped shaped grains varies between 0.2 and 5 μm. The EDX analysis provides analytical evidence of immobilization of effluent cations in the matrix

  6. Effect of geometric factors on performance of a sodium to air heat exchanger in a fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • A heat exchanger analysis (HE) before scale up reduces excess heat transfer area. • Representative Elementary Volume analysis of a HE speeds up the solution. • The error in air temperature rise prediction by numerical across HE is within 5%. • When both pitches are reduced, the maximum increase in heat flux is experienced. • The experience has resulted in better design of next level heat exchangers. - Abstract: Prototype fast breeder reactor (PFBR) has a safety grade decay heat removal system whose performance depends on the effective functioning of natural convection heat exchangers called sodium to air heat exchangers. The development of Representative Elementary Volume (REV) model for the sodium to air heat exchanger is necessary to envisage its design and to study the effect of various factors for continuous improvement in design. With a Representative Elementary Volume, the hydrodynamic and heat transfer characteristics of the heat exchanger was studied and the results agree well with experimental data. The effect of longitudinal pitch and transverse pitch on the heat exchanger performance has been studied and an improvement of 22% in heat transfer is predicted

  7. Status of the fast breeder reactor development in the Federal Republic of Germany, Belgium and The Netherlands, February 1981

    International Nuclear Information System (INIS)

    In 1967 and 1968 the Federal Republic of Germany, the Kingdom of Belgium and the Kingdom of the Netherlands (DeBeNe) agreed to develop, in a joint program, breeder reactors to the point of commercial maturity. The following research organizations take part in this effort: Kernforschungszentrum Karlsruhe (KfK); INTERATOM, Bergisch Gladbach; ALKEM, Wolfgang near Hanau; SCK/CEW, Mol; Belgonucleaire, Brussels; ECN, Petten; TWO, Apeldoorn; NERATOOM, The Hague. The results of research and development activities carried out by the DeBeNe partners in 1980 have been compiled in this report. The report begins with a review of the energy policy background, followed by an R and D summary. The bulk of the report following next is organized by the Working Groups of the R and D Program Working Committee of the Fast Breeder Project; additional chapters provide information about the operation of KNK II and the construction of SNR 300. In the annexes a survey is given of international cooperation

  8. Safety and core design of large liquid-metal cooled fast breeder reactors

    OpenAIRE

    Qvist, Staffan Alexander

    2013-01-01

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cyc...

  9. Experiences with fast breeder reactor education in laboratory and short course settings

    International Nuclear Information System (INIS)

    The breeder reactor industry throughout the world has grown impressively over the last two decades. Despite the uncertainties in some national programs, breeder reactor technology is well established on a global scale. Given the magnitude of this technological undertaking, there has been surprisingly little emphasis on general breeder reactor education - either at the university or laboratory level. Many universities assume the topic too specialized for including appropriate courses in their curriculum - thus leaving students entering the breeder reactor industry to learn almost exclusively from on-the-job experience. The evaluation of four course presentations utilizing visual aids is presented

  10. Safety and core design of large liquid-metal cooled fast breeder reactors

    Science.gov (United States)

    Qvist, Staffan Alexander

    In light of the scientific evidence for changes in the climate caused by greenhouse-gas emissions from human activities, the world is in ever more desperate need of new, inexhaustible, safe and clean primary energy sources. A viable solution to this problem is the widespread adoption of nuclear breeder reactor technology. Innovative breeder reactor concepts using liquid-metal coolants such as sodium or lead will be able to utilize the waste produced by the current light water reactor fuel cycle to power the entire world for several centuries to come. Breed & burn (B&B) type fast reactor cores can unlock the energy potential of readily available fertile material such as depleted uranium without the need for chemical reprocessing. Using B&B technology, nuclear waste generation, uranium mining needs and proliferation concerns can be greatly reduced, and after a transitional period, enrichment facilities may no longer be needed. In this dissertation, new passively operating safety systems for fast reactors cores are presented. New analysis and optimization methods for B&B core design have been developed, along with a comprehensive computer code that couples neutronics, thermal-hydraulics and structural mechanics and enables a completely automated and optimized fast reactor core design process. In addition, an experiment that expands the knowledge-base of corrosion issues of lead-based coolants in nuclear reactors was designed and built. The motivation behind the work presented in this thesis is to help facilitate the widespread adoption of safe and efficient fast reactor technology.

  11. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    International Nuclear Information System (INIS)

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases

  12. Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape

    International Nuclear Information System (INIS)

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed

  13. Preliminary physics design of accelerator-driven thorium cycle fast breeder reactor

    International Nuclear Information System (INIS)

    A preliminary reactor physics design of a lead cooled fast accelerator-driven system has been explored as a thorium-uranium cycle breeder reactor. The sub-critical reactor core operates at an effective neutron multiplication factor of 0.95 and when driven by 1 GeV proton beams of intensity 30 mA, produces about ∼ 900 MWth power. Variation of total thermal power, 233U inventory, Keff, radial and axial power distribution through the operating cycle as well as breeding ratio and doubling time are presented. (author)

  14. Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and The Netherlands

    International Nuclear Information System (INIS)

    The results of activities carried out by the DeBeNe partners in 1989 have been compiled in this report. The report begins with a survey of fast reactor plants, which is followed by an R and D summary. In an additional chapter, a survey is presented of international cooperation in 1989. Effective January 1990, KfK activities in the area of fast reactors have been incorporated in the Nuclear Safety Research Project. (author)

  15. Level-2 PSA for the Prototype Fast Breeder Reactor MONJU Applied to the Accident Management Review

    International Nuclear Information System (INIS)

    JNES independently evaluated the three events it selected - PLOHS, LORL and ATWS events - and reviewed the results of the Level 2 PSA carried out by JAEA. Regarding ATWS events, the organization carried out a qualitative evaluation of the results of JAEA's evaluation and carried out a quantitative evaluation of the containment failure frequency (CFF) in relation to PLOHS and LORL events. In JNES's independent evaluation of PLOHS and LORL events, accident scenarios in the three phases - the plant response phase, the core damage phase and the containment vessel response phase - were analyzed. The phenomenal event trees were quantified by applying the information about phenomena specific to fast reactors, including plant thermal-hydraulic analysis at the time of core damage, boundary structure analysis, analysis of the characteristics of the disrupted core, the results of sodium-concrete reaction tests, and the results of hydrogen diffusion induced combustion tests, to the PRDs. As the result, the total CFF before the preparation of the AM measures was rated at 9.2E-9/reactor year (CDF at 2.7E-7/reactor year), and it has been confirmed that these numerical values are well below the power reactor performance goal indicator values (CDF: 10-4/year or so; CFF: 10-5/year or so) even before the preparation of the AM measures. (author)

  16. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.R.

    1985-10-01

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.

  17. Theory, design, and operation of liquid metal fast breeder reactors, including operational health physics

    International Nuclear Information System (INIS)

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different from the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences

  18. The role of fast breeder reactors in the future energy economy

    International Nuclear Information System (INIS)

    In this contribution, the reactor design and performance characteristics of a wide range of design concepts are documented. Since the technical feasibility of various design options and associated breeding performance depend strongly on the status of fuels development, primary focus is given to review of oxide, carbide and metal fuels in terms of current technology status, irradiation performance, associated key issues and main R and D requirements to resolve the issues

  19. Enhanced passive safety features against ATWS of fast breeder reactors with capabilities of MA incineration

    Energy Technology Data Exchange (ETDEWEB)

    Ninokata, Hisashi; Sawada, Tetsuo; Sato, Manabu [Tokyo Institute of Technology (Japan)] [and others

    1997-12-01

    The paper gives an outline of the general and simple reactivity correlation method to identify the region of the major design parameters that assures power stabilization and passive shutdown of sodium-cooled large fast reactors under ATWS conditions. Based on the model developed, general design guidelines are shown that enhance passive capabilities being aimed at preventing sodium boiling and fuel failures in the events of ULOF and UTOP. Discussions extend to the influences of minor actinides loading in the core onto the passive safety features. 6 refs., 1 fig., 1 tab.

  20. Computational fluid dynamic studies on gas entrainment in fast breeder reactors

    International Nuclear Information System (INIS)

    Primary sodium pools in fast reactors are covered with argon. There is strong potential for argon gas entrainment into sodium and associated reactivity perturbations if the free surface velocity is large. Basic CFD studies have been carried out on ideal models and the threshold value of free surface sodium velocity that avoids gas entrainment is arrived at employing the VOF method. Subsequently, 3-D CFD studies have been carried out for PFBR hot pool and the free surface velocity is estimated to be 1.14 m/s. To reduce this value below the threshold limit, a horizontal baffle device has been identified (author)

  1. Status of fast breeder reactor development in the United States of America - March 1986

    International Nuclear Information System (INIS)

    In a continuing situation of minimal electrical energy construction requirements to the turn of the decade, the U.S. LMR program has been modified to a modest level of technology development. Program focus is on innovative means to improve economics, provide inherent safety and environmental advantages and to stimulate involvement of utilities in ultimate demonstration ventures. The restructured technology program of reactor systems, core systems and fuels and materials continues at levels appropriate to provide the nucleus, and along with international collaboration, preserves the technology for utilization early in the next decade and beyond

  2. Development of a transfer model for design of sodium purification systems for Fast Breeder Reactors

    International Nuclear Information System (INIS)

    Operating a Sodium Fast Reactor (SFR) in reliable and safe conditions requires to master the quality of the sodium fluid coolant, regarding oxygen and hydrogen impurities contents. A cold trap is a purification unit in SFR, designed for maintaining oxygen and hydrogen contents within acceptable limits. The purification of these impurities is based on crystallization of sodium hydride on cold walls and sodium oxide or hydride on wire mesh packing. Indeed, as oxygen and hydrogen solubilities are nearly nil at temperatures close to the sodium fusion point, i.e. 97.8 C, on line sodium purification can be performed by crystallization of sodium oxide and hydride from liquid sodium flows. However, the management of cold trap performances is necessary to prevent from unforeseen maintenance operations, which could induce shut-down of the reactor. It is thus essential to understand how a cold trap fills up with impurities crystallization in order to optimize the design of this system and to overcome any problems during nominal operation. The objective is to develop a design and simulation tool for cold traps able to predict the location and the amount of the impurities deposited. Crystallization model involve phenomena coupling in a porous medium with hydrodynamics, heat and mass transfer, distinguishing nucleation and growth phases for each impurity. It enables to understand how thermo hydraulic conditions and growing impurities interact on each other. This analysis will adapt operating and management conditions in order to optimize purification requirements. (author)

  3. Significance of coast down time on safety and availability of a pool type fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • Plant dynamics studies for quantifying the benefits of flow coast down time. • Establishment of minimum flow coast down time required for safety. • Assessment of influence of flow coast down on enhancing plant availability. • Synthesis of thermo mechanical benefits of flow coast down time on component design. - Abstract: Plant dynamic investigation towards establishing the influence of flow coast down time of primary and secondary sodium systems on safety and availability of plant has been carried out based on one dimensional analysis. From safety considerations, a minimum flow coast down time for primary sodium circuit is essential to be provided to limit the consequences of loss of flow event within allowable limits. Apart from safety benefits, large primary coast down time also improves plant availability by the elimination of reactor SCRAM during short term power failure events. Threshold values of SCRAM parameters also need optimization. By suitably selecting the threshold values for SCRAM parameters, significant reduction in the inertia of pumping systems can be derived to obtain desirable results on plant availability. With the optimization of threshold values and primary flow coast down behaviour equivalent to a halving time of 8 s, there is a possibility to eliminate reactor SCRAM during short term power failure events extending up to 0.75 s duration. Benefits of secondary flow halving on reducing transient thermal loading on components have also been investigated and mixed effects have been observed

  4. Influence of design features on decommissioning of a large fast breeder reactor

    International Nuclear Information System (INIS)

    The evolution of FBR design in Europe shows that pool-type design will become the reference design for future FBR and the projected European Fast Reactor (EFR) is based on this concept. The identification of design features shows that the main contributors of the sodium and structures activity are the Co60 for gamma radiation source and low decay, Ni63, Nb94 and Ni59 for long time decay. So, the technical benefits of a Co content reduction are interesting for the high activated structures and for diagrid thimbles coating and we made proposals to lower Co content in steels or alloys and to substitute coatings. We identify measures which must facilitate both the sodium draining and the reactor block and internal cleaning: all which improve the gravity draining and the downing of the sodium flow make easier the penetration of cleaning products. The features, connected with the dismantling of the very activated internal structures, of the roof and of the lay-out, are mentioned. (author)

  5. Concept and Development Status of Fast Breeder Reactor Fuels in the FaCT Project

    International Nuclear Information System (INIS)

    A conceptual design study and related R&D on the JSFR (Japan sodium cooled fast reactor) with mixed oxide (MOX) fuels, advanced aqueous reprocessing and simplified pelletizing fuel fabrication as a promising concept have been implemented in the fast reactor cycle technology development (FaCT) project. The fuel concept is being established in the FaCT project to improve economic potential in the fuel cycle and to enhance safety characteristics. Ferritic core materials and large diameter fuel pins with annular pellets will be adopted in the high burnup fuel. An inner duct will be equipped in the fuel subassembly to mitigate the core disruptive event. To actualize the concept, key technologies to be developed are oxide dispersion strengthened (ODS) ferritic steel with high temperature mechanical strength for fuel pin claddings and the simplified pelletizing fuel fabrication system, including a microwave de-nitration of plutonium enrichment adjusted solution and die wall lubrication. In the present status of the project, many basic technical findings of ODS ferritic steel have been obtained in the field of powder metallurgy, mechanical properties and irradiation characteristics. The application potential of the simplified pelletizing method has been confirmed. Furthermore, the properties of MOX fuel bearing minor actinides (MAs), including melting point and thermal conductivity, have been systematically measured to develop the MA-bearing MOX fuel with the aim of reducing the amount and the toxicity of radioactive wastes. The design technology of the MA-bearing MOX fuel with annular pellets has been also studied. (author)

  6. Uncertainty evaluation of reliability of safety grade decay heat removal system of Indian prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • Uncertainty analysis of failure frequency of SGDHRS of a medium sized fast reactor is studied. • Lognormal distribution of failure rate of components is taken with error factor of 3. • The error factor in the distribution of failure frequency in most cases is 3. • The relative importance of the safety components is brought out. - Abstract: Deterministic and probabilistic safety assessment of nuclear power reactor technology is very important in assuring that the design is robust and safety systems perform as per requirement. The parameters required as input data for such analysis have uncertainties associated with them. Their impact is to be assessed on the results obtained for such analyses and it affects the overall decision making process. Safety Grade Decay Heat Removal System (SGDHRS) is one of the safety systems in fast breeder reactors and itremoves decay heat after reactor shutdown. It is a critical safety system; hence failure frequency for SGDHR is targeted to be less than 1.0 × 10−7 per reactor year. By bringing diversity in some of the components of SGDHRS, such as sodium-to-sodium decay heat exchanger (DHX), sodium to air heat exchanger (AHX) and valves, one can achieve the targeted low failure frequency of SGDHRS. We perform uncertainty analysis of the reliability of such SGDHRS here. Uncertainty in failure rate (of components of SGDHRS) is assumed to follow the log-normal distribution with error factor of three. Monte Carlo method of sampling is used in MATLAB environment. Results are obtained in terms of mean, median and standard deviation values of failure frequency. Percentile and confidence interval analysis of mean values are also obtained. These provide 95 and 98 percentile and confidence interval values of 98%, 99% and 99.8%. It is found that error factor of failure frequency of SGDHRS is found to be less than 3 in all the cases except the one in which DHX, AHX and Valves are designed with diversity in design. It is to

  7. Development of magnetic flux leakage technique for examination of steam generator tubes of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • For non-destructive detection of small localized defects in SG tubes of PFBR, tandem GMR array sensors based MFL technique developed. • 3D-finite element modeling performed for optimization of magnetizing current and spacing between the magnetizing coils. • The optimized magnetizing structure with ferrite core and guides detected 0.54 mm deep OD circumferential notch, 0.56 mm deep flat bottom hole, and 1.08 mm diameter hole in the tube with a SNR better than 6 dB. • Images of notches have been obtained using the tandem GMR array sensor. • The use of MFL and remote field eddy current techniques is expected to ensure comprehensive inspection of SG tubes of PFBR. - Abstract: For non-destructive examination of small diameter (outer diameter, OD 17.2 mm) and thick walled (wall thickness, 2.3 mm) ferromagnetic Modified 9Cr–1Mo steel steam generator (SG) tubes of Prototype Fast Breeder Reactor (PFBR), this paper proposes magnetic flux leakage (MFL) technique. Three dimensional finite element (3D-FE) modeling has been performed to optimize the magnetizing unit and inter-coil spacing of bobbin coils used for axial magnetization of the tube. The performance of the technique has been evaluated experimentally by measuring the axial (Ba) component of the leakage fields from localized machined defects in SG tubes. The MFL technique has shown capability to detect and image tube outside defects with a signal-to-noise ratio (SNR) better than 6 dB. Study reveals that Inconel support plates surrounding the SG tubes do not influence the MFL signals. As the MFL technique can detect localized defects in the presence of support plates as well as sodium and the remote field eddy current technique is sensitive to distributed wall thinning, their combined use will ensure comprehensive inspection of the SG tubes

  8. Materials accounting in a fast-breeder-reactor fuels-reprocessing facility: optimal allocation of measurement uncertainties

    International Nuclear Information System (INIS)

    This report describes the conceptual design of a materials accounting system for the feed preparation and chemical separations processes of a fast breeder reactor spent-fuel reprocessing facility. For the proposed accounting system, optimization techniques are used to calculate instrument measurement uncertainties that meet four different accounting performance goals while minimizing the total development cost of instrument systems. We identify instruments that require development to meet performance goals and measurement uncertainty components that dominate the materials balance variance. Materials accounting in the feed preparation process is complicated by large in-process inventories and spent-fuel assembly inputs that are difficult to measure. To meet 8 kg of plutonium abrupt and 40 kg of plutonium protracted loss-detection goals, materials accounting in the chemical separations process requires: process tank volume and concentration measurements having a precision less than or equal to 1%; accountability and plutonium sample tank volume measurements having a precision less than or equal to 0.3%, a shortterm correlated error less than or equal to 0.04%, and a long-term correlated error less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having a precision less than or equal to 0.4%, a short-term correlated error less than or equal to 0.1%, and a long-term correlated error less than or equal to 0.05%. The effects of process design on materials accounting are identified. Major areas of concern include the voloxidizer, the continuous dissolver, and the accountability tank

  9. Utilization of OR method toward realization of better fast breeder reactor cycle

    International Nuclear Information System (INIS)

    Fast Reactor Cycle Technology Development (FaCT) Project was now started aiming at commercialization of new nuclear power plants system. In parallel with development of component technology and technology demonstration by test, development of comprehensive evaluation method of the FBR cycle system is under way and scenario study, discounted cash flow (DCF) method, analytic hierarchy process (AHP), real option, supply chain management (SCM) and others are used. Since commercialized FBR cycle would request long-term and large-scale development contributed by so many participants, modeling of nuclear system and knowledge management are beneficial even for development of evaluation method and further utilization of OR technology is highly expected. Comprehensive evaluation methods now utilized or developing were overlooked from the standpoint of OR, 'Science of Better'. (T. Tanaka)

  10. Ultrasonic inspection of liquid-metal fast breeder reactor steam generator duplex tubing

    International Nuclear Information System (INIS)

    Two ultrasonic inspections of the Experimental Breeder Reactor II steam generator duplex tubing have been completed. Inspections performed on one evaporator in 1976 provided baseline data, and a subsequent inspection in 1978 revealed no change in tube condition. With the completion of the 1978 inspection, all available tubes in one evaporator have been inspected. The steam generator contains duplex tubes fabricated from 2 1/4 Cr-1 Mo ferritic steel. Access to the bore (water) side of the tubes was gained through the steam outlet piping. The inspection included a complete volumertic (100% of the tube material) examination, measurement of wall thickness, and evaluation of the condition of the braze bonding the two walls of the tube together. The test equipment was routinely calibrated against a standard containing artificial flaws. Artificial flaws as small as 1.6 mm long x 0.25 mm deep were readily detected

  11. Creys-Melville: A case study on the acceptability of fast breeder reactors

    International Nuclear Information System (INIS)

    The Operator of CREYS-MALVILLE, being convinced that in a democratic country like France, Nuclear Energy in general and fast reactors in particular may only be developed in agreement with public opinion, will continue to develop its external Communication - without passion but with conviction. This paper has recalled the interests at stake associated with the resumption of power at CREYS-MALVILLE, the media and political contexts which have followed the construction and operation of this Plant, the administrative resources, and the communication equipment which have been developed over these years. All these means would be wasted and all communication efforts useless if they did not rely on the perseverance and competence of the 650 technicians and engineers guarantors of the Safety at CREYS-MALVILLE, for whom the coming Public Enquiry will be yet another occasion to explain, to France and its neighbours, the necessity to restart SUPERPHENIX

  12. Power excursion models applied to the study of secundary excursion in sodium cooled fast breeder reactors

    International Nuclear Information System (INIS)

    An evaluation of the energy that a secondary power excursion could release has been sought throughout the present work. A parametric study was therefore made by means of a power excursion code in fast reactors. The work submitted is therefore made up of the three following parts: Part 1. - (a), the secondary excursion is situated in the generally envisaged programmes and (b) the role of the principal parameters is studied in the calculation effected by the nuclear excursion code that was available at the start of the study. Part 2. - the results obtained for the power excursion calculations made are presented, Part 3. - the insufficient modelling of the reactivity present during the secondary power excursion is deduced from the parametric study just made. A definition is made of the characteristics of a model adapted to the calculation of this hypothetical accident and a new model as worked out within the scope of this work is submitted

  13. Studies on gas entrainment due to vortex activation at free surface of fast breeder reactor

    International Nuclear Information System (INIS)

    Fast Reactor systems consist of many cylindrical components which are partially submerged in liquid sodium and partially exposed to argon gas, maintained above the sodium pool. Horizontal sodium flows past these components leads to the formation of von Kármán vortices. These vortices form dimples of argon gas that leads to entrainment. The present work is focused on to identify the criteria for onset of gas entrainment. In order to understand this, interactions between free surface waves and underlying viscous wakes are investigated for flow past a surface piercing cylinder incorporating volume of fluid (VOF) method. The results show that the free surface inhibits the vortex generation near the interface for all range of Froude numbers (FrD). For various inflow velocities, the re-submergence angles are measured. It is found that, for FrD ≤ 0.5, and re-submergence angle < 12°, there is no risk of entrainment due to vortex activation. (author)

  14. Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands

    International Nuclear Information System (INIS)

    The results of activities carried out by the DeBeNe partners in 1988 have been compiled in this report. The 1989 KNK II experimental program will focus on the management of fuel element failures. This includes in particular post-irradiation examinations in the hot cells and the THIBO experiments (thermally induced fuel rod oscillation). For this program, nine permits were received in 1988 for the installation and operation of test systems, including a new facility for localizing failed fuel elements. Increasing the purity of sodium is the purpose of a cesium trap recently installed, and of modifications to an oxygen probe operated for test purposes. The SNR 300 project is being continued within the framework of the ''holding phase''. The objective of this phase of operation is to keep the reactor plant in the loading and operational states and execute planning within the licensing procedure necessary to obtain the next partial permit. R and D work was concentrated on fuel and materials development, safety, physics, and components development. Materials for fuel, blanket, and absorber elements were studied and further developed with a view to very high burnup. In the sector of physics, the engineering design and the nuclear design of large breeders call for a reduction of the margins of uncertainty in reliable predictions of the major reactor parameters. The development of the joint European cell code, ECCO (European Cell Code) has progressed far enough in the meantime to allow the criticality parameter, keff, of a cell arrangement to be calculated with ECCO for the first time at UKAEA Winfrith, the central agency for carrying out the development work. One of the major aspects covered in safety studies is the complex of fuel rod failures, loss of coolant flow, and power transients as possible causes of accidents. Studies conducted into the management of credible accident consequences were concentrated, among other topics, on the behaviour of aerosols, sodium fires

  15. Thorium utilization in fast breeder reactors and in cross-progeny fuel cycles

    International Nuclear Information System (INIS)

    Thorium fuel cycles have to be closed since the benefit is obtained only when the 233U is used. India is the only country in the world, which has extensive facilities for reprocessing of irradiated Uranium and Thorium-based fuels, thermal reactors moderated by light and heavy water and 500 MWe LMFBRs. The cross-progeny fuel cycles would be a natural vision to pursue for India. This paper was written in 1982 and presented at the U.S. Japan Seminar on Thorium fuel cycle held in October 1982. The calculations performed and the results quoted in this paper are of that vintage. However, the cross section data for Th and other materials has not changed significantly since that time. The same holds for the methodologies in computer codes, diffusion theory and the other methodologies employed in this paper, versus those in computer codes currently in use. This paper is being submitted to remind the community that with the introduction of GEN IV LMFBRs, other possibilities for thorium utilization could spring forth and should be studied further and in more depth

  16. Fast breeder reactors in relation to energy requirements. Chapter 2.2

    International Nuclear Information System (INIS)

    It is shown that the world is going to need substantial quantities of energy from new sources early in the next century. Although it may be possible to get a significant amount from solar and geothermal sources, it is far too early to predict how large a contribution they will be able to make. Nuclear power can make a large contribution and it would be wrong to do anything to close this option at this stage. Although there is considerable uncertainty about the precise quantity of commercially exploitable uranium in the world, it is almost certain that breeder reactors will be required. The time-scale is such that utilities throughout the world will need to be able to order breeders in quantity with complete confidence for operation from the mid 1990s onwards. The engineering, safety and logistic problems that are considered in the other chapters of this book are such that, if we are to meet this time-scale, we must press ahead with the utmost urgency. (author)

  17. Status of fast breeder reactor development in the United States of America - April 1984

    International Nuclear Information System (INIS)

    The Breeder Technology program continues to produce viable information on fuel performance, nuclear systems technology, and power conversion technology. The unique testing capabilities design into the FFTF have resulted in well-validated materials and fuels irradiation information that has confirmed and extended previous data bases. Current directions for the research and development program are to improve the technology for power conversion systems, components, instrumentation, and materials technology to the point where cost reduction and reliability potentials are realized. Operation of the breeder test facility complex at the Hanford Engineering Development Laboratory (HEDL), the Energy Technology Engineering Center (ETEC), and the Argonne National Laboratory (ANL) continues to provide the experience base and test capability for the breeder R and D effort. International cooperation will be even more important in the future than in the past for several reasons. Significant new investments still have to be made in breeder R and D to improve designs, achieve economic competitiveness and to develop practical breeder fuel cycle capabilities. Progress can be accelerated, redundancies avoided, and economics achieved if nations coordinate their programs, and where possible, divide up the work. In addition, there is clear mutual benefit in encouraging the countries involved in breeder development to harmonize standards and regulations related to safety. It is also important that the advanced nations work together closely in assuring that adequate international safeguards, export controls, and national physical security measures keep pace with breeder reactor and fuel cycle developments

  18. Development of a mass transfer model for Sodium purification system in a Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Operating a Sodium Fast Reactor (SFR) in reliable and safe conditions requires to master the quality of the sodium fluid coolant, regarding oxygen and hydrogen impurities contents. A cold trap is a purification unit in SFR, designed for maintaining oxygen and hydrogen contents within acceptable limits. The purification of these impurities is based on crystallization of sodium hydride on cold walls and sodium oxide or hydride on wire mesh packing. Indeed, as oxygen and hydrogen solubilities are nearly nil at temperatures close to the sodium fusion point, i.e. 97.8°C, on line sodium purification can be performed by crystallization of sodium oxide and hydride from liquid sodium flows. However, the management of cold trap performances is necessary to prevent from unforeseen maintenance operations. It is thus essential to understand how a cold trap fills up with impurities crystallization in order to optimize the design of this system and to overcome any problems during nominal operation. This paper deals with the mathematical modeling of crystallization process in a cold trap and predicts the location and the amount of the impurities deposit, on cold walls for sodium hydride and on wire mesh packing for sodium oxide. A modeling of the front propagation by diffuse deposit interface method was developed and parameters sensitivity was evaluated. These first results will enable to understand the consequences of the impurities deposited on the hydrodynamics and heat transfer in a cold trap. (author)

  19. Advanced fuel for fast breeder reactors: Fabrication and properties and their optimization

    International Nuclear Information System (INIS)

    The present design for FBR fuel rods includes usually MOX fuel pellets cladded into stainless steel tubes, together with UO2 axial blanket and stainless steel hexagonal wrappers. Mixed carbide, nitride and metallic fuels have been tested as alternative fuels in test reactors. Among others, the objectives to develop these alternative fuels are to gain a high breeding ratio, short doubling time and high linear ratings. Fuel rod and assembly designers are now concentrating on finding the combination of optimized fuel, cladding and wrapper materials which could result in improvement of fuel operational reliability under high burnups and load-follow mode of operation. The purpose of the meeting was to review the experience of advanced FBR fuel fabrication technology, its properties before, under and after irradiation, peculiarities of the back-end of the nuclear fuel cycle, and to outline future trends. As a result of the panel discussion, the recommendations on future Agency activities in the area of advanced FBR fuels were developed. A separate abstract was prepared for each of the 10 presentations of this meeting. Refs, figs and tabs

  20. Status of national programmes on fast breeder reactors. Twenty-fifth annual meeting of the International Working Group on Fast Reactors. Summary report. Working material

    International Nuclear Information System (INIS)

    At present nuclear power accounts for approximately 17% of total electricity generation worldwide. Given continuing population growth and the needs of the third world and developing countries to improve their economic performance and standard of living, energy demand is expected to continue to grow through the 21st century. The proportion of energy supplied as electricity is also expected to continue to increase. Although fossil fuelled electricity generation is the option preferred by several countries for the short term, there are rising concerns over climatic consequences caused by extended burning of fossil fuels as a result of the demands of a fast expanding world population. In this situation nuclear electricity will become more and more important and the known reserves of uranium would be consumed quite quickly by thermal reactors. It would be possible to sustain a large nuclear programme only by introducing fast reactors. One can conclude that there are strategic reasons for pursuing the development of fast breeder reactors. It will become desirable essential, to have this technology available for introduction. The experience of the various prototypes presently in operation has confirmed the operability and benign characteristics of the LMFR and has given ground for confidence in the future. Current fast reactor designs offer very large margins of safety and by virtue of redundant and diverse safety systems the potential for an energetic core disruptive accident or for fast reactor core meltdown has been essentially eliminated. Several international forums reviewed the current trends in the fast reactor development. The view was reaffirmed that fast breeder reactors still remain the most practical tool for effective utilization of uranium resources for the future energy needs. Achievement of competitiveness with LMRs is still the first priority condition for the future deployment of this type of reactor. The recycling of plutonium into LMFBRs would allow

  1. Development of polymeric applications for sodium cooled Fast Breeder Reactors: Chronicles of inception, progress and achievements

    International Nuclear Information System (INIS)

    The collaborative programme on development of important polymeric applications of Indian FBRs is chronicled from the days of motivation to its present state. Failure of inflatable seals of FBTR RPs (1985) and adoption of all-elastomer sealing concept for PFBR RPs (early 1990s), coupled with the unique characteristics of elastomeric materials, led to inception of the programme at IGCAR (1998) which involved DMSRDE as the first partner (1999). The planned initiative, which eventually involved more than 15 other Indian agencies, resulted in complete development of FKM backup seals for PFBR RPs which has been installed in reactor recently. Coated FKM and EPDM inflatable seals for PFBR and FBTR RPs have been developed, produced and evaluated up to ∼2 m diameter. Development methodologies for other critical polymeric applications of PFBR, FBTR and FCF have been formulated. Accomplishments and novelties of the development include EPDM and FKM compounds and designs for inflatable and backup seals, a common FEA procedure for elastomeric ring seals, PECVD based Teflon-like coating technology up to 7 m seal diameter, seal production process by cold feed extrusion and continuous cure, a robust quality control framework and the new facilities developed to support the programme. Future developments are focused on delivery of validated inflatable seals, life assessment and development of new elastomeric compounds which include silicone rubber and perfluoroelastomer, PECVD based coating on stainless steel and development of adhesionless joining of FKM. The achievements and future research will standardize the design and development of the elastomeric seals of Indian FBRs, PHWRs and AHWR based on a few well-characterized compounds, a common FEA method and PECVD based coating technology which can result in a universal design code.

  2. Development of polymeric applications for sodium cooled Fast Breeder Reactors: Chronicles of inception, progress and achievements

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.i [Indira Gandhi Centre for Atomic Research (IGCAR), Department of Atomic Energy (DAE), Kalpakkam, Tamilnadu 603102 (India); Raj, Baldev [Indira Gandhi Centre for Atomic Research (IGCAR), Department of Atomic Energy (DAE), Kalpakkam, Tamilnadu 603102 (India)

    2010-10-15

    The collaborative programme on development of important polymeric applications of Indian FBRs is chronicled from the days of motivation to its present state. Failure of inflatable seals of FBTR RPs (1985) and adoption of all-elastomer sealing concept for PFBR RPs (early 1990s), coupled with the unique characteristics of elastomeric materials, led to inception of the programme at IGCAR (1998) which involved DMSRDE as the first partner (1999). The planned initiative, which eventually involved more than 15 other Indian agencies, resulted in complete development of FKM backup seals for PFBR RPs which has been installed in reactor recently. Coated FKM and EPDM inflatable seals for PFBR and FBTR RPs have been developed, produced and evaluated up to {approx}2 m diameter. Development methodologies for other critical polymeric applications of PFBR, FBTR and FCF have been formulated. Accomplishments and novelties of the development include EPDM and FKM compounds and designs for inflatable and backup seals, a common FEA procedure for elastomeric ring seals, PECVD based Teflon-like coating technology up to 7 m seal diameter, seal production process by cold feed extrusion and continuous cure, a robust quality control framework and the new facilities developed to support the programme. Future developments are focused on delivery of validated inflatable seals, life assessment and development of new elastomeric compounds which include silicone rubber and perfluoroelastomer, PECVD based coating on stainless steel and development of adhesionless joining of FKM. The achievements and future research will standardize the design and development of the elastomeric seals of Indian FBRs, PHWRs and AHWR based on a few well-characterized compounds, a common FEA method and PECVD based coating technology which can result in a universal design code.

  3. Development of safety evaluation methods and analysis codes applied to the safety regulations for the design and construction stage of fast breeder reactor

    International Nuclear Information System (INIS)

    The purposes of this study are to develop the safety evaluation methods and analysis codes needed in the design and construction stage of fast breeder reactor (FBR). In JFY 2012, the following results are obtained. As for the development of safety evaluation methods needed in the safety examination conducted for the reactor establishment permission, development of the analysis codes, such as core damage analysis code, were carried out following the planned schedule. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  4. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  5. The Role of Energetic Mixed-Oxide-Fuel-Sodium Thermal Interactions in Liquid Metal Fast Breeder Reactor Safety

    International Nuclear Information System (INIS)

    Recent efforts dealing with the consequence assessment of low-probability core-disruptive accidents (CDAs) in liquid-metal fast breeder reactors (LMFBRs) suggest that unrealistic physical processes must be postulated in order to achieve energetic prompt burst conditions leading to a true hydrodynamic disassembly of the reactor core. Such calculations are, however, being used in the licensing process in order to provide an estimate of safety margins provided by a given design. Figure 1 illustrates calculations for the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR), where the prompt critical excursion and associated ramp rates are induced by postulating various amounts and rates of collapsing fuel in a largely molten core (recriticality accident), and the mode of energy release considered is the expansion of fuel vapor resulting in sodium-slug impact on the reactor vessel head. The VENUS-II code is used to calculate the disassembly motion and power histories during disassembly Elementary thermodynamic calculations provide the source term based upon expansion of the fuel from an initial temperature distribution specified by VENUS calculations, and the REXCO series of codes provide a hydrodynamic calculation of the pressure propagation coupled with an analysis of the structural response of the important system components. The work potential resulting from fuel collapse and hydrodynamic disassembly is very sensitive to small variations in the ramp rate. Since material motions associated with postulated conditions leading to energetic prompt critical excursions cannot be described with sufficient accuracy to provide reasonable bounds on ramp rates, an adequate margin of safety with current design is difficult to claim if these conditions cannot be ruled out. This implies that in addition to coherent gravity collapse, the possibility of pressure-driven (fuel-coolant interaction) collapse must be considered. Furthermore, the work potential

  6. Multiple recycling of fuel in prototype fast breeder reactor in a closed fuel cycle with pressurized heavy-water reactor external feed

    Indian Academy of Sciences (India)

    G Pandikumar; A John Arul; P Puthiyavinayagam; P Chellapandi

    2015-10-01

    A fast breeder reactor (FBR) closed fuel cycle involves recycling of the discharged fuel, after reprocessing and refabrication, in order to utilize the unburnt fuel and the bred fissile material. Our previous study in this regard for the prototype fast breeder reactor (PFBR) indicated the possibility of multiple recycling with self-sufficiency. It was found that the change in Pu composition becomes negligible (less than 1%) after a few cycles. The core-1 Pu increases by 3% from the beginning of cycle-0 to that of recycle-1, the Pu increase from the beginning of the 9th cycle to that of the 10th by only 0.3%. In this work, the possibility of multiple recycling of PFBR fuel with external plutonium feed from pressurized heavy-water reactor (PHWR) is examined. Modified in-core cooling and reprocessing periods are considered. The impact of multiple recycling on PFBR core physics parameters due to the changes in the fuel composition has been brought out. Instead of separate recovery considered for the core and axial blankets in the earlier studies, combined fuel recovery is considered in this study. With these modifications and also with PHWR Pu as external feed, the study on PFBR fuel recycling is repeated. It is observed that the core-1 initial Pu inventory increases by 3.5% from cycle-0 to that of recycle-1, the Pu increase from the beginning of the 9th cycle to that of the 10th is only 0.35%. A comparison of the studies done with different external plutonium options viz., PHWR and PFBR radial blanket has also been made.

  7. Sub-channel analysis of Pb-Bi cooled fast breeder reactor PEACER fuel assembly using MATRA

    International Nuclear Information System (INIS)

    Full text of publication follows: The nuclear power is the one of the realistic means that can solve the shortage of usable energies due to depletion of fossile fuel and due to the environmental contamination. However, since the nuclear fission yields a kind of fission fragment as a by-product, a radiological hazard of spent fuel is now a major problem. To overcome this difficulty, a number of studies are being performed and planned. One of the key solutions to this problem is to eliminate spent fuel by nuclear transmutation. According to this research, the most significant long-lived isotopes in spent fuels of the current power reactors can be transmuted into short-lived ones by using fast neutron spectrum with localized thermal traps. For this reason, liquid metal cooled fast breeder reactor is widely chosen as the answer to solve the problem. In Korea, PEACER(Proliferation-resistant, Environment-friendly, Accident-tolerant, Continual and Economical Reactor) is under study to work out this issue. PEACER core is designed to produce about 1560 MW of the thermal output with electric output up to 550 MW which efficiency is about 0.35. PEACER uses control rode made of B4C to perform reactivity control and Pb-Bi liquid metal is adopted as a coolant for primary system. In nuclear power plants it is important to keep the temperature of the reactor core structures under certain criteria in order to prevent damage of fuel materials which can advance to severe situations such as radiation leakage, and even meltdown of the fuel. This study was intended to see the liquid metal coolant behavior along the PEACER fuel channels and to find out whether the given heat flux profiles and geometrical arrangement of the fuel rods yields reasonable fluid dynamic distribution under nominal operation by using subchannel approach. The subchannel analysis of the fuel assembly under nominal operation condition was performed using MATRA (Multi-channel Analyzer for Transient and steady

  8. A report on (interim) evaluation of research and development subjects in fiscal year 2000. Evaluation subject on the 'Safety research in fast breeder reactor'

    International Nuclear Information System (INIS)

    Safety research as a basis R and D supporting development of the fast breeder reactor (FBR) has been practiced at aims of development, admittance and operation/maintenance of a fast experimental reactor, 'Joyo' and a fast breeder prototype reactor, 'Monju' and of reflection to a proof reactor plan promoted by the electric utility. However, at present, in order to reflect FBR cycle actual use strategy survey research, decision of importance in research is promoted to effectively reflect their research results to judgment and investigation on consistency of various candidate concepts. Here was carried out on some evaluations on research program and practicing method of coming five years on conventional research results, reflection to the second period of the actual use strategy survey research, and practice of national safety research yearly plan at a center of past five years on contribution to FBR development and safety regulation in Japan. Here were described on aim and meaning of the R and D, establishment of target, planning, practicing system, and results. (G.K.)

  9. Critical review of the literature on high energy release during hypothetical core disruptive accidents in sodium-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Upon the request of the ''Enquete-Kommission'' on Future Nuclear Energy Policy set up by the German Federal Parliament, a literature survey has been compiled on all scientific studies of Bethe-Tait accidents with high potentials of mechanical energy releases (''Literaturuebersicht zu allen wissenschaftlichen Arbeiten ueber Bethe-Tait-Stoerfaelle mit hohem mechanischem Energiefreisetzungspotential''). The study is a critical review of all relevant scientific publications and studies by the international scientific community in this field, which are devoted to high mechanical energy releases from major accidents in sodium cooled fast breeder reactors, or at least indicate the potential for high energy releases. These publications are evaluated with respect to their relevance to the design base levels of the SNR 300. In accordance with the wishes expressed by the ''Enquete-Kommission'', the study not only deals with the arguments and findings by scientists from national research centers and from the fast breeder development association, but also takes into account the arguments and findings by working groups in Germany and abroad, which represent different attitudes vis-a-vis the utilization of nuclear power and the fast breeder reactor. The study was handed over to the ''Enquete-Kommission'' in 1982. The present version differs in some minor points from the original version. The conclusion to be drawn from the examination of the bulk of the above mentioned information is this: - For the SNR 300 the occurence of major accidents with mechanical energy releases exceeding the design limit of 370 MWs can be excluded with a probability verging on certainty, i.e., to all practical intents and purposes. (orig.)

  10. Development of inflatable seals for the rotatable plugs of sodium cooled fast breeder reactors. Pt. II. R and D necessities and development across the world. A review

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Nilay K. [Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu (India). Dept. of Atomic Energy (DAE); Raj, Baldev [P.S. Govindaswamy Naidu (PSG) Institutions Coimbatore, Tamilnadu (India)

    2013-12-15

    Identification of development areas and their implementation for rotatable plug (RP) inflatable seals of Na cooled, 500 Mw (e) Prototype Fast Breeder Reactor (PFBR) and 40 MW (t) Fast Breeder Test Reactor (FBTR) are described, largely based on a late 1990s survey of cover gas seal development (1950s - early 1990s) which defined a set of shortlisted design options and developmental strategy to minimize effort, cost and time. Comparative study of top shield sealing and evolving FBR designs suggest suitability of inflatable seal as primary barrier in RPs. International experience identified choice and qualification of seal elastomer under synergistic degrading environment of reactor as the prime element of development. The low pressure, non-reinforced, unbeaded, PFBR inflatable seal (made of 50/50 blend of Viton {sup registered} GBL 200S/600S) developed for 10 y life provides a unification scheme for nuclear elastomeric sealing based on 5 peroxide cured fluoroelastomer blend formulations, 1 finite element analysis approach, 1 Teflon-like plasma coating technique and 2 manufacturing processes promising significant gains in standardization, economy and safety. Uniqueness was ab initio development in the absence of established industry or readymade supply. R and D necessities for inflatable seals and their development across the world are given closer look in Part II of the review in continuation of Part I. (orig.)

  11. Development of inflatable seals for the rotatable plugs of sodium cooled fast breeder reactors. Pt. II. R and D necessities and development across the world. A review

    International Nuclear Information System (INIS)

    Identification of development areas and their implementation for rotatable plug (RP) inflatable seals of Na cooled, 500 Mw (e) Prototype Fast Breeder Reactor (PFBR) and 40 MW (t) Fast Breeder Test Reactor (FBTR) are described, largely based on a late 1990s survey of cover gas seal development (1950s - early 1990s) which defined a set of shortlisted design options and developmental strategy to minimize effort, cost and time. Comparative study of top shield sealing and evolving FBR designs suggest suitability of inflatable seal as primary barrier in RPs. International experience identified choice and qualification of seal elastomer under synergistic degrading environment of reactor as the prime element of development. The low pressure, non-reinforced, unbeaded, PFBR inflatable seal (made of 50/50 blend of Viton registered GBL 200S/600S) developed for 10 y life provides a unification scheme for nuclear elastomeric sealing based on 5 peroxide cured fluoroelastomer blend formulations, 1 finite element analysis approach, 1 Teflon-like plasma coating technique and 2 manufacturing processes promising significant gains in standardization, economy and safety. Uniqueness was ab initio development in the absence of established industry or readymade supply. R and D necessities for inflatable seals and their development across the world are given closer look in Part II of the review in continuation of Part I. (orig.)

  12. Design and manufacture of tube to tubesheet joints of steam generator for 500 MWe Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR) is 500 MWe pool type sodium cooled fast reactor. Presently this reactor is at advanced stage of construction at Kalpakkam. The main function of the steam generator is to extract the reactor heat through secondary sodium system and convert the feed water into superheated steam in the tubes of steam generators. The steam generator is a vertical shell and tube type heat exchanger with liquid sodium in the shell side and water/steam in the tube side. Operating experience of FBRs have shown that steam generator (SG) holds the key to commercial success of such reactors. Tube leakage is a serious problem and the prevention of sodium water reaction incident in the SG is essential to maintain the plant availability. In case of crack/failure in tube, high pressure water/steam reacts with shell side sodium and results in exothermic reaction with evolution of hydrogen, corrosive reaction products and intense local heat depending on leak size. This high reactive nature of sodium with water/steam requires that sodium to water/steam boundaries of steam generators must possess a high degree of reliability against failure. This is achieved in design and manufacturing by maximising the tube integrity and more importantly by proper selection of tube to tubesheet joint configuration. The principal material of construction of SG is Modified 9Cr-1Mo steel. The tubes are seamless and produced by electric arc melting followed by Electro Slag Refining (ESR) with tight control on inclusion content. Ultrasonic and eddy current testing is done on entire tube length in accordance with ASME SEC III Class I. Long seamless tubes (each 23m) are used in order to reduce the number of tube to tubesheet welds.Each SG has 547 tubes and there are 9 SG in the reactor including one spare module. There is no tube to tube joint as the aim is to minimise the number of welds to increase reliability.Tube to tubesheet joint selected for PFBR steam generator is of internal

  13. Development of variable-width ribbon heating elements for liquid-metal and gas-cooled fast breeder reactor fuel-pin simulators

    International Nuclear Information System (INIS)

    Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relate this profile to that generated by the coils in completed fuel pin simulators

  14. The BN-350 decommissioning project - an example of international cooperation and successful nonproliferation work

    International Nuclear Information System (INIS)

    The BN-350 reactor was one of the most powerful fast neutron facilities in the world. The nominal designed reactor power was 1000 MW and electric power output was 350 MW. The desalination facility could produce up to 120,000 tons of fresh water a day. The reactor core was cooled by liquid sodium. The reactor core consisted of heat release assemblies with highly enriched fuel. Blanket assemblies containing natural uranium were located around the core were used for plutonium production resulting from nuclear reactions with fast neutrons. The plutonium produced could be used for nuclear weapon creation and as fuel for other rectors. The reactor finally was shutdown by decree of the Kazakhstan Government on April 22, 1999. The decision was taken to place it into SAFSTOR for 50 years with subsequent final dismantling. At the same time, the Kazakhstan Government appealed to the US Government to provided technical and financial assistance for BN-350 decommissioning activities. Many of programs are being conducted by joint efforts of Kazakhstan and the United States of America with the support of International Atomic Energy Agency. A particular note is the assistance provided under the US Cooperative Threat Reduction Program, which is commonly known as the Nunn-Lugar Act after its two primary sponsors in the US Senate. This project was the beginning one of the world's largest and he most successful nonproliferation project. The main areas of activity is: packaging, transportation and safe storage of BN-350 spent fuel. The contribution of an enhanced physical protection system, material monitoring systems and the packaging of the materials has virtually eliminated the proliferation risk. Right on schedule in June 2001, a joint Kazakhstan-US team closed 478-th canister and successfully completed the 2 and 1/2 year effort to package the BN-350 spent fuel, probably the largest such effort ever undertaken anywhere. At the present rime, the US Government is planning to support

  15. Present state of new technologies of nuclear power generation, and technological development of fast-breeder reactor and next-generation light water reactor

    International Nuclear Information System (INIS)

    This paper introduces the present state of development of FBR in Japan and international cooperation, the development of HP-ABWR and HP-APWR as the next-generation light water reactors, and SMR development in the United States. As for FBR, the following situations are described: (1) history of development in Japan in the past, (2) history of change due to the readjustment of development plan caused by the accident of Fukushima Daiichi Nuclear Power Station, in which shift to FaCT phase 2 was suspended, and the approach to the establishment of safety standards for sodium-cooled FBR and its international standardization was adopted, and (3) future challenges. As for the Japan - France fast-breeder reactor development cooperation, the conclusion of the Japan - France inter-government agency agreement, and Japan's cooperation plan and system are described. Next, as for HP-ABWR and HP-APWR, the development goal and concept of each plant, and the element technologies required for the success are described. On the other hand, the small reactor development in the United States started with the aim of the securement of domestic technology base, contribution to reduction in carbon dioxide emissions, and its export to new entry countries for nuclear energy. This project aimed the practical use of SMR, and started 'financial support program for small reactors' to allocate about 452 million dollars to maximum two units of SMRs in the next five years. This project is outlined. (A.O.)

  16. A five years experience of pulse columns extraction cycles for the reprocessing of fast breeder reactor fuels at the Marcoule pilot plant (SAP)

    International Nuclear Information System (INIS)

    The reprocessing of Phenix fast breeder reactor started at the MARCOULE PILOT PLANT in 1977 with the enriched UO2 first core (2.3 tons U) followed by several campaigns of UO2-PuO2 Phenix-core II (6.5 tons U-Pu). After a short description of the Pilot Plant, characteristics of the pulse columns extraction flow-sheets are presented. Pulse columns are used for extraction and scrubbing of uranium and plutonium and for uranium backwashing whilst plutonium stripping and U-Pu partition are carried out in mixer settlers with HAN and in-line electrolytic U IV generation. Performances of pulsed columns including recovery yields and decontamination factors are discussed: they show a good β γ decontamination can be reached with two cycles and partition carried out at the second cycle. (author)

  17. A five years experience of pulse columns extraction cycles for the reprocessing of fast breeder reactor fuels at the Marcoule pilot plant (SAP)

    International Nuclear Information System (INIS)

    The reprocessing of Phenix fast breeder reactor started at the Marcoule Pilot Plant in 1977 with the enriched UO2 first core (2.3 tons U) followed by several campaigns of UO2-PuO2 Phenix-core II (6.5 tons U-Pu). After a short description of the Pilot Plant, characteristics of the pulse columns extraction flow-sheets are presented. Pulse columns are used for extraction and scrubbing of uranium and plutonium and for uranium backwashing whilst plutonium stripping and U-Pu partition are carried out in mixer settlers with HAN and in-line electrolytic U IV generation. Performances of pulsed columns including recovery yields and decontamination factors are discussed: they show a good β γ decontamination can be reached with two cycles and partition carried out at the second cycle

  18. Study on laser welding of fuel clad tubes and end plugs made of modified 9Cr-1Mo steel for metallic fuel of Fast Breeder Reactors

    Science.gov (United States)

    Harinath, Y. V.; Gopal, K. A.; Murugan, S.; Albert, S. K.

    2013-04-01

    A procedure for Pulsed Laser Beam Welding (PLBW) has been developed for fabrication of fuel pins made of modified 9Cr-1Mo steel for metallic fuel proposed to be used in future in India's Fast Breeder Reactor (FBR) programme. Initial welding trials of the samples were carried out with different average power using Nd-YAG based PLBW process. After analyzing the welds, average power for the weld was optimized for the required depth of penetration and weld quality. Subsequently, keeping the average power constant, the effect of various other welding parameters like laser peak power, pulse frequency, pulse duration and energy per pulse on weld joint integrity were studied and a procedure that would ensure welds of acceptable quality with required depth of penetration, minimum size of fusion zone and Heat Affected Zone (HAZ) were finalized. This procedure is also found to reduce the volume fraction delta-ferrite in the fusion zone.

  19. Conceptual design of a uranyl nitrate fueled reactor for the destructive testing of liquid metal fast breeder reactor fuel subassemblies

    International Nuclear Information System (INIS)

    A preliminary design of a uranyl nitrate test reactor is developed, with emphasis placed on the core neutronics and cross section development. ENDF/B-IV cross section data and the AMPX system were used to develop a 25 group neutron cross section library. A series of one-dimensional transport calculations were made in order to arrive at a reference design. Power densities of 16.5 Kw/1 appear to be attainable in the 217 pin FFTF test subassembly, with a peak neutron flux in the test zone of 2.4 x 1014 n/cm2-sec. Other engineering features pertinent to the overall system design are discussed, including: (1) corrosion, (2) treatment of radiolytic gas, (3) heat removal, and (4) reactor control

  20. Analysis of unprotected transients with control and safety rod drive mechanism expansion feedback in a medium sized oxide fuelled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyasheela, T., E-mail: sheela@igcar.gov.in; Natesan, K.; Srinivasan, G.S.; Devan, K.; Puthiyavinayagam, P.

    2015-09-15

    Highlights: • Possibilities of enhancing safety under ULOF and UTOP accidents. • CSRDM expansion feedbacks under unprotected transients. • CSRDM expansion feedback enhances the safety of fast reactors. • CSRDM expansion feedbacks ensuring enough time for initiating safety actions. - Abstract: Possibilities of enhancing core safety under unprotected loss of flow (ULOF) and unprotected transient over power (UTOP) accidents with control and safety rod drive mechanism (CSRDM) expansion feedbacks are explored in a medium sized oxide fuelled fast breeder reactor. This feedback is expected to take the reactor to a safe shutdown under ULOF and to an another steady state under UTOP where there is no significant fuel melting. Under ULOF, with CSRDM feedback net reactivity was maintained negative throughout the transient (up to 2000 s) and the power dropped to a level of heat removal capacity of decay heat removal system based on natural circulation. Similarly, under UTOP with the above feedback reactor power goes to a lower peak value. The fuel temperature is just touching the melting temperature and the melt fraction does not cross 5%. With CSRDM expansion feedbacks both ULOF and UTOP transients prolong beyond 2000 s. It ensures, availability of time for initiating any safety actions against the transients, and thus it helps to preclude core disruptive accidents (CDA) in a medium sized oxide fuelled reactors.Classification: L. safety and risk analysis.

  1. Fast Breeder Development: EDF's point of view

    International Nuclear Information System (INIS)

    This paper presents EDF's views and contributions to fast breeder development and to the French SFR trilateral program. Utility requirements are first outlined, based on the approach followed for the EPR reactor. R and D contributions are presented in the areas of core physics, safety, technology innovations, materials, deployment and fuel cycle scenarios. The paper also deals with some of the issues of the 2020 French prototype as seen by EDF.

  2. Fast breeder reactor program. Hearings before the Joint Economic Committee, Congress of the United States, Ninety-Fourth Congress, First Session

    International Nuclear Information System (INIS)

    The economics of the liquid metal fast breeder reactor (LMFBR) was the subject of hearings of the Joint Economic Committee, chaired by Sen. Hubert Humphrey. FY '76 funding for the breeder program is $450 million, the largest single item of the Federal energy program. Elmer B. Staats, U.S. Comptroller General, testified on the rising costs of demonstration facilities and pointed out that Federal agencies are required to make all estimates of costs and benefits in constant dollars rather than projecting for inflation. Staats recommended a joint ERDA-Congressional study of the possible use of foreign breeder technology. Sheldon Meyers of the Environmental Protection Agency, while not opposing the breeder program, recommended a delay to resolve three problem areas: (1) base energy demand projections; (2) timing of the commercial introduction of the LMFBR; and (3) uncertainties over possible benefits from the LMFBR program. Theodore B. Taylor, International Research and Technology Corp., discussed the costs and security safeguards of the LMFBR, which produces more spent fuel than the light water reactor. Other witnesses included Robert Seamans and officials from ERDA, Ralph Nader, and speakers from private study groups

  3. Diagnostic agent using parasitic discrete wavelet transform for the hybrid diagnostic agent system for the fast-breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    In order to detect anomalies in rotating machines such as pumps at an early stage, we developed a system using wavelet transform. The pump diagnostic experiment equipment was designed taking into consideration the structure of the pump used for the water-steam system of the fast breeder reactor 'Monju'. For improving detection capability, it is desirable to use a mother wavelet (MW) whose shape is similar to the anomaly signal that is required to be detected. We call the constructed MW on the basis of the real signal the real mother wavelet (RMW). The parasitic discrete wavelet transform (P-DWT) that has a large flexibility in design of the MW and a high processing speed was applied for detecting process signals. The vibration and sound signals were measured using the pump diagnostic experiment equipment when three types of anomalies (injection of an object, change of a balance of the impeller, and damage to the axis of the impeller) occur. Complex RMWs were constructed on the basis of the measured signals, and subsequently, parasitic filters were constructed. Signal detection was performed by calculating the fast wavelet instantaneous correlation using the parasitic filter. We evaluated three types of anomalies, and found that P-DWT is useful for detecting these anomalies. Furthermore, we developed a diagnostic agent using P-DWT as one of the diagnostic agents of our hybrid diagnostic agent system, which is intended to work together with the 'Monju' distributed diagnostic agent system. (author)

  4. CALIPSO - a computer code for the calculation of fluiddynamics, thermohydraulics and changes of geometry in failing fuel elements of a fast breeder reactor

    International Nuclear Information System (INIS)

    The computer code CALIPSO was developed for the calculation of a hypothetical accident in an LMFBR (Liquid Metal Fast Breeder Reactor), where the failure of fuel pins is assumed. It calculates two-dimensionally the thermodynamics, fluiddynamics and changes in geometry of a single fuel pin and its coolant channel in a time period between failure of the pin and a state, at which the geometry is nearly destroyed. The determination of temperature profiles in the fuel pin cladding and the channel wall make it possible to take melting and freezing processes into account. Further features of CALIPSO are the variable channel cross section in order to model disturbances of the channel geometry as well as the calculation of two velocity fields including the consideration of virtual mass effects. The documented version of CALIPSO is especially suited for the calculation of the SIMBATH experiments carried out at the Kernforschungszentrum Karlsruhe, which simulate the above-mentioned accident. The report contains the complete documentation of the CALIPSO code: the modeling of the geometry, the equations used, the structure of the code and the solution procedure as well as the instructions for use with an application example. (orig.)

  5. The radiological consequences of notional accidental releases of radioactivity from fast breeder reactors: sensitivity to the dose-effect relationships adopted for early biological effects

    International Nuclear Information System (INIS)

    This study considered the sensitivity to the dose-response relationships adopted for the estimation of early biological effects from notional accidental releases of radioactivity from fast breeder reactors. Two distinct aspects were considered: the sensitivity of the predicted consequences to variation in the dose-mortality relationships for irradiation of the bone marrow and the lung; and the influence of simple supportive medical treatment in reducing the incidence of early deaths in the exposed population. The numbers of early effects estimated in the initial study were relatively insensitive to variation in the dose-mortality relationships within the bounds proposed. The few exceptions concerned releases of particular nuclide composition, and the variation in the predicted consequences could be around an order of magnitude; the absolute numbers of effects however were in general small when the sensitivity was most pronounced. The reduction in the incidence of early deaths when using simple supportive treatment varied markedly with the nuclide composition of the release. Areas of uncertainty were identified where further research and investigation might most profitably be directed with a view to improving the reliability of the dose-effect relationships adopted and hence of the predicted consequences of the release considered. (author)

  6. Comparative analysis of quality assurance systems which effectively control, review and verify the quality of components manufactured for liquid metal cooled fast breeder reactors within the EEC

    International Nuclear Information System (INIS)

    Comparative analyses are made of Quality Assurance Systems, by techniques and the methodology used, for the manufacture of component parts for the Liquid Metal Cooled Fast Breeder Reactor (LMFBR) within the EEC. Two differing alternative systems are presented in the analysis. First, a tabulated analytical treatment which analyses 14 codes and standards relating to Quality Assurance which can be applied to LMFBR's. The comparison equates equivalent clauses between codes and standards followed by an analysis of individual clauses in tabular form, the International Standard ISO 6215. A statistical summary and recommendations conclude this analysis. The second alternative system used in the comparison is a descriptive analytical method applied to 9 selected codes and standards relating to Quality Assurance based on the 13 criteria of the International IAEA Code of Practice no. 50 C.QA entitled ''Quality Assurance for Safety in Nuclear Power Plants''. An investigation is then made of the state of the art on the subject of classification of component parts bearing generally on Quality Assurance. The method of classification is segregated into General, Safety and Inspection categories. A summary of destructive and non destructive controls that may be applied during the manufacture of LMFBR components is given, together with tests that may be applied to selected components, namely Primary Tank, Secondary Sodium Pump and the Primary Cold Trap allocated to Safety Classes, 1, 2 and 3 respectively. The report concludes with a summary of typical records produced at the delivery of a component

  7. A middle evaluation report on R and D subjects in fiscal year 2000. Evaluation subject: 'investigation on actualization strategy of fast breeder reactor cycle'

    International Nuclear Information System (INIS)

    The Japan Nuclear Cycle Development Institute (JNC) consulted the titled middle evaluation to the Subject Evaluation Committee (SEC) according to the Schematic indication on practice procedure of evaluation common to the generalized national R and D' and so on. By receiving the consult, SEC on wastes treatment and disposal carried out evaluation of this subject on basis of documents proposed from JNC and discussions at SEC according to an evaluation procedure determined by SEC. This subject was already investigated at the third group on establishment of long term program on new nuclear energy and concluded its promotion, it can be said that aim and meaning of its R and D is clear. And, at a viewpoint of middle- and long-term business program of JNC, it can also be positioned to be at an important mission. In order to carry out flexible response to versatile needs in future for giving a meaning of development strategy of fast breeder reactor (FBR) cycle, under full understanding of variability of a promise condition for the aim and meaning of this research such as environment around development of FBR cycle development, R nad D of the program must be promoted. In this program picking-out of every subject and research program are adequately promoted to be enough evaluated for the middle results. Here was summarized by the evaluation results with documents proposed by JNC. As a result of the evaluation, it was shown that as general directionality of this program was judged to be valid. (G.K.)

  8. CAMDYN: a new model to describe the axial motion of molten fuel inside the pin of a fast breeder reactor during accident conditions

    International Nuclear Information System (INIS)

    The new in-pin fuel motion model CAMDYN (Cavity Material Dynamics) describes the axial motion of both partially and fully molten fuel inside the pin of a fast breeder reactor during accident conditions. The motion of the two types of molten fuel and the imbedded fission gas bubbles is treated both before and after cladding failure. The basic modelling approach consists of the treatment of two one-dimensional flows which are coupled by interaction terms. Each of these flows is treated compressively and with axially variable flow cross sections. The mass and energy equations of both fields are solved explicitly using upwind differencing on a fixed Eulerian grid. The two momentum equations are solved simultaneously, using the convective momentum fluxes of the previous timestep. Both partially and fully molten fuel can move axially into a central hole extending to the plenum in the case of certain hollow pellet designs. The fuel temperature calculation includes the determination of a radial temperature profile. A simple conduction freezing model is included. After cladding failure, ejection into the coolant channel is modeled

  9. Seismic monitoring of the Creys-Malville plant - Problems raised by the seismic behaviour of a fast breeder reactor

    International Nuclear Information System (INIS)

    CREYS-MALVILLE reached full power in December 1986 and is presently the largest sodium cooled reactor in operation. Well established procedures of safety evaluation have been used for the design but for a large size reactor special attention must be paid to the effects of seismic disturbances. This paper describes the seismic protection and monitoring system of the plant, the core behaviour which is specific to fast reactors and the test performed to verify the analyses. Finally the seismic impact on the construction can be established as an indication for future plants. (author)

  10. Investigation of free level fluctuations in a simulated model of a sodium cooled Fast Breeder Reactor using pulsating conductance monitoring device

    International Nuclear Information System (INIS)

    Highlights: ► An innovative approach for measurement of water level fluctuation is presented. ► Measurement was conducted with a PC based pulsating type level sensor. ► Deployed the technique in monitoring level fluctuation in PFBR simulated facility. ► The technique helped in validation of hot pool design of PFBR, India. - Abstract: A high resolution measurement technique for rapid and accurate monitoring of water level using an in-house built pulsating conductance monitoring device is presented. The technique has the capability of online monitoring of any sudden shift in water level in a reservoir which is subjected to rapid fluctuations due to any external factor. We have deployed this novel technique for real time monitoring of water level fluctuations in a specially designed ¼ scale model of the Prototype Fast Breeder Reactor (PFBR) at Kalpakkam, India. The water level measurements in various locations of the simulated test facility were carried out in different experimental campaigns with and without inclusion of thermal baffles to it in specific operating conditions as required by the reactor designers. The amplitudes and the frequencies of fluctuations with required statistical parameters in hot water pool of the simulated model were evaluated from the online time versus water level plot in more convenient way using system software package. From experimental results it is computed that the maximum free level fluctuation in the hot pool of PFBR with baffle plates provided on the inner vessel is 30 mm which is considerably less than the value (∼82 mm) obtained without having any baffle plates. The present work provided useful information for assessment of appropriate design which would be adopted in the PFBR for safe operation of the reactor.

  11. Criticality safety issues in the disposition of BN-350 spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, R. W.; Klann, R. T.; Koltyshev, S. M.; Krechetov, S.

    2000-02-28

    A criticality safety analysis has been performed as part of the BN-350 spent fuel disposition project being conducted jointly by the DOE and Kazakhstan. The Kazakhstan regulations are reasonably consistent with those of the DOE. The high enrichment and severe undermoderation of this fast reactor fuel has significant criticality safety consequences. A detailed modeling approach was used that showed some configurations to be safe that otherwise would be rejected. Reasonable requirements for design and operations were needed, and with them, all operations were found to be safe.

  12. Investigation on analytical method for the transfer behavior of corrosion product (CP) in the fast breeder reactors

    International Nuclear Information System (INIS)

    Radioactive corrosion products (CPs) are main cause of personal radiation exposure during maintenance work without fuel failure in FBR plants. The most important CP species are 54Mn and 60Co. The deposited radioactive CPs cause radiation fields near the piping and components, and the CPs contribute to the radiation exposure of the plant-worker. In this review, firstly, the collected knowledge about CP transfer behavior in the fast reactor are reviewed and analyzed. Secondly, the existing analytical methods to evaluate CP transfer behavior are investigated, issues of which and their solutions are extracted and discussed. Finally, examples of the calculated results by the improved analytical method are described. The provided conclusions are as follows; (1) Collected knowledge on CP transfer behavior. CP generation is mainly due to the dissolution of CP from hot reactor core constitution materials to hot sodium. On the core materials, particle-formed structure was confirmed. The evidence of CP precipitation in the low temperature part of the primary cooling system and the lower part of reactor core was provided. Similarly, the evidence of CP particle deposition in the same domain was also provided. (2) Extracted issues on analytical methods of CP transfer and proposed solutions. In the past, radioactivity caused by CP deposition on the piping and the core materials surface is confirmed. Subsequently, analytical models were developed based on the distribution of the CPs in the reactor coolant systems and the out-pile sodium loop test. The local high radiation dosage (such as elbow part) was observed by the radiation measurement. However, this behavior cannot be evaluated by the existing model, and it is considered necessary to take into account the transfer of CP particle. (3) The recent trend of the CP behavioral analysis method. Novel CP particle generation, transfer and deposition models were developed based on existing knowledge on CP behavior. The developed

  13. FUJI, an initial sintering comparison test for pelletized-, sphere-pac- and vipac- fast breeder reactor mixed oxide fuel

    International Nuclear Information System (INIS)

    Options for fuel cycle technology improvement have strongly regained attention lately with the revival of nuclear energy production interests and plants for next generation nuclear systems. Various fuel forms, geometries and production paths are being looked at. Within the FUJI collaboration program among, Japan Nuclear Cycle Development Institute (JNC, Japan), Paul Scherrer Institute (PSI, Switzerland) and Nuclear Research and Consultancy Group (NRG, the Netherlands) the production paths of plutonium and neptunium mixed oxide- (sphere-pac- and vipac-) particle fuels (20wt% Pu and 5wt% Np) are tested as well as initial sintering and power-to-melt environment under simulated FBR conditions. The various fuel forms were produced at PSI under the support of JNC, the irradiations were accomplished at High Flux Reactor (HFR) in Petten, the post irradiation examinations are being achieved mainly at NRG and the fuel modelling being performed at JNC and PSI. The present paper reviews the project planning, fuel behaviour- pre-calculations and the fuel- and fuel segment- production, while a second paper at this conference summarizes the reactor irradiations and the status of the available post irradiation examination results. (author)

  14. 快堆钠回路水锤程序开发与应用%Waterhammer Program Development and Application for Fast Breeder Reactor's Sodium Circus

    Institute of Scientific and Technical Information of China (English)

    文静; 栾霖; 金德圭; 陆道纲; 汤荣铭

    2001-01-01

    研究开发了快堆钠回路水锤分析专用程序WHA。该程序在一维特征线法(MOC)传统的压力波传播数学模型中补充了钠腔-气腔外边界模型,并采用气泡离散模型模拟低压液柱分离中的蒸汽穴的生成与溃灭。程序用FORTRAN90语言对快堆实验钠回路ESPRESSO中由于阀门的快速开启与关闭引起的压力波传播进行了分析计算。计算结果表明:将钠腔-气腔引入水锤压力波传播的数学模型进行程序计算的结果是合理的。%Based on one-dimensional method of characteristics(MOC), anumerical model of pressure-wave progation is presented in the paper. A special code is programmed to analyze and calculate waterhammer resulted from rapid opening or closing of valve in the experimental sodium circus of fast breeder reactor(FBR). In the model, a new outer boundary condition, sodium-cavity is included. Model of bubble's discrete distribution is adopted to simulate generation and collapse of the bubble with the pressure's decreasing and increasing. The results demonstrate that the model of pressure-wave progation is valid.

  15. Research and development long term prospects for advanced thermal and fast breeder reactors and fuel cycle activities

    International Nuclear Information System (INIS)

    Despite the present slowing down of most of the national nuclear programmes due to various conjunctural causes, nuclear energy is presumably to have in term an increasing role worldwide for electricity production, both in industrialized countries already equipped with nuclear power stations and in countries which intent to enter the nuclear energy route in a short or mid-term perspective. Nuclear energy development will have notably to take into account the following requirements: from a strategic point of view, the major concern is to optimize the use of world available natural uranium appears abundant and inexpensive, it must not be forgotten that in a longer time perspective a growing scarcity of this material will occur unavoidably; from the technical and economical standpoints, future reactors will have to be more reliable, more available, and even more safe, with lower KWh generating costs, than units presently constructed or operated. The paper presents the approach which is followed by France to meet these goals. (author)

  16. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    Basic elements of the ex-reactor part of the fuel cycle (reprocessing, fabrication, waste handling and transportation) are described. Possible technical and proliferation measures are evaluated, including current methods of accountability, surveillance and protection. The reference oxide based cycle and advanced cycles based on carbide and metallic fuels are considered utilizing conventional processes; advanced nonaqueous reprocessing is also considered. This contribution provides a comprehensive data base for evaluation of proliferation risks

  17. Nuclear reactors. To breed or not to breed. A Pugwash debate on fast breeder reactors held at the Royal Society, London, on 28 September 1976 under the chairmanship of Sir Alec Merrison

    International Nuclear Information System (INIS)

    The debate which is reported was timed to coincide with the publication of the Report of the (UK) Royal Commission on Environmental Pollution: 'Nuclear Power and Environment'. The volume comprises an introductory section, a report of an address by the Chairman of the Royal Commission and invited papers on fast breeder reactors in relation to energy requirements, on the safety of a commercial fast reactor, on processing and reprocessing of fuel, on radioactive waste management, and on diversion of plutonium and proliferation of nuclear weapons. An edited version of the discussion is presented under the following heads: comments on the report of the Royal Commission; projections of future energy requirement; thermal pollution; safety and insurance of reactors; reprocessing of fuel; storage and disposal of wastes; energy from fusion; utilization of coal; and proliferation of weapons and diversion of plutonium. The six invited papers are considered to be within INIS scope and separate abstracts have been prepared. (U.K.)

  18. Hot sodium-triggered thermo-chemical degradation of concrete aggregates in the sodium resistant sacrificial layers of fast breeder reactors

    International Nuclear Information System (INIS)

    Highlights: • Concrete aggregates were exposed to liquid sodium exposure at 550 °C. • Thermal and chemical effects were studied using megascopic and micro-analytical techniques. • Aggregates underwent significant thermo-chemical degradation upon exposure. • Limestone found more suitable for sodium environment than siliceous aggregate. - Abstract: Sodium is used as an efficient coolant in fast breeder reactor (FBR) for extracting nuclear heat from its high power density core to steam generator, to produce electricity. Accidentally spilled Sodium at elevated temperatures of 550 °C or above may interact with concrete leading to its deterioration. A sacrificial concrete layer is provided on the structural concrete to mitigate the harmful impacts of these interactions. Locally available crushed rocks like limestone and granite are employed as aggregates in sacrificial and structural concrete respectively. Rocks are naturally occurring multi-mineral and multiphase inorganic systems of the earth. Aggregates are the main constituents of concrete accounting for 70–80% of its mass. In this paper, an attempt is made to study the physico-chemical modifications that may occur in the aggregates during the interactions between liquid sodium and the aggregates of concrete. The experimental strategy consists of heating of granite, limestone and river sand aggregates at 550 °C for 30 min and further treating them with 1 Normal aqueous solution of NaOH, to differentiate thermal and chemical effects. Furthermore, sodium-aggregate interaction study at 550 °C was conducted to characterize the combined effects of heat and sodium. Siliceous aggregates (granite and river sand) were found to be easily attacked by ferric oxidation during heating in air and also subjected to rapid chemical reactions with liquid NaOH, producing mineral phases of sodium silicate, sodium orthosilicates, calcium orthosilicates and sodium carbonates. Initiation and propagation of cracking in the

  19. Fast-Breeder-Blanket Project: FBBF. Final report

    International Nuclear Information System (INIS)

    This report is the final report for DOE contract DE-AC02-76ET37237 with the Purdue Fast Breeder Blanket Project. The Project was initiated to investigate the uncertainties in Fast Breeder Reactor blanket calculations. Absolute measurements of key neutron reaction rates, neutron spectra, and gamma-ray energy depositions were made in simulated FBF blankets in the Fast Breeder Blanket Facility (FBBF), a Cf-252 driven subcritical facility. Calculation of the spectra and integral reaction rates were made using methods, computer codes, and cross section data typical of those currently used in the design of FBR's. Comparisons of calculated to experimental integral neutron reaction rates give good agreement at the inner portions of the blanket by diverge to C/E ratios of about 0.65 at the outer edge of the blanket for reactions sensitive to the neutron density

  20. Assessment report of research and development activities in JFY2009 activity. 'R and D programs on prototype fast breeder reactor Monju and its related activities'. In-advance evaluation

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) asked the advisory committee 'Evaluation Committee of Research and Development Activities for Advanced Nuclear System/ Nuclear Fuel Cycle Technology' (the Committee) to assess 'R and D Programs on Prototype Fast Breeder Reactor Monju and its related R and Ds' in JFY2009, in accordance with 'General Guideline for the Evaluation of Government R and D Activities' by Japanese Cabinet Office, 'Guideline for Evaluation of R and D in Ministry and of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. The Committee assessed the R and D Programs on Prototype Fast Breeder Reactor Monju and its related activities which last until 2015 (Project review), and the management systems and organizations of JAEA (Management review), by taking into consideration post-2015 plans. The Committee has confirmed that the R and D programs include essential items and its progress will be checked every 5 years. The Committee has concluded that the R and D programs are sufficiently planned and that management systems and organizations are well-prepared. The Committee has also suggested key factors and significant viewpoints in terms of the Project review and Management review, hoping that JAEA will create excellent R and D results for FBR. A CD-ROM is attached as an appendix. (author)

  1. Current status on fast reactor program in Kazakhstan

    International Nuclear Information System (INIS)

    Atomic scientific-industrial complex of Republic of Kazakhstan consist of: Uranium mining, production and power industry, Enterprises of uranium ores geological searching and number of natural mines (using the mining and underground leaching techniques); Two plants of U3O8 production at Aktau and Stepnogorsk towns; Metallurgical plant producing uranium fuel pellets for fuel assemblies of RBMK and VVER reactors types; Energy plant at Aktau (MAEK) is used for production of heat, electricity and desalination of water and based on three energy blocks using natural gas and one nuclear unit with fast breeder reactor BN-350. The fast breeder reactor BN-350 at Aktau was commissioned in November 1972 and finally shutdown in April 1999. Three different type of the research reactors and non reactor test facility on the territory of the former Semipalatinsk Nuclear Test Site and one research reactor and subcritical assembly nearly Almaty are exploiting for the investigation in field of reactors nuclear safety and other type of investigations. These are: VVR-K - light water reactor, power - 10 MW, EWG-1M - thermal light water heterogeneous vessel reactor with light water moderator and coolant, beryllium reflector, maximum thermal power - 35 MW, IGR - impulse homogeneous uranium-graphite thermal neutron reactor with graphite reflector, RA - thermal neutron high temperature gas heterogeneous reactor with air coolant, zirconium hydride moderator, and beryllium reflector, about 0.5 MW power, EAGLE - non reactor test facility for reactor fuel element melt process due to severe accident studding. Project on construction of experimental reactor TOKOMAK at city Kurchatov (in frame of International Thermonuclear Experimental Reactor) is going on (design and equipment manufacture and procurement stage). Accomplishment of the project is estimated for year 2007. Works on construction of the new cyclotron at Astana University started at the beginning of this year in co-operation with Dubna

  2. The future of the Fast Breeder

    International Nuclear Information System (INIS)

    Fast Breeder Reactors (FBRs) can produce more fissile nuclei than they consume whilst, at the same time, generating energy using fast neutrons. By conversion of uranium isotope 238 into a fissionable fuel, FBRs provide over 60 times more energy than can be extracted from the uranium reserves by thermal reactors. Their development is therefore an essential objective in the next century, particularly for those industrialised countries that have little or no energy resources of their own. The European countries which have been engaged in the development of FBRs for more than 25 years have decided to collaborate in an advanced design, the European Fast Reactor (EFR) which uses the best of previous national projects and draws on extensive operating experience from FBR plants in Europe. The naturally safe characteristics and technological features of sodium-cooled Fast Reactors will be fully utilised in an EFR design which meets the same safety level as the Light Water Reactors (LWRs). Owing to technical progress and series construction effect, the EFR is expected to achieve competitiveness with contemporary LWRs with the higher capital cost of the Fast Reactor offset by its markedly lower fuel cycle cost. (author)

  3. Development of safety evaluation methods and analysis codes applied to the safety regulations for the design and construction stage of fast breeder reactor (Annual safety research report, JFY 2010)

    International Nuclear Information System (INIS)

    The purposes of this study are to develop the safety evaluation methods and analysis codes needed in the design and construction stage of fast breeder reactor (FBR). In JFY 2010, the following results are obtained. As for the development of safety evaluation methods needed in the safety examination achieved for the reactor establishment permission, development of the analysis codes such as core seismic analysis code, core safety analysis code and core damage analysis code were carried out according to the plan. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied, and the seismic PSA to evaluate residual risk was studied. (author)

  4. Development of safety evaluation methods and analysis codes applied to the safety regulations for the design and construction stage of fast breeder reactor (Annual safety research report, JFY 2011)

    International Nuclear Information System (INIS)

    The purposes of this study are to develop the safety evaluation methods and analysis codes needed in the design and construction stage of fast breeder reactor (FBR). In JFY 2011, the following results are obtained. As for the development of safety evaluation methods needed in the safety examination achieved for the reactor establishment permission, development of the analysis codes such as core seismic analysis code, core safety analysis code and core damage analysis code were earned out according to the plan. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied, and the seismic PSA to evaluate residual risk was studied. (author)

  5. Fast breeders role in the energy supply of the EC

    International Nuclear Information System (INIS)

    The investigation summarized in this article was initiated by a work team of the International Society of Power Generators (UNIPEDE) and the EC-commission. The first part presents the results of the possible introduction of fast breeder reactors in the EC for power generation and describes its effects on the demand for natural uranium. The second part describes the present development level of reprocessing of breeder reactor fuel, a part of the fuel cycle which is of very special importance. With the assumption of a rather undisturbed utilization of nuclear energy the investigation comes to the result that the development of the fast breeders and their fuel cycle in the EC must be promoted in any case. And, in the future, the available means should be used for a balanced development of both the reactor system and the fuel cycle. (orig.)

  6. Current status on fast reactor program in Kazakhstan

    International Nuclear Information System (INIS)

    Atomic scientific-industrial complex of Republic of Kazakhstan consist of: Uranium mining, production and power industry: - Enterprises of uranium ores geological searching and number of natural mines (using the mining and underground leaching techniques); - Two plants of U3O8 production at Aktau and Stepnogorsk towns; - Metallurgical plant producing uranium fuel pellets for fuel assemblies of RBMK and VVER reactors types; - Energy plant at Aktau (MAEK) is used for production of heat, electricity and desalination of water and based on three energy blocks using natural gas and one nuclear unit with fast breeder reactor BN-350. The fast breeder reactor BN-350 at Aktau was commissioned in November 1972 and finally shut down in April 1999. Three different type of the research reactors and non reactor test facility on the territory of the former Semipalatinsk Nuclear Test Site and one research reactor and sub critical assembly nearly Almaty are exploiting for the investigation in field of reactors nuclear safety and other type of investigations

  7. Code HEX-Z-DMG for support of accounting for and control of nuclear material software system as part of international safeguards system at BN-350 site

    International Nuclear Information System (INIS)

    A code for the computation of the global neutron distribution in the three-dimensional hexagonal-z geometry and multi-group diffusion approximation was developed at BN-350 as the main part of the BN-350 accounting for and control of nuclear material software system. This software system includes: the model for stationary distributions of neutrons; the model to calculate isotope compositions changing; the model of refueling operations; To develop this system next two principal problems were solved: to make a micro cross sections library for all nuclides for the BN-350 reactor core; to develop the code for the computation of the global neutron distribution. To solve first task the twenty-six-energy-groups micro cross sections library for more than seventy nuclides was produced. To solve second task the three-dimensional hexagonal-z geometry and multi-group diffusion approximation code was developed. This code (HEX-Z-DMG) was based on the solution of the multi groups diffusion equation using the standard net approach. The series of calculations was performed in the twenty-six-energy-groups representation using this code. We compared eigenvalues (keff), a worth added during refueling operations, spatial and energy-group-dependent neutron flux distributions with results of calculation using other code (DIF3D). After the series of these calculations we can say that the HEX-Z-DMG code is well established to use as the part of the BN-350 accounting for and control of nuclear material software system. (author)

  8. On the history of the Fast Breeder Project

    International Nuclear Information System (INIS)

    The evolution of the Fast Breeder Project from its beginning at the Karlsruhe Nuclear Research Center to the present cooperation of various organisations especially in the Federal Republic of Germany, the Netherlands, Belgium and France is described in its historical context. Where as the emphasis was on physical studies of fast neutron cores in the early phase, technological and safety problems gained importance in the subsequent development. The increasing collaboration with industry and the support by government funds resulted in the design and start of construction of the prototype SNR 300. The objectives and the reasoning underlying important intermediate decisions are described. In the meantime, licensing and funding problems have become decisive for the project schedule. The present report also gives an account of the international and national political aspects which influence the breeder reactor development. In the annex all fast breeder publications of the Karlsruhe Nuclear Research Center are listed. (orig.)

  9. Italian position paper on the safety analysis of liquid metal fast breeder reactors as related to sodium fires. The PEC reactor

    International Nuclear Information System (INIS)

    To obtain a deep understanding of physical phenomena and engineering problems connected to sodium fires, and to optimize the utilization of human and financial resources available, CNEN (now ENEA) has decided to join the French Commissariat a l'Energie Atomique (CEA) in the realization of a Franco-Italian experimental programme on sodium fires, named ESMERALDA. As for design preventions for PEC reactor (a fast flux, liquid metal cooled, fuel element testing reactor) fundamental choices were made taking into account all available knowledge, but with particular reference to the results of CEA's previous experiments on sodium fires. More detailed design analysis will be possible in the future, based on experimental results coming from the ESMERALDA programme

  10. Fast breeder physics and nuclear core design

    International Nuclear Information System (INIS)

    This report gathers the papers that have been presented on January 18/19, 1983 at a seminar ''Fast breeder physics and nuclear core design'' held at KfK. These papers cover the results obtained within about the last five years in the r+d program and give some indication, what still has to be done. To begin with, the ''tools'' of the core designer, i.e. nuclear data and neutronics codes are covered in a comprehensive way, the seminar emphasized the applications, however. First of all the accuracies obtained for the most important parameters are presented for the design of homogeneous and heterogeneous cores of about 1000 MWe, they are based on the results of critical experiments. This is followed by a survey on activities related to the KNK II reactor, i.e. calculations concerning a modification of the core as well as critical experiments done with respect to re-loads. Finally, work concerning reactivity worths of accident configurations is presented: the generation of reactivity worths for the input of safety-related calculations of a SNR 2 design, and critical experiments to investigate the requirements for the codes to be used for these calculations. These papers are accompanied by two contributions from the industrial partners. The first one deals with the requirements to nuclear design methods as seen by the reactor designer and then shows what has been achieved. The latter one presents state, trends, and methods of the SNR 2 design. The concluding remarks compare the state of the art reached within DeBeNe with international achievements. (orig.)

  11. Status of fast breeder development in Germany

    International Nuclear Information System (INIS)

    The German Minister for Research and Technology (BMFT), Dr. Heinz Riesenhuber, announced on March 20, 1991 that SNR 300, the fast breeder power plant at Kalkar, shall be abandoned. This message followed a top level meeting between BMFT officials and senior managers of Siemens, RWE, PreuBenElektra und Bayernwerk. BMFT, vendor Siemens and the three utilities had carried the interim finance costs of DM 105 million yearly since 1989. The licensing procedure had been obstructed during a long time by the responsible authorities. For several years the licensing process for the last permits on nuclear operation of KKW Kalkar had been held up by the government of the state of North Rhine-Westphalia (NWR). Licensing of nuclear power plants is the responsibility of the states, according to the German Atomic Act. The state of NRW turned against the SNR 300 project when the Social Democratic Party (SPD) started questioning nuclear power in 1985. Until then 17 partial licenses for SNR 300 had been granted, each time including an overall project approval. One of the consequences of the demise of SNR-300 was that Interatom GmbH, a subsidiary of Siemens AG, has been integrated into the division KWU of the Siemens AG on 1 October, 1991. For SNR 300 the turn-key contracts to the supplier company were cancelled by the operator on April 10, 1991 following the political termination of the SNR-300 Project. On August 23, 1991 after the termination of the SNR project, KfK decided to shutdown the KNK II reactor for final decommissioning

  12. Comments on the introduction of fast breeders in the Debenelux area

    International Nuclear Information System (INIS)

    The report gives a survey of the impact of introducing sodium-cooled fast breeder reactors in the Federal Republic of Germany and the BeNeLux countries (DeBeNeLux region). The supply situation with respect to electric and thermal energy is studied in particular, together with aspects of economy and environmental impact. The potential and consequences of a breeder economy, the present status, and future r+d work are discussed. In addition to sodium-cooled fast breeder reactors with oxide or carbide fuel, alternative solutions are touched: (1) light water and high temperature reactors, (2) helium-cooled fast breeder reactors, and (3) geothermal energy, solar energy and fusion energy

  13. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors; Analyse d'images tridimensionnelles ultrasonores pour l'inspection en service des reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Dancre, M

    1999-11-01

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  14. A contribution to the analysis of the thermal behaviour of Fast Breeder fuel rods with UO{sub 2}-PuO{sub 2} fuel; Contribucion al analisis del comportamiento termico de las barras combustibles de UO{sub 2}-PuO{sub 2} de los reactores rapidos

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimenez, J.; Elbel, H.

    1977-07-01

    The fuel of Fast Breeder Reactors which consists of Uranium and Plutonium dioxide is mainly characterized by the amount and distribution of void volume and Plutonium and the amount of oxygen. Irradiation experiments carried out with this fuel have shown that initial structure of the fuel pellet is subjected to large changes during operation. These are consequences of the radial and axial temperature gradients within the fuel rods. (Author) 54 refs.

  15. Fuel Cycle Economics of Fast Breeders with Plutonium

    International Nuclear Information System (INIS)

    Pu-fuelled fast breeder systems are characterized by their attractive fuel cycle economics. Basically, the economics are influenced by a number of reactor parameters like fissile material rating, fuel bum-up, breeding ratio and thermal efficiency, on the one hand, and by a number of economic parameters like the plutonium price, the interest rate and the fabrication and reprocessing costs on the other. To a certain extent, the two sets of parameters are interdependent and the cost parameters are influenced by the existing nuclear industry as well. In the present paper it is shown, with the help of a number of specific examples, that the fuel cycle of Pu fast breeders is not a static and isolated property of the reactor but is dynamic in nature. Depending on the cost situation and other conditions, the fuel cycle can always be optimized anew to fit into the existing overall economics. A high Pu price, for example, requires a high fissile rating or a high breeding ratio, whereas, if the Pu price falls, neither a high rating nor a high breeding ratio is necessary to keep the fuel cycle costs low. The influence of fabrication costs may be regulated to some extent by varying the burn-up. The effect of reprocessing costs may be made comparatively insignificant provided reprocessing can be carried out in large centrally located multi-purpose plants for converter elements. Because of the high flexibility of the fuel cycle of Pu fast breeders, the attractiveness of their fuel cycle economics can be retained under a wide range of competitive conditions. (author)

  16. Fast breeder reactors: The state of materials subjected to high energy radiation, high local pressure and temperature, gradients and their mechanical properties adapted to the resultant constraints

    International Nuclear Information System (INIS)

    The motivations to realize nuclear breeder reactors are developed in the present context of a strong growth in electronuclear power stations in many countries, using mostly moderated and water cooled reactors. The past studies can be of a substantial profit in France and, to a lesser degree, in other countries of the European Union. However, to use fully the 238 uranium isotope, the materials for these breeders must withstand much harder radiation than those for water reactors. The power densities and thermal gradients will also be much more intense. The mechanical stresses, both static and dynamic, will be large and will act on materials with altered mechanical properties. Fuel elements will have to be produced with materials already irradiated several times and therefore showing such alterations. A field of studies concerning materials and their mechanical behavior in new and severe conditions is sketched here, both in construction and working conditions, together with proposed necessary instrumentation and research orientations. (authors)

  17. Report of the mid-term reviews committees for evaluation of development researches in the 2004 fiscal year. Implementation strategy project of fast breeder reactor cycle

    International Nuclear Information System (INIS)

    The report consists of abstract, construction of the committee, consideration process, evaluation method, evaluation results and reference materials: mid-term evaluation of research subjects, measures to evaluation results, JNC's opinion about evaluation and practical use strategy project of FBR cycle (explanation data), 27 tables and 88 illustrations, Q and A, technical terms and OHP. The R and D project includes FBR system (four power sources such as sodium-, lead-bismuth-, helium- and water-cooling reactor) , small reactor, fuel cycle system (advanced wet method, oxide electrolysis and metal electrolysis method) and fuel production system. The R and D project of FASE-II is appropriate, because characteristics of reactor type of FBR system and fuel system are investigated. In future, it is necessary to definite the concept of the type proposed. (S.Y.)

  18. Reprocessing of the irradiated boron carbide enriched by boron-10 isotope and its reuse in the control rods of the fast breeder reactors

    International Nuclear Information System (INIS)

    The present paper discusses the development of technology for reprocessing of irradiated boron carbide, which provides complete removal of radionuclides from irradiated materials. This technology allows the repeated use of B10 enriched with B4C in fast reactors. (author). 4 figs, 1 tab

  19. Summary report on reduction of environmental burden related to nuclear fuel cycle. Collaboration of feasibility study on commercialized fast breeder reactor cycle system between JNC and JAERI

    International Nuclear Information System (INIS)

    This report summaries the state of the art of collaborative study related to the reduction of environmental burden by applying partition and transmutation technologies between JNC and JAERI conducted on July 2000. The items discussed are listed below. (1) Evaluation Index for Reduction of Environmental Burden in the Feasibility Study. (2) Research and Development Plans for Partition and Transmutation Technologies. PT Technology Development in JNC. PT Technology Development in JAERI. (3) Information Exchange for Basic Technology Related to Partition and Transmutation. Fuel Manufacturing Technology. Nuclear Data. Reactor Physics. Separation Technology for Fission Products. (author)

  20. 用于池式快堆系统分析的钠池三维模型开发%Development of Three-Dimensional Sodium Pool Model for System Analysis of Pool-Type Liquid Metal Fast Breeder Reactor

    Institute of Scientific and Technical Information of China (English)

    隋丹婷; 陆道纲; 张盼

    2012-01-01

    由于池式快堆钠池内的热工水力学特性对反应堆的安全运行有重要影响,本文采用基于交错网格的SIMPLE算法开发直角坐标系和柱坐标系下钠池三维计算软件.应用CFX软件进行验证之后,完成了三维流场分析程序与系统分析软件SAC-CFR的耦合,并用耦合后的程序分析日本文殊快堆45%功率稳态运行工况上腔室内的流场分布,初步验证了堆芯上腔三维化的SAC-CFR用于系统分析的有效性,为进一步开发事故模型、非能动余热排出系统模型做准备.%As the thermal-hydraulic characteristic in sodium pool is crucial for safety operation of liquid metal fast breeder reactor (LMFBR), a three-dimensional sodium pool thermal-hydraulic analysis code was developed based on SIMPLE algorithm on stagger grid under Cartesian coordinates and cylindrical coordinates. After the validation with CFX, coupling between the analysis code and SAC-CFR was completed) and then the coupled code was applied to the flow field analysis in upper plenum of Monju Plant at 45% thermal power steady-state operation condition, which preliminary shows the effectiveness of the system analysis with coupled code and makes preparations for further development of accident analysis model and passive residual heat removal system.

  1. Studies on sodium boiling phenomena in out of pile rod bundles for various accidental situations in Liquid Metal Fast Breeder Reactors (LMFBR) experiments and interpretations

    Science.gov (United States)

    Seiler, J. M.; Rameau, B.

    Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.

  2. Comparative study of unprotected loss of flow accident analysis of 1000 MWe and 500 MWe Fast Breeder Reactor Metal (FBR-M) cores and their inherent safety

    International Nuclear Information System (INIS)

    Research highlights: → ULOF analysis of metal (U-Pu-6% Zr) fuelled 500 MWe and 1000 MWe pool type FBR. → Uncertainties (typically 20%) on the sensitive feedback parameters. → Sensitive parameters - core radial feedback and sodium void reactivity effect. → Transient behavior of both 500 MWe and 1000 MWe core are benign under ULOFA. → For 1000 MWe inherent safety is assured with limited sodium void reactivity. - Abstract: Unprotected loss of flow (ULOF) analysis of metal (U-Pu-6% Zr) fuelled 500 MWe and 1000 MWe pool type FBR are studied to verify the passive shutdown capability and its inherent safety parameters. Study is also made with uncertainties (typically 20%) on the sensitive feedback parameters such as core radial expansion feedback and sodium void reactivity effect. Inference of the study is, nominal transient behavior of both 500 MWe and 1000 MWe core are benign under unprotected loss of flow accident (ULOFA) and the transient power reduces to natural circulation based Safety Grade Decay Heat Removal (SGDHR) system capacity before the initiation of boiling. Sensitivity analysis of 500 MWe shows that the reactor goes to sub-critical and the transient power reduces to SGDHR system capacity before the boiling initiation. In the sensitivity analysis of 1000 MWe core, initiation of voiding and fuel melting occurs. But, with 80% core radial expansion reactivity feedback and nominal sodium expansion reactivity feedback, the reactor was maintained substantially sub-critical even beyond when net power crosses the SGDHR system capacity. From the study, it is concluded that if the sodium void reactivity is limited (4.6 $) then the inherent safety of 1000 MWe design is assured, even with 20% uncertainty on the sensitive parameters.

  3. Liquid Metal Fast Breeder Reactors: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, H.D. (ed.)

    1980-11-01

    This bibliogralphy includes 5465 selected citations on LMFBR development. The citations were compiled from the DOE Energy Data Base covering the period January 1978 (EDB File No. 78R1087) through August 1980 (EDB File No. 80C79142). The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. Report citations are arranged alphanumerically by report number; nonreport literature citations are arranged chronologically. Corporate, Personal Author, Subject, and Report Number Indexes are provided in Volume 2.

  4. Liquid Metal Fast Breeder Reactors: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, H.D. (ed.)

    1980-11-01

    This bibliography includes 5465 selected citations on LMFBR development. The citations were compiled from the DOE Energy Data Base covering the period January 1978 (EDB File No. 78R1087) through August 1980 (EDB File No. 80C79142). The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. Report citations are arranged alphanumerically by report number; nonreport literature citations are arranged chronologically. Corporate, Personal Author, Subject, and Report Number Indexes are provided in Volume 2.

  5. Development of fast breeder reactor basic technology

    International Nuclear Information System (INIS)

    This project is the second year study of Development of FBR basic technology, the scope of which was as follows : 1) To compile the FBR technology information and to update the FBR data base, 2) To review and/or set up the FBR nuclear and thermal-hydraulic calculation, 3) System in order to make the preparation for the future construction of a demonstration or a commercial FBR plant for Korea. For the FBR calculation system, nuclear calculation system, LIB-IV/SPHINX/VENTURE and thermal-hydraulic calculation system COMMIX-IB/COBRA-4I/THI-3D were compiled. In addition, benchmark calculations for codes were partly performed. (author)

  6. Liquid Metal Fast Breeder Reactors: a bibliography

    International Nuclear Information System (INIS)

    This bibliogralphy includes 5465 selected citations on LMFBR development. The citations were compiled from the DOE Energy Data Base covering the period January 1978 (EDB File No. 78R1087) through August 1980 (EDB File No. 80C79142). The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. Report citations are arranged alphanumerically by report number; nonreport literature citations are arranged chronologically. Corporate, Personal Author, Subject, and Report Number Indexes are provided in Volume 2

  7. Safeguards in Prototype Fast Breeder Reactor Monju

    International Nuclear Information System (INIS)

    Conclusion: (1) The integrated safeguards approach (ISA) was applied to Monju in November 2009 after it was confirmed that fuel assemblies were able to be monitored in every fuel handling route using the safeguards equipments installed in Monju. (2) A series of design, development and improvement related to safeguards in Monju, which were started in about 1985 (on the Monju construction stage), was finished by the shift to the ISA. (3) The safeguards method in Monju is expected to be a future FBR safeguards model. (4) In future, the reliability of safeguards equipments will be confirmed by accumulating the handling achievements of the spent fuel assemblies etc

  8. Liquid Metal Fast Breeder Reactors: a bibliography

    International Nuclear Information System (INIS)

    This bibliography includes 5465 selected citations on LMFBR development. The citations were compiled from the DOE Energy Data Base covering the period January 1978 (EDB File No. 78R1087) through August 1980 (EDB File No. 80C79142). The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. Report citations are arranged alphanumerically by report number; nonreport literature citations are arranged chronologically. Corporate, Personal Author, Subject, and Report Number Indexes are provided in Volume 2

  9. Monte-Carlo Modeling of Parameters of a Subcritical Cascade Reactor Based on MSBR and LMFBR Technologies

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; Polanski, A; Sosnin, A N; Khudaverdyan, A H

    2001-01-01

    Parameters of a subcritical cascade reactor driven by a proton accelerator and based on a primary lead-bismuth target, main reactor constructed analogously to the molten salt breeder (MSBR) reactor core and a booster-reactor analogous to the core of the BN-350 liquid metal cooled fast breeder reactor (LMFBR). It is shown by means of Monte-Carlo modeling that the reactor under study provides safe operation modes (k_{eff}=0.94-0.98), is apable to transmute effectively radioactive nuclear waste and reduces by an order of magnitude the requirements on the accelerator beam current. Calculations show that the maximal neutron flux in the thermal zone is 10^{14} cm^{12}\\cdot s^_{-1}, in the fast booster zone is 5.12\\cdot10^{15} cm^{12}\\cdot s{-1} at k_{eff}=0.98 and proton beam current I=2.1 mA.

  10. Turning into carbonate the residual sodium left in BN-350 circuits may alleviate concerns over their long term safe confinement

    International Nuclear Information System (INIS)

    After the coolant is drained from the reactor vessel and from the primary and secondary circuits of the BN-350 nuclear power plant, what sodium is left in ponds and films may amount to hundreds of kilograms. For the long term safe storage period which is to follow, preliminary safety analyses (e.g. derived from those made for French sodium cooled reactors) might show that the risks incurred through loss of leaktightness are significant. The ingress of moisture into the circuits would generate, by reaction with the sodium, two undesirable products : sodium hydroxide and hydrogene. Even when considering that water would enter the circuits progressively, so that the heat of the reaction does not give rise to over-pressure, some main risk factors remain. The most promising solution to this challenge appears to be the carbonation of the sodium residues, by progressive diffusion of an appropriate association of carbon dioxyde and water vapour through the inert gaseous medium which fills the circuits. The desired product is porous sodium hydrogenocarbonate

  11. Plutonium Worlds. Fast Breeders, Systems Analysis and Computer Simulation in the Age of Hypotheticality

    OpenAIRE

    Sebastian Vehlken

    2014-01-01

    This article examines the media history of one of the hallmark civil nuclear energy programs in Western Germany – the development of Liquid Metal Fast Breeder Reactor (LMFBR) technology. Promoted as a kind of perpetuum mobile of the Atomic Age, the "German Manhattan Project" not only imported big science thinking. In its context, nuclear technology was also put forth as an avantgarde of scientific inquiry, dealing with the most complex and critical technological endeavors. In the face of the ...

  12. Study of mechanisms and kinetics of Sodium-CO2 interactions. Contribution to the evaluation of an energy conversion system with supercritical CO2 for sodium fast breeder reactors

    International Nuclear Information System (INIS)

    This PhD study consisted in studying reactive mechanisms and kinetics of sodium-CO2 interactions, in the frame of the assessment of an energy conversion system with supercritical CO2 for fast breeder reactors cooled by sodium. The approach was the following. First of all, the interactions between sodium and CO2 have been brought to light by laboratory experiments associated with products analysis. They have enabled the establishment of a coherent mechanism, in agreement with literature data, and gave preliminary indications on the reaction kinetics. In order to estimate a more detailed reaction kinetics, we tried to approach the phenomenon that appears in the case of a leak in a sodium-CO2 heat exchanger. Geometry of such heat exchangers is not fixed for the moment, even if the development of compact exchangers is foreseen. Then, free jets of CO2 in liquid sodium have been modeled in order to obtain, by identification, kinetics parameters of the reaction. Those parameters, estimated with such a geometry, will remain valid with a much complex geometry, that will better represent the real exchanger. An experimental bench has been defined and built to realize those jets. The first laboratory experiments have concluded in the existence of different reactive mechanisms according to the temperature level. A threshold has been brought to light around 500 C. Below this one, reaction appears moderated, or even, slow, with a medium exothermicity, and appears after an induction period that depends on the temperature,and which duration could reach several hours. At contrary, above this threshold, it seems rapid and more exothermic. Below 500 C, sodium oxalate is produced, and then reacts with sodium in an exothermic way, following the reactions: CO2 + Na →1/4 Na2C2O4 + 1/4 CO + 1/4 Na2CO3 (5) 4 Na + Na2C2O4 → 3 Na2O + CO + C (6) Above 500 C, sodium carbonate is produced, and can then possibly react with sodium in an endothermic way, following the reactions: 4 Na + 3 CO2

  13. The History of the Construction and Operation of the German KNK II Fast Breeder Power Plant

    International Nuclear Information System (INIS)

    The report gives a historical review of the German KNK fast breeder project, from its beginnings in 1957 up to permanent plant shutdown in 1991. The original design was for the sodium cooled thermal reactor KNK I, which was commissioned on the premises of the Karlsruhe Nuclear Research Center. The conversion into a fast nuclear power plant however was a process, which had to overcome considerable licensing difficulties. KNK II attained high fuel element burnups, and the completion of the fuel cycle was achieved. Various technical problems encountered in specific components are described in detail. After the termination of the SNR 300 fast breeder project in Kalkar for political reasons, KNK II was shutdown in August 1991

  14. The history of the construction und operation of the KNK II German Fast Breeder Power Plant

    International Nuclear Information System (INIS)

    This report describes the German KNK fast breeder project from its beginnings in 1957 until permanent shutdown in 1991. The initial design provided for a sodium-cooled, but thermal reactor. Already during the commissioning of KNK I on the premises of the Karlsruhe Nuclear Research Center modification into a fast nuclear power plant was decided. Considerable difficulties in licensing had to be overcome. KNK II reached high burnup values in the fuel elements and closing of the fuel cycle was achieved. A number of technical problems concerning individual components are described in detail. After the politically motivated discontinuation of the SNR 300 fast breeder project at Kalkar, KNK II was shut down for good in August 1991. (orig.)

  15. Fast Breeder Blanket Facility (FBBF). Annual report, January 31, 1976--December 31, 1977

    International Nuclear Information System (INIS)

    The work performed in the reporting period was primarily concerned with the construction of the Fast Breeder Blanket Facility (FBBF), acquisition of experimental equipment, outlining the experimental program, preanalysis of the initial loading configuration and investigation of the safety of the initial loading and advanced loadings. The detailed physical description of the FBBF, operational procedures and controls, radiation shielding and experimental equipment are presented. The ability of the FBBF to simulate the blanket spectrum of a large fast breeder reactor is illustrated by comparison of spectra. The source axial distribution, reaction rate comparisons, breeding of plutonium and gamma-ray energy deposition rates are also discussed. Some of the safety aspects of the initial loading and advanced loadings are described. Experimental capabilities of the facility are outlined

  16. Plutonium Worlds. Fast Breeders, Systems Analysis and Computer Simulation in the Age of Hypotheticality

    Directory of Open Access Journals (Sweden)

    Sebastian Vehlken

    2014-09-01

    Full Text Available This article examines the media history of one of the hallmark civil nuclear energy programs in Western Germany – the development of Liquid Metal Fast Breeder Reactor (LMFBR technology. Promoted as a kind of perpetuum mobile of the Atomic Age, the "German Manhattan Project" not only imported big science thinking. In its context, nuclear technology was also put forth as an avantgarde of scientific inquiry, dealing with the most complex and critical technological endeavors. In the face of the risks of nuclear technology, German physicist Wolf Häfele thus announced a novel epistemology of "hypotheticality". In a context where traditional experimental engineering strategies became inappropiate, he called for the application of advanced media technologies: Computer Simulations (CS and Systems Analysis (SA generated computerized spaces for the production of knowledge. In the course of the German Fast Breeder program, such methods had a twofold impact. One the one hand, Häfele emphazised – as the "father of the German Fast Breeder" – the utilization of CS for the actual planning and construction of the novel reactor type. On the other, namely as the director of the department of Energy Systems at the International Institute for Applied Systems Analysis (IIASA, Häfele advised SA-based projections of energy consumption. These computerized scenarios provided the rationale for the conception of Fast Breeder programs as viable and necessary alternative energy sources in the first place. By focusing on the role of the involved CS techniques, the paper thus investigates the intertwined systems thinking of nuclear facilities’s planning and construction and the design of large-scale energy consumption and production scenarios in the 1970s and 1980s, as well as their conceptual afterlives in our contemporary era of computer simulation.

  17. Formation of high-precision volume-of-fluid method establishing appropriate balance between pressure and surface tension and its application to gas entrainment phenomena in fast breeder reactors

    International Nuclear Information System (INIS)

    To evaluate directly gas entrainment (GE) phenomena in fast breeders, we have been studied a numerical simulation method based on a high-precision volume-of-fluid (VOF) methodology. In addition, we have been employed unstructured meshes to subdivide simulation domains because exact modeling of complicated geometries in each simulation domain is a key to simulate gas entrainment phenomena accurately. Therefore, as important parts of our study, formulations of each calculation procedure in the high-precision VOF methodology on unstructured meshes are conducted in this paper. In concrete terms, calculation procedures for 1) interfacial gradient vectors, 2) interface reconstructions, 3) fluxes of volume fraction on each mesh cell face are formulated on unstructured meshes. Calculation procedures of Surface tension forces are also formulated in this paper. Then, unphysical behaviors of velocity distributions near gas-liquid interface induced by inappropriate formulation of pressure gradient are discussed and an appropriate formulation is derived considering proper balance conditions between pressure and surface tension forces. It is confirmed that this new formulation reduces the unphysical behaviors in a numerical simulation of a rising gas bubble in liquid. Finally, the basic GE experiment is simulated using our numerical simulation method. The simulation results shows that the GE phenomena occurs in the same mechanism with the experimental results. (author)

  18. What can fast breeders do for Ontario

    International Nuclear Information System (INIS)

    Fast reactors have the potential of significantly reducing Ontario's demand for natural resources while meeting virtually any requirements for nuclear power this province may have. The breeding efficiency of the fast reactors does not affect the overall uranium consumption of the system to any significant extent. It is, however, an important economic factor in a breeder/burner system. To minimize the resource consumption, the fast reactors should be introduced in Ontario at the onset of the next century. The 'breeder-burner' mix of reactors can effectively reduce the fissile inventory of the whole power system (including the inventory in irradiated fuel storage bays). For the nuclear capacity growth scenarios thought to be applicable in Ontario, the fast reactor systems have about the same or lower requirements for natural uranium as the best (self-sustaining thorium) CANDU cycles. Compared to all other advanced CANDU cycles, the fast reactors yield a substantial resource saving. (auth)

  19. DeBeNe Test Facilities for Fast Breeder Development

    International Nuclear Information System (INIS)

    This report gives an overview and a short description of the test facilities constructed and operated within the collaboration for fast breeder development in Germany, Belgium and the Netherlands. The facilities are grouped into Sodium Loops (Large Facilities and Laboratory Loops), Special Equipment including Hot Cells and Reprocessing, Test Facilities without Sodium, Zero Power Facilities and In-pile Loops including Irradiation Facilities

  20. Fast Breeder Project. Second quarterly report, 1974

    International Nuclear Information System (INIS)

    Research progress is reported on fuel pin development, material studies and development, corrosion tests and coolant analysis, fuel cycle studies, physics experiments, fast reactor safety, instrumentation development, environmental studies, and sodium technology tests. Much of the work had SNR-300 design applications. (U.S.)

  1. Experience with sodium aerosols and accompanying cover gas surveillance at KNK II; Presentation at the meeting on Experience exchange on operational experience of fast breeder reactors, Karlsruhe/Bensberg/Kalkar, June 18. - 22. 1990

    International Nuclear Information System (INIS)

    One problem linked with the operation of sodium cooled reactors is the formation of aerosols in the cover gas and their deposition on colder structural components. At the sodium cooled fast reactor KNK this phenomenon lead to some mobility problems of the rotating plug and of the control rod drives. These effects and counter measures for their removal are discussed in this presentation

  2. Inhomogeneity of microstructure, mechanical properties, magnetism, and corrosion observed in a 12Cr18Ni10Ti fuel assembly shroud irradiated in BN-350 to 59 dpa

    Science.gov (United States)

    Maksimkin, O. P.; Tsay, K. V.; Garner, F. A.

    2015-12-01

    A hexagonal shroud containing a standard in-core fueled subassembly from the BN-350 reactor was examined after reaching 59 dpa maximum, followed by long-term storage underwater. Specimens were derived from both mid-face and rib-corner positions. It was shown that there were complex spatial variations in void swelling, mechanical properties, microhardness, radiation-induced magnetism as well as corrosion while underwater. The spatial variations arose from two major sources. The first source was variations in height associated with variations in dpa rate and irradiation temperature. The second source was shown to be spatial variations in starting microstructure arising primarily from a higher level of initial deformation and hardness in the rib-corners of the hexagonal shroud. With irradiation the differences in microhardness between the two regions disappeared, but void swelling in the rib areas was larger than at mid-face positions. The swelling enhancement at the corners is thought to arise primarily from the combined effect of temper annealing at a temperature known to remove carbon from the matrix before irradiation, and the influence of higher deformed microstructures to accelerate recrystallization, possibly with assistance from localized residual stresses. Swelling was relatively low at the bottom low-temperature end of the shroud, but increased on the upper end of the assembly, reflecting primarily a transition between a precipitation regime involving titanium carbide to one involving nickel-rich and silicon-rich G-phase.

  3. Proceedings of the NEACRP/IAEA Specialists meeting on the international comparison calculation of a large sodium-cooled fast breeder reactor at Argonne National Laboratory on February 7-9, 1978

    International Nuclear Information System (INIS)

    The results of an international comparison calculation of a large (1250 MWe) LMFBR benchmark model are presented and discussed. Eight reactor configurations were calculated. Parameters included with the comparison were: eigenvalue, k/sub infinity/, neutron balance data, breeding reaction rate ratios, reactivity worths, central control rod worth, regional sodium void reactivity, core Doppler and effective delayed neutron fraction. Ten countries participated in the comparison, and sixteen solutions were contributed. The discussion focuses on the variation in parameter values, the degree of consistency among the various parameters and solutions, and the identification of unexpected results. The results are displayed and discussed both by individual participants and by groupings of participants

  4. Formulation of high-precision volume-of-fluid method establishing appropriate balance between pressure and surface tension and its application to gas entrainment phenomena in fast breeder reactors

    International Nuclear Information System (INIS)

    To evaluate directly gas entrainment (GE) phenomena in fast reactors, a numerical simulation method based on a high-precision volume-of-fluid (VOF) methodology have been studied. Unstructured meshes to subdivide simulation domains have been employed because exact modeling of complicated geometries is necessary for GE simulations. In this note, formulations of each calculation procedure in the high-precision VOF methodology on unstructured meshes are briefly presented. Calculation procedures of surface tension forces are also presented. In addition, unphysical behaviors of velocity distributions near gas-liquid interface induced by inappropriate formulation of pressure gradient are addressed and an appropriate formulation is presented considering proper balance conditions between pressure and surface tension forces. Finally, the improved simulation method is applied to the basic GE experiment. The simulation results show that the GE phenomena occur in the same mechanism with the experimental results. (author)

  5. Chemical operational experience with the water/steam-circuit at KNK II; Presentation at the meeting on Experience exchange on operational experience of fast breeder reactors, Karlsruhe/Bensberg/Kalkar, June 18. - 22. 1990

    International Nuclear Information System (INIS)

    The availability of sodium cooled reactors depends essentially from the safety and reliability of the sodium heated steam generator. The transition from experimental plants with 12-20 MW electrical power to larger plants with 600 MW (BN-600) or 1200 MW (Superphenix) required the change from modular components to larger and compact steam generators with up to 800 MW. Defects of these large components cause extreme losses in availability of the plant and have to be avoided. In view of this request, a comprehensive test program has been performed at KNK II in addition to the normal control of the water/steam-circuit to compile all operational data on the water and steam side of the sodium heated steam generator. This paper describes the plant and the water/steam-circuit with its mode of operation. The experience with the surveillance and different methods of the conditioning are discussed in detail in this presentation

  6. Development of an innovative plate-type SG for fast breeder reactor. Proposal of the concept and the evaluation of the fabricating method by the test fabrication of the partial model

    International Nuclear Information System (INIS)

    The concept of an innovative plate type SG for the fast reactor fabricated by using the HIP (Hot Isostatic Pressing) method was proposed. The heat transfer plate, which is assembled with rectangular tubes and is fabricated by HIP method, is surrounded by leakage detection spaces. It is possible to apply it to both the pool-type and the loop-type LMFR. In this report, the fabrication technique was studied about the concept for the loop-type LMFR, and the following results were obtained. Hip tests, tensile tests, and structure observation were performed to clarify the suitable HIP condition for the modified 9Cr-1Mo steel. As a result, the optimum condition of 1150 deg C x 1200 kgf/cm2 x 3 hr was found. Nickel-type solder (BNi-5) and gold-type solder (BAu-4) were selected as a joining material to laminate the heat transfer tube plates. Through the comparison of tensile tests, BAu-4 that showed a more excellent joining performance was selected on the assumption of the margin of 5 mm from the welding line. After buckling load had been clarified, the BAu-4 brazing of the heat transfer tube plates was performed using a hot pressing method. Problems were not observed in the welding of simulated header, and in the fabricating of the partial model of SG. (author)

  7. Research and development programme in the DEBENE-area for fast breeder material development

    International Nuclear Information System (INIS)

    Since 1964 a joint programme for the development of cladding and core structural materials for Fast Breeder Reactors (FBR) has been underway at the Research Centres in Belgium, Germany and Netherlands and with their industrial partners. Different organizations have contributed to this development in the DEBENE-area [Deutschland (FRG), Belgium, Netherlands], namely the Research Centres: Kernforschungszentrum Karlsruhe and CEN-SCK, Mol, and the industrial partners and Belgonucleaire, Brussel, and Interatom, Bensberg. At the starting point of this development several concepts for FBR's existed, steam cooled, gas cooled, and liquid sodium cooled versions. This was the reason for a relatively broad testing and development programme which took into account the following: (1) commercial austenitic stainless steels with high mechanical strength, (2) commercial nickel-based alloys especially for the purpose of steam cooled FBR's, (3) the development of a series of vanadium-based alloys, and (4) the introduction of dispersion-strengthened ferritic alloys

  8. Area estimate for buffer area of loading/unloading site for metal-concrete casks with BN-350 spent nuclear fuel

    International Nuclear Information System (INIS)

    Calculation results are presented for radiation fields induced by BN-350 spent nuclear fuel transported in seven-pack metal-concrete cask. The results are used to evaluate dose load on personnel and population at the cask loading/unloading operations. For the purpose of calculations, MCNP code was applied. (author)

  9. Liquid metal fast breeder reactor: a friend to the environment

    International Nuclear Information System (INIS)

    Large scale electric generation by any means poses potential challenges to the environment. The LMFBR has essentially no mining or ore requirements and modest transportation requirements. Normal releases from an LMFBR are slight. Risks from accidents appear to be quite small. While wastes present some interesting challenges, a variety of technically feasible alternates are available. On balance, relative to available options, the LMFBR is portrayed as a friend to the environment

  10. Reprocessing technology of liquid metal cooled fast breeder reactor fuel

    International Nuclear Information System (INIS)

    All the important aspects of LMFBR fuel reprocessing are critically reviewed in this report. Storage and transportation techniques using sodium, inert gas, lead, molten salts and organic coolants are comparatively discussed in connection with cooling time and de-activation techniques. Decladding and fuel disaggregation of UO2-PuO2 fuel are reviewed according to the present state of R and D in the main nuclear powers. Strong emphasis is put on on voloxidation, mechanical pulverization and molten salt disaggregation in connection with volatilization of gaseous fission products. Release of fission gases and the resulting off-gas treatment are discussed in connection with cooling time, burn up and dissagregation techniques. The review is limited to tritium, iodine xenon-krypton and radioactive airborne particulates. Dissolution, solvent extraction and plutonium purification problems specifically connected to LMFBR fuel are reviewed with emphasis on the differences between LWR and fast fuel reprocessing. Finally the categories of wastes produced by reprocessing are analysed according to their origin in the plant and their alpha emitters content. The suitable waste treatment techniques are discussed in connection with the nature of the wastes and the ultimate disposal technique. (author)

  11. Method of advancing research and development of fast breeder reactors

    International Nuclear Information System (INIS)

    In the long term plan of atomic energy development and utilization, FBRs are to be developed as the main of future nuclear power generation in Japan, and when the development is advanced, it is positivity aimed at building up the plutonium utilization system using FBRs superior to the uranium utilization system with LWRs. Also it was decided that it is necessary to exert incessant effort for the development of FBRs under the proper cooperation system of the government and people for a considerable long period, and as for the concrete development, hereafter, the deliberation is advanced by the expert subcommittee on FBR development project of the Atomic Energy Commission in succession. The subcommittee was founded in May, 1986, to carry out the deliberation on the long term promotion measures for the development of FBRs, the promotion measures for the research and development, the evaluation and examination of the basic specification of a demonstration FBR, the promotion measures for the international cooperation and other important matters related to the development of FBRs. The construction of the prototype FBR 'Monju' is in progress aiming at the criticality in 1992, and the start of construction of a demonstration FBR is expected in the latter half of 1990s. The situation around the development of FBRs, the fundamentals for promoting the research and development, and the subjects of the research and development are reported. (Kako, I.)

  12. SNR 300 fast breeder reactor: Steel containment - design, erection, testing

    International Nuclear Information System (INIS)

    The paper describes the solutions adopted for the different parts of the steel containment, the calculations verifying the suitability of the designs, the erection and the steel containment pressure and leak tests. The tests were performed with successful results in 1984. (orig./HP)

  13. Innovations in Equipment Erection of Prototype Fast Breeder Reactor (PFBR)

    International Nuclear Information System (INIS)

    • PFBR equipment erection was a challenging task where thin walled vessels had transported and handled with utmost precautions to avoid redial forces on the vessels, which could buckle the vessels. • There was a real challenge in lifting the vessels without swing, placement of large size and heavy vessel at a distance of 57 meters where the crane operator has no line of sight to equipment's being erected. • Lot of care had been taken during lifting, handling and erection of thin walled ODC with innovative methods used for lifting fixtures, guiding arrangements, alignment fixtures and achieved the stringent erection tolerances

  14. 快堆蒸汽发生器热力参数对泄漏探测系统响应特性的影响%Effects of Thermodynamics Parameters of Steam Generator on the Response Behavior of Leak Detection System for Liquid Metal-cooled Fast Breeder Reactor

    Institute of Scientific and Technical Information of China (English)

    段日强; 王洲; 杨献勇; 罗锐; 张勇

    2001-01-01

    The one dimension mathematics model is established for thediffusion of sodium-water reaction products in steam generator (SG) and leak detection system (LDS) for liquid metal-cooled fast breeder reactor.The effects of sodium temperature and flowrate of SG and LDS are analyzed and the useful results are obtained from numerical calculations and experiments in a sodium loop.The results show that increasing the sodium flowrate of SG and LDS,the response time of LDS is decreased,but the sensitivity is lowered.The effect of sodium temperature of SG on the response time of LDS is less than that of sodium flowrate in SD,however,it can make the sensitivity of LDS higher when the sodium temperature is raised.%研究建立了水泄漏引起的钠水反应产物在快堆蒸汽发生器和取样支路传输扩散的一维数学模型,分析了蒸汽发生器流量、钠温度和取样支路流量对泄漏探测系统响应特性的影响。模型计算和实验结果表明:蒸汽发生器流量的增加将缩短系统的响应时间,但却降低了蒸汽发生器钠出口处的氢离子浓度,使系统探测水泄漏的灵敏度降低;蒸汽发生器钠温度对系统的响应时间影响不大,钠温升高,OH-离子的离解速率加快,探测系统的灵敏度提高;增大取样支路流量可改善系统的响应特性。

  15. Burn up calculation applied to the NEACRP fast breeder benchmark

    International Nuclear Information System (INIS)

    The burn up calculations have been performed for the NEACRP fast breeder benchmark. The calculated core parameters are based on the proposal at the NEACRP meeting due to Hammer (CEA). The present calculations have been perfomed basing on JENDL-2 (Japanese Evaluated Nuclear Data Library) instead of JENDL-1 which was used for the previous international comparison calculation of a large LMFBR. The core parameters of the fresh core have been recalculated using JENDL-2 in order to enable direct comparison with those of the end-of-cycle core. The effective microscopic cross sections for fresh core elements have been obtained with use of the ESELEM5 code in 25 groups by weighting with a fundamental mode fine spectrum. Those of F.P. and Actinide nuclides have been generated by using the PROF-GROUCH-G2 code by weighting with 1/E and fission spectrum. The calculations based on the seventy group constants set (JENDL-2B-70) have been performed for a comparison. The burn up calculations have been performed in R-Z geometry by the diffusion theory code PHENIX. The irradiated fuel composition have been obtained at the end of-cycle of the inner core zone 1 by using the zero dimensional burn-up code, FPG S-3. The final report has been submitted to Hammer and intercomparison of solution will be made at NEACRP. Tables of group cross sections for Actinides and F.P. are shown in Appendixes. (author)

  16. Operational and decommissioning experience with fast reactors. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    For three decades, several countries had large and vigorous fast breeder reactor development programmes. In most cases, fast reactor development programmes were at their peaks by 1980. From that time onward, fast reactor development in general began to decline. The effort essentially disappeared for fast breeder reactor development. Similarly, programmes in other nations were terminated or substantially reduced. In France, Superphenix was shut down at the end of 1998; SNR-300 in Germany was completed but not taken into operation, and KNK-II was permanently shut down in 1991 after 17 years of operation, and is scheduled to be dismantled by 2004; in the UK, PFR was shut down in 1994; BN-350 in Kazakhstan was shut down in 1998. It is difficult to argue that fast breeder reactors will be built in the near term when no commercial market exists and there is a plentiful supply of cheap uranium. Nevertheless, it is reasonable to assume that, were nuclear energy to remain an option as part of the long term world energy supply mix, meeting the sustainability requirements vis-a-vis natural resources and long lived radioactive waste management will require deploying systems involving several reactor types and fuel cycles operating in symbiosis. Apart from cost effectiveness, simplification, and safety considerations, a basic requirement to these reactor types and fuel cycles will be flexibility to accommodate changing objectives and boundary conditions. This flexibility can only be assured with the deployment of the fast neutron spectrum reactor technology, and reprocessing. At the same time that the interest in the fast reactor waned, the retirement of many of the developers of this technology reached its peak, between 1990 and 2000, and hiring diminished in parallel. Moreover, R and D programmes are being discontinued, and facilities falling in disuse. Under these circumstances, the loss of the fast reactor knowledge should be taken seriously. One particularly important

  17. Evolution of the technical concept of fast reactors. The concept of BREST

    International Nuclear Information System (INIS)

    Having understood that conventional power was limited by available fuel resources, as well as the environmental concern, and willing to use the advantages of defense nuclear power achievements, the development of civil nuclear power was initiated. Scarce supply of uranium has been a matter of concern from the very beginning of nuclear power development, but plutonium produced in the thermal reactors was supposed to be used as fuel for the fast reactors which would not be limited by fuel resources. In order to attain high breeding ratio and high power density, the first generation of fast reactors were designed with sodium coolant, uranium blanket to make up for a decrease in breeding ratio if uranium oxides were used as fuel. Development of nuclear power in the sixties and seventies was followed by stagnation. Lessons learned from a 50-year experience and new conditions set for power industry demand a new concept of fast reactor which would meet a variety of cost-efficiency and safety requirements in their present understanding. Development of fast breeders in Russia began after commissioning of BN-350 and completion of BN-600 design. According to present demands BREST reactors should be designed so as to implement consistently the principles of natural safety without deviation from materials and technology which was proven in defense and civil nuclear power facilities

  18. A contribution to the analysis of the thermal behaviour of Fast Breeder fuel rods with UO2-PuO2 fuel

    International Nuclear Information System (INIS)

    The fuel of Fast Breeder Reactors which consists of Uranium and Plutonium dioxide is mainly characterized by the amount and distribution of void volume and Plutonium and the amount of oxygen. Irradiation experiments carried out with this fuel have shown that initial structure of the fuel pellet is subjected to large changes during operation. These are consequences of the radial and axial temperature gradients within the fuel rods. (Author) 54 refs

  19. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    selection of chemistry controls is vital for NPPs with liquid metal cooled reactors. This paper highlights principles and approaches to chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors. The recommendations on how to arrange chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors are based taking into account: - the experience with operation of fossil power industry; - secondary side water chemistry of lead-bismuth eutectics cooled nuclear reactors at submarines; - steam/water cycles of NPPs with sodium cooled fast breeders BN-350 and BN-600; - secondary water chemistry at conventional NPPs with WER, RBMK and some other reactors. (authors)

  20. Distinctive features of proposed technical guidelines for the design of seismically isolated fast breeder (FBR) plants

    International Nuclear Information System (INIS)

    The application of seismic isolation technology to fast breeder reactor (FBR) plants is expected to reduce earthquake load to both the building and apparatus of the plants. It is also expected to facilitate the development of a rational approach to all phases of the earthquake-proof design work. Seismic isolation technology has already been applied painstakingly to non-nuclear industrial facilities and civil structures. The design method has been partially verified for the specific applications. However, the application of the technology to nuclear power reactor plants requires greater reliability than needed for ordinary buildings. Under request from the Ministry of International Trade and Industry (MITI) of Japan, the Central Research Institute of the Electric Power Industry (of Japan) has performed verification tests on seismic isolation technology, and worked toward establishing and proposing technical guidelines for FBR plant design. This project has been performed over seven years, from 1987 to 1993. Results of previous studies and data of the verification tests conducted in this project are reflected in the proposed guidelines presented here. Major features of the proposed guidelines are outlined below

  1. Distinctive features of proposed technical guidelines for the design of seismically isolated fast breeder (FBR) plants

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Katsuhiko; Yabana, Shuichi [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Earthquake Engineering Group; Shibata, Heki [Yokohama National Univ., Kanagawa (Japan)

    1995-12-01

    The application of seismic isolation technology to fast breeder reactor (FBR) plants is expected to reduce earthquake load to both the building and apparatus of the plants. It is also expected to facilitate the development of a rational approach to all phases of the earthquake-proof design work. Seismic isolation technology has already been applied painstakingly to non-nuclear industrial facilities and civil structures. The design method has been partially verified for the specific applications. However, the application of the technology to nuclear power reactor plants requires greater reliability than needed for ordinary buildings. Under request from the Ministry of International Trade and Industry (MITI) of Japan, the Central Research Institute of the Electric Power Industry (of Japan) has performed verification tests on seismic isolation technology, and worked toward establishing and proposing technical guidelines for FBR plant design. This project has been performed over seven years, from 1987 to 1993. Results of previous studies and data of the verification tests conducted in this project are reflected in the proposed guidelines presented here. Major features of the proposed guidelines are outlined below.

  2. Fast reactor programme in India

    Indian Academy of Sciences (India)

    P Chellapandi; P R Vasudeva Rao; Prabhat Kumar

    2015-09-01

    Role of fast breeder reactor (FBR) in the Indian context has been discussed with appropriate justification. The FBR programme since 1985 till 2030 is highlighted focussing on the current status and future direction of fast breeder test reactor (FBTR), prototype fast breeder reactor (PFBR) and FBR-1 and 2. Design and technological challenges of PFBR and design and safety targets with means to achieve the same are the major highlights of this paper.

  3. IAMBUS, a computer code for the design and performance prediction of fast breeder fuel rods

    International Nuclear Information System (INIS)

    IAMBUS is a computer code for the thermal and mechanical design, in-pile performance prediction and post-irradiation analysis of fast breeder fuel rods. The code deals with steady, non-steady and transient operating conditions and enables to predict in-pile behavior of fuel rods in power reactors as well as in experimental rigs. Great effort went into the development of a realistic account of non-steady fuel rod operating conditions. The main emphasis is placed on characterizing the mechanical interaction taking place between the cladding tube and the fuel as a result of contact pressure and friction forces, with due consideration of axial and radial crack configuration within the fuel as well as the gradual transition at the elastic/plastic interface in respect to fuel behavior. IAMBUS can be readily adapted to various fuel and cladding materials. The specific models and material correlations of the reference version deal with the actual in-pile behavior and physical properties of the KNK II and SNR 300 related fuel rod design, confirmed by comparison of the fuel performance model with post-irradiation data. The comparison comprises steady, non-steady and transient irradiation experiments within the German/Belgian fuel rod irradiation program. The code is further validated by comparison of model predictions with post-irradiation data of standard fuel and breeder rods of Phenix and PFR as well as selected LWR fuel rods in non-steady operating conditions

  4. Fast reactor operating experience

    International Nuclear Information System (INIS)

    At the beginning of electricity generation from nuclear power there was the breeder, which fulfilled its duty in a number of smaller test and experimental reactors within national programs. Over the years, some of those reactors have attained impressive availabilities, while others have helped to improve our knowledge by the negative results they contributed. Worldwide a decisive step was taken by the mid- to late sixties in the planning and construction of medium sized demonstration fast breeder power plants (250 to 350 MW). In the Federal Republik of Germany, this step is taken belatedly in building the SNR-300. BN-350 in the USSR, Phenix in France, and PFR in the United Kingdom have now been in operation for some ten years. Over that period, valuable experience has been accumulated in sodium technology. The operating behavior of all components and systems working in sodium is called excellent; the hazards associated with sodium, the fire hazard in particular, thus often seem to be greatly overrated. Leakages have been brought under control. It has always been possible so far to trace them back to systemic faults produced in the welding process. The ability of fast sodium cooled reactors to produce more nuclear fuel than they consume has been demonstrated in Phenix, whose breeding ration has been measured to be 1.16. The first true large breeder, Super Phenix in France, is to be commissioned already in 1985. In building another three breeder power plants the European partners in an association hope to achieve the commercial breakthrough of the breeder line. (orig.)

  5. Theoretical researches of swelling and mechanical properties changes of constructional steels of reactor on the fast neutrons BN-350

    International Nuclear Information System (INIS)

    In the work value (velocity) of swelling in dependence irradiation dose, irradiation temperature and helium production n thr irradiation process. In the model the following mechanism are taken into account: pores origin nad its growth in the material matrix, pores origin on dislocations, coalescence of pores, formation of interstitial loops

  6. Developments in reprocessing technology for high-temperature and fast-breeder fuels

    International Nuclear Information System (INIS)

    The paper reports on the comprehensive long-range programmes in the USA to develop fuel-cycle technology for high-temperature gas-cooled reactors (HTGRs) and liquid-metal fast-breeder reactors (LMFBRs) which are being planned and implemented. In each case, the fuel cycle is an essential integral part of the power-reactor system, and the technical problems in the fuel cycle are being solved in parallel with the reactor development programme. For the LMFBR, the end point of the technical development will be a demonstration in a hot pilot plant to be operated with fully irradiated fuels from the Clinch River Breeder Reactor (CRBR) in the late 1980s. The programme is at present addressing process R and D problems, equipment development, and conceptual design of the pilot plant. The basic process will use a modified chop-leach head-end followed by Purex solvent-extraction cycles. Although a large base of experience will come from the early LWR plants, the significant differences between LMFBR and LWR fuels - sodium contamination, more complex fuel hardware, higher fissile and fission product content - introduce new problems requiring substantial development work. Increasing public concern and more stringent emission limits have prompted considerable effort toward retention of the gaseous fission products. For the HTGR, development is directed primarily toward the 233U-Th fuel cycle with a final goal of operation of a HTGR Fuel Recycle Demonstration Facility that can support the recycle requirements of 20-GW(e) installed capacity. The reference fuel element is a prismatic graphite block containing coated fissile and fertile particles bound together by a carbon matrix. Start-up is with 235U, which is replaced on subsequent cycles with the bred 233U. Spent fuel elements are crushed and burned, and the fuel particle oxides are dissolved and processed by solvent extraction. Refabrication must be done remotely because of γ-activity from 232U daughters, and the programme

  7. Fast breeder nuclear power plants: outline of nuclear energy development

    International Nuclear Information System (INIS)

    This article describes briefly the route travelled by the Soviet scientists from the time of the principal basic technological options up to the recent period where the reactor BN 600 has been commissioned. The principal changes which will distinguish the next generation, the reactor BN 800 are indicated and the importance, from the point of view of the accompanying economic growth, of obtaining in good time higher breeding ratios is emphasized

  8. Technical meeting on 'Operational and decommissioning experience with fast reactors'. Working material

    International Nuclear Information System (INIS)

    For three decades, several countries had large and vigorous fast breeder reactor development programs. In most cases, fast reactor development programs were at their peaks by 1980. Fast test reactors [Rapsodie (France), KNK-II (Germany), FBTR (India), JOYO (Japan), DFR (UK), BR-10, BOR-60 (Russia), EBR-II, Fermi, FFTF (U.S.A.)] were operating in several countries, with commercial size prototype reactors [Phenix, Superphenix (France), SNR-300 (Germany), MONJU (Japan), PFR (UK), BN-350 (Kazakhstan), BN-600 (Russia)] just under construction or coming on line. From that time onward, fast reactor development in general began to decline. By 1994 in the USA, the Clinch River Breeder Reactor (CRBR) had been cancelled, and the two fast reactor test facilities, FFTF and EBR-II had been shutdown - with EBR-II permanently, and FFTF in a standby condition. Thus, effort essentially disappeared for fast breeder reactor development. Similarly, programs in other nations were terminated or substantially reduced. In France, Superphenix was shut down at the end of 1998; SNR-300 in Germany was completed but not taken into operation, and KNK-II was permanently shut down in 1991 after 17 years of operation, and is scheduled to be dismantled by 2004; in the UK, PFR was shut down in 1994; BN-350 in Kazakhstan was shut down in 1998. It is difficult to argue that fast breeder reactors will be built in the near term when no commercial market exists and there is a plentiful supply of cheap uranium. Nevertheless, it is reasonable to assume that, were nuclear energy to remain an option as part of the long-term world energy supply mix, meeting the sustainability requirements vis-a-vis natural resources and long-lived radioactive waste management will require deploying systems involving several reactor types and fuel cycles operating in symbiosis. Apart from cost effectiveness, simplification, and safety considerations, a basic requirement to these reactor types and fuel cycles will be flexibility

  9. The development of fast neutron power reactors with a sodium coolant and ways in which their technical and economic performance can be improved

    International Nuclear Information System (INIS)

    During the years that have elapsed since the commissioning of power units with fast neutron BN-350 reactors (1973) and BN-600 reactors (1980), considerable experience has been acquired in the operation of fuel elements, sodium equipment and mechanisms and steam generators. Operating experience has confirmed the reliability and safety of both types of facilities. Nevertheless, during the last few years a number of improvements have been introduced in the operating mode, in the equipment design solutions and in the system flow sheets. These solutions were aimed at further increasing the reliability, safety and profitability of the power units. The BN-800 reactor is based to a considerable extent on the scientific and technical ideas and design development of the BN-600 reactor. During its design, considerable attention was paid to developing reliable equipment which would ensure a higher level of fuel burnup than that of the BN-600 and to mastering the closed fuel cycle. The BN-1600 reactor constitutes a new step in the development and creation of a fast breeder reactor with sodium coolant. However, even in its design, the basic scientific and technical ideas developed for the BN-600 and BN-800 reactors were maintained to a considerable degree. The experience of developing and operating fast sodium cooled reactors in the USSR has confirmed the expected positive safety characteristics of this type of reactor. At the same time, there are significant reserves for further improving the safety characteristics and this does not present any major difficulties. (author). 5 refs, 1 fig., 4 tabs

  10. The Kalkar fast breeder: Decision of the Bundestag concerning start-up

    International Nuclear Information System (INIS)

    This survey informs on declarations and recommendations of the official inquiry commission ''Future Nuclear Energy Policies'' of the 9th Bundestag concerning the question whether or not commissioning of the fast breeder prototype plant SNR 300 in Kalkar is politically justifiable as well as on how the commission's recommendations were discussed in Parliament. The commission recommended by majority of votes to commission the SNR 300. The research and technology commission in charge accepted this recommendation by majority of votes. On December 3, 1982, the Bundestag voted in favour of the recommendation by majority of votes. Thus the political reservations of the Bundestag against commissioning the SNR-300 are revoked. (orig./HSCH)

  11. The Fast Breeder SNR 300 in the ups and downs of its history

    International Nuclear Information System (INIS)

    The Fast Breeder Project was founded in 1960 at Karlsruhe. After an initial period of basic research, the industry took over the design of SRN 300. Affected by various political influences, the construction of the nuclear power plant Kalkar was disturbed and delayed, but was finally completed in 1985. However, since the governing party of Nordrhein-Westfalen decided to drop out of nuclear energy, the authorisation for starting up the SNR 300 could not be obtained. Therefore, the Kalkar project was cancelled for political reasons in March 1991. (orig.)

  12. Federal Constitutional Court affirms admissibility of decision in the matter of the Fast Breeder Kalkar

    International Nuclear Information System (INIS)

    In the case of the examination of the constituionality of section 7 Atomic Energy Act, in as far as this article enables the licensing of nuclear power plants of the type called Fast Breeder, the Second Senate of the Federal Constitutional Court has answered the OVG Muenster's motion to stay proceedings dated Aug 18th, 1977, with the following 'interim decision' - 2 B v L 8/77 - dated Jan 31st, 1978: 'The action is admissible'. The verdict was unanimous. The main grounds upon which the interim judgment is based are given in full. (orig./HP)

  13. The SNR 300 fast breeder in the ups and downs of its history

    International Nuclear Information System (INIS)

    The Fast Breeder Project was founded in Karlsruhe in 1960. After an initial period of fundamental research, industry assumed responsibility for designing the SNR 300. Construction of the Kalkar Nuclear Power Station was hampered by a variety of political influences, but finally completed in 1985. As a consequence of the North Rhine-Westphalian party-in-government's opting out of nuclear power, no startup permit was issued for the SNR 300. Consequently, the Kalkar Nuclear Power Station project was discontinued for political reasons in March 1991. The report is the English translation of KFK--4466. (orig./HP)

  14. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly construction for liquid metal cooled fast breeder reactors is described in which the sub-assemblies carry a smaller proportion of parasitic material than do conventional sub-assemblies. (U.K.)

  15. Investigation of the growth rate for joint fast breeder reactor and light water reactor operation

    International Nuclear Information System (INIS)

    An investigation of fuel consumption and breeding characteristics of FBR-LWR joint operation is presented. The FBR operates in a closed cycle with joint-reprocessing of core and blanket material. The LWR-portion that runs on FBR plutonium operates in an open cycle. The growth rate of the system is defined based upon the fact that the discharge from the system will make up a fraction of an identical system; the system growth rate is found to have an almost linear dependence on the fraction of the LWR fed by plutonium from the FBR. The LWR growth rate, which is negative, is a constant and represents the fraction of the fuel burnt in the LWR-fraction that runs on FBR plutonium per year

  16. Anticipated transients without scram for light water reactors: implications for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    The proposed ATWS acceptance criteria for LWRs (as specified in NUREG-0460) are in principle, applicable to LMFBRs. For LMFBRs, the major criterion will be the assurance that the plant protection system (shutdown or scram) has a sufficiently high reliability (low failure rate) so that core disruptive accidents (as currently defined) will lie outside the design basis. For early plants, however, mitigating systems may also be required. Alternative accident scenarios for LMFBRs, which are initiated from the shutdown state or may lead to potential core disruptive accidents even following scram, need to be examined in greater detail. The proposed LWR-ATWS criteria do not appear to present any new or unforeseen design and/or safety questions for LMFBRs. They do, however, specify design goals for mitigating systems which may insure conformance with NRC policy. Preliminary recommendations are made for future research and evaluation

  17. Fast Breeder Blanket Facility FBBF. Annual report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    This annual report contains a summmary of fission rate, spectra, and gamma-ray heating rate measurements made in the first blanket of the Purdue Fast Breeder Blanket Facility. The first blanket consisted of aluminum clad, natural UO2 fuel rods with a secondary cladding of stainless steel or aluminum. The blanket was arranged in two concentric regions around the neutron source and converter regions. A neutron diffusion code, 2DB, and a Monte Carlo code, VIM, both using homogeneous cross section groups have been used to calculate the reaction rates. Calculated to experimental values for a number of important reactions are presented. A modified method of applying Bondarenko self-shielding factors to correct for the self shielding of resonance energy neutrons in aluminum, stainless steel and UO2 has improved the agreement between the calculations and experiment, but does not account for all of the differences

  18. Examination of corrosive damage ability of fuel assembly casing and fuel cladding materials of BN-350 reactor under conditions simulating dry storage emergency state

    International Nuclear Information System (INIS)

    F-Ray diffraction phase analysis of corrosive layer and microstructural researches of materials after its long-term thermal aging by the temperature 400 Celsius degrees and 600 Celsius degrees are curried out.(author)

  19. On the driving forces for bubble growth and swelling in MX-type fast breeder fuels

    International Nuclear Information System (INIS)

    After giving a definition of three types of swelling, geometrical, local and microscopic swelling, the in-pile working conditions for MX-type fast breeder fuels are briefly described. The equilibrium and non-equilibrium conditions for fission gas bubbles are summarized and a model for bubble interaction is deduced. On the basis of experimental data a curve Tsub(k)(b) is established. Tsub(k) defines the critical swelling temperature as function of burn-up b at which the transition occurs from microscopic swelling with a low rate of swelling Ssub(M) to local swelling Ssub(Λ) with a high rate. The curve Tsub(k)(b) can be defined as the saturation limit of the fuel matrix with regard to small fission gas bubbles beyond which bubble interaction causes the small bubbles to change into large ones. The implications of the existence of that curve for fuels working under Na-bonding and under He-bonding conditions are briefly discussed. (Auth.)

  20. Advanced methods comparisons of reaction rates in the Purdue Fast Breeder Blanket Facility

    International Nuclear Information System (INIS)

    A review of worldwide results revealed that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue Fast Breeder Blanket Facility (FBBF) blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50 group cross sections), a consistent Calculated/Experimental (C/E) drop-off was observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the blanket is necessary for agreement with experiments. The usefulness of refined group constant generation utilizing specialized weighting spectra and transport theory methods in correcting this discrepancy was analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result was that transport methods had no effect on the blanket deviations; thus, transport theory considerations do not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by some approximations which are applied in all current methods. 27 refs., 3 figs., 1 tab

  1. Liquid-metal fast-breeder reactors: Preliminary safety and environmental information document. Volume VI

    International Nuclear Information System (INIS)

    Information is presented concerning LMFBR design characteristics; uranium-plutonium/uranium recycle homogeneous core; uranium-plutonium/uranium spiked recycle heterogeneous core; uranium-plutonium/uranium spiked recycle homogeneous core; uranium-plutonium/thorium spiked recycle heterogeneous core; uranium-plutonium/thorium spiked recycle homogeneous core; thorium-plutonium/thorium spiked recycle homogeneous core; denatured uranium-233/thorium cycle homogeneous core; safety consideration for the LMFBR; and environmental considerations

  2. Computer based Core Temperature Monitoring System for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Core Temperature Monitoring System (CTMS) is a safety critical system provided in PFBR for detection of core anomalies such as plugging of fuel sub-assemblies and error in core loading. As the power density in the core is very high, continuous monitoring of the core cooling and initiation of safety actions in case of any abnormal temperature rise of the core are essential. These safety actions prevent the clad hot spot and fuel temperature from reaching the design limits. A Real Time Computer (RTC) based system with TMR (Triple Modular Redundancy) architecture is used for this purpose. Each RTC is based on the VME bus, with in-house designed, developed and qualified CPU and I/O cards. This paper describes the architecture of the computer-based CTMS and the model based approach used for developing the software for this system. (author)

  3. Electrolytic destruction of nitric acid in various reprocessing streams of fast breeder reactor fuels

    International Nuclear Information System (INIS)

    The salting concentration of Nitric acid to Reprocessing Plants of FBR fuels is 4 M HNO3,. Adjustment of the free acidity of the Dissolver solution from 8 to 10 M HNO3, to a concentration of 4M HNO3 is done cathodically. This would increase the throughput of the plant. The concentration of HNO3 in first cycle raffinate, HAW, that would be stored in SS tanks (interim storage before vitrification) should be less than 6 M; otherwise severe corrosion problems would occur. The HAW discharged in FBR fuel reprocessing plants would contain around 4M HNO3. This has to be reduced to around 0.4M HNO3 in order to effect efficient reduction in waste volume, by evaporation. This has been achieved in the catalytic reduction of HNO3 to oxides of nitrogen. Current efficiency in the 1 L level is around 46%. Conventionally, HNO3 in raffinates are destroyed by addition of formaldehyde. The disadvantages of this method are highlighted in this paper. Addition of 0.01 M Cu2+ is found to completely avoid critical concentration of HNO3 below which nitrate ions will not be destroyed; instead H2 gas would be evolved. The results of these experiments in a simulated HAW are also included in this paper. Operation and the results of electrolytic destruction of HNO3 in simulated raffinate in a scaled-up SS equipment of 3.5 L capacity are also described in this payer. (author)

  4. Thermal-performance study of liquid metal fast breeder reactor insulation

    Energy Technology Data Exchange (ETDEWEB)

    Shiu, Kelvin K.

    1980-09-01

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations.

  5. Evaluation of molten fuel containment concepts for gas-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Four in-vessel molten fuel containment concepts for the GCFR were compared, namely, (1) a ceramic crucible, (2) a borax bath, (3) a heavy metal bath, and (4) a steel bath. The ceramic crucible is the simplest but depends on substantial upward heat removal. The borax bath and the heavy metal bath concepts offer better performance but would require design changes and an increased experimental effort. The steel bath concept is a good compromise and has potential for further improvement by combining it with the essential features of other concepts, i.e., the crucible or the heavy metal bath. It is concluded that several concepts could potentially exploit the normally provided cooled liner barrier in the PCRV cavity for post-accident fuel containment

  6. Final environmental statement, Liquid Metal Fast Breeder Reactor Program. Volume 3

    International Nuclear Information System (INIS)

    Included are copies of thirty-four comment letters on the Proposed Final Environmental Statement together with the ERDA replies to these letters. The letters were received from Federal, State, and local agencies, environmental and public interest groups, members of the academic and industrial communities, and individual citizens

  7. Feasibility studies for production of 89Sr in the Fast Breeder Test Reactor (FBTR)

    International Nuclear Information System (INIS)

    89Sr, a pure beta emitter with half life of 50.53 d is used as its chloride solution for palliative care of bone metastases. This paper describes the feasibility studies that have been conducted at FBTR, IGCAR for production of this radionuclide using the 89Y(n, p)89Sr reaction. Yttria pellets were irradiated in a special subassembly at the core centre for a total of 73 d in two steps of 35 d and 38 d with a time gap of 38 d. The irradiated yttria target was dissolved in nitric acid and the bulk Y was separated by solvent extraction using the TBP-HNO3 complex. The 89Sr fraction was purified using the cation exchange resin DOWEX 50W x 8 (100-200 mesh size) from the other radioactive impurities seen. The eluted 89Sr fraction was assayed using a GM counting system. The 89Sr activity produced in 1 g of yttria pellet was found to be 19 mCi. (orig.)

  8. Generation of spectrum compatible accelerograms for seismic analysis of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    For the seismic design of nuclear power plants, time history of earthquake ground motion is required basically to generate time histories at various floors of nuclear island as well as at the component support locations. From such time histories, floor response spectra (FRS) can be generated. The basic input is specified as site dependent response spectra (SDRS), from which a set of uncorrelated time histories is generated whose own response spectrum matches with the design response spectra. These time histories have got a great impact on the structural design and economy. For Kalpakkam, the site for PFBR, the seismic input is defined in terms of SDRS for various damping values and its shapes have been arrived already. Synthetic accelerograms have been generated such that the time-history generated response spectrum (THRS) closely matches the SDRS for 5% of critical damping. Time histories have been developed using CASTEM 2000, a multi purpose FE code. This paper deals with the generation methodology and their compliance with ASCE 4-98. (author)

  9. Feasibility studies for production of {sup 89}Sr in the Fast Breeder Test Reactor (FBTR)

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Debasish; Vithya, J.; Ashok Kumar, G.V.S.; Swaminathan, K.; Kumar, R.; Venkata Subramani, C.R.; Vasudeva Rao, P.R. [Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam (India). Fuel Chemistry Div.

    2013-07-01

    {sup 89}Sr, a pure beta emitter with half life of 50.53 d is used as its chloride solution for palliative care of bone metastases. This paper describes the feasibility studies that have been conducted at FBTR, IGCAR for production of this radionuclide using the {sup 89}Y(n, p){sup 89}Sr reaction. Yttria pellets were irradiated in a special subassembly at the core centre for a total of 73 d in two steps of 35 d and 38 d with a time gap of 38 d. The irradiated yttria target was dissolved in nitric acid and the bulk Y was separated by solvent extraction using the TBP-HNO{sub 3} complex. The {sup 89}Sr fraction was purified using the cation exchange resin DOWEX 50W x 8 (100-200 mesh size) from the other radioactive impurities seen. The eluted {sup 89}Sr fraction was assayed using a GM counting system. The {sup 89}Sr activity produced in 1 g of yttria pellet was found to be 19 mCi. (orig.)

  10. Beacon: A three-dimensional structural analysis code for bowing history of fast breeder reactor cores

    International Nuclear Information System (INIS)

    The core elements of an LMFBR are bowed due to radial gradients of both temperature and neutron flux in the core. Since all hexagonal elements are multiply supported by adjacent elements or the restraint system, restraint forces and bending stresses are induced. In turn, these forces and stresses are relaxed by irradiation enhanced creep of the material. The analysis of the core bowing behavior requires a three-dimensional consideration of the mechanical interactions among the core elements, because the core consists of different kinds of elements and of fuel assemblies with various burnup histories. A new computational code BEACON has been developed for analyzing the bowing behavior of an LMFBR's core in three dimensions. To evaluate mechanical interactions among core elements, the code uses the analytical method of the earlier SHADOW code. BEACON analyzes the mechanical interactions in three directions, which form angles of 600 with one another. BEACON is applied to the 600 sector of a typical LMFBR's core for analyzing the bowing history during one equilibrium cycle. 120 core elements are treated, assuming the boundary condition of rotational symmetry. The application confirms that the code can be an effective tool for parametric studies as well as for detailed structural analysis of LMFBR's core. (orig.)

  11. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  12. A comparison of some generic strategies for fault detection in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Data from the 1994 and 1995 benchmark tests were used to compare the performance of seven different signal processing strategies proposed for the detection of boiling or a sodium/water reaction in LMFBR. The general signal processing strategy relies on the signals from the normal background noise and the fault being additive, which gives rise to changes in the signal model in the time, frequency or probability domain. Two of the specific signal processing strategies are derived from an autoregressive model of the process, whilst the rest are implemented in the frequency domain using either global spectral distance measures or more particular spectral measures used in conjunction with wavelet analysis. The emphasis throughout the work reported in this report has been to make no assumptions about the nature of the fault to be detected other than the principle of the additive nature of the signals from a fault and the background noise. (author). 9 refs, 9 figs

  13. Final environmental statement, Liquid Metal Fast Breeder Reactor Program. Volume 2

    International Nuclear Information System (INIS)

    Included are copies of fifty-six comment letters on the Proposed Final Environmental Statement together with the ERDA replies to these letters. The letters were received from Federal, State, and local agencies, environmental and public interest groups, members of the academic and industrial communities, and individual citizens

  14. Concept and development status of fast breeder reactor fuels in the FaCT project

    International Nuclear Information System (INIS)

    The fuel development and the conceptual design study have been progressed in the first phase of the FaCT project in Japan. Significant outcomes of key technologies related to fuel design, fuel properties, core materials, fuel fabrication have been provided. The prospects of these technologies have been identified. After the Fukushima accident, the research and development for reducing the amount and toxic level of radioactive wastes will be promoted more than before. These outcomes will be reflected on the future development

  15. Final environmental statement, Liquid Metal Fast Breeder Reactor Program. Volume 1

    International Nuclear Information System (INIS)

    Information is presented under the following section headings: LMFBR program options and their compatibility with the major issues affecting commercial development, Proposed Final Environmental Statement for the LMFBR program, December 1974, WASH-1535, supplemental material, and material relating to Proposed Final Environmental Statement review

  16. Design and development of microblaze processor based Remote Terminal Units for Fast Breeder Reactors

    International Nuclear Information System (INIS)

    Remote Terminal Units (RTUs) are single board remote data acquisition and control systems that are widely used in FBRs during all states of plant operation. Distributed Digital Control System (DDCS) architecture is being followed for the plant control and operation, which mandates the need for multiple sockets support in TCPIP Ethernet communication in an embedded system. Existing RTUs are 89C51 microcontroller based systems where the TCPIP communication is done using Wiznet Module. These modules can support maximum of four sockets and are already obsolete from the market. In this paper a new RTU design is described where the complete digital logic of a board is implemented in one single FPGA device using Soft-core processor and EMAC controller with multiple socket support for the Ethernet communication. This makes design more reliable and immune to obsolescence. (author)

  17. AB INITIO STUDY OF ADVANCED METALLIC NUCLEAR FUELS FOR FAST BREEDER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Landa, A; Soderlind, P; Grabowski, B; Turchi, P A; Ruban, A V; Vitos, L

    2012-04-23

    Density-functional formalism is applied to study the ground state properties of {gamma}-U-Zr and {gamma}-U-Mo solid solutions. Calculated heats of formation are compared with CALPHAD assessments. We discuss how the heat of formation in both alloys correlates with the charge transfer between the alloy components. The decomposition curves for {gamma}-based U-Zr and U-Mo solid solutions are derived from Ising-type Monte Carlo simulations. We explore the idea of stabilization of the {delta}-UZr{sub 2} compound against the {alpha}-Zr (hcp) structure due to increase of Zr d-band occupancy by the addition of U to Zr. We discuss how the specific behavior of the electronic density of states in the vicinity of the Fermi level promotes the stabilization of the U{sub 2}Mo compound. The mechanism of possible Am redistribution in the U-Zr and U-Mo fuels is also discussed.

  18. Analysis of structural materials for fast-breeder reactors by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    A procedure for the X-ray spectrometric determination of Co, Cr, Cu, Mn, Mo, Nb, Ni, P, S, Si and Ti in stainless steels and some nickel-base alloys, such as incoloy-800, is described. The use of different sets of standards has allowed the calculation of the inter-element influence coefficients for the correction of matrix effects, making the method suited for wide concentration range determinations. The efficiency of X-ray tubes with Cr and W targets has been studied, the former allowing the determination of all the above-named elements. The average relative error is 3.7%, except for P and S, where the determinations are semiquantitative. The use of a programmable spectrometer interfaced with a 16 K computer facilitates considerably the treatment of data with a proper mathematic model and furthermore provides an automatic performance of the analyses. (author)

  19. Seismic design principles for the German fast breeder reactor SNR2

    International Nuclear Information System (INIS)

    The leading aim of a seismic design is, besides protection against seismic impacts, not to enhance the overall risk in the absence of seismic vibrations and, secondly, to avoid competition between operational needs and a seismic structural design. This approach is supported by avoiding overconservatism in the assumption of seismic loads and in the calculation of the structural response. Accordingly the seismic principles are stated as follows: restriction to German or equivalent low seismicity sites with intensities (SSE) lower VIII at frequency lower than 10-4/year; best estimate of seismic input-data without further conservatism; no consideration of OBE. The structural design principles are: 1. The secondary character of the seismic excitation is explicitly accounted for; 2. Energy absorption is allowed for by ductility of materials and construction. Accordingly strain criteria are used for failure predictions instead of stress criteria. (author). 1 fig

  20. Thermal-performance study of liquid metal fast breeder reactor insulation

    International Nuclear Information System (INIS)

    Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations

  1. Investigations by model theory of fast breeder reactor fuel pins and application to special safety experiments

    International Nuclear Information System (INIS)

    This paper makes a contribution to the development of the fuel rod model theory for describing transient loads up to and including very fast accidents. In three successive sections the state of knowledge is subjected to critical discussion, improvements are presented and, finally, possibilities of application indicated by the example of experiment analysis. Within the framework of further developments a consistent compilation is given of all relevant material data for describing UC and (U, Pu) C-fuels and models are derived on the fission gas behavior and on swelling. A literature search is made on the restructuring of oxide fuels and it is shown above all with respect to transient calculations which models can be employed here. (orig./RW)

  2. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    International Nuclear Information System (INIS)

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection

  3. Creep-fatigue evaluation and damage characterization for structural materials of advanced fast breeder reactor

    International Nuclear Information System (INIS)

    Creep-fatigue (Creep fatigue and fatigue) tests of Mod. 9Cr-1Mo steel have been performed by varying stress holding time at 550degC. Creep-fatigue properties are affected by stress holding, and strain rate increases with increasing stress holding time. In Vickers hardness measurements Vickers hardness of creep fatigue damaged specimen is larger than that of fatigue damaged specimen. In magnetic characterization the saturated magnetic flux density and permeability of creep fatigue damaged specimens are larger than those of fatigue damaged specimen. And in MFM observation the standard deviation value of creep fatigue damaged specimen is larger than that of fatigue damaged specimen. By TEM observation, the effect of stress holing time on these creep-fatigue properties can be explained by the difference of dislocation structures. (author)

  4. Reflections on the political economy of large-scale technology using the example of German fast-breeder development

    International Nuclear Information System (INIS)

    Proceeding from Anglo-Saxon opinions which, from a liberal point of view, criticize the German practice of research policy - state centres of large-scale research and state subventions for research and development in industry - to be inefficient, the author empirically verified these statements taking the German fast breeder project as an example. If the case of the German fast breeder can be generalized, this had consequences for the research political practice and for other technologies. Supporters as well as opponents of large-scale technology today proceed from the assumption that almost every technology can be made commercially viable when using sufficient amounts of money and persons. This is a migth which owes its existence to the technical success of great projects in non-commercial fields. The German fast breeder project confirms the opinion that the recipes for success of these non-commercial projects cannot be applied to the field of commercial technology. The results of this study suggest that practice and theory of technology policy can be misdirected if they are uncritically oriented according to the form of state intervention so far used in large-scale technology. (orig./HSCH)

  5. Review of the use and state of development of the various reactor types

    International Nuclear Information System (INIS)

    The report gives a review of the reactor types being of importance from today's point of view for use as stationary power reactors. These are heavy water reactors, light water reactors (pressurized water reactor, Soviet pressurized water reactor, Soviet light-water-graphite reactors, boiling water reactors), gas-cooled reactors (gas-graphite reactors, high temperature reactors), and fast breeder reactors. (HJ)

  6. Review of fast reactor activities in India

    International Nuclear Information System (INIS)

    It may be recalled that In the presentation at the last meeting of the IWGFR (13th Annual meeting), a broad outline of India's nuclear energy programme and the role of fast breeders in the programme has been provided. The steps taken to enable the fast breeders to fulfil their role have also been described. In brief, fast breeder reactors are considered as an essential and integral part of the programme of nuclear energy and constitute the second step in the programme, the first being the construction of natural uranium heavy water moderated reactors which will consume natural uranium but will produce plutonium to fuel fast breeder reactors. This basic position has remained unchanged and the Government is now taking steps to build a large number of heavy water reactors, say 10 million Kw capacity in the next 20 years. This defines the time frame for developing the fast breeder technology in the country. It has therefore been decided to mobilise the efforts towards design, construction and operation of a medium sized (about 500 M We) reactor by mid-nineties. Thus, the climate for fast breeder reactors is good and there is a good deal of enthusiasm amongst the scientists and engineers working in the field although the actual implementation of the programme during the year had to face certain difficulties

  7. Substantiation of physical concepts of fast reactors in Russia: experience and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P.N. [Russian Research Center ' Kurchatov Institute' (RRC KI), 1, Kurchatov Sq., Moscow, 123182 (Russian Federation); Vasiliev, B.A. [Experimental Design Bureau of Machine Building (OKBM) 15, Burnakovskiy Pr., N. Novgorod, 603074 (Russian Federation); Kormilitsyn, M.V. [State Scientific Center of Russian Federation - Research Institute of Atomic Reactors (NIIAR) Dimitrovgrad-10, Ulianovsk Reg., 433510 (Russian Federation); Lopatkin, A.V. [N.A. Dollezhal Research and Development Institute of Power Engineering (NIKIET) 2/8, M. Krasnoselskaya Str., Moscow, 107140 (Russian Federation); Seleznev, E.F. [All-Russian Research Institute for Nuclear Power Plant Operation (VNIIAES) 25, Ferganskaya, Moscow, 109507 (Russian Federation); Khomyakov, Yu.S.; Tsybulia, A.M. [State Scientific Center of the Russian Federation - A. I. Leypunsky Institute for Physics and Power Engineering (SSC RF- IPPE) 1, Bondarenko Sq., Obninsk, Kaluga Reg., 249033 (Russian Federation); Tocheny, L.V. [International Science and Technology Center (ISTC) 32-34 Krasnoproletarskaya Ulitsa, Moscow, 127473 (Russian Federation)

    2008-07-01

    The fast reactor concept in Russia has accumulated unique experience, since its advent in the 1950's and up to the present, from the creation of the first experimental installation BR-1, experimental reactors BR-5 and BOR-60, the pilot industrial reactors BN-350 in Kazakhstan and up to the BN-600 at Beloyarsk Atomic Power Station. Investigations on the first experimental installations BR-1 and BR-5/-10 proved the propriety of the idea that it is possible to create nuclear reactors that can produce more nuclear fuel than they consume, i.e. the idea of breeding. The architecture of such reactors was also designed, producing a current leader among fast reactors with sodium coolant and oxide uranium-plutonium fuel. Operational experience of BOR-60, BN-350 and, particularly, BN-600 confirmed the engineering and technical feasibility of the concept of fast reactors, the possibility for its realization both for power production and for certain other purposes as well, such as desalinisation of sea water (BN-350) and for radionuclide production (BN-350, BN-600), and it enabled the development and verification of different models, computer methods and codes. The paper presents a review of experience in the creation of plants with fast reactors, scientific research on these installations, principal results, the current status of experimental data analysis, and prospective directions in the development of fast reactors and the corresponding experimental basis in Russia. (authors)

  8. Some questions of fast reactor residual heat removal using coolant natural circulation in the circuits

    International Nuclear Information System (INIS)

    A calculation procedure designed for entire plant dynamics has been used for transients leading the reactor plant of BN-600 type into a natural circulation mode. A detailed description of the mathematical model and comparison of calculated and experimental results are presented. Some peculiarities of coolant natural circulation development in the BN-350 reactor circuits are considered. (author)

  9. [Radiation ecological environment in the Republic of Kazakhstan in the vicinity of the reactors and on the territory of the Semipalatinsk Test Site].

    Science.gov (United States)

    Kim, D S

    2012-01-01

    The results of research into the environmental conditions in the regions of location of the pressurized water reactor WWR-K, fast neutron breeder BN-350 and on the territory of the Semipalatinsk Test Site are represented. The effects of the exposure to aerosol emissions from WWR-K and BN-350 reactors on the environment are summarized. We present some arguments in favor of the safe operation of fission reactors in compliance with the rules and norms of nuclear and radiation protection and the efficient disposal of radioactive waste on the territory of the Republic. PMID:23033802

  10. 3. Interindustry conference on reactor materials science

    International Nuclear Information System (INIS)

    This document contains abstracts on papers presented at the Third Interindustry Conference on Reactor Materials Science (Dimitrovgrad, 27-30 October 1992). The subject scope of the papers is a follows: fuel and fuel elements of power reactors; structural materials of fast breeder reactors and thermonuclear reactors; structural materials of WWER and RBMK type reactors; absorbers and moderators

  11. Back-to-back technical meetings (TMs): 'TM on the coordinated project (CRP) analyses of and lessons learned from the operational experience with fast reactor equipment and systems' and 'TM to coordinate the Agency's fast reactor knowledge preservation international project in Russia'. Working material

    International Nuclear Information System (INIS)

    Since the early 1960's, several countries have undertaken important fast breeder reactor development programs. Fast test reactors were constructed and successfully operated in a number of countries, including Rapsodie (France), KNK-II (Germany), FBTR (India), JOYO (Japan), DFR (UK), BR-10, BOR-60 (Russia), and EBR-II, Fermi, FFTF (USA). This was followed by commercial size prototypes (Phenix, Superphenix (France), SNR-300 (Germany), MONJU (Japan), PFR (UK), BN-350 (Kazakhstan), BN-600 (Russia)], either just under construction, coming on line, or experiencing long term operation. However, from the 1980s onward, and mostly for economical and political reasons, fast reactor development in general began to decline. By 1994, in the USA, the Clinch River Breeder Reactor (CRBR) had been cancelled, and the two fast reactor test facilities, FFTF and EBR-II had been shutdown - EBRII permanently, and FFTF, until recently, in standby condition, but now also facing permanent closure. Thus, in the U.S., effort essentially disappeared for fast breeder reactor development. Similarly, programs in other nations were terminated or substantially reduced. In France, Superphenix was shut down at the end of 1998; SNR-300 in Germany was completed but not taken into operation, and KNK-II was permanently shut down in 1991 (after 17 years of operation) and is scheduled to be dismantled by 2004. In the UK, PFR was shut down in 1994, and in Kazakhstan, BN-350 was shut down in 1998. As the interest and activity in the fast breeder reactor diminished, the retirement of many of the developers and acknowledged experts of this technology reached its peak, between 1990 and 2000. The effort and investment required to replace these skills also diminished in parallel. In addition, the facilities (e.g., hot cells, fuel fabrication and inspection lines, seismic test rigs) required to develop and maintain the fast reactor program are drifting into a degraded state or are being shut down. This leads to the

  12. Nuclear reactor constructions

    International Nuclear Information System (INIS)

    A method of constructing a radiation shielding plug for use in the roof of the coolant containment vault of liquid metal cooled fast breeder reactors is described. The construction allows relative movement of that part of service cables and pipes which are carried by the fixed roof and that part which is carried by the rotatable plug. (U.K.)

  13. Indian fast reactor technology: Current status and future programme

    Indian Academy of Sciences (India)

    S C Chetal; P Chellapandi

    2013-10-01

    The paper brings out the advantages of fast breeder reactor and importance of developing closed nuclear fuel cycle for the large scale energy production, which is followed by its salient safety features. Further, the current status and future strategy of the fast reactor programme since the inception through 40 MWt/13 MWe Fast Breeder Test Reactor (FBTR), is highlighted. The challenges and achievements in science and technology of FBRs focusing on safety are described with the particular reference to 500 MWe capacity Prototype Fast Breeder Reactor (PFBR), being commissioned at Kalpakkam. Roadmap with comprehensive R&D for the large scale deployment of Sodium Cooled Fast Reactor (SFRs) and timely introduction of metallic fuel reactors with emphasis on breeding gain and enhanced safety are being brought out in this paper.

  14. Nuclear reactor

    International Nuclear Information System (INIS)

    The liquid metal (sodium) cooled fast breeder reactor has got fuel subassemblies which are bundled and enclosed by a common can. In order to reduce bending of the sides of the can because of the load caused by the coolant pressure the can has got a dodecagon-shaped crosssection. The surfaces of the can may be of equal width. One out of two surfaces may also be convex towards the center. (RW)

  15. Designs characteristics, and development of fast reactors for utilization of thorium

    International Nuclear Information System (INIS)

    Fast breeder reactors will be necessary in the next century in order to meet increasing demands for electricity resulting from industrialization and general improvement of standards of living. A scheme for a smooth development of liquid metal fast breeder reactors in Brazil is proposed and designs and characteristics of required reactors are discussed. Emphasis is placed on utilization of thorium that is abundant in the country, on reactor safety in order to promote public acceptance and smoothness of the development. The initial step is the construction of a 5 MW experimental reactor in order to acquire basic experiences and technologies. The second step is the construction of a series of small power reactors designed with particular emphasis on safety and ease of operation. In the final phase when fast breeder reactors are to play a central role in electricity generation, large power reactors that utilize both uranium and thorium fuel cycles will be built to establish a practically permanent power system. (Author)

  16. Chromium-molybdenum steels for fusion-reactor applications

    International Nuclear Information System (INIS)

    Because ferritic steels have been found to have excellent resistance to swelling when irradiated in a fast-breeder reactor, Cr-Mo steels have recently become of interest for nuclear applications, both as cladding and duct material for fast-breeder reactors and as a first-wall and blanket structural material for fusion reactors. In this paper we will assess the Cr-Mo steels for fusion reactor applications. Possible approaches on how Cr-Mo steels may be further developed for this application will be proposed

  17. Twenty-Six Years of Operating Experience with the FBTR and Feedback for Future Reactor Design

    International Nuclear Information System (INIS)

    India has limited uranium, but abundant thorium resources. For better utilization of uranium and to use the available thorium, a fast reactor programme is indispensable for India because fast reactors can generate electricity and breed additional fissile materials for future reactors. The Fast Breeder Test Reactor (FBTR) has provided a valuable test bed for the performance assessment of unique carbide fuel, materials, etc., experience in safe handling of sodium, in addition to generating employment of human resources. The knowledge gained through successful operation of the FBTR for the past 26 years has provided vital inputs for the commercialization of the fast breeder reactor programme through the construction of the Prototype Fast Breeder Reactor (PFBR). The PFBR is a 500 MW(e), sodium cooled, pool type fast breeder reactor currently under construction. It is essential to reduce the capital cost of future fast breeder reactors to make them competitive with thermal reactors. Operating experience gained with the FBTR provides vital input towards simplification of the design, improving its reliability, enhancing safety and achieving overall cost reduction. This paper includes a summary of 26 years of operating experience gained with the FBTR and its feedback into the PFBR design. (author)

  18. PFBR reactor protection

    International Nuclear Information System (INIS)

    Design philosophy adopted for Prototype Fast breeder Reactor (PFBR) is a classical one and has the following features: triplicated sensors for measuring important safety parameters; two independent reactor protection Logic Systems based on solid state devices; reactivity control achieved by control rods; gas equipped modules at the core blanket interface providing negative reactivity. Design verification of these features showed that safety of the reactor can be achieved by a traditional approach since the inherent features of LMFBR make this easy

  19. Department of Energy Nuclear Material Protection, Control, and Accounting Program at the Mangyshlak Atomic Energy Complex, Aktau, Republic of Kazakhstan

    International Nuclear Information System (INIS)

    As part of the Cooperative Threat Reduction Nuclear Material Protection, Control, and Accounting (MPC and A) Program, the US Department of Energy and Mangyshlak Atomic Energy Complex (MAEC), Aktau, Republic of Kazakstan have cooperated to enhance existing MAEC MPC and A features at the BN-350 liquid-metal fast-breeder reactor. This paper describes the methodology of the enhancement activities and provides representative examples of the MPC and A augmentation implemented at the MAEC

  20. Improved analysis on multiple recycling of fuel in prototype fast breeder reactor in a closed fuel cycle

    Indian Academy of Sciences (India)

    G Pandikumar; V Gopalakrishnan; P Mohanakrishnan

    2011-08-01

    An FBR closed fuel cycle involves recycling of the discharge fuel, after reprocessing and refabrication, to utilize the unburnt fuel remains and the freshly bred fissile material. Our previous study in this regard for the PFBR indicated a comfortable feasibility of multiple recycling with selfsufficiency. In the present work, more refined estimations are done using the most recent nuclear data, viz. ENDF/B-VII.0, and with the most recent specification of the fuel composition. Among others, this paper brings out the importance of taking into account the energy self-shielding effects in the cross-section averages used in the study. While self-shielded averages lead to realistic predictions, unshielded averages significantly overpredict breeding in the blankets and underpredict loss in the cores.